v4.19.13 snapshot.
diff --git a/arch/sh/kernel/dwarf.c b/arch/sh/kernel/dwarf.c
new file mode 100644
index 0000000..bb511e2
--- /dev/null
+++ b/arch/sh/kernel/dwarf.c
@@ -0,0 +1,1208 @@
+/*
+ * Copyright (C) 2009 Matt Fleming <matt@console-pimps.org>
+ *
+ * This file is subject to the terms and conditions of the GNU General Public
+ * License.  See the file "COPYING" in the main directory of this archive
+ * for more details.
+ *
+ * This is an implementation of a DWARF unwinder. Its main purpose is
+ * for generating stacktrace information. Based on the DWARF 3
+ * specification from http://www.dwarfstd.org.
+ *
+ * TODO:
+ *	- DWARF64 doesn't work.
+ *	- Registers with DWARF_VAL_OFFSET rules aren't handled properly.
+ */
+
+/* #define DEBUG */
+#include <linux/kernel.h>
+#include <linux/io.h>
+#include <linux/list.h>
+#include <linux/mempool.h>
+#include <linux/mm.h>
+#include <linux/elf.h>
+#include <linux/ftrace.h>
+#include <linux/module.h>
+#include <linux/slab.h>
+#include <asm/dwarf.h>
+#include <asm/unwinder.h>
+#include <asm/sections.h>
+#include <asm/unaligned.h>
+#include <asm/stacktrace.h>
+
+/* Reserve enough memory for two stack frames */
+#define DWARF_FRAME_MIN_REQ	2
+/* ... with 4 registers per frame. */
+#define DWARF_REG_MIN_REQ	(DWARF_FRAME_MIN_REQ * 4)
+
+static struct kmem_cache *dwarf_frame_cachep;
+static mempool_t *dwarf_frame_pool;
+
+static struct kmem_cache *dwarf_reg_cachep;
+static mempool_t *dwarf_reg_pool;
+
+static struct rb_root cie_root;
+static DEFINE_SPINLOCK(dwarf_cie_lock);
+
+static struct rb_root fde_root;
+static DEFINE_SPINLOCK(dwarf_fde_lock);
+
+static struct dwarf_cie *cached_cie;
+
+static unsigned int dwarf_unwinder_ready;
+
+/**
+ *	dwarf_frame_alloc_reg - allocate memory for a DWARF register
+ *	@frame: the DWARF frame whose list of registers we insert on
+ *	@reg_num: the register number
+ *
+ *	Allocate space for, and initialise, a dwarf reg from
+ *	dwarf_reg_pool and insert it onto the (unsorted) linked-list of
+ *	dwarf registers for @frame.
+ *
+ *	Return the initialised DWARF reg.
+ */
+static struct dwarf_reg *dwarf_frame_alloc_reg(struct dwarf_frame *frame,
+					       unsigned int reg_num)
+{
+	struct dwarf_reg *reg;
+
+	reg = mempool_alloc(dwarf_reg_pool, GFP_ATOMIC);
+	if (!reg) {
+		printk(KERN_WARNING "Unable to allocate a DWARF register\n");
+		/*
+		 * Let's just bomb hard here, we have no way to
+		 * gracefully recover.
+		 */
+		UNWINDER_BUG();
+	}
+
+	reg->number = reg_num;
+	reg->addr = 0;
+	reg->flags = 0;
+
+	list_add(&reg->link, &frame->reg_list);
+
+	return reg;
+}
+
+static void dwarf_frame_free_regs(struct dwarf_frame *frame)
+{
+	struct dwarf_reg *reg, *n;
+
+	list_for_each_entry_safe(reg, n, &frame->reg_list, link) {
+		list_del(&reg->link);
+		mempool_free(reg, dwarf_reg_pool);
+	}
+}
+
+/**
+ *	dwarf_frame_reg - return a DWARF register
+ *	@frame: the DWARF frame to search in for @reg_num
+ *	@reg_num: the register number to search for
+ *
+ *	Lookup and return the dwarf reg @reg_num for this frame. Return
+ *	NULL if @reg_num is an register invalid number.
+ */
+static struct dwarf_reg *dwarf_frame_reg(struct dwarf_frame *frame,
+					 unsigned int reg_num)
+{
+	struct dwarf_reg *reg;
+
+	list_for_each_entry(reg, &frame->reg_list, link) {
+		if (reg->number == reg_num)
+			return reg;
+	}
+
+	return NULL;
+}
+
+/**
+ *	dwarf_read_addr - read dwarf data
+ *	@src: source address of data
+ *	@dst: destination address to store the data to
+ *
+ *	Read 'n' bytes from @src, where 'n' is the size of an address on
+ *	the native machine. We return the number of bytes read, which
+ *	should always be 'n'. We also have to be careful when reading
+ *	from @src and writing to @dst, because they can be arbitrarily
+ *	aligned. Return 'n' - the number of bytes read.
+ */
+static inline int dwarf_read_addr(unsigned long *src, unsigned long *dst)
+{
+	u32 val = get_unaligned(src);
+	put_unaligned(val, dst);
+	return sizeof(unsigned long *);
+}
+
+/**
+ *	dwarf_read_uleb128 - read unsigned LEB128 data
+ *	@addr: the address where the ULEB128 data is stored
+ *	@ret: address to store the result
+ *
+ *	Decode an unsigned LEB128 encoded datum. The algorithm is taken
+ *	from Appendix C of the DWARF 3 spec. For information on the
+ *	encodings refer to section "7.6 - Variable Length Data". Return
+ *	the number of bytes read.
+ */
+static inline unsigned long dwarf_read_uleb128(char *addr, unsigned int *ret)
+{
+	unsigned int result;
+	unsigned char byte;
+	int shift, count;
+
+	result = 0;
+	shift = 0;
+	count = 0;
+
+	while (1) {
+		byte = __raw_readb(addr);
+		addr++;
+		count++;
+
+		result |= (byte & 0x7f) << shift;
+		shift += 7;
+
+		if (!(byte & 0x80))
+			break;
+	}
+
+	*ret = result;
+
+	return count;
+}
+
+/**
+ *	dwarf_read_leb128 - read signed LEB128 data
+ *	@addr: the address of the LEB128 encoded data
+ *	@ret: address to store the result
+ *
+ *	Decode signed LEB128 data. The algorithm is taken from Appendix
+ *	C of the DWARF 3 spec. Return the number of bytes read.
+ */
+static inline unsigned long dwarf_read_leb128(char *addr, int *ret)
+{
+	unsigned char byte;
+	int result, shift;
+	int num_bits;
+	int count;
+
+	result = 0;
+	shift = 0;
+	count = 0;
+
+	while (1) {
+		byte = __raw_readb(addr);
+		addr++;
+		result |= (byte & 0x7f) << shift;
+		shift += 7;
+		count++;
+
+		if (!(byte & 0x80))
+			break;
+	}
+
+	/* The number of bits in a signed integer. */
+	num_bits = 8 * sizeof(result);
+
+	if ((shift < num_bits) && (byte & 0x40))
+		result |= (-1 << shift);
+
+	*ret = result;
+
+	return count;
+}
+
+/**
+ *	dwarf_read_encoded_value - return the decoded value at @addr
+ *	@addr: the address of the encoded value
+ *	@val: where to write the decoded value
+ *	@encoding: the encoding with which we can decode @addr
+ *
+ *	GCC emits encoded address in the .eh_frame FDE entries. Decode
+ *	the value at @addr using @encoding. The decoded value is written
+ *	to @val and the number of bytes read is returned.
+ */
+static int dwarf_read_encoded_value(char *addr, unsigned long *val,
+				    char encoding)
+{
+	unsigned long decoded_addr = 0;
+	int count = 0;
+
+	switch (encoding & 0x70) {
+	case DW_EH_PE_absptr:
+		break;
+	case DW_EH_PE_pcrel:
+		decoded_addr = (unsigned long)addr;
+		break;
+	default:
+		pr_debug("encoding=0x%x\n", (encoding & 0x70));
+		UNWINDER_BUG();
+	}
+
+	if ((encoding & 0x07) == 0x00)
+		encoding |= DW_EH_PE_udata4;
+
+	switch (encoding & 0x0f) {
+	case DW_EH_PE_sdata4:
+	case DW_EH_PE_udata4:
+		count += 4;
+		decoded_addr += get_unaligned((u32 *)addr);
+		__raw_writel(decoded_addr, val);
+		break;
+	default:
+		pr_debug("encoding=0x%x\n", encoding);
+		UNWINDER_BUG();
+	}
+
+	return count;
+}
+
+/**
+ *	dwarf_entry_len - return the length of an FDE or CIE
+ *	@addr: the address of the entry
+ *	@len: the length of the entry
+ *
+ *	Read the initial_length field of the entry and store the size of
+ *	the entry in @len. We return the number of bytes read. Return a
+ *	count of 0 on error.
+ */
+static inline int dwarf_entry_len(char *addr, unsigned long *len)
+{
+	u32 initial_len;
+	int count;
+
+	initial_len = get_unaligned((u32 *)addr);
+	count = 4;
+
+	/*
+	 * An initial length field value in the range DW_LEN_EXT_LO -
+	 * DW_LEN_EXT_HI indicates an extension, and should not be
+	 * interpreted as a length. The only extension that we currently
+	 * understand is the use of DWARF64 addresses.
+	 */
+	if (initial_len >= DW_EXT_LO && initial_len <= DW_EXT_HI) {
+		/*
+		 * The 64-bit length field immediately follows the
+		 * compulsory 32-bit length field.
+		 */
+		if (initial_len == DW_EXT_DWARF64) {
+			*len = get_unaligned((u64 *)addr + 4);
+			count = 12;
+		} else {
+			printk(KERN_WARNING "Unknown DWARF extension\n");
+			count = 0;
+		}
+	} else
+		*len = initial_len;
+
+	return count;
+}
+
+/**
+ *	dwarf_lookup_cie - locate the cie
+ *	@cie_ptr: pointer to help with lookup
+ */
+static struct dwarf_cie *dwarf_lookup_cie(unsigned long cie_ptr)
+{
+	struct rb_node **rb_node = &cie_root.rb_node;
+	struct dwarf_cie *cie = NULL;
+	unsigned long flags;
+
+	spin_lock_irqsave(&dwarf_cie_lock, flags);
+
+	/*
+	 * We've cached the last CIE we looked up because chances are
+	 * that the FDE wants this CIE.
+	 */
+	if (cached_cie && cached_cie->cie_pointer == cie_ptr) {
+		cie = cached_cie;
+		goto out;
+	}
+
+	while (*rb_node) {
+		struct dwarf_cie *cie_tmp;
+
+		cie_tmp = rb_entry(*rb_node, struct dwarf_cie, node);
+		BUG_ON(!cie_tmp);
+
+		if (cie_ptr == cie_tmp->cie_pointer) {
+			cie = cie_tmp;
+			cached_cie = cie_tmp;
+			goto out;
+		} else {
+			if (cie_ptr < cie_tmp->cie_pointer)
+				rb_node = &(*rb_node)->rb_left;
+			else
+				rb_node = &(*rb_node)->rb_right;
+		}
+	}
+
+out:
+	spin_unlock_irqrestore(&dwarf_cie_lock, flags);
+	return cie;
+}
+
+/**
+ *	dwarf_lookup_fde - locate the FDE that covers pc
+ *	@pc: the program counter
+ */
+struct dwarf_fde *dwarf_lookup_fde(unsigned long pc)
+{
+	struct rb_node **rb_node = &fde_root.rb_node;
+	struct dwarf_fde *fde = NULL;
+	unsigned long flags;
+
+	spin_lock_irqsave(&dwarf_fde_lock, flags);
+
+	while (*rb_node) {
+		struct dwarf_fde *fde_tmp;
+		unsigned long tmp_start, tmp_end;
+
+		fde_tmp = rb_entry(*rb_node, struct dwarf_fde, node);
+		BUG_ON(!fde_tmp);
+
+		tmp_start = fde_tmp->initial_location;
+		tmp_end = fde_tmp->initial_location + fde_tmp->address_range;
+
+		if (pc < tmp_start) {
+			rb_node = &(*rb_node)->rb_left;
+		} else {
+			if (pc < tmp_end) {
+				fde = fde_tmp;
+				goto out;
+			} else
+				rb_node = &(*rb_node)->rb_right;
+		}
+	}
+
+out:
+	spin_unlock_irqrestore(&dwarf_fde_lock, flags);
+
+	return fde;
+}
+
+/**
+ *	dwarf_cfa_execute_insns - execute instructions to calculate a CFA
+ *	@insn_start: address of the first instruction
+ *	@insn_end: address of the last instruction
+ *	@cie: the CIE for this function
+ *	@fde: the FDE for this function
+ *	@frame: the instructions calculate the CFA for this frame
+ *	@pc: the program counter of the address we're interested in
+ *
+ *	Execute the Call Frame instruction sequence starting at
+ *	@insn_start and ending at @insn_end. The instructions describe
+ *	how to calculate the Canonical Frame Address of a stackframe.
+ *	Store the results in @frame.
+ */
+static int dwarf_cfa_execute_insns(unsigned char *insn_start,
+				   unsigned char *insn_end,
+				   struct dwarf_cie *cie,
+				   struct dwarf_fde *fde,
+				   struct dwarf_frame *frame,
+				   unsigned long pc)
+{
+	unsigned char insn;
+	unsigned char *current_insn;
+	unsigned int count, delta, reg, expr_len, offset;
+	struct dwarf_reg *regp;
+
+	current_insn = insn_start;
+
+	while (current_insn < insn_end && frame->pc <= pc) {
+		insn = __raw_readb(current_insn++);
+
+		/*
+		 * Firstly, handle the opcodes that embed their operands
+		 * in the instructions.
+		 */
+		switch (DW_CFA_opcode(insn)) {
+		case DW_CFA_advance_loc:
+			delta = DW_CFA_operand(insn);
+			delta *= cie->code_alignment_factor;
+			frame->pc += delta;
+			continue;
+			/* NOTREACHED */
+		case DW_CFA_offset:
+			reg = DW_CFA_operand(insn);
+			count = dwarf_read_uleb128(current_insn, &offset);
+			current_insn += count;
+			offset *= cie->data_alignment_factor;
+			regp = dwarf_frame_alloc_reg(frame, reg);
+			regp->addr = offset;
+			regp->flags |= DWARF_REG_OFFSET;
+			continue;
+			/* NOTREACHED */
+		case DW_CFA_restore:
+			reg = DW_CFA_operand(insn);
+			continue;
+			/* NOTREACHED */
+		}
+
+		/*
+		 * Secondly, handle the opcodes that don't embed their
+		 * operands in the instruction.
+		 */
+		switch (insn) {
+		case DW_CFA_nop:
+			continue;
+		case DW_CFA_advance_loc1:
+			delta = *current_insn++;
+			frame->pc += delta * cie->code_alignment_factor;
+			break;
+		case DW_CFA_advance_loc2:
+			delta = get_unaligned((u16 *)current_insn);
+			current_insn += 2;
+			frame->pc += delta * cie->code_alignment_factor;
+			break;
+		case DW_CFA_advance_loc4:
+			delta = get_unaligned((u32 *)current_insn);
+			current_insn += 4;
+			frame->pc += delta * cie->code_alignment_factor;
+			break;
+		case DW_CFA_offset_extended:
+			count = dwarf_read_uleb128(current_insn, &reg);
+			current_insn += count;
+			count = dwarf_read_uleb128(current_insn, &offset);
+			current_insn += count;
+			offset *= cie->data_alignment_factor;
+			break;
+		case DW_CFA_restore_extended:
+			count = dwarf_read_uleb128(current_insn, &reg);
+			current_insn += count;
+			break;
+		case DW_CFA_undefined:
+			count = dwarf_read_uleb128(current_insn, &reg);
+			current_insn += count;
+			regp = dwarf_frame_alloc_reg(frame, reg);
+			regp->flags |= DWARF_UNDEFINED;
+			break;
+		case DW_CFA_def_cfa:
+			count = dwarf_read_uleb128(current_insn,
+						   &frame->cfa_register);
+			current_insn += count;
+			count = dwarf_read_uleb128(current_insn,
+						   &frame->cfa_offset);
+			current_insn += count;
+
+			frame->flags |= DWARF_FRAME_CFA_REG_OFFSET;
+			break;
+		case DW_CFA_def_cfa_register:
+			count = dwarf_read_uleb128(current_insn,
+						   &frame->cfa_register);
+			current_insn += count;
+			frame->flags |= DWARF_FRAME_CFA_REG_OFFSET;
+			break;
+		case DW_CFA_def_cfa_offset:
+			count = dwarf_read_uleb128(current_insn, &offset);
+			current_insn += count;
+			frame->cfa_offset = offset;
+			break;
+		case DW_CFA_def_cfa_expression:
+			count = dwarf_read_uleb128(current_insn, &expr_len);
+			current_insn += count;
+
+			frame->cfa_expr = current_insn;
+			frame->cfa_expr_len = expr_len;
+			current_insn += expr_len;
+
+			frame->flags |= DWARF_FRAME_CFA_REG_EXP;
+			break;
+		case DW_CFA_offset_extended_sf:
+			count = dwarf_read_uleb128(current_insn, &reg);
+			current_insn += count;
+			count = dwarf_read_leb128(current_insn, &offset);
+			current_insn += count;
+			offset *= cie->data_alignment_factor;
+			regp = dwarf_frame_alloc_reg(frame, reg);
+			regp->flags |= DWARF_REG_OFFSET;
+			regp->addr = offset;
+			break;
+		case DW_CFA_val_offset:
+			count = dwarf_read_uleb128(current_insn, &reg);
+			current_insn += count;
+			count = dwarf_read_leb128(current_insn, &offset);
+			offset *= cie->data_alignment_factor;
+			regp = dwarf_frame_alloc_reg(frame, reg);
+			regp->flags |= DWARF_VAL_OFFSET;
+			regp->addr = offset;
+			break;
+		case DW_CFA_GNU_args_size:
+			count = dwarf_read_uleb128(current_insn, &offset);
+			current_insn += count;
+			break;
+		case DW_CFA_GNU_negative_offset_extended:
+			count = dwarf_read_uleb128(current_insn, &reg);
+			current_insn += count;
+			count = dwarf_read_uleb128(current_insn, &offset);
+			offset *= cie->data_alignment_factor;
+
+			regp = dwarf_frame_alloc_reg(frame, reg);
+			regp->flags |= DWARF_REG_OFFSET;
+			regp->addr = -offset;
+			break;
+		default:
+			pr_debug("unhandled DWARF instruction 0x%x\n", insn);
+			UNWINDER_BUG();
+			break;
+		}
+	}
+
+	return 0;
+}
+
+/**
+ *	dwarf_free_frame - free the memory allocated for @frame
+ *	@frame: the frame to free
+ */
+void dwarf_free_frame(struct dwarf_frame *frame)
+{
+	dwarf_frame_free_regs(frame);
+	mempool_free(frame, dwarf_frame_pool);
+}
+
+extern void ret_from_irq(void);
+
+/**
+ *	dwarf_unwind_stack - unwind the stack
+ *
+ *	@pc: address of the function to unwind
+ *	@prev: struct dwarf_frame of the previous stackframe on the callstack
+ *
+ *	Return a struct dwarf_frame representing the most recent frame
+ *	on the callstack. Each of the lower (older) stack frames are
+ *	linked via the "prev" member.
+ */
+struct dwarf_frame *dwarf_unwind_stack(unsigned long pc,
+				       struct dwarf_frame *prev)
+{
+	struct dwarf_frame *frame;
+	struct dwarf_cie *cie;
+	struct dwarf_fde *fde;
+	struct dwarf_reg *reg;
+	unsigned long addr;
+
+	/*
+	 * If we've been called in to before initialization has
+	 * completed, bail out immediately.
+	 */
+	if (!dwarf_unwinder_ready)
+		return NULL;
+
+	/*
+	 * If we're starting at the top of the stack we need get the
+	 * contents of a physical register to get the CFA in order to
+	 * begin the virtual unwinding of the stack.
+	 *
+	 * NOTE: the return address is guaranteed to be setup by the
+	 * time this function makes its first function call.
+	 */
+	if (!pc || !prev)
+		pc = _THIS_IP_;
+
+#ifdef CONFIG_FUNCTION_GRAPH_TRACER
+	/*
+	 * If our stack has been patched by the function graph tracer
+	 * then we might see the address of return_to_handler() where we
+	 * expected to find the real return address.
+	 */
+	if (pc == (unsigned long)&return_to_handler) {
+		int index = current->curr_ret_stack;
+
+		/*
+		 * We currently have no way of tracking how many
+		 * return_to_handler()'s we've seen. If there is more
+		 * than one patched return address on our stack,
+		 * complain loudly.
+		 */
+		WARN_ON(index > 0);
+
+		pc = current->ret_stack[index].ret;
+	}
+#endif
+
+	frame = mempool_alloc(dwarf_frame_pool, GFP_ATOMIC);
+	if (!frame) {
+		printk(KERN_ERR "Unable to allocate a dwarf frame\n");
+		UNWINDER_BUG();
+	}
+
+	INIT_LIST_HEAD(&frame->reg_list);
+	frame->flags = 0;
+	frame->prev = prev;
+	frame->return_addr = 0;
+
+	fde = dwarf_lookup_fde(pc);
+	if (!fde) {
+		/*
+		 * This is our normal exit path. There are two reasons
+		 * why we might exit here,
+		 *
+		 *	a) pc has no asscociated DWARF frame info and so
+		 *	we don't know how to unwind this frame. This is
+		 *	usually the case when we're trying to unwind a
+		 *	frame that was called from some assembly code
+		 *	that has no DWARF info, e.g. syscalls.
+		 *
+		 *	b) the DEBUG info for pc is bogus. There's
+		 *	really no way to distinguish this case from the
+		 *	case above, which sucks because we could print a
+		 *	warning here.
+		 */
+		goto bail;
+	}
+
+	cie = dwarf_lookup_cie(fde->cie_pointer);
+
+	frame->pc = fde->initial_location;
+
+	/* CIE initial instructions */
+	dwarf_cfa_execute_insns(cie->initial_instructions,
+				cie->instructions_end, cie, fde,
+				frame, pc);
+
+	/* FDE instructions */
+	dwarf_cfa_execute_insns(fde->instructions, fde->end, cie,
+				fde, frame, pc);
+
+	/* Calculate the CFA */
+	switch (frame->flags) {
+	case DWARF_FRAME_CFA_REG_OFFSET:
+		if (prev) {
+			reg = dwarf_frame_reg(prev, frame->cfa_register);
+			UNWINDER_BUG_ON(!reg);
+			UNWINDER_BUG_ON(reg->flags != DWARF_REG_OFFSET);
+
+			addr = prev->cfa + reg->addr;
+			frame->cfa = __raw_readl(addr);
+
+		} else {
+			/*
+			 * Again, we're starting from the top of the
+			 * stack. We need to physically read
+			 * the contents of a register in order to get
+			 * the Canonical Frame Address for this
+			 * function.
+			 */
+			frame->cfa = dwarf_read_arch_reg(frame->cfa_register);
+		}
+
+		frame->cfa += frame->cfa_offset;
+		break;
+	default:
+		UNWINDER_BUG();
+	}
+
+	reg = dwarf_frame_reg(frame, DWARF_ARCH_RA_REG);
+
+	/*
+	 * If we haven't seen the return address register or the return
+	 * address column is undefined then we must assume that this is
+	 * the end of the callstack.
+	 */
+	if (!reg || reg->flags == DWARF_UNDEFINED)
+		goto bail;
+
+	UNWINDER_BUG_ON(reg->flags != DWARF_REG_OFFSET);
+
+	addr = frame->cfa + reg->addr;
+	frame->return_addr = __raw_readl(addr);
+
+	/*
+	 * Ah, the joys of unwinding through interrupts.
+	 *
+	 * Interrupts are tricky - the DWARF info needs to be _really_
+	 * accurate and unfortunately I'm seeing a lot of bogus DWARF
+	 * info. For example, I've seen interrupts occur in epilogues
+	 * just after the frame pointer (r14) had been restored. The
+	 * problem was that the DWARF info claimed that the CFA could be
+	 * reached by using the value of the frame pointer before it was
+	 * restored.
+	 *
+	 * So until the compiler can be trusted to produce reliable
+	 * DWARF info when it really matters, let's stop unwinding once
+	 * we've calculated the function that was interrupted.
+	 */
+	if (prev && prev->pc == (unsigned long)ret_from_irq)
+		frame->return_addr = 0;
+
+	return frame;
+
+bail:
+	dwarf_free_frame(frame);
+	return NULL;
+}
+
+static int dwarf_parse_cie(void *entry, void *p, unsigned long len,
+			   unsigned char *end, struct module *mod)
+{
+	struct rb_node **rb_node = &cie_root.rb_node;
+	struct rb_node *parent = *rb_node;
+	struct dwarf_cie *cie;
+	unsigned long flags;
+	int count;
+
+	cie = kzalloc(sizeof(*cie), GFP_KERNEL);
+	if (!cie)
+		return -ENOMEM;
+
+	cie->length = len;
+
+	/*
+	 * Record the offset into the .eh_frame section
+	 * for this CIE. It allows this CIE to be
+	 * quickly and easily looked up from the
+	 * corresponding FDE.
+	 */
+	cie->cie_pointer = (unsigned long)entry;
+
+	cie->version = *(char *)p++;
+	UNWINDER_BUG_ON(cie->version != 1);
+
+	cie->augmentation = p;
+	p += strlen(cie->augmentation) + 1;
+
+	count = dwarf_read_uleb128(p, &cie->code_alignment_factor);
+	p += count;
+
+	count = dwarf_read_leb128(p, &cie->data_alignment_factor);
+	p += count;
+
+	/*
+	 * Which column in the rule table contains the
+	 * return address?
+	 */
+	if (cie->version == 1) {
+		cie->return_address_reg = __raw_readb(p);
+		p++;
+	} else {
+		count = dwarf_read_uleb128(p, &cie->return_address_reg);
+		p += count;
+	}
+
+	if (cie->augmentation[0] == 'z') {
+		unsigned int length, count;
+		cie->flags |= DWARF_CIE_Z_AUGMENTATION;
+
+		count = dwarf_read_uleb128(p, &length);
+		p += count;
+
+		UNWINDER_BUG_ON((unsigned char *)p > end);
+
+		cie->initial_instructions = p + length;
+		cie->augmentation++;
+	}
+
+	while (*cie->augmentation) {
+		/*
+		 * "L" indicates a byte showing how the
+		 * LSDA pointer is encoded. Skip it.
+		 */
+		if (*cie->augmentation == 'L') {
+			p++;
+			cie->augmentation++;
+		} else if (*cie->augmentation == 'R') {
+			/*
+			 * "R" indicates a byte showing
+			 * how FDE addresses are
+			 * encoded.
+			 */
+			cie->encoding = *(char *)p++;
+			cie->augmentation++;
+		} else if (*cie->augmentation == 'P') {
+			/*
+			 * "R" indicates a personality
+			 * routine in the CIE
+			 * augmentation.
+			 */
+			UNWINDER_BUG();
+		} else if (*cie->augmentation == 'S') {
+			UNWINDER_BUG();
+		} else {
+			/*
+			 * Unknown augmentation. Assume
+			 * 'z' augmentation.
+			 */
+			p = cie->initial_instructions;
+			UNWINDER_BUG_ON(!p);
+			break;
+		}
+	}
+
+	cie->initial_instructions = p;
+	cie->instructions_end = end;
+
+	/* Add to list */
+	spin_lock_irqsave(&dwarf_cie_lock, flags);
+
+	while (*rb_node) {
+		struct dwarf_cie *cie_tmp;
+
+		cie_tmp = rb_entry(*rb_node, struct dwarf_cie, node);
+
+		parent = *rb_node;
+
+		if (cie->cie_pointer < cie_tmp->cie_pointer)
+			rb_node = &parent->rb_left;
+		else if (cie->cie_pointer >= cie_tmp->cie_pointer)
+			rb_node = &parent->rb_right;
+		else
+			WARN_ON(1);
+	}
+
+	rb_link_node(&cie->node, parent, rb_node);
+	rb_insert_color(&cie->node, &cie_root);
+
+#ifdef CONFIG_MODULES
+	if (mod != NULL)
+		list_add_tail(&cie->link, &mod->arch.cie_list);
+#endif
+
+	spin_unlock_irqrestore(&dwarf_cie_lock, flags);
+
+	return 0;
+}
+
+static int dwarf_parse_fde(void *entry, u32 entry_type,
+			   void *start, unsigned long len,
+			   unsigned char *end, struct module *mod)
+{
+	struct rb_node **rb_node = &fde_root.rb_node;
+	struct rb_node *parent = *rb_node;
+	struct dwarf_fde *fde;
+	struct dwarf_cie *cie;
+	unsigned long flags;
+	int count;
+	void *p = start;
+
+	fde = kzalloc(sizeof(*fde), GFP_KERNEL);
+	if (!fde)
+		return -ENOMEM;
+
+	fde->length = len;
+
+	/*
+	 * In a .eh_frame section the CIE pointer is the
+	 * delta between the address within the FDE
+	 */
+	fde->cie_pointer = (unsigned long)(p - entry_type - 4);
+
+	cie = dwarf_lookup_cie(fde->cie_pointer);
+	fde->cie = cie;
+
+	if (cie->encoding)
+		count = dwarf_read_encoded_value(p, &fde->initial_location,
+						 cie->encoding);
+	else
+		count = dwarf_read_addr(p, &fde->initial_location);
+
+	p += count;
+
+	if (cie->encoding)
+		count = dwarf_read_encoded_value(p, &fde->address_range,
+						 cie->encoding & 0x0f);
+	else
+		count = dwarf_read_addr(p, &fde->address_range);
+
+	p += count;
+
+	if (fde->cie->flags & DWARF_CIE_Z_AUGMENTATION) {
+		unsigned int length;
+		count = dwarf_read_uleb128(p, &length);
+		p += count + length;
+	}
+
+	/* Call frame instructions. */
+	fde->instructions = p;
+	fde->end = end;
+
+	/* Add to list. */
+	spin_lock_irqsave(&dwarf_fde_lock, flags);
+
+	while (*rb_node) {
+		struct dwarf_fde *fde_tmp;
+		unsigned long tmp_start, tmp_end;
+		unsigned long start, end;
+
+		fde_tmp = rb_entry(*rb_node, struct dwarf_fde, node);
+
+		start = fde->initial_location;
+		end = fde->initial_location + fde->address_range;
+
+		tmp_start = fde_tmp->initial_location;
+		tmp_end = fde_tmp->initial_location + fde_tmp->address_range;
+
+		parent = *rb_node;
+
+		if (start < tmp_start)
+			rb_node = &parent->rb_left;
+		else if (start >= tmp_end)
+			rb_node = &parent->rb_right;
+		else
+			WARN_ON(1);
+	}
+
+	rb_link_node(&fde->node, parent, rb_node);
+	rb_insert_color(&fde->node, &fde_root);
+
+#ifdef CONFIG_MODULES
+	if (mod != NULL)
+		list_add_tail(&fde->link, &mod->arch.fde_list);
+#endif
+
+	spin_unlock_irqrestore(&dwarf_fde_lock, flags);
+
+	return 0;
+}
+
+static void dwarf_unwinder_dump(struct task_struct *task,
+				struct pt_regs *regs,
+				unsigned long *sp,
+				const struct stacktrace_ops *ops,
+				void *data)
+{
+	struct dwarf_frame *frame, *_frame;
+	unsigned long return_addr;
+
+	_frame = NULL;
+	return_addr = 0;
+
+	while (1) {
+		frame = dwarf_unwind_stack(return_addr, _frame);
+
+		if (_frame)
+			dwarf_free_frame(_frame);
+
+		_frame = frame;
+
+		if (!frame || !frame->return_addr)
+			break;
+
+		return_addr = frame->return_addr;
+		ops->address(data, return_addr, 1);
+	}
+
+	if (frame)
+		dwarf_free_frame(frame);
+}
+
+static struct unwinder dwarf_unwinder = {
+	.name = "dwarf-unwinder",
+	.dump = dwarf_unwinder_dump,
+	.rating = 150,
+};
+
+static void __init dwarf_unwinder_cleanup(void)
+{
+	struct dwarf_fde *fde, *next_fde;
+	struct dwarf_cie *cie, *next_cie;
+
+	/*
+	 * Deallocate all the memory allocated for the DWARF unwinder.
+	 * Traverse all the FDE/CIE lists and remove and free all the
+	 * memory associated with those data structures.
+	 */
+	rbtree_postorder_for_each_entry_safe(fde, next_fde, &fde_root, node)
+		kfree(fde);
+
+	rbtree_postorder_for_each_entry_safe(cie, next_cie, &cie_root, node)
+		kfree(cie);
+
+	mempool_destroy(dwarf_reg_pool);
+	mempool_destroy(dwarf_frame_pool);
+	kmem_cache_destroy(dwarf_reg_cachep);
+	kmem_cache_destroy(dwarf_frame_cachep);
+}
+
+/**
+ *	dwarf_parse_section - parse DWARF section
+ *	@eh_frame_start: start address of the .eh_frame section
+ *	@eh_frame_end: end address of the .eh_frame section
+ *	@mod: the kernel module containing the .eh_frame section
+ *
+ *	Parse the information in a .eh_frame section.
+ */
+static int dwarf_parse_section(char *eh_frame_start, char *eh_frame_end,
+			       struct module *mod)
+{
+	u32 entry_type;
+	void *p, *entry;
+	int count, err = 0;
+	unsigned long len = 0;
+	unsigned int c_entries, f_entries;
+	unsigned char *end;
+
+	c_entries = 0;
+	f_entries = 0;
+	entry = eh_frame_start;
+
+	while ((char *)entry < eh_frame_end) {
+		p = entry;
+
+		count = dwarf_entry_len(p, &len);
+		if (count == 0) {
+			/*
+			 * We read a bogus length field value. There is
+			 * nothing we can do here apart from disabling
+			 * the DWARF unwinder. We can't even skip this
+			 * entry and move to the next one because 'len'
+			 * tells us where our next entry is.
+			 */
+			err = -EINVAL;
+			goto out;
+		} else
+			p += count;
+
+		/* initial length does not include itself */
+		end = p + len;
+
+		entry_type = get_unaligned((u32 *)p);
+		p += 4;
+
+		if (entry_type == DW_EH_FRAME_CIE) {
+			err = dwarf_parse_cie(entry, p, len, end, mod);
+			if (err < 0)
+				goto out;
+			else
+				c_entries++;
+		} else {
+			err = dwarf_parse_fde(entry, entry_type, p, len,
+					      end, mod);
+			if (err < 0)
+				goto out;
+			else
+				f_entries++;
+		}
+
+		entry = (char *)entry + len + 4;
+	}
+
+	printk(KERN_INFO "DWARF unwinder initialised: read %u CIEs, %u FDEs\n",
+	       c_entries, f_entries);
+
+	return 0;
+
+out:
+	return err;
+}
+
+#ifdef CONFIG_MODULES
+int module_dwarf_finalize(const Elf_Ehdr *hdr, const Elf_Shdr *sechdrs,
+			  struct module *me)
+{
+	unsigned int i, err;
+	unsigned long start, end;
+	char *secstrings = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset;
+
+	start = end = 0;
+
+	for (i = 1; i < hdr->e_shnum; i++) {
+		/* Alloc bit cleared means "ignore it." */
+		if ((sechdrs[i].sh_flags & SHF_ALLOC)
+		    && !strcmp(secstrings+sechdrs[i].sh_name, ".eh_frame")) {
+			start = sechdrs[i].sh_addr;
+			end = start + sechdrs[i].sh_size;
+			break;
+		}
+	}
+
+	/* Did we find the .eh_frame section? */
+	if (i != hdr->e_shnum) {
+		INIT_LIST_HEAD(&me->arch.cie_list);
+		INIT_LIST_HEAD(&me->arch.fde_list);
+		err = dwarf_parse_section((char *)start, (char *)end, me);
+		if (err) {
+			printk(KERN_WARNING "%s: failed to parse DWARF info\n",
+			       me->name);
+			return err;
+		}
+	}
+
+	return 0;
+}
+
+/**
+ *	module_dwarf_cleanup - remove FDE/CIEs associated with @mod
+ *	@mod: the module that is being unloaded
+ *
+ *	Remove any FDEs and CIEs from the global lists that came from
+ *	@mod's .eh_frame section because @mod is being unloaded.
+ */
+void module_dwarf_cleanup(struct module *mod)
+{
+	struct dwarf_fde *fde, *ftmp;
+	struct dwarf_cie *cie, *ctmp;
+	unsigned long flags;
+
+	spin_lock_irqsave(&dwarf_cie_lock, flags);
+
+	list_for_each_entry_safe(cie, ctmp, &mod->arch.cie_list, link) {
+		list_del(&cie->link);
+		rb_erase(&cie->node, &cie_root);
+		kfree(cie);
+	}
+
+	spin_unlock_irqrestore(&dwarf_cie_lock, flags);
+
+	spin_lock_irqsave(&dwarf_fde_lock, flags);
+
+	list_for_each_entry_safe(fde, ftmp, &mod->arch.fde_list, link) {
+		list_del(&fde->link);
+		rb_erase(&fde->node, &fde_root);
+		kfree(fde);
+	}
+
+	spin_unlock_irqrestore(&dwarf_fde_lock, flags);
+}
+#endif /* CONFIG_MODULES */
+
+/**
+ *	dwarf_unwinder_init - initialise the dwarf unwinder
+ *
+ *	Build the data structures describing the .dwarf_frame section to
+ *	make it easier to lookup CIE and FDE entries. Because the
+ *	.eh_frame section is packed as tightly as possible it is not
+ *	easy to lookup the FDE for a given PC, so we build a list of FDE
+ *	and CIE entries that make it easier.
+ */
+static int __init dwarf_unwinder_init(void)
+{
+	int err = -ENOMEM;
+
+	dwarf_frame_cachep = kmem_cache_create("dwarf_frames",
+			sizeof(struct dwarf_frame), 0,
+			SLAB_PANIC | SLAB_HWCACHE_ALIGN, NULL);
+
+	dwarf_reg_cachep = kmem_cache_create("dwarf_regs",
+			sizeof(struct dwarf_reg), 0,
+			SLAB_PANIC | SLAB_HWCACHE_ALIGN, NULL);
+
+	dwarf_frame_pool = mempool_create_slab_pool(DWARF_FRAME_MIN_REQ,
+						    dwarf_frame_cachep);
+	if (!dwarf_frame_pool)
+		goto out;
+
+	dwarf_reg_pool = mempool_create_slab_pool(DWARF_REG_MIN_REQ,
+						  dwarf_reg_cachep);
+	if (!dwarf_reg_pool)
+		goto out;
+
+	err = dwarf_parse_section(__start_eh_frame, __stop_eh_frame, NULL);
+	if (err)
+		goto out;
+
+	err = unwinder_register(&dwarf_unwinder);
+	if (err)
+		goto out;
+
+	dwarf_unwinder_ready = 1;
+
+	return 0;
+
+out:
+	printk(KERN_ERR "Failed to initialise DWARF unwinder: %d\n", err);
+	dwarf_unwinder_cleanup();
+	return err;
+}
+early_initcall(dwarf_unwinder_init);