v4.19.13 snapshot.
diff --git a/arch/powerpc/lib/sstep.c b/arch/powerpc/lib/sstep.c
new file mode 100644
index 0000000..d81568f
--- /dev/null
+++ b/arch/powerpc/lib/sstep.c
@@ -0,0 +1,3100 @@
+/*
+ * Single-step support.
+ *
+ * Copyright (C) 2004 Paul Mackerras <paulus@au.ibm.com>, IBM
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version
+ * 2 of the License, or (at your option) any later version.
+ */
+#include <linux/kernel.h>
+#include <linux/kprobes.h>
+#include <linux/ptrace.h>
+#include <linux/prefetch.h>
+#include <asm/sstep.h>
+#include <asm/processor.h>
+#include <linux/uaccess.h>
+#include <asm/cpu_has_feature.h>
+#include <asm/cputable.h>
+
+extern char system_call_common[];
+
+#ifdef CONFIG_PPC64
+/* Bits in SRR1 that are copied from MSR */
+#define MSR_MASK	0xffffffff87c0ffffUL
+#else
+#define MSR_MASK	0x87c0ffff
+#endif
+
+/* Bits in XER */
+#define XER_SO		0x80000000U
+#define XER_OV		0x40000000U
+#define XER_CA		0x20000000U
+#define XER_OV32	0x00080000U
+#define XER_CA32	0x00040000U
+
+#ifdef CONFIG_PPC_FPU
+/*
+ * Functions in ldstfp.S
+ */
+extern void get_fpr(int rn, double *p);
+extern void put_fpr(int rn, const double *p);
+extern void get_vr(int rn, __vector128 *p);
+extern void put_vr(int rn, __vector128 *p);
+extern void load_vsrn(int vsr, const void *p);
+extern void store_vsrn(int vsr, void *p);
+extern void conv_sp_to_dp(const float *sp, double *dp);
+extern void conv_dp_to_sp(const double *dp, float *sp);
+#endif
+
+#ifdef __powerpc64__
+/*
+ * Functions in quad.S
+ */
+extern int do_lq(unsigned long ea, unsigned long *regs);
+extern int do_stq(unsigned long ea, unsigned long val0, unsigned long val1);
+extern int do_lqarx(unsigned long ea, unsigned long *regs);
+extern int do_stqcx(unsigned long ea, unsigned long val0, unsigned long val1,
+		    unsigned int *crp);
+#endif
+
+#ifdef __LITTLE_ENDIAN__
+#define IS_LE	1
+#define IS_BE	0
+#else
+#define IS_LE	0
+#define IS_BE	1
+#endif
+
+/*
+ * Emulate the truncation of 64 bit values in 32-bit mode.
+ */
+static nokprobe_inline unsigned long truncate_if_32bit(unsigned long msr,
+							unsigned long val)
+{
+#ifdef __powerpc64__
+	if ((msr & MSR_64BIT) == 0)
+		val &= 0xffffffffUL;
+#endif
+	return val;
+}
+
+/*
+ * Determine whether a conditional branch instruction would branch.
+ */
+static nokprobe_inline int branch_taken(unsigned int instr,
+					const struct pt_regs *regs,
+					struct instruction_op *op)
+{
+	unsigned int bo = (instr >> 21) & 0x1f;
+	unsigned int bi;
+
+	if ((bo & 4) == 0) {
+		/* decrement counter */
+		op->type |= DECCTR;
+		if (((bo >> 1) & 1) ^ (regs->ctr == 1))
+			return 0;
+	}
+	if ((bo & 0x10) == 0) {
+		/* check bit from CR */
+		bi = (instr >> 16) & 0x1f;
+		if (((regs->ccr >> (31 - bi)) & 1) != ((bo >> 3) & 1))
+			return 0;
+	}
+	return 1;
+}
+
+static nokprobe_inline long address_ok(struct pt_regs *regs,
+				       unsigned long ea, int nb)
+{
+	if (!user_mode(regs))
+		return 1;
+	if (__access_ok(ea, nb, USER_DS))
+		return 1;
+	if (__access_ok(ea, 1, USER_DS))
+		/* Access overlaps the end of the user region */
+		regs->dar = USER_DS.seg;
+	else
+		regs->dar = ea;
+	return 0;
+}
+
+/*
+ * Calculate effective address for a D-form instruction
+ */
+static nokprobe_inline unsigned long dform_ea(unsigned int instr,
+					      const struct pt_regs *regs)
+{
+	int ra;
+	unsigned long ea;
+
+	ra = (instr >> 16) & 0x1f;
+	ea = (signed short) instr;		/* sign-extend */
+	if (ra)
+		ea += regs->gpr[ra];
+
+	return ea;
+}
+
+#ifdef __powerpc64__
+/*
+ * Calculate effective address for a DS-form instruction
+ */
+static nokprobe_inline unsigned long dsform_ea(unsigned int instr,
+					       const struct pt_regs *regs)
+{
+	int ra;
+	unsigned long ea;
+
+	ra = (instr >> 16) & 0x1f;
+	ea = (signed short) (instr & ~3);	/* sign-extend */
+	if (ra)
+		ea += regs->gpr[ra];
+
+	return ea;
+}
+
+/*
+ * Calculate effective address for a DQ-form instruction
+ */
+static nokprobe_inline unsigned long dqform_ea(unsigned int instr,
+					       const struct pt_regs *regs)
+{
+	int ra;
+	unsigned long ea;
+
+	ra = (instr >> 16) & 0x1f;
+	ea = (signed short) (instr & ~0xf);	/* sign-extend */
+	if (ra)
+		ea += regs->gpr[ra];
+
+	return ea;
+}
+#endif /* __powerpc64 */
+
+/*
+ * Calculate effective address for an X-form instruction
+ */
+static nokprobe_inline unsigned long xform_ea(unsigned int instr,
+					      const struct pt_regs *regs)
+{
+	int ra, rb;
+	unsigned long ea;
+
+	ra = (instr >> 16) & 0x1f;
+	rb = (instr >> 11) & 0x1f;
+	ea = regs->gpr[rb];
+	if (ra)
+		ea += regs->gpr[ra];
+
+	return ea;
+}
+
+/*
+ * Return the largest power of 2, not greater than sizeof(unsigned long),
+ * such that x is a multiple of it.
+ */
+static nokprobe_inline unsigned long max_align(unsigned long x)
+{
+	x |= sizeof(unsigned long);
+	return x & -x;		/* isolates rightmost bit */
+}
+
+static nokprobe_inline unsigned long byterev_2(unsigned long x)
+{
+	return ((x >> 8) & 0xff) | ((x & 0xff) << 8);
+}
+
+static nokprobe_inline unsigned long byterev_4(unsigned long x)
+{
+	return ((x >> 24) & 0xff) | ((x >> 8) & 0xff00) |
+		((x & 0xff00) << 8) | ((x & 0xff) << 24);
+}
+
+#ifdef __powerpc64__
+static nokprobe_inline unsigned long byterev_8(unsigned long x)
+{
+	return (byterev_4(x) << 32) | byterev_4(x >> 32);
+}
+#endif
+
+static nokprobe_inline void do_byte_reverse(void *ptr, int nb)
+{
+	switch (nb) {
+	case 2:
+		*(u16 *)ptr = byterev_2(*(u16 *)ptr);
+		break;
+	case 4:
+		*(u32 *)ptr = byterev_4(*(u32 *)ptr);
+		break;
+#ifdef __powerpc64__
+	case 8:
+		*(unsigned long *)ptr = byterev_8(*(unsigned long *)ptr);
+		break;
+	case 16: {
+		unsigned long *up = (unsigned long *)ptr;
+		unsigned long tmp;
+		tmp = byterev_8(up[0]);
+		up[0] = byterev_8(up[1]);
+		up[1] = tmp;
+		break;
+	}
+#endif
+	default:
+		WARN_ON_ONCE(1);
+	}
+}
+
+static nokprobe_inline int read_mem_aligned(unsigned long *dest,
+					    unsigned long ea, int nb,
+					    struct pt_regs *regs)
+{
+	int err = 0;
+	unsigned long x = 0;
+
+	switch (nb) {
+	case 1:
+		err = __get_user(x, (unsigned char __user *) ea);
+		break;
+	case 2:
+		err = __get_user(x, (unsigned short __user *) ea);
+		break;
+	case 4:
+		err = __get_user(x, (unsigned int __user *) ea);
+		break;
+#ifdef __powerpc64__
+	case 8:
+		err = __get_user(x, (unsigned long __user *) ea);
+		break;
+#endif
+	}
+	if (!err)
+		*dest = x;
+	else
+		regs->dar = ea;
+	return err;
+}
+
+/*
+ * Copy from userspace to a buffer, using the largest possible
+ * aligned accesses, up to sizeof(long).
+ */
+static nokprobe_inline int copy_mem_in(u8 *dest, unsigned long ea, int nb,
+				       struct pt_regs *regs)
+{
+	int err = 0;
+	int c;
+
+	for (; nb > 0; nb -= c) {
+		c = max_align(ea);
+		if (c > nb)
+			c = max_align(nb);
+		switch (c) {
+		case 1:
+			err = __get_user(*dest, (unsigned char __user *) ea);
+			break;
+		case 2:
+			err = __get_user(*(u16 *)dest,
+					 (unsigned short __user *) ea);
+			break;
+		case 4:
+			err = __get_user(*(u32 *)dest,
+					 (unsigned int __user *) ea);
+			break;
+#ifdef __powerpc64__
+		case 8:
+			err = __get_user(*(unsigned long *)dest,
+					 (unsigned long __user *) ea);
+			break;
+#endif
+		}
+		if (err) {
+			regs->dar = ea;
+			return err;
+		}
+		dest += c;
+		ea += c;
+	}
+	return 0;
+}
+
+static nokprobe_inline int read_mem_unaligned(unsigned long *dest,
+					      unsigned long ea, int nb,
+					      struct pt_regs *regs)
+{
+	union {
+		unsigned long ul;
+		u8 b[sizeof(unsigned long)];
+	} u;
+	int i;
+	int err;
+
+	u.ul = 0;
+	i = IS_BE ? sizeof(unsigned long) - nb : 0;
+	err = copy_mem_in(&u.b[i], ea, nb, regs);
+	if (!err)
+		*dest = u.ul;
+	return err;
+}
+
+/*
+ * Read memory at address ea for nb bytes, return 0 for success
+ * or -EFAULT if an error occurred.  N.B. nb must be 1, 2, 4 or 8.
+ * If nb < sizeof(long), the result is right-justified on BE systems.
+ */
+static int read_mem(unsigned long *dest, unsigned long ea, int nb,
+			      struct pt_regs *regs)
+{
+	if (!address_ok(regs, ea, nb))
+		return -EFAULT;
+	if ((ea & (nb - 1)) == 0)
+		return read_mem_aligned(dest, ea, nb, regs);
+	return read_mem_unaligned(dest, ea, nb, regs);
+}
+NOKPROBE_SYMBOL(read_mem);
+
+static nokprobe_inline int write_mem_aligned(unsigned long val,
+					     unsigned long ea, int nb,
+					     struct pt_regs *regs)
+{
+	int err = 0;
+
+	switch (nb) {
+	case 1:
+		err = __put_user(val, (unsigned char __user *) ea);
+		break;
+	case 2:
+		err = __put_user(val, (unsigned short __user *) ea);
+		break;
+	case 4:
+		err = __put_user(val, (unsigned int __user *) ea);
+		break;
+#ifdef __powerpc64__
+	case 8:
+		err = __put_user(val, (unsigned long __user *) ea);
+		break;
+#endif
+	}
+	if (err)
+		regs->dar = ea;
+	return err;
+}
+
+/*
+ * Copy from a buffer to userspace, using the largest possible
+ * aligned accesses, up to sizeof(long).
+ */
+static nokprobe_inline int copy_mem_out(u8 *dest, unsigned long ea, int nb,
+					struct pt_regs *regs)
+{
+	int err = 0;
+	int c;
+
+	for (; nb > 0; nb -= c) {
+		c = max_align(ea);
+		if (c > nb)
+			c = max_align(nb);
+		switch (c) {
+		case 1:
+			err = __put_user(*dest, (unsigned char __user *) ea);
+			break;
+		case 2:
+			err = __put_user(*(u16 *)dest,
+					 (unsigned short __user *) ea);
+			break;
+		case 4:
+			err = __put_user(*(u32 *)dest,
+					 (unsigned int __user *) ea);
+			break;
+#ifdef __powerpc64__
+		case 8:
+			err = __put_user(*(unsigned long *)dest,
+					 (unsigned long __user *) ea);
+			break;
+#endif
+		}
+		if (err) {
+			regs->dar = ea;
+			return err;
+		}
+		dest += c;
+		ea += c;
+	}
+	return 0;
+}
+
+static nokprobe_inline int write_mem_unaligned(unsigned long val,
+					       unsigned long ea, int nb,
+					       struct pt_regs *regs)
+{
+	union {
+		unsigned long ul;
+		u8 b[sizeof(unsigned long)];
+	} u;
+	int i;
+
+	u.ul = val;
+	i = IS_BE ? sizeof(unsigned long) - nb : 0;
+	return copy_mem_out(&u.b[i], ea, nb, regs);
+}
+
+/*
+ * Write memory at address ea for nb bytes, return 0 for success
+ * or -EFAULT if an error occurred.  N.B. nb must be 1, 2, 4 or 8.
+ */
+static int write_mem(unsigned long val, unsigned long ea, int nb,
+			       struct pt_regs *regs)
+{
+	if (!address_ok(regs, ea, nb))
+		return -EFAULT;
+	if ((ea & (nb - 1)) == 0)
+		return write_mem_aligned(val, ea, nb, regs);
+	return write_mem_unaligned(val, ea, nb, regs);
+}
+NOKPROBE_SYMBOL(write_mem);
+
+#ifdef CONFIG_PPC_FPU
+/*
+ * These access either the real FP register or the image in the
+ * thread_struct, depending on regs->msr & MSR_FP.
+ */
+static int do_fp_load(struct instruction_op *op, unsigned long ea,
+		      struct pt_regs *regs, bool cross_endian)
+{
+	int err, rn, nb;
+	union {
+		int i;
+		unsigned int u;
+		float f;
+		double d[2];
+		unsigned long l[2];
+		u8 b[2 * sizeof(double)];
+	} u;
+
+	nb = GETSIZE(op->type);
+	if (!address_ok(regs, ea, nb))
+		return -EFAULT;
+	rn = op->reg;
+	err = copy_mem_in(u.b, ea, nb, regs);
+	if (err)
+		return err;
+	if (unlikely(cross_endian)) {
+		do_byte_reverse(u.b, min(nb, 8));
+		if (nb == 16)
+			do_byte_reverse(&u.b[8], 8);
+	}
+	preempt_disable();
+	if (nb == 4) {
+		if (op->type & FPCONV)
+			conv_sp_to_dp(&u.f, &u.d[0]);
+		else if (op->type & SIGNEXT)
+			u.l[0] = u.i;
+		else
+			u.l[0] = u.u;
+	}
+	if (regs->msr & MSR_FP)
+		put_fpr(rn, &u.d[0]);
+	else
+		current->thread.TS_FPR(rn) = u.l[0];
+	if (nb == 16) {
+		/* lfdp */
+		rn |= 1;
+		if (regs->msr & MSR_FP)
+			put_fpr(rn, &u.d[1]);
+		else
+			current->thread.TS_FPR(rn) = u.l[1];
+	}
+	preempt_enable();
+	return 0;
+}
+NOKPROBE_SYMBOL(do_fp_load);
+
+static int do_fp_store(struct instruction_op *op, unsigned long ea,
+		       struct pt_regs *regs, bool cross_endian)
+{
+	int rn, nb;
+	union {
+		unsigned int u;
+		float f;
+		double d[2];
+		unsigned long l[2];
+		u8 b[2 * sizeof(double)];
+	} u;
+
+	nb = GETSIZE(op->type);
+	if (!address_ok(regs, ea, nb))
+		return -EFAULT;
+	rn = op->reg;
+	preempt_disable();
+	if (regs->msr & MSR_FP)
+		get_fpr(rn, &u.d[0]);
+	else
+		u.l[0] = current->thread.TS_FPR(rn);
+	if (nb == 4) {
+		if (op->type & FPCONV)
+			conv_dp_to_sp(&u.d[0], &u.f);
+		else
+			u.u = u.l[0];
+	}
+	if (nb == 16) {
+		rn |= 1;
+		if (regs->msr & MSR_FP)
+			get_fpr(rn, &u.d[1]);
+		else
+			u.l[1] = current->thread.TS_FPR(rn);
+	}
+	preempt_enable();
+	if (unlikely(cross_endian)) {
+		do_byte_reverse(u.b, min(nb, 8));
+		if (nb == 16)
+			do_byte_reverse(&u.b[8], 8);
+	}
+	return copy_mem_out(u.b, ea, nb, regs);
+}
+NOKPROBE_SYMBOL(do_fp_store);
+#endif
+
+#ifdef CONFIG_ALTIVEC
+/* For Altivec/VMX, no need to worry about alignment */
+static nokprobe_inline int do_vec_load(int rn, unsigned long ea,
+				       int size, struct pt_regs *regs,
+				       bool cross_endian)
+{
+	int err;
+	union {
+		__vector128 v;
+		u8 b[sizeof(__vector128)];
+	} u = {};
+
+	if (!address_ok(regs, ea & ~0xfUL, 16))
+		return -EFAULT;
+	/* align to multiple of size */
+	ea &= ~(size - 1);
+	err = copy_mem_in(&u.b[ea & 0xf], ea, size, regs);
+	if (err)
+		return err;
+	if (unlikely(cross_endian))
+		do_byte_reverse(&u.b[ea & 0xf], size);
+	preempt_disable();
+	if (regs->msr & MSR_VEC)
+		put_vr(rn, &u.v);
+	else
+		current->thread.vr_state.vr[rn] = u.v;
+	preempt_enable();
+	return 0;
+}
+
+static nokprobe_inline int do_vec_store(int rn, unsigned long ea,
+					int size, struct pt_regs *regs,
+					bool cross_endian)
+{
+	union {
+		__vector128 v;
+		u8 b[sizeof(__vector128)];
+	} u;
+
+	if (!address_ok(regs, ea & ~0xfUL, 16))
+		return -EFAULT;
+	/* align to multiple of size */
+	ea &= ~(size - 1);
+
+	preempt_disable();
+	if (regs->msr & MSR_VEC)
+		get_vr(rn, &u.v);
+	else
+		u.v = current->thread.vr_state.vr[rn];
+	preempt_enable();
+	if (unlikely(cross_endian))
+		do_byte_reverse(&u.b[ea & 0xf], size);
+	return copy_mem_out(&u.b[ea & 0xf], ea, size, regs);
+}
+#endif /* CONFIG_ALTIVEC */
+
+#ifdef __powerpc64__
+static nokprobe_inline int emulate_lq(struct pt_regs *regs, unsigned long ea,
+				      int reg, bool cross_endian)
+{
+	int err;
+
+	if (!address_ok(regs, ea, 16))
+		return -EFAULT;
+	/* if aligned, should be atomic */
+	if ((ea & 0xf) == 0) {
+		err = do_lq(ea, &regs->gpr[reg]);
+	} else {
+		err = read_mem(&regs->gpr[reg + IS_LE], ea, 8, regs);
+		if (!err)
+			err = read_mem(&regs->gpr[reg + IS_BE], ea + 8, 8, regs);
+	}
+	if (!err && unlikely(cross_endian))
+		do_byte_reverse(&regs->gpr[reg], 16);
+	return err;
+}
+
+static nokprobe_inline int emulate_stq(struct pt_regs *regs, unsigned long ea,
+				       int reg, bool cross_endian)
+{
+	int err;
+	unsigned long vals[2];
+
+	if (!address_ok(regs, ea, 16))
+		return -EFAULT;
+	vals[0] = regs->gpr[reg];
+	vals[1] = regs->gpr[reg + 1];
+	if (unlikely(cross_endian))
+		do_byte_reverse(vals, 16);
+
+	/* if aligned, should be atomic */
+	if ((ea & 0xf) == 0)
+		return do_stq(ea, vals[0], vals[1]);
+
+	err = write_mem(vals[IS_LE], ea, 8, regs);
+	if (!err)
+		err = write_mem(vals[IS_BE], ea + 8, 8, regs);
+	return err;
+}
+#endif /* __powerpc64 */
+
+#ifdef CONFIG_VSX
+void emulate_vsx_load(struct instruction_op *op, union vsx_reg *reg,
+		      const void *mem, bool rev)
+{
+	int size, read_size;
+	int i, j;
+	const unsigned int *wp;
+	const unsigned short *hp;
+	const unsigned char *bp;
+
+	size = GETSIZE(op->type);
+	reg->d[0] = reg->d[1] = 0;
+
+	switch (op->element_size) {
+	case 16:
+		/* whole vector; lxv[x] or lxvl[l] */
+		if (size == 0)
+			break;
+		memcpy(reg, mem, size);
+		if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
+			rev = !rev;
+		if (rev)
+			do_byte_reverse(reg, 16);
+		break;
+	case 8:
+		/* scalar loads, lxvd2x, lxvdsx */
+		read_size = (size >= 8) ? 8 : size;
+		i = IS_LE ? 8 : 8 - read_size;
+		memcpy(&reg->b[i], mem, read_size);
+		if (rev)
+			do_byte_reverse(&reg->b[i], 8);
+		if (size < 8) {
+			if (op->type & SIGNEXT) {
+				/* size == 4 is the only case here */
+				reg->d[IS_LE] = (signed int) reg->d[IS_LE];
+			} else if (op->vsx_flags & VSX_FPCONV) {
+				preempt_disable();
+				conv_sp_to_dp(&reg->fp[1 + IS_LE],
+					      &reg->dp[IS_LE]);
+				preempt_enable();
+			}
+		} else {
+			if (size == 16) {
+				unsigned long v = *(unsigned long *)(mem + 8);
+				reg->d[IS_BE] = !rev ? v : byterev_8(v);
+			} else if (op->vsx_flags & VSX_SPLAT)
+				reg->d[IS_BE] = reg->d[IS_LE];
+		}
+		break;
+	case 4:
+		/* lxvw4x, lxvwsx */
+		wp = mem;
+		for (j = 0; j < size / 4; ++j) {
+			i = IS_LE ? 3 - j : j;
+			reg->w[i] = !rev ? *wp++ : byterev_4(*wp++);
+		}
+		if (op->vsx_flags & VSX_SPLAT) {
+			u32 val = reg->w[IS_LE ? 3 : 0];
+			for (; j < 4; ++j) {
+				i = IS_LE ? 3 - j : j;
+				reg->w[i] = val;
+			}
+		}
+		break;
+	case 2:
+		/* lxvh8x */
+		hp = mem;
+		for (j = 0; j < size / 2; ++j) {
+			i = IS_LE ? 7 - j : j;
+			reg->h[i] = !rev ? *hp++ : byterev_2(*hp++);
+		}
+		break;
+	case 1:
+		/* lxvb16x */
+		bp = mem;
+		for (j = 0; j < size; ++j) {
+			i = IS_LE ? 15 - j : j;
+			reg->b[i] = *bp++;
+		}
+		break;
+	}
+}
+EXPORT_SYMBOL_GPL(emulate_vsx_load);
+NOKPROBE_SYMBOL(emulate_vsx_load);
+
+void emulate_vsx_store(struct instruction_op *op, const union vsx_reg *reg,
+		       void *mem, bool rev)
+{
+	int size, write_size;
+	int i, j;
+	union vsx_reg buf;
+	unsigned int *wp;
+	unsigned short *hp;
+	unsigned char *bp;
+
+	size = GETSIZE(op->type);
+
+	switch (op->element_size) {
+	case 16:
+		/* stxv, stxvx, stxvl, stxvll */
+		if (size == 0)
+			break;
+		if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
+			rev = !rev;
+		if (rev) {
+			/* reverse 16 bytes */
+			buf.d[0] = byterev_8(reg->d[1]);
+			buf.d[1] = byterev_8(reg->d[0]);
+			reg = &buf;
+		}
+		memcpy(mem, reg, size);
+		break;
+	case 8:
+		/* scalar stores, stxvd2x */
+		write_size = (size >= 8) ? 8 : size;
+		i = IS_LE ? 8 : 8 - write_size;
+		if (size < 8 && op->vsx_flags & VSX_FPCONV) {
+			buf.d[0] = buf.d[1] = 0;
+			preempt_disable();
+			conv_dp_to_sp(&reg->dp[IS_LE], &buf.fp[1 + IS_LE]);
+			preempt_enable();
+			reg = &buf;
+		}
+		memcpy(mem, &reg->b[i], write_size);
+		if (size == 16)
+			memcpy(mem + 8, &reg->d[IS_BE], 8);
+		if (unlikely(rev)) {
+			do_byte_reverse(mem, write_size);
+			if (size == 16)
+				do_byte_reverse(mem + 8, 8);
+		}
+		break;
+	case 4:
+		/* stxvw4x */
+		wp = mem;
+		for (j = 0; j < size / 4; ++j) {
+			i = IS_LE ? 3 - j : j;
+			*wp++ = !rev ? reg->w[i] : byterev_4(reg->w[i]);
+		}
+		break;
+	case 2:
+		/* stxvh8x */
+		hp = mem;
+		for (j = 0; j < size / 2; ++j) {
+			i = IS_LE ? 7 - j : j;
+			*hp++ = !rev ? reg->h[i] : byterev_2(reg->h[i]);
+		}
+		break;
+	case 1:
+		/* stvxb16x */
+		bp = mem;
+		for (j = 0; j < size; ++j) {
+			i = IS_LE ? 15 - j : j;
+			*bp++ = reg->b[i];
+		}
+		break;
+	}
+}
+EXPORT_SYMBOL_GPL(emulate_vsx_store);
+NOKPROBE_SYMBOL(emulate_vsx_store);
+
+static nokprobe_inline int do_vsx_load(struct instruction_op *op,
+				       unsigned long ea, struct pt_regs *regs,
+				       bool cross_endian)
+{
+	int reg = op->reg;
+	u8 mem[16];
+	union vsx_reg buf;
+	int size = GETSIZE(op->type);
+
+	if (!address_ok(regs, ea, size) || copy_mem_in(mem, ea, size, regs))
+		return -EFAULT;
+
+	emulate_vsx_load(op, &buf, mem, cross_endian);
+	preempt_disable();
+	if (reg < 32) {
+		/* FP regs + extensions */
+		if (regs->msr & MSR_FP) {
+			load_vsrn(reg, &buf);
+		} else {
+			current->thread.fp_state.fpr[reg][0] = buf.d[0];
+			current->thread.fp_state.fpr[reg][1] = buf.d[1];
+		}
+	} else {
+		if (regs->msr & MSR_VEC)
+			load_vsrn(reg, &buf);
+		else
+			current->thread.vr_state.vr[reg - 32] = buf.v;
+	}
+	preempt_enable();
+	return 0;
+}
+
+static nokprobe_inline int do_vsx_store(struct instruction_op *op,
+					unsigned long ea, struct pt_regs *regs,
+					bool cross_endian)
+{
+	int reg = op->reg;
+	u8 mem[16];
+	union vsx_reg buf;
+	int size = GETSIZE(op->type);
+
+	if (!address_ok(regs, ea, size))
+		return -EFAULT;
+
+	preempt_disable();
+	if (reg < 32) {
+		/* FP regs + extensions */
+		if (regs->msr & MSR_FP) {
+			store_vsrn(reg, &buf);
+		} else {
+			buf.d[0] = current->thread.fp_state.fpr[reg][0];
+			buf.d[1] = current->thread.fp_state.fpr[reg][1];
+		}
+	} else {
+		if (regs->msr & MSR_VEC)
+			store_vsrn(reg, &buf);
+		else
+			buf.v = current->thread.vr_state.vr[reg - 32];
+	}
+	preempt_enable();
+	emulate_vsx_store(op, &buf, mem, cross_endian);
+	return  copy_mem_out(mem, ea, size, regs);
+}
+#endif /* CONFIG_VSX */
+
+int emulate_dcbz(unsigned long ea, struct pt_regs *regs)
+{
+	int err;
+	unsigned long i, size;
+
+#ifdef __powerpc64__
+	size = ppc64_caches.l1d.block_size;
+	if (!(regs->msr & MSR_64BIT))
+		ea &= 0xffffffffUL;
+#else
+	size = L1_CACHE_BYTES;
+#endif
+	ea &= ~(size - 1);
+	if (!address_ok(regs, ea, size))
+		return -EFAULT;
+	for (i = 0; i < size; i += sizeof(long)) {
+		err = __put_user(0, (unsigned long __user *) (ea + i));
+		if (err) {
+			regs->dar = ea;
+			return err;
+		}
+	}
+	return 0;
+}
+NOKPROBE_SYMBOL(emulate_dcbz);
+
+#define __put_user_asmx(x, addr, err, op, cr)		\
+	__asm__ __volatile__(				\
+		"1:	" op " %2,0,%3\n"		\
+		"	mfcr	%1\n"			\
+		"2:\n"					\
+		".section .fixup,\"ax\"\n"		\
+		"3:	li	%0,%4\n"		\
+		"	b	2b\n"			\
+		".previous\n"				\
+		EX_TABLE(1b, 3b)			\
+		: "=r" (err), "=r" (cr)			\
+		: "r" (x), "r" (addr), "i" (-EFAULT), "0" (err))
+
+#define __get_user_asmx(x, addr, err, op)		\
+	__asm__ __volatile__(				\
+		"1:	"op" %1,0,%2\n"			\
+		"2:\n"					\
+		".section .fixup,\"ax\"\n"		\
+		"3:	li	%0,%3\n"		\
+		"	b	2b\n"			\
+		".previous\n"				\
+		EX_TABLE(1b, 3b)			\
+		: "=r" (err), "=r" (x)			\
+		: "r" (addr), "i" (-EFAULT), "0" (err))
+
+#define __cacheop_user_asmx(addr, err, op)		\
+	__asm__ __volatile__(				\
+		"1:	"op" 0,%1\n"			\
+		"2:\n"					\
+		".section .fixup,\"ax\"\n"		\
+		"3:	li	%0,%3\n"		\
+		"	b	2b\n"			\
+		".previous\n"				\
+		EX_TABLE(1b, 3b)			\
+		: "=r" (err)				\
+		: "r" (addr), "i" (-EFAULT), "0" (err))
+
+static nokprobe_inline void set_cr0(const struct pt_regs *regs,
+				    struct instruction_op *op)
+{
+	long val = op->val;
+
+	op->type |= SETCC;
+	op->ccval = (regs->ccr & 0x0fffffff) | ((regs->xer >> 3) & 0x10000000);
+#ifdef __powerpc64__
+	if (!(regs->msr & MSR_64BIT))
+		val = (int) val;
+#endif
+	if (val < 0)
+		op->ccval |= 0x80000000;
+	else if (val > 0)
+		op->ccval |= 0x40000000;
+	else
+		op->ccval |= 0x20000000;
+}
+
+static nokprobe_inline void set_ca32(struct instruction_op *op, bool val)
+{
+	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
+		if (val)
+			op->xerval |= XER_CA32;
+		else
+			op->xerval &= ~XER_CA32;
+	}
+}
+
+static nokprobe_inline void add_with_carry(const struct pt_regs *regs,
+				     struct instruction_op *op, int rd,
+				     unsigned long val1, unsigned long val2,
+				     unsigned long carry_in)
+{
+	unsigned long val = val1 + val2;
+
+	if (carry_in)
+		++val;
+	op->type = COMPUTE + SETREG + SETXER;
+	op->reg = rd;
+	op->val = val;
+#ifdef __powerpc64__
+	if (!(regs->msr & MSR_64BIT)) {
+		val = (unsigned int) val;
+		val1 = (unsigned int) val1;
+	}
+#endif
+	op->xerval = regs->xer;
+	if (val < val1 || (carry_in && val == val1))
+		op->xerval |= XER_CA;
+	else
+		op->xerval &= ~XER_CA;
+
+	set_ca32(op, (unsigned int)val < (unsigned int)val1 ||
+			(carry_in && (unsigned int)val == (unsigned int)val1));
+}
+
+static nokprobe_inline void do_cmp_signed(const struct pt_regs *regs,
+					  struct instruction_op *op,
+					  long v1, long v2, int crfld)
+{
+	unsigned int crval, shift;
+
+	op->type = COMPUTE + SETCC;
+	crval = (regs->xer >> 31) & 1;		/* get SO bit */
+	if (v1 < v2)
+		crval |= 8;
+	else if (v1 > v2)
+		crval |= 4;
+	else
+		crval |= 2;
+	shift = (7 - crfld) * 4;
+	op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
+}
+
+static nokprobe_inline void do_cmp_unsigned(const struct pt_regs *regs,
+					    struct instruction_op *op,
+					    unsigned long v1,
+					    unsigned long v2, int crfld)
+{
+	unsigned int crval, shift;
+
+	op->type = COMPUTE + SETCC;
+	crval = (regs->xer >> 31) & 1;		/* get SO bit */
+	if (v1 < v2)
+		crval |= 8;
+	else if (v1 > v2)
+		crval |= 4;
+	else
+		crval |= 2;
+	shift = (7 - crfld) * 4;
+	op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
+}
+
+static nokprobe_inline void do_cmpb(const struct pt_regs *regs,
+				    struct instruction_op *op,
+				    unsigned long v1, unsigned long v2)
+{
+	unsigned long long out_val, mask;
+	int i;
+
+	out_val = 0;
+	for (i = 0; i < 8; i++) {
+		mask = 0xffUL << (i * 8);
+		if ((v1 & mask) == (v2 & mask))
+			out_val |= mask;
+	}
+	op->val = out_val;
+}
+
+/*
+ * The size parameter is used to adjust the equivalent popcnt instruction.
+ * popcntb = 8, popcntw = 32, popcntd = 64
+ */
+static nokprobe_inline void do_popcnt(const struct pt_regs *regs,
+				      struct instruction_op *op,
+				      unsigned long v1, int size)
+{
+	unsigned long long out = v1;
+
+	out -= (out >> 1) & 0x5555555555555555ULL;
+	out = (0x3333333333333333ULL & out) +
+	      (0x3333333333333333ULL & (out >> 2));
+	out = (out + (out >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
+
+	if (size == 8) {	/* popcntb */
+		op->val = out;
+		return;
+	}
+	out += out >> 8;
+	out += out >> 16;
+	if (size == 32) {	/* popcntw */
+		op->val = out & 0x0000003f0000003fULL;
+		return;
+	}
+
+	out = (out + (out >> 32)) & 0x7f;
+	op->val = out;	/* popcntd */
+}
+
+#ifdef CONFIG_PPC64
+static nokprobe_inline void do_bpermd(const struct pt_regs *regs,
+				      struct instruction_op *op,
+				      unsigned long v1, unsigned long v2)
+{
+	unsigned char perm, idx;
+	unsigned int i;
+
+	perm = 0;
+	for (i = 0; i < 8; i++) {
+		idx = (v1 >> (i * 8)) & 0xff;
+		if (idx < 64)
+			if (v2 & PPC_BIT(idx))
+				perm |= 1 << i;
+	}
+	op->val = perm;
+}
+#endif /* CONFIG_PPC64 */
+/*
+ * The size parameter adjusts the equivalent prty instruction.
+ * prtyw = 32, prtyd = 64
+ */
+static nokprobe_inline void do_prty(const struct pt_regs *regs,
+				    struct instruction_op *op,
+				    unsigned long v, int size)
+{
+	unsigned long long res = v ^ (v >> 8);
+
+	res ^= res >> 16;
+	if (size == 32) {		/* prtyw */
+		op->val = res & 0x0000000100000001ULL;
+		return;
+	}
+
+	res ^= res >> 32;
+	op->val = res & 1;	/*prtyd */
+}
+
+static nokprobe_inline int trap_compare(long v1, long v2)
+{
+	int ret = 0;
+
+	if (v1 < v2)
+		ret |= 0x10;
+	else if (v1 > v2)
+		ret |= 0x08;
+	else
+		ret |= 0x04;
+	if ((unsigned long)v1 < (unsigned long)v2)
+		ret |= 0x02;
+	else if ((unsigned long)v1 > (unsigned long)v2)
+		ret |= 0x01;
+	return ret;
+}
+
+/*
+ * Elements of 32-bit rotate and mask instructions.
+ */
+#define MASK32(mb, me)	((0xffffffffUL >> (mb)) + \
+			 ((signed long)-0x80000000L >> (me)) + ((me) >= (mb)))
+#ifdef __powerpc64__
+#define MASK64_L(mb)	(~0UL >> (mb))
+#define MASK64_R(me)	((signed long)-0x8000000000000000L >> (me))
+#define MASK64(mb, me)	(MASK64_L(mb) + MASK64_R(me) + ((me) >= (mb)))
+#define DATA32(x)	(((x) & 0xffffffffUL) | (((x) & 0xffffffffUL) << 32))
+#else
+#define DATA32(x)	(x)
+#endif
+#define ROTATE(x, n)	((n) ? (((x) << (n)) | ((x) >> (8 * sizeof(long) - (n)))) : (x))
+
+/*
+ * Decode an instruction, and return information about it in *op
+ * without changing *regs.
+ * Integer arithmetic and logical instructions, branches, and barrier
+ * instructions can be emulated just using the information in *op.
+ *
+ * Return value is 1 if the instruction can be emulated just by
+ * updating *regs with the information in *op, -1 if we need the
+ * GPRs but *regs doesn't contain the full register set, or 0
+ * otherwise.
+ */
+int analyse_instr(struct instruction_op *op, const struct pt_regs *regs,
+		  unsigned int instr)
+{
+	unsigned int opcode, ra, rb, rd, spr, u;
+	unsigned long int imm;
+	unsigned long int val, val2;
+	unsigned int mb, me, sh;
+	long ival;
+
+	op->type = COMPUTE;
+
+	opcode = instr >> 26;
+	switch (opcode) {
+	case 16:	/* bc */
+		op->type = BRANCH;
+		imm = (signed short)(instr & 0xfffc);
+		if ((instr & 2) == 0)
+			imm += regs->nip;
+		op->val = truncate_if_32bit(regs->msr, imm);
+		if (instr & 1)
+			op->type |= SETLK;
+		if (branch_taken(instr, regs, op))
+			op->type |= BRTAKEN;
+		return 1;
+#ifdef CONFIG_PPC64
+	case 17:	/* sc */
+		if ((instr & 0xfe2) == 2)
+			op->type = SYSCALL;
+		else
+			op->type = UNKNOWN;
+		return 0;
+#endif
+	case 18:	/* b */
+		op->type = BRANCH | BRTAKEN;
+		imm = instr & 0x03fffffc;
+		if (imm & 0x02000000)
+			imm -= 0x04000000;
+		if ((instr & 2) == 0)
+			imm += regs->nip;
+		op->val = truncate_if_32bit(regs->msr, imm);
+		if (instr & 1)
+			op->type |= SETLK;
+		return 1;
+	case 19:
+		switch ((instr >> 1) & 0x3ff) {
+		case 0:		/* mcrf */
+			op->type = COMPUTE + SETCC;
+			rd = 7 - ((instr >> 23) & 0x7);
+			ra = 7 - ((instr >> 18) & 0x7);
+			rd *= 4;
+			ra *= 4;
+			val = (regs->ccr >> ra) & 0xf;
+			op->ccval = (regs->ccr & ~(0xfUL << rd)) | (val << rd);
+			return 1;
+
+		case 16:	/* bclr */
+		case 528:	/* bcctr */
+			op->type = BRANCH;
+			imm = (instr & 0x400)? regs->ctr: regs->link;
+			op->val = truncate_if_32bit(regs->msr, imm);
+			if (instr & 1)
+				op->type |= SETLK;
+			if (branch_taken(instr, regs, op))
+				op->type |= BRTAKEN;
+			return 1;
+
+		case 18:	/* rfid, scary */
+			if (regs->msr & MSR_PR)
+				goto priv;
+			op->type = RFI;
+			return 0;
+
+		case 150:	/* isync */
+			op->type = BARRIER | BARRIER_ISYNC;
+			return 1;
+
+		case 33:	/* crnor */
+		case 129:	/* crandc */
+		case 193:	/* crxor */
+		case 225:	/* crnand */
+		case 257:	/* crand */
+		case 289:	/* creqv */
+		case 417:	/* crorc */
+		case 449:	/* cror */
+			op->type = COMPUTE + SETCC;
+			ra = (instr >> 16) & 0x1f;
+			rb = (instr >> 11) & 0x1f;
+			rd = (instr >> 21) & 0x1f;
+			ra = (regs->ccr >> (31 - ra)) & 1;
+			rb = (regs->ccr >> (31 - rb)) & 1;
+			val = (instr >> (6 + ra * 2 + rb)) & 1;
+			op->ccval = (regs->ccr & ~(1UL << (31 - rd))) |
+				(val << (31 - rd));
+			return 1;
+		}
+		break;
+	case 31:
+		switch ((instr >> 1) & 0x3ff) {
+		case 598:	/* sync */
+			op->type = BARRIER + BARRIER_SYNC;
+#ifdef __powerpc64__
+			switch ((instr >> 21) & 3) {
+			case 1:		/* lwsync */
+				op->type = BARRIER + BARRIER_LWSYNC;
+				break;
+			case 2:		/* ptesync */
+				op->type = BARRIER + BARRIER_PTESYNC;
+				break;
+			}
+#endif
+			return 1;
+
+		case 854:	/* eieio */
+			op->type = BARRIER + BARRIER_EIEIO;
+			return 1;
+		}
+		break;
+	}
+
+	/* Following cases refer to regs->gpr[], so we need all regs */
+	if (!FULL_REGS(regs))
+		return -1;
+
+	rd = (instr >> 21) & 0x1f;
+	ra = (instr >> 16) & 0x1f;
+	rb = (instr >> 11) & 0x1f;
+
+	switch (opcode) {
+#ifdef __powerpc64__
+	case 2:		/* tdi */
+		if (rd & trap_compare(regs->gpr[ra], (short) instr))
+			goto trap;
+		return 1;
+#endif
+	case 3:		/* twi */
+		if (rd & trap_compare((int)regs->gpr[ra], (short) instr))
+			goto trap;
+		return 1;
+
+	case 7:		/* mulli */
+		op->val = regs->gpr[ra] * (short) instr;
+		goto compute_done;
+
+	case 8:		/* subfic */
+		imm = (short) instr;
+		add_with_carry(regs, op, rd, ~regs->gpr[ra], imm, 1);
+		return 1;
+
+	case 10:	/* cmpli */
+		imm = (unsigned short) instr;
+		val = regs->gpr[ra];
+#ifdef __powerpc64__
+		if ((rd & 1) == 0)
+			val = (unsigned int) val;
+#endif
+		do_cmp_unsigned(regs, op, val, imm, rd >> 2);
+		return 1;
+
+	case 11:	/* cmpi */
+		imm = (short) instr;
+		val = regs->gpr[ra];
+#ifdef __powerpc64__
+		if ((rd & 1) == 0)
+			val = (int) val;
+#endif
+		do_cmp_signed(regs, op, val, imm, rd >> 2);
+		return 1;
+
+	case 12:	/* addic */
+		imm = (short) instr;
+		add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
+		return 1;
+
+	case 13:	/* addic. */
+		imm = (short) instr;
+		add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
+		set_cr0(regs, op);
+		return 1;
+
+	case 14:	/* addi */
+		imm = (short) instr;
+		if (ra)
+			imm += regs->gpr[ra];
+		op->val = imm;
+		goto compute_done;
+
+	case 15:	/* addis */
+		imm = ((short) instr) << 16;
+		if (ra)
+			imm += regs->gpr[ra];
+		op->val = imm;
+		goto compute_done;
+
+	case 19:
+		if (((instr >> 1) & 0x1f) == 2) {
+			/* addpcis */
+			imm = (short) (instr & 0xffc1);	/* d0 + d2 fields */
+			imm |= (instr >> 15) & 0x3e;	/* d1 field */
+			op->val = regs->nip + (imm << 16) + 4;
+			goto compute_done;
+		}
+		op->type = UNKNOWN;
+		return 0;
+
+	case 20:	/* rlwimi */
+		mb = (instr >> 6) & 0x1f;
+		me = (instr >> 1) & 0x1f;
+		val = DATA32(regs->gpr[rd]);
+		imm = MASK32(mb, me);
+		op->val = (regs->gpr[ra] & ~imm) | (ROTATE(val, rb) & imm);
+		goto logical_done;
+
+	case 21:	/* rlwinm */
+		mb = (instr >> 6) & 0x1f;
+		me = (instr >> 1) & 0x1f;
+		val = DATA32(regs->gpr[rd]);
+		op->val = ROTATE(val, rb) & MASK32(mb, me);
+		goto logical_done;
+
+	case 23:	/* rlwnm */
+		mb = (instr >> 6) & 0x1f;
+		me = (instr >> 1) & 0x1f;
+		rb = regs->gpr[rb] & 0x1f;
+		val = DATA32(regs->gpr[rd]);
+		op->val = ROTATE(val, rb) & MASK32(mb, me);
+		goto logical_done;
+
+	case 24:	/* ori */
+		op->val = regs->gpr[rd] | (unsigned short) instr;
+		goto logical_done_nocc;
+
+	case 25:	/* oris */
+		imm = (unsigned short) instr;
+		op->val = regs->gpr[rd] | (imm << 16);
+		goto logical_done_nocc;
+
+	case 26:	/* xori */
+		op->val = regs->gpr[rd] ^ (unsigned short) instr;
+		goto logical_done_nocc;
+
+	case 27:	/* xoris */
+		imm = (unsigned short) instr;
+		op->val = regs->gpr[rd] ^ (imm << 16);
+		goto logical_done_nocc;
+
+	case 28:	/* andi. */
+		op->val = regs->gpr[rd] & (unsigned short) instr;
+		set_cr0(regs, op);
+		goto logical_done_nocc;
+
+	case 29:	/* andis. */
+		imm = (unsigned short) instr;
+		op->val = regs->gpr[rd] & (imm << 16);
+		set_cr0(regs, op);
+		goto logical_done_nocc;
+
+#ifdef __powerpc64__
+	case 30:	/* rld* */
+		mb = ((instr >> 6) & 0x1f) | (instr & 0x20);
+		val = regs->gpr[rd];
+		if ((instr & 0x10) == 0) {
+			sh = rb | ((instr & 2) << 4);
+			val = ROTATE(val, sh);
+			switch ((instr >> 2) & 3) {
+			case 0:		/* rldicl */
+				val &= MASK64_L(mb);
+				break;
+			case 1:		/* rldicr */
+				val &= MASK64_R(mb);
+				break;
+			case 2:		/* rldic */
+				val &= MASK64(mb, 63 - sh);
+				break;
+			case 3:		/* rldimi */
+				imm = MASK64(mb, 63 - sh);
+				val = (regs->gpr[ra] & ~imm) |
+					(val & imm);
+			}
+			op->val = val;
+			goto logical_done;
+		} else {
+			sh = regs->gpr[rb] & 0x3f;
+			val = ROTATE(val, sh);
+			switch ((instr >> 1) & 7) {
+			case 0:		/* rldcl */
+				op->val = val & MASK64_L(mb);
+				goto logical_done;
+			case 1:		/* rldcr */
+				op->val = val & MASK64_R(mb);
+				goto logical_done;
+			}
+		}
+#endif
+		op->type = UNKNOWN;	/* illegal instruction */
+		return 0;
+
+	case 31:
+		/* isel occupies 32 minor opcodes */
+		if (((instr >> 1) & 0x1f) == 15) {
+			mb = (instr >> 6) & 0x1f; /* bc field */
+			val = (regs->ccr >> (31 - mb)) & 1;
+			val2 = (ra) ? regs->gpr[ra] : 0;
+
+			op->val = (val) ? val2 : regs->gpr[rb];
+			goto compute_done;
+		}
+
+		switch ((instr >> 1) & 0x3ff) {
+		case 4:		/* tw */
+			if (rd == 0x1f ||
+			    (rd & trap_compare((int)regs->gpr[ra],
+					       (int)regs->gpr[rb])))
+				goto trap;
+			return 1;
+#ifdef __powerpc64__
+		case 68:	/* td */
+			if (rd & trap_compare(regs->gpr[ra], regs->gpr[rb]))
+				goto trap;
+			return 1;
+#endif
+		case 83:	/* mfmsr */
+			if (regs->msr & MSR_PR)
+				goto priv;
+			op->type = MFMSR;
+			op->reg = rd;
+			return 0;
+		case 146:	/* mtmsr */
+			if (regs->msr & MSR_PR)
+				goto priv;
+			op->type = MTMSR;
+			op->reg = rd;
+			op->val = 0xffffffff & ~(MSR_ME | MSR_LE);
+			return 0;
+#ifdef CONFIG_PPC64
+		case 178:	/* mtmsrd */
+			if (regs->msr & MSR_PR)
+				goto priv;
+			op->type = MTMSR;
+			op->reg = rd;
+			/* only MSR_EE and MSR_RI get changed if bit 15 set */
+			/* mtmsrd doesn't change MSR_HV, MSR_ME or MSR_LE */
+			imm = (instr & 0x10000)? 0x8002: 0xefffffffffffeffeUL;
+			op->val = imm;
+			return 0;
+#endif
+
+		case 19:	/* mfcr */
+			imm = 0xffffffffUL;
+			if ((instr >> 20) & 1) {
+				imm = 0xf0000000UL;
+				for (sh = 0; sh < 8; ++sh) {
+					if (instr & (0x80000 >> sh))
+						break;
+					imm >>= 4;
+				}
+			}
+			op->val = regs->ccr & imm;
+			goto compute_done;
+
+		case 144:	/* mtcrf */
+			op->type = COMPUTE + SETCC;
+			imm = 0xf0000000UL;
+			val = regs->gpr[rd];
+			op->ccval = regs->ccr;
+			for (sh = 0; sh < 8; ++sh) {
+				if (instr & (0x80000 >> sh))
+					op->ccval = (op->ccval & ~imm) |
+						(val & imm);
+				imm >>= 4;
+			}
+			return 1;
+
+		case 339:	/* mfspr */
+			spr = ((instr >> 16) & 0x1f) | ((instr >> 6) & 0x3e0);
+			op->type = MFSPR;
+			op->reg = rd;
+			op->spr = spr;
+			if (spr == SPRN_XER || spr == SPRN_LR ||
+			    spr == SPRN_CTR)
+				return 1;
+			return 0;
+
+		case 467:	/* mtspr */
+			spr = ((instr >> 16) & 0x1f) | ((instr >> 6) & 0x3e0);
+			op->type = MTSPR;
+			op->val = regs->gpr[rd];
+			op->spr = spr;
+			if (spr == SPRN_XER || spr == SPRN_LR ||
+			    spr == SPRN_CTR)
+				return 1;
+			return 0;
+
+/*
+ * Compare instructions
+ */
+		case 0:	/* cmp */
+			val = regs->gpr[ra];
+			val2 = regs->gpr[rb];
+#ifdef __powerpc64__
+			if ((rd & 1) == 0) {
+				/* word (32-bit) compare */
+				val = (int) val;
+				val2 = (int) val2;
+			}
+#endif
+			do_cmp_signed(regs, op, val, val2, rd >> 2);
+			return 1;
+
+		case 32:	/* cmpl */
+			val = regs->gpr[ra];
+			val2 = regs->gpr[rb];
+#ifdef __powerpc64__
+			if ((rd & 1) == 0) {
+				/* word (32-bit) compare */
+				val = (unsigned int) val;
+				val2 = (unsigned int) val2;
+			}
+#endif
+			do_cmp_unsigned(regs, op, val, val2, rd >> 2);
+			return 1;
+
+		case 508: /* cmpb */
+			do_cmpb(regs, op, regs->gpr[rd], regs->gpr[rb]);
+			goto logical_done_nocc;
+
+/*
+ * Arithmetic instructions
+ */
+		case 8:	/* subfc */
+			add_with_carry(regs, op, rd, ~regs->gpr[ra],
+				       regs->gpr[rb], 1);
+			goto arith_done;
+#ifdef __powerpc64__
+		case 9:	/* mulhdu */
+			asm("mulhdu %0,%1,%2" : "=r" (op->val) :
+			    "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
+			goto arith_done;
+#endif
+		case 10:	/* addc */
+			add_with_carry(regs, op, rd, regs->gpr[ra],
+				       regs->gpr[rb], 0);
+			goto arith_done;
+
+		case 11:	/* mulhwu */
+			asm("mulhwu %0,%1,%2" : "=r" (op->val) :
+			    "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
+			goto arith_done;
+
+		case 40:	/* subf */
+			op->val = regs->gpr[rb] - regs->gpr[ra];
+			goto arith_done;
+#ifdef __powerpc64__
+		case 73:	/* mulhd */
+			asm("mulhd %0,%1,%2" : "=r" (op->val) :
+			    "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
+			goto arith_done;
+#endif
+		case 75:	/* mulhw */
+			asm("mulhw %0,%1,%2" : "=r" (op->val) :
+			    "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
+			goto arith_done;
+
+		case 104:	/* neg */
+			op->val = -regs->gpr[ra];
+			goto arith_done;
+
+		case 136:	/* subfe */
+			add_with_carry(regs, op, rd, ~regs->gpr[ra],
+				       regs->gpr[rb], regs->xer & XER_CA);
+			goto arith_done;
+
+		case 138:	/* adde */
+			add_with_carry(regs, op, rd, regs->gpr[ra],
+				       regs->gpr[rb], regs->xer & XER_CA);
+			goto arith_done;
+
+		case 200:	/* subfze */
+			add_with_carry(regs, op, rd, ~regs->gpr[ra], 0L,
+				       regs->xer & XER_CA);
+			goto arith_done;
+
+		case 202:	/* addze */
+			add_with_carry(regs, op, rd, regs->gpr[ra], 0L,
+				       regs->xer & XER_CA);
+			goto arith_done;
+
+		case 232:	/* subfme */
+			add_with_carry(regs, op, rd, ~regs->gpr[ra], -1L,
+				       regs->xer & XER_CA);
+			goto arith_done;
+#ifdef __powerpc64__
+		case 233:	/* mulld */
+			op->val = regs->gpr[ra] * regs->gpr[rb];
+			goto arith_done;
+#endif
+		case 234:	/* addme */
+			add_with_carry(regs, op, rd, regs->gpr[ra], -1L,
+				       regs->xer & XER_CA);
+			goto arith_done;
+
+		case 235:	/* mullw */
+			op->val = (long)(int) regs->gpr[ra] *
+				(int) regs->gpr[rb];
+
+			goto arith_done;
+
+		case 266:	/* add */
+			op->val = regs->gpr[ra] + regs->gpr[rb];
+			goto arith_done;
+#ifdef __powerpc64__
+		case 457:	/* divdu */
+			op->val = regs->gpr[ra] / regs->gpr[rb];
+			goto arith_done;
+#endif
+		case 459:	/* divwu */
+			op->val = (unsigned int) regs->gpr[ra] /
+				(unsigned int) regs->gpr[rb];
+			goto arith_done;
+#ifdef __powerpc64__
+		case 489:	/* divd */
+			op->val = (long int) regs->gpr[ra] /
+				(long int) regs->gpr[rb];
+			goto arith_done;
+#endif
+		case 491:	/* divw */
+			op->val = (int) regs->gpr[ra] /
+				(int) regs->gpr[rb];
+			goto arith_done;
+
+
+/*
+ * Logical instructions
+ */
+		case 26:	/* cntlzw */
+			val = (unsigned int) regs->gpr[rd];
+			op->val = ( val ? __builtin_clz(val) : 32 );
+			goto logical_done;
+#ifdef __powerpc64__
+		case 58:	/* cntlzd */
+			val = regs->gpr[rd];
+			op->val = ( val ? __builtin_clzl(val) : 64 );
+			goto logical_done;
+#endif
+		case 28:	/* and */
+			op->val = regs->gpr[rd] & regs->gpr[rb];
+			goto logical_done;
+
+		case 60:	/* andc */
+			op->val = regs->gpr[rd] & ~regs->gpr[rb];
+			goto logical_done;
+
+		case 122:	/* popcntb */
+			do_popcnt(regs, op, regs->gpr[rd], 8);
+			goto logical_done_nocc;
+
+		case 124:	/* nor */
+			op->val = ~(regs->gpr[rd] | regs->gpr[rb]);
+			goto logical_done;
+
+		case 154:	/* prtyw */
+			do_prty(regs, op, regs->gpr[rd], 32);
+			goto logical_done_nocc;
+
+		case 186:	/* prtyd */
+			do_prty(regs, op, regs->gpr[rd], 64);
+			goto logical_done_nocc;
+#ifdef CONFIG_PPC64
+		case 252:	/* bpermd */
+			do_bpermd(regs, op, regs->gpr[rd], regs->gpr[rb]);
+			goto logical_done_nocc;
+#endif
+		case 284:	/* xor */
+			op->val = ~(regs->gpr[rd] ^ regs->gpr[rb]);
+			goto logical_done;
+
+		case 316:	/* xor */
+			op->val = regs->gpr[rd] ^ regs->gpr[rb];
+			goto logical_done;
+
+		case 378:	/* popcntw */
+			do_popcnt(regs, op, regs->gpr[rd], 32);
+			goto logical_done_nocc;
+
+		case 412:	/* orc */
+			op->val = regs->gpr[rd] | ~regs->gpr[rb];
+			goto logical_done;
+
+		case 444:	/* or */
+			op->val = regs->gpr[rd] | regs->gpr[rb];
+			goto logical_done;
+
+		case 476:	/* nand */
+			op->val = ~(regs->gpr[rd] & regs->gpr[rb]);
+			goto logical_done;
+#ifdef CONFIG_PPC64
+		case 506:	/* popcntd */
+			do_popcnt(regs, op, regs->gpr[rd], 64);
+			goto logical_done_nocc;
+#endif
+		case 922:	/* extsh */
+			op->val = (signed short) regs->gpr[rd];
+			goto logical_done;
+
+		case 954:	/* extsb */
+			op->val = (signed char) regs->gpr[rd];
+			goto logical_done;
+#ifdef __powerpc64__
+		case 986:	/* extsw */
+			op->val = (signed int) regs->gpr[rd];
+			goto logical_done;
+#endif
+
+/*
+ * Shift instructions
+ */
+		case 24:	/* slw */
+			sh = regs->gpr[rb] & 0x3f;
+			if (sh < 32)
+				op->val = (regs->gpr[rd] << sh) & 0xffffffffUL;
+			else
+				op->val = 0;
+			goto logical_done;
+
+		case 536:	/* srw */
+			sh = regs->gpr[rb] & 0x3f;
+			if (sh < 32)
+				op->val = (regs->gpr[rd] & 0xffffffffUL) >> sh;
+			else
+				op->val = 0;
+			goto logical_done;
+
+		case 792:	/* sraw */
+			op->type = COMPUTE + SETREG + SETXER;
+			sh = regs->gpr[rb] & 0x3f;
+			ival = (signed int) regs->gpr[rd];
+			op->val = ival >> (sh < 32 ? sh : 31);
+			op->xerval = regs->xer;
+			if (ival < 0 && (sh >= 32 || (ival & ((1ul << sh) - 1)) != 0))
+				op->xerval |= XER_CA;
+			else
+				op->xerval &= ~XER_CA;
+			set_ca32(op, op->xerval & XER_CA);
+			goto logical_done;
+
+		case 824:	/* srawi */
+			op->type = COMPUTE + SETREG + SETXER;
+			sh = rb;
+			ival = (signed int) regs->gpr[rd];
+			op->val = ival >> sh;
+			op->xerval = regs->xer;
+			if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
+				op->xerval |= XER_CA;
+			else
+				op->xerval &= ~XER_CA;
+			set_ca32(op, op->xerval & XER_CA);
+			goto logical_done;
+
+#ifdef __powerpc64__
+		case 27:	/* sld */
+			sh = regs->gpr[rb] & 0x7f;
+			if (sh < 64)
+				op->val = regs->gpr[rd] << sh;
+			else
+				op->val = 0;
+			goto logical_done;
+
+		case 539:	/* srd */
+			sh = regs->gpr[rb] & 0x7f;
+			if (sh < 64)
+				op->val = regs->gpr[rd] >> sh;
+			else
+				op->val = 0;
+			goto logical_done;
+
+		case 794:	/* srad */
+			op->type = COMPUTE + SETREG + SETXER;
+			sh = regs->gpr[rb] & 0x7f;
+			ival = (signed long int) regs->gpr[rd];
+			op->val = ival >> (sh < 64 ? sh : 63);
+			op->xerval = regs->xer;
+			if (ival < 0 && (sh >= 64 || (ival & ((1ul << sh) - 1)) != 0))
+				op->xerval |= XER_CA;
+			else
+				op->xerval &= ~XER_CA;
+			set_ca32(op, op->xerval & XER_CA);
+			goto logical_done;
+
+		case 826:	/* sradi with sh_5 = 0 */
+		case 827:	/* sradi with sh_5 = 1 */
+			op->type = COMPUTE + SETREG + SETXER;
+			sh = rb | ((instr & 2) << 4);
+			ival = (signed long int) regs->gpr[rd];
+			op->val = ival >> sh;
+			op->xerval = regs->xer;
+			if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
+				op->xerval |= XER_CA;
+			else
+				op->xerval &= ~XER_CA;
+			set_ca32(op, op->xerval & XER_CA);
+			goto logical_done;
+#endif /* __powerpc64__ */
+
+/*
+ * Cache instructions
+ */
+		case 54:	/* dcbst */
+			op->type = MKOP(CACHEOP, DCBST, 0);
+			op->ea = xform_ea(instr, regs);
+			return 0;
+
+		case 86:	/* dcbf */
+			op->type = MKOP(CACHEOP, DCBF, 0);
+			op->ea = xform_ea(instr, regs);
+			return 0;
+
+		case 246:	/* dcbtst */
+			op->type = MKOP(CACHEOP, DCBTST, 0);
+			op->ea = xform_ea(instr, regs);
+			op->reg = rd;
+			return 0;
+
+		case 278:	/* dcbt */
+			op->type = MKOP(CACHEOP, DCBTST, 0);
+			op->ea = xform_ea(instr, regs);
+			op->reg = rd;
+			return 0;
+
+		case 982:	/* icbi */
+			op->type = MKOP(CACHEOP, ICBI, 0);
+			op->ea = xform_ea(instr, regs);
+			return 0;
+
+		case 1014:	/* dcbz */
+			op->type = MKOP(CACHEOP, DCBZ, 0);
+			op->ea = xform_ea(instr, regs);
+			return 0;
+		}
+		break;
+	}
+
+/*
+ * Loads and stores.
+ */
+	op->type = UNKNOWN;
+	op->update_reg = ra;
+	op->reg = rd;
+	op->val = regs->gpr[rd];
+	u = (instr >> 20) & UPDATE;
+	op->vsx_flags = 0;
+
+	switch (opcode) {
+	case 31:
+		u = instr & UPDATE;
+		op->ea = xform_ea(instr, regs);
+		switch ((instr >> 1) & 0x3ff) {
+		case 20:	/* lwarx */
+			op->type = MKOP(LARX, 0, 4);
+			break;
+
+		case 150:	/* stwcx. */
+			op->type = MKOP(STCX, 0, 4);
+			break;
+
+#ifdef __powerpc64__
+		case 84:	/* ldarx */
+			op->type = MKOP(LARX, 0, 8);
+			break;
+
+		case 214:	/* stdcx. */
+			op->type = MKOP(STCX, 0, 8);
+			break;
+
+		case 52:	/* lbarx */
+			op->type = MKOP(LARX, 0, 1);
+			break;
+
+		case 694:	/* stbcx. */
+			op->type = MKOP(STCX, 0, 1);
+			break;
+
+		case 116:	/* lharx */
+			op->type = MKOP(LARX, 0, 2);
+			break;
+
+		case 726:	/* sthcx. */
+			op->type = MKOP(STCX, 0, 2);
+			break;
+
+		case 276:	/* lqarx */
+			if (!((rd & 1) || rd == ra || rd == rb))
+				op->type = MKOP(LARX, 0, 16);
+			break;
+
+		case 182:	/* stqcx. */
+			if (!(rd & 1))
+				op->type = MKOP(STCX, 0, 16);
+			break;
+#endif
+
+		case 23:	/* lwzx */
+		case 55:	/* lwzux */
+			op->type = MKOP(LOAD, u, 4);
+			break;
+
+		case 87:	/* lbzx */
+		case 119:	/* lbzux */
+			op->type = MKOP(LOAD, u, 1);
+			break;
+
+#ifdef CONFIG_ALTIVEC
+		/*
+		 * Note: for the load/store vector element instructions,
+		 * bits of the EA say which field of the VMX register to use.
+		 */
+		case 7:		/* lvebx */
+			op->type = MKOP(LOAD_VMX, 0, 1);
+			op->element_size = 1;
+			break;
+
+		case 39:	/* lvehx */
+			op->type = MKOP(LOAD_VMX, 0, 2);
+			op->element_size = 2;
+			break;
+
+		case 71:	/* lvewx */
+			op->type = MKOP(LOAD_VMX, 0, 4);
+			op->element_size = 4;
+			break;
+
+		case 103:	/* lvx */
+		case 359:	/* lvxl */
+			op->type = MKOP(LOAD_VMX, 0, 16);
+			op->element_size = 16;
+			break;
+
+		case 135:	/* stvebx */
+			op->type = MKOP(STORE_VMX, 0, 1);
+			op->element_size = 1;
+			break;
+
+		case 167:	/* stvehx */
+			op->type = MKOP(STORE_VMX, 0, 2);
+			op->element_size = 2;
+			break;
+
+		case 199:	/* stvewx */
+			op->type = MKOP(STORE_VMX, 0, 4);
+			op->element_size = 4;
+			break;
+
+		case 231:	/* stvx */
+		case 487:	/* stvxl */
+			op->type = MKOP(STORE_VMX, 0, 16);
+			break;
+#endif /* CONFIG_ALTIVEC */
+
+#ifdef __powerpc64__
+		case 21:	/* ldx */
+		case 53:	/* ldux */
+			op->type = MKOP(LOAD, u, 8);
+			break;
+
+		case 149:	/* stdx */
+		case 181:	/* stdux */
+			op->type = MKOP(STORE, u, 8);
+			break;
+#endif
+
+		case 151:	/* stwx */
+		case 183:	/* stwux */
+			op->type = MKOP(STORE, u, 4);
+			break;
+
+		case 215:	/* stbx */
+		case 247:	/* stbux */
+			op->type = MKOP(STORE, u, 1);
+			break;
+
+		case 279:	/* lhzx */
+		case 311:	/* lhzux */
+			op->type = MKOP(LOAD, u, 2);
+			break;
+
+#ifdef __powerpc64__
+		case 341:	/* lwax */
+		case 373:	/* lwaux */
+			op->type = MKOP(LOAD, SIGNEXT | u, 4);
+			break;
+#endif
+
+		case 343:	/* lhax */
+		case 375:	/* lhaux */
+			op->type = MKOP(LOAD, SIGNEXT | u, 2);
+			break;
+
+		case 407:	/* sthx */
+		case 439:	/* sthux */
+			op->type = MKOP(STORE, u, 2);
+			break;
+
+#ifdef __powerpc64__
+		case 532:	/* ldbrx */
+			op->type = MKOP(LOAD, BYTEREV, 8);
+			break;
+
+#endif
+		case 533:	/* lswx */
+			op->type = MKOP(LOAD_MULTI, 0, regs->xer & 0x7f);
+			break;
+
+		case 534:	/* lwbrx */
+			op->type = MKOP(LOAD, BYTEREV, 4);
+			break;
+
+		case 597:	/* lswi */
+			if (rb == 0)
+				rb = 32;	/* # bytes to load */
+			op->type = MKOP(LOAD_MULTI, 0, rb);
+			op->ea = ra ? regs->gpr[ra] : 0;
+			break;
+
+#ifdef CONFIG_PPC_FPU
+		case 535:	/* lfsx */
+		case 567:	/* lfsux */
+			op->type = MKOP(LOAD_FP, u | FPCONV, 4);
+			break;
+
+		case 599:	/* lfdx */
+		case 631:	/* lfdux */
+			op->type = MKOP(LOAD_FP, u, 8);
+			break;
+
+		case 663:	/* stfsx */
+		case 695:	/* stfsux */
+			op->type = MKOP(STORE_FP, u | FPCONV, 4);
+			break;
+
+		case 727:	/* stfdx */
+		case 759:	/* stfdux */
+			op->type = MKOP(STORE_FP, u, 8);
+			break;
+
+#ifdef __powerpc64__
+		case 791:	/* lfdpx */
+			op->type = MKOP(LOAD_FP, 0, 16);
+			break;
+
+		case 855:	/* lfiwax */
+			op->type = MKOP(LOAD_FP, SIGNEXT, 4);
+			break;
+
+		case 887:	/* lfiwzx */
+			op->type = MKOP(LOAD_FP, 0, 4);
+			break;
+
+		case 919:	/* stfdpx */
+			op->type = MKOP(STORE_FP, 0, 16);
+			break;
+
+		case 983:	/* stfiwx */
+			op->type = MKOP(STORE_FP, 0, 4);
+			break;
+#endif /* __powerpc64 */
+#endif /* CONFIG_PPC_FPU */
+
+#ifdef __powerpc64__
+		case 660:	/* stdbrx */
+			op->type = MKOP(STORE, BYTEREV, 8);
+			op->val = byterev_8(regs->gpr[rd]);
+			break;
+
+#endif
+		case 661:	/* stswx */
+			op->type = MKOP(STORE_MULTI, 0, regs->xer & 0x7f);
+			break;
+
+		case 662:	/* stwbrx */
+			op->type = MKOP(STORE, BYTEREV, 4);
+			op->val = byterev_4(regs->gpr[rd]);
+			break;
+
+		case 725:	/* stswi */
+			if (rb == 0)
+				rb = 32;	/* # bytes to store */
+			op->type = MKOP(STORE_MULTI, 0, rb);
+			op->ea = ra ? regs->gpr[ra] : 0;
+			break;
+
+		case 790:	/* lhbrx */
+			op->type = MKOP(LOAD, BYTEREV, 2);
+			break;
+
+		case 918:	/* sthbrx */
+			op->type = MKOP(STORE, BYTEREV, 2);
+			op->val = byterev_2(regs->gpr[rd]);
+			break;
+
+#ifdef CONFIG_VSX
+		case 12:	/* lxsiwzx */
+			op->reg = rd | ((instr & 1) << 5);
+			op->type = MKOP(LOAD_VSX, 0, 4);
+			op->element_size = 8;
+			break;
+
+		case 76:	/* lxsiwax */
+			op->reg = rd | ((instr & 1) << 5);
+			op->type = MKOP(LOAD_VSX, SIGNEXT, 4);
+			op->element_size = 8;
+			break;
+
+		case 140:	/* stxsiwx */
+			op->reg = rd | ((instr & 1) << 5);
+			op->type = MKOP(STORE_VSX, 0, 4);
+			op->element_size = 8;
+			break;
+
+		case 268:	/* lxvx */
+			op->reg = rd | ((instr & 1) << 5);
+			op->type = MKOP(LOAD_VSX, 0, 16);
+			op->element_size = 16;
+			op->vsx_flags = VSX_CHECK_VEC;
+			break;
+
+		case 269:	/* lxvl */
+		case 301: {	/* lxvll */
+			int nb;
+			op->reg = rd | ((instr & 1) << 5);
+			op->ea = ra ? regs->gpr[ra] : 0;
+			nb = regs->gpr[rb] & 0xff;
+			if (nb > 16)
+				nb = 16;
+			op->type = MKOP(LOAD_VSX, 0, nb);
+			op->element_size = 16;
+			op->vsx_flags = ((instr & 0x20) ? VSX_LDLEFT : 0) |
+				VSX_CHECK_VEC;
+			break;
+		}
+		case 332:	/* lxvdsx */
+			op->reg = rd | ((instr & 1) << 5);
+			op->type = MKOP(LOAD_VSX, 0, 8);
+			op->element_size = 8;
+			op->vsx_flags = VSX_SPLAT;
+			break;
+
+		case 364:	/* lxvwsx */
+			op->reg = rd | ((instr & 1) << 5);
+			op->type = MKOP(LOAD_VSX, 0, 4);
+			op->element_size = 4;
+			op->vsx_flags = VSX_SPLAT | VSX_CHECK_VEC;
+			break;
+
+		case 396:	/* stxvx */
+			op->reg = rd | ((instr & 1) << 5);
+			op->type = MKOP(STORE_VSX, 0, 16);
+			op->element_size = 16;
+			op->vsx_flags = VSX_CHECK_VEC;
+			break;
+
+		case 397:	/* stxvl */
+		case 429: {	/* stxvll */
+			int nb;
+			op->reg = rd | ((instr & 1) << 5);
+			op->ea = ra ? regs->gpr[ra] : 0;
+			nb = regs->gpr[rb] & 0xff;
+			if (nb > 16)
+				nb = 16;
+			op->type = MKOP(STORE_VSX, 0, nb);
+			op->element_size = 16;
+			op->vsx_flags = ((instr & 0x20) ? VSX_LDLEFT : 0) |
+				VSX_CHECK_VEC;
+			break;
+		}
+		case 524:	/* lxsspx */
+			op->reg = rd | ((instr & 1) << 5);
+			op->type = MKOP(LOAD_VSX, 0, 4);
+			op->element_size = 8;
+			op->vsx_flags = VSX_FPCONV;
+			break;
+
+		case 588:	/* lxsdx */
+			op->reg = rd | ((instr & 1) << 5);
+			op->type = MKOP(LOAD_VSX, 0, 8);
+			op->element_size = 8;
+			break;
+
+		case 652:	/* stxsspx */
+			op->reg = rd | ((instr & 1) << 5);
+			op->type = MKOP(STORE_VSX, 0, 4);
+			op->element_size = 8;
+			op->vsx_flags = VSX_FPCONV;
+			break;
+
+		case 716:	/* stxsdx */
+			op->reg = rd | ((instr & 1) << 5);
+			op->type = MKOP(STORE_VSX, 0, 8);
+			op->element_size = 8;
+			break;
+
+		case 780:	/* lxvw4x */
+			op->reg = rd | ((instr & 1) << 5);
+			op->type = MKOP(LOAD_VSX, 0, 16);
+			op->element_size = 4;
+			break;
+
+		case 781:	/* lxsibzx */
+			op->reg = rd | ((instr & 1) << 5);
+			op->type = MKOP(LOAD_VSX, 0, 1);
+			op->element_size = 8;
+			op->vsx_flags = VSX_CHECK_VEC;
+			break;
+
+		case 812:	/* lxvh8x */
+			op->reg = rd | ((instr & 1) << 5);
+			op->type = MKOP(LOAD_VSX, 0, 16);
+			op->element_size = 2;
+			op->vsx_flags = VSX_CHECK_VEC;
+			break;
+
+		case 813:	/* lxsihzx */
+			op->reg = rd | ((instr & 1) << 5);
+			op->type = MKOP(LOAD_VSX, 0, 2);
+			op->element_size = 8;
+			op->vsx_flags = VSX_CHECK_VEC;
+			break;
+
+		case 844:	/* lxvd2x */
+			op->reg = rd | ((instr & 1) << 5);
+			op->type = MKOP(LOAD_VSX, 0, 16);
+			op->element_size = 8;
+			break;
+
+		case 876:	/* lxvb16x */
+			op->reg = rd | ((instr & 1) << 5);
+			op->type = MKOP(LOAD_VSX, 0, 16);
+			op->element_size = 1;
+			op->vsx_flags = VSX_CHECK_VEC;
+			break;
+
+		case 908:	/* stxvw4x */
+			op->reg = rd | ((instr & 1) << 5);
+			op->type = MKOP(STORE_VSX, 0, 16);
+			op->element_size = 4;
+			break;
+
+		case 909:	/* stxsibx */
+			op->reg = rd | ((instr & 1) << 5);
+			op->type = MKOP(STORE_VSX, 0, 1);
+			op->element_size = 8;
+			op->vsx_flags = VSX_CHECK_VEC;
+			break;
+
+		case 940:	/* stxvh8x */
+			op->reg = rd | ((instr & 1) << 5);
+			op->type = MKOP(STORE_VSX, 0, 16);
+			op->element_size = 2;
+			op->vsx_flags = VSX_CHECK_VEC;
+			break;
+
+		case 941:	/* stxsihx */
+			op->reg = rd | ((instr & 1) << 5);
+			op->type = MKOP(STORE_VSX, 0, 2);
+			op->element_size = 8;
+			op->vsx_flags = VSX_CHECK_VEC;
+			break;
+
+		case 972:	/* stxvd2x */
+			op->reg = rd | ((instr & 1) << 5);
+			op->type = MKOP(STORE_VSX, 0, 16);
+			op->element_size = 8;
+			break;
+
+		case 1004:	/* stxvb16x */
+			op->reg = rd | ((instr & 1) << 5);
+			op->type = MKOP(STORE_VSX, 0, 16);
+			op->element_size = 1;
+			op->vsx_flags = VSX_CHECK_VEC;
+			break;
+
+#endif /* CONFIG_VSX */
+		}
+		break;
+
+	case 32:	/* lwz */
+	case 33:	/* lwzu */
+		op->type = MKOP(LOAD, u, 4);
+		op->ea = dform_ea(instr, regs);
+		break;
+
+	case 34:	/* lbz */
+	case 35:	/* lbzu */
+		op->type = MKOP(LOAD, u, 1);
+		op->ea = dform_ea(instr, regs);
+		break;
+
+	case 36:	/* stw */
+	case 37:	/* stwu */
+		op->type = MKOP(STORE, u, 4);
+		op->ea = dform_ea(instr, regs);
+		break;
+
+	case 38:	/* stb */
+	case 39:	/* stbu */
+		op->type = MKOP(STORE, u, 1);
+		op->ea = dform_ea(instr, regs);
+		break;
+
+	case 40:	/* lhz */
+	case 41:	/* lhzu */
+		op->type = MKOP(LOAD, u, 2);
+		op->ea = dform_ea(instr, regs);
+		break;
+
+	case 42:	/* lha */
+	case 43:	/* lhau */
+		op->type = MKOP(LOAD, SIGNEXT | u, 2);
+		op->ea = dform_ea(instr, regs);
+		break;
+
+	case 44:	/* sth */
+	case 45:	/* sthu */
+		op->type = MKOP(STORE, u, 2);
+		op->ea = dform_ea(instr, regs);
+		break;
+
+	case 46:	/* lmw */
+		if (ra >= rd)
+			break;		/* invalid form, ra in range to load */
+		op->type = MKOP(LOAD_MULTI, 0, 4 * (32 - rd));
+		op->ea = dform_ea(instr, regs);
+		break;
+
+	case 47:	/* stmw */
+		op->type = MKOP(STORE_MULTI, 0, 4 * (32 - rd));
+		op->ea = dform_ea(instr, regs);
+		break;
+
+#ifdef CONFIG_PPC_FPU
+	case 48:	/* lfs */
+	case 49:	/* lfsu */
+		op->type = MKOP(LOAD_FP, u | FPCONV, 4);
+		op->ea = dform_ea(instr, regs);
+		break;
+
+	case 50:	/* lfd */
+	case 51:	/* lfdu */
+		op->type = MKOP(LOAD_FP, u, 8);
+		op->ea = dform_ea(instr, regs);
+		break;
+
+	case 52:	/* stfs */
+	case 53:	/* stfsu */
+		op->type = MKOP(STORE_FP, u | FPCONV, 4);
+		op->ea = dform_ea(instr, regs);
+		break;
+
+	case 54:	/* stfd */
+	case 55:	/* stfdu */
+		op->type = MKOP(STORE_FP, u, 8);
+		op->ea = dform_ea(instr, regs);
+		break;
+#endif
+
+#ifdef __powerpc64__
+	case 56:	/* lq */
+		if (!((rd & 1) || (rd == ra)))
+			op->type = MKOP(LOAD, 0, 16);
+		op->ea = dqform_ea(instr, regs);
+		break;
+#endif
+
+#ifdef CONFIG_VSX
+	case 57:	/* lfdp, lxsd, lxssp */
+		op->ea = dsform_ea(instr, regs);
+		switch (instr & 3) {
+		case 0:		/* lfdp */
+			if (rd & 1)
+				break;		/* reg must be even */
+			op->type = MKOP(LOAD_FP, 0, 16);
+			break;
+		case 2:		/* lxsd */
+			op->reg = rd + 32;
+			op->type = MKOP(LOAD_VSX, 0, 8);
+			op->element_size = 8;
+			op->vsx_flags = VSX_CHECK_VEC;
+			break;
+		case 3:		/* lxssp */
+			op->reg = rd + 32;
+			op->type = MKOP(LOAD_VSX, 0, 4);
+			op->element_size = 8;
+			op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
+			break;
+		}
+		break;
+#endif /* CONFIG_VSX */
+
+#ifdef __powerpc64__
+	case 58:	/* ld[u], lwa */
+		op->ea = dsform_ea(instr, regs);
+		switch (instr & 3) {
+		case 0:		/* ld */
+			op->type = MKOP(LOAD, 0, 8);
+			break;
+		case 1:		/* ldu */
+			op->type = MKOP(LOAD, UPDATE, 8);
+			break;
+		case 2:		/* lwa */
+			op->type = MKOP(LOAD, SIGNEXT, 4);
+			break;
+		}
+		break;
+#endif
+
+#ifdef CONFIG_VSX
+	case 61:	/* stfdp, lxv, stxsd, stxssp, stxv */
+		switch (instr & 7) {
+		case 0:		/* stfdp with LSB of DS field = 0 */
+		case 4:		/* stfdp with LSB of DS field = 1 */
+			op->ea = dsform_ea(instr, regs);
+			op->type = MKOP(STORE_FP, 0, 16);
+			break;
+
+		case 1:		/* lxv */
+			op->ea = dqform_ea(instr, regs);
+			if (instr & 8)
+				op->reg = rd + 32;
+			op->type = MKOP(LOAD_VSX, 0, 16);
+			op->element_size = 16;
+			op->vsx_flags = VSX_CHECK_VEC;
+			break;
+
+		case 2:		/* stxsd with LSB of DS field = 0 */
+		case 6:		/* stxsd with LSB of DS field = 1 */
+			op->ea = dsform_ea(instr, regs);
+			op->reg = rd + 32;
+			op->type = MKOP(STORE_VSX, 0, 8);
+			op->element_size = 8;
+			op->vsx_flags = VSX_CHECK_VEC;
+			break;
+
+		case 3:		/* stxssp with LSB of DS field = 0 */
+		case 7:		/* stxssp with LSB of DS field = 1 */
+			op->ea = dsform_ea(instr, regs);
+			op->reg = rd + 32;
+			op->type = MKOP(STORE_VSX, 0, 4);
+			op->element_size = 8;
+			op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
+			break;
+
+		case 5:		/* stxv */
+			op->ea = dqform_ea(instr, regs);
+			if (instr & 8)
+				op->reg = rd + 32;
+			op->type = MKOP(STORE_VSX, 0, 16);
+			op->element_size = 16;
+			op->vsx_flags = VSX_CHECK_VEC;
+			break;
+		}
+		break;
+#endif /* CONFIG_VSX */
+
+#ifdef __powerpc64__
+	case 62:	/* std[u] */
+		op->ea = dsform_ea(instr, regs);
+		switch (instr & 3) {
+		case 0:		/* std */
+			op->type = MKOP(STORE, 0, 8);
+			break;
+		case 1:		/* stdu */
+			op->type = MKOP(STORE, UPDATE, 8);
+			break;
+		case 2:		/* stq */
+			if (!(rd & 1))
+				op->type = MKOP(STORE, 0, 16);
+			break;
+		}
+		break;
+#endif /* __powerpc64__ */
+
+	}
+
+#ifdef CONFIG_VSX
+	if ((GETTYPE(op->type) == LOAD_VSX ||
+	     GETTYPE(op->type) == STORE_VSX) &&
+	    !cpu_has_feature(CPU_FTR_VSX)) {
+		return -1;
+	}
+#endif /* CONFIG_VSX */
+
+	return 0;
+
+ logical_done:
+	if (instr & 1)
+		set_cr0(regs, op);
+ logical_done_nocc:
+	op->reg = ra;
+	op->type |= SETREG;
+	return 1;
+
+ arith_done:
+	if (instr & 1)
+		set_cr0(regs, op);
+ compute_done:
+	op->reg = rd;
+	op->type |= SETREG;
+	return 1;
+
+ priv:
+	op->type = INTERRUPT | 0x700;
+	op->val = SRR1_PROGPRIV;
+	return 0;
+
+ trap:
+	op->type = INTERRUPT | 0x700;
+	op->val = SRR1_PROGTRAP;
+	return 0;
+}
+EXPORT_SYMBOL_GPL(analyse_instr);
+NOKPROBE_SYMBOL(analyse_instr);
+
+/*
+ * For PPC32 we always use stwu with r1 to change the stack pointer.
+ * So this emulated store may corrupt the exception frame, now we
+ * have to provide the exception frame trampoline, which is pushed
+ * below the kprobed function stack. So we only update gpr[1] but
+ * don't emulate the real store operation. We will do real store
+ * operation safely in exception return code by checking this flag.
+ */
+static nokprobe_inline int handle_stack_update(unsigned long ea, struct pt_regs *regs)
+{
+#ifdef CONFIG_PPC32
+	/*
+	 * Check if we will touch kernel stack overflow
+	 */
+	if (ea - STACK_INT_FRAME_SIZE <= current->thread.ksp_limit) {
+		printk(KERN_CRIT "Can't kprobe this since kernel stack would overflow.\n");
+		return -EINVAL;
+	}
+#endif /* CONFIG_PPC32 */
+	/*
+	 * Check if we already set since that means we'll
+	 * lose the previous value.
+	 */
+	WARN_ON(test_thread_flag(TIF_EMULATE_STACK_STORE));
+	set_thread_flag(TIF_EMULATE_STACK_STORE);
+	return 0;
+}
+
+static nokprobe_inline void do_signext(unsigned long *valp, int size)
+{
+	switch (size) {
+	case 2:
+		*valp = (signed short) *valp;
+		break;
+	case 4:
+		*valp = (signed int) *valp;
+		break;
+	}
+}
+
+static nokprobe_inline void do_byterev(unsigned long *valp, int size)
+{
+	switch (size) {
+	case 2:
+		*valp = byterev_2(*valp);
+		break;
+	case 4:
+		*valp = byterev_4(*valp);
+		break;
+#ifdef __powerpc64__
+	case 8:
+		*valp = byterev_8(*valp);
+		break;
+#endif
+	}
+}
+
+/*
+ * Emulate an instruction that can be executed just by updating
+ * fields in *regs.
+ */
+void emulate_update_regs(struct pt_regs *regs, struct instruction_op *op)
+{
+	unsigned long next_pc;
+
+	next_pc = truncate_if_32bit(regs->msr, regs->nip + 4);
+	switch (GETTYPE(op->type)) {
+	case COMPUTE:
+		if (op->type & SETREG)
+			regs->gpr[op->reg] = op->val;
+		if (op->type & SETCC)
+			regs->ccr = op->ccval;
+		if (op->type & SETXER)
+			regs->xer = op->xerval;
+		break;
+
+	case BRANCH:
+		if (op->type & SETLK)
+			regs->link = next_pc;
+		if (op->type & BRTAKEN)
+			next_pc = op->val;
+		if (op->type & DECCTR)
+			--regs->ctr;
+		break;
+
+	case BARRIER:
+		switch (op->type & BARRIER_MASK) {
+		case BARRIER_SYNC:
+			mb();
+			break;
+		case BARRIER_ISYNC:
+			isync();
+			break;
+		case BARRIER_EIEIO:
+			eieio();
+			break;
+		case BARRIER_LWSYNC:
+			asm volatile("lwsync" : : : "memory");
+			break;
+		case BARRIER_PTESYNC:
+			asm volatile("ptesync" : : : "memory");
+			break;
+		}
+		break;
+
+	case MFSPR:
+		switch (op->spr) {
+		case SPRN_XER:
+			regs->gpr[op->reg] = regs->xer & 0xffffffffUL;
+			break;
+		case SPRN_LR:
+			regs->gpr[op->reg] = regs->link;
+			break;
+		case SPRN_CTR:
+			regs->gpr[op->reg] = regs->ctr;
+			break;
+		default:
+			WARN_ON_ONCE(1);
+		}
+		break;
+
+	case MTSPR:
+		switch (op->spr) {
+		case SPRN_XER:
+			regs->xer = op->val & 0xffffffffUL;
+			break;
+		case SPRN_LR:
+			regs->link = op->val;
+			break;
+		case SPRN_CTR:
+			regs->ctr = op->val;
+			break;
+		default:
+			WARN_ON_ONCE(1);
+		}
+		break;
+
+	default:
+		WARN_ON_ONCE(1);
+	}
+	regs->nip = next_pc;
+}
+NOKPROBE_SYMBOL(emulate_update_regs);
+
+/*
+ * Emulate a previously-analysed load or store instruction.
+ * Return values are:
+ * 0 = instruction emulated successfully
+ * -EFAULT = address out of range or access faulted (regs->dar
+ *	     contains the faulting address)
+ * -EACCES = misaligned access, instruction requires alignment
+ * -EINVAL = unknown operation in *op
+ */
+int emulate_loadstore(struct pt_regs *regs, struct instruction_op *op)
+{
+	int err, size, type;
+	int i, rd, nb;
+	unsigned int cr;
+	unsigned long val;
+	unsigned long ea;
+	bool cross_endian;
+
+	err = 0;
+	size = GETSIZE(op->type);
+	type = GETTYPE(op->type);
+	cross_endian = (regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE);
+	ea = truncate_if_32bit(regs->msr, op->ea);
+
+	switch (type) {
+	case LARX:
+		if (ea & (size - 1))
+			return -EACCES;		/* can't handle misaligned */
+		if (!address_ok(regs, ea, size))
+			return -EFAULT;
+		err = 0;
+		val = 0;
+		switch (size) {
+#ifdef __powerpc64__
+		case 1:
+			__get_user_asmx(val, ea, err, "lbarx");
+			break;
+		case 2:
+			__get_user_asmx(val, ea, err, "lharx");
+			break;
+#endif
+		case 4:
+			__get_user_asmx(val, ea, err, "lwarx");
+			break;
+#ifdef __powerpc64__
+		case 8:
+			__get_user_asmx(val, ea, err, "ldarx");
+			break;
+		case 16:
+			err = do_lqarx(ea, &regs->gpr[op->reg]);
+			break;
+#endif
+		default:
+			return -EINVAL;
+		}
+		if (err) {
+			regs->dar = ea;
+			break;
+		}
+		if (size < 16)
+			regs->gpr[op->reg] = val;
+		break;
+
+	case STCX:
+		if (ea & (size - 1))
+			return -EACCES;		/* can't handle misaligned */
+		if (!address_ok(regs, ea, size))
+			return -EFAULT;
+		err = 0;
+		switch (size) {
+#ifdef __powerpc64__
+		case 1:
+			__put_user_asmx(op->val, ea, err, "stbcx.", cr);
+			break;
+		case 2:
+			__put_user_asmx(op->val, ea, err, "stbcx.", cr);
+			break;
+#endif
+		case 4:
+			__put_user_asmx(op->val, ea, err, "stwcx.", cr);
+			break;
+#ifdef __powerpc64__
+		case 8:
+			__put_user_asmx(op->val, ea, err, "stdcx.", cr);
+			break;
+		case 16:
+			err = do_stqcx(ea, regs->gpr[op->reg],
+				       regs->gpr[op->reg + 1], &cr);
+			break;
+#endif
+		default:
+			return -EINVAL;
+		}
+		if (!err)
+			regs->ccr = (regs->ccr & 0x0fffffff) |
+				(cr & 0xe0000000) |
+				((regs->xer >> 3) & 0x10000000);
+		else
+			regs->dar = ea;
+		break;
+
+	case LOAD:
+#ifdef __powerpc64__
+		if (size == 16) {
+			err = emulate_lq(regs, ea, op->reg, cross_endian);
+			break;
+		}
+#endif
+		err = read_mem(&regs->gpr[op->reg], ea, size, regs);
+		if (!err) {
+			if (op->type & SIGNEXT)
+				do_signext(&regs->gpr[op->reg], size);
+			if ((op->type & BYTEREV) == (cross_endian ? 0 : BYTEREV))
+				do_byterev(&regs->gpr[op->reg], size);
+		}
+		break;
+
+#ifdef CONFIG_PPC_FPU
+	case LOAD_FP:
+		/*
+		 * If the instruction is in userspace, we can emulate it even
+		 * if the VMX state is not live, because we have the state
+		 * stored in the thread_struct.  If the instruction is in
+		 * the kernel, we must not touch the state in the thread_struct.
+		 */
+		if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
+			return 0;
+		err = do_fp_load(op, ea, regs, cross_endian);
+		break;
+#endif
+#ifdef CONFIG_ALTIVEC
+	case LOAD_VMX:
+		if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
+			return 0;
+		err = do_vec_load(op->reg, ea, size, regs, cross_endian);
+		break;
+#endif
+#ifdef CONFIG_VSX
+	case LOAD_VSX: {
+		unsigned long msrbit = MSR_VSX;
+
+		/*
+		 * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
+		 * when the target of the instruction is a vector register.
+		 */
+		if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
+			msrbit = MSR_VEC;
+		if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
+			return 0;
+		err = do_vsx_load(op, ea, regs, cross_endian);
+		break;
+	}
+#endif
+	case LOAD_MULTI:
+		if (!address_ok(regs, ea, size))
+			return -EFAULT;
+		rd = op->reg;
+		for (i = 0; i < size; i += 4) {
+			unsigned int v32 = 0;
+
+			nb = size - i;
+			if (nb > 4)
+				nb = 4;
+			err = copy_mem_in((u8 *) &v32, ea, nb, regs);
+			if (err)
+				break;
+			if (unlikely(cross_endian))
+				v32 = byterev_4(v32);
+			regs->gpr[rd] = v32;
+			ea += 4;
+			/* reg number wraps from 31 to 0 for lsw[ix] */
+			rd = (rd + 1) & 0x1f;
+		}
+		break;
+
+	case STORE:
+#ifdef __powerpc64__
+		if (size == 16) {
+			err = emulate_stq(regs, ea, op->reg, cross_endian);
+			break;
+		}
+#endif
+		if ((op->type & UPDATE) && size == sizeof(long) &&
+		    op->reg == 1 && op->update_reg == 1 &&
+		    !(regs->msr & MSR_PR) &&
+		    ea >= regs->gpr[1] - STACK_INT_FRAME_SIZE) {
+			err = handle_stack_update(ea, regs);
+			break;
+		}
+		if (unlikely(cross_endian))
+			do_byterev(&op->val, size);
+		err = write_mem(op->val, ea, size, regs);
+		break;
+
+#ifdef CONFIG_PPC_FPU
+	case STORE_FP:
+		if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
+			return 0;
+		err = do_fp_store(op, ea, regs, cross_endian);
+		break;
+#endif
+#ifdef CONFIG_ALTIVEC
+	case STORE_VMX:
+		if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
+			return 0;
+		err = do_vec_store(op->reg, ea, size, regs, cross_endian);
+		break;
+#endif
+#ifdef CONFIG_VSX
+	case STORE_VSX: {
+		unsigned long msrbit = MSR_VSX;
+
+		/*
+		 * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
+		 * when the target of the instruction is a vector register.
+		 */
+		if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
+			msrbit = MSR_VEC;
+		if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
+			return 0;
+		err = do_vsx_store(op, ea, regs, cross_endian);
+		break;
+	}
+#endif
+	case STORE_MULTI:
+		if (!address_ok(regs, ea, size))
+			return -EFAULT;
+		rd = op->reg;
+		for (i = 0; i < size; i += 4) {
+			unsigned int v32 = regs->gpr[rd];
+
+			nb = size - i;
+			if (nb > 4)
+				nb = 4;
+			if (unlikely(cross_endian))
+				v32 = byterev_4(v32);
+			err = copy_mem_out((u8 *) &v32, ea, nb, regs);
+			if (err)
+				break;
+			ea += 4;
+			/* reg number wraps from 31 to 0 for stsw[ix] */
+			rd = (rd + 1) & 0x1f;
+		}
+		break;
+
+	default:
+		return -EINVAL;
+	}
+
+	if (err)
+		return err;
+
+	if (op->type & UPDATE)
+		regs->gpr[op->update_reg] = op->ea;
+
+	return 0;
+}
+NOKPROBE_SYMBOL(emulate_loadstore);
+
+/*
+ * Emulate instructions that cause a transfer of control,
+ * loads and stores, and a few other instructions.
+ * Returns 1 if the step was emulated, 0 if not,
+ * or -1 if the instruction is one that should not be stepped,
+ * such as an rfid, or a mtmsrd that would clear MSR_RI.
+ */
+int emulate_step(struct pt_regs *regs, unsigned int instr)
+{
+	struct instruction_op op;
+	int r, err, type;
+	unsigned long val;
+	unsigned long ea;
+
+	r = analyse_instr(&op, regs, instr);
+	if (r < 0)
+		return r;
+	if (r > 0) {
+		emulate_update_regs(regs, &op);
+		return 1;
+	}
+
+	err = 0;
+	type = GETTYPE(op.type);
+
+	if (OP_IS_LOAD_STORE(type)) {
+		err = emulate_loadstore(regs, &op);
+		if (err)
+			return 0;
+		goto instr_done;
+	}
+
+	switch (type) {
+	case CACHEOP:
+		ea = truncate_if_32bit(regs->msr, op.ea);
+		if (!address_ok(regs, ea, 8))
+			return 0;
+		switch (op.type & CACHEOP_MASK) {
+		case DCBST:
+			__cacheop_user_asmx(ea, err, "dcbst");
+			break;
+		case DCBF:
+			__cacheop_user_asmx(ea, err, "dcbf");
+			break;
+		case DCBTST:
+			if (op.reg == 0)
+				prefetchw((void *) ea);
+			break;
+		case DCBT:
+			if (op.reg == 0)
+				prefetch((void *) ea);
+			break;
+		case ICBI:
+			__cacheop_user_asmx(ea, err, "icbi");
+			break;
+		case DCBZ:
+			err = emulate_dcbz(ea, regs);
+			break;
+		}
+		if (err) {
+			regs->dar = ea;
+			return 0;
+		}
+		goto instr_done;
+
+	case MFMSR:
+		regs->gpr[op.reg] = regs->msr & MSR_MASK;
+		goto instr_done;
+
+	case MTMSR:
+		val = regs->gpr[op.reg];
+		if ((val & MSR_RI) == 0)
+			/* can't step mtmsr[d] that would clear MSR_RI */
+			return -1;
+		/* here op.val is the mask of bits to change */
+		regs->msr = (regs->msr & ~op.val) | (val & op.val);
+		goto instr_done;
+
+#ifdef CONFIG_PPC64
+	case SYSCALL:	/* sc */
+		/*
+		 * N.B. this uses knowledge about how the syscall
+		 * entry code works.  If that is changed, this will
+		 * need to be changed also.
+		 */
+		if (regs->gpr[0] == 0x1ebe &&
+		    cpu_has_feature(CPU_FTR_REAL_LE)) {
+			regs->msr ^= MSR_LE;
+			goto instr_done;
+		}
+		regs->gpr[9] = regs->gpr[13];
+		regs->gpr[10] = MSR_KERNEL;
+		regs->gpr[11] = regs->nip + 4;
+		regs->gpr[12] = regs->msr & MSR_MASK;
+		regs->gpr[13] = (unsigned long) get_paca();
+		regs->nip = (unsigned long) &system_call_common;
+		regs->msr = MSR_KERNEL;
+		return 1;
+
+	case RFI:
+		return -1;
+#endif
+	}
+	return 0;
+
+ instr_done:
+	regs->nip = truncate_if_32bit(regs->msr, regs->nip + 4);
+	return 1;
+}
+NOKPROBE_SYMBOL(emulate_step);