v4.19.13 snapshot.
diff --git a/drivers/clk/bcm/clk-kona-setup.c b/drivers/clk/bcm/clk-kona-setup.c
new file mode 100644
index 0000000..281f432
--- /dev/null
+++ b/drivers/clk/bcm/clk-kona-setup.c
@@ -0,0 +1,863 @@
+/*
+ * Copyright (C) 2013 Broadcom Corporation
+ * Copyright 2013 Linaro Limited
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License as
+ * published by the Free Software Foundation version 2.
+ *
+ * This program is distributed "as is" WITHOUT ANY WARRANTY of any
+ * kind, whether express or implied; without even the implied warranty
+ * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ */
+
+#include <linux/io.h>
+#include <linux/of_address.h>
+
+#include "clk-kona.h"
+
+/* These are used when a selector or trigger is found to be unneeded */
+#define selector_clear_exists(sel)	((sel)->width = 0)
+#define trigger_clear_exists(trig)	FLAG_CLEAR(trig, TRIG, EXISTS)
+
+/* Validity checking */
+
+static bool ccu_data_offsets_valid(struct ccu_data *ccu)
+{
+	struct ccu_policy *ccu_policy = &ccu->policy;
+	u32 limit;
+
+	limit = ccu->range - sizeof(u32);
+	limit = round_down(limit, sizeof(u32));
+	if (ccu_policy_exists(ccu_policy)) {
+		if (ccu_policy->enable.offset > limit) {
+			pr_err("%s: bad policy enable offset for %s "
+					"(%u > %u)\n", __func__,
+				ccu->name, ccu_policy->enable.offset, limit);
+			return false;
+		}
+		if (ccu_policy->control.offset > limit) {
+			pr_err("%s: bad policy control offset for %s "
+					"(%u > %u)\n", __func__,
+				ccu->name, ccu_policy->control.offset, limit);
+			return false;
+		}
+	}
+
+	return true;
+}
+
+static bool clk_requires_trigger(struct kona_clk *bcm_clk)
+{
+	struct peri_clk_data *peri = bcm_clk->u.peri;
+	struct bcm_clk_sel *sel;
+	struct bcm_clk_div *div;
+
+	if (bcm_clk->type != bcm_clk_peri)
+		return false;
+
+	sel = &peri->sel;
+	if (sel->parent_count && selector_exists(sel))
+		return true;
+
+	div = &peri->div;
+	if (!divider_exists(div))
+		return false;
+
+	/* Fixed dividers don't need triggers */
+	if (!divider_is_fixed(div))
+		return true;
+
+	div = &peri->pre_div;
+
+	return divider_exists(div) && !divider_is_fixed(div);
+}
+
+static bool peri_clk_data_offsets_valid(struct kona_clk *bcm_clk)
+{
+	struct peri_clk_data *peri;
+	struct bcm_clk_policy *policy;
+	struct bcm_clk_gate *gate;
+	struct bcm_clk_hyst *hyst;
+	struct bcm_clk_div *div;
+	struct bcm_clk_sel *sel;
+	struct bcm_clk_trig *trig;
+	const char *name;
+	u32 range;
+	u32 limit;
+
+	BUG_ON(bcm_clk->type != bcm_clk_peri);
+	peri = bcm_clk->u.peri;
+	name = bcm_clk->init_data.name;
+	range = bcm_clk->ccu->range;
+
+	limit = range - sizeof(u32);
+	limit = round_down(limit, sizeof(u32));
+
+	policy = &peri->policy;
+	if (policy_exists(policy)) {
+		if (policy->offset > limit) {
+			pr_err("%s: bad policy offset for %s (%u > %u)\n",
+				__func__, name, policy->offset, limit);
+			return false;
+		}
+	}
+
+	gate = &peri->gate;
+	hyst = &peri->hyst;
+	if (gate_exists(gate)) {
+		if (gate->offset > limit) {
+			pr_err("%s: bad gate offset for %s (%u > %u)\n",
+				__func__, name, gate->offset, limit);
+			return false;
+		}
+
+		if (hyst_exists(hyst)) {
+			if (hyst->offset > limit) {
+				pr_err("%s: bad hysteresis offset for %s "
+					"(%u > %u)\n", __func__,
+					name, hyst->offset, limit);
+				return false;
+			}
+		}
+	} else if (hyst_exists(hyst)) {
+		pr_err("%s: hysteresis but no gate for %s\n", __func__, name);
+		return false;
+	}
+
+	div = &peri->div;
+	if (divider_exists(div)) {
+		if (div->u.s.offset > limit) {
+			pr_err("%s: bad divider offset for %s (%u > %u)\n",
+				__func__, name, div->u.s.offset, limit);
+			return false;
+		}
+	}
+
+	div = &peri->pre_div;
+	if (divider_exists(div)) {
+		if (div->u.s.offset > limit) {
+			pr_err("%s: bad pre-divider offset for %s "
+					"(%u > %u)\n",
+				__func__, name, div->u.s.offset, limit);
+			return false;
+		}
+	}
+
+	sel = &peri->sel;
+	if (selector_exists(sel)) {
+		if (sel->offset > limit) {
+			pr_err("%s: bad selector offset for %s (%u > %u)\n",
+				__func__, name, sel->offset, limit);
+			return false;
+		}
+	}
+
+	trig = &peri->trig;
+	if (trigger_exists(trig)) {
+		if (trig->offset > limit) {
+			pr_err("%s: bad trigger offset for %s (%u > %u)\n",
+				__func__, name, trig->offset, limit);
+			return false;
+		}
+	}
+
+	trig = &peri->pre_trig;
+	if (trigger_exists(trig)) {
+		if (trig->offset > limit) {
+			pr_err("%s: bad pre-trigger offset for %s (%u > %u)\n",
+				__func__, name, trig->offset, limit);
+			return false;
+		}
+	}
+
+	return true;
+}
+
+/* A bit position must be less than the number of bits in a 32-bit register. */
+static bool bit_posn_valid(u32 bit_posn, const char *field_name,
+			const char *clock_name)
+{
+	u32 limit = BITS_PER_BYTE * sizeof(u32) - 1;
+
+	if (bit_posn > limit) {
+		pr_err("%s: bad %s bit for %s (%u > %u)\n", __func__,
+			field_name, clock_name, bit_posn, limit);
+		return false;
+	}
+	return true;
+}
+
+/*
+ * A bitfield must be at least 1 bit wide.  Both the low-order and
+ * high-order bits must lie within a 32-bit register.  We require
+ * fields to be less than 32 bits wide, mainly because we use
+ * shifting to produce field masks, and shifting a full word width
+ * is not well-defined by the C standard.
+ */
+static bool bitfield_valid(u32 shift, u32 width, const char *field_name,
+			const char *clock_name)
+{
+	u32 limit = BITS_PER_BYTE * sizeof(u32);
+
+	if (!width) {
+		pr_err("%s: bad %s field width 0 for %s\n", __func__,
+			field_name, clock_name);
+		return false;
+	}
+	if (shift + width > limit) {
+		pr_err("%s: bad %s for %s (%u + %u > %u)\n", __func__,
+			field_name, clock_name, shift, width, limit);
+		return false;
+	}
+	return true;
+}
+
+static bool
+ccu_policy_valid(struct ccu_policy *ccu_policy, const char *ccu_name)
+{
+	struct bcm_lvm_en *enable = &ccu_policy->enable;
+	struct bcm_policy_ctl *control;
+
+	if (!bit_posn_valid(enable->bit, "policy enable", ccu_name))
+		return false;
+
+	control = &ccu_policy->control;
+	if (!bit_posn_valid(control->go_bit, "policy control GO", ccu_name))
+		return false;
+
+	if (!bit_posn_valid(control->atl_bit, "policy control ATL", ccu_name))
+		return false;
+
+	if (!bit_posn_valid(control->ac_bit, "policy control AC", ccu_name))
+		return false;
+
+	return true;
+}
+
+static bool policy_valid(struct bcm_clk_policy *policy, const char *clock_name)
+{
+	if (!bit_posn_valid(policy->bit, "policy", clock_name))
+		return false;
+
+	return true;
+}
+
+/*
+ * All gates, if defined, have a status bit, and for hardware-only
+ * gates, that's it.  Gates that can be software controlled also
+ * have an enable bit.  And a gate that can be hardware or software
+ * controlled will have a hardware/software select bit.
+ */
+static bool gate_valid(struct bcm_clk_gate *gate, const char *field_name,
+			const char *clock_name)
+{
+	if (!bit_posn_valid(gate->status_bit, "gate status", clock_name))
+		return false;
+
+	if (gate_is_sw_controllable(gate)) {
+		if (!bit_posn_valid(gate->en_bit, "gate enable", clock_name))
+			return false;
+
+		if (gate_is_hw_controllable(gate)) {
+			if (!bit_posn_valid(gate->hw_sw_sel_bit,
+						"gate hw/sw select",
+						clock_name))
+				return false;
+		}
+	} else {
+		BUG_ON(!gate_is_hw_controllable(gate));
+	}
+
+	return true;
+}
+
+static bool hyst_valid(struct bcm_clk_hyst *hyst, const char *clock_name)
+{
+	if (!bit_posn_valid(hyst->en_bit, "hysteresis enable", clock_name))
+		return false;
+
+	if (!bit_posn_valid(hyst->val_bit, "hysteresis value", clock_name))
+		return false;
+
+	return true;
+}
+
+/*
+ * A selector bitfield must be valid.  Its parent_sel array must
+ * also be reasonable for the field.
+ */
+static bool sel_valid(struct bcm_clk_sel *sel, const char *field_name,
+			const char *clock_name)
+{
+	if (!bitfield_valid(sel->shift, sel->width, field_name, clock_name))
+		return false;
+
+	if (sel->parent_count) {
+		u32 max_sel;
+		u32 limit;
+
+		/*
+		 * Make sure the selector field can hold all the
+		 * selector values we expect to be able to use.  A
+		 * clock only needs to have a selector defined if it
+		 * has more than one parent.  And in that case the
+		 * highest selector value will be in the last entry
+		 * in the array.
+		 */
+		max_sel = sel->parent_sel[sel->parent_count - 1];
+		limit = (1 << sel->width) - 1;
+		if (max_sel > limit) {
+			pr_err("%s: bad selector for %s "
+					"(%u needs > %u bits)\n",
+				__func__, clock_name, max_sel,
+				sel->width);
+			return false;
+		}
+	} else {
+		pr_warn("%s: ignoring selector for %s (no parents)\n",
+			__func__, clock_name);
+		selector_clear_exists(sel);
+		kfree(sel->parent_sel);
+		sel->parent_sel = NULL;
+	}
+
+	return true;
+}
+
+/*
+ * A fixed divider just needs to be non-zero.  A variable divider
+ * has to have a valid divider bitfield, and if it has a fraction,
+ * the width of the fraction must not be no more than the width of
+ * the divider as a whole.
+ */
+static bool div_valid(struct bcm_clk_div *div, const char *field_name,
+			const char *clock_name)
+{
+	if (divider_is_fixed(div)) {
+		/* Any fixed divider value but 0 is OK */
+		if (div->u.fixed == 0) {
+			pr_err("%s: bad %s fixed value 0 for %s\n", __func__,
+				field_name, clock_name);
+			return false;
+		}
+		return true;
+	}
+	if (!bitfield_valid(div->u.s.shift, div->u.s.width,
+				field_name, clock_name))
+		return false;
+
+	if (divider_has_fraction(div))
+		if (div->u.s.frac_width > div->u.s.width) {
+			pr_warn("%s: bad %s fraction width for %s (%u > %u)\n",
+				__func__, field_name, clock_name,
+				div->u.s.frac_width, div->u.s.width);
+			return false;
+		}
+
+	return true;
+}
+
+/*
+ * If a clock has two dividers, the combined number of fractional
+ * bits must be representable in a 32-bit unsigned value.  This
+ * is because we scale up a dividend using both dividers before
+ * dividing to improve accuracy, and we need to avoid overflow.
+ */
+static bool kona_dividers_valid(struct kona_clk *bcm_clk)
+{
+	struct peri_clk_data *peri = bcm_clk->u.peri;
+	struct bcm_clk_div *div;
+	struct bcm_clk_div *pre_div;
+	u32 limit;
+
+	BUG_ON(bcm_clk->type != bcm_clk_peri);
+
+	if (!divider_exists(&peri->div) || !divider_exists(&peri->pre_div))
+		return true;
+
+	div = &peri->div;
+	pre_div = &peri->pre_div;
+	if (divider_is_fixed(div) || divider_is_fixed(pre_div))
+		return true;
+
+	limit = BITS_PER_BYTE * sizeof(u32);
+
+	return div->u.s.frac_width + pre_div->u.s.frac_width <= limit;
+}
+
+
+/* A trigger just needs to represent a valid bit position */
+static bool trig_valid(struct bcm_clk_trig *trig, const char *field_name,
+			const char *clock_name)
+{
+	return bit_posn_valid(trig->bit, field_name, clock_name);
+}
+
+/* Determine whether the set of peripheral clock registers are valid. */
+static bool
+peri_clk_data_valid(struct kona_clk *bcm_clk)
+{
+	struct peri_clk_data *peri;
+	struct bcm_clk_policy *policy;
+	struct bcm_clk_gate *gate;
+	struct bcm_clk_hyst *hyst;
+	struct bcm_clk_sel *sel;
+	struct bcm_clk_div *div;
+	struct bcm_clk_div *pre_div;
+	struct bcm_clk_trig *trig;
+	const char *name;
+
+	BUG_ON(bcm_clk->type != bcm_clk_peri);
+
+	/*
+	 * First validate register offsets.  This is the only place
+	 * where we need something from the ccu, so we do these
+	 * together.
+	 */
+	if (!peri_clk_data_offsets_valid(bcm_clk))
+		return false;
+
+	peri = bcm_clk->u.peri;
+	name = bcm_clk->init_data.name;
+
+	policy = &peri->policy;
+	if (policy_exists(policy) && !policy_valid(policy, name))
+		return false;
+
+	gate = &peri->gate;
+	if (gate_exists(gate) && !gate_valid(gate, "gate", name))
+		return false;
+
+	hyst = &peri->hyst;
+	if (hyst_exists(hyst) && !hyst_valid(hyst, name))
+		return false;
+
+	sel = &peri->sel;
+	if (selector_exists(sel)) {
+		if (!sel_valid(sel, "selector", name))
+			return false;
+
+	} else if (sel->parent_count > 1) {
+		pr_err("%s: multiple parents but no selector for %s\n",
+			__func__, name);
+
+		return false;
+	}
+
+	div = &peri->div;
+	pre_div = &peri->pre_div;
+	if (divider_exists(div)) {
+		if (!div_valid(div, "divider", name))
+			return false;
+
+		if (divider_exists(pre_div))
+			if (!div_valid(pre_div, "pre-divider", name))
+				return false;
+	} else if (divider_exists(pre_div)) {
+		pr_err("%s: pre-divider but no divider for %s\n", __func__,
+			name);
+		return false;
+	}
+
+	trig = &peri->trig;
+	if (trigger_exists(trig)) {
+		if (!trig_valid(trig, "trigger", name))
+			return false;
+
+		if (trigger_exists(&peri->pre_trig)) {
+			if (!trig_valid(trig, "pre-trigger", name)) {
+				return false;
+			}
+		}
+		if (!clk_requires_trigger(bcm_clk)) {
+			pr_warn("%s: ignoring trigger for %s (not needed)\n",
+				__func__, name);
+			trigger_clear_exists(trig);
+		}
+	} else if (trigger_exists(&peri->pre_trig)) {
+		pr_err("%s: pre-trigger but no trigger for %s\n", __func__,
+			name);
+		return false;
+	} else if (clk_requires_trigger(bcm_clk)) {
+		pr_err("%s: required trigger missing for %s\n", __func__,
+			name);
+		return false;
+	}
+
+	return kona_dividers_valid(bcm_clk);
+}
+
+static bool kona_clk_valid(struct kona_clk *bcm_clk)
+{
+	switch (bcm_clk->type) {
+	case bcm_clk_peri:
+		if (!peri_clk_data_valid(bcm_clk))
+			return false;
+		break;
+	default:
+		pr_err("%s: unrecognized clock type (%d)\n", __func__,
+			(int)bcm_clk->type);
+		return false;
+	}
+	return true;
+}
+
+/*
+ * Scan an array of parent clock names to determine whether there
+ * are any entries containing BAD_CLK_NAME.  Such entries are
+ * placeholders for non-supported clocks.  Keep track of the
+ * position of each clock name in the original array.
+ *
+ * Allocates an array of pointers to to hold the names of all
+ * non-null entries in the original array, and returns a pointer to
+ * that array in *names.  This will be used for registering the
+ * clock with the common clock code.  On successful return,
+ * *count indicates how many entries are in that names array.
+ *
+ * If there is more than one entry in the resulting names array,
+ * another array is allocated to record the parent selector value
+ * for each (defined) parent clock.  This is the value that
+ * represents this parent clock in the clock's source selector
+ * register.  The position of the clock in the original parent array
+ * defines that selector value.  The number of entries in this array
+ * is the same as the number of entries in the parent names array.
+ *
+ * The array of selector values is returned.  If the clock has no
+ * parents, no selector is required and a null pointer is returned.
+ *
+ * Returns a null pointer if the clock names array supplied was
+ * null.  (This is not an error.)
+ *
+ * Returns a pointer-coded error if an error occurs.
+ */
+static u32 *parent_process(const char *clocks[],
+			u32 *count, const char ***names)
+{
+	static const char **parent_names;
+	static u32 *parent_sel;
+	const char **clock;
+	u32 parent_count;
+	u32 bad_count = 0;
+	u32 orig_count;
+	u32 i;
+	u32 j;
+
+	*count = 0;	/* In case of early return */
+	*names = NULL;
+	if (!clocks)
+		return NULL;
+
+	/*
+	 * Count the number of names in the null-terminated array,
+	 * and find out how many of those are actually clock names.
+	 */
+	for (clock = clocks; *clock; clock++)
+		if (*clock == BAD_CLK_NAME)
+			bad_count++;
+	orig_count = (u32)(clock - clocks);
+	parent_count = orig_count - bad_count;
+
+	/* If all clocks are unsupported, we treat it as no clock */
+	if (!parent_count)
+		return NULL;
+
+	/* Avoid exceeding our parent clock limit */
+	if (parent_count > PARENT_COUNT_MAX) {
+		pr_err("%s: too many parents (%u > %u)\n", __func__,
+			parent_count, PARENT_COUNT_MAX);
+		return ERR_PTR(-EINVAL);
+	}
+
+	/*
+	 * There is one parent name for each defined parent clock.
+	 * We also maintain an array containing the selector value
+	 * for each defined clock.  If there's only one clock, the
+	 * selector is not required, but we allocate space for the
+	 * array anyway to keep things simple.
+	 */
+	parent_names = kmalloc_array(parent_count, sizeof(*parent_names),
+			       GFP_KERNEL);
+	if (!parent_names)
+		return ERR_PTR(-ENOMEM);
+
+	/* There is at least one parent, so allocate a selector array */
+	parent_sel = kmalloc_array(parent_count, sizeof(*parent_sel),
+				   GFP_KERNEL);
+	if (!parent_sel) {
+		kfree(parent_names);
+
+		return ERR_PTR(-ENOMEM);
+	}
+
+	/* Now fill in the parent names and selector arrays */
+	for (i = 0, j = 0; i < orig_count; i++) {
+		if (clocks[i] != BAD_CLK_NAME) {
+			parent_names[j] = clocks[i];
+			parent_sel[j] = i;
+			j++;
+		}
+	}
+	*names = parent_names;
+	*count = parent_count;
+
+	return parent_sel;
+}
+
+static int
+clk_sel_setup(const char **clocks, struct bcm_clk_sel *sel,
+		struct clk_init_data *init_data)
+{
+	const char **parent_names = NULL;
+	u32 parent_count = 0;
+	u32 *parent_sel;
+
+	/*
+	 * If a peripheral clock has multiple parents, the value
+	 * used by the hardware to select that parent is represented
+	 * by the parent clock's position in the "clocks" list.  Some
+	 * values don't have defined or supported clocks; these will
+	 * have BAD_CLK_NAME entries in the parents[] array.  The
+	 * list is terminated by a NULL entry.
+	 *
+	 * We need to supply (only) the names of defined parent
+	 * clocks when registering a clock though, so we use an
+	 * array of parent selector values to map between the
+	 * indexes the common clock code uses and the selector
+	 * values we need.
+	 */
+	parent_sel = parent_process(clocks, &parent_count, &parent_names);
+	if (IS_ERR(parent_sel)) {
+		int ret = PTR_ERR(parent_sel);
+
+		pr_err("%s: error processing parent clocks for %s (%d)\n",
+			__func__, init_data->name, ret);
+
+		return ret;
+	}
+
+	init_data->parent_names = parent_names;
+	init_data->num_parents = parent_count;
+
+	sel->parent_count = parent_count;
+	sel->parent_sel = parent_sel;
+
+	return 0;
+}
+
+static void clk_sel_teardown(struct bcm_clk_sel *sel,
+		struct clk_init_data *init_data)
+{
+	kfree(sel->parent_sel);
+	sel->parent_sel = NULL;
+	sel->parent_count = 0;
+
+	init_data->num_parents = 0;
+	kfree(init_data->parent_names);
+	init_data->parent_names = NULL;
+}
+
+static void peri_clk_teardown(struct peri_clk_data *data,
+				struct clk_init_data *init_data)
+{
+	clk_sel_teardown(&data->sel, init_data);
+}
+
+/*
+ * Caller is responsible for freeing the parent_names[] and
+ * parent_sel[] arrays in the peripheral clock's "data" structure
+ * that can be assigned if the clock has one or more parent clocks
+ * associated with it.
+ */
+static int
+peri_clk_setup(struct peri_clk_data *data, struct clk_init_data *init_data)
+{
+	init_data->flags = CLK_IGNORE_UNUSED;
+
+	return clk_sel_setup(data->clocks, &data->sel, init_data);
+}
+
+static void bcm_clk_teardown(struct kona_clk *bcm_clk)
+{
+	switch (bcm_clk->type) {
+	case bcm_clk_peri:
+		peri_clk_teardown(bcm_clk->u.data, &bcm_clk->init_data);
+		break;
+	default:
+		break;
+	}
+	bcm_clk->u.data = NULL;
+	bcm_clk->type = bcm_clk_none;
+}
+
+static void kona_clk_teardown(struct clk_hw *hw)
+{
+	struct kona_clk *bcm_clk;
+
+	if (!hw)
+		return;
+
+	clk_hw_unregister(hw);
+
+	bcm_clk = to_kona_clk(hw);
+	bcm_clk_teardown(bcm_clk);
+}
+
+static int kona_clk_setup(struct kona_clk *bcm_clk)
+{
+	int ret;
+	struct clk_init_data *init_data = &bcm_clk->init_data;
+
+	switch (bcm_clk->type) {
+	case bcm_clk_peri:
+		ret = peri_clk_setup(bcm_clk->u.data, init_data);
+		if (ret)
+			return ret;
+		break;
+	default:
+		pr_err("%s: clock type %d invalid for %s\n", __func__,
+			(int)bcm_clk->type, init_data->name);
+		return -EINVAL;
+	}
+
+	/* Make sure everything makes sense before we set it up */
+	if (!kona_clk_valid(bcm_clk)) {
+		pr_err("%s: clock data invalid for %s\n", __func__,
+			init_data->name);
+		ret = -EINVAL;
+		goto out_teardown;
+	}
+
+	bcm_clk->hw.init = init_data;
+	ret = clk_hw_register(NULL, &bcm_clk->hw);
+	if (ret) {
+		pr_err("%s: error registering clock %s (%d)\n", __func__,
+			init_data->name, ret);
+		goto out_teardown;
+	}
+
+	return 0;
+out_teardown:
+	bcm_clk_teardown(bcm_clk);
+
+	return ret;
+}
+
+static void ccu_clks_teardown(struct ccu_data *ccu)
+{
+	u32 i;
+
+	for (i = 0; i < ccu->clk_num; i++)
+		kona_clk_teardown(&ccu->kona_clks[i].hw);
+}
+
+static void kona_ccu_teardown(struct ccu_data *ccu)
+{
+	if (!ccu->base)
+		return;
+
+	of_clk_del_provider(ccu->node);	/* safe if never added */
+	ccu_clks_teardown(ccu);
+	of_node_put(ccu->node);
+	ccu->node = NULL;
+	iounmap(ccu->base);
+	ccu->base = NULL;
+}
+
+static bool ccu_data_valid(struct ccu_data *ccu)
+{
+	struct ccu_policy *ccu_policy;
+
+	if (!ccu_data_offsets_valid(ccu))
+		return false;
+
+	ccu_policy = &ccu->policy;
+	if (ccu_policy_exists(ccu_policy))
+		if (!ccu_policy_valid(ccu_policy, ccu->name))
+			return false;
+
+	return true;
+}
+
+static struct clk_hw *
+of_clk_kona_onecell_get(struct of_phandle_args *clkspec, void *data)
+{
+	struct ccu_data *ccu = data;
+	unsigned int idx = clkspec->args[0];
+
+	if (idx >= ccu->clk_num) {
+		pr_err("%s: invalid index %u\n", __func__, idx);
+		return ERR_PTR(-EINVAL);
+	}
+
+	return &ccu->kona_clks[idx].hw;
+}
+
+/*
+ * Set up a CCU.  Call the provided ccu_clks_setup callback to
+ * initialize the array of clocks provided by the CCU.
+ */
+void __init kona_dt_ccu_setup(struct ccu_data *ccu,
+			struct device_node *node)
+{
+	struct resource res = { 0 };
+	resource_size_t range;
+	unsigned int i;
+	int ret;
+
+	ret = of_address_to_resource(node, 0, &res);
+	if (ret) {
+		pr_err("%s: no valid CCU registers found for %s\n", __func__,
+			node->name);
+		goto out_err;
+	}
+
+	range = resource_size(&res);
+	if (range > (resource_size_t)U32_MAX) {
+		pr_err("%s: address range too large for %s\n", __func__,
+			node->name);
+		goto out_err;
+	}
+
+	ccu->range = (u32)range;
+
+	if (!ccu_data_valid(ccu)) {
+		pr_err("%s: ccu data not valid for %s\n", __func__, node->name);
+		goto out_err;
+	}
+
+	ccu->base = ioremap(res.start, ccu->range);
+	if (!ccu->base) {
+		pr_err("%s: unable to map CCU registers for %s\n", __func__,
+			node->name);
+		goto out_err;
+	}
+	ccu->node = of_node_get(node);
+
+	/*
+	 * Set up each defined kona clock and save the result in
+	 * the clock framework clock array (in ccu->data).  Then
+	 * register as a provider for these clocks.
+	 */
+	for (i = 0; i < ccu->clk_num; i++) {
+		if (!ccu->kona_clks[i].ccu)
+			continue;
+		kona_clk_setup(&ccu->kona_clks[i]);
+	}
+
+	ret = of_clk_add_hw_provider(node, of_clk_kona_onecell_get, ccu);
+	if (ret) {
+		pr_err("%s: error adding ccu %s as provider (%d)\n", __func__,
+				node->name, ret);
+		goto out_err;
+	}
+
+	if (!kona_ccu_init(ccu))
+		pr_err("Broadcom %s initialization had errors\n", node->name);
+
+	return;
+out_err:
+	kona_ccu_teardown(ccu);
+	pr_err("Broadcom %s setup aborted\n", node->name);
+}