v4.19.13 snapshot.
diff --git a/arch/sparc/kernel/perf_event.c b/arch/sparc/kernel/perf_event.c
new file mode 100644
index 0000000..67b3e6b
--- /dev/null
+++ b/arch/sparc/kernel/perf_event.c
@@ -0,0 +1,1876 @@
+// SPDX-License-Identifier: GPL-2.0
+/* Performance event support for sparc64.
+ *
+ * Copyright (C) 2009, 2010 David S. Miller <davem@davemloft.net>
+ *
+ * This code is based almost entirely upon the x86 perf event
+ * code, which is:
+ *
+ *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
+ *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
+ *  Copyright (C) 2009 Jaswinder Singh Rajput
+ *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
+ *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
+ */
+
+#include <linux/perf_event.h>
+#include <linux/kprobes.h>
+#include <linux/ftrace.h>
+#include <linux/kernel.h>
+#include <linux/kdebug.h>
+#include <linux/mutex.h>
+
+#include <asm/stacktrace.h>
+#include <asm/cpudata.h>
+#include <linux/uaccess.h>
+#include <linux/atomic.h>
+#include <linux/sched/clock.h>
+#include <asm/nmi.h>
+#include <asm/pcr.h>
+#include <asm/cacheflush.h>
+
+#include "kernel.h"
+#include "kstack.h"
+
+/* Two classes of sparc64 chips currently exist.  All of which have
+ * 32-bit counters which can generate overflow interrupts on the
+ * transition from 0xffffffff to 0.
+ *
+ * All chips upto and including SPARC-T3 have two performance
+ * counters.  The two 32-bit counters are accessed in one go using a
+ * single 64-bit register.
+ *
+ * On these older chips both counters are controlled using a single
+ * control register.  The only way to stop all sampling is to clear
+ * all of the context (user, supervisor, hypervisor) sampling enable
+ * bits.  But these bits apply to both counters, thus the two counters
+ * can't be enabled/disabled individually.
+ *
+ * Furthermore, the control register on these older chips have two
+ * event fields, one for each of the two counters.  It's thus nearly
+ * impossible to have one counter going while keeping the other one
+ * stopped.  Therefore it is possible to get overflow interrupts for
+ * counters not currently "in use" and that condition must be checked
+ * in the overflow interrupt handler.
+ *
+ * So we use a hack, in that we program inactive counters with the
+ * "sw_count0" and "sw_count1" events.  These count how many times
+ * the instruction "sethi %hi(0xfc000), %g0" is executed.  It's an
+ * unusual way to encode a NOP and therefore will not trigger in
+ * normal code.
+ *
+ * Starting with SPARC-T4 we have one control register per counter.
+ * And the counters are stored in individual registers.  The registers
+ * for the counters are 64-bit but only a 32-bit counter is
+ * implemented.  The event selections on SPARC-T4 lack any
+ * restrictions, therefore we can elide all of the complicated
+ * conflict resolution code we have for SPARC-T3 and earlier chips.
+ */
+
+#define MAX_HWEVENTS			4
+#define MAX_PCRS			4
+#define MAX_PERIOD			((1UL << 32) - 1)
+
+#define PIC_UPPER_INDEX			0
+#define PIC_LOWER_INDEX			1
+#define PIC_NO_INDEX			-1
+
+struct cpu_hw_events {
+	/* Number of events currently scheduled onto this cpu.
+	 * This tells how many entries in the arrays below
+	 * are valid.
+	 */
+	int			n_events;
+
+	/* Number of new events added since the last hw_perf_disable().
+	 * This works because the perf event layer always adds new
+	 * events inside of a perf_{disable,enable}() sequence.
+	 */
+	int			n_added;
+
+	/* Array of events current scheduled on this cpu.  */
+	struct perf_event	*event[MAX_HWEVENTS];
+
+	/* Array of encoded longs, specifying the %pcr register
+	 * encoding and the mask of PIC counters this even can
+	 * be scheduled on.  See perf_event_encode() et al.
+	 */
+	unsigned long		events[MAX_HWEVENTS];
+
+	/* The current counter index assigned to an event.  When the
+	 * event hasn't been programmed into the cpu yet, this will
+	 * hold PIC_NO_INDEX.  The event->hw.idx value tells us where
+	 * we ought to schedule the event.
+	 */
+	int			current_idx[MAX_HWEVENTS];
+
+	/* Software copy of %pcr register(s) on this cpu.  */
+	u64			pcr[MAX_HWEVENTS];
+
+	/* Enabled/disable state.  */
+	int			enabled;
+
+	unsigned int		txn_flags;
+};
+static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .enabled = 1, };
+
+/* An event map describes the characteristics of a performance
+ * counter event.  In particular it gives the encoding as well as
+ * a mask telling which counters the event can be measured on.
+ *
+ * The mask is unused on SPARC-T4 and later.
+ */
+struct perf_event_map {
+	u16	encoding;
+	u8	pic_mask;
+#define PIC_NONE	0x00
+#define PIC_UPPER	0x01
+#define PIC_LOWER	0x02
+};
+
+/* Encode a perf_event_map entry into a long.  */
+static unsigned long perf_event_encode(const struct perf_event_map *pmap)
+{
+	return ((unsigned long) pmap->encoding << 16) | pmap->pic_mask;
+}
+
+static u8 perf_event_get_msk(unsigned long val)
+{
+	return val & 0xff;
+}
+
+static u64 perf_event_get_enc(unsigned long val)
+{
+	return val >> 16;
+}
+
+#define C(x) PERF_COUNT_HW_CACHE_##x
+
+#define CACHE_OP_UNSUPPORTED	0xfffe
+#define CACHE_OP_NONSENSE	0xffff
+
+typedef struct perf_event_map cache_map_t
+				[PERF_COUNT_HW_CACHE_MAX]
+				[PERF_COUNT_HW_CACHE_OP_MAX]
+				[PERF_COUNT_HW_CACHE_RESULT_MAX];
+
+struct sparc_pmu {
+	const struct perf_event_map	*(*event_map)(int);
+	const cache_map_t		*cache_map;
+	int				max_events;
+	u32				(*read_pmc)(int);
+	void				(*write_pmc)(int, u64);
+	int				upper_shift;
+	int				lower_shift;
+	int				event_mask;
+	int				user_bit;
+	int				priv_bit;
+	int				hv_bit;
+	int				irq_bit;
+	int				upper_nop;
+	int				lower_nop;
+	unsigned int			flags;
+#define SPARC_PMU_ALL_EXCLUDES_SAME	0x00000001
+#define SPARC_PMU_HAS_CONFLICTS		0x00000002
+	int				max_hw_events;
+	int				num_pcrs;
+	int				num_pic_regs;
+};
+
+static u32 sparc_default_read_pmc(int idx)
+{
+	u64 val;
+
+	val = pcr_ops->read_pic(0);
+	if (idx == PIC_UPPER_INDEX)
+		val >>= 32;
+
+	return val & 0xffffffff;
+}
+
+static void sparc_default_write_pmc(int idx, u64 val)
+{
+	u64 shift, mask, pic;
+
+	shift = 0;
+	if (idx == PIC_UPPER_INDEX)
+		shift = 32;
+
+	mask = ((u64) 0xffffffff) << shift;
+	val <<= shift;
+
+	pic = pcr_ops->read_pic(0);
+	pic &= ~mask;
+	pic |= val;
+	pcr_ops->write_pic(0, pic);
+}
+
+static const struct perf_event_map ultra3_perfmon_event_map[] = {
+	[PERF_COUNT_HW_CPU_CYCLES] = { 0x0000, PIC_UPPER | PIC_LOWER },
+	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x0001, PIC_UPPER | PIC_LOWER },
+	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0009, PIC_LOWER },
+	[PERF_COUNT_HW_CACHE_MISSES] = { 0x0009, PIC_UPPER },
+};
+
+static const struct perf_event_map *ultra3_event_map(int event_id)
+{
+	return &ultra3_perfmon_event_map[event_id];
+}
+
+static const cache_map_t ultra3_cache_map = {
+[C(L1D)] = {
+	[C(OP_READ)] = {
+		[C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
+		[C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
+	},
+	[C(OP_WRITE)] = {
+		[C(RESULT_ACCESS)] = { 0x0a, PIC_LOWER },
+		[C(RESULT_MISS)] = { 0x0a, PIC_UPPER },
+	},
+	[C(OP_PREFETCH)] = {
+		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
+		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
+	},
+},
+[C(L1I)] = {
+	[C(OP_READ)] = {
+		[C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
+		[C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
+	},
+	[ C(OP_WRITE) ] = {
+		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
+		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
+	},
+	[ C(OP_PREFETCH) ] = {
+		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
+		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
+	},
+},
+[C(LL)] = {
+	[C(OP_READ)] = {
+		[C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER, },
+		[C(RESULT_MISS)] = { 0x0c, PIC_UPPER, },
+	},
+	[C(OP_WRITE)] = {
+		[C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER },
+		[C(RESULT_MISS)] = { 0x0c, PIC_UPPER },
+	},
+	[C(OP_PREFETCH)] = {
+		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
+		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
+	},
+},
+[C(DTLB)] = {
+	[C(OP_READ)] = {
+		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
+		[C(RESULT_MISS)] = { 0x12, PIC_UPPER, },
+	},
+	[ C(OP_WRITE) ] = {
+		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
+		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
+	},
+	[ C(OP_PREFETCH) ] = {
+		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
+		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
+	},
+},
+[C(ITLB)] = {
+	[C(OP_READ)] = {
+		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
+		[C(RESULT_MISS)] = { 0x11, PIC_UPPER, },
+	},
+	[ C(OP_WRITE) ] = {
+		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
+		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
+	},
+	[ C(OP_PREFETCH) ] = {
+		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
+		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
+	},
+},
+[C(BPU)] = {
+	[C(OP_READ)] = {
+		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
+		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
+	},
+	[ C(OP_WRITE) ] = {
+		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
+		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
+	},
+	[ C(OP_PREFETCH) ] = {
+		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
+		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
+	},
+},
+[C(NODE)] = {
+	[C(OP_READ)] = {
+		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
+		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
+	},
+	[ C(OP_WRITE) ] = {
+		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
+		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
+	},
+	[ C(OP_PREFETCH) ] = {
+		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
+		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
+	},
+},
+};
+
+static const struct sparc_pmu ultra3_pmu = {
+	.event_map	= ultra3_event_map,
+	.cache_map	= &ultra3_cache_map,
+	.max_events	= ARRAY_SIZE(ultra3_perfmon_event_map),
+	.read_pmc	= sparc_default_read_pmc,
+	.write_pmc	= sparc_default_write_pmc,
+	.upper_shift	= 11,
+	.lower_shift	= 4,
+	.event_mask	= 0x3f,
+	.user_bit	= PCR_UTRACE,
+	.priv_bit	= PCR_STRACE,
+	.upper_nop	= 0x1c,
+	.lower_nop	= 0x14,
+	.flags		= (SPARC_PMU_ALL_EXCLUDES_SAME |
+			   SPARC_PMU_HAS_CONFLICTS),
+	.max_hw_events	= 2,
+	.num_pcrs	= 1,
+	.num_pic_regs	= 1,
+};
+
+/* Niagara1 is very limited.  The upper PIC is hard-locked to count
+ * only instructions, so it is free running which creates all kinds of
+ * problems.  Some hardware designs make one wonder if the creator
+ * even looked at how this stuff gets used by software.
+ */
+static const struct perf_event_map niagara1_perfmon_event_map[] = {
+	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, PIC_UPPER },
+	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, PIC_UPPER },
+	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0, PIC_NONE },
+	[PERF_COUNT_HW_CACHE_MISSES] = { 0x03, PIC_LOWER },
+};
+
+static const struct perf_event_map *niagara1_event_map(int event_id)
+{
+	return &niagara1_perfmon_event_map[event_id];
+}
+
+static const cache_map_t niagara1_cache_map = {
+[C(L1D)] = {
+	[C(OP_READ)] = {
+		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
+		[C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
+	},
+	[C(OP_WRITE)] = {
+		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
+		[C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
+	},
+	[C(OP_PREFETCH)] = {
+		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
+		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
+	},
+},
+[C(L1I)] = {
+	[C(OP_READ)] = {
+		[C(RESULT_ACCESS)] = { 0x00, PIC_UPPER },
+		[C(RESULT_MISS)] = { 0x02, PIC_LOWER, },
+	},
+	[ C(OP_WRITE) ] = {
+		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
+		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
+	},
+	[ C(OP_PREFETCH) ] = {
+		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
+		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
+	},
+},
+[C(LL)] = {
+	[C(OP_READ)] = {
+		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
+		[C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
+	},
+	[C(OP_WRITE)] = {
+		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
+		[C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
+	},
+	[C(OP_PREFETCH)] = {
+		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
+		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
+	},
+},
+[C(DTLB)] = {
+	[C(OP_READ)] = {
+		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
+		[C(RESULT_MISS)] = { 0x05, PIC_LOWER, },
+	},
+	[ C(OP_WRITE) ] = {
+		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
+		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
+	},
+	[ C(OP_PREFETCH) ] = {
+		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
+		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
+	},
+},
+[C(ITLB)] = {
+	[C(OP_READ)] = {
+		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
+		[C(RESULT_MISS)] = { 0x04, PIC_LOWER, },
+	},
+	[ C(OP_WRITE) ] = {
+		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
+		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
+	},
+	[ C(OP_PREFETCH) ] = {
+		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
+		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
+	},
+},
+[C(BPU)] = {
+	[C(OP_READ)] = {
+		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
+		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
+	},
+	[ C(OP_WRITE) ] = {
+		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
+		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
+	},
+	[ C(OP_PREFETCH) ] = {
+		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
+		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
+	},
+},
+[C(NODE)] = {
+	[C(OP_READ)] = {
+		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
+		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
+	},
+	[ C(OP_WRITE) ] = {
+		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
+		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
+	},
+	[ C(OP_PREFETCH) ] = {
+		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
+		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
+	},
+},
+};
+
+static const struct sparc_pmu niagara1_pmu = {
+	.event_map	= niagara1_event_map,
+	.cache_map	= &niagara1_cache_map,
+	.max_events	= ARRAY_SIZE(niagara1_perfmon_event_map),
+	.read_pmc	= sparc_default_read_pmc,
+	.write_pmc	= sparc_default_write_pmc,
+	.upper_shift	= 0,
+	.lower_shift	= 4,
+	.event_mask	= 0x7,
+	.user_bit	= PCR_UTRACE,
+	.priv_bit	= PCR_STRACE,
+	.upper_nop	= 0x0,
+	.lower_nop	= 0x0,
+	.flags		= (SPARC_PMU_ALL_EXCLUDES_SAME |
+			   SPARC_PMU_HAS_CONFLICTS),
+	.max_hw_events	= 2,
+	.num_pcrs	= 1,
+	.num_pic_regs	= 1,
+};
+
+static const struct perf_event_map niagara2_perfmon_event_map[] = {
+	[PERF_COUNT_HW_CPU_CYCLES] = { 0x02ff, PIC_UPPER | PIC_LOWER },
+	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x02ff, PIC_UPPER | PIC_LOWER },
+	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0208, PIC_UPPER | PIC_LOWER },
+	[PERF_COUNT_HW_CACHE_MISSES] = { 0x0302, PIC_UPPER | PIC_LOWER },
+	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x0201, PIC_UPPER | PIC_LOWER },
+	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x0202, PIC_UPPER | PIC_LOWER },
+};
+
+static const struct perf_event_map *niagara2_event_map(int event_id)
+{
+	return &niagara2_perfmon_event_map[event_id];
+}
+
+static const cache_map_t niagara2_cache_map = {
+[C(L1D)] = {
+	[C(OP_READ)] = {
+		[C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
+		[C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
+	},
+	[C(OP_WRITE)] = {
+		[C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
+		[C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
+	},
+	[C(OP_PREFETCH)] = {
+		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
+		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
+	},
+},
+[C(L1I)] = {
+	[C(OP_READ)] = {
+		[C(RESULT_ACCESS)] = { 0x02ff, PIC_UPPER | PIC_LOWER, },
+		[C(RESULT_MISS)] = { 0x0301, PIC_UPPER | PIC_LOWER, },
+	},
+	[ C(OP_WRITE) ] = {
+		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
+		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
+	},
+	[ C(OP_PREFETCH) ] = {
+		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
+		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
+	},
+},
+[C(LL)] = {
+	[C(OP_READ)] = {
+		[C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
+		[C(RESULT_MISS)] = { 0x0330, PIC_UPPER | PIC_LOWER, },
+	},
+	[C(OP_WRITE)] = {
+		[C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
+		[C(RESULT_MISS)] = { 0x0320, PIC_UPPER | PIC_LOWER, },
+	},
+	[C(OP_PREFETCH)] = {
+		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
+		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
+	},
+},
+[C(DTLB)] = {
+	[C(OP_READ)] = {
+		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
+		[C(RESULT_MISS)] = { 0x0b08, PIC_UPPER | PIC_LOWER, },
+	},
+	[ C(OP_WRITE) ] = {
+		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
+		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
+	},
+	[ C(OP_PREFETCH) ] = {
+		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
+		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
+	},
+},
+[C(ITLB)] = {
+	[C(OP_READ)] = {
+		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
+		[C(RESULT_MISS)] = { 0xb04, PIC_UPPER | PIC_LOWER, },
+	},
+	[ C(OP_WRITE) ] = {
+		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
+		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
+	},
+	[ C(OP_PREFETCH) ] = {
+		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
+		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
+	},
+},
+[C(BPU)] = {
+	[C(OP_READ)] = {
+		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
+		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
+	},
+	[ C(OP_WRITE) ] = {
+		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
+		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
+	},
+	[ C(OP_PREFETCH) ] = {
+		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
+		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
+	},
+},
+[C(NODE)] = {
+	[C(OP_READ)] = {
+		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
+		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
+	},
+	[ C(OP_WRITE) ] = {
+		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
+		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
+	},
+	[ C(OP_PREFETCH) ] = {
+		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
+		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
+	},
+},
+};
+
+static const struct sparc_pmu niagara2_pmu = {
+	.event_map	= niagara2_event_map,
+	.cache_map	= &niagara2_cache_map,
+	.max_events	= ARRAY_SIZE(niagara2_perfmon_event_map),
+	.read_pmc	= sparc_default_read_pmc,
+	.write_pmc	= sparc_default_write_pmc,
+	.upper_shift	= 19,
+	.lower_shift	= 6,
+	.event_mask	= 0xfff,
+	.user_bit	= PCR_UTRACE,
+	.priv_bit	= PCR_STRACE,
+	.hv_bit		= PCR_N2_HTRACE,
+	.irq_bit	= 0x30,
+	.upper_nop	= 0x220,
+	.lower_nop	= 0x220,
+	.flags		= (SPARC_PMU_ALL_EXCLUDES_SAME |
+			   SPARC_PMU_HAS_CONFLICTS),
+	.max_hw_events	= 2,
+	.num_pcrs	= 1,
+	.num_pic_regs	= 1,
+};
+
+static const struct perf_event_map niagara4_perfmon_event_map[] = {
+	[PERF_COUNT_HW_CPU_CYCLES] = { (26 << 6) },
+	[PERF_COUNT_HW_INSTRUCTIONS] = { (3 << 6) | 0x3f },
+	[PERF_COUNT_HW_CACHE_REFERENCES] = { (3 << 6) | 0x04 },
+	[PERF_COUNT_HW_CACHE_MISSES] = { (16 << 6) | 0x07 },
+	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { (4 << 6) | 0x01 },
+	[PERF_COUNT_HW_BRANCH_MISSES] = { (25 << 6) | 0x0f },
+};
+
+static const struct perf_event_map *niagara4_event_map(int event_id)
+{
+	return &niagara4_perfmon_event_map[event_id];
+}
+
+static const cache_map_t niagara4_cache_map = {
+[C(L1D)] = {
+	[C(OP_READ)] = {
+		[C(RESULT_ACCESS)] = { (3 << 6) | 0x04 },
+		[C(RESULT_MISS)] = { (16 << 6) | 0x07 },
+	},
+	[C(OP_WRITE)] = {
+		[C(RESULT_ACCESS)] = { (3 << 6) | 0x08 },
+		[C(RESULT_MISS)] = { (16 << 6) | 0x07 },
+	},
+	[C(OP_PREFETCH)] = {
+		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
+		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
+	},
+},
+[C(L1I)] = {
+	[C(OP_READ)] = {
+		[C(RESULT_ACCESS)] = { (3 << 6) | 0x3f },
+		[C(RESULT_MISS)] = { (11 << 6) | 0x03 },
+	},
+	[ C(OP_WRITE) ] = {
+		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
+		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
+	},
+	[ C(OP_PREFETCH) ] = {
+		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
+		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
+	},
+},
+[C(LL)] = {
+	[C(OP_READ)] = {
+		[C(RESULT_ACCESS)] = { (3 << 6) | 0x04 },
+		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
+	},
+	[C(OP_WRITE)] = {
+		[C(RESULT_ACCESS)] = { (3 << 6) | 0x08 },
+		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
+	},
+	[C(OP_PREFETCH)] = {
+		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
+		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
+	},
+},
+[C(DTLB)] = {
+	[C(OP_READ)] = {
+		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
+		[C(RESULT_MISS)] = { (17 << 6) | 0x3f },
+	},
+	[ C(OP_WRITE) ] = {
+		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
+		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
+	},
+	[ C(OP_PREFETCH) ] = {
+		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
+		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
+	},
+},
+[C(ITLB)] = {
+	[C(OP_READ)] = {
+		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
+		[C(RESULT_MISS)] = { (6 << 6) | 0x3f },
+	},
+	[ C(OP_WRITE) ] = {
+		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
+		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
+	},
+	[ C(OP_PREFETCH) ] = {
+		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
+		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
+	},
+},
+[C(BPU)] = {
+	[C(OP_READ)] = {
+		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
+		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
+	},
+	[ C(OP_WRITE) ] = {
+		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
+		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
+	},
+	[ C(OP_PREFETCH) ] = {
+		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
+		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
+	},
+},
+[C(NODE)] = {
+	[C(OP_READ)] = {
+		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
+		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
+	},
+	[ C(OP_WRITE) ] = {
+		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
+		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
+	},
+	[ C(OP_PREFETCH) ] = {
+		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
+		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
+	},
+},
+};
+
+static u32 sparc_vt_read_pmc(int idx)
+{
+	u64 val = pcr_ops->read_pic(idx);
+
+	return val & 0xffffffff;
+}
+
+static void sparc_vt_write_pmc(int idx, u64 val)
+{
+	u64 pcr;
+
+	pcr = pcr_ops->read_pcr(idx);
+	/* ensure ov and ntc are reset */
+	pcr &= ~(PCR_N4_OV | PCR_N4_NTC);
+
+	pcr_ops->write_pic(idx, val & 0xffffffff);
+
+	pcr_ops->write_pcr(idx, pcr);
+}
+
+static const struct sparc_pmu niagara4_pmu = {
+	.event_map	= niagara4_event_map,
+	.cache_map	= &niagara4_cache_map,
+	.max_events	= ARRAY_SIZE(niagara4_perfmon_event_map),
+	.read_pmc	= sparc_vt_read_pmc,
+	.write_pmc	= sparc_vt_write_pmc,
+	.upper_shift	= 5,
+	.lower_shift	= 5,
+	.event_mask	= 0x7ff,
+	.user_bit	= PCR_N4_UTRACE,
+	.priv_bit	= PCR_N4_STRACE,
+
+	/* We explicitly don't support hypervisor tracing.  The T4
+	 * generates the overflow event for precise events via a trap
+	 * which will not be generated (ie. it's completely lost) if
+	 * we happen to be in the hypervisor when the event triggers.
+	 * Essentially, the overflow event reporting is completely
+	 * unusable when you have hypervisor mode tracing enabled.
+	 */
+	.hv_bit		= 0,
+
+	.irq_bit	= PCR_N4_TOE,
+	.upper_nop	= 0,
+	.lower_nop	= 0,
+	.flags		= 0,
+	.max_hw_events	= 4,
+	.num_pcrs	= 4,
+	.num_pic_regs	= 4,
+};
+
+static const struct sparc_pmu sparc_m7_pmu = {
+	.event_map	= niagara4_event_map,
+	.cache_map	= &niagara4_cache_map,
+	.max_events	= ARRAY_SIZE(niagara4_perfmon_event_map),
+	.read_pmc	= sparc_vt_read_pmc,
+	.write_pmc	= sparc_vt_write_pmc,
+	.upper_shift	= 5,
+	.lower_shift	= 5,
+	.event_mask	= 0x7ff,
+	.user_bit	= PCR_N4_UTRACE,
+	.priv_bit	= PCR_N4_STRACE,
+
+	/* We explicitly don't support hypervisor tracing. */
+	.hv_bit		= 0,
+
+	.irq_bit	= PCR_N4_TOE,
+	.upper_nop	= 0,
+	.lower_nop	= 0,
+	.flags		= 0,
+	.max_hw_events	= 4,
+	.num_pcrs	= 4,
+	.num_pic_regs	= 4,
+};
+static const struct sparc_pmu *sparc_pmu __read_mostly;
+
+static u64 event_encoding(u64 event_id, int idx)
+{
+	if (idx == PIC_UPPER_INDEX)
+		event_id <<= sparc_pmu->upper_shift;
+	else
+		event_id <<= sparc_pmu->lower_shift;
+	return event_id;
+}
+
+static u64 mask_for_index(int idx)
+{
+	return event_encoding(sparc_pmu->event_mask, idx);
+}
+
+static u64 nop_for_index(int idx)
+{
+	return event_encoding(idx == PIC_UPPER_INDEX ?
+			      sparc_pmu->upper_nop :
+			      sparc_pmu->lower_nop, idx);
+}
+
+static inline void sparc_pmu_enable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
+{
+	u64 enc, val, mask = mask_for_index(idx);
+	int pcr_index = 0;
+
+	if (sparc_pmu->num_pcrs > 1)
+		pcr_index = idx;
+
+	enc = perf_event_get_enc(cpuc->events[idx]);
+
+	val = cpuc->pcr[pcr_index];
+	val &= ~mask;
+	val |= event_encoding(enc, idx);
+	cpuc->pcr[pcr_index] = val;
+
+	pcr_ops->write_pcr(pcr_index, cpuc->pcr[pcr_index]);
+}
+
+static inline void sparc_pmu_disable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
+{
+	u64 mask = mask_for_index(idx);
+	u64 nop = nop_for_index(idx);
+	int pcr_index = 0;
+	u64 val;
+
+	if (sparc_pmu->num_pcrs > 1)
+		pcr_index = idx;
+
+	val = cpuc->pcr[pcr_index];
+	val &= ~mask;
+	val |= nop;
+	cpuc->pcr[pcr_index] = val;
+
+	pcr_ops->write_pcr(pcr_index, cpuc->pcr[pcr_index]);
+}
+
+static u64 sparc_perf_event_update(struct perf_event *event,
+				   struct hw_perf_event *hwc, int idx)
+{
+	int shift = 64 - 32;
+	u64 prev_raw_count, new_raw_count;
+	s64 delta;
+
+again:
+	prev_raw_count = local64_read(&hwc->prev_count);
+	new_raw_count = sparc_pmu->read_pmc(idx);
+
+	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
+			     new_raw_count) != prev_raw_count)
+		goto again;
+
+	delta = (new_raw_count << shift) - (prev_raw_count << shift);
+	delta >>= shift;
+
+	local64_add(delta, &event->count);
+	local64_sub(delta, &hwc->period_left);
+
+	return new_raw_count;
+}
+
+static int sparc_perf_event_set_period(struct perf_event *event,
+				       struct hw_perf_event *hwc, int idx)
+{
+	s64 left = local64_read(&hwc->period_left);
+	s64 period = hwc->sample_period;
+	int ret = 0;
+
+	if (unlikely(left <= -period)) {
+		left = period;
+		local64_set(&hwc->period_left, left);
+		hwc->last_period = period;
+		ret = 1;
+	}
+
+	if (unlikely(left <= 0)) {
+		left += period;
+		local64_set(&hwc->period_left, left);
+		hwc->last_period = period;
+		ret = 1;
+	}
+	if (left > MAX_PERIOD)
+		left = MAX_PERIOD;
+
+	local64_set(&hwc->prev_count, (u64)-left);
+
+	sparc_pmu->write_pmc(idx, (u64)(-left) & 0xffffffff);
+
+	perf_event_update_userpage(event);
+
+	return ret;
+}
+
+static void read_in_all_counters(struct cpu_hw_events *cpuc)
+{
+	int i;
+
+	for (i = 0; i < cpuc->n_events; i++) {
+		struct perf_event *cp = cpuc->event[i];
+
+		if (cpuc->current_idx[i] != PIC_NO_INDEX &&
+		    cpuc->current_idx[i] != cp->hw.idx) {
+			sparc_perf_event_update(cp, &cp->hw,
+						cpuc->current_idx[i]);
+			cpuc->current_idx[i] = PIC_NO_INDEX;
+			if (cp->hw.state & PERF_HES_STOPPED)
+				cp->hw.state |= PERF_HES_ARCH;
+		}
+	}
+}
+
+/* On this PMU all PICs are programmed using a single PCR.  Calculate
+ * the combined control register value.
+ *
+ * For such chips we require that all of the events have the same
+ * configuration, so just fetch the settings from the first entry.
+ */
+static void calculate_single_pcr(struct cpu_hw_events *cpuc)
+{
+	int i;
+
+	if (!cpuc->n_added)
+		goto out;
+
+	/* Assign to counters all unassigned events.  */
+	for (i = 0; i < cpuc->n_events; i++) {
+		struct perf_event *cp = cpuc->event[i];
+		struct hw_perf_event *hwc = &cp->hw;
+		int idx = hwc->idx;
+		u64 enc;
+
+		if (cpuc->current_idx[i] != PIC_NO_INDEX)
+			continue;
+
+		sparc_perf_event_set_period(cp, hwc, idx);
+		cpuc->current_idx[i] = idx;
+
+		enc = perf_event_get_enc(cpuc->events[i]);
+		cpuc->pcr[0] &= ~mask_for_index(idx);
+		if (hwc->state & PERF_HES_ARCH) {
+			cpuc->pcr[0] |= nop_for_index(idx);
+		} else {
+			cpuc->pcr[0] |= event_encoding(enc, idx);
+			hwc->state = 0;
+		}
+	}
+out:
+	cpuc->pcr[0] |= cpuc->event[0]->hw.config_base;
+}
+
+static void sparc_pmu_start(struct perf_event *event, int flags);
+
+/* On this PMU each PIC has it's own PCR control register.  */
+static void calculate_multiple_pcrs(struct cpu_hw_events *cpuc)
+{
+	int i;
+
+	if (!cpuc->n_added)
+		goto out;
+
+	for (i = 0; i < cpuc->n_events; i++) {
+		struct perf_event *cp = cpuc->event[i];
+		struct hw_perf_event *hwc = &cp->hw;
+		int idx = hwc->idx;
+
+		if (cpuc->current_idx[i] != PIC_NO_INDEX)
+			continue;
+
+		cpuc->current_idx[i] = idx;
+
+		if (cp->hw.state & PERF_HES_ARCH)
+			continue;
+
+		sparc_pmu_start(cp, PERF_EF_RELOAD);
+	}
+out:
+	for (i = 0; i < cpuc->n_events; i++) {
+		struct perf_event *cp = cpuc->event[i];
+		int idx = cp->hw.idx;
+
+		cpuc->pcr[idx] |= cp->hw.config_base;
+	}
+}
+
+/* If performance event entries have been added, move existing events
+ * around (if necessary) and then assign new entries to counters.
+ */
+static void update_pcrs_for_enable(struct cpu_hw_events *cpuc)
+{
+	if (cpuc->n_added)
+		read_in_all_counters(cpuc);
+
+	if (sparc_pmu->num_pcrs == 1) {
+		calculate_single_pcr(cpuc);
+	} else {
+		calculate_multiple_pcrs(cpuc);
+	}
+}
+
+static void sparc_pmu_enable(struct pmu *pmu)
+{
+	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
+	int i;
+
+	if (cpuc->enabled)
+		return;
+
+	cpuc->enabled = 1;
+	barrier();
+
+	if (cpuc->n_events)
+		update_pcrs_for_enable(cpuc);
+
+	for (i = 0; i < sparc_pmu->num_pcrs; i++)
+		pcr_ops->write_pcr(i, cpuc->pcr[i]);
+}
+
+static void sparc_pmu_disable(struct pmu *pmu)
+{
+	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
+	int i;
+
+	if (!cpuc->enabled)
+		return;
+
+	cpuc->enabled = 0;
+	cpuc->n_added = 0;
+
+	for (i = 0; i < sparc_pmu->num_pcrs; i++) {
+		u64 val = cpuc->pcr[i];
+
+		val &= ~(sparc_pmu->user_bit | sparc_pmu->priv_bit |
+			 sparc_pmu->hv_bit | sparc_pmu->irq_bit);
+		cpuc->pcr[i] = val;
+		pcr_ops->write_pcr(i, cpuc->pcr[i]);
+	}
+}
+
+static int active_event_index(struct cpu_hw_events *cpuc,
+			      struct perf_event *event)
+{
+	int i;
+
+	for (i = 0; i < cpuc->n_events; i++) {
+		if (cpuc->event[i] == event)
+			break;
+	}
+	BUG_ON(i == cpuc->n_events);
+	return cpuc->current_idx[i];
+}
+
+static void sparc_pmu_start(struct perf_event *event, int flags)
+{
+	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
+	int idx = active_event_index(cpuc, event);
+
+	if (flags & PERF_EF_RELOAD) {
+		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
+		sparc_perf_event_set_period(event, &event->hw, idx);
+	}
+
+	event->hw.state = 0;
+
+	sparc_pmu_enable_event(cpuc, &event->hw, idx);
+
+	perf_event_update_userpage(event);
+}
+
+static void sparc_pmu_stop(struct perf_event *event, int flags)
+{
+	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
+	int idx = active_event_index(cpuc, event);
+
+	if (!(event->hw.state & PERF_HES_STOPPED)) {
+		sparc_pmu_disable_event(cpuc, &event->hw, idx);
+		event->hw.state |= PERF_HES_STOPPED;
+	}
+
+	if (!(event->hw.state & PERF_HES_UPTODATE) && (flags & PERF_EF_UPDATE)) {
+		sparc_perf_event_update(event, &event->hw, idx);
+		event->hw.state |= PERF_HES_UPTODATE;
+	}
+}
+
+static void sparc_pmu_del(struct perf_event *event, int _flags)
+{
+	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
+	unsigned long flags;
+	int i;
+
+	local_irq_save(flags);
+
+	for (i = 0; i < cpuc->n_events; i++) {
+		if (event == cpuc->event[i]) {
+			/* Absorb the final count and turn off the
+			 * event.
+			 */
+			sparc_pmu_stop(event, PERF_EF_UPDATE);
+
+			/* Shift remaining entries down into
+			 * the existing slot.
+			 */
+			while (++i < cpuc->n_events) {
+				cpuc->event[i - 1] = cpuc->event[i];
+				cpuc->events[i - 1] = cpuc->events[i];
+				cpuc->current_idx[i - 1] =
+					cpuc->current_idx[i];
+			}
+
+			perf_event_update_userpage(event);
+
+			cpuc->n_events--;
+			break;
+		}
+	}
+
+	local_irq_restore(flags);
+}
+
+static void sparc_pmu_read(struct perf_event *event)
+{
+	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
+	int idx = active_event_index(cpuc, event);
+	struct hw_perf_event *hwc = &event->hw;
+
+	sparc_perf_event_update(event, hwc, idx);
+}
+
+static atomic_t active_events = ATOMIC_INIT(0);
+static DEFINE_MUTEX(pmc_grab_mutex);
+
+static void perf_stop_nmi_watchdog(void *unused)
+{
+	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
+	int i;
+
+	stop_nmi_watchdog(NULL);
+	for (i = 0; i < sparc_pmu->num_pcrs; i++)
+		cpuc->pcr[i] = pcr_ops->read_pcr(i);
+}
+
+static void perf_event_grab_pmc(void)
+{
+	if (atomic_inc_not_zero(&active_events))
+		return;
+
+	mutex_lock(&pmc_grab_mutex);
+	if (atomic_read(&active_events) == 0) {
+		if (atomic_read(&nmi_active) > 0) {
+			on_each_cpu(perf_stop_nmi_watchdog, NULL, 1);
+			BUG_ON(atomic_read(&nmi_active) != 0);
+		}
+		atomic_inc(&active_events);
+	}
+	mutex_unlock(&pmc_grab_mutex);
+}
+
+static void perf_event_release_pmc(void)
+{
+	if (atomic_dec_and_mutex_lock(&active_events, &pmc_grab_mutex)) {
+		if (atomic_read(&nmi_active) == 0)
+			on_each_cpu(start_nmi_watchdog, NULL, 1);
+		mutex_unlock(&pmc_grab_mutex);
+	}
+}
+
+static const struct perf_event_map *sparc_map_cache_event(u64 config)
+{
+	unsigned int cache_type, cache_op, cache_result;
+	const struct perf_event_map *pmap;
+
+	if (!sparc_pmu->cache_map)
+		return ERR_PTR(-ENOENT);
+
+	cache_type = (config >>  0) & 0xff;
+	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
+		return ERR_PTR(-EINVAL);
+
+	cache_op = (config >>  8) & 0xff;
+	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
+		return ERR_PTR(-EINVAL);
+
+	cache_result = (config >> 16) & 0xff;
+	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
+		return ERR_PTR(-EINVAL);
+
+	pmap = &((*sparc_pmu->cache_map)[cache_type][cache_op][cache_result]);
+
+	if (pmap->encoding == CACHE_OP_UNSUPPORTED)
+		return ERR_PTR(-ENOENT);
+
+	if (pmap->encoding == CACHE_OP_NONSENSE)
+		return ERR_PTR(-EINVAL);
+
+	return pmap;
+}
+
+static void hw_perf_event_destroy(struct perf_event *event)
+{
+	perf_event_release_pmc();
+}
+
+/* Make sure all events can be scheduled into the hardware at
+ * the same time.  This is simplified by the fact that we only
+ * need to support 2 simultaneous HW events.
+ *
+ * As a side effect, the evts[]->hw.idx values will be assigned
+ * on success.  These are pending indexes.  When the events are
+ * actually programmed into the chip, these values will propagate
+ * to the per-cpu cpuc->current_idx[] slots, see the code in
+ * maybe_change_configuration() for details.
+ */
+static int sparc_check_constraints(struct perf_event **evts,
+				   unsigned long *events, int n_ev)
+{
+	u8 msk0 = 0, msk1 = 0;
+	int idx0 = 0;
+
+	/* This case is possible when we are invoked from
+	 * hw_perf_group_sched_in().
+	 */
+	if (!n_ev)
+		return 0;
+
+	if (n_ev > sparc_pmu->max_hw_events)
+		return -1;
+
+	if (!(sparc_pmu->flags & SPARC_PMU_HAS_CONFLICTS)) {
+		int i;
+
+		for (i = 0; i < n_ev; i++)
+			evts[i]->hw.idx = i;
+		return 0;
+	}
+
+	msk0 = perf_event_get_msk(events[0]);
+	if (n_ev == 1) {
+		if (msk0 & PIC_LOWER)
+			idx0 = 1;
+		goto success;
+	}
+	BUG_ON(n_ev != 2);
+	msk1 = perf_event_get_msk(events[1]);
+
+	/* If both events can go on any counter, OK.  */
+	if (msk0 == (PIC_UPPER | PIC_LOWER) &&
+	    msk1 == (PIC_UPPER | PIC_LOWER))
+		goto success;
+
+	/* If one event is limited to a specific counter,
+	 * and the other can go on both, OK.
+	 */
+	if ((msk0 == PIC_UPPER || msk0 == PIC_LOWER) &&
+	    msk1 == (PIC_UPPER | PIC_LOWER)) {
+		if (msk0 & PIC_LOWER)
+			idx0 = 1;
+		goto success;
+	}
+
+	if ((msk1 == PIC_UPPER || msk1 == PIC_LOWER) &&
+	    msk0 == (PIC_UPPER | PIC_LOWER)) {
+		if (msk1 & PIC_UPPER)
+			idx0 = 1;
+		goto success;
+	}
+
+	/* If the events are fixed to different counters, OK.  */
+	if ((msk0 == PIC_UPPER && msk1 == PIC_LOWER) ||
+	    (msk0 == PIC_LOWER && msk1 == PIC_UPPER)) {
+		if (msk0 & PIC_LOWER)
+			idx0 = 1;
+		goto success;
+	}
+
+	/* Otherwise, there is a conflict.  */
+	return -1;
+
+success:
+	evts[0]->hw.idx = idx0;
+	if (n_ev == 2)
+		evts[1]->hw.idx = idx0 ^ 1;
+	return 0;
+}
+
+static int check_excludes(struct perf_event **evts, int n_prev, int n_new)
+{
+	int eu = 0, ek = 0, eh = 0;
+	struct perf_event *event;
+	int i, n, first;
+
+	if (!(sparc_pmu->flags & SPARC_PMU_ALL_EXCLUDES_SAME))
+		return 0;
+
+	n = n_prev + n_new;
+	if (n <= 1)
+		return 0;
+
+	first = 1;
+	for (i = 0; i < n; i++) {
+		event = evts[i];
+		if (first) {
+			eu = event->attr.exclude_user;
+			ek = event->attr.exclude_kernel;
+			eh = event->attr.exclude_hv;
+			first = 0;
+		} else if (event->attr.exclude_user != eu ||
+			   event->attr.exclude_kernel != ek ||
+			   event->attr.exclude_hv != eh) {
+			return -EAGAIN;
+		}
+	}
+
+	return 0;
+}
+
+static int collect_events(struct perf_event *group, int max_count,
+			  struct perf_event *evts[], unsigned long *events,
+			  int *current_idx)
+{
+	struct perf_event *event;
+	int n = 0;
+
+	if (!is_software_event(group)) {
+		if (n >= max_count)
+			return -1;
+		evts[n] = group;
+		events[n] = group->hw.event_base;
+		current_idx[n++] = PIC_NO_INDEX;
+	}
+	for_each_sibling_event(event, group) {
+		if (!is_software_event(event) &&
+		    event->state != PERF_EVENT_STATE_OFF) {
+			if (n >= max_count)
+				return -1;
+			evts[n] = event;
+			events[n] = event->hw.event_base;
+			current_idx[n++] = PIC_NO_INDEX;
+		}
+	}
+	return n;
+}
+
+static int sparc_pmu_add(struct perf_event *event, int ef_flags)
+{
+	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
+	int n0, ret = -EAGAIN;
+	unsigned long flags;
+
+	local_irq_save(flags);
+
+	n0 = cpuc->n_events;
+	if (n0 >= sparc_pmu->max_hw_events)
+		goto out;
+
+	cpuc->event[n0] = event;
+	cpuc->events[n0] = event->hw.event_base;
+	cpuc->current_idx[n0] = PIC_NO_INDEX;
+
+	event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
+	if (!(ef_flags & PERF_EF_START))
+		event->hw.state |= PERF_HES_ARCH;
+
+	/*
+	 * If group events scheduling transaction was started,
+	 * skip the schedulability test here, it will be performed
+	 * at commit time(->commit_txn) as a whole
+	 */
+	if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
+		goto nocheck;
+
+	if (check_excludes(cpuc->event, n0, 1))
+		goto out;
+	if (sparc_check_constraints(cpuc->event, cpuc->events, n0 + 1))
+		goto out;
+
+nocheck:
+	cpuc->n_events++;
+	cpuc->n_added++;
+
+	ret = 0;
+out:
+	local_irq_restore(flags);
+	return ret;
+}
+
+static int sparc_pmu_event_init(struct perf_event *event)
+{
+	struct perf_event_attr *attr = &event->attr;
+	struct perf_event *evts[MAX_HWEVENTS];
+	struct hw_perf_event *hwc = &event->hw;
+	unsigned long events[MAX_HWEVENTS];
+	int current_idx_dmy[MAX_HWEVENTS];
+	const struct perf_event_map *pmap;
+	int n;
+
+	if (atomic_read(&nmi_active) < 0)
+		return -ENODEV;
+
+	/* does not support taken branch sampling */
+	if (has_branch_stack(event))
+		return -EOPNOTSUPP;
+
+	switch (attr->type) {
+	case PERF_TYPE_HARDWARE:
+		if (attr->config >= sparc_pmu->max_events)
+			return -EINVAL;
+		pmap = sparc_pmu->event_map(attr->config);
+		break;
+
+	case PERF_TYPE_HW_CACHE:
+		pmap = sparc_map_cache_event(attr->config);
+		if (IS_ERR(pmap))
+			return PTR_ERR(pmap);
+		break;
+
+	case PERF_TYPE_RAW:
+		pmap = NULL;
+		break;
+
+	default:
+		return -ENOENT;
+
+	}
+
+	if (pmap) {
+		hwc->event_base = perf_event_encode(pmap);
+	} else {
+		/*
+		 * User gives us "(encoding << 16) | pic_mask" for
+		 * PERF_TYPE_RAW events.
+		 */
+		hwc->event_base = attr->config;
+	}
+
+	/* We save the enable bits in the config_base.  */
+	hwc->config_base = sparc_pmu->irq_bit;
+	if (!attr->exclude_user)
+		hwc->config_base |= sparc_pmu->user_bit;
+	if (!attr->exclude_kernel)
+		hwc->config_base |= sparc_pmu->priv_bit;
+	if (!attr->exclude_hv)
+		hwc->config_base |= sparc_pmu->hv_bit;
+
+	n = 0;
+	if (event->group_leader != event) {
+		n = collect_events(event->group_leader,
+				   sparc_pmu->max_hw_events - 1,
+				   evts, events, current_idx_dmy);
+		if (n < 0)
+			return -EINVAL;
+	}
+	events[n] = hwc->event_base;
+	evts[n] = event;
+
+	if (check_excludes(evts, n, 1))
+		return -EINVAL;
+
+	if (sparc_check_constraints(evts, events, n + 1))
+		return -EINVAL;
+
+	hwc->idx = PIC_NO_INDEX;
+
+	/* Try to do all error checking before this point, as unwinding
+	 * state after grabbing the PMC is difficult.
+	 */
+	perf_event_grab_pmc();
+	event->destroy = hw_perf_event_destroy;
+
+	if (!hwc->sample_period) {
+		hwc->sample_period = MAX_PERIOD;
+		hwc->last_period = hwc->sample_period;
+		local64_set(&hwc->period_left, hwc->sample_period);
+	}
+
+	return 0;
+}
+
+/*
+ * Start group events scheduling transaction
+ * Set the flag to make pmu::enable() not perform the
+ * schedulability test, it will be performed at commit time
+ */
+static void sparc_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
+{
+	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
+
+	WARN_ON_ONCE(cpuhw->txn_flags);		/* txn already in flight */
+
+	cpuhw->txn_flags = txn_flags;
+	if (txn_flags & ~PERF_PMU_TXN_ADD)
+		return;
+
+	perf_pmu_disable(pmu);
+}
+
+/*
+ * Stop group events scheduling transaction
+ * Clear the flag and pmu::enable() will perform the
+ * schedulability test.
+ */
+static void sparc_pmu_cancel_txn(struct pmu *pmu)
+{
+	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
+	unsigned int txn_flags;
+
+	WARN_ON_ONCE(!cpuhw->txn_flags);	/* no txn in flight */
+
+	txn_flags = cpuhw->txn_flags;
+	cpuhw->txn_flags = 0;
+	if (txn_flags & ~PERF_PMU_TXN_ADD)
+		return;
+
+	perf_pmu_enable(pmu);
+}
+
+/*
+ * Commit group events scheduling transaction
+ * Perform the group schedulability test as a whole
+ * Return 0 if success
+ */
+static int sparc_pmu_commit_txn(struct pmu *pmu)
+{
+	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
+	int n;
+
+	if (!sparc_pmu)
+		return -EINVAL;
+
+	WARN_ON_ONCE(!cpuc->txn_flags);	/* no txn in flight */
+
+	if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
+		cpuc->txn_flags = 0;
+		return 0;
+	}
+
+	n = cpuc->n_events;
+	if (check_excludes(cpuc->event, 0, n))
+		return -EINVAL;
+	if (sparc_check_constraints(cpuc->event, cpuc->events, n))
+		return -EAGAIN;
+
+	cpuc->txn_flags = 0;
+	perf_pmu_enable(pmu);
+	return 0;
+}
+
+static struct pmu pmu = {
+	.pmu_enable	= sparc_pmu_enable,
+	.pmu_disable	= sparc_pmu_disable,
+	.event_init	= sparc_pmu_event_init,
+	.add		= sparc_pmu_add,
+	.del		= sparc_pmu_del,
+	.start		= sparc_pmu_start,
+	.stop		= sparc_pmu_stop,
+	.read		= sparc_pmu_read,
+	.start_txn	= sparc_pmu_start_txn,
+	.cancel_txn	= sparc_pmu_cancel_txn,
+	.commit_txn	= sparc_pmu_commit_txn,
+};
+
+void perf_event_print_debug(void)
+{
+	unsigned long flags;
+	int cpu, i;
+
+	if (!sparc_pmu)
+		return;
+
+	local_irq_save(flags);
+
+	cpu = smp_processor_id();
+
+	pr_info("\n");
+	for (i = 0; i < sparc_pmu->num_pcrs; i++)
+		pr_info("CPU#%d: PCR%d[%016llx]\n",
+			cpu, i, pcr_ops->read_pcr(i));
+	for (i = 0; i < sparc_pmu->num_pic_regs; i++)
+		pr_info("CPU#%d: PIC%d[%016llx]\n",
+			cpu, i, pcr_ops->read_pic(i));
+
+	local_irq_restore(flags);
+}
+
+static int __kprobes perf_event_nmi_handler(struct notifier_block *self,
+					    unsigned long cmd, void *__args)
+{
+	struct die_args *args = __args;
+	struct perf_sample_data data;
+	struct cpu_hw_events *cpuc;
+	struct pt_regs *regs;
+	u64 finish_clock;
+	u64 start_clock;
+	int i;
+
+	if (!atomic_read(&active_events))
+		return NOTIFY_DONE;
+
+	switch (cmd) {
+	case DIE_NMI:
+		break;
+
+	default:
+		return NOTIFY_DONE;
+	}
+
+	start_clock = sched_clock();
+
+	regs = args->regs;
+
+	cpuc = this_cpu_ptr(&cpu_hw_events);
+
+	/* If the PMU has the TOE IRQ enable bits, we need to do a
+	 * dummy write to the %pcr to clear the overflow bits and thus
+	 * the interrupt.
+	 *
+	 * Do this before we peek at the counters to determine
+	 * overflow so we don't lose any events.
+	 */
+	if (sparc_pmu->irq_bit &&
+	    sparc_pmu->num_pcrs == 1)
+		pcr_ops->write_pcr(0, cpuc->pcr[0]);
+
+	for (i = 0; i < cpuc->n_events; i++) {
+		struct perf_event *event = cpuc->event[i];
+		int idx = cpuc->current_idx[i];
+		struct hw_perf_event *hwc;
+		u64 val;
+
+		if (sparc_pmu->irq_bit &&
+		    sparc_pmu->num_pcrs > 1)
+			pcr_ops->write_pcr(idx, cpuc->pcr[idx]);
+
+		hwc = &event->hw;
+		val = sparc_perf_event_update(event, hwc, idx);
+		if (val & (1ULL << 31))
+			continue;
+
+		perf_sample_data_init(&data, 0, hwc->last_period);
+		if (!sparc_perf_event_set_period(event, hwc, idx))
+			continue;
+
+		if (perf_event_overflow(event, &data, regs))
+			sparc_pmu_stop(event, 0);
+	}
+
+	finish_clock = sched_clock();
+
+	perf_sample_event_took(finish_clock - start_clock);
+
+	return NOTIFY_STOP;
+}
+
+static __read_mostly struct notifier_block perf_event_nmi_notifier = {
+	.notifier_call		= perf_event_nmi_handler,
+};
+
+static bool __init supported_pmu(void)
+{
+	if (!strcmp(sparc_pmu_type, "ultra3") ||
+	    !strcmp(sparc_pmu_type, "ultra3+") ||
+	    !strcmp(sparc_pmu_type, "ultra3i") ||
+	    !strcmp(sparc_pmu_type, "ultra4+")) {
+		sparc_pmu = &ultra3_pmu;
+		return true;
+	}
+	if (!strcmp(sparc_pmu_type, "niagara")) {
+		sparc_pmu = &niagara1_pmu;
+		return true;
+	}
+	if (!strcmp(sparc_pmu_type, "niagara2") ||
+	    !strcmp(sparc_pmu_type, "niagara3")) {
+		sparc_pmu = &niagara2_pmu;
+		return true;
+	}
+	if (!strcmp(sparc_pmu_type, "niagara4") ||
+	    !strcmp(sparc_pmu_type, "niagara5")) {
+		sparc_pmu = &niagara4_pmu;
+		return true;
+	}
+	if (!strcmp(sparc_pmu_type, "sparc-m7")) {
+		sparc_pmu = &sparc_m7_pmu;
+		return true;
+	}
+	return false;
+}
+
+static int __init init_hw_perf_events(void)
+{
+	int err;
+
+	pr_info("Performance events: ");
+
+	err = pcr_arch_init();
+	if (err || !supported_pmu()) {
+		pr_cont("No support for PMU type '%s'\n", sparc_pmu_type);
+		return 0;
+	}
+
+	pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type);
+
+	perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
+	register_die_notifier(&perf_event_nmi_notifier);
+
+	return 0;
+}
+pure_initcall(init_hw_perf_events);
+
+void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry,
+			   struct pt_regs *regs)
+{
+	unsigned long ksp, fp;
+#ifdef CONFIG_FUNCTION_GRAPH_TRACER
+	int graph = 0;
+#endif
+
+	stack_trace_flush();
+
+	perf_callchain_store(entry, regs->tpc);
+
+	ksp = regs->u_regs[UREG_I6];
+	fp = ksp + STACK_BIAS;
+	do {
+		struct sparc_stackf *sf;
+		struct pt_regs *regs;
+		unsigned long pc;
+
+		if (!kstack_valid(current_thread_info(), fp))
+			break;
+
+		sf = (struct sparc_stackf *) fp;
+		regs = (struct pt_regs *) (sf + 1);
+
+		if (kstack_is_trap_frame(current_thread_info(), regs)) {
+			if (user_mode(regs))
+				break;
+			pc = regs->tpc;
+			fp = regs->u_regs[UREG_I6] + STACK_BIAS;
+		} else {
+			pc = sf->callers_pc;
+			fp = (unsigned long)sf->fp + STACK_BIAS;
+		}
+		perf_callchain_store(entry, pc);
+#ifdef CONFIG_FUNCTION_GRAPH_TRACER
+		if ((pc + 8UL) == (unsigned long) &return_to_handler) {
+			int index = current->curr_ret_stack;
+			if (current->ret_stack && index >= graph) {
+				pc = current->ret_stack[index - graph].ret;
+				perf_callchain_store(entry, pc);
+				graph++;
+			}
+		}
+#endif
+	} while (entry->nr < entry->max_stack);
+}
+
+static inline int
+valid_user_frame(const void __user *fp, unsigned long size)
+{
+	/* addresses should be at least 4-byte aligned */
+	if (((unsigned long) fp) & 3)
+		return 0;
+
+	return (__range_not_ok(fp, size, TASK_SIZE) == 0);
+}
+
+static void perf_callchain_user_64(struct perf_callchain_entry_ctx *entry,
+				   struct pt_regs *regs)
+{
+	unsigned long ufp;
+
+	ufp = regs->u_regs[UREG_FP] + STACK_BIAS;
+	do {
+		struct sparc_stackf __user *usf;
+		struct sparc_stackf sf;
+		unsigned long pc;
+
+		usf = (struct sparc_stackf __user *)ufp;
+		if (!valid_user_frame(usf, sizeof(sf)))
+			break;
+
+		if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
+			break;
+
+		pc = sf.callers_pc;
+		ufp = (unsigned long)sf.fp + STACK_BIAS;
+		perf_callchain_store(entry, pc);
+	} while (entry->nr < entry->max_stack);
+}
+
+static void perf_callchain_user_32(struct perf_callchain_entry_ctx *entry,
+				   struct pt_regs *regs)
+{
+	unsigned long ufp;
+
+	ufp = regs->u_regs[UREG_FP] & 0xffffffffUL;
+	do {
+		unsigned long pc;
+
+		if (thread32_stack_is_64bit(ufp)) {
+			struct sparc_stackf __user *usf;
+			struct sparc_stackf sf;
+
+			ufp += STACK_BIAS;
+			usf = (struct sparc_stackf __user *)ufp;
+			if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
+				break;
+			pc = sf.callers_pc & 0xffffffff;
+			ufp = ((unsigned long) sf.fp) & 0xffffffff;
+		} else {
+			struct sparc_stackf32 __user *usf;
+			struct sparc_stackf32 sf;
+			usf = (struct sparc_stackf32 __user *)ufp;
+			if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
+				break;
+			pc = sf.callers_pc;
+			ufp = (unsigned long)sf.fp;
+		}
+		perf_callchain_store(entry, pc);
+	} while (entry->nr < entry->max_stack);
+}
+
+void
+perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
+{
+	u64 saved_fault_address = current_thread_info()->fault_address;
+	u8 saved_fault_code = get_thread_fault_code();
+	mm_segment_t old_fs;
+
+	perf_callchain_store(entry, regs->tpc);
+
+	if (!current->mm)
+		return;
+
+	old_fs = get_fs();
+	set_fs(USER_DS);
+
+	flushw_user();
+
+	pagefault_disable();
+
+	if (test_thread_flag(TIF_32BIT))
+		perf_callchain_user_32(entry, regs);
+	else
+		perf_callchain_user_64(entry, regs);
+
+	pagefault_enable();
+
+	set_fs(old_fs);
+	set_thread_fault_code(saved_fault_code);
+	current_thread_info()->fault_address = saved_fault_address;
+}