v4.19.13 snapshot.
diff --git a/arch/sparc/net/Makefile b/arch/sparc/net/Makefile
new file mode 100644
index 0000000..d32aac3
--- /dev/null
+++ b/arch/sparc/net/Makefile
@@ -0,0 +1,7 @@
+#
+# Arch-specific network modules
+#
+obj-$(CONFIG_BPF_JIT) += bpf_jit_comp_$(BITS).o
+ifeq ($(BITS),32)
+obj-$(CONFIG_BPF_JIT) += bpf_jit_asm_32.o
+endif
diff --git a/arch/sparc/net/bpf_jit_32.h b/arch/sparc/net/bpf_jit_32.h
new file mode 100644
index 0000000..cfd6a8b
--- /dev/null
+++ b/arch/sparc/net/bpf_jit_32.h
@@ -0,0 +1,69 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#ifndef _BPF_JIT_H
+#define _BPF_JIT_H
+
+/* Conventions:
+ *  %g1 : temporary
+ *  %g2 : Secondary temporary used by SKB data helper stubs.
+ *  %g3 : packet offset passed into SKB data helper stubs.
+ *  %o0 : pointer to skb (first argument given to JIT function)
+ *  %o1 : BPF A accumulator
+ *  %o2 : BPF X accumulator
+ *  %o3 : Holds saved %o7 so we can call helper functions without needing
+ *        to allocate a register window.
+ *  %o4 : skb->len - skb->data_len
+ *  %o5 : skb->data
+ */
+
+#ifndef __ASSEMBLER__
+#define G0		0x00
+#define G1		0x01
+#define G3		0x03
+#define G6		0x06
+#define O0		0x08
+#define O1		0x09
+#define O2		0x0a
+#define O3		0x0b
+#define O4		0x0c
+#define O5		0x0d
+#define SP		0x0e
+#define O7		0x0f
+#define FP		0x1e
+
+#define r_SKB		O0
+#define r_A		O1
+#define r_X		O2
+#define r_saved_O7	O3
+#define r_HEADLEN	O4
+#define r_SKB_DATA	O5
+#define r_TMP		G1
+#define r_TMP2		G2
+#define r_OFF		G3
+
+/* assembly code in arch/sparc/net/bpf_jit_asm_32.S */
+extern u32 bpf_jit_load_word[];
+extern u32 bpf_jit_load_half[];
+extern u32 bpf_jit_load_byte[];
+extern u32 bpf_jit_load_byte_msh[];
+extern u32 bpf_jit_load_word_positive_offset[];
+extern u32 bpf_jit_load_half_positive_offset[];
+extern u32 bpf_jit_load_byte_positive_offset[];
+extern u32 bpf_jit_load_byte_msh_positive_offset[];
+extern u32 bpf_jit_load_word_negative_offset[];
+extern u32 bpf_jit_load_half_negative_offset[];
+extern u32 bpf_jit_load_byte_negative_offset[];
+extern u32 bpf_jit_load_byte_msh_negative_offset[];
+
+#else
+#define r_SKB		%o0
+#define r_A		%o1
+#define r_X		%o2
+#define r_saved_O7	%o3
+#define r_HEADLEN	%o4
+#define r_SKB_DATA	%o5
+#define r_TMP		%g1
+#define r_TMP2		%g2
+#define r_OFF		%g3
+#endif
+
+#endif /* _BPF_JIT_H */
diff --git a/arch/sparc/net/bpf_jit_64.h b/arch/sparc/net/bpf_jit_64.h
new file mode 100644
index 0000000..fbc836f
--- /dev/null
+++ b/arch/sparc/net/bpf_jit_64.h
@@ -0,0 +1,38 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#ifndef _BPF_JIT_H
+#define _BPF_JIT_H
+
+#ifndef __ASSEMBLER__
+#define G0		0x00
+#define G1		0x01
+#define G2		0x02
+#define G3		0x03
+#define G6		0x06
+#define G7		0x07
+#define O0		0x08
+#define O1		0x09
+#define O2		0x0a
+#define O3		0x0b
+#define O4		0x0c
+#define O5		0x0d
+#define SP		0x0e
+#define O7		0x0f
+#define L0		0x10
+#define L1		0x11
+#define L2		0x12
+#define L3		0x13
+#define L4		0x14
+#define L5		0x15
+#define L6		0x16
+#define L7		0x17
+#define I0		0x18
+#define I1		0x19
+#define I2		0x1a
+#define I3		0x1b
+#define I4		0x1c
+#define I5		0x1d
+#define FP		0x1e
+#define I7		0x1f
+#endif
+
+#endif /* _BPF_JIT_H */
diff --git a/arch/sparc/net/bpf_jit_asm_32.S b/arch/sparc/net/bpf_jit_asm_32.S
new file mode 100644
index 0000000..a2e28e0
--- /dev/null
+++ b/arch/sparc/net/bpf_jit_asm_32.S
@@ -0,0 +1,202 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#include <asm/ptrace.h>
+
+#include "bpf_jit_32.h"
+
+#define SAVE_SZ		96
+#define SCRATCH_OFF	72
+#define BE_PTR(label)	be label
+#define SIGN_EXTEND(reg)
+
+#define SKF_MAX_NEG_OFF	(-0x200000) /* SKF_LL_OFF from filter.h */
+
+	.text
+	.globl	bpf_jit_load_word
+bpf_jit_load_word:
+	cmp	r_OFF, 0
+	bl	bpf_slow_path_word_neg
+	 nop
+	.globl	bpf_jit_load_word_positive_offset
+bpf_jit_load_word_positive_offset:
+	sub	r_HEADLEN, r_OFF, r_TMP
+	cmp	r_TMP, 3
+	ble	bpf_slow_path_word
+	 add	r_SKB_DATA, r_OFF, r_TMP
+	andcc	r_TMP, 3, %g0
+	bne	load_word_unaligned
+	 nop
+	retl
+	 ld	[r_TMP], r_A
+load_word_unaligned:
+	ldub	[r_TMP + 0x0], r_OFF
+	ldub	[r_TMP + 0x1], r_TMP2
+	sll	r_OFF, 8, r_OFF
+	or	r_OFF, r_TMP2, r_OFF
+	ldub	[r_TMP + 0x2], r_TMP2
+	sll	r_OFF, 8, r_OFF
+	or	r_OFF, r_TMP2, r_OFF
+	ldub	[r_TMP + 0x3], r_TMP2
+	sll	r_OFF, 8, r_OFF
+	retl
+	 or	r_OFF, r_TMP2, r_A
+
+	.globl	bpf_jit_load_half
+bpf_jit_load_half:
+	cmp	r_OFF, 0
+	bl	bpf_slow_path_half_neg
+	 nop
+	.globl	bpf_jit_load_half_positive_offset
+bpf_jit_load_half_positive_offset:
+	sub	r_HEADLEN, r_OFF, r_TMP
+	cmp	r_TMP, 1
+	ble	bpf_slow_path_half
+	 add	r_SKB_DATA, r_OFF, r_TMP
+	andcc	r_TMP, 1, %g0
+	bne	load_half_unaligned
+	 nop
+	retl
+	 lduh	[r_TMP], r_A
+load_half_unaligned:
+	ldub	[r_TMP + 0x0], r_OFF
+	ldub	[r_TMP + 0x1], r_TMP2
+	sll	r_OFF, 8, r_OFF
+	retl
+	 or	r_OFF, r_TMP2, r_A
+
+	.globl	bpf_jit_load_byte
+bpf_jit_load_byte:
+	cmp	r_OFF, 0
+	bl	bpf_slow_path_byte_neg
+	 nop
+	.globl	bpf_jit_load_byte_positive_offset
+bpf_jit_load_byte_positive_offset:
+	cmp	r_OFF, r_HEADLEN
+	bge	bpf_slow_path_byte
+	 nop
+	retl
+	 ldub	[r_SKB_DATA + r_OFF], r_A
+
+	.globl	bpf_jit_load_byte_msh
+bpf_jit_load_byte_msh:
+	cmp	r_OFF, 0
+	bl	bpf_slow_path_byte_msh_neg
+	 nop
+	.globl	bpf_jit_load_byte_msh_positive_offset
+bpf_jit_load_byte_msh_positive_offset:
+	cmp	r_OFF, r_HEADLEN
+	bge	bpf_slow_path_byte_msh
+	 nop
+	ldub	[r_SKB_DATA + r_OFF], r_OFF
+	and	r_OFF, 0xf, r_OFF
+	retl
+	 sll	r_OFF, 2, r_X
+
+#define bpf_slow_path_common(LEN)	\
+	save	%sp, -SAVE_SZ, %sp;	\
+	mov	%i0, %o0;		\
+	mov	r_OFF, %o1;		\
+	add	%fp, SCRATCH_OFF, %o2;	\
+	call	skb_copy_bits;		\
+	 mov	(LEN), %o3;		\
+	cmp	%o0, 0;			\
+	restore;
+
+bpf_slow_path_word:
+	bpf_slow_path_common(4)
+	bl	bpf_error
+	 ld	[%sp + SCRATCH_OFF], r_A
+	retl
+	 nop
+bpf_slow_path_half:
+	bpf_slow_path_common(2)
+	bl	bpf_error
+	 lduh	[%sp + SCRATCH_OFF], r_A
+	retl
+	 nop
+bpf_slow_path_byte:
+	bpf_slow_path_common(1)
+	bl	bpf_error
+	 ldub	[%sp + SCRATCH_OFF], r_A
+	retl
+	 nop
+bpf_slow_path_byte_msh:
+	bpf_slow_path_common(1)
+	bl	bpf_error
+	 ldub	[%sp + SCRATCH_OFF], r_A
+	and	r_OFF, 0xf, r_OFF
+	retl
+	 sll	r_OFF, 2, r_X
+
+#define bpf_negative_common(LEN)			\
+	save	%sp, -SAVE_SZ, %sp;			\
+	mov	%i0, %o0;				\
+	mov	r_OFF, %o1;				\
+	SIGN_EXTEND(%o1);				\
+	call	bpf_internal_load_pointer_neg_helper;	\
+	 mov	(LEN), %o2;				\
+	mov	%o0, r_TMP;				\
+	cmp	%o0, 0;					\
+	BE_PTR(bpf_error);				\
+	 restore;
+
+bpf_slow_path_word_neg:
+	sethi	%hi(SKF_MAX_NEG_OFF), r_TMP
+	cmp	r_OFF, r_TMP
+	bl	bpf_error
+	 nop
+	.globl	bpf_jit_load_word_negative_offset
+bpf_jit_load_word_negative_offset:
+	bpf_negative_common(4)
+	andcc	r_TMP, 3, %g0
+	bne	load_word_unaligned
+	 nop
+	retl
+	 ld	[r_TMP], r_A
+
+bpf_slow_path_half_neg:
+	sethi	%hi(SKF_MAX_NEG_OFF), r_TMP
+	cmp	r_OFF, r_TMP
+	bl	bpf_error
+	 nop
+	.globl	bpf_jit_load_half_negative_offset
+bpf_jit_load_half_negative_offset:
+	bpf_negative_common(2)
+	andcc	r_TMP, 1, %g0
+	bne	load_half_unaligned
+	 nop
+	retl
+	 lduh	[r_TMP], r_A
+
+bpf_slow_path_byte_neg:
+	sethi	%hi(SKF_MAX_NEG_OFF), r_TMP
+	cmp	r_OFF, r_TMP
+	bl	bpf_error
+	 nop
+	.globl	bpf_jit_load_byte_negative_offset
+bpf_jit_load_byte_negative_offset:
+	bpf_negative_common(1)
+	retl
+	 ldub	[r_TMP], r_A
+
+bpf_slow_path_byte_msh_neg:
+	sethi	%hi(SKF_MAX_NEG_OFF), r_TMP
+	cmp	r_OFF, r_TMP
+	bl	bpf_error
+	 nop
+	.globl	bpf_jit_load_byte_msh_negative_offset
+bpf_jit_load_byte_msh_negative_offset:
+	bpf_negative_common(1)
+	ldub	[r_TMP], r_OFF
+	and	r_OFF, 0xf, r_OFF
+	retl
+	 sll	r_OFF, 2, r_X
+
+bpf_error:
+	/* Make the JIT program return zero.  The JIT epilogue
+	 * stores away the original %o7 into r_saved_O7.  The
+	 * normal leaf function return is to use "retl" which
+	 * would evalute to "jmpl %o7 + 8, %g0" but we want to
+	 * use the saved value thus the sequence you see here.
+	 */
+	jmpl	r_saved_O7 + 8, %g0
+	 clr	%o0
diff --git a/arch/sparc/net/bpf_jit_comp_32.c b/arch/sparc/net/bpf_jit_comp_32.c
new file mode 100644
index 0000000..a5ff886
--- /dev/null
+++ b/arch/sparc/net/bpf_jit_comp_32.c
@@ -0,0 +1,765 @@
+// SPDX-License-Identifier: GPL-2.0
+#include <linux/moduleloader.h>
+#include <linux/workqueue.h>
+#include <linux/netdevice.h>
+#include <linux/filter.h>
+#include <linux/cache.h>
+#include <linux/if_vlan.h>
+
+#include <asm/cacheflush.h>
+#include <asm/ptrace.h>
+
+#include "bpf_jit_32.h"
+
+static inline bool is_simm13(unsigned int value)
+{
+	return value + 0x1000 < 0x2000;
+}
+
+#define SEEN_DATAREF 1 /* might call external helpers */
+#define SEEN_XREG    2 /* ebx is used */
+#define SEEN_MEM     4 /* use mem[] for temporary storage */
+
+#define S13(X)		((X) & 0x1fff)
+#define IMMED		0x00002000
+#define RD(X)		((X) << 25)
+#define RS1(X)		((X) << 14)
+#define RS2(X)		((X))
+#define OP(X)		((X) << 30)
+#define OP2(X)		((X) << 22)
+#define OP3(X)		((X) << 19)
+#define COND(X)		((X) << 25)
+#define F1(X)		OP(X)
+#define F2(X, Y)	(OP(X) | OP2(Y))
+#define F3(X, Y)	(OP(X) | OP3(Y))
+
+#define CONDN		COND(0x0)
+#define CONDE		COND(0x1)
+#define CONDLE		COND(0x2)
+#define CONDL		COND(0x3)
+#define CONDLEU		COND(0x4)
+#define CONDCS		COND(0x5)
+#define CONDNEG		COND(0x6)
+#define CONDVC		COND(0x7)
+#define CONDA		COND(0x8)
+#define CONDNE		COND(0x9)
+#define CONDG		COND(0xa)
+#define CONDGE		COND(0xb)
+#define CONDGU		COND(0xc)
+#define CONDCC		COND(0xd)
+#define CONDPOS		COND(0xe)
+#define CONDVS		COND(0xf)
+
+#define CONDGEU		CONDCC
+#define CONDLU		CONDCS
+
+#define WDISP22(X)	(((X) >> 2) & 0x3fffff)
+
+#define BA		(F2(0, 2) | CONDA)
+#define BGU		(F2(0, 2) | CONDGU)
+#define BLEU		(F2(0, 2) | CONDLEU)
+#define BGEU		(F2(0, 2) | CONDGEU)
+#define BLU		(F2(0, 2) | CONDLU)
+#define BE		(F2(0, 2) | CONDE)
+#define BNE		(F2(0, 2) | CONDNE)
+
+#define BE_PTR		BE
+
+#define SETHI(K, REG)	\
+	(F2(0, 0x4) | RD(REG) | (((K) >> 10) & 0x3fffff))
+#define OR_LO(K, REG)	\
+	(F3(2, 0x02) | IMMED | RS1(REG) | ((K) & 0x3ff) | RD(REG))
+
+#define ADD		F3(2, 0x00)
+#define AND		F3(2, 0x01)
+#define ANDCC		F3(2, 0x11)
+#define OR		F3(2, 0x02)
+#define XOR		F3(2, 0x03)
+#define SUB		F3(2, 0x04)
+#define SUBCC		F3(2, 0x14)
+#define MUL		F3(2, 0x0a)	/* umul */
+#define DIV		F3(2, 0x0e)	/* udiv */
+#define SLL		F3(2, 0x25)
+#define SRL		F3(2, 0x26)
+#define JMPL		F3(2, 0x38)
+#define CALL		F1(1)
+#define BR		F2(0, 0x01)
+#define RD_Y		F3(2, 0x28)
+#define WR_Y		F3(2, 0x30)
+
+#define LD32		F3(3, 0x00)
+#define LD8		F3(3, 0x01)
+#define LD16		F3(3, 0x02)
+#define LD64		F3(3, 0x0b)
+#define ST32		F3(3, 0x04)
+
+#define LDPTR		LD32
+#define BASE_STACKFRAME	96
+
+#define LD32I		(LD32 | IMMED)
+#define LD8I		(LD8 | IMMED)
+#define LD16I		(LD16 | IMMED)
+#define LD64I		(LD64 | IMMED)
+#define LDPTRI		(LDPTR | IMMED)
+#define ST32I		(ST32 | IMMED)
+
+#define emit_nop()		\
+do {				\
+	*prog++ = SETHI(0, G0);	\
+} while (0)
+
+#define emit_neg()					\
+do {	/* sub %g0, r_A, r_A */				\
+	*prog++ = SUB | RS1(G0) | RS2(r_A) | RD(r_A);	\
+} while (0)
+
+#define emit_reg_move(FROM, TO)				\
+do {	/* or %g0, FROM, TO */				\
+	*prog++ = OR | RS1(G0) | RS2(FROM) | RD(TO);	\
+} while (0)
+
+#define emit_clear(REG)					\
+do {	/* or %g0, %g0, REG */				\
+	*prog++ = OR | RS1(G0) | RS2(G0) | RD(REG);	\
+} while (0)
+
+#define emit_set_const(K, REG)					\
+do {	/* sethi %hi(K), REG */					\
+	*prog++ = SETHI(K, REG);				\
+	/* or REG, %lo(K), REG */				\
+	*prog++ = OR_LO(K, REG);				\
+} while (0)
+
+	/* Emit
+	 *
+	 *	OP	r_A, r_X, r_A
+	 */
+#define emit_alu_X(OPCODE)					\
+do {								\
+	seen |= SEEN_XREG;					\
+	*prog++ = OPCODE | RS1(r_A) | RS2(r_X) | RD(r_A);	\
+} while (0)
+
+	/* Emit either:
+	 *
+	 *	OP	r_A, K, r_A
+	 *
+	 * or
+	 *
+	 *	sethi	%hi(K), r_TMP
+	 *	or	r_TMP, %lo(K), r_TMP
+	 *	OP	r_A, r_TMP, r_A
+	 *
+	 * depending upon whether K fits in a signed 13-bit
+	 * immediate instruction field.  Emit nothing if K
+	 * is zero.
+	 */
+#define emit_alu_K(OPCODE, K)					\
+do {								\
+	if (K || OPCODE == AND || OPCODE == MUL) {		\
+		unsigned int _insn = OPCODE;			\
+		_insn |= RS1(r_A) | RD(r_A);			\
+		if (is_simm13(K)) {				\
+			*prog++ = _insn | IMMED | S13(K);	\
+		} else {					\
+			emit_set_const(K, r_TMP);		\
+			*prog++ = _insn | RS2(r_TMP);		\
+		}						\
+	}							\
+} while (0)
+
+#define emit_loadimm(K, DEST)						\
+do {									\
+	if (is_simm13(K)) {						\
+		/* or %g0, K, DEST */					\
+		*prog++ = OR | IMMED | RS1(G0) | S13(K) | RD(DEST);	\
+	} else {							\
+		emit_set_const(K, DEST);				\
+	}								\
+} while (0)
+
+#define emit_loadptr(BASE, STRUCT, FIELD, DEST)				\
+do {	unsigned int _off = offsetof(STRUCT, FIELD);			\
+	BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(void *));	\
+	*prog++ = LDPTRI | RS1(BASE) | S13(_off) | RD(DEST);		\
+} while (0)
+
+#define emit_load32(BASE, STRUCT, FIELD, DEST)				\
+do {	unsigned int _off = offsetof(STRUCT, FIELD);			\
+	BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u32));	\
+	*prog++ = LD32I | RS1(BASE) | S13(_off) | RD(DEST);		\
+} while (0)
+
+#define emit_load16(BASE, STRUCT, FIELD, DEST)				\
+do {	unsigned int _off = offsetof(STRUCT, FIELD);			\
+	BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u16));	\
+	*prog++ = LD16I | RS1(BASE) | S13(_off) | RD(DEST);		\
+} while (0)
+
+#define __emit_load8(BASE, STRUCT, FIELD, DEST)				\
+do {	unsigned int _off = offsetof(STRUCT, FIELD);			\
+	*prog++ = LD8I | RS1(BASE) | S13(_off) | RD(DEST);		\
+} while (0)
+
+#define emit_load8(BASE, STRUCT, FIELD, DEST)				\
+do {	BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u8));	\
+	__emit_load8(BASE, STRUCT, FIELD, DEST);			\
+} while (0)
+
+#define BIAS (-4)
+
+#define emit_ldmem(OFF, DEST)						\
+do {	*prog++ = LD32I | RS1(SP) | S13(BIAS - (OFF)) | RD(DEST);	\
+} while (0)
+
+#define emit_stmem(OFF, SRC)						\
+do {	*prog++ = ST32I | RS1(SP) | S13(BIAS - (OFF)) | RD(SRC);	\
+} while (0)
+
+#ifdef CONFIG_SMP
+#define emit_load_cpu(REG)						\
+	emit_load32(G6, struct thread_info, cpu, REG)
+#else
+#define emit_load_cpu(REG)	emit_clear(REG)
+#endif
+
+#define emit_skb_loadptr(FIELD, DEST) \
+	emit_loadptr(r_SKB, struct sk_buff, FIELD, DEST)
+#define emit_skb_load32(FIELD, DEST) \
+	emit_load32(r_SKB, struct sk_buff, FIELD, DEST)
+#define emit_skb_load16(FIELD, DEST) \
+	emit_load16(r_SKB, struct sk_buff, FIELD, DEST)
+#define __emit_skb_load8(FIELD, DEST) \
+	__emit_load8(r_SKB, struct sk_buff, FIELD, DEST)
+#define emit_skb_load8(FIELD, DEST) \
+	emit_load8(r_SKB, struct sk_buff, FIELD, DEST)
+
+#define emit_jmpl(BASE, IMM_OFF, LREG) \
+	*prog++ = (JMPL | IMMED | RS1(BASE) | S13(IMM_OFF) | RD(LREG))
+
+#define emit_call(FUNC)					\
+do {	void *_here = image + addrs[i] - 8;		\
+	unsigned int _off = (void *)(FUNC) - _here;	\
+	*prog++ = CALL | (((_off) >> 2) & 0x3fffffff);	\
+	emit_nop();					\
+} while (0)
+
+#define emit_branch(BR_OPC, DEST)			\
+do {	unsigned int _here = addrs[i] - 8;		\
+	*prog++ = BR_OPC | WDISP22((DEST) - _here);	\
+} while (0)
+
+#define emit_branch_off(BR_OPC, OFF)			\
+do {	*prog++ = BR_OPC | WDISP22(OFF);		\
+} while (0)
+
+#define emit_jump(DEST)		emit_branch(BA, DEST)
+
+#define emit_read_y(REG)	*prog++ = RD_Y | RD(REG)
+#define emit_write_y(REG)	*prog++ = WR_Y | IMMED | RS1(REG) | S13(0)
+
+#define emit_cmp(R1, R2) \
+	*prog++ = (SUBCC | RS1(R1) | RS2(R2) | RD(G0))
+
+#define emit_cmpi(R1, IMM) \
+	*prog++ = (SUBCC | IMMED | RS1(R1) | S13(IMM) | RD(G0));
+
+#define emit_btst(R1, R2) \
+	*prog++ = (ANDCC | RS1(R1) | RS2(R2) | RD(G0))
+
+#define emit_btsti(R1, IMM) \
+	*prog++ = (ANDCC | IMMED | RS1(R1) | S13(IMM) | RD(G0));
+
+#define emit_sub(R1, R2, R3) \
+	*prog++ = (SUB | RS1(R1) | RS2(R2) | RD(R3))
+
+#define emit_subi(R1, IMM, R3) \
+	*prog++ = (SUB | IMMED | RS1(R1) | S13(IMM) | RD(R3))
+
+#define emit_add(R1, R2, R3) \
+	*prog++ = (ADD | RS1(R1) | RS2(R2) | RD(R3))
+
+#define emit_addi(R1, IMM, R3) \
+	*prog++ = (ADD | IMMED | RS1(R1) | S13(IMM) | RD(R3))
+
+#define emit_and(R1, R2, R3) \
+	*prog++ = (AND | RS1(R1) | RS2(R2) | RD(R3))
+
+#define emit_andi(R1, IMM, R3) \
+	*prog++ = (AND | IMMED | RS1(R1) | S13(IMM) | RD(R3))
+
+#define emit_alloc_stack(SZ) \
+	*prog++ = (SUB | IMMED | RS1(SP) | S13(SZ) | RD(SP))
+
+#define emit_release_stack(SZ) \
+	*prog++ = (ADD | IMMED | RS1(SP) | S13(SZ) | RD(SP))
+
+/* A note about branch offset calculations.  The addrs[] array,
+ * indexed by BPF instruction, records the address after all the
+ * sparc instructions emitted for that BPF instruction.
+ *
+ * The most common case is to emit a branch at the end of such
+ * a code sequence.  So this would be two instructions, the
+ * branch and it's delay slot.
+ *
+ * Therefore by default the branch emitters calculate the branch
+ * offset field as:
+ *
+ *	destination - (addrs[i] - 8)
+ *
+ * This "addrs[i] - 8" is the address of the branch itself or
+ * what "." would be in assembler notation.  The "8" part is
+ * how we take into consideration the branch and it's delay
+ * slot mentioned above.
+ *
+ * Sometimes we need to emit a branch earlier in the code
+ * sequence.  And in these situations we adjust "destination"
+ * to accommodate this difference.  For example, if we needed
+ * to emit a branch (and it's delay slot) right before the
+ * final instruction emitted for a BPF opcode, we'd use
+ * "destination + 4" instead of just plain "destination" above.
+ *
+ * This is why you see all of these funny emit_branch() and
+ * emit_jump() calls with adjusted offsets.
+ */
+
+void bpf_jit_compile(struct bpf_prog *fp)
+{
+	unsigned int cleanup_addr, proglen, oldproglen = 0;
+	u32 temp[8], *prog, *func, seen = 0, pass;
+	const struct sock_filter *filter = fp->insns;
+	int i, flen = fp->len, pc_ret0 = -1;
+	unsigned int *addrs;
+	void *image;
+
+	if (!bpf_jit_enable)
+		return;
+
+	addrs = kmalloc_array(flen, sizeof(*addrs), GFP_KERNEL);
+	if (addrs == NULL)
+		return;
+
+	/* Before first pass, make a rough estimation of addrs[]
+	 * each bpf instruction is translated to less than 64 bytes
+	 */
+	for (proglen = 0, i = 0; i < flen; i++) {
+		proglen += 64;
+		addrs[i] = proglen;
+	}
+	cleanup_addr = proglen; /* epilogue address */
+	image = NULL;
+	for (pass = 0; pass < 10; pass++) {
+		u8 seen_or_pass0 = (pass == 0) ? (SEEN_XREG | SEEN_DATAREF | SEEN_MEM) : seen;
+
+		/* no prologue/epilogue for trivial filters (RET something) */
+		proglen = 0;
+		prog = temp;
+
+		/* Prologue */
+		if (seen_or_pass0) {
+			if (seen_or_pass0 & SEEN_MEM) {
+				unsigned int sz = BASE_STACKFRAME;
+				sz += BPF_MEMWORDS * sizeof(u32);
+				emit_alloc_stack(sz);
+			}
+
+			/* Make sure we dont leek kernel memory. */
+			if (seen_or_pass0 & SEEN_XREG)
+				emit_clear(r_X);
+
+			/* If this filter needs to access skb data,
+			 * load %o4 and %o5 with:
+			 *  %o4 = skb->len - skb->data_len
+			 *  %o5 = skb->data
+			 * And also back up %o7 into r_saved_O7 so we can
+			 * invoke the stubs using 'call'.
+			 */
+			if (seen_or_pass0 & SEEN_DATAREF) {
+				emit_load32(r_SKB, struct sk_buff, len, r_HEADLEN);
+				emit_load32(r_SKB, struct sk_buff, data_len, r_TMP);
+				emit_sub(r_HEADLEN, r_TMP, r_HEADLEN);
+				emit_loadptr(r_SKB, struct sk_buff, data, r_SKB_DATA);
+			}
+		}
+		emit_reg_move(O7, r_saved_O7);
+
+		/* Make sure we dont leak kernel information to the user. */
+		if (bpf_needs_clear_a(&filter[0]))
+			emit_clear(r_A); /* A = 0 */
+
+		for (i = 0; i < flen; i++) {
+			unsigned int K = filter[i].k;
+			unsigned int t_offset;
+			unsigned int f_offset;
+			u32 t_op, f_op;
+			u16 code = bpf_anc_helper(&filter[i]);
+			int ilen;
+
+			switch (code) {
+			case BPF_ALU | BPF_ADD | BPF_X:	/* A += X; */
+				emit_alu_X(ADD);
+				break;
+			case BPF_ALU | BPF_ADD | BPF_K:	/* A += K; */
+				emit_alu_K(ADD, K);
+				break;
+			case BPF_ALU | BPF_SUB | BPF_X:	/* A -= X; */
+				emit_alu_X(SUB);
+				break;
+			case BPF_ALU | BPF_SUB | BPF_K:	/* A -= K */
+				emit_alu_K(SUB, K);
+				break;
+			case BPF_ALU | BPF_AND | BPF_X:	/* A &= X */
+				emit_alu_X(AND);
+				break;
+			case BPF_ALU | BPF_AND | BPF_K:	/* A &= K */
+				emit_alu_K(AND, K);
+				break;
+			case BPF_ALU | BPF_OR | BPF_X:	/* A |= X */
+				emit_alu_X(OR);
+				break;
+			case BPF_ALU | BPF_OR | BPF_K:	/* A |= K */
+				emit_alu_K(OR, K);
+				break;
+			case BPF_ANC | SKF_AD_ALU_XOR_X: /* A ^= X; */
+			case BPF_ALU | BPF_XOR | BPF_X:
+				emit_alu_X(XOR);
+				break;
+			case BPF_ALU | BPF_XOR | BPF_K:	/* A ^= K */
+				emit_alu_K(XOR, K);
+				break;
+			case BPF_ALU | BPF_LSH | BPF_X:	/* A <<= X */
+				emit_alu_X(SLL);
+				break;
+			case BPF_ALU | BPF_LSH | BPF_K:	/* A <<= K */
+				emit_alu_K(SLL, K);
+				break;
+			case BPF_ALU | BPF_RSH | BPF_X:	/* A >>= X */
+				emit_alu_X(SRL);
+				break;
+			case BPF_ALU | BPF_RSH | BPF_K:	/* A >>= K */
+				emit_alu_K(SRL, K);
+				break;
+			case BPF_ALU | BPF_MUL | BPF_X:	/* A *= X; */
+				emit_alu_X(MUL);
+				break;
+			case BPF_ALU | BPF_MUL | BPF_K:	/* A *= K */
+				emit_alu_K(MUL, K);
+				break;
+			case BPF_ALU | BPF_DIV | BPF_K:	/* A /= K with K != 0*/
+				if (K == 1)
+					break;
+				emit_write_y(G0);
+				/* The Sparc v8 architecture requires
+				 * three instructions between a %y
+				 * register write and the first use.
+				 */
+				emit_nop();
+				emit_nop();
+				emit_nop();
+				emit_alu_K(DIV, K);
+				break;
+			case BPF_ALU | BPF_DIV | BPF_X:	/* A /= X; */
+				emit_cmpi(r_X, 0);
+				if (pc_ret0 > 0) {
+					t_offset = addrs[pc_ret0 - 1];
+					emit_branch(BE, t_offset + 20);
+					emit_nop(); /* delay slot */
+				} else {
+					emit_branch_off(BNE, 16);
+					emit_nop();
+					emit_jump(cleanup_addr + 20);
+					emit_clear(r_A);
+				}
+				emit_write_y(G0);
+				/* The Sparc v8 architecture requires
+				 * three instructions between a %y
+				 * register write and the first use.
+				 */
+				emit_nop();
+				emit_nop();
+				emit_nop();
+				emit_alu_X(DIV);
+				break;
+			case BPF_ALU | BPF_NEG:
+				emit_neg();
+				break;
+			case BPF_RET | BPF_K:
+				if (!K) {
+					if (pc_ret0 == -1)
+						pc_ret0 = i;
+					emit_clear(r_A);
+				} else {
+					emit_loadimm(K, r_A);
+				}
+				/* Fallthrough */
+			case BPF_RET | BPF_A:
+				if (seen_or_pass0) {
+					if (i != flen - 1) {
+						emit_jump(cleanup_addr);
+						emit_nop();
+						break;
+					}
+					if (seen_or_pass0 & SEEN_MEM) {
+						unsigned int sz = BASE_STACKFRAME;
+						sz += BPF_MEMWORDS * sizeof(u32);
+						emit_release_stack(sz);
+					}
+				}
+				/* jmpl %r_saved_O7 + 8, %g0 */
+				emit_jmpl(r_saved_O7, 8, G0);
+				emit_reg_move(r_A, O0); /* delay slot */
+				break;
+			case BPF_MISC | BPF_TAX:
+				seen |= SEEN_XREG;
+				emit_reg_move(r_A, r_X);
+				break;
+			case BPF_MISC | BPF_TXA:
+				seen |= SEEN_XREG;
+				emit_reg_move(r_X, r_A);
+				break;
+			case BPF_ANC | SKF_AD_CPU:
+				emit_load_cpu(r_A);
+				break;
+			case BPF_ANC | SKF_AD_PROTOCOL:
+				emit_skb_load16(protocol, r_A);
+				break;
+			case BPF_ANC | SKF_AD_PKTTYPE:
+				__emit_skb_load8(__pkt_type_offset, r_A);
+				emit_andi(r_A, PKT_TYPE_MAX, r_A);
+				emit_alu_K(SRL, 5);
+				break;
+			case BPF_ANC | SKF_AD_IFINDEX:
+				emit_skb_loadptr(dev, r_A);
+				emit_cmpi(r_A, 0);
+				emit_branch(BE_PTR, cleanup_addr + 4);
+				emit_nop();
+				emit_load32(r_A, struct net_device, ifindex, r_A);
+				break;
+			case BPF_ANC | SKF_AD_MARK:
+				emit_skb_load32(mark, r_A);
+				break;
+			case BPF_ANC | SKF_AD_QUEUE:
+				emit_skb_load16(queue_mapping, r_A);
+				break;
+			case BPF_ANC | SKF_AD_HATYPE:
+				emit_skb_loadptr(dev, r_A);
+				emit_cmpi(r_A, 0);
+				emit_branch(BE_PTR, cleanup_addr + 4);
+				emit_nop();
+				emit_load16(r_A, struct net_device, type, r_A);
+				break;
+			case BPF_ANC | SKF_AD_RXHASH:
+				emit_skb_load32(hash, r_A);
+				break;
+			case BPF_ANC | SKF_AD_VLAN_TAG:
+			case BPF_ANC | SKF_AD_VLAN_TAG_PRESENT:
+				emit_skb_load16(vlan_tci, r_A);
+				if (code != (BPF_ANC | SKF_AD_VLAN_TAG)) {
+					emit_alu_K(SRL, 12);
+					emit_andi(r_A, 1, r_A);
+				} else {
+					emit_loadimm(~VLAN_TAG_PRESENT, r_TMP);
+					emit_and(r_A, r_TMP, r_A);
+				}
+				break;
+			case BPF_LD | BPF_W | BPF_LEN:
+				emit_skb_load32(len, r_A);
+				break;
+			case BPF_LDX | BPF_W | BPF_LEN:
+				emit_skb_load32(len, r_X);
+				break;
+			case BPF_LD | BPF_IMM:
+				emit_loadimm(K, r_A);
+				break;
+			case BPF_LDX | BPF_IMM:
+				emit_loadimm(K, r_X);
+				break;
+			case BPF_LD | BPF_MEM:
+				seen |= SEEN_MEM;
+				emit_ldmem(K * 4, r_A);
+				break;
+			case BPF_LDX | BPF_MEM:
+				seen |= SEEN_MEM | SEEN_XREG;
+				emit_ldmem(K * 4, r_X);
+				break;
+			case BPF_ST:
+				seen |= SEEN_MEM;
+				emit_stmem(K * 4, r_A);
+				break;
+			case BPF_STX:
+				seen |= SEEN_MEM | SEEN_XREG;
+				emit_stmem(K * 4, r_X);
+				break;
+
+#define CHOOSE_LOAD_FUNC(K, func) \
+	((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
+
+			case BPF_LD | BPF_W | BPF_ABS:
+				func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_word);
+common_load:			seen |= SEEN_DATAREF;
+				emit_loadimm(K, r_OFF);
+				emit_call(func);
+				break;
+			case BPF_LD | BPF_H | BPF_ABS:
+				func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_half);
+				goto common_load;
+			case BPF_LD | BPF_B | BPF_ABS:
+				func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_byte);
+				goto common_load;
+			case BPF_LDX | BPF_B | BPF_MSH:
+				func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_byte_msh);
+				goto common_load;
+			case BPF_LD | BPF_W | BPF_IND:
+				func = bpf_jit_load_word;
+common_load_ind:		seen |= SEEN_DATAREF | SEEN_XREG;
+				if (K) {
+					if (is_simm13(K)) {
+						emit_addi(r_X, K, r_OFF);
+					} else {
+						emit_loadimm(K, r_TMP);
+						emit_add(r_X, r_TMP, r_OFF);
+					}
+				} else {
+					emit_reg_move(r_X, r_OFF);
+				}
+				emit_call(func);
+				break;
+			case BPF_LD | BPF_H | BPF_IND:
+				func = bpf_jit_load_half;
+				goto common_load_ind;
+			case BPF_LD | BPF_B | BPF_IND:
+				func = bpf_jit_load_byte;
+				goto common_load_ind;
+			case BPF_JMP | BPF_JA:
+				emit_jump(addrs[i + K]);
+				emit_nop();
+				break;
+
+#define COND_SEL(CODE, TOP, FOP)	\
+	case CODE:			\
+		t_op = TOP;		\
+		f_op = FOP;		\
+		goto cond_branch
+
+			COND_SEL(BPF_JMP | BPF_JGT | BPF_K, BGU, BLEU);
+			COND_SEL(BPF_JMP | BPF_JGE | BPF_K, BGEU, BLU);
+			COND_SEL(BPF_JMP | BPF_JEQ | BPF_K, BE, BNE);
+			COND_SEL(BPF_JMP | BPF_JSET | BPF_K, BNE, BE);
+			COND_SEL(BPF_JMP | BPF_JGT | BPF_X, BGU, BLEU);
+			COND_SEL(BPF_JMP | BPF_JGE | BPF_X, BGEU, BLU);
+			COND_SEL(BPF_JMP | BPF_JEQ | BPF_X, BE, BNE);
+			COND_SEL(BPF_JMP | BPF_JSET | BPF_X, BNE, BE);
+
+cond_branch:			f_offset = addrs[i + filter[i].jf];
+				t_offset = addrs[i + filter[i].jt];
+
+				/* same targets, can avoid doing the test :) */
+				if (filter[i].jt == filter[i].jf) {
+					emit_jump(t_offset);
+					emit_nop();
+					break;
+				}
+
+				switch (code) {
+				case BPF_JMP | BPF_JGT | BPF_X:
+				case BPF_JMP | BPF_JGE | BPF_X:
+				case BPF_JMP | BPF_JEQ | BPF_X:
+					seen |= SEEN_XREG;
+					emit_cmp(r_A, r_X);
+					break;
+				case BPF_JMP | BPF_JSET | BPF_X:
+					seen |= SEEN_XREG;
+					emit_btst(r_A, r_X);
+					break;
+				case BPF_JMP | BPF_JEQ | BPF_K:
+				case BPF_JMP | BPF_JGT | BPF_K:
+				case BPF_JMP | BPF_JGE | BPF_K:
+					if (is_simm13(K)) {
+						emit_cmpi(r_A, K);
+					} else {
+						emit_loadimm(K, r_TMP);
+						emit_cmp(r_A, r_TMP);
+					}
+					break;
+				case BPF_JMP | BPF_JSET | BPF_K:
+					if (is_simm13(K)) {
+						emit_btsti(r_A, K);
+					} else {
+						emit_loadimm(K, r_TMP);
+						emit_btst(r_A, r_TMP);
+					}
+					break;
+				}
+				if (filter[i].jt != 0) {
+					if (filter[i].jf)
+						t_offset += 8;
+					emit_branch(t_op, t_offset);
+					emit_nop(); /* delay slot */
+					if (filter[i].jf) {
+						emit_jump(f_offset);
+						emit_nop();
+					}
+					break;
+				}
+				emit_branch(f_op, f_offset);
+				emit_nop(); /* delay slot */
+				break;
+
+			default:
+				/* hmm, too complex filter, give up with jit compiler */
+				goto out;
+			}
+			ilen = (void *) prog - (void *) temp;
+			if (image) {
+				if (unlikely(proglen + ilen > oldproglen)) {
+					pr_err("bpb_jit_compile fatal error\n");
+					kfree(addrs);
+					module_memfree(image);
+					return;
+				}
+				memcpy(image + proglen, temp, ilen);
+			}
+			proglen += ilen;
+			addrs[i] = proglen;
+			prog = temp;
+		}
+		/* last bpf instruction is always a RET :
+		 * use it to give the cleanup instruction(s) addr
+		 */
+		cleanup_addr = proglen - 8; /* jmpl; mov r_A,%o0; */
+		if (seen_or_pass0 & SEEN_MEM)
+			cleanup_addr -= 4; /* add %sp, X, %sp; */
+
+		if (image) {
+			if (proglen != oldproglen)
+				pr_err("bpb_jit_compile proglen=%u != oldproglen=%u\n",
+				       proglen, oldproglen);
+			break;
+		}
+		if (proglen == oldproglen) {
+			image = module_alloc(proglen);
+			if (!image)
+				goto out;
+		}
+		oldproglen = proglen;
+	}
+
+	if (bpf_jit_enable > 1)
+		bpf_jit_dump(flen, proglen, pass + 1, image);
+
+	if (image) {
+		fp->bpf_func = (void *)image;
+		fp->jited = 1;
+	}
+out:
+	kfree(addrs);
+	return;
+}
+
+void bpf_jit_free(struct bpf_prog *fp)
+{
+	if (fp->jited)
+		module_memfree(fp->bpf_func);
+
+	bpf_prog_unlock_free(fp);
+}
diff --git a/arch/sparc/net/bpf_jit_comp_64.c b/arch/sparc/net/bpf_jit_comp_64.c
new file mode 100644
index 0000000..222785a
--- /dev/null
+++ b/arch/sparc/net/bpf_jit_comp_64.c
@@ -0,0 +1,1549 @@
+// SPDX-License-Identifier: GPL-2.0
+#include <linux/moduleloader.h>
+#include <linux/workqueue.h>
+#include <linux/netdevice.h>
+#include <linux/filter.h>
+#include <linux/bpf.h>
+#include <linux/cache.h>
+#include <linux/if_vlan.h>
+
+#include <asm/cacheflush.h>
+#include <asm/ptrace.h>
+
+#include "bpf_jit_64.h"
+
+static inline bool is_simm13(unsigned int value)
+{
+	return value + 0x1000 < 0x2000;
+}
+
+static inline bool is_simm10(unsigned int value)
+{
+	return value + 0x200 < 0x400;
+}
+
+static inline bool is_simm5(unsigned int value)
+{
+	return value + 0x10 < 0x20;
+}
+
+static inline bool is_sethi(unsigned int value)
+{
+	return (value & ~0x3fffff) == 0;
+}
+
+static void bpf_flush_icache(void *start_, void *end_)
+{
+	/* Cheetah's I-cache is fully coherent.  */
+	if (tlb_type == spitfire) {
+		unsigned long start = (unsigned long) start_;
+		unsigned long end = (unsigned long) end_;
+
+		start &= ~7UL;
+		end = (end + 7UL) & ~7UL;
+		while (start < end) {
+			flushi(start);
+			start += 32;
+		}
+	}
+}
+
+#define S13(X)		((X) & 0x1fff)
+#define S5(X)		((X) & 0x1f)
+#define IMMED		0x00002000
+#define RD(X)		((X) << 25)
+#define RS1(X)		((X) << 14)
+#define RS2(X)		((X))
+#define OP(X)		((X) << 30)
+#define OP2(X)		((X) << 22)
+#define OP3(X)		((X) << 19)
+#define COND(X)		(((X) & 0xf) << 25)
+#define CBCOND(X)	(((X) & 0x1f) << 25)
+#define F1(X)		OP(X)
+#define F2(X, Y)	(OP(X) | OP2(Y))
+#define F3(X, Y)	(OP(X) | OP3(Y))
+#define ASI(X)		(((X) & 0xff) << 5)
+
+#define CONDN		COND(0x0)
+#define CONDE		COND(0x1)
+#define CONDLE		COND(0x2)
+#define CONDL		COND(0x3)
+#define CONDLEU		COND(0x4)
+#define CONDCS		COND(0x5)
+#define CONDNEG		COND(0x6)
+#define CONDVC		COND(0x7)
+#define CONDA		COND(0x8)
+#define CONDNE		COND(0x9)
+#define CONDG		COND(0xa)
+#define CONDGE		COND(0xb)
+#define CONDGU		COND(0xc)
+#define CONDCC		COND(0xd)
+#define CONDPOS		COND(0xe)
+#define CONDVS		COND(0xf)
+
+#define CONDGEU		CONDCC
+#define CONDLU		CONDCS
+
+#define WDISP22(X)	(((X) >> 2) & 0x3fffff)
+#define WDISP19(X)	(((X) >> 2) & 0x7ffff)
+
+/* The 10-bit branch displacement for CBCOND is split into two fields */
+static u32 WDISP10(u32 off)
+{
+	u32 ret = ((off >> 2) & 0xff) << 5;
+
+	ret |= ((off >> (2 + 8)) & 0x03) << 19;
+
+	return ret;
+}
+
+#define CBCONDE		CBCOND(0x09)
+#define CBCONDLE	CBCOND(0x0a)
+#define CBCONDL		CBCOND(0x0b)
+#define CBCONDLEU	CBCOND(0x0c)
+#define CBCONDCS	CBCOND(0x0d)
+#define CBCONDN		CBCOND(0x0e)
+#define CBCONDVS	CBCOND(0x0f)
+#define CBCONDNE	CBCOND(0x19)
+#define CBCONDG		CBCOND(0x1a)
+#define CBCONDGE	CBCOND(0x1b)
+#define CBCONDGU	CBCOND(0x1c)
+#define CBCONDCC	CBCOND(0x1d)
+#define CBCONDPOS	CBCOND(0x1e)
+#define CBCONDVC	CBCOND(0x1f)
+
+#define CBCONDGEU	CBCONDCC
+#define CBCONDLU	CBCONDCS
+
+#define ANNUL		(1 << 29)
+#define XCC		(1 << 21)
+
+#define BRANCH		(F2(0, 1) | XCC)
+#define CBCOND_OP	(F2(0, 3) | XCC)
+
+#define BA		(BRANCH | CONDA)
+#define BG		(BRANCH | CONDG)
+#define BL		(BRANCH | CONDL)
+#define BLE		(BRANCH | CONDLE)
+#define BGU		(BRANCH | CONDGU)
+#define BLEU		(BRANCH | CONDLEU)
+#define BGE		(BRANCH | CONDGE)
+#define BGEU		(BRANCH | CONDGEU)
+#define BLU		(BRANCH | CONDLU)
+#define BE		(BRANCH | CONDE)
+#define BNE		(BRANCH | CONDNE)
+
+#define SETHI(K, REG)	\
+	(F2(0, 0x4) | RD(REG) | (((K) >> 10) & 0x3fffff))
+#define OR_LO(K, REG)	\
+	(F3(2, 0x02) | IMMED | RS1(REG) | ((K) & 0x3ff) | RD(REG))
+
+#define ADD		F3(2, 0x00)
+#define AND		F3(2, 0x01)
+#define ANDCC		F3(2, 0x11)
+#define OR		F3(2, 0x02)
+#define XOR		F3(2, 0x03)
+#define SUB		F3(2, 0x04)
+#define SUBCC		F3(2, 0x14)
+#define MUL		F3(2, 0x0a)
+#define MULX		F3(2, 0x09)
+#define UDIVX		F3(2, 0x0d)
+#define DIV		F3(2, 0x0e)
+#define SLL		F3(2, 0x25)
+#define SLLX		(F3(2, 0x25)|(1<<12))
+#define SRA		F3(2, 0x27)
+#define SRAX		(F3(2, 0x27)|(1<<12))
+#define SRL		F3(2, 0x26)
+#define SRLX		(F3(2, 0x26)|(1<<12))
+#define JMPL		F3(2, 0x38)
+#define SAVE		F3(2, 0x3c)
+#define RESTORE		F3(2, 0x3d)
+#define CALL		F1(1)
+#define BR		F2(0, 0x01)
+#define RD_Y		F3(2, 0x28)
+#define WR_Y		F3(2, 0x30)
+
+#define LD32		F3(3, 0x00)
+#define LD8		F3(3, 0x01)
+#define LD16		F3(3, 0x02)
+#define LD64		F3(3, 0x0b)
+#define LD64A		F3(3, 0x1b)
+#define ST8		F3(3, 0x05)
+#define ST16		F3(3, 0x06)
+#define ST32		F3(3, 0x04)
+#define ST64		F3(3, 0x0e)
+
+#define CAS		F3(3, 0x3c)
+#define CASX		F3(3, 0x3e)
+
+#define LDPTR		LD64
+#define BASE_STACKFRAME	176
+
+#define LD32I		(LD32 | IMMED)
+#define LD8I		(LD8 | IMMED)
+#define LD16I		(LD16 | IMMED)
+#define LD64I		(LD64 | IMMED)
+#define LDPTRI		(LDPTR | IMMED)
+#define ST32I		(ST32 | IMMED)
+
+struct jit_ctx {
+	struct bpf_prog		*prog;
+	unsigned int		*offset;
+	int			idx;
+	int			epilogue_offset;
+	bool 			tmp_1_used;
+	bool 			tmp_2_used;
+	bool 			tmp_3_used;
+	bool			saw_frame_pointer;
+	bool			saw_call;
+	bool			saw_tail_call;
+	u32			*image;
+};
+
+#define TMP_REG_1	(MAX_BPF_JIT_REG + 0)
+#define TMP_REG_2	(MAX_BPF_JIT_REG + 1)
+#define TMP_REG_3	(MAX_BPF_JIT_REG + 2)
+
+/* Map BPF registers to SPARC registers */
+static const int bpf2sparc[] = {
+	/* return value from in-kernel function, and exit value from eBPF */
+	[BPF_REG_0] = O5,
+
+	/* arguments from eBPF program to in-kernel function */
+	[BPF_REG_1] = O0,
+	[BPF_REG_2] = O1,
+	[BPF_REG_3] = O2,
+	[BPF_REG_4] = O3,
+	[BPF_REG_5] = O4,
+
+	/* callee saved registers that in-kernel function will preserve */
+	[BPF_REG_6] = L0,
+	[BPF_REG_7] = L1,
+	[BPF_REG_8] = L2,
+	[BPF_REG_9] = L3,
+
+	/* read-only frame pointer to access stack */
+	[BPF_REG_FP] = L6,
+
+	[BPF_REG_AX] = G7,
+
+	/* temporary register for internal BPF JIT */
+	[TMP_REG_1] = G1,
+	[TMP_REG_2] = G2,
+	[TMP_REG_3] = G3,
+};
+
+static void emit(const u32 insn, struct jit_ctx *ctx)
+{
+	if (ctx->image != NULL)
+		ctx->image[ctx->idx] = insn;
+
+	ctx->idx++;
+}
+
+static void emit_call(u32 *func, struct jit_ctx *ctx)
+{
+	if (ctx->image != NULL) {
+		void *here = &ctx->image[ctx->idx];
+		unsigned int off;
+
+		off = (void *)func - here;
+		ctx->image[ctx->idx] = CALL | ((off >> 2) & 0x3fffffff);
+	}
+	ctx->idx++;
+}
+
+static void emit_nop(struct jit_ctx *ctx)
+{
+	emit(SETHI(0, G0), ctx);
+}
+
+static void emit_reg_move(u32 from, u32 to, struct jit_ctx *ctx)
+{
+	emit(OR | RS1(G0) | RS2(from) | RD(to), ctx);
+}
+
+/* Emit 32-bit constant, zero extended. */
+static void emit_set_const(s32 K, u32 reg, struct jit_ctx *ctx)
+{
+	emit(SETHI(K, reg), ctx);
+	emit(OR_LO(K, reg), ctx);
+}
+
+/* Emit 32-bit constant, sign extended. */
+static void emit_set_const_sext(s32 K, u32 reg, struct jit_ctx *ctx)
+{
+	if (K >= 0) {
+		emit(SETHI(K, reg), ctx);
+		emit(OR_LO(K, reg), ctx);
+	} else {
+		u32 hbits = ~(u32) K;
+		u32 lbits = -0x400 | (u32) K;
+
+		emit(SETHI(hbits, reg), ctx);
+		emit(XOR | IMMED | RS1(reg) | S13(lbits) | RD(reg), ctx);
+	}
+}
+
+static void emit_alu(u32 opcode, u32 src, u32 dst, struct jit_ctx *ctx)
+{
+	emit(opcode | RS1(dst) | RS2(src) | RD(dst), ctx);
+}
+
+static void emit_alu3(u32 opcode, u32 a, u32 b, u32 c, struct jit_ctx *ctx)
+{
+	emit(opcode | RS1(a) | RS2(b) | RD(c), ctx);
+}
+
+static void emit_alu_K(unsigned int opcode, unsigned int dst, unsigned int imm,
+		       struct jit_ctx *ctx)
+{
+	bool small_immed = is_simm13(imm);
+	unsigned int insn = opcode;
+
+	insn |= RS1(dst) | RD(dst);
+	if (small_immed) {
+		emit(insn | IMMED | S13(imm), ctx);
+	} else {
+		unsigned int tmp = bpf2sparc[TMP_REG_1];
+
+		ctx->tmp_1_used = true;
+
+		emit_set_const_sext(imm, tmp, ctx);
+		emit(insn | RS2(tmp), ctx);
+	}
+}
+
+static void emit_alu3_K(unsigned int opcode, unsigned int src, unsigned int imm,
+			unsigned int dst, struct jit_ctx *ctx)
+{
+	bool small_immed = is_simm13(imm);
+	unsigned int insn = opcode;
+
+	insn |= RS1(src) | RD(dst);
+	if (small_immed) {
+		emit(insn | IMMED | S13(imm), ctx);
+	} else {
+		unsigned int tmp = bpf2sparc[TMP_REG_1];
+
+		ctx->tmp_1_used = true;
+
+		emit_set_const_sext(imm, tmp, ctx);
+		emit(insn | RS2(tmp), ctx);
+	}
+}
+
+static void emit_loadimm32(s32 K, unsigned int dest, struct jit_ctx *ctx)
+{
+	if (K >= 0 && is_simm13(K)) {
+		/* or %g0, K, DEST */
+		emit(OR | IMMED | RS1(G0) | S13(K) | RD(dest), ctx);
+	} else {
+		emit_set_const(K, dest, ctx);
+	}
+}
+
+static void emit_loadimm(s32 K, unsigned int dest, struct jit_ctx *ctx)
+{
+	if (is_simm13(K)) {
+		/* or %g0, K, DEST */
+		emit(OR | IMMED | RS1(G0) | S13(K) | RD(dest), ctx);
+	} else {
+		emit_set_const(K, dest, ctx);
+	}
+}
+
+static void emit_loadimm_sext(s32 K, unsigned int dest, struct jit_ctx *ctx)
+{
+	if (is_simm13(K)) {
+		/* or %g0, K, DEST */
+		emit(OR | IMMED | RS1(G0) | S13(K) | RD(dest), ctx);
+	} else {
+		emit_set_const_sext(K, dest, ctx);
+	}
+}
+
+static void analyze_64bit_constant(u32 high_bits, u32 low_bits,
+				   int *hbsp, int *lbsp, int *abbasp)
+{
+	int lowest_bit_set, highest_bit_set, all_bits_between_are_set;
+	int i;
+
+	lowest_bit_set = highest_bit_set = -1;
+	i = 0;
+	do {
+		if ((lowest_bit_set == -1) && ((low_bits >> i) & 1))
+			lowest_bit_set = i;
+		if ((highest_bit_set == -1) && ((high_bits >> (32 - i - 1)) & 1))
+			highest_bit_set = (64 - i - 1);
+	}  while (++i < 32 && (highest_bit_set == -1 ||
+			       lowest_bit_set == -1));
+	if (i == 32) {
+		i = 0;
+		do {
+			if (lowest_bit_set == -1 && ((high_bits >> i) & 1))
+				lowest_bit_set = i + 32;
+			if (highest_bit_set == -1 &&
+			    ((low_bits >> (32 - i - 1)) & 1))
+				highest_bit_set = 32 - i - 1;
+		} while (++i < 32 && (highest_bit_set == -1 ||
+				      lowest_bit_set == -1));
+	}
+
+	all_bits_between_are_set = 1;
+	for (i = lowest_bit_set; i <= highest_bit_set; i++) {
+		if (i < 32) {
+			if ((low_bits & (1 << i)) != 0)
+				continue;
+		} else {
+			if ((high_bits & (1 << (i - 32))) != 0)
+				continue;
+		}
+		all_bits_between_are_set = 0;
+		break;
+	}
+	*hbsp = highest_bit_set;
+	*lbsp = lowest_bit_set;
+	*abbasp = all_bits_between_are_set;
+}
+
+static unsigned long create_simple_focus_bits(unsigned long high_bits,
+					      unsigned long low_bits,
+					      int lowest_bit_set, int shift)
+{
+	long hi, lo;
+
+	if (lowest_bit_set < 32) {
+		lo = (low_bits >> lowest_bit_set) << shift;
+		hi = ((high_bits << (32 - lowest_bit_set)) << shift);
+	} else {
+		lo = 0;
+		hi = ((high_bits >> (lowest_bit_set - 32)) << shift);
+	}
+	return hi | lo;
+}
+
+static bool const64_is_2insns(unsigned long high_bits,
+			      unsigned long low_bits)
+{
+	int highest_bit_set, lowest_bit_set, all_bits_between_are_set;
+
+	if (high_bits == 0 || high_bits == 0xffffffff)
+		return true;
+
+	analyze_64bit_constant(high_bits, low_bits,
+			       &highest_bit_set, &lowest_bit_set,
+			       &all_bits_between_are_set);
+
+	if ((highest_bit_set == 63 || lowest_bit_set == 0) &&
+	    all_bits_between_are_set != 0)
+		return true;
+
+	if (highest_bit_set - lowest_bit_set < 21)
+		return true;
+
+	return false;
+}
+
+static void sparc_emit_set_const64_quick2(unsigned long high_bits,
+					  unsigned long low_imm,
+					  unsigned int dest,
+					  int shift_count, struct jit_ctx *ctx)
+{
+	emit_loadimm32(high_bits, dest, ctx);
+
+	/* Now shift it up into place.  */
+	emit_alu_K(SLLX, dest, shift_count, ctx);
+
+	/* If there is a low immediate part piece, finish up by
+	 * putting that in as well.
+	 */
+	if (low_imm != 0)
+		emit(OR | IMMED | RS1(dest) | S13(low_imm) | RD(dest), ctx);
+}
+
+static void emit_loadimm64(u64 K, unsigned int dest, struct jit_ctx *ctx)
+{
+	int all_bits_between_are_set, lowest_bit_set, highest_bit_set;
+	unsigned int tmp = bpf2sparc[TMP_REG_1];
+	u32 low_bits = (K & 0xffffffff);
+	u32 high_bits = (K >> 32);
+
+	/* These two tests also take care of all of the one
+	 * instruction cases.
+	 */
+	if (high_bits == 0xffffffff && (low_bits & 0x80000000))
+		return emit_loadimm_sext(K, dest, ctx);
+	if (high_bits == 0x00000000)
+		return emit_loadimm32(K, dest, ctx);
+
+	analyze_64bit_constant(high_bits, low_bits, &highest_bit_set,
+			       &lowest_bit_set, &all_bits_between_are_set);
+
+	/* 1) mov	-1, %reg
+	 *    sllx	%reg, shift, %reg
+	 * 2) mov	-1, %reg
+	 *    srlx	%reg, shift, %reg
+	 * 3) mov	some_small_const, %reg
+	 *    sllx	%reg, shift, %reg
+	 */
+	if (((highest_bit_set == 63 || lowest_bit_set == 0) &&
+	     all_bits_between_are_set != 0) ||
+	    ((highest_bit_set - lowest_bit_set) < 12)) {
+		int shift = lowest_bit_set;
+		long the_const = -1;
+
+		if ((highest_bit_set != 63 && lowest_bit_set != 0) ||
+		    all_bits_between_are_set == 0) {
+			the_const =
+				create_simple_focus_bits(high_bits, low_bits,
+							 lowest_bit_set, 0);
+		} else if (lowest_bit_set == 0)
+			shift = -(63 - highest_bit_set);
+
+		emit(OR | IMMED | RS1(G0) | S13(the_const) | RD(dest), ctx);
+		if (shift > 0)
+			emit_alu_K(SLLX, dest, shift, ctx);
+		else if (shift < 0)
+			emit_alu_K(SRLX, dest, -shift, ctx);
+
+		return;
+	}
+
+	/* Now a range of 22 or less bits set somewhere.
+	 * 1) sethi	%hi(focus_bits), %reg
+	 *    sllx	%reg, shift, %reg
+	 * 2) sethi	%hi(focus_bits), %reg
+	 *    srlx	%reg, shift, %reg
+	 */
+	if ((highest_bit_set - lowest_bit_set) < 21) {
+		unsigned long focus_bits =
+			create_simple_focus_bits(high_bits, low_bits,
+						 lowest_bit_set, 10);
+
+		emit(SETHI(focus_bits, dest), ctx);
+
+		/* If lowest_bit_set == 10 then a sethi alone could
+		 * have done it.
+		 */
+		if (lowest_bit_set < 10)
+			emit_alu_K(SRLX, dest, 10 - lowest_bit_set, ctx);
+		else if (lowest_bit_set > 10)
+			emit_alu_K(SLLX, dest, lowest_bit_set - 10, ctx);
+		return;
+	}
+
+	/* Ok, now 3 instruction sequences.  */
+	if (low_bits == 0) {
+		emit_loadimm32(high_bits, dest, ctx);
+		emit_alu_K(SLLX, dest, 32, ctx);
+		return;
+	}
+
+	/* We may be able to do something quick
+	 * when the constant is negated, so try that.
+	 */
+	if (const64_is_2insns((~high_bits) & 0xffffffff,
+			      (~low_bits) & 0xfffffc00)) {
+		/* NOTE: The trailing bits get XOR'd so we need the
+		 * non-negated bits, not the negated ones.
+		 */
+		unsigned long trailing_bits = low_bits & 0x3ff;
+
+		if ((((~high_bits) & 0xffffffff) == 0 &&
+		     ((~low_bits) & 0x80000000) == 0) ||
+		    (((~high_bits) & 0xffffffff) == 0xffffffff &&
+		     ((~low_bits) & 0x80000000) != 0)) {
+			unsigned long fast_int = (~low_bits & 0xffffffff);
+
+			if ((is_sethi(fast_int) &&
+			     (~high_bits & 0xffffffff) == 0)) {
+				emit(SETHI(fast_int, dest), ctx);
+			} else if (is_simm13(fast_int)) {
+				emit(OR | IMMED | RS1(G0) | S13(fast_int) | RD(dest), ctx);
+			} else {
+				emit_loadimm64(fast_int, dest, ctx);
+			}
+		} else {
+			u64 n = ((~low_bits) & 0xfffffc00) |
+				(((unsigned long)((~high_bits) & 0xffffffff))<<32);
+			emit_loadimm64(n, dest, ctx);
+		}
+
+		low_bits = -0x400 | trailing_bits;
+
+		emit(XOR | IMMED | RS1(dest) | S13(low_bits) | RD(dest), ctx);
+		return;
+	}
+
+	/* 1) sethi	%hi(xxx), %reg
+	 *    or	%reg, %lo(xxx), %reg
+	 *    sllx	%reg, yyy, %reg
+	 */
+	if ((highest_bit_set - lowest_bit_set) < 32) {
+		unsigned long focus_bits =
+			create_simple_focus_bits(high_bits, low_bits,
+						 lowest_bit_set, 0);
+
+		/* So what we know is that the set bits straddle the
+		 * middle of the 64-bit word.
+		 */
+		sparc_emit_set_const64_quick2(focus_bits, 0, dest,
+					      lowest_bit_set, ctx);
+		return;
+	}
+
+	/* 1) sethi	%hi(high_bits), %reg
+	 *    or	%reg, %lo(high_bits), %reg
+	 *    sllx	%reg, 32, %reg
+	 *    or	%reg, low_bits, %reg
+	 */
+	if (is_simm13(low_bits) && ((int)low_bits > 0)) {
+		sparc_emit_set_const64_quick2(high_bits, low_bits,
+					      dest, 32, ctx);
+		return;
+	}
+
+	/* Oh well, we tried... Do a full 64-bit decomposition.  */
+	ctx->tmp_1_used = true;
+
+	emit_loadimm32(high_bits, tmp, ctx);
+	emit_loadimm32(low_bits, dest, ctx);
+	emit_alu_K(SLLX, tmp, 32, ctx);
+	emit(OR | RS1(dest) | RS2(tmp) | RD(dest), ctx);
+}
+
+static void emit_branch(unsigned int br_opc, unsigned int from_idx, unsigned int to_idx,
+			struct jit_ctx *ctx)
+{
+	unsigned int off = to_idx - from_idx;
+
+	if (br_opc & XCC)
+		emit(br_opc | WDISP19(off << 2), ctx);
+	else
+		emit(br_opc | WDISP22(off << 2), ctx);
+}
+
+static void emit_cbcond(unsigned int cb_opc, unsigned int from_idx, unsigned int to_idx,
+			const u8 dst, const u8 src, struct jit_ctx *ctx)
+{
+	unsigned int off = to_idx - from_idx;
+
+	emit(cb_opc | WDISP10(off << 2) | RS1(dst) | RS2(src), ctx);
+}
+
+static void emit_cbcondi(unsigned int cb_opc, unsigned int from_idx, unsigned int to_idx,
+			 const u8 dst, s32 imm, struct jit_ctx *ctx)
+{
+	unsigned int off = to_idx - from_idx;
+
+	emit(cb_opc | IMMED | WDISP10(off << 2) | RS1(dst) | S5(imm), ctx);
+}
+
+#define emit_read_y(REG, CTX)	emit(RD_Y | RD(REG), CTX)
+#define emit_write_y(REG, CTX)	emit(WR_Y | IMMED | RS1(REG) | S13(0), CTX)
+
+#define emit_cmp(R1, R2, CTX)				\
+	emit(SUBCC | RS1(R1) | RS2(R2) | RD(G0), CTX)
+
+#define emit_cmpi(R1, IMM, CTX)				\
+	emit(SUBCC | IMMED | RS1(R1) | S13(IMM) | RD(G0), CTX)
+
+#define emit_btst(R1, R2, CTX)				\
+	emit(ANDCC | RS1(R1) | RS2(R2) | RD(G0), CTX)
+
+#define emit_btsti(R1, IMM, CTX)			\
+	emit(ANDCC | IMMED | RS1(R1) | S13(IMM) | RD(G0), CTX)
+
+static int emit_compare_and_branch(const u8 code, const u8 dst, u8 src,
+				   const s32 imm, bool is_imm, int branch_dst,
+				   struct jit_ctx *ctx)
+{
+	bool use_cbcond = (sparc64_elf_hwcap & AV_SPARC_CBCOND) != 0;
+	const u8 tmp = bpf2sparc[TMP_REG_1];
+
+	branch_dst = ctx->offset[branch_dst];
+
+	if (!is_simm10(branch_dst - ctx->idx) ||
+	    BPF_OP(code) == BPF_JSET)
+		use_cbcond = false;
+
+	if (is_imm) {
+		bool fits = true;
+
+		if (use_cbcond) {
+			if (!is_simm5(imm))
+				fits = false;
+		} else if (!is_simm13(imm)) {
+			fits = false;
+		}
+		if (!fits) {
+			ctx->tmp_1_used = true;
+			emit_loadimm_sext(imm, tmp, ctx);
+			src = tmp;
+			is_imm = false;
+		}
+	}
+
+	if (!use_cbcond) {
+		u32 br_opcode;
+
+		if (BPF_OP(code) == BPF_JSET) {
+			if (is_imm)
+				emit_btsti(dst, imm, ctx);
+			else
+				emit_btst(dst, src, ctx);
+		} else {
+			if (is_imm)
+				emit_cmpi(dst, imm, ctx);
+			else
+				emit_cmp(dst, src, ctx);
+		}
+		switch (BPF_OP(code)) {
+		case BPF_JEQ:
+			br_opcode = BE;
+			break;
+		case BPF_JGT:
+			br_opcode = BGU;
+			break;
+		case BPF_JLT:
+			br_opcode = BLU;
+			break;
+		case BPF_JGE:
+			br_opcode = BGEU;
+			break;
+		case BPF_JLE:
+			br_opcode = BLEU;
+			break;
+		case BPF_JSET:
+		case BPF_JNE:
+			br_opcode = BNE;
+			break;
+		case BPF_JSGT:
+			br_opcode = BG;
+			break;
+		case BPF_JSLT:
+			br_opcode = BL;
+			break;
+		case BPF_JSGE:
+			br_opcode = BGE;
+			break;
+		case BPF_JSLE:
+			br_opcode = BLE;
+			break;
+		default:
+			/* Make sure we dont leak kernel information to the
+			 * user.
+			 */
+			return -EFAULT;
+		}
+		emit_branch(br_opcode, ctx->idx, branch_dst, ctx);
+		emit_nop(ctx);
+	} else {
+		u32 cbcond_opcode;
+
+		switch (BPF_OP(code)) {
+		case BPF_JEQ:
+			cbcond_opcode = CBCONDE;
+			break;
+		case BPF_JGT:
+			cbcond_opcode = CBCONDGU;
+			break;
+		case BPF_JLT:
+			cbcond_opcode = CBCONDLU;
+			break;
+		case BPF_JGE:
+			cbcond_opcode = CBCONDGEU;
+			break;
+		case BPF_JLE:
+			cbcond_opcode = CBCONDLEU;
+			break;
+		case BPF_JNE:
+			cbcond_opcode = CBCONDNE;
+			break;
+		case BPF_JSGT:
+			cbcond_opcode = CBCONDG;
+			break;
+		case BPF_JSLT:
+			cbcond_opcode = CBCONDL;
+			break;
+		case BPF_JSGE:
+			cbcond_opcode = CBCONDGE;
+			break;
+		case BPF_JSLE:
+			cbcond_opcode = CBCONDLE;
+			break;
+		default:
+			/* Make sure we dont leak kernel information to the
+			 * user.
+			 */
+			return -EFAULT;
+		}
+		cbcond_opcode |= CBCOND_OP;
+		if (is_imm)
+			emit_cbcondi(cbcond_opcode, ctx->idx, branch_dst,
+				     dst, imm, ctx);
+		else
+			emit_cbcond(cbcond_opcode, ctx->idx, branch_dst,
+				    dst, src, ctx);
+	}
+	return 0;
+}
+
+/* Just skip the save instruction and the ctx register move.  */
+#define BPF_TAILCALL_PROLOGUE_SKIP	16
+#define BPF_TAILCALL_CNT_SP_OFF		(STACK_BIAS + 128)
+
+static void build_prologue(struct jit_ctx *ctx)
+{
+	s32 stack_needed = BASE_STACKFRAME;
+
+	if (ctx->saw_frame_pointer || ctx->saw_tail_call) {
+		struct bpf_prog *prog = ctx->prog;
+		u32 stack_depth;
+
+		stack_depth = prog->aux->stack_depth;
+		stack_needed += round_up(stack_depth, 16);
+	}
+
+	if (ctx->saw_tail_call)
+		stack_needed += 8;
+
+	/* save %sp, -176, %sp */
+	emit(SAVE | IMMED | RS1(SP) | S13(-stack_needed) | RD(SP), ctx);
+
+	/* tail_call_cnt = 0 */
+	if (ctx->saw_tail_call) {
+		u32 off = BPF_TAILCALL_CNT_SP_OFF;
+
+		emit(ST32 | IMMED | RS1(SP) | S13(off) | RD(G0), ctx);
+	} else {
+		emit_nop(ctx);
+	}
+	if (ctx->saw_frame_pointer) {
+		const u8 vfp = bpf2sparc[BPF_REG_FP];
+
+		emit(ADD | IMMED | RS1(FP) | S13(STACK_BIAS) | RD(vfp), ctx);
+	}
+
+	emit_reg_move(I0, O0, ctx);
+	/* If you add anything here, adjust BPF_TAILCALL_PROLOGUE_SKIP above. */
+}
+
+static void build_epilogue(struct jit_ctx *ctx)
+{
+	ctx->epilogue_offset = ctx->idx;
+
+	/* ret (jmpl %i7 + 8, %g0) */
+	emit(JMPL | IMMED | RS1(I7) | S13(8) | RD(G0), ctx);
+
+	/* restore %i5, %g0, %o0 */
+	emit(RESTORE | RS1(bpf2sparc[BPF_REG_0]) | RS2(G0) | RD(O0), ctx);
+}
+
+static void emit_tail_call(struct jit_ctx *ctx)
+{
+	const u8 bpf_array = bpf2sparc[BPF_REG_2];
+	const u8 bpf_index = bpf2sparc[BPF_REG_3];
+	const u8 tmp = bpf2sparc[TMP_REG_1];
+	u32 off;
+
+	ctx->saw_tail_call = true;
+
+	off = offsetof(struct bpf_array, map.max_entries);
+	emit(LD32 | IMMED | RS1(bpf_array) | S13(off) | RD(tmp), ctx);
+	emit_cmp(bpf_index, tmp, ctx);
+#define OFFSET1 17
+	emit_branch(BGEU, ctx->idx, ctx->idx + OFFSET1, ctx);
+	emit_nop(ctx);
+
+	off = BPF_TAILCALL_CNT_SP_OFF;
+	emit(LD32 | IMMED | RS1(SP) | S13(off) | RD(tmp), ctx);
+	emit_cmpi(tmp, MAX_TAIL_CALL_CNT, ctx);
+#define OFFSET2 13
+	emit_branch(BGU, ctx->idx, ctx->idx + OFFSET2, ctx);
+	emit_nop(ctx);
+
+	emit_alu_K(ADD, tmp, 1, ctx);
+	off = BPF_TAILCALL_CNT_SP_OFF;
+	emit(ST32 | IMMED | RS1(SP) | S13(off) | RD(tmp), ctx);
+
+	emit_alu3_K(SLL, bpf_index, 3, tmp, ctx);
+	emit_alu(ADD, bpf_array, tmp, ctx);
+	off = offsetof(struct bpf_array, ptrs);
+	emit(LD64 | IMMED | RS1(tmp) | S13(off) | RD(tmp), ctx);
+
+	emit_cmpi(tmp, 0, ctx);
+#define OFFSET3 5
+	emit_branch(BE, ctx->idx, ctx->idx + OFFSET3, ctx);
+	emit_nop(ctx);
+
+	off = offsetof(struct bpf_prog, bpf_func);
+	emit(LD64 | IMMED | RS1(tmp) | S13(off) | RD(tmp), ctx);
+
+	off = BPF_TAILCALL_PROLOGUE_SKIP;
+	emit(JMPL | IMMED | RS1(tmp) | S13(off) | RD(G0), ctx);
+	emit_nop(ctx);
+}
+
+static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx)
+{
+	const u8 code = insn->code;
+	const u8 dst = bpf2sparc[insn->dst_reg];
+	const u8 src = bpf2sparc[insn->src_reg];
+	const int i = insn - ctx->prog->insnsi;
+	const s16 off = insn->off;
+	const s32 imm = insn->imm;
+
+	if (insn->src_reg == BPF_REG_FP)
+		ctx->saw_frame_pointer = true;
+
+	switch (code) {
+	/* dst = src */
+	case BPF_ALU | BPF_MOV | BPF_X:
+		emit_alu3_K(SRL, src, 0, dst, ctx);
+		break;
+	case BPF_ALU64 | BPF_MOV | BPF_X:
+		emit_reg_move(src, dst, ctx);
+		break;
+	/* dst = dst OP src */
+	case BPF_ALU | BPF_ADD | BPF_X:
+	case BPF_ALU64 | BPF_ADD | BPF_X:
+		emit_alu(ADD, src, dst, ctx);
+		goto do_alu32_trunc;
+	case BPF_ALU | BPF_SUB | BPF_X:
+	case BPF_ALU64 | BPF_SUB | BPF_X:
+		emit_alu(SUB, src, dst, ctx);
+		goto do_alu32_trunc;
+	case BPF_ALU | BPF_AND | BPF_X:
+	case BPF_ALU64 | BPF_AND | BPF_X:
+		emit_alu(AND, src, dst, ctx);
+		goto do_alu32_trunc;
+	case BPF_ALU | BPF_OR | BPF_X:
+	case BPF_ALU64 | BPF_OR | BPF_X:
+		emit_alu(OR, src, dst, ctx);
+		goto do_alu32_trunc;
+	case BPF_ALU | BPF_XOR | BPF_X:
+	case BPF_ALU64 | BPF_XOR | BPF_X:
+		emit_alu(XOR, src, dst, ctx);
+		goto do_alu32_trunc;
+	case BPF_ALU | BPF_MUL | BPF_X:
+		emit_alu(MUL, src, dst, ctx);
+		goto do_alu32_trunc;
+	case BPF_ALU64 | BPF_MUL | BPF_X:
+		emit_alu(MULX, src, dst, ctx);
+		break;
+	case BPF_ALU | BPF_DIV | BPF_X:
+		emit_write_y(G0, ctx);
+		emit_alu(DIV, src, dst, ctx);
+		break;
+	case BPF_ALU64 | BPF_DIV | BPF_X:
+		emit_alu(UDIVX, src, dst, ctx);
+		break;
+	case BPF_ALU | BPF_MOD | BPF_X: {
+		const u8 tmp = bpf2sparc[TMP_REG_1];
+
+		ctx->tmp_1_used = true;
+
+		emit_write_y(G0, ctx);
+		emit_alu3(DIV, dst, src, tmp, ctx);
+		emit_alu3(MULX, tmp, src, tmp, ctx);
+		emit_alu3(SUB, dst, tmp, dst, ctx);
+		goto do_alu32_trunc;
+	}
+	case BPF_ALU64 | BPF_MOD | BPF_X: {
+		const u8 tmp = bpf2sparc[TMP_REG_1];
+
+		ctx->tmp_1_used = true;
+
+		emit_alu3(UDIVX, dst, src, tmp, ctx);
+		emit_alu3(MULX, tmp, src, tmp, ctx);
+		emit_alu3(SUB, dst, tmp, dst, ctx);
+		break;
+	}
+	case BPF_ALU | BPF_LSH | BPF_X:
+		emit_alu(SLL, src, dst, ctx);
+		goto do_alu32_trunc;
+	case BPF_ALU64 | BPF_LSH | BPF_X:
+		emit_alu(SLLX, src, dst, ctx);
+		break;
+	case BPF_ALU | BPF_RSH | BPF_X:
+		emit_alu(SRL, src, dst, ctx);
+		break;
+	case BPF_ALU64 | BPF_RSH | BPF_X:
+		emit_alu(SRLX, src, dst, ctx);
+		break;
+	case BPF_ALU | BPF_ARSH | BPF_X:
+		emit_alu(SRA, src, dst, ctx);
+		goto do_alu32_trunc;
+	case BPF_ALU64 | BPF_ARSH | BPF_X:
+		emit_alu(SRAX, src, dst, ctx);
+		break;
+
+	/* dst = -dst */
+	case BPF_ALU | BPF_NEG:
+	case BPF_ALU64 | BPF_NEG:
+		emit(SUB | RS1(0) | RS2(dst) | RD(dst), ctx);
+		goto do_alu32_trunc;
+
+	case BPF_ALU | BPF_END | BPF_FROM_BE:
+		switch (imm) {
+		case 16:
+			emit_alu_K(SLL, dst, 16, ctx);
+			emit_alu_K(SRL, dst, 16, ctx);
+			break;
+		case 32:
+			emit_alu_K(SRL, dst, 0, ctx);
+			break;
+		case 64:
+			/* nop */
+			break;
+
+		}
+		break;
+
+	/* dst = BSWAP##imm(dst) */
+	case BPF_ALU | BPF_END | BPF_FROM_LE: {
+		const u8 tmp = bpf2sparc[TMP_REG_1];
+		const u8 tmp2 = bpf2sparc[TMP_REG_2];
+
+		ctx->tmp_1_used = true;
+		switch (imm) {
+		case 16:
+			emit_alu3_K(AND, dst, 0xff, tmp, ctx);
+			emit_alu3_K(SRL, dst, 8, dst, ctx);
+			emit_alu3_K(AND, dst, 0xff, dst, ctx);
+			emit_alu3_K(SLL, tmp, 8, tmp, ctx);
+			emit_alu(OR, tmp, dst, ctx);
+			break;
+
+		case 32:
+			ctx->tmp_2_used = true;
+			emit_alu3_K(SRL, dst, 24, tmp, ctx);	/* tmp  = dst >> 24 */
+			emit_alu3_K(SRL, dst, 16, tmp2, ctx);	/* tmp2 = dst >> 16 */
+			emit_alu3_K(AND, tmp2, 0xff, tmp2, ctx);/* tmp2 = tmp2 & 0xff */
+			emit_alu3_K(SLL, tmp2, 8, tmp2, ctx);	/* tmp2 = tmp2 << 8 */
+			emit_alu(OR, tmp2, tmp, ctx);		/* tmp  = tmp | tmp2 */
+			emit_alu3_K(SRL, dst, 8, tmp2, ctx);	/* tmp2 = dst >> 8 */
+			emit_alu3_K(AND, tmp2, 0xff, tmp2, ctx);/* tmp2 = tmp2 & 0xff */
+			emit_alu3_K(SLL, tmp2, 16, tmp2, ctx);	/* tmp2 = tmp2 << 16 */
+			emit_alu(OR, tmp2, tmp, ctx);		/* tmp  = tmp | tmp2 */
+			emit_alu3_K(AND, dst, 0xff, dst, ctx);	/* dst	= dst & 0xff */
+			emit_alu3_K(SLL, dst, 24, dst, ctx);	/* dst  = dst << 24 */
+			emit_alu(OR, tmp, dst, ctx);		/* dst  = dst | tmp */
+			break;
+
+		case 64:
+			emit_alu3_K(ADD, SP, STACK_BIAS + 128, tmp, ctx);
+			emit(ST64 | RS1(tmp) | RS2(G0) | RD(dst), ctx);
+			emit(LD64A | ASI(ASI_PL) | RS1(tmp) | RS2(G0) | RD(dst), ctx);
+			break;
+		}
+		break;
+	}
+	/* dst = imm */
+	case BPF_ALU | BPF_MOV | BPF_K:
+		emit_loadimm32(imm, dst, ctx);
+		break;
+	case BPF_ALU64 | BPF_MOV | BPF_K:
+		emit_loadimm_sext(imm, dst, ctx);
+		break;
+	/* dst = dst OP imm */
+	case BPF_ALU | BPF_ADD | BPF_K:
+	case BPF_ALU64 | BPF_ADD | BPF_K:
+		emit_alu_K(ADD, dst, imm, ctx);
+		goto do_alu32_trunc;
+	case BPF_ALU | BPF_SUB | BPF_K:
+	case BPF_ALU64 | BPF_SUB | BPF_K:
+		emit_alu_K(SUB, dst, imm, ctx);
+		goto do_alu32_trunc;
+	case BPF_ALU | BPF_AND | BPF_K:
+	case BPF_ALU64 | BPF_AND | BPF_K:
+		emit_alu_K(AND, dst, imm, ctx);
+		goto do_alu32_trunc;
+	case BPF_ALU | BPF_OR | BPF_K:
+	case BPF_ALU64 | BPF_OR | BPF_K:
+		emit_alu_K(OR, dst, imm, ctx);
+		goto do_alu32_trunc;
+	case BPF_ALU | BPF_XOR | BPF_K:
+	case BPF_ALU64 | BPF_XOR | BPF_K:
+		emit_alu_K(XOR, dst, imm, ctx);
+		goto do_alu32_trunc;
+	case BPF_ALU | BPF_MUL | BPF_K:
+		emit_alu_K(MUL, dst, imm, ctx);
+		goto do_alu32_trunc;
+	case BPF_ALU64 | BPF_MUL | BPF_K:
+		emit_alu_K(MULX, dst, imm, ctx);
+		break;
+	case BPF_ALU | BPF_DIV | BPF_K:
+		if (imm == 0)
+			return -EINVAL;
+
+		emit_write_y(G0, ctx);
+		emit_alu_K(DIV, dst, imm, ctx);
+		goto do_alu32_trunc;
+	case BPF_ALU64 | BPF_DIV | BPF_K:
+		if (imm == 0)
+			return -EINVAL;
+
+		emit_alu_K(UDIVX, dst, imm, ctx);
+		break;
+	case BPF_ALU64 | BPF_MOD | BPF_K:
+	case BPF_ALU | BPF_MOD | BPF_K: {
+		const u8 tmp = bpf2sparc[TMP_REG_2];
+		unsigned int div;
+
+		if (imm == 0)
+			return -EINVAL;
+
+		div = (BPF_CLASS(code) == BPF_ALU64) ? UDIVX : DIV;
+
+		ctx->tmp_2_used = true;
+
+		if (BPF_CLASS(code) != BPF_ALU64)
+			emit_write_y(G0, ctx);
+		if (is_simm13(imm)) {
+			emit(div | IMMED | RS1(dst) | S13(imm) | RD(tmp), ctx);
+			emit(MULX | IMMED | RS1(tmp) | S13(imm) | RD(tmp), ctx);
+			emit(SUB | RS1(dst) | RS2(tmp) | RD(dst), ctx);
+		} else {
+			const u8 tmp1 = bpf2sparc[TMP_REG_1];
+
+			ctx->tmp_1_used = true;
+
+			emit_set_const_sext(imm, tmp1, ctx);
+			emit(div | RS1(dst) | RS2(tmp1) | RD(tmp), ctx);
+			emit(MULX | RS1(tmp) | RS2(tmp1) | RD(tmp), ctx);
+			emit(SUB | RS1(dst) | RS2(tmp) | RD(dst), ctx);
+		}
+		goto do_alu32_trunc;
+	}
+	case BPF_ALU | BPF_LSH | BPF_K:
+		emit_alu_K(SLL, dst, imm, ctx);
+		goto do_alu32_trunc;
+	case BPF_ALU64 | BPF_LSH | BPF_K:
+		emit_alu_K(SLLX, dst, imm, ctx);
+		break;
+	case BPF_ALU | BPF_RSH | BPF_K:
+		emit_alu_K(SRL, dst, imm, ctx);
+		break;
+	case BPF_ALU64 | BPF_RSH | BPF_K:
+		emit_alu_K(SRLX, dst, imm, ctx);
+		break;
+	case BPF_ALU | BPF_ARSH | BPF_K:
+		emit_alu_K(SRA, dst, imm, ctx);
+		goto do_alu32_trunc;
+	case BPF_ALU64 | BPF_ARSH | BPF_K:
+		emit_alu_K(SRAX, dst, imm, ctx);
+		break;
+
+	do_alu32_trunc:
+		if (BPF_CLASS(code) == BPF_ALU)
+			emit_alu_K(SRL, dst, 0, ctx);
+		break;
+
+	/* JUMP off */
+	case BPF_JMP | BPF_JA:
+		emit_branch(BA, ctx->idx, ctx->offset[i + off], ctx);
+		emit_nop(ctx);
+		break;
+	/* IF (dst COND src) JUMP off */
+	case BPF_JMP | BPF_JEQ | BPF_X:
+	case BPF_JMP | BPF_JGT | BPF_X:
+	case BPF_JMP | BPF_JLT | BPF_X:
+	case BPF_JMP | BPF_JGE | BPF_X:
+	case BPF_JMP | BPF_JLE | BPF_X:
+	case BPF_JMP | BPF_JNE | BPF_X:
+	case BPF_JMP | BPF_JSGT | BPF_X:
+	case BPF_JMP | BPF_JSLT | BPF_X:
+	case BPF_JMP | BPF_JSGE | BPF_X:
+	case BPF_JMP | BPF_JSLE | BPF_X:
+	case BPF_JMP | BPF_JSET | BPF_X: {
+		int err;
+
+		err = emit_compare_and_branch(code, dst, src, 0, false, i + off, ctx);
+		if (err)
+			return err;
+		break;
+	}
+	/* IF (dst COND imm) JUMP off */
+	case BPF_JMP | BPF_JEQ | BPF_K:
+	case BPF_JMP | BPF_JGT | BPF_K:
+	case BPF_JMP | BPF_JLT | BPF_K:
+	case BPF_JMP | BPF_JGE | BPF_K:
+	case BPF_JMP | BPF_JLE | BPF_K:
+	case BPF_JMP | BPF_JNE | BPF_K:
+	case BPF_JMP | BPF_JSGT | BPF_K:
+	case BPF_JMP | BPF_JSLT | BPF_K:
+	case BPF_JMP | BPF_JSGE | BPF_K:
+	case BPF_JMP | BPF_JSLE | BPF_K:
+	case BPF_JMP | BPF_JSET | BPF_K: {
+		int err;
+
+		err = emit_compare_and_branch(code, dst, 0, imm, true, i + off, ctx);
+		if (err)
+			return err;
+		break;
+	}
+
+	/* function call */
+	case BPF_JMP | BPF_CALL:
+	{
+		u8 *func = ((u8 *)__bpf_call_base) + imm;
+
+		ctx->saw_call = true;
+
+		emit_call((u32 *)func, ctx);
+		emit_nop(ctx);
+
+		emit_reg_move(O0, bpf2sparc[BPF_REG_0], ctx);
+		break;
+	}
+
+	/* tail call */
+	case BPF_JMP | BPF_TAIL_CALL:
+		emit_tail_call(ctx);
+		break;
+
+	/* function return */
+	case BPF_JMP | BPF_EXIT:
+		/* Optimization: when last instruction is EXIT,
+		   simply fallthrough to epilogue. */
+		if (i == ctx->prog->len - 1)
+			break;
+		emit_branch(BA, ctx->idx, ctx->epilogue_offset, ctx);
+		emit_nop(ctx);
+		break;
+
+	/* dst = imm64 */
+	case BPF_LD | BPF_IMM | BPF_DW:
+	{
+		const struct bpf_insn insn1 = insn[1];
+		u64 imm64;
+
+		imm64 = (u64)insn1.imm << 32 | (u32)imm;
+		emit_loadimm64(imm64, dst, ctx);
+
+		return 1;
+	}
+
+	/* LDX: dst = *(size *)(src + off) */
+	case BPF_LDX | BPF_MEM | BPF_W:
+	case BPF_LDX | BPF_MEM | BPF_H:
+	case BPF_LDX | BPF_MEM | BPF_B:
+	case BPF_LDX | BPF_MEM | BPF_DW: {
+		const u8 tmp = bpf2sparc[TMP_REG_1];
+		u32 opcode = 0, rs2;
+
+		ctx->tmp_1_used = true;
+		switch (BPF_SIZE(code)) {
+		case BPF_W:
+			opcode = LD32;
+			break;
+		case BPF_H:
+			opcode = LD16;
+			break;
+		case BPF_B:
+			opcode = LD8;
+			break;
+		case BPF_DW:
+			opcode = LD64;
+			break;
+		}
+
+		if (is_simm13(off)) {
+			opcode |= IMMED;
+			rs2 = S13(off);
+		} else {
+			emit_loadimm(off, tmp, ctx);
+			rs2 = RS2(tmp);
+		}
+		emit(opcode | RS1(src) | rs2 | RD(dst), ctx);
+		break;
+	}
+	/* ST: *(size *)(dst + off) = imm */
+	case BPF_ST | BPF_MEM | BPF_W:
+	case BPF_ST | BPF_MEM | BPF_H:
+	case BPF_ST | BPF_MEM | BPF_B:
+	case BPF_ST | BPF_MEM | BPF_DW: {
+		const u8 tmp = bpf2sparc[TMP_REG_1];
+		const u8 tmp2 = bpf2sparc[TMP_REG_2];
+		u32 opcode = 0, rs2;
+
+		ctx->tmp_2_used = true;
+		emit_loadimm(imm, tmp2, ctx);
+
+		switch (BPF_SIZE(code)) {
+		case BPF_W:
+			opcode = ST32;
+			break;
+		case BPF_H:
+			opcode = ST16;
+			break;
+		case BPF_B:
+			opcode = ST8;
+			break;
+		case BPF_DW:
+			opcode = ST64;
+			break;
+		}
+
+		if (is_simm13(off)) {
+			opcode |= IMMED;
+			rs2 = S13(off);
+		} else {
+			ctx->tmp_1_used = true;
+			emit_loadimm(off, tmp, ctx);
+			rs2 = RS2(tmp);
+		}
+		emit(opcode | RS1(dst) | rs2 | RD(tmp2), ctx);
+		break;
+	}
+
+	/* STX: *(size *)(dst + off) = src */
+	case BPF_STX | BPF_MEM | BPF_W:
+	case BPF_STX | BPF_MEM | BPF_H:
+	case BPF_STX | BPF_MEM | BPF_B:
+	case BPF_STX | BPF_MEM | BPF_DW: {
+		const u8 tmp = bpf2sparc[TMP_REG_1];
+		u32 opcode = 0, rs2;
+
+		switch (BPF_SIZE(code)) {
+		case BPF_W:
+			opcode = ST32;
+			break;
+		case BPF_H:
+			opcode = ST16;
+			break;
+		case BPF_B:
+			opcode = ST8;
+			break;
+		case BPF_DW:
+			opcode = ST64;
+			break;
+		}
+		if (is_simm13(off)) {
+			opcode |= IMMED;
+			rs2 = S13(off);
+		} else {
+			ctx->tmp_1_used = true;
+			emit_loadimm(off, tmp, ctx);
+			rs2 = RS2(tmp);
+		}
+		emit(opcode | RS1(dst) | rs2 | RD(src), ctx);
+		break;
+	}
+
+	/* STX XADD: lock *(u32 *)(dst + off) += src */
+	case BPF_STX | BPF_XADD | BPF_W: {
+		const u8 tmp = bpf2sparc[TMP_REG_1];
+		const u8 tmp2 = bpf2sparc[TMP_REG_2];
+		const u8 tmp3 = bpf2sparc[TMP_REG_3];
+
+		ctx->tmp_1_used = true;
+		ctx->tmp_2_used = true;
+		ctx->tmp_3_used = true;
+		emit_loadimm(off, tmp, ctx);
+		emit_alu3(ADD, dst, tmp, tmp, ctx);
+
+		emit(LD32 | RS1(tmp) | RS2(G0) | RD(tmp2), ctx);
+		emit_alu3(ADD, tmp2, src, tmp3, ctx);
+		emit(CAS | ASI(ASI_P) | RS1(tmp) | RS2(tmp2) | RD(tmp3), ctx);
+		emit_cmp(tmp2, tmp3, ctx);
+		emit_branch(BNE, 4, 0, ctx);
+		emit_nop(ctx);
+		break;
+	}
+	/* STX XADD: lock *(u64 *)(dst + off) += src */
+	case BPF_STX | BPF_XADD | BPF_DW: {
+		const u8 tmp = bpf2sparc[TMP_REG_1];
+		const u8 tmp2 = bpf2sparc[TMP_REG_2];
+		const u8 tmp3 = bpf2sparc[TMP_REG_3];
+
+		ctx->tmp_1_used = true;
+		ctx->tmp_2_used = true;
+		ctx->tmp_3_used = true;
+		emit_loadimm(off, tmp, ctx);
+		emit_alu3(ADD, dst, tmp, tmp, ctx);
+
+		emit(LD64 | RS1(tmp) | RS2(G0) | RD(tmp2), ctx);
+		emit_alu3(ADD, tmp2, src, tmp3, ctx);
+		emit(CASX | ASI(ASI_P) | RS1(tmp) | RS2(tmp2) | RD(tmp3), ctx);
+		emit_cmp(tmp2, tmp3, ctx);
+		emit_branch(BNE, 4, 0, ctx);
+		emit_nop(ctx);
+		break;
+	}
+
+	default:
+		pr_err_once("unknown opcode %02x\n", code);
+		return -EINVAL;
+	}
+
+	return 0;
+}
+
+static int build_body(struct jit_ctx *ctx)
+{
+	const struct bpf_prog *prog = ctx->prog;
+	int i;
+
+	for (i = 0; i < prog->len; i++) {
+		const struct bpf_insn *insn = &prog->insnsi[i];
+		int ret;
+
+		ret = build_insn(insn, ctx);
+
+		if (ret > 0) {
+			i++;
+			ctx->offset[i] = ctx->idx;
+			continue;
+		}
+		ctx->offset[i] = ctx->idx;
+		if (ret)
+			return ret;
+	}
+	return 0;
+}
+
+static void jit_fill_hole(void *area, unsigned int size)
+{
+	u32 *ptr;
+	/* We are guaranteed to have aligned memory. */
+	for (ptr = area; size >= sizeof(u32); size -= sizeof(u32))
+		*ptr++ = 0x91d02005; /* ta 5 */
+}
+
+struct sparc64_jit_data {
+	struct bpf_binary_header *header;
+	u8 *image;
+	struct jit_ctx ctx;
+};
+
+struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
+{
+	struct bpf_prog *tmp, *orig_prog = prog;
+	struct sparc64_jit_data *jit_data;
+	struct bpf_binary_header *header;
+	bool tmp_blinded = false;
+	bool extra_pass = false;
+	struct jit_ctx ctx;
+	u32 image_size;
+	u8 *image_ptr;
+	int pass;
+
+	if (!prog->jit_requested)
+		return orig_prog;
+
+	tmp = bpf_jit_blind_constants(prog);
+	/* If blinding was requested and we failed during blinding,
+	 * we must fall back to the interpreter.
+	 */
+	if (IS_ERR(tmp))
+		return orig_prog;
+	if (tmp != prog) {
+		tmp_blinded = true;
+		prog = tmp;
+	}
+
+	jit_data = prog->aux->jit_data;
+	if (!jit_data) {
+		jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
+		if (!jit_data) {
+			prog = orig_prog;
+			goto out;
+		}
+		prog->aux->jit_data = jit_data;
+	}
+	if (jit_data->ctx.offset) {
+		ctx = jit_data->ctx;
+		image_ptr = jit_data->image;
+		header = jit_data->header;
+		extra_pass = true;
+		image_size = sizeof(u32) * ctx.idx;
+		goto skip_init_ctx;
+	}
+
+	memset(&ctx, 0, sizeof(ctx));
+	ctx.prog = prog;
+
+	ctx.offset = kcalloc(prog->len, sizeof(unsigned int), GFP_KERNEL);
+	if (ctx.offset == NULL) {
+		prog = orig_prog;
+		goto out_off;
+	}
+
+	/* Fake pass to detect features used, and get an accurate assessment
+	 * of what the final image size will be.
+	 */
+	if (build_body(&ctx)) {
+		prog = orig_prog;
+		goto out_off;
+	}
+	build_prologue(&ctx);
+	build_epilogue(&ctx);
+
+	/* Now we know the actual image size. */
+	image_size = sizeof(u32) * ctx.idx;
+	header = bpf_jit_binary_alloc(image_size, &image_ptr,
+				      sizeof(u32), jit_fill_hole);
+	if (header == NULL) {
+		prog = orig_prog;
+		goto out_off;
+	}
+
+	ctx.image = (u32 *)image_ptr;
+skip_init_ctx:
+	for (pass = 1; pass < 3; pass++) {
+		ctx.idx = 0;
+
+		build_prologue(&ctx);
+
+		if (build_body(&ctx)) {
+			bpf_jit_binary_free(header);
+			prog = orig_prog;
+			goto out_off;
+		}
+
+		build_epilogue(&ctx);
+
+		if (bpf_jit_enable > 1)
+			pr_info("Pass %d: shrink = %d, seen = [%c%c%c%c%c%c]\n", pass,
+				image_size - (ctx.idx * 4),
+				ctx.tmp_1_used ? '1' : ' ',
+				ctx.tmp_2_used ? '2' : ' ',
+				ctx.tmp_3_used ? '3' : ' ',
+				ctx.saw_frame_pointer ? 'F' : ' ',
+				ctx.saw_call ? 'C' : ' ',
+				ctx.saw_tail_call ? 'T' : ' ');
+	}
+
+	if (bpf_jit_enable > 1)
+		bpf_jit_dump(prog->len, image_size, pass, ctx.image);
+
+	bpf_flush_icache(header, (u8 *)header + (header->pages * PAGE_SIZE));
+
+	if (!prog->is_func || extra_pass) {
+		bpf_jit_binary_lock_ro(header);
+	} else {
+		jit_data->ctx = ctx;
+		jit_data->image = image_ptr;
+		jit_data->header = header;
+	}
+
+	prog->bpf_func = (void *)ctx.image;
+	prog->jited = 1;
+	prog->jited_len = image_size;
+
+	if (!prog->is_func || extra_pass) {
+out_off:
+		kfree(ctx.offset);
+		kfree(jit_data);
+		prog->aux->jit_data = NULL;
+	}
+out:
+	if (tmp_blinded)
+		bpf_jit_prog_release_other(prog, prog == orig_prog ?
+					   tmp : orig_prog);
+	return prog;
+}