v4.19.13 snapshot.
diff --git a/drivers/crypto/ccree/cc_hash.c b/drivers/crypto/ccree/cc_hash.c
new file mode 100644
index 0000000..b931330
--- /dev/null
+++ b/drivers/crypto/ccree/cc_hash.c
@@ -0,0 +1,2245 @@
+// SPDX-License-Identifier: GPL-2.0
+/* Copyright (C) 2012-2018 ARM Limited or its affiliates. */
+
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <crypto/algapi.h>
+#include <crypto/hash.h>
+#include <crypto/md5.h>
+#include <crypto/internal/hash.h>
+
+#include "cc_driver.h"
+#include "cc_request_mgr.h"
+#include "cc_buffer_mgr.h"
+#include "cc_hash.h"
+#include "cc_sram_mgr.h"
+
+#define CC_MAX_HASH_SEQ_LEN 12
+#define CC_MAX_OPAD_KEYS_SIZE CC_MAX_HASH_BLCK_SIZE
+
+struct cc_hash_handle {
+	cc_sram_addr_t digest_len_sram_addr; /* const value in SRAM*/
+	cc_sram_addr_t larval_digest_sram_addr;   /* const value in SRAM */
+	struct list_head hash_list;
+};
+
+static const u32 digest_len_init[] = {
+	0x00000040, 0x00000000, 0x00000000, 0x00000000 };
+static const u32 md5_init[] = {
+	SHA1_H3, SHA1_H2, SHA1_H1, SHA1_H0 };
+static const u32 sha1_init[] = {
+	SHA1_H4, SHA1_H3, SHA1_H2, SHA1_H1, SHA1_H0 };
+static const u32 sha224_init[] = {
+	SHA224_H7, SHA224_H6, SHA224_H5, SHA224_H4,
+	SHA224_H3, SHA224_H2, SHA224_H1, SHA224_H0 };
+static const u32 sha256_init[] = {
+	SHA256_H7, SHA256_H6, SHA256_H5, SHA256_H4,
+	SHA256_H3, SHA256_H2, SHA256_H1, SHA256_H0 };
+static const u32 digest_len_sha512_init[] = {
+	0x00000080, 0x00000000, 0x00000000, 0x00000000 };
+static u64 sha384_init[] = {
+	SHA384_H7, SHA384_H6, SHA384_H5, SHA384_H4,
+	SHA384_H3, SHA384_H2, SHA384_H1, SHA384_H0 };
+static u64 sha512_init[] = {
+	SHA512_H7, SHA512_H6, SHA512_H5, SHA512_H4,
+	SHA512_H3, SHA512_H2, SHA512_H1, SHA512_H0 };
+
+static void cc_setup_xcbc(struct ahash_request *areq, struct cc_hw_desc desc[],
+			  unsigned int *seq_size);
+
+static void cc_setup_cmac(struct ahash_request *areq, struct cc_hw_desc desc[],
+			  unsigned int *seq_size);
+
+static const void *cc_larval_digest(struct device *dev, u32 mode);
+
+struct cc_hash_alg {
+	struct list_head entry;
+	int hash_mode;
+	int hw_mode;
+	int inter_digestsize;
+	struct cc_drvdata *drvdata;
+	struct ahash_alg ahash_alg;
+};
+
+struct hash_key_req_ctx {
+	u32 keylen;
+	dma_addr_t key_dma_addr;
+};
+
+/* hash per-session context */
+struct cc_hash_ctx {
+	struct cc_drvdata *drvdata;
+	/* holds the origin digest; the digest after "setkey" if HMAC,*
+	 * the initial digest if HASH.
+	 */
+	u8 digest_buff[CC_MAX_HASH_DIGEST_SIZE]  ____cacheline_aligned;
+	u8 opad_tmp_keys_buff[CC_MAX_OPAD_KEYS_SIZE]  ____cacheline_aligned;
+
+	dma_addr_t opad_tmp_keys_dma_addr  ____cacheline_aligned;
+	dma_addr_t digest_buff_dma_addr;
+	/* use for hmac with key large then mode block size */
+	struct hash_key_req_ctx key_params;
+	int hash_mode;
+	int hw_mode;
+	int inter_digestsize;
+	struct completion setkey_comp;
+	bool is_hmac;
+};
+
+static void cc_set_desc(struct ahash_req_ctx *areq_ctx, struct cc_hash_ctx *ctx,
+			unsigned int flow_mode, struct cc_hw_desc desc[],
+			bool is_not_last_data, unsigned int *seq_size);
+
+static void cc_set_endianity(u32 mode, struct cc_hw_desc *desc)
+{
+	if (mode == DRV_HASH_MD5 || mode == DRV_HASH_SHA384 ||
+	    mode == DRV_HASH_SHA512) {
+		set_bytes_swap(desc, 1);
+	} else {
+		set_cipher_config0(desc, HASH_DIGEST_RESULT_LITTLE_ENDIAN);
+	}
+}
+
+static int cc_map_result(struct device *dev, struct ahash_req_ctx *state,
+			 unsigned int digestsize)
+{
+	state->digest_result_dma_addr =
+		dma_map_single(dev, state->digest_result_buff,
+			       digestsize, DMA_BIDIRECTIONAL);
+	if (dma_mapping_error(dev, state->digest_result_dma_addr)) {
+		dev_err(dev, "Mapping digest result buffer %u B for DMA failed\n",
+			digestsize);
+		return -ENOMEM;
+	}
+	dev_dbg(dev, "Mapped digest result buffer %u B at va=%pK to dma=%pad\n",
+		digestsize, state->digest_result_buff,
+		&state->digest_result_dma_addr);
+
+	return 0;
+}
+
+static void cc_init_req(struct device *dev, struct ahash_req_ctx *state,
+			struct cc_hash_ctx *ctx)
+{
+	bool is_hmac = ctx->is_hmac;
+
+	memset(state, 0, sizeof(*state));
+
+	if (is_hmac) {
+		if (ctx->hw_mode != DRV_CIPHER_XCBC_MAC &&
+		    ctx->hw_mode != DRV_CIPHER_CMAC) {
+			dma_sync_single_for_cpu(dev, ctx->digest_buff_dma_addr,
+						ctx->inter_digestsize,
+						DMA_BIDIRECTIONAL);
+
+			memcpy(state->digest_buff, ctx->digest_buff,
+			       ctx->inter_digestsize);
+			if (ctx->hash_mode == DRV_HASH_SHA512 ||
+			    ctx->hash_mode == DRV_HASH_SHA384)
+				memcpy(state->digest_bytes_len,
+				       digest_len_sha512_init,
+				       ctx->drvdata->hash_len_sz);
+			else
+				memcpy(state->digest_bytes_len, digest_len_init,
+				       ctx->drvdata->hash_len_sz);
+		}
+
+		if (ctx->hash_mode != DRV_HASH_NULL) {
+			dma_sync_single_for_cpu(dev,
+						ctx->opad_tmp_keys_dma_addr,
+						ctx->inter_digestsize,
+						DMA_BIDIRECTIONAL);
+			memcpy(state->opad_digest_buff,
+			       ctx->opad_tmp_keys_buff, ctx->inter_digestsize);
+		}
+	} else { /*hash*/
+		/* Copy the initial digests if hash flow. */
+		const void *larval = cc_larval_digest(dev, ctx->hash_mode);
+
+		memcpy(state->digest_buff, larval, ctx->inter_digestsize);
+	}
+}
+
+static int cc_map_req(struct device *dev, struct ahash_req_ctx *state,
+		      struct cc_hash_ctx *ctx)
+{
+	bool is_hmac = ctx->is_hmac;
+
+	state->digest_buff_dma_addr =
+		dma_map_single(dev, state->digest_buff,
+			       ctx->inter_digestsize, DMA_BIDIRECTIONAL);
+	if (dma_mapping_error(dev, state->digest_buff_dma_addr)) {
+		dev_err(dev, "Mapping digest len %d B at va=%pK for DMA failed\n",
+			ctx->inter_digestsize, state->digest_buff);
+		return -EINVAL;
+	}
+	dev_dbg(dev, "Mapped digest %d B at va=%pK to dma=%pad\n",
+		ctx->inter_digestsize, state->digest_buff,
+		&state->digest_buff_dma_addr);
+
+	if (ctx->hw_mode != DRV_CIPHER_XCBC_MAC) {
+		state->digest_bytes_len_dma_addr =
+			dma_map_single(dev, state->digest_bytes_len,
+				       HASH_MAX_LEN_SIZE, DMA_BIDIRECTIONAL);
+		if (dma_mapping_error(dev, state->digest_bytes_len_dma_addr)) {
+			dev_err(dev, "Mapping digest len %u B at va=%pK for DMA failed\n",
+				HASH_MAX_LEN_SIZE, state->digest_bytes_len);
+			goto unmap_digest_buf;
+		}
+		dev_dbg(dev, "Mapped digest len %u B at va=%pK to dma=%pad\n",
+			HASH_MAX_LEN_SIZE, state->digest_bytes_len,
+			&state->digest_bytes_len_dma_addr);
+	}
+
+	if (is_hmac && ctx->hash_mode != DRV_HASH_NULL) {
+		state->opad_digest_dma_addr =
+			dma_map_single(dev, state->opad_digest_buff,
+				       ctx->inter_digestsize,
+				       DMA_BIDIRECTIONAL);
+		if (dma_mapping_error(dev, state->opad_digest_dma_addr)) {
+			dev_err(dev, "Mapping opad digest %d B at va=%pK for DMA failed\n",
+				ctx->inter_digestsize,
+				state->opad_digest_buff);
+			goto unmap_digest_len;
+		}
+		dev_dbg(dev, "Mapped opad digest %d B at va=%pK to dma=%pad\n",
+			ctx->inter_digestsize, state->opad_digest_buff,
+			&state->opad_digest_dma_addr);
+	}
+
+	return 0;
+
+unmap_digest_len:
+	if (state->digest_bytes_len_dma_addr) {
+		dma_unmap_single(dev, state->digest_bytes_len_dma_addr,
+				 HASH_MAX_LEN_SIZE, DMA_BIDIRECTIONAL);
+		state->digest_bytes_len_dma_addr = 0;
+	}
+unmap_digest_buf:
+	if (state->digest_buff_dma_addr) {
+		dma_unmap_single(dev, state->digest_buff_dma_addr,
+				 ctx->inter_digestsize, DMA_BIDIRECTIONAL);
+		state->digest_buff_dma_addr = 0;
+	}
+
+	return -EINVAL;
+}
+
+static void cc_unmap_req(struct device *dev, struct ahash_req_ctx *state,
+			 struct cc_hash_ctx *ctx)
+{
+	if (state->digest_buff_dma_addr) {
+		dma_unmap_single(dev, state->digest_buff_dma_addr,
+				 ctx->inter_digestsize, DMA_BIDIRECTIONAL);
+		dev_dbg(dev, "Unmapped digest-buffer: digest_buff_dma_addr=%pad\n",
+			&state->digest_buff_dma_addr);
+		state->digest_buff_dma_addr = 0;
+	}
+	if (state->digest_bytes_len_dma_addr) {
+		dma_unmap_single(dev, state->digest_bytes_len_dma_addr,
+				 HASH_MAX_LEN_SIZE, DMA_BIDIRECTIONAL);
+		dev_dbg(dev, "Unmapped digest-bytes-len buffer: digest_bytes_len_dma_addr=%pad\n",
+			&state->digest_bytes_len_dma_addr);
+		state->digest_bytes_len_dma_addr = 0;
+	}
+	if (state->opad_digest_dma_addr) {
+		dma_unmap_single(dev, state->opad_digest_dma_addr,
+				 ctx->inter_digestsize, DMA_BIDIRECTIONAL);
+		dev_dbg(dev, "Unmapped opad-digest: opad_digest_dma_addr=%pad\n",
+			&state->opad_digest_dma_addr);
+		state->opad_digest_dma_addr = 0;
+	}
+}
+
+static void cc_unmap_result(struct device *dev, struct ahash_req_ctx *state,
+			    unsigned int digestsize, u8 *result)
+{
+	if (state->digest_result_dma_addr) {
+		dma_unmap_single(dev, state->digest_result_dma_addr, digestsize,
+				 DMA_BIDIRECTIONAL);
+		dev_dbg(dev, "unmpa digest result buffer va (%pK) pa (%pad) len %u\n",
+			state->digest_result_buff,
+			&state->digest_result_dma_addr, digestsize);
+		memcpy(result, state->digest_result_buff, digestsize);
+	}
+	state->digest_result_dma_addr = 0;
+}
+
+static void cc_update_complete(struct device *dev, void *cc_req, int err)
+{
+	struct ahash_request *req = (struct ahash_request *)cc_req;
+	struct ahash_req_ctx *state = ahash_request_ctx(req);
+	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
+	struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm);
+
+	dev_dbg(dev, "req=%pK\n", req);
+
+	cc_unmap_hash_request(dev, state, req->src, false);
+	cc_unmap_req(dev, state, ctx);
+	req->base.complete(&req->base, err);
+}
+
+static void cc_digest_complete(struct device *dev, void *cc_req, int err)
+{
+	struct ahash_request *req = (struct ahash_request *)cc_req;
+	struct ahash_req_ctx *state = ahash_request_ctx(req);
+	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
+	struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm);
+	u32 digestsize = crypto_ahash_digestsize(tfm);
+
+	dev_dbg(dev, "req=%pK\n", req);
+
+	cc_unmap_hash_request(dev, state, req->src, false);
+	cc_unmap_result(dev, state, digestsize, req->result);
+	cc_unmap_req(dev, state, ctx);
+	req->base.complete(&req->base, err);
+}
+
+static void cc_hash_complete(struct device *dev, void *cc_req, int err)
+{
+	struct ahash_request *req = (struct ahash_request *)cc_req;
+	struct ahash_req_ctx *state = ahash_request_ctx(req);
+	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
+	struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm);
+	u32 digestsize = crypto_ahash_digestsize(tfm);
+
+	dev_dbg(dev, "req=%pK\n", req);
+
+	cc_unmap_hash_request(dev, state, req->src, false);
+	cc_unmap_result(dev, state, digestsize, req->result);
+	cc_unmap_req(dev, state, ctx);
+	req->base.complete(&req->base, err);
+}
+
+static int cc_fin_result(struct cc_hw_desc *desc, struct ahash_request *req,
+			 int idx)
+{
+	struct ahash_req_ctx *state = ahash_request_ctx(req);
+	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
+	struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm);
+	u32 digestsize = crypto_ahash_digestsize(tfm);
+
+	/* Get final MAC result */
+	hw_desc_init(&desc[idx]);
+	set_cipher_mode(&desc[idx], ctx->hw_mode);
+	/* TODO */
+	set_dout_dlli(&desc[idx], state->digest_result_dma_addr, digestsize,
+		      NS_BIT, 1);
+	set_queue_last_ind(ctx->drvdata, &desc[idx]);
+	set_flow_mode(&desc[idx], S_HASH_to_DOUT);
+	set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
+	set_cipher_config1(&desc[idx], HASH_PADDING_DISABLED);
+	cc_set_endianity(ctx->hash_mode, &desc[idx]);
+	idx++;
+
+	return idx;
+}
+
+static int cc_fin_hmac(struct cc_hw_desc *desc, struct ahash_request *req,
+		       int idx)
+{
+	struct ahash_req_ctx *state = ahash_request_ctx(req);
+	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
+	struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm);
+	u32 digestsize = crypto_ahash_digestsize(tfm);
+
+	/* store the hash digest result in the context */
+	hw_desc_init(&desc[idx]);
+	set_cipher_mode(&desc[idx], ctx->hw_mode);
+	set_dout_dlli(&desc[idx], state->digest_buff_dma_addr, digestsize,
+		      NS_BIT, 0);
+	set_flow_mode(&desc[idx], S_HASH_to_DOUT);
+	cc_set_endianity(ctx->hash_mode, &desc[idx]);
+	set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
+	idx++;
+
+	/* Loading hash opad xor key state */
+	hw_desc_init(&desc[idx]);
+	set_cipher_mode(&desc[idx], ctx->hw_mode);
+	set_din_type(&desc[idx], DMA_DLLI, state->opad_digest_dma_addr,
+		     ctx->inter_digestsize, NS_BIT);
+	set_flow_mode(&desc[idx], S_DIN_to_HASH);
+	set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
+	idx++;
+
+	/* Load the hash current length */
+	hw_desc_init(&desc[idx]);
+	set_cipher_mode(&desc[idx], ctx->hw_mode);
+	set_din_sram(&desc[idx],
+		     cc_digest_len_addr(ctx->drvdata, ctx->hash_mode),
+		     ctx->drvdata->hash_len_sz);
+	set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
+	set_flow_mode(&desc[idx], S_DIN_to_HASH);
+	set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
+	idx++;
+
+	/* Memory Barrier: wait for IPAD/OPAD axi write to complete */
+	hw_desc_init(&desc[idx]);
+	set_din_no_dma(&desc[idx], 0, 0xfffff0);
+	set_dout_no_dma(&desc[idx], 0, 0, 1);
+	idx++;
+
+	/* Perform HASH update */
+	hw_desc_init(&desc[idx]);
+	set_din_type(&desc[idx], DMA_DLLI, state->digest_buff_dma_addr,
+		     digestsize, NS_BIT);
+	set_flow_mode(&desc[idx], DIN_HASH);
+	idx++;
+
+	return idx;
+}
+
+static int cc_hash_digest(struct ahash_request *req)
+{
+	struct ahash_req_ctx *state = ahash_request_ctx(req);
+	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
+	struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm);
+	u32 digestsize = crypto_ahash_digestsize(tfm);
+	struct scatterlist *src = req->src;
+	unsigned int nbytes = req->nbytes;
+	u8 *result = req->result;
+	struct device *dev = drvdata_to_dev(ctx->drvdata);
+	bool is_hmac = ctx->is_hmac;
+	struct cc_crypto_req cc_req = {};
+	struct cc_hw_desc desc[CC_MAX_HASH_SEQ_LEN];
+	cc_sram_addr_t larval_digest_addr =
+		cc_larval_digest_addr(ctx->drvdata, ctx->hash_mode);
+	int idx = 0;
+	int rc = 0;
+	gfp_t flags = cc_gfp_flags(&req->base);
+
+	dev_dbg(dev, "===== %s-digest (%d) ====\n", is_hmac ? "hmac" : "hash",
+		nbytes);
+
+	cc_init_req(dev, state, ctx);
+
+	if (cc_map_req(dev, state, ctx)) {
+		dev_err(dev, "map_ahash_source() failed\n");
+		return -ENOMEM;
+	}
+
+	if (cc_map_result(dev, state, digestsize)) {
+		dev_err(dev, "map_ahash_digest() failed\n");
+		cc_unmap_req(dev, state, ctx);
+		return -ENOMEM;
+	}
+
+	if (cc_map_hash_request_final(ctx->drvdata, state, src, nbytes, 1,
+				      flags)) {
+		dev_err(dev, "map_ahash_request_final() failed\n");
+		cc_unmap_result(dev, state, digestsize, result);
+		cc_unmap_req(dev, state, ctx);
+		return -ENOMEM;
+	}
+
+	/* Setup request structure */
+	cc_req.user_cb = cc_digest_complete;
+	cc_req.user_arg = req;
+
+	/* If HMAC then load hash IPAD xor key, if HASH then load initial
+	 * digest
+	 */
+	hw_desc_init(&desc[idx]);
+	set_cipher_mode(&desc[idx], ctx->hw_mode);
+	if (is_hmac) {
+		set_din_type(&desc[idx], DMA_DLLI, state->digest_buff_dma_addr,
+			     ctx->inter_digestsize, NS_BIT);
+	} else {
+		set_din_sram(&desc[idx], larval_digest_addr,
+			     ctx->inter_digestsize);
+	}
+	set_flow_mode(&desc[idx], S_DIN_to_HASH);
+	set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
+	idx++;
+
+	/* Load the hash current length */
+	hw_desc_init(&desc[idx]);
+	set_cipher_mode(&desc[idx], ctx->hw_mode);
+
+	if (is_hmac) {
+		set_din_type(&desc[idx], DMA_DLLI,
+			     state->digest_bytes_len_dma_addr,
+			     ctx->drvdata->hash_len_sz, NS_BIT);
+	} else {
+		set_din_const(&desc[idx], 0, ctx->drvdata->hash_len_sz);
+		if (nbytes)
+			set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
+		else
+			set_cipher_do(&desc[idx], DO_PAD);
+	}
+	set_flow_mode(&desc[idx], S_DIN_to_HASH);
+	set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
+	idx++;
+
+	cc_set_desc(state, ctx, DIN_HASH, desc, false, &idx);
+
+	if (is_hmac) {
+		/* HW last hash block padding (aka. "DO_PAD") */
+		hw_desc_init(&desc[idx]);
+		set_cipher_mode(&desc[idx], ctx->hw_mode);
+		set_dout_dlli(&desc[idx], state->digest_buff_dma_addr,
+			      ctx->drvdata->hash_len_sz, NS_BIT, 0);
+		set_flow_mode(&desc[idx], S_HASH_to_DOUT);
+		set_setup_mode(&desc[idx], SETUP_WRITE_STATE1);
+		set_cipher_do(&desc[idx], DO_PAD);
+		idx++;
+
+		idx = cc_fin_hmac(desc, req, idx);
+	}
+
+	idx = cc_fin_result(desc, req, idx);
+
+	rc = cc_send_request(ctx->drvdata, &cc_req, desc, idx, &req->base);
+	if (rc != -EINPROGRESS && rc != -EBUSY) {
+		dev_err(dev, "send_request() failed (rc=%d)\n", rc);
+		cc_unmap_hash_request(dev, state, src, true);
+		cc_unmap_result(dev, state, digestsize, result);
+		cc_unmap_req(dev, state, ctx);
+	}
+	return rc;
+}
+
+static int cc_restore_hash(struct cc_hw_desc *desc, struct cc_hash_ctx *ctx,
+			   struct ahash_req_ctx *state, unsigned int idx)
+{
+	/* Restore hash digest */
+	hw_desc_init(&desc[idx]);
+	set_cipher_mode(&desc[idx], ctx->hw_mode);
+	set_din_type(&desc[idx], DMA_DLLI, state->digest_buff_dma_addr,
+		     ctx->inter_digestsize, NS_BIT);
+	set_flow_mode(&desc[idx], S_DIN_to_HASH);
+	set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
+	idx++;
+
+	/* Restore hash current length */
+	hw_desc_init(&desc[idx]);
+	set_cipher_mode(&desc[idx], ctx->hw_mode);
+	set_cipher_config1(&desc[idx], HASH_PADDING_DISABLED);
+	set_din_type(&desc[idx], DMA_DLLI, state->digest_bytes_len_dma_addr,
+		     ctx->drvdata->hash_len_sz, NS_BIT);
+	set_flow_mode(&desc[idx], S_DIN_to_HASH);
+	set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
+	idx++;
+
+	cc_set_desc(state, ctx, DIN_HASH, desc, false, &idx);
+
+	return idx;
+}
+
+static int cc_hash_update(struct ahash_request *req)
+{
+	struct ahash_req_ctx *state = ahash_request_ctx(req);
+	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
+	struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm);
+	unsigned int block_size = crypto_tfm_alg_blocksize(&tfm->base);
+	struct scatterlist *src = req->src;
+	unsigned int nbytes = req->nbytes;
+	struct device *dev = drvdata_to_dev(ctx->drvdata);
+	struct cc_crypto_req cc_req = {};
+	struct cc_hw_desc desc[CC_MAX_HASH_SEQ_LEN];
+	u32 idx = 0;
+	int rc;
+	gfp_t flags = cc_gfp_flags(&req->base);
+
+	dev_dbg(dev, "===== %s-update (%d) ====\n", ctx->is_hmac ?
+		"hmac" : "hash", nbytes);
+
+	if (nbytes == 0) {
+		/* no real updates required */
+		return 0;
+	}
+
+	rc = cc_map_hash_request_update(ctx->drvdata, state, src, nbytes,
+					block_size, flags);
+	if (rc) {
+		if (rc == 1) {
+			dev_dbg(dev, " data size not require HW update %x\n",
+				nbytes);
+			/* No hardware updates are required */
+			return 0;
+		}
+		dev_err(dev, "map_ahash_request_update() failed\n");
+		return -ENOMEM;
+	}
+
+	if (cc_map_req(dev, state, ctx)) {
+		dev_err(dev, "map_ahash_source() failed\n");
+		cc_unmap_hash_request(dev, state, src, true);
+		return -EINVAL;
+	}
+
+	/* Setup request structure */
+	cc_req.user_cb = cc_update_complete;
+	cc_req.user_arg = req;
+
+	idx = cc_restore_hash(desc, ctx, state, idx);
+
+	/* store the hash digest result in context */
+	hw_desc_init(&desc[idx]);
+	set_cipher_mode(&desc[idx], ctx->hw_mode);
+	set_dout_dlli(&desc[idx], state->digest_buff_dma_addr,
+		      ctx->inter_digestsize, NS_BIT, 0);
+	set_flow_mode(&desc[idx], S_HASH_to_DOUT);
+	set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
+	idx++;
+
+	/* store current hash length in context */
+	hw_desc_init(&desc[idx]);
+	set_cipher_mode(&desc[idx], ctx->hw_mode);
+	set_dout_dlli(&desc[idx], state->digest_bytes_len_dma_addr,
+		      ctx->drvdata->hash_len_sz, NS_BIT, 1);
+	set_queue_last_ind(ctx->drvdata, &desc[idx]);
+	set_flow_mode(&desc[idx], S_HASH_to_DOUT);
+	set_setup_mode(&desc[idx], SETUP_WRITE_STATE1);
+	idx++;
+
+	rc = cc_send_request(ctx->drvdata, &cc_req, desc, idx, &req->base);
+	if (rc != -EINPROGRESS && rc != -EBUSY) {
+		dev_err(dev, "send_request() failed (rc=%d)\n", rc);
+		cc_unmap_hash_request(dev, state, src, true);
+		cc_unmap_req(dev, state, ctx);
+	}
+	return rc;
+}
+
+static int cc_do_finup(struct ahash_request *req, bool update)
+{
+	struct ahash_req_ctx *state = ahash_request_ctx(req);
+	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
+	struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm);
+	u32 digestsize = crypto_ahash_digestsize(tfm);
+	struct scatterlist *src = req->src;
+	unsigned int nbytes = req->nbytes;
+	u8 *result = req->result;
+	struct device *dev = drvdata_to_dev(ctx->drvdata);
+	bool is_hmac = ctx->is_hmac;
+	struct cc_crypto_req cc_req = {};
+	struct cc_hw_desc desc[CC_MAX_HASH_SEQ_LEN];
+	unsigned int idx = 0;
+	int rc;
+	gfp_t flags = cc_gfp_flags(&req->base);
+
+	dev_dbg(dev, "===== %s-%s (%d) ====\n", is_hmac ? "hmac" : "hash",
+		update ? "finup" : "final", nbytes);
+
+	if (cc_map_req(dev, state, ctx)) {
+		dev_err(dev, "map_ahash_source() failed\n");
+		return -EINVAL;
+	}
+
+	if (cc_map_hash_request_final(ctx->drvdata, state, src, nbytes, update,
+				      flags)) {
+		dev_err(dev, "map_ahash_request_final() failed\n");
+		cc_unmap_req(dev, state, ctx);
+		return -ENOMEM;
+	}
+	if (cc_map_result(dev, state, digestsize)) {
+		dev_err(dev, "map_ahash_digest() failed\n");
+		cc_unmap_hash_request(dev, state, src, true);
+		cc_unmap_req(dev, state, ctx);
+		return -ENOMEM;
+	}
+
+	/* Setup request structure */
+	cc_req.user_cb = cc_hash_complete;
+	cc_req.user_arg = req;
+
+	idx = cc_restore_hash(desc, ctx, state, idx);
+
+	/* Pad the hash */
+	hw_desc_init(&desc[idx]);
+	set_cipher_do(&desc[idx], DO_PAD);
+	set_cipher_mode(&desc[idx], ctx->hw_mode);
+	set_dout_dlli(&desc[idx], state->digest_bytes_len_dma_addr,
+		      ctx->drvdata->hash_len_sz, NS_BIT, 0);
+	set_setup_mode(&desc[idx], SETUP_WRITE_STATE1);
+	set_flow_mode(&desc[idx], S_HASH_to_DOUT);
+	idx++;
+
+	if (is_hmac)
+		idx = cc_fin_hmac(desc, req, idx);
+
+	idx = cc_fin_result(desc, req, idx);
+
+	rc = cc_send_request(ctx->drvdata, &cc_req, desc, idx, &req->base);
+	if (rc != -EINPROGRESS && rc != -EBUSY) {
+		dev_err(dev, "send_request() failed (rc=%d)\n", rc);
+		cc_unmap_hash_request(dev, state, src, true);
+		cc_unmap_result(dev, state, digestsize, result);
+		cc_unmap_req(dev, state, ctx);
+	}
+	return rc;
+}
+
+static int cc_hash_finup(struct ahash_request *req)
+{
+	return cc_do_finup(req, true);
+}
+
+
+static int cc_hash_final(struct ahash_request *req)
+{
+	return cc_do_finup(req, false);
+}
+
+static int cc_hash_init(struct ahash_request *req)
+{
+	struct ahash_req_ctx *state = ahash_request_ctx(req);
+	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
+	struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm);
+	struct device *dev = drvdata_to_dev(ctx->drvdata);
+
+	dev_dbg(dev, "===== init (%d) ====\n", req->nbytes);
+
+	cc_init_req(dev, state, ctx);
+
+	return 0;
+}
+
+static int cc_hash_setkey(struct crypto_ahash *ahash, const u8 *key,
+			  unsigned int keylen)
+{
+	unsigned int hmac_pad_const[2] = { HMAC_IPAD_CONST, HMAC_OPAD_CONST };
+	struct cc_crypto_req cc_req = {};
+	struct cc_hash_ctx *ctx = NULL;
+	int blocksize = 0;
+	int digestsize = 0;
+	int i, idx = 0, rc = 0;
+	struct cc_hw_desc desc[CC_MAX_HASH_SEQ_LEN];
+	cc_sram_addr_t larval_addr;
+	struct device *dev;
+
+	ctx = crypto_ahash_ctx(ahash);
+	dev = drvdata_to_dev(ctx->drvdata);
+	dev_dbg(dev, "start keylen: %d", keylen);
+
+	blocksize = crypto_tfm_alg_blocksize(&ahash->base);
+	digestsize = crypto_ahash_digestsize(ahash);
+
+	larval_addr = cc_larval_digest_addr(ctx->drvdata, ctx->hash_mode);
+
+	/* The keylen value distinguishes HASH in case keylen is ZERO bytes,
+	 * any NON-ZERO value utilizes HMAC flow
+	 */
+	ctx->key_params.keylen = keylen;
+	ctx->key_params.key_dma_addr = 0;
+	ctx->is_hmac = true;
+
+	if (keylen) {
+		ctx->key_params.key_dma_addr =
+			dma_map_single(dev, (void *)key, keylen, DMA_TO_DEVICE);
+		if (dma_mapping_error(dev, ctx->key_params.key_dma_addr)) {
+			dev_err(dev, "Mapping key va=0x%p len=%u for DMA failed\n",
+				key, keylen);
+			return -ENOMEM;
+		}
+		dev_dbg(dev, "mapping key-buffer: key_dma_addr=%pad keylen=%u\n",
+			&ctx->key_params.key_dma_addr, ctx->key_params.keylen);
+
+		if (keylen > blocksize) {
+			/* Load hash initial state */
+			hw_desc_init(&desc[idx]);
+			set_cipher_mode(&desc[idx], ctx->hw_mode);
+			set_din_sram(&desc[idx], larval_addr,
+				     ctx->inter_digestsize);
+			set_flow_mode(&desc[idx], S_DIN_to_HASH);
+			set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
+			idx++;
+
+			/* Load the hash current length*/
+			hw_desc_init(&desc[idx]);
+			set_cipher_mode(&desc[idx], ctx->hw_mode);
+			set_din_const(&desc[idx], 0, ctx->drvdata->hash_len_sz);
+			set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
+			set_flow_mode(&desc[idx], S_DIN_to_HASH);
+			set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
+			idx++;
+
+			hw_desc_init(&desc[idx]);
+			set_din_type(&desc[idx], DMA_DLLI,
+				     ctx->key_params.key_dma_addr, keylen,
+				     NS_BIT);
+			set_flow_mode(&desc[idx], DIN_HASH);
+			idx++;
+
+			/* Get hashed key */
+			hw_desc_init(&desc[idx]);
+			set_cipher_mode(&desc[idx], ctx->hw_mode);
+			set_dout_dlli(&desc[idx], ctx->opad_tmp_keys_dma_addr,
+				      digestsize, NS_BIT, 0);
+			set_flow_mode(&desc[idx], S_HASH_to_DOUT);
+			set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
+			set_cipher_config1(&desc[idx], HASH_PADDING_DISABLED);
+			cc_set_endianity(ctx->hash_mode, &desc[idx]);
+			idx++;
+
+			hw_desc_init(&desc[idx]);
+			set_din_const(&desc[idx], 0, (blocksize - digestsize));
+			set_flow_mode(&desc[idx], BYPASS);
+			set_dout_dlli(&desc[idx],
+				      (ctx->opad_tmp_keys_dma_addr +
+				       digestsize),
+				      (blocksize - digestsize), NS_BIT, 0);
+			idx++;
+		} else {
+			hw_desc_init(&desc[idx]);
+			set_din_type(&desc[idx], DMA_DLLI,
+				     ctx->key_params.key_dma_addr, keylen,
+				     NS_BIT);
+			set_flow_mode(&desc[idx], BYPASS);
+			set_dout_dlli(&desc[idx], ctx->opad_tmp_keys_dma_addr,
+				      keylen, NS_BIT, 0);
+			idx++;
+
+			if ((blocksize - keylen)) {
+				hw_desc_init(&desc[idx]);
+				set_din_const(&desc[idx], 0,
+					      (blocksize - keylen));
+				set_flow_mode(&desc[idx], BYPASS);
+				set_dout_dlli(&desc[idx],
+					      (ctx->opad_tmp_keys_dma_addr +
+					       keylen), (blocksize - keylen),
+					      NS_BIT, 0);
+				idx++;
+			}
+		}
+	} else {
+		hw_desc_init(&desc[idx]);
+		set_din_const(&desc[idx], 0, blocksize);
+		set_flow_mode(&desc[idx], BYPASS);
+		set_dout_dlli(&desc[idx], (ctx->opad_tmp_keys_dma_addr),
+			      blocksize, NS_BIT, 0);
+		idx++;
+	}
+
+	rc = cc_send_sync_request(ctx->drvdata, &cc_req, desc, idx);
+	if (rc) {
+		dev_err(dev, "send_request() failed (rc=%d)\n", rc);
+		goto out;
+	}
+
+	/* calc derived HMAC key */
+	for (idx = 0, i = 0; i < 2; i++) {
+		/* Load hash initial state */
+		hw_desc_init(&desc[idx]);
+		set_cipher_mode(&desc[idx], ctx->hw_mode);
+		set_din_sram(&desc[idx], larval_addr, ctx->inter_digestsize);
+		set_flow_mode(&desc[idx], S_DIN_to_HASH);
+		set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
+		idx++;
+
+		/* Load the hash current length*/
+		hw_desc_init(&desc[idx]);
+		set_cipher_mode(&desc[idx], ctx->hw_mode);
+		set_din_const(&desc[idx], 0, ctx->drvdata->hash_len_sz);
+		set_flow_mode(&desc[idx], S_DIN_to_HASH);
+		set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
+		idx++;
+
+		/* Prepare ipad key */
+		hw_desc_init(&desc[idx]);
+		set_xor_val(&desc[idx], hmac_pad_const[i]);
+		set_cipher_mode(&desc[idx], ctx->hw_mode);
+		set_flow_mode(&desc[idx], S_DIN_to_HASH);
+		set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
+		idx++;
+
+		/* Perform HASH update */
+		hw_desc_init(&desc[idx]);
+		set_din_type(&desc[idx], DMA_DLLI, ctx->opad_tmp_keys_dma_addr,
+			     blocksize, NS_BIT);
+		set_cipher_mode(&desc[idx], ctx->hw_mode);
+		set_xor_active(&desc[idx]);
+		set_flow_mode(&desc[idx], DIN_HASH);
+		idx++;
+
+		/* Get the IPAD/OPAD xor key (Note, IPAD is the initial digest
+		 * of the first HASH "update" state)
+		 */
+		hw_desc_init(&desc[idx]);
+		set_cipher_mode(&desc[idx], ctx->hw_mode);
+		if (i > 0) /* Not first iteration */
+			set_dout_dlli(&desc[idx], ctx->opad_tmp_keys_dma_addr,
+				      ctx->inter_digestsize, NS_BIT, 0);
+		else /* First iteration */
+			set_dout_dlli(&desc[idx], ctx->digest_buff_dma_addr,
+				      ctx->inter_digestsize, NS_BIT, 0);
+		set_flow_mode(&desc[idx], S_HASH_to_DOUT);
+		set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
+		idx++;
+	}
+
+	rc = cc_send_sync_request(ctx->drvdata, &cc_req, desc, idx);
+
+out:
+	if (rc)
+		crypto_ahash_set_flags(ahash, CRYPTO_TFM_RES_BAD_KEY_LEN);
+
+	if (ctx->key_params.key_dma_addr) {
+		dma_unmap_single(dev, ctx->key_params.key_dma_addr,
+				 ctx->key_params.keylen, DMA_TO_DEVICE);
+		dev_dbg(dev, "Unmapped key-buffer: key_dma_addr=%pad keylen=%u\n",
+			&ctx->key_params.key_dma_addr, ctx->key_params.keylen);
+	}
+	return rc;
+}
+
+static int cc_xcbc_setkey(struct crypto_ahash *ahash,
+			  const u8 *key, unsigned int keylen)
+{
+	struct cc_crypto_req cc_req = {};
+	struct cc_hash_ctx *ctx = crypto_ahash_ctx(ahash);
+	struct device *dev = drvdata_to_dev(ctx->drvdata);
+	int rc = 0;
+	unsigned int idx = 0;
+	struct cc_hw_desc desc[CC_MAX_HASH_SEQ_LEN];
+
+	dev_dbg(dev, "===== setkey (%d) ====\n", keylen);
+
+	switch (keylen) {
+	case AES_KEYSIZE_128:
+	case AES_KEYSIZE_192:
+	case AES_KEYSIZE_256:
+		break;
+	default:
+		return -EINVAL;
+	}
+
+	ctx->key_params.keylen = keylen;
+
+	ctx->key_params.key_dma_addr =
+		dma_map_single(dev, (void *)key, keylen, DMA_TO_DEVICE);
+	if (dma_mapping_error(dev, ctx->key_params.key_dma_addr)) {
+		dev_err(dev, "Mapping key va=0x%p len=%u for DMA failed\n",
+			key, keylen);
+		return -ENOMEM;
+	}
+	dev_dbg(dev, "mapping key-buffer: key_dma_addr=%pad keylen=%u\n",
+		&ctx->key_params.key_dma_addr, ctx->key_params.keylen);
+
+	ctx->is_hmac = true;
+	/* 1. Load the AES key */
+	hw_desc_init(&desc[idx]);
+	set_din_type(&desc[idx], DMA_DLLI, ctx->key_params.key_dma_addr,
+		     keylen, NS_BIT);
+	set_cipher_mode(&desc[idx], DRV_CIPHER_ECB);
+	set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
+	set_key_size_aes(&desc[idx], keylen);
+	set_flow_mode(&desc[idx], S_DIN_to_AES);
+	set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
+	idx++;
+
+	hw_desc_init(&desc[idx]);
+	set_din_const(&desc[idx], 0x01010101, CC_AES_128_BIT_KEY_SIZE);
+	set_flow_mode(&desc[idx], DIN_AES_DOUT);
+	set_dout_dlli(&desc[idx],
+		      (ctx->opad_tmp_keys_dma_addr + XCBC_MAC_K1_OFFSET),
+		      CC_AES_128_BIT_KEY_SIZE, NS_BIT, 0);
+	idx++;
+
+	hw_desc_init(&desc[idx]);
+	set_din_const(&desc[idx], 0x02020202, CC_AES_128_BIT_KEY_SIZE);
+	set_flow_mode(&desc[idx], DIN_AES_DOUT);
+	set_dout_dlli(&desc[idx],
+		      (ctx->opad_tmp_keys_dma_addr + XCBC_MAC_K2_OFFSET),
+		      CC_AES_128_BIT_KEY_SIZE, NS_BIT, 0);
+	idx++;
+
+	hw_desc_init(&desc[idx]);
+	set_din_const(&desc[idx], 0x03030303, CC_AES_128_BIT_KEY_SIZE);
+	set_flow_mode(&desc[idx], DIN_AES_DOUT);
+	set_dout_dlli(&desc[idx],
+		      (ctx->opad_tmp_keys_dma_addr + XCBC_MAC_K3_OFFSET),
+		      CC_AES_128_BIT_KEY_SIZE, NS_BIT, 0);
+	idx++;
+
+	rc = cc_send_sync_request(ctx->drvdata, &cc_req, desc, idx);
+
+	if (rc)
+		crypto_ahash_set_flags(ahash, CRYPTO_TFM_RES_BAD_KEY_LEN);
+
+	dma_unmap_single(dev, ctx->key_params.key_dma_addr,
+			 ctx->key_params.keylen, DMA_TO_DEVICE);
+	dev_dbg(dev, "Unmapped key-buffer: key_dma_addr=%pad keylen=%u\n",
+		&ctx->key_params.key_dma_addr, ctx->key_params.keylen);
+
+	return rc;
+}
+
+static int cc_cmac_setkey(struct crypto_ahash *ahash,
+			  const u8 *key, unsigned int keylen)
+{
+	struct cc_hash_ctx *ctx = crypto_ahash_ctx(ahash);
+	struct device *dev = drvdata_to_dev(ctx->drvdata);
+
+	dev_dbg(dev, "===== setkey (%d) ====\n", keylen);
+
+	ctx->is_hmac = true;
+
+	switch (keylen) {
+	case AES_KEYSIZE_128:
+	case AES_KEYSIZE_192:
+	case AES_KEYSIZE_256:
+		break;
+	default:
+		return -EINVAL;
+	}
+
+	ctx->key_params.keylen = keylen;
+
+	/* STAT_PHASE_1: Copy key to ctx */
+
+	dma_sync_single_for_cpu(dev, ctx->opad_tmp_keys_dma_addr,
+				keylen, DMA_TO_DEVICE);
+
+	memcpy(ctx->opad_tmp_keys_buff, key, keylen);
+	if (keylen == 24) {
+		memset(ctx->opad_tmp_keys_buff + 24, 0,
+		       CC_AES_KEY_SIZE_MAX - 24);
+	}
+
+	dma_sync_single_for_device(dev, ctx->opad_tmp_keys_dma_addr,
+				   keylen, DMA_TO_DEVICE);
+
+	ctx->key_params.keylen = keylen;
+
+	return 0;
+}
+
+static void cc_free_ctx(struct cc_hash_ctx *ctx)
+{
+	struct device *dev = drvdata_to_dev(ctx->drvdata);
+
+	if (ctx->digest_buff_dma_addr) {
+		dma_unmap_single(dev, ctx->digest_buff_dma_addr,
+				 sizeof(ctx->digest_buff), DMA_BIDIRECTIONAL);
+		dev_dbg(dev, "Unmapped digest-buffer: digest_buff_dma_addr=%pad\n",
+			&ctx->digest_buff_dma_addr);
+		ctx->digest_buff_dma_addr = 0;
+	}
+	if (ctx->opad_tmp_keys_dma_addr) {
+		dma_unmap_single(dev, ctx->opad_tmp_keys_dma_addr,
+				 sizeof(ctx->opad_tmp_keys_buff),
+				 DMA_BIDIRECTIONAL);
+		dev_dbg(dev, "Unmapped opad-digest: opad_tmp_keys_dma_addr=%pad\n",
+			&ctx->opad_tmp_keys_dma_addr);
+		ctx->opad_tmp_keys_dma_addr = 0;
+	}
+
+	ctx->key_params.keylen = 0;
+}
+
+static int cc_alloc_ctx(struct cc_hash_ctx *ctx)
+{
+	struct device *dev = drvdata_to_dev(ctx->drvdata);
+
+	ctx->key_params.keylen = 0;
+
+	ctx->digest_buff_dma_addr =
+		dma_map_single(dev, (void *)ctx->digest_buff,
+			       sizeof(ctx->digest_buff), DMA_BIDIRECTIONAL);
+	if (dma_mapping_error(dev, ctx->digest_buff_dma_addr)) {
+		dev_err(dev, "Mapping digest len %zu B at va=%pK for DMA failed\n",
+			sizeof(ctx->digest_buff), ctx->digest_buff);
+		goto fail;
+	}
+	dev_dbg(dev, "Mapped digest %zu B at va=%pK to dma=%pad\n",
+		sizeof(ctx->digest_buff), ctx->digest_buff,
+		&ctx->digest_buff_dma_addr);
+
+	ctx->opad_tmp_keys_dma_addr =
+		dma_map_single(dev, (void *)ctx->opad_tmp_keys_buff,
+			       sizeof(ctx->opad_tmp_keys_buff),
+			       DMA_BIDIRECTIONAL);
+	if (dma_mapping_error(dev, ctx->opad_tmp_keys_dma_addr)) {
+		dev_err(dev, "Mapping opad digest %zu B at va=%pK for DMA failed\n",
+			sizeof(ctx->opad_tmp_keys_buff),
+			ctx->opad_tmp_keys_buff);
+		goto fail;
+	}
+	dev_dbg(dev, "Mapped opad_tmp_keys %zu B at va=%pK to dma=%pad\n",
+		sizeof(ctx->opad_tmp_keys_buff), ctx->opad_tmp_keys_buff,
+		&ctx->opad_tmp_keys_dma_addr);
+
+	ctx->is_hmac = false;
+	return 0;
+
+fail:
+	cc_free_ctx(ctx);
+	return -ENOMEM;
+}
+
+static int cc_cra_init(struct crypto_tfm *tfm)
+{
+	struct cc_hash_ctx *ctx = crypto_tfm_ctx(tfm);
+	struct hash_alg_common *hash_alg_common =
+		container_of(tfm->__crt_alg, struct hash_alg_common, base);
+	struct ahash_alg *ahash_alg =
+		container_of(hash_alg_common, struct ahash_alg, halg);
+	struct cc_hash_alg *cc_alg =
+			container_of(ahash_alg, struct cc_hash_alg, ahash_alg);
+
+	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
+				 sizeof(struct ahash_req_ctx));
+
+	ctx->hash_mode = cc_alg->hash_mode;
+	ctx->hw_mode = cc_alg->hw_mode;
+	ctx->inter_digestsize = cc_alg->inter_digestsize;
+	ctx->drvdata = cc_alg->drvdata;
+
+	return cc_alloc_ctx(ctx);
+}
+
+static void cc_cra_exit(struct crypto_tfm *tfm)
+{
+	struct cc_hash_ctx *ctx = crypto_tfm_ctx(tfm);
+	struct device *dev = drvdata_to_dev(ctx->drvdata);
+
+	dev_dbg(dev, "cc_cra_exit");
+	cc_free_ctx(ctx);
+}
+
+static int cc_mac_update(struct ahash_request *req)
+{
+	struct ahash_req_ctx *state = ahash_request_ctx(req);
+	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
+	struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm);
+	struct device *dev = drvdata_to_dev(ctx->drvdata);
+	unsigned int block_size = crypto_tfm_alg_blocksize(&tfm->base);
+	struct cc_crypto_req cc_req = {};
+	struct cc_hw_desc desc[CC_MAX_HASH_SEQ_LEN];
+	int rc;
+	u32 idx = 0;
+	gfp_t flags = cc_gfp_flags(&req->base);
+
+	if (req->nbytes == 0) {
+		/* no real updates required */
+		return 0;
+	}
+
+	state->xcbc_count++;
+
+	rc = cc_map_hash_request_update(ctx->drvdata, state, req->src,
+					req->nbytes, block_size, flags);
+	if (rc) {
+		if (rc == 1) {
+			dev_dbg(dev, " data size not require HW update %x\n",
+				req->nbytes);
+			/* No hardware updates are required */
+			return 0;
+		}
+		dev_err(dev, "map_ahash_request_update() failed\n");
+		return -ENOMEM;
+	}
+
+	if (cc_map_req(dev, state, ctx)) {
+		dev_err(dev, "map_ahash_source() failed\n");
+		return -EINVAL;
+	}
+
+	if (ctx->hw_mode == DRV_CIPHER_XCBC_MAC)
+		cc_setup_xcbc(req, desc, &idx);
+	else
+		cc_setup_cmac(req, desc, &idx);
+
+	cc_set_desc(state, ctx, DIN_AES_DOUT, desc, true, &idx);
+
+	/* store the hash digest result in context */
+	hw_desc_init(&desc[idx]);
+	set_cipher_mode(&desc[idx], ctx->hw_mode);
+	set_dout_dlli(&desc[idx], state->digest_buff_dma_addr,
+		      ctx->inter_digestsize, NS_BIT, 1);
+	set_queue_last_ind(ctx->drvdata, &desc[idx]);
+	set_flow_mode(&desc[idx], S_AES_to_DOUT);
+	set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
+	idx++;
+
+	/* Setup request structure */
+	cc_req.user_cb = (void *)cc_update_complete;
+	cc_req.user_arg = (void *)req;
+
+	rc = cc_send_request(ctx->drvdata, &cc_req, desc, idx, &req->base);
+	if (rc != -EINPROGRESS && rc != -EBUSY) {
+		dev_err(dev, "send_request() failed (rc=%d)\n", rc);
+		cc_unmap_hash_request(dev, state, req->src, true);
+		cc_unmap_req(dev, state, ctx);
+	}
+	return rc;
+}
+
+static int cc_mac_final(struct ahash_request *req)
+{
+	struct ahash_req_ctx *state = ahash_request_ctx(req);
+	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
+	struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm);
+	struct device *dev = drvdata_to_dev(ctx->drvdata);
+	struct cc_crypto_req cc_req = {};
+	struct cc_hw_desc desc[CC_MAX_HASH_SEQ_LEN];
+	int idx = 0;
+	int rc = 0;
+	u32 key_size, key_len;
+	u32 digestsize = crypto_ahash_digestsize(tfm);
+	gfp_t flags = cc_gfp_flags(&req->base);
+	u32 rem_cnt = *cc_hash_buf_cnt(state);
+
+	if (ctx->hw_mode == DRV_CIPHER_XCBC_MAC) {
+		key_size = CC_AES_128_BIT_KEY_SIZE;
+		key_len  = CC_AES_128_BIT_KEY_SIZE;
+	} else {
+		key_size = (ctx->key_params.keylen == 24) ? AES_MAX_KEY_SIZE :
+			ctx->key_params.keylen;
+		key_len =  ctx->key_params.keylen;
+	}
+
+	dev_dbg(dev, "===== final  xcbc reminder (%d) ====\n", rem_cnt);
+
+	if (cc_map_req(dev, state, ctx)) {
+		dev_err(dev, "map_ahash_source() failed\n");
+		return -EINVAL;
+	}
+
+	if (cc_map_hash_request_final(ctx->drvdata, state, req->src,
+				      req->nbytes, 0, flags)) {
+		dev_err(dev, "map_ahash_request_final() failed\n");
+		cc_unmap_req(dev, state, ctx);
+		return -ENOMEM;
+	}
+
+	if (cc_map_result(dev, state, digestsize)) {
+		dev_err(dev, "map_ahash_digest() failed\n");
+		cc_unmap_hash_request(dev, state, req->src, true);
+		cc_unmap_req(dev, state, ctx);
+		return -ENOMEM;
+	}
+
+	/* Setup request structure */
+	cc_req.user_cb = (void *)cc_hash_complete;
+	cc_req.user_arg = (void *)req;
+
+	if (state->xcbc_count && rem_cnt == 0) {
+		/* Load key for ECB decryption */
+		hw_desc_init(&desc[idx]);
+		set_cipher_mode(&desc[idx], DRV_CIPHER_ECB);
+		set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_DECRYPT);
+		set_din_type(&desc[idx], DMA_DLLI,
+			     (ctx->opad_tmp_keys_dma_addr + XCBC_MAC_K1_OFFSET),
+			     key_size, NS_BIT);
+		set_key_size_aes(&desc[idx], key_len);
+		set_flow_mode(&desc[idx], S_DIN_to_AES);
+		set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
+		idx++;
+
+		/* Initiate decryption of block state to previous
+		 * block_state-XOR-M[n]
+		 */
+		hw_desc_init(&desc[idx]);
+		set_din_type(&desc[idx], DMA_DLLI, state->digest_buff_dma_addr,
+			     CC_AES_BLOCK_SIZE, NS_BIT);
+		set_dout_dlli(&desc[idx], state->digest_buff_dma_addr,
+			      CC_AES_BLOCK_SIZE, NS_BIT, 0);
+		set_flow_mode(&desc[idx], DIN_AES_DOUT);
+		idx++;
+
+		/* Memory Barrier: wait for axi write to complete */
+		hw_desc_init(&desc[idx]);
+		set_din_no_dma(&desc[idx], 0, 0xfffff0);
+		set_dout_no_dma(&desc[idx], 0, 0, 1);
+		idx++;
+	}
+
+	if (ctx->hw_mode == DRV_CIPHER_XCBC_MAC)
+		cc_setup_xcbc(req, desc, &idx);
+	else
+		cc_setup_cmac(req, desc, &idx);
+
+	if (state->xcbc_count == 0) {
+		hw_desc_init(&desc[idx]);
+		set_cipher_mode(&desc[idx], ctx->hw_mode);
+		set_key_size_aes(&desc[idx], key_len);
+		set_cmac_size0_mode(&desc[idx]);
+		set_flow_mode(&desc[idx], S_DIN_to_AES);
+		idx++;
+	} else if (rem_cnt > 0) {
+		cc_set_desc(state, ctx, DIN_AES_DOUT, desc, false, &idx);
+	} else {
+		hw_desc_init(&desc[idx]);
+		set_din_const(&desc[idx], 0x00, CC_AES_BLOCK_SIZE);
+		set_flow_mode(&desc[idx], DIN_AES_DOUT);
+		idx++;
+	}
+
+	/* Get final MAC result */
+	hw_desc_init(&desc[idx]);
+	/* TODO */
+	set_dout_dlli(&desc[idx], state->digest_result_dma_addr,
+		      digestsize, NS_BIT, 1);
+	set_queue_last_ind(ctx->drvdata, &desc[idx]);
+	set_flow_mode(&desc[idx], S_AES_to_DOUT);
+	set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
+	set_cipher_mode(&desc[idx], ctx->hw_mode);
+	idx++;
+
+	rc = cc_send_request(ctx->drvdata, &cc_req, desc, idx, &req->base);
+	if (rc != -EINPROGRESS && rc != -EBUSY) {
+		dev_err(dev, "send_request() failed (rc=%d)\n", rc);
+		cc_unmap_hash_request(dev, state, req->src, true);
+		cc_unmap_result(dev, state, digestsize, req->result);
+		cc_unmap_req(dev, state, ctx);
+	}
+	return rc;
+}
+
+static int cc_mac_finup(struct ahash_request *req)
+{
+	struct ahash_req_ctx *state = ahash_request_ctx(req);
+	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
+	struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm);
+	struct device *dev = drvdata_to_dev(ctx->drvdata);
+	struct cc_crypto_req cc_req = {};
+	struct cc_hw_desc desc[CC_MAX_HASH_SEQ_LEN];
+	int idx = 0;
+	int rc = 0;
+	u32 key_len = 0;
+	u32 digestsize = crypto_ahash_digestsize(tfm);
+	gfp_t flags = cc_gfp_flags(&req->base);
+
+	dev_dbg(dev, "===== finup xcbc(%d) ====\n", req->nbytes);
+	if (state->xcbc_count > 0 && req->nbytes == 0) {
+		dev_dbg(dev, "No data to update. Call to fdx_mac_final\n");
+		return cc_mac_final(req);
+	}
+
+	if (cc_map_req(dev, state, ctx)) {
+		dev_err(dev, "map_ahash_source() failed\n");
+		return -EINVAL;
+	}
+
+	if (cc_map_hash_request_final(ctx->drvdata, state, req->src,
+				      req->nbytes, 1, flags)) {
+		dev_err(dev, "map_ahash_request_final() failed\n");
+		cc_unmap_req(dev, state, ctx);
+		return -ENOMEM;
+	}
+	if (cc_map_result(dev, state, digestsize)) {
+		dev_err(dev, "map_ahash_digest() failed\n");
+		cc_unmap_hash_request(dev, state, req->src, true);
+		cc_unmap_req(dev, state, ctx);
+		return -ENOMEM;
+	}
+
+	/* Setup request structure */
+	cc_req.user_cb = (void *)cc_hash_complete;
+	cc_req.user_arg = (void *)req;
+
+	if (ctx->hw_mode == DRV_CIPHER_XCBC_MAC) {
+		key_len = CC_AES_128_BIT_KEY_SIZE;
+		cc_setup_xcbc(req, desc, &idx);
+	} else {
+		key_len = ctx->key_params.keylen;
+		cc_setup_cmac(req, desc, &idx);
+	}
+
+	if (req->nbytes == 0) {
+		hw_desc_init(&desc[idx]);
+		set_cipher_mode(&desc[idx], ctx->hw_mode);
+		set_key_size_aes(&desc[idx], key_len);
+		set_cmac_size0_mode(&desc[idx]);
+		set_flow_mode(&desc[idx], S_DIN_to_AES);
+		idx++;
+	} else {
+		cc_set_desc(state, ctx, DIN_AES_DOUT, desc, false, &idx);
+	}
+
+	/* Get final MAC result */
+	hw_desc_init(&desc[idx]);
+	/* TODO */
+	set_dout_dlli(&desc[idx], state->digest_result_dma_addr,
+		      digestsize, NS_BIT, 1);
+	set_queue_last_ind(ctx->drvdata, &desc[idx]);
+	set_flow_mode(&desc[idx], S_AES_to_DOUT);
+	set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
+	set_cipher_mode(&desc[idx], ctx->hw_mode);
+	idx++;
+
+	rc = cc_send_request(ctx->drvdata, &cc_req, desc, idx, &req->base);
+	if (rc != -EINPROGRESS && rc != -EBUSY) {
+		dev_err(dev, "send_request() failed (rc=%d)\n", rc);
+		cc_unmap_hash_request(dev, state, req->src, true);
+		cc_unmap_result(dev, state, digestsize, req->result);
+		cc_unmap_req(dev, state, ctx);
+	}
+	return rc;
+}
+
+static int cc_mac_digest(struct ahash_request *req)
+{
+	struct ahash_req_ctx *state = ahash_request_ctx(req);
+	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
+	struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm);
+	struct device *dev = drvdata_to_dev(ctx->drvdata);
+	u32 digestsize = crypto_ahash_digestsize(tfm);
+	struct cc_crypto_req cc_req = {};
+	struct cc_hw_desc desc[CC_MAX_HASH_SEQ_LEN];
+	u32 key_len;
+	unsigned int idx = 0;
+	int rc;
+	gfp_t flags = cc_gfp_flags(&req->base);
+
+	dev_dbg(dev, "===== -digest mac (%d) ====\n",  req->nbytes);
+
+	cc_init_req(dev, state, ctx);
+
+	if (cc_map_req(dev, state, ctx)) {
+		dev_err(dev, "map_ahash_source() failed\n");
+		return -ENOMEM;
+	}
+	if (cc_map_result(dev, state, digestsize)) {
+		dev_err(dev, "map_ahash_digest() failed\n");
+		cc_unmap_req(dev, state, ctx);
+		return -ENOMEM;
+	}
+
+	if (cc_map_hash_request_final(ctx->drvdata, state, req->src,
+				      req->nbytes, 1, flags)) {
+		dev_err(dev, "map_ahash_request_final() failed\n");
+		cc_unmap_req(dev, state, ctx);
+		return -ENOMEM;
+	}
+
+	/* Setup request structure */
+	cc_req.user_cb = (void *)cc_digest_complete;
+	cc_req.user_arg = (void *)req;
+
+	if (ctx->hw_mode == DRV_CIPHER_XCBC_MAC) {
+		key_len = CC_AES_128_BIT_KEY_SIZE;
+		cc_setup_xcbc(req, desc, &idx);
+	} else {
+		key_len = ctx->key_params.keylen;
+		cc_setup_cmac(req, desc, &idx);
+	}
+
+	if (req->nbytes == 0) {
+		hw_desc_init(&desc[idx]);
+		set_cipher_mode(&desc[idx], ctx->hw_mode);
+		set_key_size_aes(&desc[idx], key_len);
+		set_cmac_size0_mode(&desc[idx]);
+		set_flow_mode(&desc[idx], S_DIN_to_AES);
+		idx++;
+	} else {
+		cc_set_desc(state, ctx, DIN_AES_DOUT, desc, false, &idx);
+	}
+
+	/* Get final MAC result */
+	hw_desc_init(&desc[idx]);
+	set_dout_dlli(&desc[idx], state->digest_result_dma_addr,
+		      CC_AES_BLOCK_SIZE, NS_BIT, 1);
+	set_queue_last_ind(ctx->drvdata, &desc[idx]);
+	set_flow_mode(&desc[idx], S_AES_to_DOUT);
+	set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
+	set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
+	set_cipher_mode(&desc[idx], ctx->hw_mode);
+	idx++;
+
+	rc = cc_send_request(ctx->drvdata, &cc_req, desc, idx, &req->base);
+	if (rc != -EINPROGRESS && rc != -EBUSY) {
+		dev_err(dev, "send_request() failed (rc=%d)\n", rc);
+		cc_unmap_hash_request(dev, state, req->src, true);
+		cc_unmap_result(dev, state, digestsize, req->result);
+		cc_unmap_req(dev, state, ctx);
+	}
+	return rc;
+}
+
+static int cc_hash_export(struct ahash_request *req, void *out)
+{
+	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
+	struct cc_hash_ctx *ctx = crypto_ahash_ctx(ahash);
+	struct ahash_req_ctx *state = ahash_request_ctx(req);
+	u8 *curr_buff = cc_hash_buf(state);
+	u32 curr_buff_cnt = *cc_hash_buf_cnt(state);
+	const u32 tmp = CC_EXPORT_MAGIC;
+
+	memcpy(out, &tmp, sizeof(u32));
+	out += sizeof(u32);
+
+	memcpy(out, state->digest_buff, ctx->inter_digestsize);
+	out += ctx->inter_digestsize;
+
+	memcpy(out, state->digest_bytes_len, ctx->drvdata->hash_len_sz);
+	out += ctx->drvdata->hash_len_sz;
+
+	memcpy(out, &curr_buff_cnt, sizeof(u32));
+	out += sizeof(u32);
+
+	memcpy(out, curr_buff, curr_buff_cnt);
+
+	return 0;
+}
+
+static int cc_hash_import(struct ahash_request *req, const void *in)
+{
+	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
+	struct cc_hash_ctx *ctx = crypto_ahash_ctx(ahash);
+	struct device *dev = drvdata_to_dev(ctx->drvdata);
+	struct ahash_req_ctx *state = ahash_request_ctx(req);
+	u32 tmp;
+
+	memcpy(&tmp, in, sizeof(u32));
+	if (tmp != CC_EXPORT_MAGIC)
+		return -EINVAL;
+	in += sizeof(u32);
+
+	cc_init_req(dev, state, ctx);
+
+	memcpy(state->digest_buff, in, ctx->inter_digestsize);
+	in += ctx->inter_digestsize;
+
+	memcpy(state->digest_bytes_len, in, ctx->drvdata->hash_len_sz);
+	in += ctx->drvdata->hash_len_sz;
+
+	/* Sanity check the data as much as possible */
+	memcpy(&tmp, in, sizeof(u32));
+	if (tmp > CC_MAX_HASH_BLCK_SIZE)
+		return -EINVAL;
+	in += sizeof(u32);
+
+	state->buf_cnt[0] = tmp;
+	memcpy(state->buffers[0], in, tmp);
+
+	return 0;
+}
+
+struct cc_hash_template {
+	char name[CRYPTO_MAX_ALG_NAME];
+	char driver_name[CRYPTO_MAX_ALG_NAME];
+	char mac_name[CRYPTO_MAX_ALG_NAME];
+	char mac_driver_name[CRYPTO_MAX_ALG_NAME];
+	unsigned int blocksize;
+	bool synchronize;
+	struct ahash_alg template_ahash;
+	int hash_mode;
+	int hw_mode;
+	int inter_digestsize;
+	struct cc_drvdata *drvdata;
+	u32 min_hw_rev;
+};
+
+#define CC_STATE_SIZE(_x) \
+	((_x) + HASH_MAX_LEN_SIZE + CC_MAX_HASH_BLCK_SIZE + (2 * sizeof(u32)))
+
+/* hash descriptors */
+static struct cc_hash_template driver_hash[] = {
+	//Asynchronize hash template
+	{
+		.name = "sha1",
+		.driver_name = "sha1-ccree",
+		.mac_name = "hmac(sha1)",
+		.mac_driver_name = "hmac-sha1-ccree",
+		.blocksize = SHA1_BLOCK_SIZE,
+		.synchronize = false,
+		.template_ahash = {
+			.init = cc_hash_init,
+			.update = cc_hash_update,
+			.final = cc_hash_final,
+			.finup = cc_hash_finup,
+			.digest = cc_hash_digest,
+			.export = cc_hash_export,
+			.import = cc_hash_import,
+			.setkey = cc_hash_setkey,
+			.halg = {
+				.digestsize = SHA1_DIGEST_SIZE,
+				.statesize = CC_STATE_SIZE(SHA1_DIGEST_SIZE),
+			},
+		},
+		.hash_mode = DRV_HASH_SHA1,
+		.hw_mode = DRV_HASH_HW_SHA1,
+		.inter_digestsize = SHA1_DIGEST_SIZE,
+		.min_hw_rev = CC_HW_REV_630,
+	},
+	{
+		.name = "sha256",
+		.driver_name = "sha256-ccree",
+		.mac_name = "hmac(sha256)",
+		.mac_driver_name = "hmac-sha256-ccree",
+		.blocksize = SHA256_BLOCK_SIZE,
+		.template_ahash = {
+			.init = cc_hash_init,
+			.update = cc_hash_update,
+			.final = cc_hash_final,
+			.finup = cc_hash_finup,
+			.digest = cc_hash_digest,
+			.export = cc_hash_export,
+			.import = cc_hash_import,
+			.setkey = cc_hash_setkey,
+			.halg = {
+				.digestsize = SHA256_DIGEST_SIZE,
+				.statesize = CC_STATE_SIZE(SHA256_DIGEST_SIZE)
+			},
+		},
+		.hash_mode = DRV_HASH_SHA256,
+		.hw_mode = DRV_HASH_HW_SHA256,
+		.inter_digestsize = SHA256_DIGEST_SIZE,
+		.min_hw_rev = CC_HW_REV_630,
+	},
+	{
+		.name = "sha224",
+		.driver_name = "sha224-ccree",
+		.mac_name = "hmac(sha224)",
+		.mac_driver_name = "hmac-sha224-ccree",
+		.blocksize = SHA224_BLOCK_SIZE,
+		.template_ahash = {
+			.init = cc_hash_init,
+			.update = cc_hash_update,
+			.final = cc_hash_final,
+			.finup = cc_hash_finup,
+			.digest = cc_hash_digest,
+			.export = cc_hash_export,
+			.import = cc_hash_import,
+			.setkey = cc_hash_setkey,
+			.halg = {
+				.digestsize = SHA224_DIGEST_SIZE,
+				.statesize = CC_STATE_SIZE(SHA224_DIGEST_SIZE),
+			},
+		},
+		.hash_mode = DRV_HASH_SHA224,
+		.hw_mode = DRV_HASH_HW_SHA256,
+		.inter_digestsize = SHA256_DIGEST_SIZE,
+		.min_hw_rev = CC_HW_REV_630,
+	},
+	{
+		.name = "sha384",
+		.driver_name = "sha384-ccree",
+		.mac_name = "hmac(sha384)",
+		.mac_driver_name = "hmac-sha384-ccree",
+		.blocksize = SHA384_BLOCK_SIZE,
+		.template_ahash = {
+			.init = cc_hash_init,
+			.update = cc_hash_update,
+			.final = cc_hash_final,
+			.finup = cc_hash_finup,
+			.digest = cc_hash_digest,
+			.export = cc_hash_export,
+			.import = cc_hash_import,
+			.setkey = cc_hash_setkey,
+			.halg = {
+				.digestsize = SHA384_DIGEST_SIZE,
+				.statesize = CC_STATE_SIZE(SHA384_DIGEST_SIZE),
+			},
+		},
+		.hash_mode = DRV_HASH_SHA384,
+		.hw_mode = DRV_HASH_HW_SHA512,
+		.inter_digestsize = SHA512_DIGEST_SIZE,
+		.min_hw_rev = CC_HW_REV_712,
+	},
+	{
+		.name = "sha512",
+		.driver_name = "sha512-ccree",
+		.mac_name = "hmac(sha512)",
+		.mac_driver_name = "hmac-sha512-ccree",
+		.blocksize = SHA512_BLOCK_SIZE,
+		.template_ahash = {
+			.init = cc_hash_init,
+			.update = cc_hash_update,
+			.final = cc_hash_final,
+			.finup = cc_hash_finup,
+			.digest = cc_hash_digest,
+			.export = cc_hash_export,
+			.import = cc_hash_import,
+			.setkey = cc_hash_setkey,
+			.halg = {
+				.digestsize = SHA512_DIGEST_SIZE,
+				.statesize = CC_STATE_SIZE(SHA512_DIGEST_SIZE),
+			},
+		},
+		.hash_mode = DRV_HASH_SHA512,
+		.hw_mode = DRV_HASH_HW_SHA512,
+		.inter_digestsize = SHA512_DIGEST_SIZE,
+		.min_hw_rev = CC_HW_REV_712,
+	},
+	{
+		.name = "md5",
+		.driver_name = "md5-ccree",
+		.mac_name = "hmac(md5)",
+		.mac_driver_name = "hmac-md5-ccree",
+		.blocksize = MD5_HMAC_BLOCK_SIZE,
+		.template_ahash = {
+			.init = cc_hash_init,
+			.update = cc_hash_update,
+			.final = cc_hash_final,
+			.finup = cc_hash_finup,
+			.digest = cc_hash_digest,
+			.export = cc_hash_export,
+			.import = cc_hash_import,
+			.setkey = cc_hash_setkey,
+			.halg = {
+				.digestsize = MD5_DIGEST_SIZE,
+				.statesize = CC_STATE_SIZE(MD5_DIGEST_SIZE),
+			},
+		},
+		.hash_mode = DRV_HASH_MD5,
+		.hw_mode = DRV_HASH_HW_MD5,
+		.inter_digestsize = MD5_DIGEST_SIZE,
+		.min_hw_rev = CC_HW_REV_630,
+	},
+	{
+		.mac_name = "xcbc(aes)",
+		.mac_driver_name = "xcbc-aes-ccree",
+		.blocksize = AES_BLOCK_SIZE,
+		.template_ahash = {
+			.init = cc_hash_init,
+			.update = cc_mac_update,
+			.final = cc_mac_final,
+			.finup = cc_mac_finup,
+			.digest = cc_mac_digest,
+			.setkey = cc_xcbc_setkey,
+			.export = cc_hash_export,
+			.import = cc_hash_import,
+			.halg = {
+				.digestsize = AES_BLOCK_SIZE,
+				.statesize = CC_STATE_SIZE(AES_BLOCK_SIZE),
+			},
+		},
+		.hash_mode = DRV_HASH_NULL,
+		.hw_mode = DRV_CIPHER_XCBC_MAC,
+		.inter_digestsize = AES_BLOCK_SIZE,
+		.min_hw_rev = CC_HW_REV_630,
+	},
+	{
+		.mac_name = "cmac(aes)",
+		.mac_driver_name = "cmac-aes-ccree",
+		.blocksize = AES_BLOCK_SIZE,
+		.template_ahash = {
+			.init = cc_hash_init,
+			.update = cc_mac_update,
+			.final = cc_mac_final,
+			.finup = cc_mac_finup,
+			.digest = cc_mac_digest,
+			.setkey = cc_cmac_setkey,
+			.export = cc_hash_export,
+			.import = cc_hash_import,
+			.halg = {
+				.digestsize = AES_BLOCK_SIZE,
+				.statesize = CC_STATE_SIZE(AES_BLOCK_SIZE),
+			},
+		},
+		.hash_mode = DRV_HASH_NULL,
+		.hw_mode = DRV_CIPHER_CMAC,
+		.inter_digestsize = AES_BLOCK_SIZE,
+		.min_hw_rev = CC_HW_REV_630,
+	},
+};
+
+static struct cc_hash_alg *cc_alloc_hash_alg(struct cc_hash_template *template,
+					     struct device *dev, bool keyed)
+{
+	struct cc_hash_alg *t_crypto_alg;
+	struct crypto_alg *alg;
+	struct ahash_alg *halg;
+
+	t_crypto_alg = kzalloc(sizeof(*t_crypto_alg), GFP_KERNEL);
+	if (!t_crypto_alg)
+		return ERR_PTR(-ENOMEM);
+
+	t_crypto_alg->ahash_alg = template->template_ahash;
+	halg = &t_crypto_alg->ahash_alg;
+	alg = &halg->halg.base;
+
+	if (keyed) {
+		snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s",
+			 template->mac_name);
+		snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
+			 template->mac_driver_name);
+	} else {
+		halg->setkey = NULL;
+		snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s",
+			 template->name);
+		snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
+			 template->driver_name);
+	}
+	alg->cra_module = THIS_MODULE;
+	alg->cra_ctxsize = sizeof(struct cc_hash_ctx);
+	alg->cra_priority = CC_CRA_PRIO;
+	alg->cra_blocksize = template->blocksize;
+	alg->cra_alignmask = 0;
+	alg->cra_exit = cc_cra_exit;
+
+	alg->cra_init = cc_cra_init;
+	alg->cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY;
+
+	t_crypto_alg->hash_mode = template->hash_mode;
+	t_crypto_alg->hw_mode = template->hw_mode;
+	t_crypto_alg->inter_digestsize = template->inter_digestsize;
+
+	return t_crypto_alg;
+}
+
+int cc_init_hash_sram(struct cc_drvdata *drvdata)
+{
+	struct cc_hash_handle *hash_handle = drvdata->hash_handle;
+	cc_sram_addr_t sram_buff_ofs = hash_handle->digest_len_sram_addr;
+	unsigned int larval_seq_len = 0;
+	struct cc_hw_desc larval_seq[CC_DIGEST_SIZE_MAX / sizeof(u32)];
+	bool large_sha_supported = (drvdata->hw_rev >= CC_HW_REV_712);
+	int rc = 0;
+
+	/* Copy-to-sram digest-len */
+	cc_set_sram_desc(digest_len_init, sram_buff_ofs,
+			 ARRAY_SIZE(digest_len_init), larval_seq,
+			 &larval_seq_len);
+	rc = send_request_init(drvdata, larval_seq, larval_seq_len);
+	if (rc)
+		goto init_digest_const_err;
+
+	sram_buff_ofs += sizeof(digest_len_init);
+	larval_seq_len = 0;
+
+	if (large_sha_supported) {
+		/* Copy-to-sram digest-len for sha384/512 */
+		cc_set_sram_desc(digest_len_sha512_init, sram_buff_ofs,
+				 ARRAY_SIZE(digest_len_sha512_init),
+				 larval_seq, &larval_seq_len);
+		rc = send_request_init(drvdata, larval_seq, larval_seq_len);
+		if (rc)
+			goto init_digest_const_err;
+
+		sram_buff_ofs += sizeof(digest_len_sha512_init);
+		larval_seq_len = 0;
+	}
+
+	/* The initial digests offset */
+	hash_handle->larval_digest_sram_addr = sram_buff_ofs;
+
+	/* Copy-to-sram initial SHA* digests */
+	cc_set_sram_desc(md5_init, sram_buff_ofs, ARRAY_SIZE(md5_init),
+			 larval_seq, &larval_seq_len);
+	rc = send_request_init(drvdata, larval_seq, larval_seq_len);
+	if (rc)
+		goto init_digest_const_err;
+	sram_buff_ofs += sizeof(md5_init);
+	larval_seq_len = 0;
+
+	cc_set_sram_desc(sha1_init, sram_buff_ofs,
+			 ARRAY_SIZE(sha1_init), larval_seq,
+			 &larval_seq_len);
+	rc = send_request_init(drvdata, larval_seq, larval_seq_len);
+	if (rc)
+		goto init_digest_const_err;
+	sram_buff_ofs += sizeof(sha1_init);
+	larval_seq_len = 0;
+
+	cc_set_sram_desc(sha224_init, sram_buff_ofs,
+			 ARRAY_SIZE(sha224_init), larval_seq,
+			 &larval_seq_len);
+	rc = send_request_init(drvdata, larval_seq, larval_seq_len);
+	if (rc)
+		goto init_digest_const_err;
+	sram_buff_ofs += sizeof(sha224_init);
+	larval_seq_len = 0;
+
+	cc_set_sram_desc(sha256_init, sram_buff_ofs,
+			 ARRAY_SIZE(sha256_init), larval_seq,
+			 &larval_seq_len);
+	rc = send_request_init(drvdata, larval_seq, larval_seq_len);
+	if (rc)
+		goto init_digest_const_err;
+	sram_buff_ofs += sizeof(sha256_init);
+	larval_seq_len = 0;
+
+	if (large_sha_supported) {
+		cc_set_sram_desc((u32 *)sha384_init, sram_buff_ofs,
+				 (ARRAY_SIZE(sha384_init) * 2), larval_seq,
+				 &larval_seq_len);
+		rc = send_request_init(drvdata, larval_seq, larval_seq_len);
+		if (rc)
+			goto init_digest_const_err;
+		sram_buff_ofs += sizeof(sha384_init);
+		larval_seq_len = 0;
+
+		cc_set_sram_desc((u32 *)sha512_init, sram_buff_ofs,
+				 (ARRAY_SIZE(sha512_init) * 2), larval_seq,
+				 &larval_seq_len);
+		rc = send_request_init(drvdata, larval_seq, larval_seq_len);
+		if (rc)
+			goto init_digest_const_err;
+	}
+
+init_digest_const_err:
+	return rc;
+}
+
+static void __init cc_swap_dwords(u32 *buf, unsigned long size)
+{
+	int i;
+	u32 tmp;
+
+	for (i = 0; i < size; i += 2) {
+		tmp = buf[i];
+		buf[i] = buf[i + 1];
+		buf[i + 1] = tmp;
+	}
+}
+
+/*
+ * Due to the way the HW works we need to swap every
+ * double word in the SHA384 and SHA512 larval hashes
+ */
+void __init cc_hash_global_init(void)
+{
+	cc_swap_dwords((u32 *)&sha384_init, (ARRAY_SIZE(sha384_init) * 2));
+	cc_swap_dwords((u32 *)&sha512_init, (ARRAY_SIZE(sha512_init) * 2));
+}
+
+int cc_hash_alloc(struct cc_drvdata *drvdata)
+{
+	struct cc_hash_handle *hash_handle;
+	cc_sram_addr_t sram_buff;
+	u32 sram_size_to_alloc;
+	struct device *dev = drvdata_to_dev(drvdata);
+	int rc = 0;
+	int alg;
+
+	hash_handle = kzalloc(sizeof(*hash_handle), GFP_KERNEL);
+	if (!hash_handle)
+		return -ENOMEM;
+
+	INIT_LIST_HEAD(&hash_handle->hash_list);
+	drvdata->hash_handle = hash_handle;
+
+	sram_size_to_alloc = sizeof(digest_len_init) +
+			sizeof(md5_init) +
+			sizeof(sha1_init) +
+			sizeof(sha224_init) +
+			sizeof(sha256_init);
+
+	if (drvdata->hw_rev >= CC_HW_REV_712)
+		sram_size_to_alloc += sizeof(digest_len_sha512_init) +
+			sizeof(sha384_init) + sizeof(sha512_init);
+
+	sram_buff = cc_sram_alloc(drvdata, sram_size_to_alloc);
+	if (sram_buff == NULL_SRAM_ADDR) {
+		dev_err(dev, "SRAM pool exhausted\n");
+		rc = -ENOMEM;
+		goto fail;
+	}
+
+	/* The initial digest-len offset */
+	hash_handle->digest_len_sram_addr = sram_buff;
+
+	/*must be set before the alg registration as it is being used there*/
+	rc = cc_init_hash_sram(drvdata);
+	if (rc) {
+		dev_err(dev, "Init digest CONST failed (rc=%d)\n", rc);
+		goto fail;
+	}
+
+	/* ahash registration */
+	for (alg = 0; alg < ARRAY_SIZE(driver_hash); alg++) {
+		struct cc_hash_alg *t_alg;
+		int hw_mode = driver_hash[alg].hw_mode;
+
+		/* We either support both HASH and MAC or none */
+		if (driver_hash[alg].min_hw_rev > drvdata->hw_rev)
+			continue;
+
+		/* register hmac version */
+		t_alg = cc_alloc_hash_alg(&driver_hash[alg], dev, true);
+		if (IS_ERR(t_alg)) {
+			rc = PTR_ERR(t_alg);
+			dev_err(dev, "%s alg allocation failed\n",
+				driver_hash[alg].driver_name);
+			goto fail;
+		}
+		t_alg->drvdata = drvdata;
+
+		rc = crypto_register_ahash(&t_alg->ahash_alg);
+		if (rc) {
+			dev_err(dev, "%s alg registration failed\n",
+				driver_hash[alg].driver_name);
+			kfree(t_alg);
+			goto fail;
+		} else {
+			list_add_tail(&t_alg->entry, &hash_handle->hash_list);
+		}
+
+		if (hw_mode == DRV_CIPHER_XCBC_MAC ||
+		    hw_mode == DRV_CIPHER_CMAC)
+			continue;
+
+		/* register hash version */
+		t_alg = cc_alloc_hash_alg(&driver_hash[alg], dev, false);
+		if (IS_ERR(t_alg)) {
+			rc = PTR_ERR(t_alg);
+			dev_err(dev, "%s alg allocation failed\n",
+				driver_hash[alg].driver_name);
+			goto fail;
+		}
+		t_alg->drvdata = drvdata;
+
+		rc = crypto_register_ahash(&t_alg->ahash_alg);
+		if (rc) {
+			dev_err(dev, "%s alg registration failed\n",
+				driver_hash[alg].driver_name);
+			kfree(t_alg);
+			goto fail;
+		} else {
+			list_add_tail(&t_alg->entry, &hash_handle->hash_list);
+		}
+	}
+
+	return 0;
+
+fail:
+	kfree(drvdata->hash_handle);
+	drvdata->hash_handle = NULL;
+	return rc;
+}
+
+int cc_hash_free(struct cc_drvdata *drvdata)
+{
+	struct cc_hash_alg *t_hash_alg, *hash_n;
+	struct cc_hash_handle *hash_handle = drvdata->hash_handle;
+
+	if (hash_handle) {
+		list_for_each_entry_safe(t_hash_alg, hash_n,
+					 &hash_handle->hash_list, entry) {
+			crypto_unregister_ahash(&t_hash_alg->ahash_alg);
+			list_del(&t_hash_alg->entry);
+			kfree(t_hash_alg);
+		}
+
+		kfree(hash_handle);
+		drvdata->hash_handle = NULL;
+	}
+	return 0;
+}
+
+static void cc_setup_xcbc(struct ahash_request *areq, struct cc_hw_desc desc[],
+			  unsigned int *seq_size)
+{
+	unsigned int idx = *seq_size;
+	struct ahash_req_ctx *state = ahash_request_ctx(areq);
+	struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
+	struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm);
+
+	/* Setup XCBC MAC K1 */
+	hw_desc_init(&desc[idx]);
+	set_din_type(&desc[idx], DMA_DLLI, (ctx->opad_tmp_keys_dma_addr +
+					    XCBC_MAC_K1_OFFSET),
+		     CC_AES_128_BIT_KEY_SIZE, NS_BIT);
+	set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
+	set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
+	set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
+	set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE);
+	set_flow_mode(&desc[idx], S_DIN_to_AES);
+	idx++;
+
+	/* Setup XCBC MAC K2 */
+	hw_desc_init(&desc[idx]);
+	set_din_type(&desc[idx], DMA_DLLI,
+		     (ctx->opad_tmp_keys_dma_addr + XCBC_MAC_K2_OFFSET),
+		     CC_AES_128_BIT_KEY_SIZE, NS_BIT);
+	set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
+	set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
+	set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
+	set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE);
+	set_flow_mode(&desc[idx], S_DIN_to_AES);
+	idx++;
+
+	/* Setup XCBC MAC K3 */
+	hw_desc_init(&desc[idx]);
+	set_din_type(&desc[idx], DMA_DLLI,
+		     (ctx->opad_tmp_keys_dma_addr + XCBC_MAC_K3_OFFSET),
+		     CC_AES_128_BIT_KEY_SIZE, NS_BIT);
+	set_setup_mode(&desc[idx], SETUP_LOAD_STATE2);
+	set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
+	set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
+	set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE);
+	set_flow_mode(&desc[idx], S_DIN_to_AES);
+	idx++;
+
+	/* Loading MAC state */
+	hw_desc_init(&desc[idx]);
+	set_din_type(&desc[idx], DMA_DLLI, state->digest_buff_dma_addr,
+		     CC_AES_BLOCK_SIZE, NS_BIT);
+	set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
+	set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
+	set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
+	set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE);
+	set_flow_mode(&desc[idx], S_DIN_to_AES);
+	idx++;
+	*seq_size = idx;
+}
+
+static void cc_setup_cmac(struct ahash_request *areq, struct cc_hw_desc desc[],
+			  unsigned int *seq_size)
+{
+	unsigned int idx = *seq_size;
+	struct ahash_req_ctx *state = ahash_request_ctx(areq);
+	struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
+	struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm);
+
+	/* Setup CMAC Key */
+	hw_desc_init(&desc[idx]);
+	set_din_type(&desc[idx], DMA_DLLI, ctx->opad_tmp_keys_dma_addr,
+		     ((ctx->key_params.keylen == 24) ? AES_MAX_KEY_SIZE :
+		      ctx->key_params.keylen), NS_BIT);
+	set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
+	set_cipher_mode(&desc[idx], DRV_CIPHER_CMAC);
+	set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
+	set_key_size_aes(&desc[idx], ctx->key_params.keylen);
+	set_flow_mode(&desc[idx], S_DIN_to_AES);
+	idx++;
+
+	/* Load MAC state */
+	hw_desc_init(&desc[idx]);
+	set_din_type(&desc[idx], DMA_DLLI, state->digest_buff_dma_addr,
+		     CC_AES_BLOCK_SIZE, NS_BIT);
+	set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
+	set_cipher_mode(&desc[idx], DRV_CIPHER_CMAC);
+	set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
+	set_key_size_aes(&desc[idx], ctx->key_params.keylen);
+	set_flow_mode(&desc[idx], S_DIN_to_AES);
+	idx++;
+	*seq_size = idx;
+}
+
+static void cc_set_desc(struct ahash_req_ctx *areq_ctx,
+			struct cc_hash_ctx *ctx, unsigned int flow_mode,
+			struct cc_hw_desc desc[], bool is_not_last_data,
+			unsigned int *seq_size)
+{
+	unsigned int idx = *seq_size;
+	struct device *dev = drvdata_to_dev(ctx->drvdata);
+
+	if (areq_ctx->data_dma_buf_type == CC_DMA_BUF_DLLI) {
+		hw_desc_init(&desc[idx]);
+		set_din_type(&desc[idx], DMA_DLLI,
+			     sg_dma_address(areq_ctx->curr_sg),
+			     areq_ctx->curr_sg->length, NS_BIT);
+		set_flow_mode(&desc[idx], flow_mode);
+		idx++;
+	} else {
+		if (areq_ctx->data_dma_buf_type == CC_DMA_BUF_NULL) {
+			dev_dbg(dev, " NULL mode\n");
+			/* nothing to build */
+			return;
+		}
+		/* bypass */
+		hw_desc_init(&desc[idx]);
+		set_din_type(&desc[idx], DMA_DLLI,
+			     areq_ctx->mlli_params.mlli_dma_addr,
+			     areq_ctx->mlli_params.mlli_len, NS_BIT);
+		set_dout_sram(&desc[idx], ctx->drvdata->mlli_sram_addr,
+			      areq_ctx->mlli_params.mlli_len);
+		set_flow_mode(&desc[idx], BYPASS);
+		idx++;
+		/* process */
+		hw_desc_init(&desc[idx]);
+		set_din_type(&desc[idx], DMA_MLLI,
+			     ctx->drvdata->mlli_sram_addr,
+			     areq_ctx->mlli_nents, NS_BIT);
+		set_flow_mode(&desc[idx], flow_mode);
+		idx++;
+	}
+	if (is_not_last_data)
+		set_din_not_last_indication(&desc[(idx - 1)]);
+	/* return updated desc sequence size */
+	*seq_size = idx;
+}
+
+static const void *cc_larval_digest(struct device *dev, u32 mode)
+{
+	switch (mode) {
+	case DRV_HASH_MD5:
+		return md5_init;
+	case DRV_HASH_SHA1:
+		return sha1_init;
+	case DRV_HASH_SHA224:
+		return sha224_init;
+	case DRV_HASH_SHA256:
+		return sha256_init;
+	case DRV_HASH_SHA384:
+		return sha384_init;
+	case DRV_HASH_SHA512:
+		return sha512_init;
+	default:
+		dev_err(dev, "Invalid hash mode (%d)\n", mode);
+		return md5_init;
+	}
+}
+
+/*!
+ * Gets the address of the initial digest in SRAM
+ * according to the given hash mode
+ *
+ * \param drvdata
+ * \param mode The Hash mode. Supported modes: MD5/SHA1/SHA224/SHA256
+ *
+ * \return u32 The address of the initial digest in SRAM
+ */
+cc_sram_addr_t cc_larval_digest_addr(void *drvdata, u32 mode)
+{
+	struct cc_drvdata *_drvdata = (struct cc_drvdata *)drvdata;
+	struct cc_hash_handle *hash_handle = _drvdata->hash_handle;
+	struct device *dev = drvdata_to_dev(_drvdata);
+
+	switch (mode) {
+	case DRV_HASH_NULL:
+		break; /*Ignore*/
+	case DRV_HASH_MD5:
+		return (hash_handle->larval_digest_sram_addr);
+	case DRV_HASH_SHA1:
+		return (hash_handle->larval_digest_sram_addr +
+			sizeof(md5_init));
+	case DRV_HASH_SHA224:
+		return (hash_handle->larval_digest_sram_addr +
+			sizeof(md5_init) +
+			sizeof(sha1_init));
+	case DRV_HASH_SHA256:
+		return (hash_handle->larval_digest_sram_addr +
+			sizeof(md5_init) +
+			sizeof(sha1_init) +
+			sizeof(sha224_init));
+	case DRV_HASH_SHA384:
+		return (hash_handle->larval_digest_sram_addr +
+			sizeof(md5_init) +
+			sizeof(sha1_init) +
+			sizeof(sha224_init) +
+			sizeof(sha256_init));
+	case DRV_HASH_SHA512:
+		return (hash_handle->larval_digest_sram_addr +
+			sizeof(md5_init) +
+			sizeof(sha1_init) +
+			sizeof(sha224_init) +
+			sizeof(sha256_init) +
+			sizeof(sha384_init));
+	default:
+		dev_err(dev, "Invalid hash mode (%d)\n", mode);
+	}
+
+	/*This is valid wrong value to avoid kernel crash*/
+	return hash_handle->larval_digest_sram_addr;
+}
+
+cc_sram_addr_t
+cc_digest_len_addr(void *drvdata, u32 mode)
+{
+	struct cc_drvdata *_drvdata = (struct cc_drvdata *)drvdata;
+	struct cc_hash_handle *hash_handle = _drvdata->hash_handle;
+	cc_sram_addr_t digest_len_addr = hash_handle->digest_len_sram_addr;
+
+	switch (mode) {
+	case DRV_HASH_SHA1:
+	case DRV_HASH_SHA224:
+	case DRV_HASH_SHA256:
+	case DRV_HASH_MD5:
+		return digest_len_addr;
+#if (CC_DEV_SHA_MAX > 256)
+	case DRV_HASH_SHA384:
+	case DRV_HASH_SHA512:
+		return  digest_len_addr + sizeof(digest_len_init);
+#endif
+	default:
+		return digest_len_addr; /*to avoid kernel crash*/
+	}
+}