v4.19.13 snapshot.
diff --git a/drivers/ata/libata-sff.c b/drivers/ata/libata-sff.c
new file mode 100644
index 0000000..c5ea0fc
--- /dev/null
+++ b/drivers/ata/libata-sff.c
@@ -0,0 +1,3290 @@
+/*
+ *  libata-sff.c - helper library for PCI IDE BMDMA
+ *
+ *  Maintained by:  Tejun Heo <tj@kernel.org>
+ *    		    Please ALWAYS copy linux-ide@vger.kernel.org
+ *		    on emails.
+ *
+ *  Copyright 2003-2006 Red Hat, Inc.  All rights reserved.
+ *  Copyright 2003-2006 Jeff Garzik
+ *
+ *
+ *  This program is free software; you can redistribute it and/or modify
+ *  it under the terms of the GNU General Public License as published by
+ *  the Free Software Foundation; either version 2, or (at your option)
+ *  any later version.
+ *
+ *  This program is distributed in the hope that it will be useful,
+ *  but WITHOUT ANY WARRANTY; without even the implied warranty of
+ *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ *  GNU General Public License for more details.
+ *
+ *  You should have received a copy of the GNU General Public License
+ *  along with this program; see the file COPYING.  If not, write to
+ *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
+ *
+ *
+ *  libata documentation is available via 'make {ps|pdf}docs',
+ *  as Documentation/driver-api/libata.rst
+ *
+ *  Hardware documentation available from http://www.t13.org/ and
+ *  http://www.sata-io.org/
+ *
+ */
+
+#include <linux/kernel.h>
+#include <linux/gfp.h>
+#include <linux/pci.h>
+#include <linux/module.h>
+#include <linux/libata.h>
+#include <linux/highmem.h>
+
+#include "libata.h"
+
+static struct workqueue_struct *ata_sff_wq;
+
+const struct ata_port_operations ata_sff_port_ops = {
+	.inherits		= &ata_base_port_ops,
+
+	.qc_prep		= ata_noop_qc_prep,
+	.qc_issue		= ata_sff_qc_issue,
+	.qc_fill_rtf		= ata_sff_qc_fill_rtf,
+
+	.freeze			= ata_sff_freeze,
+	.thaw			= ata_sff_thaw,
+	.prereset		= ata_sff_prereset,
+	.softreset		= ata_sff_softreset,
+	.hardreset		= sata_sff_hardreset,
+	.postreset		= ata_sff_postreset,
+	.error_handler		= ata_sff_error_handler,
+
+	.sff_dev_select		= ata_sff_dev_select,
+	.sff_check_status	= ata_sff_check_status,
+	.sff_tf_load		= ata_sff_tf_load,
+	.sff_tf_read		= ata_sff_tf_read,
+	.sff_exec_command	= ata_sff_exec_command,
+	.sff_data_xfer		= ata_sff_data_xfer,
+	.sff_drain_fifo		= ata_sff_drain_fifo,
+
+	.lost_interrupt		= ata_sff_lost_interrupt,
+};
+EXPORT_SYMBOL_GPL(ata_sff_port_ops);
+
+/**
+ *	ata_sff_check_status - Read device status reg & clear interrupt
+ *	@ap: port where the device is
+ *
+ *	Reads ATA taskfile status register for currently-selected device
+ *	and return its value. This also clears pending interrupts
+ *      from this device
+ *
+ *	LOCKING:
+ *	Inherited from caller.
+ */
+u8 ata_sff_check_status(struct ata_port *ap)
+{
+	return ioread8(ap->ioaddr.status_addr);
+}
+EXPORT_SYMBOL_GPL(ata_sff_check_status);
+
+/**
+ *	ata_sff_altstatus - Read device alternate status reg
+ *	@ap: port where the device is
+ *
+ *	Reads ATA taskfile alternate status register for
+ *	currently-selected device and return its value.
+ *
+ *	Note: may NOT be used as the check_altstatus() entry in
+ *	ata_port_operations.
+ *
+ *	LOCKING:
+ *	Inherited from caller.
+ */
+static u8 ata_sff_altstatus(struct ata_port *ap)
+{
+	if (ap->ops->sff_check_altstatus)
+		return ap->ops->sff_check_altstatus(ap);
+
+	return ioread8(ap->ioaddr.altstatus_addr);
+}
+
+/**
+ *	ata_sff_irq_status - Check if the device is busy
+ *	@ap: port where the device is
+ *
+ *	Determine if the port is currently busy. Uses altstatus
+ *	if available in order to avoid clearing shared IRQ status
+ *	when finding an IRQ source. Non ctl capable devices don't
+ *	share interrupt lines fortunately for us.
+ *
+ *	LOCKING:
+ *	Inherited from caller.
+ */
+static u8 ata_sff_irq_status(struct ata_port *ap)
+{
+	u8 status;
+
+	if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
+		status = ata_sff_altstatus(ap);
+		/* Not us: We are busy */
+		if (status & ATA_BUSY)
+			return status;
+	}
+	/* Clear INTRQ latch */
+	status = ap->ops->sff_check_status(ap);
+	return status;
+}
+
+/**
+ *	ata_sff_sync - Flush writes
+ *	@ap: Port to wait for.
+ *
+ *	CAUTION:
+ *	If we have an mmio device with no ctl and no altstatus
+ *	method this will fail. No such devices are known to exist.
+ *
+ *	LOCKING:
+ *	Inherited from caller.
+ */
+
+static void ata_sff_sync(struct ata_port *ap)
+{
+	if (ap->ops->sff_check_altstatus)
+		ap->ops->sff_check_altstatus(ap);
+	else if (ap->ioaddr.altstatus_addr)
+		ioread8(ap->ioaddr.altstatus_addr);
+}
+
+/**
+ *	ata_sff_pause		-	Flush writes and wait 400nS
+ *	@ap: Port to pause for.
+ *
+ *	CAUTION:
+ *	If we have an mmio device with no ctl and no altstatus
+ *	method this will fail. No such devices are known to exist.
+ *
+ *	LOCKING:
+ *	Inherited from caller.
+ */
+
+void ata_sff_pause(struct ata_port *ap)
+{
+	ata_sff_sync(ap);
+	ndelay(400);
+}
+EXPORT_SYMBOL_GPL(ata_sff_pause);
+
+/**
+ *	ata_sff_dma_pause	-	Pause before commencing DMA
+ *	@ap: Port to pause for.
+ *
+ *	Perform I/O fencing and ensure sufficient cycle delays occur
+ *	for the HDMA1:0 transition
+ */
+
+void ata_sff_dma_pause(struct ata_port *ap)
+{
+	if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
+		/* An altstatus read will cause the needed delay without
+		   messing up the IRQ status */
+		ata_sff_altstatus(ap);
+		return;
+	}
+	/* There are no DMA controllers without ctl. BUG here to ensure
+	   we never violate the HDMA1:0 transition timing and risk
+	   corruption. */
+	BUG();
+}
+EXPORT_SYMBOL_GPL(ata_sff_dma_pause);
+
+/**
+ *	ata_sff_busy_sleep - sleep until BSY clears, or timeout
+ *	@ap: port containing status register to be polled
+ *	@tmout_pat: impatience timeout in msecs
+ *	@tmout: overall timeout in msecs
+ *
+ *	Sleep until ATA Status register bit BSY clears,
+ *	or a timeout occurs.
+ *
+ *	LOCKING:
+ *	Kernel thread context (may sleep).
+ *
+ *	RETURNS:
+ *	0 on success, -errno otherwise.
+ */
+int ata_sff_busy_sleep(struct ata_port *ap,
+		       unsigned long tmout_pat, unsigned long tmout)
+{
+	unsigned long timer_start, timeout;
+	u8 status;
+
+	status = ata_sff_busy_wait(ap, ATA_BUSY, 300);
+	timer_start = jiffies;
+	timeout = ata_deadline(timer_start, tmout_pat);
+	while (status != 0xff && (status & ATA_BUSY) &&
+	       time_before(jiffies, timeout)) {
+		ata_msleep(ap, 50);
+		status = ata_sff_busy_wait(ap, ATA_BUSY, 3);
+	}
+
+	if (status != 0xff && (status & ATA_BUSY))
+		ata_port_warn(ap,
+			      "port is slow to respond, please be patient (Status 0x%x)\n",
+			      status);
+
+	timeout = ata_deadline(timer_start, tmout);
+	while (status != 0xff && (status & ATA_BUSY) &&
+	       time_before(jiffies, timeout)) {
+		ata_msleep(ap, 50);
+		status = ap->ops->sff_check_status(ap);
+	}
+
+	if (status == 0xff)
+		return -ENODEV;
+
+	if (status & ATA_BUSY) {
+		ata_port_err(ap,
+			     "port failed to respond (%lu secs, Status 0x%x)\n",
+			     DIV_ROUND_UP(tmout, 1000), status);
+		return -EBUSY;
+	}
+
+	return 0;
+}
+EXPORT_SYMBOL_GPL(ata_sff_busy_sleep);
+
+static int ata_sff_check_ready(struct ata_link *link)
+{
+	u8 status = link->ap->ops->sff_check_status(link->ap);
+
+	return ata_check_ready(status);
+}
+
+/**
+ *	ata_sff_wait_ready - sleep until BSY clears, or timeout
+ *	@link: SFF link to wait ready status for
+ *	@deadline: deadline jiffies for the operation
+ *
+ *	Sleep until ATA Status register bit BSY clears, or timeout
+ *	occurs.
+ *
+ *	LOCKING:
+ *	Kernel thread context (may sleep).
+ *
+ *	RETURNS:
+ *	0 on success, -errno otherwise.
+ */
+int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
+{
+	return ata_wait_ready(link, deadline, ata_sff_check_ready);
+}
+EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
+
+/**
+ *	ata_sff_set_devctl - Write device control reg
+ *	@ap: port where the device is
+ *	@ctl: value to write
+ *
+ *	Writes ATA taskfile device control register.
+ *
+ *	Note: may NOT be used as the sff_set_devctl() entry in
+ *	ata_port_operations.
+ *
+ *	LOCKING:
+ *	Inherited from caller.
+ */
+static void ata_sff_set_devctl(struct ata_port *ap, u8 ctl)
+{
+	if (ap->ops->sff_set_devctl)
+		ap->ops->sff_set_devctl(ap, ctl);
+	else
+		iowrite8(ctl, ap->ioaddr.ctl_addr);
+}
+
+/**
+ *	ata_sff_dev_select - Select device 0/1 on ATA bus
+ *	@ap: ATA channel to manipulate
+ *	@device: ATA device (numbered from zero) to select
+ *
+ *	Use the method defined in the ATA specification to
+ *	make either device 0, or device 1, active on the
+ *	ATA channel.  Works with both PIO and MMIO.
+ *
+ *	May be used as the dev_select() entry in ata_port_operations.
+ *
+ *	LOCKING:
+ *	caller.
+ */
+void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
+{
+	u8 tmp;
+
+	if (device == 0)
+		tmp = ATA_DEVICE_OBS;
+	else
+		tmp = ATA_DEVICE_OBS | ATA_DEV1;
+
+	iowrite8(tmp, ap->ioaddr.device_addr);
+	ata_sff_pause(ap);	/* needed; also flushes, for mmio */
+}
+EXPORT_SYMBOL_GPL(ata_sff_dev_select);
+
+/**
+ *	ata_dev_select - Select device 0/1 on ATA bus
+ *	@ap: ATA channel to manipulate
+ *	@device: ATA device (numbered from zero) to select
+ *	@wait: non-zero to wait for Status register BSY bit to clear
+ *	@can_sleep: non-zero if context allows sleeping
+ *
+ *	Use the method defined in the ATA specification to
+ *	make either device 0, or device 1, active on the
+ *	ATA channel.
+ *
+ *	This is a high-level version of ata_sff_dev_select(), which
+ *	additionally provides the services of inserting the proper
+ *	pauses and status polling, where needed.
+ *
+ *	LOCKING:
+ *	caller.
+ */
+static void ata_dev_select(struct ata_port *ap, unsigned int device,
+			   unsigned int wait, unsigned int can_sleep)
+{
+	if (ata_msg_probe(ap))
+		ata_port_info(ap, "ata_dev_select: ENTER, device %u, wait %u\n",
+			      device, wait);
+
+	if (wait)
+		ata_wait_idle(ap);
+
+	ap->ops->sff_dev_select(ap, device);
+
+	if (wait) {
+		if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
+			ata_msleep(ap, 150);
+		ata_wait_idle(ap);
+	}
+}
+
+/**
+ *	ata_sff_irq_on - Enable interrupts on a port.
+ *	@ap: Port on which interrupts are enabled.
+ *
+ *	Enable interrupts on a legacy IDE device using MMIO or PIO,
+ *	wait for idle, clear any pending interrupts.
+ *
+ *	Note: may NOT be used as the sff_irq_on() entry in
+ *	ata_port_operations.
+ *
+ *	LOCKING:
+ *	Inherited from caller.
+ */
+void ata_sff_irq_on(struct ata_port *ap)
+{
+	struct ata_ioports *ioaddr = &ap->ioaddr;
+
+	if (ap->ops->sff_irq_on) {
+		ap->ops->sff_irq_on(ap);
+		return;
+	}
+
+	ap->ctl &= ~ATA_NIEN;
+	ap->last_ctl = ap->ctl;
+
+	if (ap->ops->sff_set_devctl || ioaddr->ctl_addr)
+		ata_sff_set_devctl(ap, ap->ctl);
+	ata_wait_idle(ap);
+
+	if (ap->ops->sff_irq_clear)
+		ap->ops->sff_irq_clear(ap);
+}
+EXPORT_SYMBOL_GPL(ata_sff_irq_on);
+
+/**
+ *	ata_sff_tf_load - send taskfile registers to host controller
+ *	@ap: Port to which output is sent
+ *	@tf: ATA taskfile register set
+ *
+ *	Outputs ATA taskfile to standard ATA host controller.
+ *
+ *	LOCKING:
+ *	Inherited from caller.
+ */
+void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
+{
+	struct ata_ioports *ioaddr = &ap->ioaddr;
+	unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
+
+	if (tf->ctl != ap->last_ctl) {
+		if (ioaddr->ctl_addr)
+			iowrite8(tf->ctl, ioaddr->ctl_addr);
+		ap->last_ctl = tf->ctl;
+		ata_wait_idle(ap);
+	}
+
+	if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
+		WARN_ON_ONCE(!ioaddr->ctl_addr);
+		iowrite8(tf->hob_feature, ioaddr->feature_addr);
+		iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
+		iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
+		iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
+		iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
+		VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
+			tf->hob_feature,
+			tf->hob_nsect,
+			tf->hob_lbal,
+			tf->hob_lbam,
+			tf->hob_lbah);
+	}
+
+	if (is_addr) {
+		iowrite8(tf->feature, ioaddr->feature_addr);
+		iowrite8(tf->nsect, ioaddr->nsect_addr);
+		iowrite8(tf->lbal, ioaddr->lbal_addr);
+		iowrite8(tf->lbam, ioaddr->lbam_addr);
+		iowrite8(tf->lbah, ioaddr->lbah_addr);
+		VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
+			tf->feature,
+			tf->nsect,
+			tf->lbal,
+			tf->lbam,
+			tf->lbah);
+	}
+
+	if (tf->flags & ATA_TFLAG_DEVICE) {
+		iowrite8(tf->device, ioaddr->device_addr);
+		VPRINTK("device 0x%X\n", tf->device);
+	}
+
+	ata_wait_idle(ap);
+}
+EXPORT_SYMBOL_GPL(ata_sff_tf_load);
+
+/**
+ *	ata_sff_tf_read - input device's ATA taskfile shadow registers
+ *	@ap: Port from which input is read
+ *	@tf: ATA taskfile register set for storing input
+ *
+ *	Reads ATA taskfile registers for currently-selected device
+ *	into @tf. Assumes the device has a fully SFF compliant task file
+ *	layout and behaviour. If you device does not (eg has a different
+ *	status method) then you will need to provide a replacement tf_read
+ *
+ *	LOCKING:
+ *	Inherited from caller.
+ */
+void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
+{
+	struct ata_ioports *ioaddr = &ap->ioaddr;
+
+	tf->command = ata_sff_check_status(ap);
+	tf->feature = ioread8(ioaddr->error_addr);
+	tf->nsect = ioread8(ioaddr->nsect_addr);
+	tf->lbal = ioread8(ioaddr->lbal_addr);
+	tf->lbam = ioread8(ioaddr->lbam_addr);
+	tf->lbah = ioread8(ioaddr->lbah_addr);
+	tf->device = ioread8(ioaddr->device_addr);
+
+	if (tf->flags & ATA_TFLAG_LBA48) {
+		if (likely(ioaddr->ctl_addr)) {
+			iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
+			tf->hob_feature = ioread8(ioaddr->error_addr);
+			tf->hob_nsect = ioread8(ioaddr->nsect_addr);
+			tf->hob_lbal = ioread8(ioaddr->lbal_addr);
+			tf->hob_lbam = ioread8(ioaddr->lbam_addr);
+			tf->hob_lbah = ioread8(ioaddr->lbah_addr);
+			iowrite8(tf->ctl, ioaddr->ctl_addr);
+			ap->last_ctl = tf->ctl;
+		} else
+			WARN_ON_ONCE(1);
+	}
+}
+EXPORT_SYMBOL_GPL(ata_sff_tf_read);
+
+/**
+ *	ata_sff_exec_command - issue ATA command to host controller
+ *	@ap: port to which command is being issued
+ *	@tf: ATA taskfile register set
+ *
+ *	Issues ATA command, with proper synchronization with interrupt
+ *	handler / other threads.
+ *
+ *	LOCKING:
+ *	spin_lock_irqsave(host lock)
+ */
+void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
+{
+	DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
+
+	iowrite8(tf->command, ap->ioaddr.command_addr);
+	ata_sff_pause(ap);
+}
+EXPORT_SYMBOL_GPL(ata_sff_exec_command);
+
+/**
+ *	ata_tf_to_host - issue ATA taskfile to host controller
+ *	@ap: port to which command is being issued
+ *	@tf: ATA taskfile register set
+ *
+ *	Issues ATA taskfile register set to ATA host controller,
+ *	with proper synchronization with interrupt handler and
+ *	other threads.
+ *
+ *	LOCKING:
+ *	spin_lock_irqsave(host lock)
+ */
+static inline void ata_tf_to_host(struct ata_port *ap,
+				  const struct ata_taskfile *tf)
+{
+	ap->ops->sff_tf_load(ap, tf);
+	ap->ops->sff_exec_command(ap, tf);
+}
+
+/**
+ *	ata_sff_data_xfer - Transfer data by PIO
+ *	@qc: queued command
+ *	@buf: data buffer
+ *	@buflen: buffer length
+ *	@rw: read/write
+ *
+ *	Transfer data from/to the device data register by PIO.
+ *
+ *	LOCKING:
+ *	Inherited from caller.
+ *
+ *	RETURNS:
+ *	Bytes consumed.
+ */
+unsigned int ata_sff_data_xfer(struct ata_queued_cmd *qc, unsigned char *buf,
+			       unsigned int buflen, int rw)
+{
+	struct ata_port *ap = qc->dev->link->ap;
+	void __iomem *data_addr = ap->ioaddr.data_addr;
+	unsigned int words = buflen >> 1;
+
+	/* Transfer multiple of 2 bytes */
+	if (rw == READ)
+		ioread16_rep(data_addr, buf, words);
+	else
+		iowrite16_rep(data_addr, buf, words);
+
+	/* Transfer trailing byte, if any. */
+	if (unlikely(buflen & 0x01)) {
+		unsigned char pad[2] = { };
+
+		/* Point buf to the tail of buffer */
+		buf += buflen - 1;
+
+		/*
+		 * Use io*16_rep() accessors here as well to avoid pointlessly
+		 * swapping bytes to and from on the big endian machines...
+		 */
+		if (rw == READ) {
+			ioread16_rep(data_addr, pad, 1);
+			*buf = pad[0];
+		} else {
+			pad[0] = *buf;
+			iowrite16_rep(data_addr, pad, 1);
+		}
+		words++;
+	}
+
+	return words << 1;
+}
+EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
+
+/**
+ *	ata_sff_data_xfer32 - Transfer data by PIO
+ *	@qc: queued command
+ *	@buf: data buffer
+ *	@buflen: buffer length
+ *	@rw: read/write
+ *
+ *	Transfer data from/to the device data register by PIO using 32bit
+ *	I/O operations.
+ *
+ *	LOCKING:
+ *	Inherited from caller.
+ *
+ *	RETURNS:
+ *	Bytes consumed.
+ */
+
+unsigned int ata_sff_data_xfer32(struct ata_queued_cmd *qc, unsigned char *buf,
+			       unsigned int buflen, int rw)
+{
+	struct ata_device *dev = qc->dev;
+	struct ata_port *ap = dev->link->ap;
+	void __iomem *data_addr = ap->ioaddr.data_addr;
+	unsigned int words = buflen >> 2;
+	int slop = buflen & 3;
+
+	if (!(ap->pflags & ATA_PFLAG_PIO32))
+		return ata_sff_data_xfer(qc, buf, buflen, rw);
+
+	/* Transfer multiple of 4 bytes */
+	if (rw == READ)
+		ioread32_rep(data_addr, buf, words);
+	else
+		iowrite32_rep(data_addr, buf, words);
+
+	/* Transfer trailing bytes, if any */
+	if (unlikely(slop)) {
+		unsigned char pad[4] = { };
+
+		/* Point buf to the tail of buffer */
+		buf += buflen - slop;
+
+		/*
+		 * Use io*_rep() accessors here as well to avoid pointlessly
+		 * swapping bytes to and from on the big endian machines...
+		 */
+		if (rw == READ) {
+			if (slop < 3)
+				ioread16_rep(data_addr, pad, 1);
+			else
+				ioread32_rep(data_addr, pad, 1);
+			memcpy(buf, pad, slop);
+		} else {
+			memcpy(pad, buf, slop);
+			if (slop < 3)
+				iowrite16_rep(data_addr, pad, 1);
+			else
+				iowrite32_rep(data_addr, pad, 1);
+		}
+	}
+	return (buflen + 1) & ~1;
+}
+EXPORT_SYMBOL_GPL(ata_sff_data_xfer32);
+
+/**
+ *	ata_pio_sector - Transfer a sector of data.
+ *	@qc: Command on going
+ *
+ *	Transfer qc->sect_size bytes of data from/to the ATA device.
+ *
+ *	LOCKING:
+ *	Inherited from caller.
+ */
+static void ata_pio_sector(struct ata_queued_cmd *qc)
+{
+	int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
+	struct ata_port *ap = qc->ap;
+	struct page *page;
+	unsigned int offset;
+	unsigned char *buf;
+
+	if (qc->curbytes == qc->nbytes - qc->sect_size)
+		ap->hsm_task_state = HSM_ST_LAST;
+
+	page = sg_page(qc->cursg);
+	offset = qc->cursg->offset + qc->cursg_ofs;
+
+	/* get the current page and offset */
+	page = nth_page(page, (offset >> PAGE_SHIFT));
+	offset %= PAGE_SIZE;
+
+	DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
+
+	/* do the actual data transfer */
+	buf = kmap_atomic(page);
+	ap->ops->sff_data_xfer(qc, buf + offset, qc->sect_size, do_write);
+	kunmap_atomic(buf);
+
+	if (!do_write && !PageSlab(page))
+		flush_dcache_page(page);
+
+	qc->curbytes += qc->sect_size;
+	qc->cursg_ofs += qc->sect_size;
+
+	if (qc->cursg_ofs == qc->cursg->length) {
+		qc->cursg = sg_next(qc->cursg);
+		qc->cursg_ofs = 0;
+	}
+}
+
+/**
+ *	ata_pio_sectors - Transfer one or many sectors.
+ *	@qc: Command on going
+ *
+ *	Transfer one or many sectors of data from/to the
+ *	ATA device for the DRQ request.
+ *
+ *	LOCKING:
+ *	Inherited from caller.
+ */
+static void ata_pio_sectors(struct ata_queued_cmd *qc)
+{
+	if (is_multi_taskfile(&qc->tf)) {
+		/* READ/WRITE MULTIPLE */
+		unsigned int nsect;
+
+		WARN_ON_ONCE(qc->dev->multi_count == 0);
+
+		nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
+			    qc->dev->multi_count);
+		while (nsect--)
+			ata_pio_sector(qc);
+	} else
+		ata_pio_sector(qc);
+
+	ata_sff_sync(qc->ap); /* flush */
+}
+
+/**
+ *	atapi_send_cdb - Write CDB bytes to hardware
+ *	@ap: Port to which ATAPI device is attached.
+ *	@qc: Taskfile currently active
+ *
+ *	When device has indicated its readiness to accept
+ *	a CDB, this function is called.  Send the CDB.
+ *
+ *	LOCKING:
+ *	caller.
+ */
+static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
+{
+	/* send SCSI cdb */
+	DPRINTK("send cdb\n");
+	WARN_ON_ONCE(qc->dev->cdb_len < 12);
+
+	ap->ops->sff_data_xfer(qc, qc->cdb, qc->dev->cdb_len, 1);
+	ata_sff_sync(ap);
+	/* FIXME: If the CDB is for DMA do we need to do the transition delay
+	   or is bmdma_start guaranteed to do it ? */
+	switch (qc->tf.protocol) {
+	case ATAPI_PROT_PIO:
+		ap->hsm_task_state = HSM_ST;
+		break;
+	case ATAPI_PROT_NODATA:
+		ap->hsm_task_state = HSM_ST_LAST;
+		break;
+#ifdef CONFIG_ATA_BMDMA
+	case ATAPI_PROT_DMA:
+		ap->hsm_task_state = HSM_ST_LAST;
+		/* initiate bmdma */
+		ap->ops->bmdma_start(qc);
+		break;
+#endif /* CONFIG_ATA_BMDMA */
+	default:
+		BUG();
+	}
+}
+
+/**
+ *	__atapi_pio_bytes - Transfer data from/to the ATAPI device.
+ *	@qc: Command on going
+ *	@bytes: number of bytes
+ *
+ *	Transfer Transfer data from/to the ATAPI device.
+ *
+ *	LOCKING:
+ *	Inherited from caller.
+ *
+ */
+static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
+{
+	int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
+	struct ata_port *ap = qc->ap;
+	struct ata_device *dev = qc->dev;
+	struct ata_eh_info *ehi = &dev->link->eh_info;
+	struct scatterlist *sg;
+	struct page *page;
+	unsigned char *buf;
+	unsigned int offset, count, consumed;
+
+next_sg:
+	sg = qc->cursg;
+	if (unlikely(!sg)) {
+		ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
+				  "buf=%u cur=%u bytes=%u",
+				  qc->nbytes, qc->curbytes, bytes);
+		return -1;
+	}
+
+	page = sg_page(sg);
+	offset = sg->offset + qc->cursg_ofs;
+
+	/* get the current page and offset */
+	page = nth_page(page, (offset >> PAGE_SHIFT));
+	offset %= PAGE_SIZE;
+
+	/* don't overrun current sg */
+	count = min(sg->length - qc->cursg_ofs, bytes);
+
+	/* don't cross page boundaries */
+	count = min(count, (unsigned int)PAGE_SIZE - offset);
+
+	DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
+
+	/* do the actual data transfer */
+	buf = kmap_atomic(page);
+	consumed = ap->ops->sff_data_xfer(qc, buf + offset, count, rw);
+	kunmap_atomic(buf);
+
+	bytes -= min(bytes, consumed);
+	qc->curbytes += count;
+	qc->cursg_ofs += count;
+
+	if (qc->cursg_ofs == sg->length) {
+		qc->cursg = sg_next(qc->cursg);
+		qc->cursg_ofs = 0;
+	}
+
+	/*
+	 * There used to be a  WARN_ON_ONCE(qc->cursg && count != consumed);
+	 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
+	 * check correctly as it doesn't know if it is the last request being
+	 * made. Somebody should implement a proper sanity check.
+	 */
+	if (bytes)
+		goto next_sg;
+	return 0;
+}
+
+/**
+ *	atapi_pio_bytes - Transfer data from/to the ATAPI device.
+ *	@qc: Command on going
+ *
+ *	Transfer Transfer data from/to the ATAPI device.
+ *
+ *	LOCKING:
+ *	Inherited from caller.
+ */
+static void atapi_pio_bytes(struct ata_queued_cmd *qc)
+{
+	struct ata_port *ap = qc->ap;
+	struct ata_device *dev = qc->dev;
+	struct ata_eh_info *ehi = &dev->link->eh_info;
+	unsigned int ireason, bc_lo, bc_hi, bytes;
+	int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
+
+	/* Abuse qc->result_tf for temp storage of intermediate TF
+	 * here to save some kernel stack usage.
+	 * For normal completion, qc->result_tf is not relevant. For
+	 * error, qc->result_tf is later overwritten by ata_qc_complete().
+	 * So, the correctness of qc->result_tf is not affected.
+	 */
+	ap->ops->sff_tf_read(ap, &qc->result_tf);
+	ireason = qc->result_tf.nsect;
+	bc_lo = qc->result_tf.lbam;
+	bc_hi = qc->result_tf.lbah;
+	bytes = (bc_hi << 8) | bc_lo;
+
+	/* shall be cleared to zero, indicating xfer of data */
+	if (unlikely(ireason & ATAPI_COD))
+		goto atapi_check;
+
+	/* make sure transfer direction matches expected */
+	i_write = ((ireason & ATAPI_IO) == 0) ? 1 : 0;
+	if (unlikely(do_write != i_write))
+		goto atapi_check;
+
+	if (unlikely(!bytes))
+		goto atapi_check;
+
+	VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
+
+	if (unlikely(__atapi_pio_bytes(qc, bytes)))
+		goto err_out;
+	ata_sff_sync(ap); /* flush */
+
+	return;
+
+ atapi_check:
+	ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
+			  ireason, bytes);
+ err_out:
+	qc->err_mask |= AC_ERR_HSM;
+	ap->hsm_task_state = HSM_ST_ERR;
+}
+
+/**
+ *	ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
+ *	@ap: the target ata_port
+ *	@qc: qc on going
+ *
+ *	RETURNS:
+ *	1 if ok in workqueue, 0 otherwise.
+ */
+static inline int ata_hsm_ok_in_wq(struct ata_port *ap,
+						struct ata_queued_cmd *qc)
+{
+	if (qc->tf.flags & ATA_TFLAG_POLLING)
+		return 1;
+
+	if (ap->hsm_task_state == HSM_ST_FIRST) {
+		if (qc->tf.protocol == ATA_PROT_PIO &&
+		   (qc->tf.flags & ATA_TFLAG_WRITE))
+		    return 1;
+
+		if (ata_is_atapi(qc->tf.protocol) &&
+		   !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
+			return 1;
+	}
+
+	return 0;
+}
+
+/**
+ *	ata_hsm_qc_complete - finish a qc running on standard HSM
+ *	@qc: Command to complete
+ *	@in_wq: 1 if called from workqueue, 0 otherwise
+ *
+ *	Finish @qc which is running on standard HSM.
+ *
+ *	LOCKING:
+ *	If @in_wq is zero, spin_lock_irqsave(host lock).
+ *	Otherwise, none on entry and grabs host lock.
+ */
+static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
+{
+	struct ata_port *ap = qc->ap;
+
+	if (ap->ops->error_handler) {
+		if (in_wq) {
+			/* EH might have kicked in while host lock is
+			 * released.
+			 */
+			qc = ata_qc_from_tag(ap, qc->tag);
+			if (qc) {
+				if (likely(!(qc->err_mask & AC_ERR_HSM))) {
+					ata_sff_irq_on(ap);
+					ata_qc_complete(qc);
+				} else
+					ata_port_freeze(ap);
+			}
+		} else {
+			if (likely(!(qc->err_mask & AC_ERR_HSM)))
+				ata_qc_complete(qc);
+			else
+				ata_port_freeze(ap);
+		}
+	} else {
+		if (in_wq) {
+			ata_sff_irq_on(ap);
+			ata_qc_complete(qc);
+		} else
+			ata_qc_complete(qc);
+	}
+}
+
+/**
+ *	ata_sff_hsm_move - move the HSM to the next state.
+ *	@ap: the target ata_port
+ *	@qc: qc on going
+ *	@status: current device status
+ *	@in_wq: 1 if called from workqueue, 0 otherwise
+ *
+ *	RETURNS:
+ *	1 when poll next status needed, 0 otherwise.
+ */
+int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
+		     u8 status, int in_wq)
+{
+	struct ata_link *link = qc->dev->link;
+	struct ata_eh_info *ehi = &link->eh_info;
+	int poll_next;
+
+	lockdep_assert_held(ap->lock);
+
+	WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
+
+	/* Make sure ata_sff_qc_issue() does not throw things
+	 * like DMA polling into the workqueue. Notice that
+	 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
+	 */
+	WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc));
+
+fsm_start:
+	DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
+		ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
+
+	switch (ap->hsm_task_state) {
+	case HSM_ST_FIRST:
+		/* Send first data block or PACKET CDB */
+
+		/* If polling, we will stay in the work queue after
+		 * sending the data. Otherwise, interrupt handler
+		 * takes over after sending the data.
+		 */
+		poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
+
+		/* check device status */
+		if (unlikely((status & ATA_DRQ) == 0)) {
+			/* handle BSY=0, DRQ=0 as error */
+			if (likely(status & (ATA_ERR | ATA_DF)))
+				/* device stops HSM for abort/error */
+				qc->err_mask |= AC_ERR_DEV;
+			else {
+				/* HSM violation. Let EH handle this */
+				ata_ehi_push_desc(ehi,
+					"ST_FIRST: !(DRQ|ERR|DF)");
+				qc->err_mask |= AC_ERR_HSM;
+			}
+
+			ap->hsm_task_state = HSM_ST_ERR;
+			goto fsm_start;
+		}
+
+		/* Device should not ask for data transfer (DRQ=1)
+		 * when it finds something wrong.
+		 * We ignore DRQ here and stop the HSM by
+		 * changing hsm_task_state to HSM_ST_ERR and
+		 * let the EH abort the command or reset the device.
+		 */
+		if (unlikely(status & (ATA_ERR | ATA_DF))) {
+			/* Some ATAPI tape drives forget to clear the ERR bit
+			 * when doing the next command (mostly request sense).
+			 * We ignore ERR here to workaround and proceed sending
+			 * the CDB.
+			 */
+			if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
+				ata_ehi_push_desc(ehi, "ST_FIRST: "
+					"DRQ=1 with device error, "
+					"dev_stat 0x%X", status);
+				qc->err_mask |= AC_ERR_HSM;
+				ap->hsm_task_state = HSM_ST_ERR;
+				goto fsm_start;
+			}
+		}
+
+		if (qc->tf.protocol == ATA_PROT_PIO) {
+			/* PIO data out protocol.
+			 * send first data block.
+			 */
+
+			/* ata_pio_sectors() might change the state
+			 * to HSM_ST_LAST. so, the state is changed here
+			 * before ata_pio_sectors().
+			 */
+			ap->hsm_task_state = HSM_ST;
+			ata_pio_sectors(qc);
+		} else
+			/* send CDB */
+			atapi_send_cdb(ap, qc);
+
+		/* if polling, ata_sff_pio_task() handles the rest.
+		 * otherwise, interrupt handler takes over from here.
+		 */
+		break;
+
+	case HSM_ST:
+		/* complete command or read/write the data register */
+		if (qc->tf.protocol == ATAPI_PROT_PIO) {
+			/* ATAPI PIO protocol */
+			if ((status & ATA_DRQ) == 0) {
+				/* No more data to transfer or device error.
+				 * Device error will be tagged in HSM_ST_LAST.
+				 */
+				ap->hsm_task_state = HSM_ST_LAST;
+				goto fsm_start;
+			}
+
+			/* Device should not ask for data transfer (DRQ=1)
+			 * when it finds something wrong.
+			 * We ignore DRQ here and stop the HSM by
+			 * changing hsm_task_state to HSM_ST_ERR and
+			 * let the EH abort the command or reset the device.
+			 */
+			if (unlikely(status & (ATA_ERR | ATA_DF))) {
+				ata_ehi_push_desc(ehi, "ST-ATAPI: "
+					"DRQ=1 with device error, "
+					"dev_stat 0x%X", status);
+				qc->err_mask |= AC_ERR_HSM;
+				ap->hsm_task_state = HSM_ST_ERR;
+				goto fsm_start;
+			}
+
+			atapi_pio_bytes(qc);
+
+			if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
+				/* bad ireason reported by device */
+				goto fsm_start;
+
+		} else {
+			/* ATA PIO protocol */
+			if (unlikely((status & ATA_DRQ) == 0)) {
+				/* handle BSY=0, DRQ=0 as error */
+				if (likely(status & (ATA_ERR | ATA_DF))) {
+					/* device stops HSM for abort/error */
+					qc->err_mask |= AC_ERR_DEV;
+
+					/* If diagnostic failed and this is
+					 * IDENTIFY, it's likely a phantom
+					 * device.  Mark hint.
+					 */
+					if (qc->dev->horkage &
+					    ATA_HORKAGE_DIAGNOSTIC)
+						qc->err_mask |=
+							AC_ERR_NODEV_HINT;
+				} else {
+					/* HSM violation. Let EH handle this.
+					 * Phantom devices also trigger this
+					 * condition.  Mark hint.
+					 */
+					ata_ehi_push_desc(ehi, "ST-ATA: "
+						"DRQ=0 without device error, "
+						"dev_stat 0x%X", status);
+					qc->err_mask |= AC_ERR_HSM |
+							AC_ERR_NODEV_HINT;
+				}
+
+				ap->hsm_task_state = HSM_ST_ERR;
+				goto fsm_start;
+			}
+
+			/* For PIO reads, some devices may ask for
+			 * data transfer (DRQ=1) alone with ERR=1.
+			 * We respect DRQ here and transfer one
+			 * block of junk data before changing the
+			 * hsm_task_state to HSM_ST_ERR.
+			 *
+			 * For PIO writes, ERR=1 DRQ=1 doesn't make
+			 * sense since the data block has been
+			 * transferred to the device.
+			 */
+			if (unlikely(status & (ATA_ERR | ATA_DF))) {
+				/* data might be corrputed */
+				qc->err_mask |= AC_ERR_DEV;
+
+				if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
+					ata_pio_sectors(qc);
+					status = ata_wait_idle(ap);
+				}
+
+				if (status & (ATA_BUSY | ATA_DRQ)) {
+					ata_ehi_push_desc(ehi, "ST-ATA: "
+						"BUSY|DRQ persists on ERR|DF, "
+						"dev_stat 0x%X", status);
+					qc->err_mask |= AC_ERR_HSM;
+				}
+
+				/* There are oddball controllers with
+				 * status register stuck at 0x7f and
+				 * lbal/m/h at zero which makes it
+				 * pass all other presence detection
+				 * mechanisms we have.  Set NODEV_HINT
+				 * for it.  Kernel bz#7241.
+				 */
+				if (status == 0x7f)
+					qc->err_mask |= AC_ERR_NODEV_HINT;
+
+				/* ata_pio_sectors() might change the
+				 * state to HSM_ST_LAST. so, the state
+				 * is changed after ata_pio_sectors().
+				 */
+				ap->hsm_task_state = HSM_ST_ERR;
+				goto fsm_start;
+			}
+
+			ata_pio_sectors(qc);
+
+			if (ap->hsm_task_state == HSM_ST_LAST &&
+			    (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
+				/* all data read */
+				status = ata_wait_idle(ap);
+				goto fsm_start;
+			}
+		}
+
+		poll_next = 1;
+		break;
+
+	case HSM_ST_LAST:
+		if (unlikely(!ata_ok(status))) {
+			qc->err_mask |= __ac_err_mask(status);
+			ap->hsm_task_state = HSM_ST_ERR;
+			goto fsm_start;
+		}
+
+		/* no more data to transfer */
+		DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
+			ap->print_id, qc->dev->devno, status);
+
+		WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM));
+
+		ap->hsm_task_state = HSM_ST_IDLE;
+
+		/* complete taskfile transaction */
+		ata_hsm_qc_complete(qc, in_wq);
+
+		poll_next = 0;
+		break;
+
+	case HSM_ST_ERR:
+		ap->hsm_task_state = HSM_ST_IDLE;
+
+		/* complete taskfile transaction */
+		ata_hsm_qc_complete(qc, in_wq);
+
+		poll_next = 0;
+		break;
+	default:
+		poll_next = 0;
+		WARN(true, "ata%d: SFF host state machine in invalid state %d",
+		     ap->print_id, ap->hsm_task_state);
+	}
+
+	return poll_next;
+}
+EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
+
+void ata_sff_queue_work(struct work_struct *work)
+{
+	queue_work(ata_sff_wq, work);
+}
+EXPORT_SYMBOL_GPL(ata_sff_queue_work);
+
+void ata_sff_queue_delayed_work(struct delayed_work *dwork, unsigned long delay)
+{
+	queue_delayed_work(ata_sff_wq, dwork, delay);
+}
+EXPORT_SYMBOL_GPL(ata_sff_queue_delayed_work);
+
+void ata_sff_queue_pio_task(struct ata_link *link, unsigned long delay)
+{
+	struct ata_port *ap = link->ap;
+
+	WARN_ON((ap->sff_pio_task_link != NULL) &&
+		(ap->sff_pio_task_link != link));
+	ap->sff_pio_task_link = link;
+
+	/* may fail if ata_sff_flush_pio_task() in progress */
+	ata_sff_queue_delayed_work(&ap->sff_pio_task, msecs_to_jiffies(delay));
+}
+EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task);
+
+void ata_sff_flush_pio_task(struct ata_port *ap)
+{
+	DPRINTK("ENTER\n");
+
+	cancel_delayed_work_sync(&ap->sff_pio_task);
+
+	/*
+	 * We wanna reset the HSM state to IDLE.  If we do so without
+	 * grabbing the port lock, critical sections protected by it which
+	 * expect the HSM state to stay stable may get surprised.  For
+	 * example, we may set IDLE in between the time
+	 * __ata_sff_port_intr() checks for HSM_ST_IDLE and before it calls
+	 * ata_sff_hsm_move() causing ata_sff_hsm_move() to BUG().
+	 */
+	spin_lock_irq(ap->lock);
+	ap->hsm_task_state = HSM_ST_IDLE;
+	spin_unlock_irq(ap->lock);
+
+	ap->sff_pio_task_link = NULL;
+
+	if (ata_msg_ctl(ap))
+		ata_port_dbg(ap, "%s: EXIT\n", __func__);
+}
+
+static void ata_sff_pio_task(struct work_struct *work)
+{
+	struct ata_port *ap =
+		container_of(work, struct ata_port, sff_pio_task.work);
+	struct ata_link *link = ap->sff_pio_task_link;
+	struct ata_queued_cmd *qc;
+	u8 status;
+	int poll_next;
+
+	spin_lock_irq(ap->lock);
+
+	BUG_ON(ap->sff_pio_task_link == NULL);
+	/* qc can be NULL if timeout occurred */
+	qc = ata_qc_from_tag(ap, link->active_tag);
+	if (!qc) {
+		ap->sff_pio_task_link = NULL;
+		goto out_unlock;
+	}
+
+fsm_start:
+	WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE);
+
+	/*
+	 * This is purely heuristic.  This is a fast path.
+	 * Sometimes when we enter, BSY will be cleared in
+	 * a chk-status or two.  If not, the drive is probably seeking
+	 * or something.  Snooze for a couple msecs, then
+	 * chk-status again.  If still busy, queue delayed work.
+	 */
+	status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
+	if (status & ATA_BUSY) {
+		spin_unlock_irq(ap->lock);
+		ata_msleep(ap, 2);
+		spin_lock_irq(ap->lock);
+
+		status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
+		if (status & ATA_BUSY) {
+			ata_sff_queue_pio_task(link, ATA_SHORT_PAUSE);
+			goto out_unlock;
+		}
+	}
+
+	/*
+	 * hsm_move() may trigger another command to be processed.
+	 * clean the link beforehand.
+	 */
+	ap->sff_pio_task_link = NULL;
+	/* move the HSM */
+	poll_next = ata_sff_hsm_move(ap, qc, status, 1);
+
+	/* another command or interrupt handler
+	 * may be running at this point.
+	 */
+	if (poll_next)
+		goto fsm_start;
+out_unlock:
+	spin_unlock_irq(ap->lock);
+}
+
+/**
+ *	ata_sff_qc_issue - issue taskfile to a SFF controller
+ *	@qc: command to issue to device
+ *
+ *	This function issues a PIO or NODATA command to a SFF
+ *	controller.
+ *
+ *	LOCKING:
+ *	spin_lock_irqsave(host lock)
+ *
+ *	RETURNS:
+ *	Zero on success, AC_ERR_* mask on failure
+ */
+unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
+{
+	struct ata_port *ap = qc->ap;
+	struct ata_link *link = qc->dev->link;
+
+	/* Use polling pio if the LLD doesn't handle
+	 * interrupt driven pio and atapi CDB interrupt.
+	 */
+	if (ap->flags & ATA_FLAG_PIO_POLLING)
+		qc->tf.flags |= ATA_TFLAG_POLLING;
+
+	/* select the device */
+	ata_dev_select(ap, qc->dev->devno, 1, 0);
+
+	/* start the command */
+	switch (qc->tf.protocol) {
+	case ATA_PROT_NODATA:
+		if (qc->tf.flags & ATA_TFLAG_POLLING)
+			ata_qc_set_polling(qc);
+
+		ata_tf_to_host(ap, &qc->tf);
+		ap->hsm_task_state = HSM_ST_LAST;
+
+		if (qc->tf.flags & ATA_TFLAG_POLLING)
+			ata_sff_queue_pio_task(link, 0);
+
+		break;
+
+	case ATA_PROT_PIO:
+		if (qc->tf.flags & ATA_TFLAG_POLLING)
+			ata_qc_set_polling(qc);
+
+		ata_tf_to_host(ap, &qc->tf);
+
+		if (qc->tf.flags & ATA_TFLAG_WRITE) {
+			/* PIO data out protocol */
+			ap->hsm_task_state = HSM_ST_FIRST;
+			ata_sff_queue_pio_task(link, 0);
+
+			/* always send first data block using the
+			 * ata_sff_pio_task() codepath.
+			 */
+		} else {
+			/* PIO data in protocol */
+			ap->hsm_task_state = HSM_ST;
+
+			if (qc->tf.flags & ATA_TFLAG_POLLING)
+				ata_sff_queue_pio_task(link, 0);
+
+			/* if polling, ata_sff_pio_task() handles the
+			 * rest.  otherwise, interrupt handler takes
+			 * over from here.
+			 */
+		}
+
+		break;
+
+	case ATAPI_PROT_PIO:
+	case ATAPI_PROT_NODATA:
+		if (qc->tf.flags & ATA_TFLAG_POLLING)
+			ata_qc_set_polling(qc);
+
+		ata_tf_to_host(ap, &qc->tf);
+
+		ap->hsm_task_state = HSM_ST_FIRST;
+
+		/* send cdb by polling if no cdb interrupt */
+		if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
+		    (qc->tf.flags & ATA_TFLAG_POLLING))
+			ata_sff_queue_pio_task(link, 0);
+		break;
+
+	default:
+		return AC_ERR_SYSTEM;
+	}
+
+	return 0;
+}
+EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
+
+/**
+ *	ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
+ *	@qc: qc to fill result TF for
+ *
+ *	@qc is finished and result TF needs to be filled.  Fill it
+ *	using ->sff_tf_read.
+ *
+ *	LOCKING:
+ *	spin_lock_irqsave(host lock)
+ *
+ *	RETURNS:
+ *	true indicating that result TF is successfully filled.
+ */
+bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc)
+{
+	qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf);
+	return true;
+}
+EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf);
+
+static unsigned int ata_sff_idle_irq(struct ata_port *ap)
+{
+	ap->stats.idle_irq++;
+
+#ifdef ATA_IRQ_TRAP
+	if ((ap->stats.idle_irq % 1000) == 0) {
+		ap->ops->sff_check_status(ap);
+		if (ap->ops->sff_irq_clear)
+			ap->ops->sff_irq_clear(ap);
+		ata_port_warn(ap, "irq trap\n");
+		return 1;
+	}
+#endif
+	return 0;	/* irq not handled */
+}
+
+static unsigned int __ata_sff_port_intr(struct ata_port *ap,
+					struct ata_queued_cmd *qc,
+					bool hsmv_on_idle)
+{
+	u8 status;
+
+	VPRINTK("ata%u: protocol %d task_state %d\n",
+		ap->print_id, qc->tf.protocol, ap->hsm_task_state);
+
+	/* Check whether we are expecting interrupt in this state */
+	switch (ap->hsm_task_state) {
+	case HSM_ST_FIRST:
+		/* Some pre-ATAPI-4 devices assert INTRQ
+		 * at this state when ready to receive CDB.
+		 */
+
+		/* Check the ATA_DFLAG_CDB_INTR flag is enough here.
+		 * The flag was turned on only for atapi devices.  No
+		 * need to check ata_is_atapi(qc->tf.protocol) again.
+		 */
+		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
+			return ata_sff_idle_irq(ap);
+		break;
+	case HSM_ST_IDLE:
+		return ata_sff_idle_irq(ap);
+	default:
+		break;
+	}
+
+	/* check main status, clearing INTRQ if needed */
+	status = ata_sff_irq_status(ap);
+	if (status & ATA_BUSY) {
+		if (hsmv_on_idle) {
+			/* BMDMA engine is already stopped, we're screwed */
+			qc->err_mask |= AC_ERR_HSM;
+			ap->hsm_task_state = HSM_ST_ERR;
+		} else
+			return ata_sff_idle_irq(ap);
+	}
+
+	/* clear irq events */
+	if (ap->ops->sff_irq_clear)
+		ap->ops->sff_irq_clear(ap);
+
+	ata_sff_hsm_move(ap, qc, status, 0);
+
+	return 1;	/* irq handled */
+}
+
+/**
+ *	ata_sff_port_intr - Handle SFF port interrupt
+ *	@ap: Port on which interrupt arrived (possibly...)
+ *	@qc: Taskfile currently active in engine
+ *
+ *	Handle port interrupt for given queued command.
+ *
+ *	LOCKING:
+ *	spin_lock_irqsave(host lock)
+ *
+ *	RETURNS:
+ *	One if interrupt was handled, zero if not (shared irq).
+ */
+unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
+{
+	return __ata_sff_port_intr(ap, qc, false);
+}
+EXPORT_SYMBOL_GPL(ata_sff_port_intr);
+
+static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance,
+	unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *))
+{
+	struct ata_host *host = dev_instance;
+	bool retried = false;
+	unsigned int i;
+	unsigned int handled, idle, polling;
+	unsigned long flags;
+
+	/* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
+	spin_lock_irqsave(&host->lock, flags);
+
+retry:
+	handled = idle = polling = 0;
+	for (i = 0; i < host->n_ports; i++) {
+		struct ata_port *ap = host->ports[i];
+		struct ata_queued_cmd *qc;
+
+		qc = ata_qc_from_tag(ap, ap->link.active_tag);
+		if (qc) {
+			if (!(qc->tf.flags & ATA_TFLAG_POLLING))
+				handled |= port_intr(ap, qc);
+			else
+				polling |= 1 << i;
+		} else
+			idle |= 1 << i;
+	}
+
+	/*
+	 * If no port was expecting IRQ but the controller is actually
+	 * asserting IRQ line, nobody cared will ensue.  Check IRQ
+	 * pending status if available and clear spurious IRQ.
+	 */
+	if (!handled && !retried) {
+		bool retry = false;
+
+		for (i = 0; i < host->n_ports; i++) {
+			struct ata_port *ap = host->ports[i];
+
+			if (polling & (1 << i))
+				continue;
+
+			if (!ap->ops->sff_irq_check ||
+			    !ap->ops->sff_irq_check(ap))
+				continue;
+
+			if (idle & (1 << i)) {
+				ap->ops->sff_check_status(ap);
+				if (ap->ops->sff_irq_clear)
+					ap->ops->sff_irq_clear(ap);
+			} else {
+				/* clear INTRQ and check if BUSY cleared */
+				if (!(ap->ops->sff_check_status(ap) & ATA_BUSY))
+					retry |= true;
+				/*
+				 * With command in flight, we can't do
+				 * sff_irq_clear() w/o racing with completion.
+				 */
+			}
+		}
+
+		if (retry) {
+			retried = true;
+			goto retry;
+		}
+	}
+
+	spin_unlock_irqrestore(&host->lock, flags);
+
+	return IRQ_RETVAL(handled);
+}
+
+/**
+ *	ata_sff_interrupt - Default SFF ATA host interrupt handler
+ *	@irq: irq line (unused)
+ *	@dev_instance: pointer to our ata_host information structure
+ *
+ *	Default interrupt handler for PCI IDE devices.  Calls
+ *	ata_sff_port_intr() for each port that is not disabled.
+ *
+ *	LOCKING:
+ *	Obtains host lock during operation.
+ *
+ *	RETURNS:
+ *	IRQ_NONE or IRQ_HANDLED.
+ */
+irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
+{
+	return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr);
+}
+EXPORT_SYMBOL_GPL(ata_sff_interrupt);
+
+/**
+ *	ata_sff_lost_interrupt	-	Check for an apparent lost interrupt
+ *	@ap: port that appears to have timed out
+ *
+ *	Called from the libata error handlers when the core code suspects
+ *	an interrupt has been lost. If it has complete anything we can and
+ *	then return. Interface must support altstatus for this faster
+ *	recovery to occur.
+ *
+ *	Locking:
+ *	Caller holds host lock
+ */
+
+void ata_sff_lost_interrupt(struct ata_port *ap)
+{
+	u8 status;
+	struct ata_queued_cmd *qc;
+
+	/* Only one outstanding command per SFF channel */
+	qc = ata_qc_from_tag(ap, ap->link.active_tag);
+	/* We cannot lose an interrupt on a non-existent or polled command */
+	if (!qc || qc->tf.flags & ATA_TFLAG_POLLING)
+		return;
+	/* See if the controller thinks it is still busy - if so the command
+	   isn't a lost IRQ but is still in progress */
+	status = ata_sff_altstatus(ap);
+	if (status & ATA_BUSY)
+		return;
+
+	/* There was a command running, we are no longer busy and we have
+	   no interrupt. */
+	ata_port_warn(ap, "lost interrupt (Status 0x%x)\n",
+								status);
+	/* Run the host interrupt logic as if the interrupt had not been
+	   lost */
+	ata_sff_port_intr(ap, qc);
+}
+EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt);
+
+/**
+ *	ata_sff_freeze - Freeze SFF controller port
+ *	@ap: port to freeze
+ *
+ *	Freeze SFF controller port.
+ *
+ *	LOCKING:
+ *	Inherited from caller.
+ */
+void ata_sff_freeze(struct ata_port *ap)
+{
+	ap->ctl |= ATA_NIEN;
+	ap->last_ctl = ap->ctl;
+
+	if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr)
+		ata_sff_set_devctl(ap, ap->ctl);
+
+	/* Under certain circumstances, some controllers raise IRQ on
+	 * ATA_NIEN manipulation.  Also, many controllers fail to mask
+	 * previously pending IRQ on ATA_NIEN assertion.  Clear it.
+	 */
+	ap->ops->sff_check_status(ap);
+
+	if (ap->ops->sff_irq_clear)
+		ap->ops->sff_irq_clear(ap);
+}
+EXPORT_SYMBOL_GPL(ata_sff_freeze);
+
+/**
+ *	ata_sff_thaw - Thaw SFF controller port
+ *	@ap: port to thaw
+ *
+ *	Thaw SFF controller port.
+ *
+ *	LOCKING:
+ *	Inherited from caller.
+ */
+void ata_sff_thaw(struct ata_port *ap)
+{
+	/* clear & re-enable interrupts */
+	ap->ops->sff_check_status(ap);
+	if (ap->ops->sff_irq_clear)
+		ap->ops->sff_irq_clear(ap);
+	ata_sff_irq_on(ap);
+}
+EXPORT_SYMBOL_GPL(ata_sff_thaw);
+
+/**
+ *	ata_sff_prereset - prepare SFF link for reset
+ *	@link: SFF link to be reset
+ *	@deadline: deadline jiffies for the operation
+ *
+ *	SFF link @link is about to be reset.  Initialize it.  It first
+ *	calls ata_std_prereset() and wait for !BSY if the port is
+ *	being softreset.
+ *
+ *	LOCKING:
+ *	Kernel thread context (may sleep)
+ *
+ *	RETURNS:
+ *	0 on success, -errno otherwise.
+ */
+int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
+{
+	struct ata_eh_context *ehc = &link->eh_context;
+	int rc;
+
+	rc = ata_std_prereset(link, deadline);
+	if (rc)
+		return rc;
+
+	/* if we're about to do hardreset, nothing more to do */
+	if (ehc->i.action & ATA_EH_HARDRESET)
+		return 0;
+
+	/* wait for !BSY if we don't know that no device is attached */
+	if (!ata_link_offline(link)) {
+		rc = ata_sff_wait_ready(link, deadline);
+		if (rc && rc != -ENODEV) {
+			ata_link_warn(link,
+				      "device not ready (errno=%d), forcing hardreset\n",
+				      rc);
+			ehc->i.action |= ATA_EH_HARDRESET;
+		}
+	}
+
+	return 0;
+}
+EXPORT_SYMBOL_GPL(ata_sff_prereset);
+
+/**
+ *	ata_devchk - PATA device presence detection
+ *	@ap: ATA channel to examine
+ *	@device: Device to examine (starting at zero)
+ *
+ *	This technique was originally described in
+ *	Hale Landis's ATADRVR (www.ata-atapi.com), and
+ *	later found its way into the ATA/ATAPI spec.
+ *
+ *	Write a pattern to the ATA shadow registers,
+ *	and if a device is present, it will respond by
+ *	correctly storing and echoing back the
+ *	ATA shadow register contents.
+ *
+ *	LOCKING:
+ *	caller.
+ */
+static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
+{
+	struct ata_ioports *ioaddr = &ap->ioaddr;
+	u8 nsect, lbal;
+
+	ap->ops->sff_dev_select(ap, device);
+
+	iowrite8(0x55, ioaddr->nsect_addr);
+	iowrite8(0xaa, ioaddr->lbal_addr);
+
+	iowrite8(0xaa, ioaddr->nsect_addr);
+	iowrite8(0x55, ioaddr->lbal_addr);
+
+	iowrite8(0x55, ioaddr->nsect_addr);
+	iowrite8(0xaa, ioaddr->lbal_addr);
+
+	nsect = ioread8(ioaddr->nsect_addr);
+	lbal = ioread8(ioaddr->lbal_addr);
+
+	if ((nsect == 0x55) && (lbal == 0xaa))
+		return 1;	/* we found a device */
+
+	return 0;		/* nothing found */
+}
+
+/**
+ *	ata_sff_dev_classify - Parse returned ATA device signature
+ *	@dev: ATA device to classify (starting at zero)
+ *	@present: device seems present
+ *	@r_err: Value of error register on completion
+ *
+ *	After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
+ *	an ATA/ATAPI-defined set of values is placed in the ATA
+ *	shadow registers, indicating the results of device detection
+ *	and diagnostics.
+ *
+ *	Select the ATA device, and read the values from the ATA shadow
+ *	registers.  Then parse according to the Error register value,
+ *	and the spec-defined values examined by ata_dev_classify().
+ *
+ *	LOCKING:
+ *	caller.
+ *
+ *	RETURNS:
+ *	Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
+ */
+unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
+				  u8 *r_err)
+{
+	struct ata_port *ap = dev->link->ap;
+	struct ata_taskfile tf;
+	unsigned int class;
+	u8 err;
+
+	ap->ops->sff_dev_select(ap, dev->devno);
+
+	memset(&tf, 0, sizeof(tf));
+
+	ap->ops->sff_tf_read(ap, &tf);
+	err = tf.feature;
+	if (r_err)
+		*r_err = err;
+
+	/* see if device passed diags: continue and warn later */
+	if (err == 0)
+		/* diagnostic fail : do nothing _YET_ */
+		dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
+	else if (err == 1)
+		/* do nothing */ ;
+	else if ((dev->devno == 0) && (err == 0x81))
+		/* do nothing */ ;
+	else
+		return ATA_DEV_NONE;
+
+	/* determine if device is ATA or ATAPI */
+	class = ata_dev_classify(&tf);
+
+	if (class == ATA_DEV_UNKNOWN) {
+		/* If the device failed diagnostic, it's likely to
+		 * have reported incorrect device signature too.
+		 * Assume ATA device if the device seems present but
+		 * device signature is invalid with diagnostic
+		 * failure.
+		 */
+		if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
+			class = ATA_DEV_ATA;
+		else
+			class = ATA_DEV_NONE;
+	} else if ((class == ATA_DEV_ATA) &&
+		   (ap->ops->sff_check_status(ap) == 0))
+		class = ATA_DEV_NONE;
+
+	return class;
+}
+EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
+
+/**
+ *	ata_sff_wait_after_reset - wait for devices to become ready after reset
+ *	@link: SFF link which is just reset
+ *	@devmask: mask of present devices
+ *	@deadline: deadline jiffies for the operation
+ *
+ *	Wait devices attached to SFF @link to become ready after
+ *	reset.  It contains preceding 150ms wait to avoid accessing TF
+ *	status register too early.
+ *
+ *	LOCKING:
+ *	Kernel thread context (may sleep).
+ *
+ *	RETURNS:
+ *	0 on success, -ENODEV if some or all of devices in @devmask
+ *	don't seem to exist.  -errno on other errors.
+ */
+int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
+			     unsigned long deadline)
+{
+	struct ata_port *ap = link->ap;
+	struct ata_ioports *ioaddr = &ap->ioaddr;
+	unsigned int dev0 = devmask & (1 << 0);
+	unsigned int dev1 = devmask & (1 << 1);
+	int rc, ret = 0;
+
+	ata_msleep(ap, ATA_WAIT_AFTER_RESET);
+
+	/* always check readiness of the master device */
+	rc = ata_sff_wait_ready(link, deadline);
+	/* -ENODEV means the odd clown forgot the D7 pulldown resistor
+	 * and TF status is 0xff, bail out on it too.
+	 */
+	if (rc)
+		return rc;
+
+	/* if device 1 was found in ata_devchk, wait for register
+	 * access briefly, then wait for BSY to clear.
+	 */
+	if (dev1) {
+		int i;
+
+		ap->ops->sff_dev_select(ap, 1);
+
+		/* Wait for register access.  Some ATAPI devices fail
+		 * to set nsect/lbal after reset, so don't waste too
+		 * much time on it.  We're gonna wait for !BSY anyway.
+		 */
+		for (i = 0; i < 2; i++) {
+			u8 nsect, lbal;
+
+			nsect = ioread8(ioaddr->nsect_addr);
+			lbal = ioread8(ioaddr->lbal_addr);
+			if ((nsect == 1) && (lbal == 1))
+				break;
+			ata_msleep(ap, 50);	/* give drive a breather */
+		}
+
+		rc = ata_sff_wait_ready(link, deadline);
+		if (rc) {
+			if (rc != -ENODEV)
+				return rc;
+			ret = rc;
+		}
+	}
+
+	/* is all this really necessary? */
+	ap->ops->sff_dev_select(ap, 0);
+	if (dev1)
+		ap->ops->sff_dev_select(ap, 1);
+	if (dev0)
+		ap->ops->sff_dev_select(ap, 0);
+
+	return ret;
+}
+EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
+
+static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
+			     unsigned long deadline)
+{
+	struct ata_ioports *ioaddr = &ap->ioaddr;
+
+	DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
+
+	if (ap->ioaddr.ctl_addr) {
+		/* software reset.  causes dev0 to be selected */
+		iowrite8(ap->ctl, ioaddr->ctl_addr);
+		udelay(20);	/* FIXME: flush */
+		iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
+		udelay(20);	/* FIXME: flush */
+		iowrite8(ap->ctl, ioaddr->ctl_addr);
+		ap->last_ctl = ap->ctl;
+	}
+
+	/* wait the port to become ready */
+	return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
+}
+
+/**
+ *	ata_sff_softreset - reset host port via ATA SRST
+ *	@link: ATA link to reset
+ *	@classes: resulting classes of attached devices
+ *	@deadline: deadline jiffies for the operation
+ *
+ *	Reset host port using ATA SRST.
+ *
+ *	LOCKING:
+ *	Kernel thread context (may sleep)
+ *
+ *	RETURNS:
+ *	0 on success, -errno otherwise.
+ */
+int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
+		      unsigned long deadline)
+{
+	struct ata_port *ap = link->ap;
+	unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
+	unsigned int devmask = 0;
+	int rc;
+	u8 err;
+
+	DPRINTK("ENTER\n");
+
+	/* determine if device 0/1 are present */
+	if (ata_devchk(ap, 0))
+		devmask |= (1 << 0);
+	if (slave_possible && ata_devchk(ap, 1))
+		devmask |= (1 << 1);
+
+	/* select device 0 again */
+	ap->ops->sff_dev_select(ap, 0);
+
+	/* issue bus reset */
+	DPRINTK("about to softreset, devmask=%x\n", devmask);
+	rc = ata_bus_softreset(ap, devmask, deadline);
+	/* if link is occupied, -ENODEV too is an error */
+	if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
+		ata_link_err(link, "SRST failed (errno=%d)\n", rc);
+		return rc;
+	}
+
+	/* determine by signature whether we have ATA or ATAPI devices */
+	classes[0] = ata_sff_dev_classify(&link->device[0],
+					  devmask & (1 << 0), &err);
+	if (slave_possible && err != 0x81)
+		classes[1] = ata_sff_dev_classify(&link->device[1],
+						  devmask & (1 << 1), &err);
+
+	DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
+	return 0;
+}
+EXPORT_SYMBOL_GPL(ata_sff_softreset);
+
+/**
+ *	sata_sff_hardreset - reset host port via SATA phy reset
+ *	@link: link to reset
+ *	@class: resulting class of attached device
+ *	@deadline: deadline jiffies for the operation
+ *
+ *	SATA phy-reset host port using DET bits of SControl register,
+ *	wait for !BSY and classify the attached device.
+ *
+ *	LOCKING:
+ *	Kernel thread context (may sleep)
+ *
+ *	RETURNS:
+ *	0 on success, -errno otherwise.
+ */
+int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
+		       unsigned long deadline)
+{
+	struct ata_eh_context *ehc = &link->eh_context;
+	const unsigned long *timing = sata_ehc_deb_timing(ehc);
+	bool online;
+	int rc;
+
+	rc = sata_link_hardreset(link, timing, deadline, &online,
+				 ata_sff_check_ready);
+	if (online)
+		*class = ata_sff_dev_classify(link->device, 1, NULL);
+
+	DPRINTK("EXIT, class=%u\n", *class);
+	return rc;
+}
+EXPORT_SYMBOL_GPL(sata_sff_hardreset);
+
+/**
+ *	ata_sff_postreset - SFF postreset callback
+ *	@link: the target SFF ata_link
+ *	@classes: classes of attached devices
+ *
+ *	This function is invoked after a successful reset.  It first
+ *	calls ata_std_postreset() and performs SFF specific postreset
+ *	processing.
+ *
+ *	LOCKING:
+ *	Kernel thread context (may sleep)
+ */
+void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
+{
+	struct ata_port *ap = link->ap;
+
+	ata_std_postreset(link, classes);
+
+	/* is double-select really necessary? */
+	if (classes[0] != ATA_DEV_NONE)
+		ap->ops->sff_dev_select(ap, 1);
+	if (classes[1] != ATA_DEV_NONE)
+		ap->ops->sff_dev_select(ap, 0);
+
+	/* bail out if no device is present */
+	if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
+		DPRINTK("EXIT, no device\n");
+		return;
+	}
+
+	/* set up device control */
+	if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr) {
+		ata_sff_set_devctl(ap, ap->ctl);
+		ap->last_ctl = ap->ctl;
+	}
+}
+EXPORT_SYMBOL_GPL(ata_sff_postreset);
+
+/**
+ *	ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers
+ *	@qc: command
+ *
+ *	Drain the FIFO and device of any stuck data following a command
+ *	failing to complete. In some cases this is necessary before a
+ *	reset will recover the device.
+ *
+ */
+
+void ata_sff_drain_fifo(struct ata_queued_cmd *qc)
+{
+	int count;
+	struct ata_port *ap;
+
+	/* We only need to flush incoming data when a command was running */
+	if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE)
+		return;
+
+	ap = qc->ap;
+	/* Drain up to 64K of data before we give up this recovery method */
+	for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ)
+						&& count < 65536; count += 2)
+		ioread16(ap->ioaddr.data_addr);
+
+	/* Can become DEBUG later */
+	if (count)
+		ata_port_dbg(ap, "drained %d bytes to clear DRQ\n", count);
+
+}
+EXPORT_SYMBOL_GPL(ata_sff_drain_fifo);
+
+/**
+ *	ata_sff_error_handler - Stock error handler for SFF controller
+ *	@ap: port to handle error for
+ *
+ *	Stock error handler for SFF controller.  It can handle both
+ *	PATA and SATA controllers.  Many controllers should be able to
+ *	use this EH as-is or with some added handling before and
+ *	after.
+ *
+ *	LOCKING:
+ *	Kernel thread context (may sleep)
+ */
+void ata_sff_error_handler(struct ata_port *ap)
+{
+	ata_reset_fn_t softreset = ap->ops->softreset;
+	ata_reset_fn_t hardreset = ap->ops->hardreset;
+	struct ata_queued_cmd *qc;
+	unsigned long flags;
+
+	qc = __ata_qc_from_tag(ap, ap->link.active_tag);
+	if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
+		qc = NULL;
+
+	spin_lock_irqsave(ap->lock, flags);
+
+	/*
+	 * We *MUST* do FIFO draining before we issue a reset as
+	 * several devices helpfully clear their internal state and
+	 * will lock solid if we touch the data port post reset. Pass
+	 * qc in case anyone wants to do different PIO/DMA recovery or
+	 * has per command fixups
+	 */
+	if (ap->ops->sff_drain_fifo)
+		ap->ops->sff_drain_fifo(qc);
+
+	spin_unlock_irqrestore(ap->lock, flags);
+
+	/* ignore built-in hardresets if SCR access is not available */
+	if ((hardreset == sata_std_hardreset ||
+	     hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link))
+		hardreset = NULL;
+
+	ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
+		  ap->ops->postreset);
+}
+EXPORT_SYMBOL_GPL(ata_sff_error_handler);
+
+/**
+ *	ata_sff_std_ports - initialize ioaddr with standard port offsets.
+ *	@ioaddr: IO address structure to be initialized
+ *
+ *	Utility function which initializes data_addr, error_addr,
+ *	feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
+ *	device_addr, status_addr, and command_addr to standard offsets
+ *	relative to cmd_addr.
+ *
+ *	Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
+ */
+void ata_sff_std_ports(struct ata_ioports *ioaddr)
+{
+	ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
+	ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
+	ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
+	ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
+	ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
+	ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
+	ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
+	ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
+	ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
+	ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
+}
+EXPORT_SYMBOL_GPL(ata_sff_std_ports);
+
+#ifdef CONFIG_PCI
+
+static int ata_resources_present(struct pci_dev *pdev, int port)
+{
+	int i;
+
+	/* Check the PCI resources for this channel are enabled */
+	port = port * 2;
+	for (i = 0; i < 2; i++) {
+		if (pci_resource_start(pdev, port + i) == 0 ||
+		    pci_resource_len(pdev, port + i) == 0)
+			return 0;
+	}
+	return 1;
+}
+
+/**
+ *	ata_pci_sff_init_host - acquire native PCI ATA resources and init host
+ *	@host: target ATA host
+ *
+ *	Acquire native PCI ATA resources for @host and initialize the
+ *	first two ports of @host accordingly.  Ports marked dummy are
+ *	skipped and allocation failure makes the port dummy.
+ *
+ *	Note that native PCI resources are valid even for legacy hosts
+ *	as we fix up pdev resources array early in boot, so this
+ *	function can be used for both native and legacy SFF hosts.
+ *
+ *	LOCKING:
+ *	Inherited from calling layer (may sleep).
+ *
+ *	RETURNS:
+ *	0 if at least one port is initialized, -ENODEV if no port is
+ *	available.
+ */
+int ata_pci_sff_init_host(struct ata_host *host)
+{
+	struct device *gdev = host->dev;
+	struct pci_dev *pdev = to_pci_dev(gdev);
+	unsigned int mask = 0;
+	int i, rc;
+
+	/* request, iomap BARs and init port addresses accordingly */
+	for (i = 0; i < 2; i++) {
+		struct ata_port *ap = host->ports[i];
+		int base = i * 2;
+		void __iomem * const *iomap;
+
+		if (ata_port_is_dummy(ap))
+			continue;
+
+		/* Discard disabled ports.  Some controllers show
+		 * their unused channels this way.  Disabled ports are
+		 * made dummy.
+		 */
+		if (!ata_resources_present(pdev, i)) {
+			ap->ops = &ata_dummy_port_ops;
+			continue;
+		}
+
+		rc = pcim_iomap_regions(pdev, 0x3 << base,
+					dev_driver_string(gdev));
+		if (rc) {
+			dev_warn(gdev,
+				 "failed to request/iomap BARs for port %d (errno=%d)\n",
+				 i, rc);
+			if (rc == -EBUSY)
+				pcim_pin_device(pdev);
+			ap->ops = &ata_dummy_port_ops;
+			continue;
+		}
+		host->iomap = iomap = pcim_iomap_table(pdev);
+
+		ap->ioaddr.cmd_addr = iomap[base];
+		ap->ioaddr.altstatus_addr =
+		ap->ioaddr.ctl_addr = (void __iomem *)
+			((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
+		ata_sff_std_ports(&ap->ioaddr);
+
+		ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
+			(unsigned long long)pci_resource_start(pdev, base),
+			(unsigned long long)pci_resource_start(pdev, base + 1));
+
+		mask |= 1 << i;
+	}
+
+	if (!mask) {
+		dev_err(gdev, "no available native port\n");
+		return -ENODEV;
+	}
+
+	return 0;
+}
+EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
+
+/**
+ *	ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host
+ *	@pdev: target PCI device
+ *	@ppi: array of port_info, must be enough for two ports
+ *	@r_host: out argument for the initialized ATA host
+ *
+ *	Helper to allocate PIO-only SFF ATA host for @pdev, acquire
+ *	all PCI resources and initialize it accordingly in one go.
+ *
+ *	LOCKING:
+ *	Inherited from calling layer (may sleep).
+ *
+ *	RETURNS:
+ *	0 on success, -errno otherwise.
+ */
+int ata_pci_sff_prepare_host(struct pci_dev *pdev,
+			     const struct ata_port_info * const *ppi,
+			     struct ata_host **r_host)
+{
+	struct ata_host *host;
+	int rc;
+
+	if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
+		return -ENOMEM;
+
+	host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
+	if (!host) {
+		dev_err(&pdev->dev, "failed to allocate ATA host\n");
+		rc = -ENOMEM;
+		goto err_out;
+	}
+
+	rc = ata_pci_sff_init_host(host);
+	if (rc)
+		goto err_out;
+
+	devres_remove_group(&pdev->dev, NULL);
+	*r_host = host;
+	return 0;
+
+err_out:
+	devres_release_group(&pdev->dev, NULL);
+	return rc;
+}
+EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
+
+/**
+ *	ata_pci_sff_activate_host - start SFF host, request IRQ and register it
+ *	@host: target SFF ATA host
+ *	@irq_handler: irq_handler used when requesting IRQ(s)
+ *	@sht: scsi_host_template to use when registering the host
+ *
+ *	This is the counterpart of ata_host_activate() for SFF ATA
+ *	hosts.  This separate helper is necessary because SFF hosts
+ *	use two separate interrupts in legacy mode.
+ *
+ *	LOCKING:
+ *	Inherited from calling layer (may sleep).
+ *
+ *	RETURNS:
+ *	0 on success, -errno otherwise.
+ */
+int ata_pci_sff_activate_host(struct ata_host *host,
+			      irq_handler_t irq_handler,
+			      struct scsi_host_template *sht)
+{
+	struct device *dev = host->dev;
+	struct pci_dev *pdev = to_pci_dev(dev);
+	const char *drv_name = dev_driver_string(host->dev);
+	int legacy_mode = 0, rc;
+
+	rc = ata_host_start(host);
+	if (rc)
+		return rc;
+
+	if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
+		u8 tmp8, mask = 0;
+
+		/*
+		 * ATA spec says we should use legacy mode when one
+		 * port is in legacy mode, but disabled ports on some
+		 * PCI hosts appear as fixed legacy ports, e.g SB600/700
+		 * on which the secondary port is not wired, so
+		 * ignore ports that are marked as 'dummy' during
+		 * this check
+		 */
+		pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
+		if (!ata_port_is_dummy(host->ports[0]))
+			mask |= (1 << 0);
+		if (!ata_port_is_dummy(host->ports[1]))
+			mask |= (1 << 2);
+		if ((tmp8 & mask) != mask)
+			legacy_mode = 1;
+	}
+
+	if (!devres_open_group(dev, NULL, GFP_KERNEL))
+		return -ENOMEM;
+
+	if (!legacy_mode && pdev->irq) {
+		int i;
+
+		rc = devm_request_irq(dev, pdev->irq, irq_handler,
+				      IRQF_SHARED, drv_name, host);
+		if (rc)
+			goto out;
+
+		for (i = 0; i < 2; i++) {
+			if (ata_port_is_dummy(host->ports[i]))
+				continue;
+			ata_port_desc(host->ports[i], "irq %d", pdev->irq);
+		}
+	} else if (legacy_mode) {
+		if (!ata_port_is_dummy(host->ports[0])) {
+			rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
+					      irq_handler, IRQF_SHARED,
+					      drv_name, host);
+			if (rc)
+				goto out;
+
+			ata_port_desc(host->ports[0], "irq %d",
+				      ATA_PRIMARY_IRQ(pdev));
+		}
+
+		if (!ata_port_is_dummy(host->ports[1])) {
+			rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
+					      irq_handler, IRQF_SHARED,
+					      drv_name, host);
+			if (rc)
+				goto out;
+
+			ata_port_desc(host->ports[1], "irq %d",
+				      ATA_SECONDARY_IRQ(pdev));
+		}
+	}
+
+	rc = ata_host_register(host, sht);
+out:
+	if (rc == 0)
+		devres_remove_group(dev, NULL);
+	else
+		devres_release_group(dev, NULL);
+
+	return rc;
+}
+EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
+
+static const struct ata_port_info *ata_sff_find_valid_pi(
+					const struct ata_port_info * const *ppi)
+{
+	int i;
+
+	/* look up the first valid port_info */
+	for (i = 0; i < 2 && ppi[i]; i++)
+		if (ppi[i]->port_ops != &ata_dummy_port_ops)
+			return ppi[i];
+
+	return NULL;
+}
+
+static int ata_pci_init_one(struct pci_dev *pdev,
+		const struct ata_port_info * const *ppi,
+		struct scsi_host_template *sht, void *host_priv,
+		int hflags, bool bmdma)
+{
+	struct device *dev = &pdev->dev;
+	const struct ata_port_info *pi;
+	struct ata_host *host = NULL;
+	int rc;
+
+	DPRINTK("ENTER\n");
+
+	pi = ata_sff_find_valid_pi(ppi);
+	if (!pi) {
+		dev_err(&pdev->dev, "no valid port_info specified\n");
+		return -EINVAL;
+	}
+
+	if (!devres_open_group(dev, NULL, GFP_KERNEL))
+		return -ENOMEM;
+
+	rc = pcim_enable_device(pdev);
+	if (rc)
+		goto out;
+
+#ifdef CONFIG_ATA_BMDMA
+	if (bmdma)
+		/* prepare and activate BMDMA host */
+		rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host);
+	else
+#endif
+		/* prepare and activate SFF host */
+		rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
+	if (rc)
+		goto out;
+	host->private_data = host_priv;
+	host->flags |= hflags;
+
+#ifdef CONFIG_ATA_BMDMA
+	if (bmdma) {
+		pci_set_master(pdev);
+		rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht);
+	} else
+#endif
+		rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht);
+out:
+	if (rc == 0)
+		devres_remove_group(&pdev->dev, NULL);
+	else
+		devres_release_group(&pdev->dev, NULL);
+
+	return rc;
+}
+
+/**
+ *	ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller
+ *	@pdev: Controller to be initialized
+ *	@ppi: array of port_info, must be enough for two ports
+ *	@sht: scsi_host_template to use when registering the host
+ *	@host_priv: host private_data
+ *	@hflag: host flags
+ *
+ *	This is a helper function which can be called from a driver's
+ *	xxx_init_one() probe function if the hardware uses traditional
+ *	IDE taskfile registers and is PIO only.
+ *
+ *	ASSUMPTION:
+ *	Nobody makes a single channel controller that appears solely as
+ *	the secondary legacy port on PCI.
+ *
+ *	LOCKING:
+ *	Inherited from PCI layer (may sleep).
+ *
+ *	RETURNS:
+ *	Zero on success, negative on errno-based value on error.
+ */
+int ata_pci_sff_init_one(struct pci_dev *pdev,
+		 const struct ata_port_info * const *ppi,
+		 struct scsi_host_template *sht, void *host_priv, int hflag)
+{
+	return ata_pci_init_one(pdev, ppi, sht, host_priv, hflag, 0);
+}
+EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
+
+#endif /* CONFIG_PCI */
+
+/*
+ *	BMDMA support
+ */
+
+#ifdef CONFIG_ATA_BMDMA
+
+const struct ata_port_operations ata_bmdma_port_ops = {
+	.inherits		= &ata_sff_port_ops,
+
+	.error_handler		= ata_bmdma_error_handler,
+	.post_internal_cmd	= ata_bmdma_post_internal_cmd,
+
+	.qc_prep		= ata_bmdma_qc_prep,
+	.qc_issue		= ata_bmdma_qc_issue,
+
+	.sff_irq_clear		= ata_bmdma_irq_clear,
+	.bmdma_setup		= ata_bmdma_setup,
+	.bmdma_start		= ata_bmdma_start,
+	.bmdma_stop		= ata_bmdma_stop,
+	.bmdma_status		= ata_bmdma_status,
+
+	.port_start		= ata_bmdma_port_start,
+};
+EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
+
+const struct ata_port_operations ata_bmdma32_port_ops = {
+	.inherits		= &ata_bmdma_port_ops,
+
+	.sff_data_xfer		= ata_sff_data_xfer32,
+	.port_start		= ata_bmdma_port_start32,
+};
+EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops);
+
+/**
+ *	ata_bmdma_fill_sg - Fill PCI IDE PRD table
+ *	@qc: Metadata associated with taskfile to be transferred
+ *
+ *	Fill PCI IDE PRD (scatter-gather) table with segments
+ *	associated with the current disk command.
+ *
+ *	LOCKING:
+ *	spin_lock_irqsave(host lock)
+ *
+ */
+static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc)
+{
+	struct ata_port *ap = qc->ap;
+	struct ata_bmdma_prd *prd = ap->bmdma_prd;
+	struct scatterlist *sg;
+	unsigned int si, pi;
+
+	pi = 0;
+	for_each_sg(qc->sg, sg, qc->n_elem, si) {
+		u32 addr, offset;
+		u32 sg_len, len;
+
+		/* determine if physical DMA addr spans 64K boundary.
+		 * Note h/w doesn't support 64-bit, so we unconditionally
+		 * truncate dma_addr_t to u32.
+		 */
+		addr = (u32) sg_dma_address(sg);
+		sg_len = sg_dma_len(sg);
+
+		while (sg_len) {
+			offset = addr & 0xffff;
+			len = sg_len;
+			if ((offset + sg_len) > 0x10000)
+				len = 0x10000 - offset;
+
+			prd[pi].addr = cpu_to_le32(addr);
+			prd[pi].flags_len = cpu_to_le32(len & 0xffff);
+			VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
+
+			pi++;
+			sg_len -= len;
+			addr += len;
+		}
+	}
+
+	prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
+}
+
+/**
+ *	ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table
+ *	@qc: Metadata associated with taskfile to be transferred
+ *
+ *	Fill PCI IDE PRD (scatter-gather) table with segments
+ *	associated with the current disk command. Perform the fill
+ *	so that we avoid writing any length 64K records for
+ *	controllers that don't follow the spec.
+ *
+ *	LOCKING:
+ *	spin_lock_irqsave(host lock)
+ *
+ */
+static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc)
+{
+	struct ata_port *ap = qc->ap;
+	struct ata_bmdma_prd *prd = ap->bmdma_prd;
+	struct scatterlist *sg;
+	unsigned int si, pi;
+
+	pi = 0;
+	for_each_sg(qc->sg, sg, qc->n_elem, si) {
+		u32 addr, offset;
+		u32 sg_len, len, blen;
+
+		/* determine if physical DMA addr spans 64K boundary.
+		 * Note h/w doesn't support 64-bit, so we unconditionally
+		 * truncate dma_addr_t to u32.
+		 */
+		addr = (u32) sg_dma_address(sg);
+		sg_len = sg_dma_len(sg);
+
+		while (sg_len) {
+			offset = addr & 0xffff;
+			len = sg_len;
+			if ((offset + sg_len) > 0x10000)
+				len = 0x10000 - offset;
+
+			blen = len & 0xffff;
+			prd[pi].addr = cpu_to_le32(addr);
+			if (blen == 0) {
+				/* Some PATA chipsets like the CS5530 can't
+				   cope with 0x0000 meaning 64K as the spec
+				   says */
+				prd[pi].flags_len = cpu_to_le32(0x8000);
+				blen = 0x8000;
+				prd[++pi].addr = cpu_to_le32(addr + 0x8000);
+			}
+			prd[pi].flags_len = cpu_to_le32(blen);
+			VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
+
+			pi++;
+			sg_len -= len;
+			addr += len;
+		}
+	}
+
+	prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
+}
+
+/**
+ *	ata_bmdma_qc_prep - Prepare taskfile for submission
+ *	@qc: Metadata associated with taskfile to be prepared
+ *
+ *	Prepare ATA taskfile for submission.
+ *
+ *	LOCKING:
+ *	spin_lock_irqsave(host lock)
+ */
+void ata_bmdma_qc_prep(struct ata_queued_cmd *qc)
+{
+	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
+		return;
+
+	ata_bmdma_fill_sg(qc);
+}
+EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep);
+
+/**
+ *	ata_bmdma_dumb_qc_prep - Prepare taskfile for submission
+ *	@qc: Metadata associated with taskfile to be prepared
+ *
+ *	Prepare ATA taskfile for submission.
+ *
+ *	LOCKING:
+ *	spin_lock_irqsave(host lock)
+ */
+void ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc)
+{
+	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
+		return;
+
+	ata_bmdma_fill_sg_dumb(qc);
+}
+EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep);
+
+/**
+ *	ata_bmdma_qc_issue - issue taskfile to a BMDMA controller
+ *	@qc: command to issue to device
+ *
+ *	This function issues a PIO, NODATA or DMA command to a
+ *	SFF/BMDMA controller.  PIO and NODATA are handled by
+ *	ata_sff_qc_issue().
+ *
+ *	LOCKING:
+ *	spin_lock_irqsave(host lock)
+ *
+ *	RETURNS:
+ *	Zero on success, AC_ERR_* mask on failure
+ */
+unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc)
+{
+	struct ata_port *ap = qc->ap;
+	struct ata_link *link = qc->dev->link;
+
+	/* defer PIO handling to sff_qc_issue */
+	if (!ata_is_dma(qc->tf.protocol))
+		return ata_sff_qc_issue(qc);
+
+	/* select the device */
+	ata_dev_select(ap, qc->dev->devno, 1, 0);
+
+	/* start the command */
+	switch (qc->tf.protocol) {
+	case ATA_PROT_DMA:
+		WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
+
+		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
+		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
+		ap->ops->bmdma_start(qc);	    /* initiate bmdma */
+		ap->hsm_task_state = HSM_ST_LAST;
+		break;
+
+	case ATAPI_PROT_DMA:
+		WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
+
+		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
+		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
+		ap->hsm_task_state = HSM_ST_FIRST;
+
+		/* send cdb by polling if no cdb interrupt */
+		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
+			ata_sff_queue_pio_task(link, 0);
+		break;
+
+	default:
+		WARN_ON(1);
+		return AC_ERR_SYSTEM;
+	}
+
+	return 0;
+}
+EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue);
+
+/**
+ *	ata_bmdma_port_intr - Handle BMDMA port interrupt
+ *	@ap: Port on which interrupt arrived (possibly...)
+ *	@qc: Taskfile currently active in engine
+ *
+ *	Handle port interrupt for given queued command.
+ *
+ *	LOCKING:
+ *	spin_lock_irqsave(host lock)
+ *
+ *	RETURNS:
+ *	One if interrupt was handled, zero if not (shared irq).
+ */
+unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
+{
+	struct ata_eh_info *ehi = &ap->link.eh_info;
+	u8 host_stat = 0;
+	bool bmdma_stopped = false;
+	unsigned int handled;
+
+	if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) {
+		/* check status of DMA engine */
+		host_stat = ap->ops->bmdma_status(ap);
+		VPRINTK("ata%u: host_stat 0x%X\n", ap->print_id, host_stat);
+
+		/* if it's not our irq... */
+		if (!(host_stat & ATA_DMA_INTR))
+			return ata_sff_idle_irq(ap);
+
+		/* before we do anything else, clear DMA-Start bit */
+		ap->ops->bmdma_stop(qc);
+		bmdma_stopped = true;
+
+		if (unlikely(host_stat & ATA_DMA_ERR)) {
+			/* error when transferring data to/from memory */
+			qc->err_mask |= AC_ERR_HOST_BUS;
+			ap->hsm_task_state = HSM_ST_ERR;
+		}
+	}
+
+	handled = __ata_sff_port_intr(ap, qc, bmdma_stopped);
+
+	if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol))
+		ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
+
+	return handled;
+}
+EXPORT_SYMBOL_GPL(ata_bmdma_port_intr);
+
+/**
+ *	ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler
+ *	@irq: irq line (unused)
+ *	@dev_instance: pointer to our ata_host information structure
+ *
+ *	Default interrupt handler for PCI IDE devices.  Calls
+ *	ata_bmdma_port_intr() for each port that is not disabled.
+ *
+ *	LOCKING:
+ *	Obtains host lock during operation.
+ *
+ *	RETURNS:
+ *	IRQ_NONE or IRQ_HANDLED.
+ */
+irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance)
+{
+	return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr);
+}
+EXPORT_SYMBOL_GPL(ata_bmdma_interrupt);
+
+/**
+ *	ata_bmdma_error_handler - Stock error handler for BMDMA controller
+ *	@ap: port to handle error for
+ *
+ *	Stock error handler for BMDMA controller.  It can handle both
+ *	PATA and SATA controllers.  Most BMDMA controllers should be
+ *	able to use this EH as-is or with some added handling before
+ *	and after.
+ *
+ *	LOCKING:
+ *	Kernel thread context (may sleep)
+ */
+void ata_bmdma_error_handler(struct ata_port *ap)
+{
+	struct ata_queued_cmd *qc;
+	unsigned long flags;
+	bool thaw = false;
+
+	qc = __ata_qc_from_tag(ap, ap->link.active_tag);
+	if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
+		qc = NULL;
+
+	/* reset PIO HSM and stop DMA engine */
+	spin_lock_irqsave(ap->lock, flags);
+
+	if (qc && ata_is_dma(qc->tf.protocol)) {
+		u8 host_stat;
+
+		host_stat = ap->ops->bmdma_status(ap);
+
+		/* BMDMA controllers indicate host bus error by
+		 * setting DMA_ERR bit and timing out.  As it wasn't
+		 * really a timeout event, adjust error mask and
+		 * cancel frozen state.
+		 */
+		if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) {
+			qc->err_mask = AC_ERR_HOST_BUS;
+			thaw = true;
+		}
+
+		ap->ops->bmdma_stop(qc);
+
+		/* if we're gonna thaw, make sure IRQ is clear */
+		if (thaw) {
+			ap->ops->sff_check_status(ap);
+			if (ap->ops->sff_irq_clear)
+				ap->ops->sff_irq_clear(ap);
+		}
+	}
+
+	spin_unlock_irqrestore(ap->lock, flags);
+
+	if (thaw)
+		ata_eh_thaw_port(ap);
+
+	ata_sff_error_handler(ap);
+}
+EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
+
+/**
+ *	ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA
+ *	@qc: internal command to clean up
+ *
+ *	LOCKING:
+ *	Kernel thread context (may sleep)
+ */
+void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc)
+{
+	struct ata_port *ap = qc->ap;
+	unsigned long flags;
+
+	if (ata_is_dma(qc->tf.protocol)) {
+		spin_lock_irqsave(ap->lock, flags);
+		ap->ops->bmdma_stop(qc);
+		spin_unlock_irqrestore(ap->lock, flags);
+	}
+}
+EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
+
+/**
+ *	ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
+ *	@ap: Port associated with this ATA transaction.
+ *
+ *	Clear interrupt and error flags in DMA status register.
+ *
+ *	May be used as the irq_clear() entry in ata_port_operations.
+ *
+ *	LOCKING:
+ *	spin_lock_irqsave(host lock)
+ */
+void ata_bmdma_irq_clear(struct ata_port *ap)
+{
+	void __iomem *mmio = ap->ioaddr.bmdma_addr;
+
+	if (!mmio)
+		return;
+
+	iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
+}
+EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
+
+/**
+ *	ata_bmdma_setup - Set up PCI IDE BMDMA transaction
+ *	@qc: Info associated with this ATA transaction.
+ *
+ *	LOCKING:
+ *	spin_lock_irqsave(host lock)
+ */
+void ata_bmdma_setup(struct ata_queued_cmd *qc)
+{
+	struct ata_port *ap = qc->ap;
+	unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
+	u8 dmactl;
+
+	/* load PRD table addr. */
+	mb();	/* make sure PRD table writes are visible to controller */
+	iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
+
+	/* specify data direction, triple-check start bit is clear */
+	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
+	dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
+	if (!rw)
+		dmactl |= ATA_DMA_WR;
+	iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
+
+	/* issue r/w command */
+	ap->ops->sff_exec_command(ap, &qc->tf);
+}
+EXPORT_SYMBOL_GPL(ata_bmdma_setup);
+
+/**
+ *	ata_bmdma_start - Start a PCI IDE BMDMA transaction
+ *	@qc: Info associated with this ATA transaction.
+ *
+ *	LOCKING:
+ *	spin_lock_irqsave(host lock)
+ */
+void ata_bmdma_start(struct ata_queued_cmd *qc)
+{
+	struct ata_port *ap = qc->ap;
+	u8 dmactl;
+
+	/* start host DMA transaction */
+	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
+	iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
+
+	/* Strictly, one may wish to issue an ioread8() here, to
+	 * flush the mmio write.  However, control also passes
+	 * to the hardware at this point, and it will interrupt
+	 * us when we are to resume control.  So, in effect,
+	 * we don't care when the mmio write flushes.
+	 * Further, a read of the DMA status register _immediately_
+	 * following the write may not be what certain flaky hardware
+	 * is expected, so I think it is best to not add a readb()
+	 * without first all the MMIO ATA cards/mobos.
+	 * Or maybe I'm just being paranoid.
+	 *
+	 * FIXME: The posting of this write means I/O starts are
+	 * unnecessarily delayed for MMIO
+	 */
+}
+EXPORT_SYMBOL_GPL(ata_bmdma_start);
+
+/**
+ *	ata_bmdma_stop - Stop PCI IDE BMDMA transfer
+ *	@qc: Command we are ending DMA for
+ *
+ *	Clears the ATA_DMA_START flag in the dma control register
+ *
+ *	May be used as the bmdma_stop() entry in ata_port_operations.
+ *
+ *	LOCKING:
+ *	spin_lock_irqsave(host lock)
+ */
+void ata_bmdma_stop(struct ata_queued_cmd *qc)
+{
+	struct ata_port *ap = qc->ap;
+	void __iomem *mmio = ap->ioaddr.bmdma_addr;
+
+	/* clear start/stop bit */
+	iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
+		 mmio + ATA_DMA_CMD);
+
+	/* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
+	ata_sff_dma_pause(ap);
+}
+EXPORT_SYMBOL_GPL(ata_bmdma_stop);
+
+/**
+ *	ata_bmdma_status - Read PCI IDE BMDMA status
+ *	@ap: Port associated with this ATA transaction.
+ *
+ *	Read and return BMDMA status register.
+ *
+ *	May be used as the bmdma_status() entry in ata_port_operations.
+ *
+ *	LOCKING:
+ *	spin_lock_irqsave(host lock)
+ */
+u8 ata_bmdma_status(struct ata_port *ap)
+{
+	return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
+}
+EXPORT_SYMBOL_GPL(ata_bmdma_status);
+
+
+/**
+ *	ata_bmdma_port_start - Set port up for bmdma.
+ *	@ap: Port to initialize
+ *
+ *	Called just after data structures for each port are
+ *	initialized.  Allocates space for PRD table.
+ *
+ *	May be used as the port_start() entry in ata_port_operations.
+ *
+ *	LOCKING:
+ *	Inherited from caller.
+ */
+int ata_bmdma_port_start(struct ata_port *ap)
+{
+	if (ap->mwdma_mask || ap->udma_mask) {
+		ap->bmdma_prd =
+			dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ,
+					    &ap->bmdma_prd_dma, GFP_KERNEL);
+		if (!ap->bmdma_prd)
+			return -ENOMEM;
+	}
+
+	return 0;
+}
+EXPORT_SYMBOL_GPL(ata_bmdma_port_start);
+
+/**
+ *	ata_bmdma_port_start32 - Set port up for dma.
+ *	@ap: Port to initialize
+ *
+ *	Called just after data structures for each port are
+ *	initialized.  Enables 32bit PIO and allocates space for PRD
+ *	table.
+ *
+ *	May be used as the port_start() entry in ata_port_operations for
+ *	devices that are capable of 32bit PIO.
+ *
+ *	LOCKING:
+ *	Inherited from caller.
+ */
+int ata_bmdma_port_start32(struct ata_port *ap)
+{
+	ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE;
+	return ata_bmdma_port_start(ap);
+}
+EXPORT_SYMBOL_GPL(ata_bmdma_port_start32);
+
+#ifdef CONFIG_PCI
+
+/**
+ *	ata_pci_bmdma_clear_simplex -	attempt to kick device out of simplex
+ *	@pdev: PCI device
+ *
+ *	Some PCI ATA devices report simplex mode but in fact can be told to
+ *	enter non simplex mode. This implements the necessary logic to
+ *	perform the task on such devices. Calling it on other devices will
+ *	have -undefined- behaviour.
+ */
+int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
+{
+	unsigned long bmdma = pci_resource_start(pdev, 4);
+	u8 simplex;
+
+	if (bmdma == 0)
+		return -ENOENT;
+
+	simplex = inb(bmdma + 0x02);
+	outb(simplex & 0x60, bmdma + 0x02);
+	simplex = inb(bmdma + 0x02);
+	if (simplex & 0x80)
+		return -EOPNOTSUPP;
+	return 0;
+}
+EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
+
+static void ata_bmdma_nodma(struct ata_host *host, const char *reason)
+{
+	int i;
+
+	dev_err(host->dev, "BMDMA: %s, falling back to PIO\n", reason);
+
+	for (i = 0; i < 2; i++) {
+		host->ports[i]->mwdma_mask = 0;
+		host->ports[i]->udma_mask = 0;
+	}
+}
+
+/**
+ *	ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
+ *	@host: target ATA host
+ *
+ *	Acquire PCI BMDMA resources and initialize @host accordingly.
+ *
+ *	LOCKING:
+ *	Inherited from calling layer (may sleep).
+ */
+void ata_pci_bmdma_init(struct ata_host *host)
+{
+	struct device *gdev = host->dev;
+	struct pci_dev *pdev = to_pci_dev(gdev);
+	int i, rc;
+
+	/* No BAR4 allocation: No DMA */
+	if (pci_resource_start(pdev, 4) == 0) {
+		ata_bmdma_nodma(host, "BAR4 is zero");
+		return;
+	}
+
+	/*
+	 * Some controllers require BMDMA region to be initialized
+	 * even if DMA is not in use to clear IRQ status via
+	 * ->sff_irq_clear method.  Try to initialize bmdma_addr
+	 * regardless of dma masks.
+	 */
+	rc = dma_set_mask(&pdev->dev, ATA_DMA_MASK);
+	if (rc)
+		ata_bmdma_nodma(host, "failed to set dma mask");
+	if (!rc) {
+		rc = dma_set_coherent_mask(&pdev->dev, ATA_DMA_MASK);
+		if (rc)
+			ata_bmdma_nodma(host,
+					"failed to set consistent dma mask");
+	}
+
+	/* request and iomap DMA region */
+	rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
+	if (rc) {
+		ata_bmdma_nodma(host, "failed to request/iomap BAR4");
+		return;
+	}
+	host->iomap = pcim_iomap_table(pdev);
+
+	for (i = 0; i < 2; i++) {
+		struct ata_port *ap = host->ports[i];
+		void __iomem *bmdma = host->iomap[4] + 8 * i;
+
+		if (ata_port_is_dummy(ap))
+			continue;
+
+		ap->ioaddr.bmdma_addr = bmdma;
+		if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
+		    (ioread8(bmdma + 2) & 0x80))
+			host->flags |= ATA_HOST_SIMPLEX;
+
+		ata_port_desc(ap, "bmdma 0x%llx",
+		    (unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
+	}
+}
+EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
+
+/**
+ *	ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host
+ *	@pdev: target PCI device
+ *	@ppi: array of port_info, must be enough for two ports
+ *	@r_host: out argument for the initialized ATA host
+ *
+ *	Helper to allocate BMDMA ATA host for @pdev, acquire all PCI
+ *	resources and initialize it accordingly in one go.
+ *
+ *	LOCKING:
+ *	Inherited from calling layer (may sleep).
+ *
+ *	RETURNS:
+ *	0 on success, -errno otherwise.
+ */
+int ata_pci_bmdma_prepare_host(struct pci_dev *pdev,
+			       const struct ata_port_info * const * ppi,
+			       struct ata_host **r_host)
+{
+	int rc;
+
+	rc = ata_pci_sff_prepare_host(pdev, ppi, r_host);
+	if (rc)
+		return rc;
+
+	ata_pci_bmdma_init(*r_host);
+	return 0;
+}
+EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host);
+
+/**
+ *	ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller
+ *	@pdev: Controller to be initialized
+ *	@ppi: array of port_info, must be enough for two ports
+ *	@sht: scsi_host_template to use when registering the host
+ *	@host_priv: host private_data
+ *	@hflags: host flags
+ *
+ *	This function is similar to ata_pci_sff_init_one() but also
+ *	takes care of BMDMA initialization.
+ *
+ *	LOCKING:
+ *	Inherited from PCI layer (may sleep).
+ *
+ *	RETURNS:
+ *	Zero on success, negative on errno-based value on error.
+ */
+int ata_pci_bmdma_init_one(struct pci_dev *pdev,
+			   const struct ata_port_info * const * ppi,
+			   struct scsi_host_template *sht, void *host_priv,
+			   int hflags)
+{
+	return ata_pci_init_one(pdev, ppi, sht, host_priv, hflags, 1);
+}
+EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one);
+
+#endif /* CONFIG_PCI */
+#endif /* CONFIG_ATA_BMDMA */
+
+/**
+ *	ata_sff_port_init - Initialize SFF/BMDMA ATA port
+ *	@ap: Port to initialize
+ *
+ *	Called on port allocation to initialize SFF/BMDMA specific
+ *	fields.
+ *
+ *	LOCKING:
+ *	None.
+ */
+void ata_sff_port_init(struct ata_port *ap)
+{
+	INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task);
+	ap->ctl = ATA_DEVCTL_OBS;
+	ap->last_ctl = 0xFF;
+}
+
+int __init ata_sff_init(void)
+{
+	ata_sff_wq = alloc_workqueue("ata_sff", WQ_MEM_RECLAIM, WQ_MAX_ACTIVE);
+	if (!ata_sff_wq)
+		return -ENOMEM;
+
+	return 0;
+}
+
+void ata_sff_exit(void)
+{
+	destroy_workqueue(ata_sff_wq);
+}