v4.19.13 snapshot.
diff --git a/arch/um/kernel/irq.c b/arch/um/kernel/irq.c
new file mode 100644
index 0000000..6b7f382
--- /dev/null
+++ b/arch/um/kernel/irq.c
@@ -0,0 +1,605 @@
+/*
+ * Copyright (C) 2017 - Cambridge Greys Ltd
+ * Copyright (C) 2011 - 2014 Cisco Systems Inc
+ * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
+ * Licensed under the GPL
+ * Derived (i.e. mostly copied) from arch/i386/kernel/irq.c:
+ *	Copyright (C) 1992, 1998 Linus Torvalds, Ingo Molnar
+ */
+
+#include <linux/cpumask.h>
+#include <linux/hardirq.h>
+#include <linux/interrupt.h>
+#include <linux/kernel_stat.h>
+#include <linux/module.h>
+#include <linux/sched.h>
+#include <linux/seq_file.h>
+#include <linux/slab.h>
+#include <as-layout.h>
+#include <kern_util.h>
+#include <os.h>
+#include <irq_user.h>
+
+
+/* When epoll triggers we do not know why it did so
+ * we can also have different IRQs for read and write.
+ * This is why we keep a small irq_fd array for each fd -
+ * one entry per IRQ type
+ */
+
+struct irq_entry {
+	struct irq_entry *next;
+	int fd;
+	struct irq_fd *irq_array[MAX_IRQ_TYPE + 1];
+};
+
+static struct irq_entry *active_fds;
+
+static DEFINE_SPINLOCK(irq_lock);
+
+static void irq_io_loop(struct irq_fd *irq, struct uml_pt_regs *regs)
+{
+/*
+ * irq->active guards against reentry
+ * irq->pending accumulates pending requests
+ * if pending is raised the irq_handler is re-run
+ * until pending is cleared
+ */
+	if (irq->active) {
+		irq->active = false;
+		do {
+			irq->pending = false;
+			do_IRQ(irq->irq, regs);
+		} while (irq->pending && (!irq->purge));
+		if (!irq->purge)
+			irq->active = true;
+	} else {
+		irq->pending = true;
+	}
+}
+
+void sigio_handler(int sig, struct siginfo *unused_si, struct uml_pt_regs *regs)
+{
+	struct irq_entry *irq_entry;
+	struct irq_fd *irq;
+
+	int n, i, j;
+
+	while (1) {
+		/* This is now lockless - epoll keeps back-referencesto the irqs
+		 * which have trigger it so there is no need to walk the irq
+		 * list and lock it every time. We avoid locking by turning off
+		 * IO for a specific fd by executing os_del_epoll_fd(fd) before
+		 * we do any changes to the actual data structures
+		 */
+		n = os_waiting_for_events_epoll();
+
+		if (n <= 0) {
+			if (n == -EINTR)
+				continue;
+			else
+				break;
+		}
+
+		for (i = 0; i < n ; i++) {
+			/* Epoll back reference is the entry with 3 irq_fd
+			 * leaves - one for each irq type.
+			 */
+			irq_entry = (struct irq_entry *)
+				os_epoll_get_data_pointer(i);
+			for (j = 0; j < MAX_IRQ_TYPE ; j++) {
+				irq = irq_entry->irq_array[j];
+				if (irq == NULL)
+					continue;
+				if (os_epoll_triggered(i, irq->events) > 0)
+					irq_io_loop(irq, regs);
+				if (irq->purge) {
+					irq_entry->irq_array[j] = NULL;
+					kfree(irq);
+				}
+			}
+		}
+	}
+}
+
+static int assign_epoll_events_to_irq(struct irq_entry *irq_entry)
+{
+	int i;
+	int events = 0;
+	struct irq_fd *irq;
+
+	for (i = 0; i < MAX_IRQ_TYPE ; i++) {
+		irq = irq_entry->irq_array[i];
+		if (irq != NULL)
+			events = irq->events | events;
+	}
+	if (events > 0) {
+	/* os_add_epoll will call os_mod_epoll if this already exists */
+		return os_add_epoll_fd(events, irq_entry->fd, irq_entry);
+	}
+	/* No events - delete */
+	return os_del_epoll_fd(irq_entry->fd);
+}
+
+
+
+static int activate_fd(int irq, int fd, int type, void *dev_id)
+{
+	struct irq_fd *new_fd;
+	struct irq_entry *irq_entry;
+	int i, err, events;
+	unsigned long flags;
+
+	err = os_set_fd_async(fd);
+	if (err < 0)
+		goto out;
+
+	spin_lock_irqsave(&irq_lock, flags);
+
+	/* Check if we have an entry for this fd */
+
+	err = -EBUSY;
+	for (irq_entry = active_fds;
+		irq_entry != NULL; irq_entry = irq_entry->next) {
+		if (irq_entry->fd == fd)
+			break;
+	}
+
+	if (irq_entry == NULL) {
+		/* This needs to be atomic as it may be called from an
+		 * IRQ context.
+		 */
+		irq_entry = kmalloc(sizeof(struct irq_entry), GFP_ATOMIC);
+		if (irq_entry == NULL) {
+			printk(KERN_ERR
+				"Failed to allocate new IRQ entry\n");
+			goto out_unlock;
+		}
+		irq_entry->fd = fd;
+		for (i = 0; i < MAX_IRQ_TYPE; i++)
+			irq_entry->irq_array[i] = NULL;
+		irq_entry->next = active_fds;
+		active_fds = irq_entry;
+	}
+
+	/* Check if we are trying to re-register an interrupt for a
+	 * particular fd
+	 */
+
+	if (irq_entry->irq_array[type] != NULL) {
+		printk(KERN_ERR
+			"Trying to reregister IRQ %d FD %d TYPE %d ID %p\n",
+			irq, fd, type, dev_id
+		);
+		goto out_unlock;
+	} else {
+		/* New entry for this fd */
+
+		err = -ENOMEM;
+		new_fd = kmalloc(sizeof(struct irq_fd), GFP_ATOMIC);
+		if (new_fd == NULL)
+			goto out_unlock;
+
+		events = os_event_mask(type);
+
+		*new_fd = ((struct irq_fd) {
+			.id		= dev_id,
+			.irq		= irq,
+			.type		= type,
+			.events		= events,
+			.active		= true,
+			.pending	= false,
+			.purge		= false
+		});
+		/* Turn off any IO on this fd - allows us to
+		 * avoid locking the IRQ loop
+		 */
+		os_del_epoll_fd(irq_entry->fd);
+		irq_entry->irq_array[type] = new_fd;
+	}
+
+	/* Turn back IO on with the correct (new) IO event mask */
+	assign_epoll_events_to_irq(irq_entry);
+	spin_unlock_irqrestore(&irq_lock, flags);
+	maybe_sigio_broken(fd, (type != IRQ_NONE));
+
+	return 0;
+out_unlock:
+	spin_unlock_irqrestore(&irq_lock, flags);
+out:
+	return err;
+}
+
+/*
+ * Walk the IRQ list and dispose of any unused entries.
+ * Should be done under irq_lock.
+ */
+
+static void garbage_collect_irq_entries(void)
+{
+	int i;
+	bool reap;
+	struct irq_entry *walk;
+	struct irq_entry *previous = NULL;
+	struct irq_entry *to_free;
+
+	if (active_fds == NULL)
+		return;
+	walk = active_fds;
+	while (walk != NULL) {
+		reap = true;
+		for (i = 0; i < MAX_IRQ_TYPE ; i++) {
+			if (walk->irq_array[i] != NULL) {
+				reap = false;
+				break;
+			}
+		}
+		if (reap) {
+			if (previous == NULL)
+				active_fds = walk->next;
+			else
+				previous->next = walk->next;
+			to_free = walk;
+		} else {
+			to_free = NULL;
+		}
+		walk = walk->next;
+		if (to_free != NULL)
+			kfree(to_free);
+	}
+}
+
+/*
+ * Walk the IRQ list and get the descriptor for our FD
+ */
+
+static struct irq_entry *get_irq_entry_by_fd(int fd)
+{
+	struct irq_entry *walk = active_fds;
+
+	while (walk != NULL) {
+		if (walk->fd == fd)
+			return walk;
+		walk = walk->next;
+	}
+	return NULL;
+}
+
+
+/*
+ * Walk the IRQ list and dispose of an entry for a specific
+ * device, fd and number. Note - if sharing an IRQ for read
+ * and writefor the same FD it will be disposed in either case.
+ * If this behaviour is undesirable use different IRQ ids.
+ */
+
+#define IGNORE_IRQ 1
+#define IGNORE_DEV (1<<1)
+
+static void do_free_by_irq_and_dev(
+	struct irq_entry *irq_entry,
+	unsigned int irq,
+	void *dev,
+	int flags
+)
+{
+	int i;
+	struct irq_fd *to_free;
+
+	for (i = 0; i < MAX_IRQ_TYPE ; i++) {
+		if (irq_entry->irq_array[i] != NULL) {
+			if (
+			((flags & IGNORE_IRQ) ||
+				(irq_entry->irq_array[i]->irq == irq)) &&
+			((flags & IGNORE_DEV) ||
+				(irq_entry->irq_array[i]->id == dev))
+			) {
+				/* Turn off any IO on this fd - allows us to
+				 * avoid locking the IRQ loop
+				 */
+				os_del_epoll_fd(irq_entry->fd);
+				to_free = irq_entry->irq_array[i];
+				irq_entry->irq_array[i] = NULL;
+				assign_epoll_events_to_irq(irq_entry);
+				if (to_free->active)
+					to_free->purge = true;
+				else
+					kfree(to_free);
+			}
+		}
+	}
+}
+
+void free_irq_by_fd(int fd)
+{
+	struct irq_entry *to_free;
+	unsigned long flags;
+
+	spin_lock_irqsave(&irq_lock, flags);
+	to_free = get_irq_entry_by_fd(fd);
+	if (to_free != NULL) {
+		do_free_by_irq_and_dev(
+			to_free,
+			-1,
+			NULL,
+			IGNORE_IRQ | IGNORE_DEV
+		);
+	}
+	garbage_collect_irq_entries();
+	spin_unlock_irqrestore(&irq_lock, flags);
+}
+EXPORT_SYMBOL(free_irq_by_fd);
+
+static void free_irq_by_irq_and_dev(unsigned int irq, void *dev)
+{
+	struct irq_entry *to_free;
+	unsigned long flags;
+
+	spin_lock_irqsave(&irq_lock, flags);
+	to_free = active_fds;
+	while (to_free != NULL) {
+		do_free_by_irq_and_dev(
+			to_free,
+			irq,
+			dev,
+			0
+		);
+		to_free = to_free->next;
+	}
+	garbage_collect_irq_entries();
+	spin_unlock_irqrestore(&irq_lock, flags);
+}
+
+
+void reactivate_fd(int fd, int irqnum)
+{
+	/** NOP - we do auto-EOI now **/
+}
+
+void deactivate_fd(int fd, int irqnum)
+{
+	struct irq_entry *to_free;
+	unsigned long flags;
+
+	os_del_epoll_fd(fd);
+	spin_lock_irqsave(&irq_lock, flags);
+	to_free = get_irq_entry_by_fd(fd);
+	if (to_free != NULL) {
+		do_free_by_irq_and_dev(
+			to_free,
+			irqnum,
+			NULL,
+			IGNORE_DEV
+		);
+	}
+	garbage_collect_irq_entries();
+	spin_unlock_irqrestore(&irq_lock, flags);
+	ignore_sigio_fd(fd);
+}
+EXPORT_SYMBOL(deactivate_fd);
+
+/*
+ * Called just before shutdown in order to provide a clean exec
+ * environment in case the system is rebooting.  No locking because
+ * that would cause a pointless shutdown hang if something hadn't
+ * released the lock.
+ */
+int deactivate_all_fds(void)
+{
+	unsigned long flags;
+	struct irq_entry *to_free;
+
+	spin_lock_irqsave(&irq_lock, flags);
+	/* Stop IO. The IRQ loop has no lock so this is our
+	 * only way of making sure we are safe to dispose
+	 * of all IRQ handlers
+	 */
+	os_set_ioignore();
+	to_free = active_fds;
+	while (to_free != NULL) {
+		do_free_by_irq_and_dev(
+			to_free,
+			-1,
+			NULL,
+			IGNORE_IRQ | IGNORE_DEV
+		);
+		to_free = to_free->next;
+	}
+	garbage_collect_irq_entries();
+	spin_unlock_irqrestore(&irq_lock, flags);
+	os_close_epoll_fd();
+	return 0;
+}
+
+/*
+ * do_IRQ handles all normal device IRQs (the special
+ * SMP cross-CPU interrupts have their own specific
+ * handlers).
+ */
+unsigned int do_IRQ(int irq, struct uml_pt_regs *regs)
+{
+	struct pt_regs *old_regs = set_irq_regs((struct pt_regs *)regs);
+	irq_enter();
+	generic_handle_irq(irq);
+	irq_exit();
+	set_irq_regs(old_regs);
+	return 1;
+}
+
+void um_free_irq(unsigned int irq, void *dev)
+{
+	free_irq_by_irq_and_dev(irq, dev);
+	free_irq(irq, dev);
+}
+EXPORT_SYMBOL(um_free_irq);
+
+int um_request_irq(unsigned int irq, int fd, int type,
+		   irq_handler_t handler,
+		   unsigned long irqflags, const char * devname,
+		   void *dev_id)
+{
+	int err;
+
+	if (fd != -1) {
+		err = activate_fd(irq, fd, type, dev_id);
+		if (err)
+			return err;
+	}
+
+	return request_irq(irq, handler, irqflags, devname, dev_id);
+}
+
+EXPORT_SYMBOL(um_request_irq);
+EXPORT_SYMBOL(reactivate_fd);
+
+/*
+ * irq_chip must define at least enable/disable and ack when
+ * the edge handler is used.
+ */
+static void dummy(struct irq_data *d)
+{
+}
+
+/* This is used for everything else than the timer. */
+static struct irq_chip normal_irq_type = {
+	.name = "SIGIO",
+	.irq_disable = dummy,
+	.irq_enable = dummy,
+	.irq_ack = dummy,
+	.irq_mask = dummy,
+	.irq_unmask = dummy,
+};
+
+static struct irq_chip SIGVTALRM_irq_type = {
+	.name = "SIGVTALRM",
+	.irq_disable = dummy,
+	.irq_enable = dummy,
+	.irq_ack = dummy,
+	.irq_mask = dummy,
+	.irq_unmask = dummy,
+};
+
+void __init init_IRQ(void)
+{
+	int i;
+
+	irq_set_chip_and_handler(TIMER_IRQ, &SIGVTALRM_irq_type, handle_edge_irq);
+
+
+	for (i = 1; i < NR_IRQS; i++)
+		irq_set_chip_and_handler(i, &normal_irq_type, handle_edge_irq);
+	/* Initialize EPOLL Loop */
+	os_setup_epoll();
+}
+
+/*
+ * IRQ stack entry and exit:
+ *
+ * Unlike i386, UML doesn't receive IRQs on the normal kernel stack
+ * and switch over to the IRQ stack after some preparation.  We use
+ * sigaltstack to receive signals on a separate stack from the start.
+ * These two functions make sure the rest of the kernel won't be too
+ * upset by being on a different stack.  The IRQ stack has a
+ * thread_info structure at the bottom so that current et al continue
+ * to work.
+ *
+ * to_irq_stack copies the current task's thread_info to the IRQ stack
+ * thread_info and sets the tasks's stack to point to the IRQ stack.
+ *
+ * from_irq_stack copies the thread_info struct back (flags may have
+ * been modified) and resets the task's stack pointer.
+ *
+ * Tricky bits -
+ *
+ * What happens when two signals race each other?  UML doesn't block
+ * signals with sigprocmask, SA_DEFER, or sa_mask, so a second signal
+ * could arrive while a previous one is still setting up the
+ * thread_info.
+ *
+ * There are three cases -
+ *     The first interrupt on the stack - sets up the thread_info and
+ * handles the interrupt
+ *     A nested interrupt interrupting the copying of the thread_info -
+ * can't handle the interrupt, as the stack is in an unknown state
+ *     A nested interrupt not interrupting the copying of the
+ * thread_info - doesn't do any setup, just handles the interrupt
+ *
+ * The first job is to figure out whether we interrupted stack setup.
+ * This is done by xchging the signal mask with thread_info->pending.
+ * If the value that comes back is zero, then there is no setup in
+ * progress, and the interrupt can be handled.  If the value is
+ * non-zero, then there is stack setup in progress.  In order to have
+ * the interrupt handled, we leave our signal in the mask, and it will
+ * be handled by the upper handler after it has set up the stack.
+ *
+ * Next is to figure out whether we are the outer handler or a nested
+ * one.  As part of setting up the stack, thread_info->real_thread is
+ * set to non-NULL (and is reset to NULL on exit).  This is the
+ * nesting indicator.  If it is non-NULL, then the stack is already
+ * set up and the handler can run.
+ */
+
+static unsigned long pending_mask;
+
+unsigned long to_irq_stack(unsigned long *mask_out)
+{
+	struct thread_info *ti;
+	unsigned long mask, old;
+	int nested;
+
+	mask = xchg(&pending_mask, *mask_out);
+	if (mask != 0) {
+		/*
+		 * If any interrupts come in at this point, we want to
+		 * make sure that their bits aren't lost by our
+		 * putting our bit in.  So, this loop accumulates bits
+		 * until xchg returns the same value that we put in.
+		 * When that happens, there were no new interrupts,
+		 * and pending_mask contains a bit for each interrupt
+		 * that came in.
+		 */
+		old = *mask_out;
+		do {
+			old |= mask;
+			mask = xchg(&pending_mask, old);
+		} while (mask != old);
+		return 1;
+	}
+
+	ti = current_thread_info();
+	nested = (ti->real_thread != NULL);
+	if (!nested) {
+		struct task_struct *task;
+		struct thread_info *tti;
+
+		task = cpu_tasks[ti->cpu].task;
+		tti = task_thread_info(task);
+
+		*ti = *tti;
+		ti->real_thread = tti;
+		task->stack = ti;
+	}
+
+	mask = xchg(&pending_mask, 0);
+	*mask_out |= mask | nested;
+	return 0;
+}
+
+unsigned long from_irq_stack(int nested)
+{
+	struct thread_info *ti, *to;
+	unsigned long mask;
+
+	ti = current_thread_info();
+
+	pending_mask = 1;
+
+	to = ti->real_thread;
+	current->stack = to;
+	ti->real_thread = NULL;
+	*to = *ti;
+
+	mask = xchg(&pending_mask, 0);
+	return mask & ~1;
+}
+