v4.19.13 snapshot.
diff --git a/drivers/char/random.c b/drivers/char/random.c
new file mode 100644
index 0000000..c75b6cd
--- /dev/null
+++ b/drivers/char/random.c
@@ -0,0 +1,2365 @@
+/*
+ * random.c -- A strong random number generator
+ *
+ * Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All
+ * Rights Reserved.
+ *
+ * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
+ *
+ * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999.  All
+ * rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ *    notice, and the entire permission notice in its entirety,
+ *    including the disclaimer of warranties.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ *    notice, this list of conditions and the following disclaimer in the
+ *    documentation and/or other materials provided with the distribution.
+ * 3. The name of the author may not be used to endorse or promote
+ *    products derived from this software without specific prior
+ *    written permission.
+ *
+ * ALTERNATIVELY, this product may be distributed under the terms of
+ * the GNU General Public License, in which case the provisions of the GPL are
+ * required INSTEAD OF the above restrictions.  (This clause is
+ * necessary due to a potential bad interaction between the GPL and
+ * the restrictions contained in a BSD-style copyright.)
+ *
+ * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
+ * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
+ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
+ * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
+ * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
+ * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
+ * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+ * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
+ * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
+ * DAMAGE.
+ */
+
+/*
+ * (now, with legal B.S. out of the way.....)
+ *
+ * This routine gathers environmental noise from device drivers, etc.,
+ * and returns good random numbers, suitable for cryptographic use.
+ * Besides the obvious cryptographic uses, these numbers are also good
+ * for seeding TCP sequence numbers, and other places where it is
+ * desirable to have numbers which are not only random, but hard to
+ * predict by an attacker.
+ *
+ * Theory of operation
+ * ===================
+ *
+ * Computers are very predictable devices.  Hence it is extremely hard
+ * to produce truly random numbers on a computer --- as opposed to
+ * pseudo-random numbers, which can easily generated by using a
+ * algorithm.  Unfortunately, it is very easy for attackers to guess
+ * the sequence of pseudo-random number generators, and for some
+ * applications this is not acceptable.  So instead, we must try to
+ * gather "environmental noise" from the computer's environment, which
+ * must be hard for outside attackers to observe, and use that to
+ * generate random numbers.  In a Unix environment, this is best done
+ * from inside the kernel.
+ *
+ * Sources of randomness from the environment include inter-keyboard
+ * timings, inter-interrupt timings from some interrupts, and other
+ * events which are both (a) non-deterministic and (b) hard for an
+ * outside observer to measure.  Randomness from these sources are
+ * added to an "entropy pool", which is mixed using a CRC-like function.
+ * This is not cryptographically strong, but it is adequate assuming
+ * the randomness is not chosen maliciously, and it is fast enough that
+ * the overhead of doing it on every interrupt is very reasonable.
+ * As random bytes are mixed into the entropy pool, the routines keep
+ * an *estimate* of how many bits of randomness have been stored into
+ * the random number generator's internal state.
+ *
+ * When random bytes are desired, they are obtained by taking the SHA
+ * hash of the contents of the "entropy pool".  The SHA hash avoids
+ * exposing the internal state of the entropy pool.  It is believed to
+ * be computationally infeasible to derive any useful information
+ * about the input of SHA from its output.  Even if it is possible to
+ * analyze SHA in some clever way, as long as the amount of data
+ * returned from the generator is less than the inherent entropy in
+ * the pool, the output data is totally unpredictable.  For this
+ * reason, the routine decreases its internal estimate of how many
+ * bits of "true randomness" are contained in the entropy pool as it
+ * outputs random numbers.
+ *
+ * If this estimate goes to zero, the routine can still generate
+ * random numbers; however, an attacker may (at least in theory) be
+ * able to infer the future output of the generator from prior
+ * outputs.  This requires successful cryptanalysis of SHA, which is
+ * not believed to be feasible, but there is a remote possibility.
+ * Nonetheless, these numbers should be useful for the vast majority
+ * of purposes.
+ *
+ * Exported interfaces ---- output
+ * ===============================
+ *
+ * There are three exported interfaces; the first is one designed to
+ * be used from within the kernel:
+ *
+ * 	void get_random_bytes(void *buf, int nbytes);
+ *
+ * This interface will return the requested number of random bytes,
+ * and place it in the requested buffer.
+ *
+ * The two other interfaces are two character devices /dev/random and
+ * /dev/urandom.  /dev/random is suitable for use when very high
+ * quality randomness is desired (for example, for key generation or
+ * one-time pads), as it will only return a maximum of the number of
+ * bits of randomness (as estimated by the random number generator)
+ * contained in the entropy pool.
+ *
+ * The /dev/urandom device does not have this limit, and will return
+ * as many bytes as are requested.  As more and more random bytes are
+ * requested without giving time for the entropy pool to recharge,
+ * this will result in random numbers that are merely cryptographically
+ * strong.  For many applications, however, this is acceptable.
+ *
+ * Exported interfaces ---- input
+ * ==============================
+ *
+ * The current exported interfaces for gathering environmental noise
+ * from the devices are:
+ *
+ *	void add_device_randomness(const void *buf, unsigned int size);
+ * 	void add_input_randomness(unsigned int type, unsigned int code,
+ *                                unsigned int value);
+ *	void add_interrupt_randomness(int irq, int irq_flags);
+ * 	void add_disk_randomness(struct gendisk *disk);
+ *
+ * add_device_randomness() is for adding data to the random pool that
+ * is likely to differ between two devices (or possibly even per boot).
+ * This would be things like MAC addresses or serial numbers, or the
+ * read-out of the RTC. This does *not* add any actual entropy to the
+ * pool, but it initializes the pool to different values for devices
+ * that might otherwise be identical and have very little entropy
+ * available to them (particularly common in the embedded world).
+ *
+ * add_input_randomness() uses the input layer interrupt timing, as well as
+ * the event type information from the hardware.
+ *
+ * add_interrupt_randomness() uses the interrupt timing as random
+ * inputs to the entropy pool. Using the cycle counters and the irq source
+ * as inputs, it feeds the randomness roughly once a second.
+ *
+ * add_disk_randomness() uses what amounts to the seek time of block
+ * layer request events, on a per-disk_devt basis, as input to the
+ * entropy pool. Note that high-speed solid state drives with very low
+ * seek times do not make for good sources of entropy, as their seek
+ * times are usually fairly consistent.
+ *
+ * All of these routines try to estimate how many bits of randomness a
+ * particular randomness source.  They do this by keeping track of the
+ * first and second order deltas of the event timings.
+ *
+ * Ensuring unpredictability at system startup
+ * ============================================
+ *
+ * When any operating system starts up, it will go through a sequence
+ * of actions that are fairly predictable by an adversary, especially
+ * if the start-up does not involve interaction with a human operator.
+ * This reduces the actual number of bits of unpredictability in the
+ * entropy pool below the value in entropy_count.  In order to
+ * counteract this effect, it helps to carry information in the
+ * entropy pool across shut-downs and start-ups.  To do this, put the
+ * following lines an appropriate script which is run during the boot
+ * sequence:
+ *
+ *	echo "Initializing random number generator..."
+ *	random_seed=/var/run/random-seed
+ *	# Carry a random seed from start-up to start-up
+ *	# Load and then save the whole entropy pool
+ *	if [ -f $random_seed ]; then
+ *		cat $random_seed >/dev/urandom
+ *	else
+ *		touch $random_seed
+ *	fi
+ *	chmod 600 $random_seed
+ *	dd if=/dev/urandom of=$random_seed count=1 bs=512
+ *
+ * and the following lines in an appropriate script which is run as
+ * the system is shutdown:
+ *
+ *	# Carry a random seed from shut-down to start-up
+ *	# Save the whole entropy pool
+ *	echo "Saving random seed..."
+ *	random_seed=/var/run/random-seed
+ *	touch $random_seed
+ *	chmod 600 $random_seed
+ *	dd if=/dev/urandom of=$random_seed count=1 bs=512
+ *
+ * For example, on most modern systems using the System V init
+ * scripts, such code fragments would be found in
+ * /etc/rc.d/init.d/random.  On older Linux systems, the correct script
+ * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
+ *
+ * Effectively, these commands cause the contents of the entropy pool
+ * to be saved at shut-down time and reloaded into the entropy pool at
+ * start-up.  (The 'dd' in the addition to the bootup script is to
+ * make sure that /etc/random-seed is different for every start-up,
+ * even if the system crashes without executing rc.0.)  Even with
+ * complete knowledge of the start-up activities, predicting the state
+ * of the entropy pool requires knowledge of the previous history of
+ * the system.
+ *
+ * Configuring the /dev/random driver under Linux
+ * ==============================================
+ *
+ * The /dev/random driver under Linux uses minor numbers 8 and 9 of
+ * the /dev/mem major number (#1).  So if your system does not have
+ * /dev/random and /dev/urandom created already, they can be created
+ * by using the commands:
+ *
+ * 	mknod /dev/random c 1 8
+ * 	mknod /dev/urandom c 1 9
+ *
+ * Acknowledgements:
+ * =================
+ *
+ * Ideas for constructing this random number generator were derived
+ * from Pretty Good Privacy's random number generator, and from private
+ * discussions with Phil Karn.  Colin Plumb provided a faster random
+ * number generator, which speed up the mixing function of the entropy
+ * pool, taken from PGPfone.  Dale Worley has also contributed many
+ * useful ideas and suggestions to improve this driver.
+ *
+ * Any flaws in the design are solely my responsibility, and should
+ * not be attributed to the Phil, Colin, or any of authors of PGP.
+ *
+ * Further background information on this topic may be obtained from
+ * RFC 1750, "Randomness Recommendations for Security", by Donald
+ * Eastlake, Steve Crocker, and Jeff Schiller.
+ */
+
+#include <linux/utsname.h>
+#include <linux/module.h>
+#include <linux/kernel.h>
+#include <linux/major.h>
+#include <linux/string.h>
+#include <linux/fcntl.h>
+#include <linux/slab.h>
+#include <linux/random.h>
+#include <linux/poll.h>
+#include <linux/init.h>
+#include <linux/fs.h>
+#include <linux/genhd.h>
+#include <linux/interrupt.h>
+#include <linux/mm.h>
+#include <linux/nodemask.h>
+#include <linux/spinlock.h>
+#include <linux/kthread.h>
+#include <linux/percpu.h>
+#include <linux/cryptohash.h>
+#include <linux/fips.h>
+#include <linux/ptrace.h>
+#include <linux/workqueue.h>
+#include <linux/irq.h>
+#include <linux/ratelimit.h>
+#include <linux/syscalls.h>
+#include <linux/completion.h>
+#include <linux/uuid.h>
+#include <crypto/chacha20.h>
+
+#include <asm/processor.h>
+#include <linux/uaccess.h>
+#include <asm/irq.h>
+#include <asm/irq_regs.h>
+#include <asm/io.h>
+
+#define CREATE_TRACE_POINTS
+#include <trace/events/random.h>
+
+/* #define ADD_INTERRUPT_BENCH */
+
+/*
+ * Configuration information
+ */
+#define INPUT_POOL_SHIFT	12
+#define INPUT_POOL_WORDS	(1 << (INPUT_POOL_SHIFT-5))
+#define OUTPUT_POOL_SHIFT	10
+#define OUTPUT_POOL_WORDS	(1 << (OUTPUT_POOL_SHIFT-5))
+#define SEC_XFER_SIZE		512
+#define EXTRACT_SIZE		10
+
+
+#define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
+
+/*
+ * To allow fractional bits to be tracked, the entropy_count field is
+ * denominated in units of 1/8th bits.
+ *
+ * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in
+ * credit_entropy_bits() needs to be 64 bits wide.
+ */
+#define ENTROPY_SHIFT 3
+#define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
+
+/*
+ * The minimum number of bits of entropy before we wake up a read on
+ * /dev/random.  Should be enough to do a significant reseed.
+ */
+static int random_read_wakeup_bits = 64;
+
+/*
+ * If the entropy count falls under this number of bits, then we
+ * should wake up processes which are selecting or polling on write
+ * access to /dev/random.
+ */
+static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
+
+/*
+ * Originally, we used a primitive polynomial of degree .poolwords
+ * over GF(2).  The taps for various sizes are defined below.  They
+ * were chosen to be evenly spaced except for the last tap, which is 1
+ * to get the twisting happening as fast as possible.
+ *
+ * For the purposes of better mixing, we use the CRC-32 polynomial as
+ * well to make a (modified) twisted Generalized Feedback Shift
+ * Register.  (See M. Matsumoto & Y. Kurita, 1992.  Twisted GFSR
+ * generators.  ACM Transactions on Modeling and Computer Simulation
+ * 2(3):179-194.  Also see M. Matsumoto & Y. Kurita, 1994.  Twisted
+ * GFSR generators II.  ACM Transactions on Modeling and Computer
+ * Simulation 4:254-266)
+ *
+ * Thanks to Colin Plumb for suggesting this.
+ *
+ * The mixing operation is much less sensitive than the output hash,
+ * where we use SHA-1.  All that we want of mixing operation is that
+ * it be a good non-cryptographic hash; i.e. it not produce collisions
+ * when fed "random" data of the sort we expect to see.  As long as
+ * the pool state differs for different inputs, we have preserved the
+ * input entropy and done a good job.  The fact that an intelligent
+ * attacker can construct inputs that will produce controlled
+ * alterations to the pool's state is not important because we don't
+ * consider such inputs to contribute any randomness.  The only
+ * property we need with respect to them is that the attacker can't
+ * increase his/her knowledge of the pool's state.  Since all
+ * additions are reversible (knowing the final state and the input,
+ * you can reconstruct the initial state), if an attacker has any
+ * uncertainty about the initial state, he/she can only shuffle that
+ * uncertainty about, but never cause any collisions (which would
+ * decrease the uncertainty).
+ *
+ * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
+ * Videau in their paper, "The Linux Pseudorandom Number Generator
+ * Revisited" (see: http://eprint.iacr.org/2012/251.pdf).  In their
+ * paper, they point out that we are not using a true Twisted GFSR,
+ * since Matsumoto & Kurita used a trinomial feedback polynomial (that
+ * is, with only three taps, instead of the six that we are using).
+ * As a result, the resulting polynomial is neither primitive nor
+ * irreducible, and hence does not have a maximal period over
+ * GF(2**32).  They suggest a slight change to the generator
+ * polynomial which improves the resulting TGFSR polynomial to be
+ * irreducible, which we have made here.
+ */
+static struct poolinfo {
+	int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits;
+#define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5)
+	int tap1, tap2, tap3, tap4, tap5;
+} poolinfo_table[] = {
+	/* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
+	/* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
+	{ S(128),	104,	76,	51,	25,	1 },
+	/* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
+	/* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
+	{ S(32),	26,	19,	14,	7,	1 },
+#if 0
+	/* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1  -- 115 */
+	{ S(2048),	1638,	1231,	819,	411,	1 },
+
+	/* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
+	{ S(1024),	817,	615,	412,	204,	1 },
+
+	/* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
+	{ S(1024),	819,	616,	410,	207,	2 },
+
+	/* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
+	{ S(512),	411,	308,	208,	104,	1 },
+
+	/* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
+	{ S(512),	409,	307,	206,	102,	2 },
+	/* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
+	{ S(512),	409,	309,	205,	103,	2 },
+
+	/* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
+	{ S(256),	205,	155,	101,	52,	1 },
+
+	/* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
+	{ S(128),	103,	78,	51,	27,	2 },
+
+	/* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
+	{ S(64),	52,	39,	26,	14,	1 },
+#endif
+};
+
+/*
+ * Static global variables
+ */
+static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
+static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
+static struct fasync_struct *fasync;
+
+static DEFINE_SPINLOCK(random_ready_list_lock);
+static LIST_HEAD(random_ready_list);
+
+struct crng_state {
+	__u32		state[16];
+	unsigned long	init_time;
+	spinlock_t	lock;
+};
+
+struct crng_state primary_crng = {
+	.lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock),
+};
+
+/*
+ * crng_init =  0 --> Uninitialized
+ *		1 --> Initialized
+ *		2 --> Initialized from input_pool
+ *
+ * crng_init is protected by primary_crng->lock, and only increases
+ * its value (from 0->1->2).
+ */
+static int crng_init = 0;
+#define crng_ready() (likely(crng_init > 1))
+static int crng_init_cnt = 0;
+static unsigned long crng_global_init_time = 0;
+#define CRNG_INIT_CNT_THRESH (2*CHACHA20_KEY_SIZE)
+static void _extract_crng(struct crng_state *crng,
+			  __u32 out[CHACHA20_BLOCK_WORDS]);
+static void _crng_backtrack_protect(struct crng_state *crng,
+				    __u32 tmp[CHACHA20_BLOCK_WORDS], int used);
+static void process_random_ready_list(void);
+static void _get_random_bytes(void *buf, int nbytes);
+
+static struct ratelimit_state unseeded_warning =
+	RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3);
+static struct ratelimit_state urandom_warning =
+	RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3);
+
+static int ratelimit_disable __read_mostly;
+
+module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
+MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");
+
+/**********************************************************************
+ *
+ * OS independent entropy store.   Here are the functions which handle
+ * storing entropy in an entropy pool.
+ *
+ **********************************************************************/
+
+struct entropy_store;
+struct entropy_store {
+	/* read-only data: */
+	const struct poolinfo *poolinfo;
+	__u32 *pool;
+	const char *name;
+	struct entropy_store *pull;
+	struct work_struct push_work;
+
+	/* read-write data: */
+	unsigned long last_pulled;
+	spinlock_t lock;
+	unsigned short add_ptr;
+	unsigned short input_rotate;
+	int entropy_count;
+	int entropy_total;
+	unsigned int initialized:1;
+	unsigned int last_data_init:1;
+	__u8 last_data[EXTRACT_SIZE];
+};
+
+static ssize_t extract_entropy(struct entropy_store *r, void *buf,
+			       size_t nbytes, int min, int rsvd);
+static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
+				size_t nbytes, int fips);
+
+static void crng_reseed(struct crng_state *crng, struct entropy_store *r);
+static void push_to_pool(struct work_struct *work);
+static __u32 input_pool_data[INPUT_POOL_WORDS] __latent_entropy;
+static __u32 blocking_pool_data[OUTPUT_POOL_WORDS] __latent_entropy;
+
+static struct entropy_store input_pool = {
+	.poolinfo = &poolinfo_table[0],
+	.name = "input",
+	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
+	.pool = input_pool_data
+};
+
+static struct entropy_store blocking_pool = {
+	.poolinfo = &poolinfo_table[1],
+	.name = "blocking",
+	.pull = &input_pool,
+	.lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
+	.pool = blocking_pool_data,
+	.push_work = __WORK_INITIALIZER(blocking_pool.push_work,
+					push_to_pool),
+};
+
+static __u32 const twist_table[8] = {
+	0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
+	0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
+
+/*
+ * This function adds bytes into the entropy "pool".  It does not
+ * update the entropy estimate.  The caller should call
+ * credit_entropy_bits if this is appropriate.
+ *
+ * The pool is stirred with a primitive polynomial of the appropriate
+ * degree, and then twisted.  We twist by three bits at a time because
+ * it's cheap to do so and helps slightly in the expected case where
+ * the entropy is concentrated in the low-order bits.
+ */
+static void _mix_pool_bytes(struct entropy_store *r, const void *in,
+			    int nbytes)
+{
+	unsigned long i, tap1, tap2, tap3, tap4, tap5;
+	int input_rotate;
+	int wordmask = r->poolinfo->poolwords - 1;
+	const char *bytes = in;
+	__u32 w;
+
+	tap1 = r->poolinfo->tap1;
+	tap2 = r->poolinfo->tap2;
+	tap3 = r->poolinfo->tap3;
+	tap4 = r->poolinfo->tap4;
+	tap5 = r->poolinfo->tap5;
+
+	input_rotate = r->input_rotate;
+	i = r->add_ptr;
+
+	/* mix one byte at a time to simplify size handling and churn faster */
+	while (nbytes--) {
+		w = rol32(*bytes++, input_rotate);
+		i = (i - 1) & wordmask;
+
+		/* XOR in the various taps */
+		w ^= r->pool[i];
+		w ^= r->pool[(i + tap1) & wordmask];
+		w ^= r->pool[(i + tap2) & wordmask];
+		w ^= r->pool[(i + tap3) & wordmask];
+		w ^= r->pool[(i + tap4) & wordmask];
+		w ^= r->pool[(i + tap5) & wordmask];
+
+		/* Mix the result back in with a twist */
+		r->pool[i] = (w >> 3) ^ twist_table[w & 7];
+
+		/*
+		 * Normally, we add 7 bits of rotation to the pool.
+		 * At the beginning of the pool, add an extra 7 bits
+		 * rotation, so that successive passes spread the
+		 * input bits across the pool evenly.
+		 */
+		input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
+	}
+
+	r->input_rotate = input_rotate;
+	r->add_ptr = i;
+}
+
+static void __mix_pool_bytes(struct entropy_store *r, const void *in,
+			     int nbytes)
+{
+	trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
+	_mix_pool_bytes(r, in, nbytes);
+}
+
+static void mix_pool_bytes(struct entropy_store *r, const void *in,
+			   int nbytes)
+{
+	unsigned long flags;
+
+	trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
+	spin_lock_irqsave(&r->lock, flags);
+	_mix_pool_bytes(r, in, nbytes);
+	spin_unlock_irqrestore(&r->lock, flags);
+}
+
+struct fast_pool {
+	__u32		pool[4];
+	unsigned long	last;
+	unsigned short	reg_idx;
+	unsigned char	count;
+};
+
+/*
+ * This is a fast mixing routine used by the interrupt randomness
+ * collector.  It's hardcoded for an 128 bit pool and assumes that any
+ * locks that might be needed are taken by the caller.
+ */
+static void fast_mix(struct fast_pool *f)
+{
+	__u32 a = f->pool[0],	b = f->pool[1];
+	__u32 c = f->pool[2],	d = f->pool[3];
+
+	a += b;			c += d;
+	b = rol32(b, 6);	d = rol32(d, 27);
+	d ^= a;			b ^= c;
+
+	a += b;			c += d;
+	b = rol32(b, 16);	d = rol32(d, 14);
+	d ^= a;			b ^= c;
+
+	a += b;			c += d;
+	b = rol32(b, 6);	d = rol32(d, 27);
+	d ^= a;			b ^= c;
+
+	a += b;			c += d;
+	b = rol32(b, 16);	d = rol32(d, 14);
+	d ^= a;			b ^= c;
+
+	f->pool[0] = a;  f->pool[1] = b;
+	f->pool[2] = c;  f->pool[3] = d;
+	f->count++;
+}
+
+static void process_random_ready_list(void)
+{
+	unsigned long flags;
+	struct random_ready_callback *rdy, *tmp;
+
+	spin_lock_irqsave(&random_ready_list_lock, flags);
+	list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
+		struct module *owner = rdy->owner;
+
+		list_del_init(&rdy->list);
+		rdy->func(rdy);
+		module_put(owner);
+	}
+	spin_unlock_irqrestore(&random_ready_list_lock, flags);
+}
+
+/*
+ * Credit (or debit) the entropy store with n bits of entropy.
+ * Use credit_entropy_bits_safe() if the value comes from userspace
+ * or otherwise should be checked for extreme values.
+ */
+static void credit_entropy_bits(struct entropy_store *r, int nbits)
+{
+	int entropy_count, orig;
+	const int pool_size = r->poolinfo->poolfracbits;
+	int nfrac = nbits << ENTROPY_SHIFT;
+
+	if (!nbits)
+		return;
+
+retry:
+	entropy_count = orig = READ_ONCE(r->entropy_count);
+	if (nfrac < 0) {
+		/* Debit */
+		entropy_count += nfrac;
+	} else {
+		/*
+		 * Credit: we have to account for the possibility of
+		 * overwriting already present entropy.	 Even in the
+		 * ideal case of pure Shannon entropy, new contributions
+		 * approach the full value asymptotically:
+		 *
+		 * entropy <- entropy + (pool_size - entropy) *
+		 *	(1 - exp(-add_entropy/pool_size))
+		 *
+		 * For add_entropy <= pool_size/2 then
+		 * (1 - exp(-add_entropy/pool_size)) >=
+		 *    (add_entropy/pool_size)*0.7869...
+		 * so we can approximate the exponential with
+		 * 3/4*add_entropy/pool_size and still be on the
+		 * safe side by adding at most pool_size/2 at a time.
+		 *
+		 * The use of pool_size-2 in the while statement is to
+		 * prevent rounding artifacts from making the loop
+		 * arbitrarily long; this limits the loop to log2(pool_size)*2
+		 * turns no matter how large nbits is.
+		 */
+		int pnfrac = nfrac;
+		const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
+		/* The +2 corresponds to the /4 in the denominator */
+
+		do {
+			unsigned int anfrac = min(pnfrac, pool_size/2);
+			unsigned int add =
+				((pool_size - entropy_count)*anfrac*3) >> s;
+
+			entropy_count += add;
+			pnfrac -= anfrac;
+		} while (unlikely(entropy_count < pool_size-2 && pnfrac));
+	}
+
+	if (unlikely(entropy_count < 0)) {
+		pr_warn("random: negative entropy/overflow: pool %s count %d\n",
+			r->name, entropy_count);
+		WARN_ON(1);
+		entropy_count = 0;
+	} else if (entropy_count > pool_size)
+		entropy_count = pool_size;
+	if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
+		goto retry;
+
+	r->entropy_total += nbits;
+	if (!r->initialized && r->entropy_total > 128) {
+		r->initialized = 1;
+		r->entropy_total = 0;
+	}
+
+	trace_credit_entropy_bits(r->name, nbits,
+				  entropy_count >> ENTROPY_SHIFT,
+				  r->entropy_total, _RET_IP_);
+
+	if (r == &input_pool) {
+		int entropy_bits = entropy_count >> ENTROPY_SHIFT;
+
+		if (crng_init < 2 && entropy_bits >= 128) {
+			crng_reseed(&primary_crng, r);
+			entropy_bits = r->entropy_count >> ENTROPY_SHIFT;
+		}
+
+		/* should we wake readers? */
+		if (entropy_bits >= random_read_wakeup_bits &&
+		    wq_has_sleeper(&random_read_wait)) {
+			wake_up_interruptible(&random_read_wait);
+			kill_fasync(&fasync, SIGIO, POLL_IN);
+		}
+		/* If the input pool is getting full, send some
+		 * entropy to the blocking pool until it is 75% full.
+		 */
+		if (entropy_bits > random_write_wakeup_bits &&
+		    r->initialized &&
+		    r->entropy_total >= 2*random_read_wakeup_bits) {
+			struct entropy_store *other = &blocking_pool;
+
+			if (other->entropy_count <=
+			    3 * other->poolinfo->poolfracbits / 4) {
+				schedule_work(&other->push_work);
+				r->entropy_total = 0;
+			}
+		}
+	}
+}
+
+static int credit_entropy_bits_safe(struct entropy_store *r, int nbits)
+{
+	const int nbits_max = r->poolinfo->poolwords * 32;
+
+	if (nbits < 0)
+		return -EINVAL;
+
+	/* Cap the value to avoid overflows */
+	nbits = min(nbits,  nbits_max);
+
+	credit_entropy_bits(r, nbits);
+	return 0;
+}
+
+/*********************************************************************
+ *
+ * CRNG using CHACHA20
+ *
+ *********************************************************************/
+
+#define CRNG_RESEED_INTERVAL (300*HZ)
+
+static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
+
+#ifdef CONFIG_NUMA
+/*
+ * Hack to deal with crazy userspace progams when they are all trying
+ * to access /dev/urandom in parallel.  The programs are almost
+ * certainly doing something terribly wrong, but we'll work around
+ * their brain damage.
+ */
+static struct crng_state **crng_node_pool __read_mostly;
+#endif
+
+static void invalidate_batched_entropy(void);
+
+static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU);
+static int __init parse_trust_cpu(char *arg)
+{
+	return kstrtobool(arg, &trust_cpu);
+}
+early_param("random.trust_cpu", parse_trust_cpu);
+
+static void crng_initialize(struct crng_state *crng)
+{
+	int		i;
+	int		arch_init = 1;
+	unsigned long	rv;
+
+	memcpy(&crng->state[0], "expand 32-byte k", 16);
+	if (crng == &primary_crng)
+		_extract_entropy(&input_pool, &crng->state[4],
+				 sizeof(__u32) * 12, 0);
+	else
+		_get_random_bytes(&crng->state[4], sizeof(__u32) * 12);
+	for (i = 4; i < 16; i++) {
+		if (!arch_get_random_seed_long(&rv) &&
+		    !arch_get_random_long(&rv)) {
+			rv = random_get_entropy();
+			arch_init = 0;
+		}
+		crng->state[i] ^= rv;
+	}
+	if (trust_cpu && arch_init) {
+		crng_init = 2;
+		pr_notice("random: crng done (trusting CPU's manufacturer)\n");
+	}
+	crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
+}
+
+#ifdef CONFIG_NUMA
+static void do_numa_crng_init(struct work_struct *work)
+{
+	int i;
+	struct crng_state *crng;
+	struct crng_state **pool;
+
+	pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL|__GFP_NOFAIL);
+	for_each_online_node(i) {
+		crng = kmalloc_node(sizeof(struct crng_state),
+				    GFP_KERNEL | __GFP_NOFAIL, i);
+		spin_lock_init(&crng->lock);
+		crng_initialize(crng);
+		pool[i] = crng;
+	}
+	mb();
+	if (cmpxchg(&crng_node_pool, NULL, pool)) {
+		for_each_node(i)
+			kfree(pool[i]);
+		kfree(pool);
+	}
+}
+
+static DECLARE_WORK(numa_crng_init_work, do_numa_crng_init);
+
+static void numa_crng_init(void)
+{
+	schedule_work(&numa_crng_init_work);
+}
+#else
+static void numa_crng_init(void) {}
+#endif
+
+/*
+ * crng_fast_load() can be called by code in the interrupt service
+ * path.  So we can't afford to dilly-dally.
+ */
+static int crng_fast_load(const char *cp, size_t len)
+{
+	unsigned long flags;
+	char *p;
+
+	if (!spin_trylock_irqsave(&primary_crng.lock, flags))
+		return 0;
+	if (crng_init != 0) {
+		spin_unlock_irqrestore(&primary_crng.lock, flags);
+		return 0;
+	}
+	p = (unsigned char *) &primary_crng.state[4];
+	while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
+		p[crng_init_cnt % CHACHA20_KEY_SIZE] ^= *cp;
+		cp++; crng_init_cnt++; len--;
+	}
+	spin_unlock_irqrestore(&primary_crng.lock, flags);
+	if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
+		invalidate_batched_entropy();
+		crng_init = 1;
+		wake_up_interruptible(&crng_init_wait);
+		pr_notice("random: fast init done\n");
+	}
+	return 1;
+}
+
+/*
+ * crng_slow_load() is called by add_device_randomness, which has two
+ * attributes.  (1) We can't trust the buffer passed to it is
+ * guaranteed to be unpredictable (so it might not have any entropy at
+ * all), and (2) it doesn't have the performance constraints of
+ * crng_fast_load().
+ *
+ * So we do something more comprehensive which is guaranteed to touch
+ * all of the primary_crng's state, and which uses a LFSR with a
+ * period of 255 as part of the mixing algorithm.  Finally, we do
+ * *not* advance crng_init_cnt since buffer we may get may be something
+ * like a fixed DMI table (for example), which might very well be
+ * unique to the machine, but is otherwise unvarying.
+ */
+static int crng_slow_load(const char *cp, size_t len)
+{
+	unsigned long		flags;
+	static unsigned char	lfsr = 1;
+	unsigned char		tmp;
+	unsigned		i, max = CHACHA20_KEY_SIZE;
+	const char *		src_buf = cp;
+	char *			dest_buf = (char *) &primary_crng.state[4];
+
+	if (!spin_trylock_irqsave(&primary_crng.lock, flags))
+		return 0;
+	if (crng_init != 0) {
+		spin_unlock_irqrestore(&primary_crng.lock, flags);
+		return 0;
+	}
+	if (len > max)
+		max = len;
+
+	for (i = 0; i < max ; i++) {
+		tmp = lfsr;
+		lfsr >>= 1;
+		if (tmp & 1)
+			lfsr ^= 0xE1;
+		tmp = dest_buf[i % CHACHA20_KEY_SIZE];
+		dest_buf[i % CHACHA20_KEY_SIZE] ^= src_buf[i % len] ^ lfsr;
+		lfsr += (tmp << 3) | (tmp >> 5);
+	}
+	spin_unlock_irqrestore(&primary_crng.lock, flags);
+	return 1;
+}
+
+static void crng_reseed(struct crng_state *crng, struct entropy_store *r)
+{
+	unsigned long	flags;
+	int		i, num;
+	union {
+		__u32	block[CHACHA20_BLOCK_WORDS];
+		__u32	key[8];
+	} buf;
+
+	if (r) {
+		num = extract_entropy(r, &buf, 32, 16, 0);
+		if (num == 0)
+			return;
+	} else {
+		_extract_crng(&primary_crng, buf.block);
+		_crng_backtrack_protect(&primary_crng, buf.block,
+					CHACHA20_KEY_SIZE);
+	}
+	spin_lock_irqsave(&crng->lock, flags);
+	for (i = 0; i < 8; i++) {
+		unsigned long	rv;
+		if (!arch_get_random_seed_long(&rv) &&
+		    !arch_get_random_long(&rv))
+			rv = random_get_entropy();
+		crng->state[i+4] ^= buf.key[i] ^ rv;
+	}
+	memzero_explicit(&buf, sizeof(buf));
+	crng->init_time = jiffies;
+	spin_unlock_irqrestore(&crng->lock, flags);
+	if (crng == &primary_crng && crng_init < 2) {
+		invalidate_batched_entropy();
+		numa_crng_init();
+		crng_init = 2;
+		process_random_ready_list();
+		wake_up_interruptible(&crng_init_wait);
+		pr_notice("random: crng init done\n");
+		if (unseeded_warning.missed) {
+			pr_notice("random: %d get_random_xx warning(s) missed "
+				  "due to ratelimiting\n",
+				  unseeded_warning.missed);
+			unseeded_warning.missed = 0;
+		}
+		if (urandom_warning.missed) {
+			pr_notice("random: %d urandom warning(s) missed "
+				  "due to ratelimiting\n",
+				  urandom_warning.missed);
+			urandom_warning.missed = 0;
+		}
+	}
+}
+
+static void _extract_crng(struct crng_state *crng,
+			  __u32 out[CHACHA20_BLOCK_WORDS])
+{
+	unsigned long v, flags;
+
+	if (crng_ready() &&
+	    (time_after(crng_global_init_time, crng->init_time) ||
+	     time_after(jiffies, crng->init_time + CRNG_RESEED_INTERVAL)))
+		crng_reseed(crng, crng == &primary_crng ? &input_pool : NULL);
+	spin_lock_irqsave(&crng->lock, flags);
+	if (arch_get_random_long(&v))
+		crng->state[14] ^= v;
+	chacha20_block(&crng->state[0], out);
+	if (crng->state[12] == 0)
+		crng->state[13]++;
+	spin_unlock_irqrestore(&crng->lock, flags);
+}
+
+static void extract_crng(__u32 out[CHACHA20_BLOCK_WORDS])
+{
+	struct crng_state *crng = NULL;
+
+#ifdef CONFIG_NUMA
+	if (crng_node_pool)
+		crng = crng_node_pool[numa_node_id()];
+	if (crng == NULL)
+#endif
+		crng = &primary_crng;
+	_extract_crng(crng, out);
+}
+
+/*
+ * Use the leftover bytes from the CRNG block output (if there is
+ * enough) to mutate the CRNG key to provide backtracking protection.
+ */
+static void _crng_backtrack_protect(struct crng_state *crng,
+				    __u32 tmp[CHACHA20_BLOCK_WORDS], int used)
+{
+	unsigned long	flags;
+	__u32		*s, *d;
+	int		i;
+
+	used = round_up(used, sizeof(__u32));
+	if (used + CHACHA20_KEY_SIZE > CHACHA20_BLOCK_SIZE) {
+		extract_crng(tmp);
+		used = 0;
+	}
+	spin_lock_irqsave(&crng->lock, flags);
+	s = &tmp[used / sizeof(__u32)];
+	d = &crng->state[4];
+	for (i=0; i < 8; i++)
+		*d++ ^= *s++;
+	spin_unlock_irqrestore(&crng->lock, flags);
+}
+
+static void crng_backtrack_protect(__u32 tmp[CHACHA20_BLOCK_WORDS], int used)
+{
+	struct crng_state *crng = NULL;
+
+#ifdef CONFIG_NUMA
+	if (crng_node_pool)
+		crng = crng_node_pool[numa_node_id()];
+	if (crng == NULL)
+#endif
+		crng = &primary_crng;
+	_crng_backtrack_protect(crng, tmp, used);
+}
+
+static ssize_t extract_crng_user(void __user *buf, size_t nbytes)
+{
+	ssize_t ret = 0, i = CHACHA20_BLOCK_SIZE;
+	__u32 tmp[CHACHA20_BLOCK_WORDS];
+	int large_request = (nbytes > 256);
+
+	while (nbytes) {
+		if (large_request && need_resched()) {
+			if (signal_pending(current)) {
+				if (ret == 0)
+					ret = -ERESTARTSYS;
+				break;
+			}
+			schedule();
+		}
+
+		extract_crng(tmp);
+		i = min_t(int, nbytes, CHACHA20_BLOCK_SIZE);
+		if (copy_to_user(buf, tmp, i)) {
+			ret = -EFAULT;
+			break;
+		}
+
+		nbytes -= i;
+		buf += i;
+		ret += i;
+	}
+	crng_backtrack_protect(tmp, i);
+
+	/* Wipe data just written to memory */
+	memzero_explicit(tmp, sizeof(tmp));
+
+	return ret;
+}
+
+
+/*********************************************************************
+ *
+ * Entropy input management
+ *
+ *********************************************************************/
+
+/* There is one of these per entropy source */
+struct timer_rand_state {
+	cycles_t last_time;
+	long last_delta, last_delta2;
+};
+
+#define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
+
+/*
+ * Add device- or boot-specific data to the input pool to help
+ * initialize it.
+ *
+ * None of this adds any entropy; it is meant to avoid the problem of
+ * the entropy pool having similar initial state across largely
+ * identical devices.
+ */
+void add_device_randomness(const void *buf, unsigned int size)
+{
+	unsigned long time = random_get_entropy() ^ jiffies;
+	unsigned long flags;
+
+	if (!crng_ready() && size)
+		crng_slow_load(buf, size);
+
+	trace_add_device_randomness(size, _RET_IP_);
+	spin_lock_irqsave(&input_pool.lock, flags);
+	_mix_pool_bytes(&input_pool, buf, size);
+	_mix_pool_bytes(&input_pool, &time, sizeof(time));
+	spin_unlock_irqrestore(&input_pool.lock, flags);
+}
+EXPORT_SYMBOL(add_device_randomness);
+
+static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
+
+/*
+ * This function adds entropy to the entropy "pool" by using timing
+ * delays.  It uses the timer_rand_state structure to make an estimate
+ * of how many bits of entropy this call has added to the pool.
+ *
+ * The number "num" is also added to the pool - it should somehow describe
+ * the type of event which just happened.  This is currently 0-255 for
+ * keyboard scan codes, and 256 upwards for interrupts.
+ *
+ */
+static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
+{
+	struct entropy_store	*r;
+	struct {
+		long jiffies;
+		unsigned cycles;
+		unsigned num;
+	} sample;
+	long delta, delta2, delta3;
+
+	sample.jiffies = jiffies;
+	sample.cycles = random_get_entropy();
+	sample.num = num;
+	r = &input_pool;
+	mix_pool_bytes(r, &sample, sizeof(sample));
+
+	/*
+	 * Calculate number of bits of randomness we probably added.
+	 * We take into account the first, second and third-order deltas
+	 * in order to make our estimate.
+	 */
+	delta = sample.jiffies - state->last_time;
+	state->last_time = sample.jiffies;
+
+	delta2 = delta - state->last_delta;
+	state->last_delta = delta;
+
+	delta3 = delta2 - state->last_delta2;
+	state->last_delta2 = delta2;
+
+	if (delta < 0)
+		delta = -delta;
+	if (delta2 < 0)
+		delta2 = -delta2;
+	if (delta3 < 0)
+		delta3 = -delta3;
+	if (delta > delta2)
+		delta = delta2;
+	if (delta > delta3)
+		delta = delta3;
+
+	/*
+	 * delta is now minimum absolute delta.
+	 * Round down by 1 bit on general principles,
+	 * and limit entropy entimate to 12 bits.
+	 */
+	credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
+}
+
+void add_input_randomness(unsigned int type, unsigned int code,
+				 unsigned int value)
+{
+	static unsigned char last_value;
+
+	/* ignore autorepeat and the like */
+	if (value == last_value)
+		return;
+
+	last_value = value;
+	add_timer_randomness(&input_timer_state,
+			     (type << 4) ^ code ^ (code >> 4) ^ value);
+	trace_add_input_randomness(ENTROPY_BITS(&input_pool));
+}
+EXPORT_SYMBOL_GPL(add_input_randomness);
+
+static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
+
+#ifdef ADD_INTERRUPT_BENCH
+static unsigned long avg_cycles, avg_deviation;
+
+#define AVG_SHIFT 8     /* Exponential average factor k=1/256 */
+#define FIXED_1_2 (1 << (AVG_SHIFT-1))
+
+static void add_interrupt_bench(cycles_t start)
+{
+        long delta = random_get_entropy() - start;
+
+        /* Use a weighted moving average */
+        delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
+        avg_cycles += delta;
+        /* And average deviation */
+        delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
+        avg_deviation += delta;
+}
+#else
+#define add_interrupt_bench(x)
+#endif
+
+static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
+{
+	__u32 *ptr = (__u32 *) regs;
+	unsigned int idx;
+
+	if (regs == NULL)
+		return 0;
+	idx = READ_ONCE(f->reg_idx);
+	if (idx >= sizeof(struct pt_regs) / sizeof(__u32))
+		idx = 0;
+	ptr += idx++;
+	WRITE_ONCE(f->reg_idx, idx);
+	return *ptr;
+}
+
+void add_interrupt_randomness(int irq, int irq_flags)
+{
+	struct entropy_store	*r;
+	struct fast_pool	*fast_pool = this_cpu_ptr(&irq_randomness);
+	struct pt_regs		*regs = get_irq_regs();
+	unsigned long		now = jiffies;
+	cycles_t		cycles = random_get_entropy();
+	__u32			c_high, j_high;
+	__u64			ip;
+	unsigned long		seed;
+	int			credit = 0;
+
+	if (cycles == 0)
+		cycles = get_reg(fast_pool, regs);
+	c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
+	j_high = (sizeof(now) > 4) ? now >> 32 : 0;
+	fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
+	fast_pool->pool[1] ^= now ^ c_high;
+	ip = regs ? instruction_pointer(regs) : _RET_IP_;
+	fast_pool->pool[2] ^= ip;
+	fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 :
+		get_reg(fast_pool, regs);
+
+	fast_mix(fast_pool);
+	add_interrupt_bench(cycles);
+
+	if (unlikely(crng_init == 0)) {
+		if ((fast_pool->count >= 64) &&
+		    crng_fast_load((char *) fast_pool->pool,
+				   sizeof(fast_pool->pool))) {
+			fast_pool->count = 0;
+			fast_pool->last = now;
+		}
+		return;
+	}
+
+	if ((fast_pool->count < 64) &&
+	    !time_after(now, fast_pool->last + HZ))
+		return;
+
+	r = &input_pool;
+	if (!spin_trylock(&r->lock))
+		return;
+
+	fast_pool->last = now;
+	__mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
+
+	/*
+	 * If we have architectural seed generator, produce a seed and
+	 * add it to the pool.  For the sake of paranoia don't let the
+	 * architectural seed generator dominate the input from the
+	 * interrupt noise.
+	 */
+	if (arch_get_random_seed_long(&seed)) {
+		__mix_pool_bytes(r, &seed, sizeof(seed));
+		credit = 1;
+	}
+	spin_unlock(&r->lock);
+
+	fast_pool->count = 0;
+
+	/* award one bit for the contents of the fast pool */
+	credit_entropy_bits(r, credit + 1);
+}
+EXPORT_SYMBOL_GPL(add_interrupt_randomness);
+
+#ifdef CONFIG_BLOCK
+void add_disk_randomness(struct gendisk *disk)
+{
+	if (!disk || !disk->random)
+		return;
+	/* first major is 1, so we get >= 0x200 here */
+	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
+	trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
+}
+EXPORT_SYMBOL_GPL(add_disk_randomness);
+#endif
+
+/*********************************************************************
+ *
+ * Entropy extraction routines
+ *
+ *********************************************************************/
+
+/*
+ * This utility inline function is responsible for transferring entropy
+ * from the primary pool to the secondary extraction pool. We make
+ * sure we pull enough for a 'catastrophic reseed'.
+ */
+static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes);
+static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
+{
+	if (!r->pull ||
+	    r->entropy_count >= (nbytes << (ENTROPY_SHIFT + 3)) ||
+	    r->entropy_count > r->poolinfo->poolfracbits)
+		return;
+
+	_xfer_secondary_pool(r, nbytes);
+}
+
+static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
+{
+	__u32	tmp[OUTPUT_POOL_WORDS];
+
+	int bytes = nbytes;
+
+	/* pull at least as much as a wakeup */
+	bytes = max_t(int, bytes, random_read_wakeup_bits / 8);
+	/* but never more than the buffer size */
+	bytes = min_t(int, bytes, sizeof(tmp));
+
+	trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8,
+				  ENTROPY_BITS(r), ENTROPY_BITS(r->pull));
+	bytes = extract_entropy(r->pull, tmp, bytes,
+				random_read_wakeup_bits / 8, 0);
+	mix_pool_bytes(r, tmp, bytes);
+	credit_entropy_bits(r, bytes*8);
+}
+
+/*
+ * Used as a workqueue function so that when the input pool is getting
+ * full, we can "spill over" some entropy to the output pools.  That
+ * way the output pools can store some of the excess entropy instead
+ * of letting it go to waste.
+ */
+static void push_to_pool(struct work_struct *work)
+{
+	struct entropy_store *r = container_of(work, struct entropy_store,
+					      push_work);
+	BUG_ON(!r);
+	_xfer_secondary_pool(r, random_read_wakeup_bits/8);
+	trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT,
+			   r->pull->entropy_count >> ENTROPY_SHIFT);
+}
+
+/*
+ * This function decides how many bytes to actually take from the
+ * given pool, and also debits the entropy count accordingly.
+ */
+static size_t account(struct entropy_store *r, size_t nbytes, int min,
+		      int reserved)
+{
+	int entropy_count, orig, have_bytes;
+	size_t ibytes, nfrac;
+
+	BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
+
+	/* Can we pull enough? */
+retry:
+	entropy_count = orig = READ_ONCE(r->entropy_count);
+	ibytes = nbytes;
+	/* never pull more than available */
+	have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
+
+	if ((have_bytes -= reserved) < 0)
+		have_bytes = 0;
+	ibytes = min_t(size_t, ibytes, have_bytes);
+	if (ibytes < min)
+		ibytes = 0;
+
+	if (unlikely(entropy_count < 0)) {
+		pr_warn("random: negative entropy count: pool %s count %d\n",
+			r->name, entropy_count);
+		WARN_ON(1);
+		entropy_count = 0;
+	}
+	nfrac = ibytes << (ENTROPY_SHIFT + 3);
+	if ((size_t) entropy_count > nfrac)
+		entropy_count -= nfrac;
+	else
+		entropy_count = 0;
+
+	if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
+		goto retry;
+
+	trace_debit_entropy(r->name, 8 * ibytes);
+	if (ibytes &&
+	    (r->entropy_count >> ENTROPY_SHIFT) < random_write_wakeup_bits) {
+		wake_up_interruptible(&random_write_wait);
+		kill_fasync(&fasync, SIGIO, POLL_OUT);
+	}
+
+	return ibytes;
+}
+
+/*
+ * This function does the actual extraction for extract_entropy and
+ * extract_entropy_user.
+ *
+ * Note: we assume that .poolwords is a multiple of 16 words.
+ */
+static void extract_buf(struct entropy_store *r, __u8 *out)
+{
+	int i;
+	union {
+		__u32 w[5];
+		unsigned long l[LONGS(20)];
+	} hash;
+	__u32 workspace[SHA_WORKSPACE_WORDS];
+	unsigned long flags;
+
+	/*
+	 * If we have an architectural hardware random number
+	 * generator, use it for SHA's initial vector
+	 */
+	sha_init(hash.w);
+	for (i = 0; i < LONGS(20); i++) {
+		unsigned long v;
+		if (!arch_get_random_long(&v))
+			break;
+		hash.l[i] = v;
+	}
+
+	/* Generate a hash across the pool, 16 words (512 bits) at a time */
+	spin_lock_irqsave(&r->lock, flags);
+	for (i = 0; i < r->poolinfo->poolwords; i += 16)
+		sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
+
+	/*
+	 * We mix the hash back into the pool to prevent backtracking
+	 * attacks (where the attacker knows the state of the pool
+	 * plus the current outputs, and attempts to find previous
+	 * ouputs), unless the hash function can be inverted. By
+	 * mixing at least a SHA1 worth of hash data back, we make
+	 * brute-forcing the feedback as hard as brute-forcing the
+	 * hash.
+	 */
+	__mix_pool_bytes(r, hash.w, sizeof(hash.w));
+	spin_unlock_irqrestore(&r->lock, flags);
+
+	memzero_explicit(workspace, sizeof(workspace));
+
+	/*
+	 * In case the hash function has some recognizable output
+	 * pattern, we fold it in half. Thus, we always feed back
+	 * twice as much data as we output.
+	 */
+	hash.w[0] ^= hash.w[3];
+	hash.w[1] ^= hash.w[4];
+	hash.w[2] ^= rol32(hash.w[2], 16);
+
+	memcpy(out, &hash, EXTRACT_SIZE);
+	memzero_explicit(&hash, sizeof(hash));
+}
+
+static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
+				size_t nbytes, int fips)
+{
+	ssize_t ret = 0, i;
+	__u8 tmp[EXTRACT_SIZE];
+	unsigned long flags;
+
+	while (nbytes) {
+		extract_buf(r, tmp);
+
+		if (fips) {
+			spin_lock_irqsave(&r->lock, flags);
+			if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
+				panic("Hardware RNG duplicated output!\n");
+			memcpy(r->last_data, tmp, EXTRACT_SIZE);
+			spin_unlock_irqrestore(&r->lock, flags);
+		}
+		i = min_t(int, nbytes, EXTRACT_SIZE);
+		memcpy(buf, tmp, i);
+		nbytes -= i;
+		buf += i;
+		ret += i;
+	}
+
+	/* Wipe data just returned from memory */
+	memzero_explicit(tmp, sizeof(tmp));
+
+	return ret;
+}
+
+/*
+ * This function extracts randomness from the "entropy pool", and
+ * returns it in a buffer.
+ *
+ * The min parameter specifies the minimum amount we can pull before
+ * failing to avoid races that defeat catastrophic reseeding while the
+ * reserved parameter indicates how much entropy we must leave in the
+ * pool after each pull to avoid starving other readers.
+ */
+static ssize_t extract_entropy(struct entropy_store *r, void *buf,
+				 size_t nbytes, int min, int reserved)
+{
+	__u8 tmp[EXTRACT_SIZE];
+	unsigned long flags;
+
+	/* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
+	if (fips_enabled) {
+		spin_lock_irqsave(&r->lock, flags);
+		if (!r->last_data_init) {
+			r->last_data_init = 1;
+			spin_unlock_irqrestore(&r->lock, flags);
+			trace_extract_entropy(r->name, EXTRACT_SIZE,
+					      ENTROPY_BITS(r), _RET_IP_);
+			xfer_secondary_pool(r, EXTRACT_SIZE);
+			extract_buf(r, tmp);
+			spin_lock_irqsave(&r->lock, flags);
+			memcpy(r->last_data, tmp, EXTRACT_SIZE);
+		}
+		spin_unlock_irqrestore(&r->lock, flags);
+	}
+
+	trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
+	xfer_secondary_pool(r, nbytes);
+	nbytes = account(r, nbytes, min, reserved);
+
+	return _extract_entropy(r, buf, nbytes, fips_enabled);
+}
+
+/*
+ * This function extracts randomness from the "entropy pool", and
+ * returns it in a userspace buffer.
+ */
+static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
+				    size_t nbytes)
+{
+	ssize_t ret = 0, i;
+	__u8 tmp[EXTRACT_SIZE];
+	int large_request = (nbytes > 256);
+
+	trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
+	xfer_secondary_pool(r, nbytes);
+	nbytes = account(r, nbytes, 0, 0);
+
+	while (nbytes) {
+		if (large_request && need_resched()) {
+			if (signal_pending(current)) {
+				if (ret == 0)
+					ret = -ERESTARTSYS;
+				break;
+			}
+			schedule();
+		}
+
+		extract_buf(r, tmp);
+		i = min_t(int, nbytes, EXTRACT_SIZE);
+		if (copy_to_user(buf, tmp, i)) {
+			ret = -EFAULT;
+			break;
+		}
+
+		nbytes -= i;
+		buf += i;
+		ret += i;
+	}
+
+	/* Wipe data just returned from memory */
+	memzero_explicit(tmp, sizeof(tmp));
+
+	return ret;
+}
+
+#define warn_unseeded_randomness(previous) \
+	_warn_unseeded_randomness(__func__, (void *) _RET_IP_, (previous))
+
+static void _warn_unseeded_randomness(const char *func_name, void *caller,
+				      void **previous)
+{
+#ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM
+	const bool print_once = false;
+#else
+	static bool print_once __read_mostly;
+#endif
+
+	if (print_once ||
+	    crng_ready() ||
+	    (previous && (caller == READ_ONCE(*previous))))
+		return;
+	WRITE_ONCE(*previous, caller);
+#ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM
+	print_once = true;
+#endif
+	if (__ratelimit(&unseeded_warning))
+		pr_notice("random: %s called from %pS with crng_init=%d\n",
+			  func_name, caller, crng_init);
+}
+
+/*
+ * This function is the exported kernel interface.  It returns some
+ * number of good random numbers, suitable for key generation, seeding
+ * TCP sequence numbers, etc.  It does not rely on the hardware random
+ * number generator.  For random bytes direct from the hardware RNG
+ * (when available), use get_random_bytes_arch(). In order to ensure
+ * that the randomness provided by this function is okay, the function
+ * wait_for_random_bytes() should be called and return 0 at least once
+ * at any point prior.
+ */
+static void _get_random_bytes(void *buf, int nbytes)
+{
+	__u32 tmp[CHACHA20_BLOCK_WORDS];
+
+	trace_get_random_bytes(nbytes, _RET_IP_);
+
+	while (nbytes >= CHACHA20_BLOCK_SIZE) {
+		extract_crng(buf);
+		buf += CHACHA20_BLOCK_SIZE;
+		nbytes -= CHACHA20_BLOCK_SIZE;
+	}
+
+	if (nbytes > 0) {
+		extract_crng(tmp);
+		memcpy(buf, tmp, nbytes);
+		crng_backtrack_protect(tmp, nbytes);
+	} else
+		crng_backtrack_protect(tmp, CHACHA20_BLOCK_SIZE);
+	memzero_explicit(tmp, sizeof(tmp));
+}
+
+void get_random_bytes(void *buf, int nbytes)
+{
+	static void *previous;
+
+	warn_unseeded_randomness(&previous);
+	_get_random_bytes(buf, nbytes);
+}
+EXPORT_SYMBOL(get_random_bytes);
+
+/*
+ * Wait for the urandom pool to be seeded and thus guaranteed to supply
+ * cryptographically secure random numbers. This applies to: the /dev/urandom
+ * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
+ * family of functions. Using any of these functions without first calling
+ * this function forfeits the guarantee of security.
+ *
+ * Returns: 0 if the urandom pool has been seeded.
+ *          -ERESTARTSYS if the function was interrupted by a signal.
+ */
+int wait_for_random_bytes(void)
+{
+	if (likely(crng_ready()))
+		return 0;
+	return wait_event_interruptible(crng_init_wait, crng_ready());
+}
+EXPORT_SYMBOL(wait_for_random_bytes);
+
+/*
+ * Returns whether or not the urandom pool has been seeded and thus guaranteed
+ * to supply cryptographically secure random numbers. This applies to: the
+ * /dev/urandom device, the get_random_bytes function, and the get_random_{u32,
+ * ,u64,int,long} family of functions.
+ *
+ * Returns: true if the urandom pool has been seeded.
+ *          false if the urandom pool has not been seeded.
+ */
+bool rng_is_initialized(void)
+{
+	return crng_ready();
+}
+EXPORT_SYMBOL(rng_is_initialized);
+
+/*
+ * Add a callback function that will be invoked when the nonblocking
+ * pool is initialised.
+ *
+ * returns: 0 if callback is successfully added
+ *	    -EALREADY if pool is already initialised (callback not called)
+ *	    -ENOENT if module for callback is not alive
+ */
+int add_random_ready_callback(struct random_ready_callback *rdy)
+{
+	struct module *owner;
+	unsigned long flags;
+	int err = -EALREADY;
+
+	if (crng_ready())
+		return err;
+
+	owner = rdy->owner;
+	if (!try_module_get(owner))
+		return -ENOENT;
+
+	spin_lock_irqsave(&random_ready_list_lock, flags);
+	if (crng_ready())
+		goto out;
+
+	owner = NULL;
+
+	list_add(&rdy->list, &random_ready_list);
+	err = 0;
+
+out:
+	spin_unlock_irqrestore(&random_ready_list_lock, flags);
+
+	module_put(owner);
+
+	return err;
+}
+EXPORT_SYMBOL(add_random_ready_callback);
+
+/*
+ * Delete a previously registered readiness callback function.
+ */
+void del_random_ready_callback(struct random_ready_callback *rdy)
+{
+	unsigned long flags;
+	struct module *owner = NULL;
+
+	spin_lock_irqsave(&random_ready_list_lock, flags);
+	if (!list_empty(&rdy->list)) {
+		list_del_init(&rdy->list);
+		owner = rdy->owner;
+	}
+	spin_unlock_irqrestore(&random_ready_list_lock, flags);
+
+	module_put(owner);
+}
+EXPORT_SYMBOL(del_random_ready_callback);
+
+/*
+ * This function will use the architecture-specific hardware random
+ * number generator if it is available.  The arch-specific hw RNG will
+ * almost certainly be faster than what we can do in software, but it
+ * is impossible to verify that it is implemented securely (as
+ * opposed, to, say, the AES encryption of a sequence number using a
+ * key known by the NSA).  So it's useful if we need the speed, but
+ * only if we're willing to trust the hardware manufacturer not to
+ * have put in a back door.
+ *
+ * Return number of bytes filled in.
+ */
+int __must_check get_random_bytes_arch(void *buf, int nbytes)
+{
+	int left = nbytes;
+	char *p = buf;
+
+	trace_get_random_bytes_arch(left, _RET_IP_);
+	while (left) {
+		unsigned long v;
+		int chunk = min_t(int, left, sizeof(unsigned long));
+
+		if (!arch_get_random_long(&v))
+			break;
+
+		memcpy(p, &v, chunk);
+		p += chunk;
+		left -= chunk;
+	}
+
+	return nbytes - left;
+}
+EXPORT_SYMBOL(get_random_bytes_arch);
+
+/*
+ * init_std_data - initialize pool with system data
+ *
+ * @r: pool to initialize
+ *
+ * This function clears the pool's entropy count and mixes some system
+ * data into the pool to prepare it for use. The pool is not cleared
+ * as that can only decrease the entropy in the pool.
+ */
+static void init_std_data(struct entropy_store *r)
+{
+	int i;
+	ktime_t now = ktime_get_real();
+	unsigned long rv;
+
+	r->last_pulled = jiffies;
+	mix_pool_bytes(r, &now, sizeof(now));
+	for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
+		if (!arch_get_random_seed_long(&rv) &&
+		    !arch_get_random_long(&rv))
+			rv = random_get_entropy();
+		mix_pool_bytes(r, &rv, sizeof(rv));
+	}
+	mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
+}
+
+/*
+ * Note that setup_arch() may call add_device_randomness()
+ * long before we get here. This allows seeding of the pools
+ * with some platform dependent data very early in the boot
+ * process. But it limits our options here. We must use
+ * statically allocated structures that already have all
+ * initializations complete at compile time. We should also
+ * take care not to overwrite the precious per platform data
+ * we were given.
+ */
+static int rand_initialize(void)
+{
+	init_std_data(&input_pool);
+	init_std_data(&blocking_pool);
+	crng_initialize(&primary_crng);
+	crng_global_init_time = jiffies;
+	if (ratelimit_disable) {
+		urandom_warning.interval = 0;
+		unseeded_warning.interval = 0;
+	}
+	return 0;
+}
+early_initcall(rand_initialize);
+
+#ifdef CONFIG_BLOCK
+void rand_initialize_disk(struct gendisk *disk)
+{
+	struct timer_rand_state *state;
+
+	/*
+	 * If kzalloc returns null, we just won't use that entropy
+	 * source.
+	 */
+	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
+	if (state) {
+		state->last_time = INITIAL_JIFFIES;
+		disk->random = state;
+	}
+}
+#endif
+
+static ssize_t
+_random_read(int nonblock, char __user *buf, size_t nbytes)
+{
+	ssize_t n;
+
+	if (nbytes == 0)
+		return 0;
+
+	nbytes = min_t(size_t, nbytes, SEC_XFER_SIZE);
+	while (1) {
+		n = extract_entropy_user(&blocking_pool, buf, nbytes);
+		if (n < 0)
+			return n;
+		trace_random_read(n*8, (nbytes-n)*8,
+				  ENTROPY_BITS(&blocking_pool),
+				  ENTROPY_BITS(&input_pool));
+		if (n > 0)
+			return n;
+
+		/* Pool is (near) empty.  Maybe wait and retry. */
+		if (nonblock)
+			return -EAGAIN;
+
+		wait_event_interruptible(random_read_wait,
+			ENTROPY_BITS(&input_pool) >=
+			random_read_wakeup_bits);
+		if (signal_pending(current))
+			return -ERESTARTSYS;
+	}
+}
+
+static ssize_t
+random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
+{
+	return _random_read(file->f_flags & O_NONBLOCK, buf, nbytes);
+}
+
+static ssize_t
+urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
+{
+	unsigned long flags;
+	static int maxwarn = 10;
+	int ret;
+
+	if (!crng_ready() && maxwarn > 0) {
+		maxwarn--;
+		if (__ratelimit(&urandom_warning))
+			printk(KERN_NOTICE "random: %s: uninitialized "
+			       "urandom read (%zd bytes read)\n",
+			       current->comm, nbytes);
+		spin_lock_irqsave(&primary_crng.lock, flags);
+		crng_init_cnt = 0;
+		spin_unlock_irqrestore(&primary_crng.lock, flags);
+	}
+	nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
+	ret = extract_crng_user(buf, nbytes);
+	trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool));
+	return ret;
+}
+
+static __poll_t
+random_poll(struct file *file, poll_table * wait)
+{
+	__poll_t mask;
+
+	poll_wait(file, &random_read_wait, wait);
+	poll_wait(file, &random_write_wait, wait);
+	mask = 0;
+	if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits)
+		mask |= EPOLLIN | EPOLLRDNORM;
+	if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
+		mask |= EPOLLOUT | EPOLLWRNORM;
+	return mask;
+}
+
+static int
+write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
+{
+	size_t bytes;
+	__u32 t, buf[16];
+	const char __user *p = buffer;
+
+	while (count > 0) {
+		int b, i = 0;
+
+		bytes = min(count, sizeof(buf));
+		if (copy_from_user(&buf, p, bytes))
+			return -EFAULT;
+
+		for (b = bytes ; b > 0 ; b -= sizeof(__u32), i++) {
+			if (!arch_get_random_int(&t))
+				break;
+			buf[i] ^= t;
+		}
+
+		count -= bytes;
+		p += bytes;
+
+		mix_pool_bytes(r, buf, bytes);
+		cond_resched();
+	}
+
+	return 0;
+}
+
+static ssize_t random_write(struct file *file, const char __user *buffer,
+			    size_t count, loff_t *ppos)
+{
+	size_t ret;
+
+	ret = write_pool(&input_pool, buffer, count);
+	if (ret)
+		return ret;
+
+	return (ssize_t)count;
+}
+
+static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
+{
+	int size, ent_count;
+	int __user *p = (int __user *)arg;
+	int retval;
+
+	switch (cmd) {
+	case RNDGETENTCNT:
+		/* inherently racy, no point locking */
+		ent_count = ENTROPY_BITS(&input_pool);
+		if (put_user(ent_count, p))
+			return -EFAULT;
+		return 0;
+	case RNDADDTOENTCNT:
+		if (!capable(CAP_SYS_ADMIN))
+			return -EPERM;
+		if (get_user(ent_count, p))
+			return -EFAULT;
+		return credit_entropy_bits_safe(&input_pool, ent_count);
+	case RNDADDENTROPY:
+		if (!capable(CAP_SYS_ADMIN))
+			return -EPERM;
+		if (get_user(ent_count, p++))
+			return -EFAULT;
+		if (ent_count < 0)
+			return -EINVAL;
+		if (get_user(size, p++))
+			return -EFAULT;
+		retval = write_pool(&input_pool, (const char __user *)p,
+				    size);
+		if (retval < 0)
+			return retval;
+		return credit_entropy_bits_safe(&input_pool, ent_count);
+	case RNDZAPENTCNT:
+	case RNDCLEARPOOL:
+		/*
+		 * Clear the entropy pool counters. We no longer clear
+		 * the entropy pool, as that's silly.
+		 */
+		if (!capable(CAP_SYS_ADMIN))
+			return -EPERM;
+		input_pool.entropy_count = 0;
+		blocking_pool.entropy_count = 0;
+		return 0;
+	case RNDRESEEDCRNG:
+		if (!capable(CAP_SYS_ADMIN))
+			return -EPERM;
+		if (crng_init < 2)
+			return -ENODATA;
+		crng_reseed(&primary_crng, NULL);
+		crng_global_init_time = jiffies - 1;
+		return 0;
+	default:
+		return -EINVAL;
+	}
+}
+
+static int random_fasync(int fd, struct file *filp, int on)
+{
+	return fasync_helper(fd, filp, on, &fasync);
+}
+
+const struct file_operations random_fops = {
+	.read  = random_read,
+	.write = random_write,
+	.poll  = random_poll,
+	.unlocked_ioctl = random_ioctl,
+	.fasync = random_fasync,
+	.llseek = noop_llseek,
+};
+
+const struct file_operations urandom_fops = {
+	.read  = urandom_read,
+	.write = random_write,
+	.unlocked_ioctl = random_ioctl,
+	.fasync = random_fasync,
+	.llseek = noop_llseek,
+};
+
+SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
+		unsigned int, flags)
+{
+	int ret;
+
+	if (flags & ~(GRND_NONBLOCK|GRND_RANDOM))
+		return -EINVAL;
+
+	if (count > INT_MAX)
+		count = INT_MAX;
+
+	if (flags & GRND_RANDOM)
+		return _random_read(flags & GRND_NONBLOCK, buf, count);
+
+	if (!crng_ready()) {
+		if (flags & GRND_NONBLOCK)
+			return -EAGAIN;
+		ret = wait_for_random_bytes();
+		if (unlikely(ret))
+			return ret;
+	}
+	return urandom_read(NULL, buf, count, NULL);
+}
+
+/********************************************************************
+ *
+ * Sysctl interface
+ *
+ ********************************************************************/
+
+#ifdef CONFIG_SYSCTL
+
+#include <linux/sysctl.h>
+
+static int min_read_thresh = 8, min_write_thresh;
+static int max_read_thresh = OUTPUT_POOL_WORDS * 32;
+static int max_write_thresh = INPUT_POOL_WORDS * 32;
+static int random_min_urandom_seed = 60;
+static char sysctl_bootid[16];
+
+/*
+ * This function is used to return both the bootid UUID, and random
+ * UUID.  The difference is in whether table->data is NULL; if it is,
+ * then a new UUID is generated and returned to the user.
+ *
+ * If the user accesses this via the proc interface, the UUID will be
+ * returned as an ASCII string in the standard UUID format; if via the
+ * sysctl system call, as 16 bytes of binary data.
+ */
+static int proc_do_uuid(struct ctl_table *table, int write,
+			void __user *buffer, size_t *lenp, loff_t *ppos)
+{
+	struct ctl_table fake_table;
+	unsigned char buf[64], tmp_uuid[16], *uuid;
+
+	uuid = table->data;
+	if (!uuid) {
+		uuid = tmp_uuid;
+		generate_random_uuid(uuid);
+	} else {
+		static DEFINE_SPINLOCK(bootid_spinlock);
+
+		spin_lock(&bootid_spinlock);
+		if (!uuid[8])
+			generate_random_uuid(uuid);
+		spin_unlock(&bootid_spinlock);
+	}
+
+	sprintf(buf, "%pU", uuid);
+
+	fake_table.data = buf;
+	fake_table.maxlen = sizeof(buf);
+
+	return proc_dostring(&fake_table, write, buffer, lenp, ppos);
+}
+
+/*
+ * Return entropy available scaled to integral bits
+ */
+static int proc_do_entropy(struct ctl_table *table, int write,
+			   void __user *buffer, size_t *lenp, loff_t *ppos)
+{
+	struct ctl_table fake_table;
+	int entropy_count;
+
+	entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
+
+	fake_table.data = &entropy_count;
+	fake_table.maxlen = sizeof(entropy_count);
+
+	return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
+}
+
+static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
+extern struct ctl_table random_table[];
+struct ctl_table random_table[] = {
+	{
+		.procname	= "poolsize",
+		.data		= &sysctl_poolsize,
+		.maxlen		= sizeof(int),
+		.mode		= 0444,
+		.proc_handler	= proc_dointvec,
+	},
+	{
+		.procname	= "entropy_avail",
+		.maxlen		= sizeof(int),
+		.mode		= 0444,
+		.proc_handler	= proc_do_entropy,
+		.data		= &input_pool.entropy_count,
+	},
+	{
+		.procname	= "read_wakeup_threshold",
+		.data		= &random_read_wakeup_bits,
+		.maxlen		= sizeof(int),
+		.mode		= 0644,
+		.proc_handler	= proc_dointvec_minmax,
+		.extra1		= &min_read_thresh,
+		.extra2		= &max_read_thresh,
+	},
+	{
+		.procname	= "write_wakeup_threshold",
+		.data		= &random_write_wakeup_bits,
+		.maxlen		= sizeof(int),
+		.mode		= 0644,
+		.proc_handler	= proc_dointvec_minmax,
+		.extra1		= &min_write_thresh,
+		.extra2		= &max_write_thresh,
+	},
+	{
+		.procname	= "urandom_min_reseed_secs",
+		.data		= &random_min_urandom_seed,
+		.maxlen		= sizeof(int),
+		.mode		= 0644,
+		.proc_handler	= proc_dointvec,
+	},
+	{
+		.procname	= "boot_id",
+		.data		= &sysctl_bootid,
+		.maxlen		= 16,
+		.mode		= 0444,
+		.proc_handler	= proc_do_uuid,
+	},
+	{
+		.procname	= "uuid",
+		.maxlen		= 16,
+		.mode		= 0444,
+		.proc_handler	= proc_do_uuid,
+	},
+#ifdef ADD_INTERRUPT_BENCH
+	{
+		.procname	= "add_interrupt_avg_cycles",
+		.data		= &avg_cycles,
+		.maxlen		= sizeof(avg_cycles),
+		.mode		= 0444,
+		.proc_handler	= proc_doulongvec_minmax,
+	},
+	{
+		.procname	= "add_interrupt_avg_deviation",
+		.data		= &avg_deviation,
+		.maxlen		= sizeof(avg_deviation),
+		.mode		= 0444,
+		.proc_handler	= proc_doulongvec_minmax,
+	},
+#endif
+	{ }
+};
+#endif 	/* CONFIG_SYSCTL */
+
+struct batched_entropy {
+	union {
+		u64 entropy_u64[CHACHA20_BLOCK_SIZE / sizeof(u64)];
+		u32 entropy_u32[CHACHA20_BLOCK_SIZE / sizeof(u32)];
+	};
+	unsigned int position;
+};
+static rwlock_t batched_entropy_reset_lock = __RW_LOCK_UNLOCKED(batched_entropy_reset_lock);
+
+/*
+ * Get a random word for internal kernel use only. The quality of the random
+ * number is either as good as RDRAND or as good as /dev/urandom, with the
+ * goal of being quite fast and not depleting entropy. In order to ensure
+ * that the randomness provided by this function is okay, the function
+ * wait_for_random_bytes() should be called and return 0 at least once
+ * at any point prior.
+ */
+static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64);
+u64 get_random_u64(void)
+{
+	u64 ret;
+	bool use_lock;
+	unsigned long flags = 0;
+	struct batched_entropy *batch;
+	static void *previous;
+
+#if BITS_PER_LONG == 64
+	if (arch_get_random_long((unsigned long *)&ret))
+		return ret;
+#else
+	if (arch_get_random_long((unsigned long *)&ret) &&
+	    arch_get_random_long((unsigned long *)&ret + 1))
+	    return ret;
+#endif
+
+	warn_unseeded_randomness(&previous);
+
+	use_lock = READ_ONCE(crng_init) < 2;
+	batch = &get_cpu_var(batched_entropy_u64);
+	if (use_lock)
+		read_lock_irqsave(&batched_entropy_reset_lock, flags);
+	if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0) {
+		extract_crng((__u32 *)batch->entropy_u64);
+		batch->position = 0;
+	}
+	ret = batch->entropy_u64[batch->position++];
+	if (use_lock)
+		read_unlock_irqrestore(&batched_entropy_reset_lock, flags);
+	put_cpu_var(batched_entropy_u64);
+	return ret;
+}
+EXPORT_SYMBOL(get_random_u64);
+
+static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32);
+u32 get_random_u32(void)
+{
+	u32 ret;
+	bool use_lock;
+	unsigned long flags = 0;
+	struct batched_entropy *batch;
+	static void *previous;
+
+	if (arch_get_random_int(&ret))
+		return ret;
+
+	warn_unseeded_randomness(&previous);
+
+	use_lock = READ_ONCE(crng_init) < 2;
+	batch = &get_cpu_var(batched_entropy_u32);
+	if (use_lock)
+		read_lock_irqsave(&batched_entropy_reset_lock, flags);
+	if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0) {
+		extract_crng(batch->entropy_u32);
+		batch->position = 0;
+	}
+	ret = batch->entropy_u32[batch->position++];
+	if (use_lock)
+		read_unlock_irqrestore(&batched_entropy_reset_lock, flags);
+	put_cpu_var(batched_entropy_u32);
+	return ret;
+}
+EXPORT_SYMBOL(get_random_u32);
+
+/* It's important to invalidate all potential batched entropy that might
+ * be stored before the crng is initialized, which we can do lazily by
+ * simply resetting the counter to zero so that it's re-extracted on the
+ * next usage. */
+static void invalidate_batched_entropy(void)
+{
+	int cpu;
+	unsigned long flags;
+
+	write_lock_irqsave(&batched_entropy_reset_lock, flags);
+	for_each_possible_cpu (cpu) {
+		per_cpu_ptr(&batched_entropy_u32, cpu)->position = 0;
+		per_cpu_ptr(&batched_entropy_u64, cpu)->position = 0;
+	}
+	write_unlock_irqrestore(&batched_entropy_reset_lock, flags);
+}
+
+/**
+ * randomize_page - Generate a random, page aligned address
+ * @start:	The smallest acceptable address the caller will take.
+ * @range:	The size of the area, starting at @start, within which the
+ *		random address must fall.
+ *
+ * If @start + @range would overflow, @range is capped.
+ *
+ * NOTE: Historical use of randomize_range, which this replaces, presumed that
+ * @start was already page aligned.  We now align it regardless.
+ *
+ * Return: A page aligned address within [start, start + range).  On error,
+ * @start is returned.
+ */
+unsigned long
+randomize_page(unsigned long start, unsigned long range)
+{
+	if (!PAGE_ALIGNED(start)) {
+		range -= PAGE_ALIGN(start) - start;
+		start = PAGE_ALIGN(start);
+	}
+
+	if (start > ULONG_MAX - range)
+		range = ULONG_MAX - start;
+
+	range >>= PAGE_SHIFT;
+
+	if (range == 0)
+		return start;
+
+	return start + (get_random_long() % range << PAGE_SHIFT);
+}
+
+/* Interface for in-kernel drivers of true hardware RNGs.
+ * Those devices may produce endless random bits and will be throttled
+ * when our pool is full.
+ */
+void add_hwgenerator_randomness(const char *buffer, size_t count,
+				size_t entropy)
+{
+	struct entropy_store *poolp = &input_pool;
+
+	if (unlikely(crng_init == 0)) {
+		crng_fast_load(buffer, count);
+		return;
+	}
+
+	/* Suspend writing if we're above the trickle threshold.
+	 * We'll be woken up again once below random_write_wakeup_thresh,
+	 * or when the calling thread is about to terminate.
+	 */
+	wait_event_interruptible(random_write_wait, kthread_should_stop() ||
+			ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
+	mix_pool_bytes(poolp, buffer, count);
+	credit_entropy_bits(poolp, entropy);
+}
+EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);