v4.19.13 snapshot.
diff --git a/drivers/clocksource/timer-fttmr010.c b/drivers/clocksource/timer-fttmr010.c
new file mode 100644
index 0000000..cf93f64
--- /dev/null
+++ b/drivers/clocksource/timer-fttmr010.c
@@ -0,0 +1,410 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Faraday Technology FTTMR010 timer driver
+ * Copyright (C) 2017 Linus Walleij <linus.walleij@linaro.org>
+ *
+ * Based on a rewrite of arch/arm/mach-gemini/timer.c:
+ * Copyright (C) 2001-2006 Storlink, Corp.
+ * Copyright (C) 2008-2009 Paulius Zaleckas <paulius.zaleckas@teltonika.lt>
+ */
+#include <linux/interrupt.h>
+#include <linux/io.h>
+#include <linux/of.h>
+#include <linux/of_address.h>
+#include <linux/of_irq.h>
+#include <linux/clockchips.h>
+#include <linux/clocksource.h>
+#include <linux/sched_clock.h>
+#include <linux/clk.h>
+#include <linux/slab.h>
+#include <linux/bitops.h>
+#include <linux/delay.h>
+
+/*
+ * Register definitions for the timers
+ */
+#define TIMER1_COUNT		(0x00)
+#define TIMER1_LOAD		(0x04)
+#define TIMER1_MATCH1		(0x08)
+#define TIMER1_MATCH2		(0x0c)
+#define TIMER2_COUNT		(0x10)
+#define TIMER2_LOAD		(0x14)
+#define TIMER2_MATCH1		(0x18)
+#define TIMER2_MATCH2		(0x1c)
+#define TIMER3_COUNT		(0x20)
+#define TIMER3_LOAD		(0x24)
+#define TIMER3_MATCH1		(0x28)
+#define TIMER3_MATCH2		(0x2c)
+#define TIMER_CR		(0x30)
+#define TIMER_INTR_STATE	(0x34)
+#define TIMER_INTR_MASK		(0x38)
+
+#define TIMER_1_CR_ENABLE	BIT(0)
+#define TIMER_1_CR_CLOCK	BIT(1)
+#define TIMER_1_CR_INT		BIT(2)
+#define TIMER_2_CR_ENABLE	BIT(3)
+#define TIMER_2_CR_CLOCK	BIT(4)
+#define TIMER_2_CR_INT		BIT(5)
+#define TIMER_3_CR_ENABLE	BIT(6)
+#define TIMER_3_CR_CLOCK	BIT(7)
+#define TIMER_3_CR_INT		BIT(8)
+#define TIMER_1_CR_UPDOWN	BIT(9)
+#define TIMER_2_CR_UPDOWN	BIT(10)
+#define TIMER_3_CR_UPDOWN	BIT(11)
+
+/*
+ * The Aspeed AST2400 moves bits around in the control register
+ * and lacks bits for setting the timer to count upwards.
+ */
+#define TIMER_1_CR_ASPEED_ENABLE	BIT(0)
+#define TIMER_1_CR_ASPEED_CLOCK		BIT(1)
+#define TIMER_1_CR_ASPEED_INT		BIT(2)
+#define TIMER_2_CR_ASPEED_ENABLE	BIT(4)
+#define TIMER_2_CR_ASPEED_CLOCK		BIT(5)
+#define TIMER_2_CR_ASPEED_INT		BIT(6)
+#define TIMER_3_CR_ASPEED_ENABLE	BIT(8)
+#define TIMER_3_CR_ASPEED_CLOCK		BIT(9)
+#define TIMER_3_CR_ASPEED_INT		BIT(10)
+
+#define TIMER_1_INT_MATCH1	BIT(0)
+#define TIMER_1_INT_MATCH2	BIT(1)
+#define TIMER_1_INT_OVERFLOW	BIT(2)
+#define TIMER_2_INT_MATCH1	BIT(3)
+#define TIMER_2_INT_MATCH2	BIT(4)
+#define TIMER_2_INT_OVERFLOW	BIT(5)
+#define TIMER_3_INT_MATCH1	BIT(6)
+#define TIMER_3_INT_MATCH2	BIT(7)
+#define TIMER_3_INT_OVERFLOW	BIT(8)
+#define TIMER_INT_ALL_MASK	0x1ff
+
+struct fttmr010 {
+	void __iomem *base;
+	unsigned int tick_rate;
+	bool count_down;
+	u32 t1_enable_val;
+	struct clock_event_device clkevt;
+#ifdef CONFIG_ARM
+	struct delay_timer delay_timer;
+#endif
+};
+
+/*
+ * A local singleton used by sched_clock and delay timer reads, which are
+ * fast and stateless
+ */
+static struct fttmr010 *local_fttmr;
+
+static inline struct fttmr010 *to_fttmr010(struct clock_event_device *evt)
+{
+	return container_of(evt, struct fttmr010, clkevt);
+}
+
+static unsigned long fttmr010_read_current_timer_up(void)
+{
+	return readl(local_fttmr->base + TIMER2_COUNT);
+}
+
+static unsigned long fttmr010_read_current_timer_down(void)
+{
+	return ~readl(local_fttmr->base + TIMER2_COUNT);
+}
+
+static u64 notrace fttmr010_read_sched_clock_up(void)
+{
+	return fttmr010_read_current_timer_up();
+}
+
+static u64 notrace fttmr010_read_sched_clock_down(void)
+{
+	return fttmr010_read_current_timer_down();
+}
+
+static int fttmr010_timer_set_next_event(unsigned long cycles,
+				       struct clock_event_device *evt)
+{
+	struct fttmr010 *fttmr010 = to_fttmr010(evt);
+	u32 cr;
+
+	/* Stop */
+	cr = readl(fttmr010->base + TIMER_CR);
+	cr &= ~fttmr010->t1_enable_val;
+	writel(cr, fttmr010->base + TIMER_CR);
+
+	if (fttmr010->count_down) {
+		/*
+		 * ASPEED Timer Controller will load TIMER1_LOAD register
+		 * into TIMER1_COUNT register when the timer is re-enabled.
+		 */
+		writel(cycles, fttmr010->base + TIMER1_LOAD);
+	} else {
+		/* Setup the match register forward in time */
+		cr = readl(fttmr010->base + TIMER1_COUNT);
+		writel(cr + cycles, fttmr010->base + TIMER1_MATCH1);
+	}
+
+	/* Start */
+	cr = readl(fttmr010->base + TIMER_CR);
+	cr |= fttmr010->t1_enable_val;
+	writel(cr, fttmr010->base + TIMER_CR);
+
+	return 0;
+}
+
+static int fttmr010_timer_shutdown(struct clock_event_device *evt)
+{
+	struct fttmr010 *fttmr010 = to_fttmr010(evt);
+	u32 cr;
+
+	/* Stop */
+	cr = readl(fttmr010->base + TIMER_CR);
+	cr &= ~fttmr010->t1_enable_val;
+	writel(cr, fttmr010->base + TIMER_CR);
+
+	return 0;
+}
+
+static int fttmr010_timer_set_oneshot(struct clock_event_device *evt)
+{
+	struct fttmr010 *fttmr010 = to_fttmr010(evt);
+	u32 cr;
+
+	/* Stop */
+	cr = readl(fttmr010->base + TIMER_CR);
+	cr &= ~fttmr010->t1_enable_val;
+	writel(cr, fttmr010->base + TIMER_CR);
+
+	/* Setup counter start from 0 or ~0 */
+	writel(0, fttmr010->base + TIMER1_COUNT);
+	if (fttmr010->count_down)
+		writel(~0, fttmr010->base + TIMER1_LOAD);
+	else
+		writel(0, fttmr010->base + TIMER1_LOAD);
+
+	/* Enable interrupt */
+	cr = readl(fttmr010->base + TIMER_INTR_MASK);
+	cr &= ~(TIMER_1_INT_OVERFLOW | TIMER_1_INT_MATCH2);
+	cr |= TIMER_1_INT_MATCH1;
+	writel(cr, fttmr010->base + TIMER_INTR_MASK);
+
+	return 0;
+}
+
+static int fttmr010_timer_set_periodic(struct clock_event_device *evt)
+{
+	struct fttmr010 *fttmr010 = to_fttmr010(evt);
+	u32 period = DIV_ROUND_CLOSEST(fttmr010->tick_rate, HZ);
+	u32 cr;
+
+	/* Stop */
+	cr = readl(fttmr010->base + TIMER_CR);
+	cr &= ~fttmr010->t1_enable_val;
+	writel(cr, fttmr010->base + TIMER_CR);
+
+	/* Setup timer to fire at 1/HZ intervals. */
+	if (fttmr010->count_down) {
+		writel(period, fttmr010->base + TIMER1_LOAD);
+		writel(0, fttmr010->base + TIMER1_MATCH1);
+	} else {
+		cr = 0xffffffff - (period - 1);
+		writel(cr, fttmr010->base + TIMER1_COUNT);
+		writel(cr, fttmr010->base + TIMER1_LOAD);
+
+		/* Enable interrupt on overflow */
+		cr = readl(fttmr010->base + TIMER_INTR_MASK);
+		cr &= ~(TIMER_1_INT_MATCH1 | TIMER_1_INT_MATCH2);
+		cr |= TIMER_1_INT_OVERFLOW;
+		writel(cr, fttmr010->base + TIMER_INTR_MASK);
+	}
+
+	/* Start the timer */
+	cr = readl(fttmr010->base + TIMER_CR);
+	cr |= fttmr010->t1_enable_val;
+	writel(cr, fttmr010->base + TIMER_CR);
+
+	return 0;
+}
+
+/*
+ * IRQ handler for the timer
+ */
+static irqreturn_t fttmr010_timer_interrupt(int irq, void *dev_id)
+{
+	struct clock_event_device *evt = dev_id;
+
+	evt->event_handler(evt);
+	return IRQ_HANDLED;
+}
+
+static int __init fttmr010_common_init(struct device_node *np, bool is_aspeed)
+{
+	struct fttmr010 *fttmr010;
+	int irq;
+	struct clk *clk;
+	int ret;
+	u32 val;
+
+	/*
+	 * These implementations require a clock reference.
+	 * FIXME: we currently only support clocking using PCLK
+	 * and using EXTCLK is not supported in the driver.
+	 */
+	clk = of_clk_get_by_name(np, "PCLK");
+	if (IS_ERR(clk)) {
+		pr_err("could not get PCLK\n");
+		return PTR_ERR(clk);
+	}
+	ret = clk_prepare_enable(clk);
+	if (ret) {
+		pr_err("failed to enable PCLK\n");
+		return ret;
+	}
+
+	fttmr010 = kzalloc(sizeof(*fttmr010), GFP_KERNEL);
+	if (!fttmr010) {
+		ret = -ENOMEM;
+		goto out_disable_clock;
+	}
+	fttmr010->tick_rate = clk_get_rate(clk);
+
+	fttmr010->base = of_iomap(np, 0);
+	if (!fttmr010->base) {
+		pr_err("Can't remap registers\n");
+		ret = -ENXIO;
+		goto out_free;
+	}
+	/* IRQ for timer 1 */
+	irq = irq_of_parse_and_map(np, 0);
+	if (irq <= 0) {
+		pr_err("Can't parse IRQ\n");
+		ret = -EINVAL;
+		goto out_unmap;
+	}
+
+	/*
+	 * The Aspeed AST2400 moves bits around in the control register,
+	 * otherwise it works the same.
+	 */
+	if (is_aspeed) {
+		fttmr010->t1_enable_val = TIMER_1_CR_ASPEED_ENABLE |
+			TIMER_1_CR_ASPEED_INT;
+		/* Downward not available */
+		fttmr010->count_down = true;
+	} else {
+		fttmr010->t1_enable_val = TIMER_1_CR_ENABLE | TIMER_1_CR_INT;
+	}
+
+	/*
+	 * Reset the interrupt mask and status
+	 */
+	writel(TIMER_INT_ALL_MASK, fttmr010->base + TIMER_INTR_MASK);
+	writel(0, fttmr010->base + TIMER_INTR_STATE);
+
+	/*
+	 * Enable timer 1 count up, timer 2 count up, except on Aspeed,
+	 * where everything just counts down.
+	 */
+	if (is_aspeed)
+		val = TIMER_2_CR_ASPEED_ENABLE;
+	else {
+		val = TIMER_2_CR_ENABLE;
+		if (!fttmr010->count_down)
+			val |= TIMER_1_CR_UPDOWN | TIMER_2_CR_UPDOWN;
+	}
+	writel(val, fttmr010->base + TIMER_CR);
+
+	/*
+	 * Setup free-running clocksource timer (interrupts
+	 * disabled.)
+	 */
+	local_fttmr = fttmr010;
+	writel(0, fttmr010->base + TIMER2_COUNT);
+	writel(0, fttmr010->base + TIMER2_MATCH1);
+	writel(0, fttmr010->base + TIMER2_MATCH2);
+
+	if (fttmr010->count_down) {
+		writel(~0, fttmr010->base + TIMER2_LOAD);
+		clocksource_mmio_init(fttmr010->base + TIMER2_COUNT,
+				      "FTTMR010-TIMER2",
+				      fttmr010->tick_rate,
+				      300, 32, clocksource_mmio_readl_down);
+		sched_clock_register(fttmr010_read_sched_clock_down, 32,
+				     fttmr010->tick_rate);
+	} else {
+		writel(0, fttmr010->base + TIMER2_LOAD);
+		clocksource_mmio_init(fttmr010->base + TIMER2_COUNT,
+				      "FTTMR010-TIMER2",
+				      fttmr010->tick_rate,
+				      300, 32, clocksource_mmio_readl_up);
+		sched_clock_register(fttmr010_read_sched_clock_up, 32,
+				     fttmr010->tick_rate);
+	}
+
+	/*
+	 * Setup clockevent timer (interrupt-driven) on timer 1.
+	 */
+	writel(0, fttmr010->base + TIMER1_COUNT);
+	writel(0, fttmr010->base + TIMER1_LOAD);
+	writel(0, fttmr010->base + TIMER1_MATCH1);
+	writel(0, fttmr010->base + TIMER1_MATCH2);
+	ret = request_irq(irq, fttmr010_timer_interrupt, IRQF_TIMER,
+			  "FTTMR010-TIMER1", &fttmr010->clkevt);
+	if (ret) {
+		pr_err("FTTMR010-TIMER1 no IRQ\n");
+		goto out_unmap;
+	}
+
+	fttmr010->clkevt.name = "FTTMR010-TIMER1";
+	/* Reasonably fast and accurate clock event */
+	fttmr010->clkevt.rating = 300;
+	fttmr010->clkevt.features = CLOCK_EVT_FEAT_PERIODIC |
+		CLOCK_EVT_FEAT_ONESHOT;
+	fttmr010->clkevt.set_next_event = fttmr010_timer_set_next_event;
+	fttmr010->clkevt.set_state_shutdown = fttmr010_timer_shutdown;
+	fttmr010->clkevt.set_state_periodic = fttmr010_timer_set_periodic;
+	fttmr010->clkevt.set_state_oneshot = fttmr010_timer_set_oneshot;
+	fttmr010->clkevt.tick_resume = fttmr010_timer_shutdown;
+	fttmr010->clkevt.cpumask = cpumask_of(0);
+	fttmr010->clkevt.irq = irq;
+	clockevents_config_and_register(&fttmr010->clkevt,
+					fttmr010->tick_rate,
+					1, 0xffffffff);
+
+#ifdef CONFIG_ARM
+	/* Also use this timer for delays */
+	if (fttmr010->count_down)
+		fttmr010->delay_timer.read_current_timer =
+			fttmr010_read_current_timer_down;
+	else
+		fttmr010->delay_timer.read_current_timer =
+			fttmr010_read_current_timer_up;
+	fttmr010->delay_timer.freq = fttmr010->tick_rate;
+	register_current_timer_delay(&fttmr010->delay_timer);
+#endif
+
+	return 0;
+
+out_unmap:
+	iounmap(fttmr010->base);
+out_free:
+	kfree(fttmr010);
+out_disable_clock:
+	clk_disable_unprepare(clk);
+
+	return ret;
+}
+
+static __init int aspeed_timer_init(struct device_node *np)
+{
+	return fttmr010_common_init(np, true);
+}
+
+static __init int fttmr010_timer_init(struct device_node *np)
+{
+	return fttmr010_common_init(np, false);
+}
+
+TIMER_OF_DECLARE(fttmr010, "faraday,fttmr010", fttmr010_timer_init);
+TIMER_OF_DECLARE(gemini, "cortina,gemini-timer", fttmr010_timer_init);
+TIMER_OF_DECLARE(moxart, "moxa,moxart-timer", fttmr010_timer_init);
+TIMER_OF_DECLARE(ast2400, "aspeed,ast2400-timer", aspeed_timer_init);
+TIMER_OF_DECLARE(ast2500, "aspeed,ast2500-timer", aspeed_timer_init);