v4.19.13 snapshot.
diff --git a/arch/powerpc/kvm/e500.c b/arch/powerpc/kvm/e500.c
new file mode 100644
index 0000000..afd3c25
--- /dev/null
+++ b/arch/powerpc/kvm/e500.c
@@ -0,0 +1,575 @@
+/*
+ * Copyright (C) 2008-2011 Freescale Semiconductor, Inc. All rights reserved.
+ *
+ * Author: Yu Liu, <yu.liu@freescale.com>
+ *
+ * Description:
+ * This file is derived from arch/powerpc/kvm/44x.c,
+ * by Hollis Blanchard <hollisb@us.ibm.com>.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License, version 2, as
+ * published by the Free Software Foundation.
+ */
+
+#include <linux/kvm_host.h>
+#include <linux/slab.h>
+#include <linux/err.h>
+#include <linux/export.h>
+#include <linux/module.h>
+#include <linux/miscdevice.h>
+
+#include <asm/reg.h>
+#include <asm/cputable.h>
+#include <asm/kvm_ppc.h>
+
+#include "../mm/mmu_decl.h"
+#include "booke.h"
+#include "e500.h"
+
+struct id {
+	unsigned long val;
+	struct id **pentry;
+};
+
+#define NUM_TIDS 256
+
+/*
+ * This table provide mappings from:
+ * (guestAS,guestTID,guestPR) --> ID of physical cpu
+ * guestAS	[0..1]
+ * guestTID	[0..255]
+ * guestPR	[0..1]
+ * ID		[1..255]
+ * Each vcpu keeps one vcpu_id_table.
+ */
+struct vcpu_id_table {
+	struct id id[2][NUM_TIDS][2];
+};
+
+/*
+ * This table provide reversed mappings of vcpu_id_table:
+ * ID --> address of vcpu_id_table item.
+ * Each physical core has one pcpu_id_table.
+ */
+struct pcpu_id_table {
+	struct id *entry[NUM_TIDS];
+};
+
+static DEFINE_PER_CPU(struct pcpu_id_table, pcpu_sids);
+
+/* This variable keeps last used shadow ID on local core.
+ * The valid range of shadow ID is [1..255] */
+static DEFINE_PER_CPU(unsigned long, pcpu_last_used_sid);
+
+/*
+ * Allocate a free shadow id and setup a valid sid mapping in given entry.
+ * A mapping is only valid when vcpu_id_table and pcpu_id_table are match.
+ *
+ * The caller must have preemption disabled, and keep it that way until
+ * it has finished with the returned shadow id (either written into the
+ * TLB or arch.shadow_pid, or discarded).
+ */
+static inline int local_sid_setup_one(struct id *entry)
+{
+	unsigned long sid;
+	int ret = -1;
+
+	sid = __this_cpu_inc_return(pcpu_last_used_sid);
+	if (sid < NUM_TIDS) {
+		__this_cpu_write(pcpu_sids.entry[sid], entry);
+		entry->val = sid;
+		entry->pentry = this_cpu_ptr(&pcpu_sids.entry[sid]);
+		ret = sid;
+	}
+
+	/*
+	 * If sid == NUM_TIDS, we've run out of sids.  We return -1, and
+	 * the caller will invalidate everything and start over.
+	 *
+	 * sid > NUM_TIDS indicates a race, which we disable preemption to
+	 * avoid.
+	 */
+	WARN_ON(sid > NUM_TIDS);
+
+	return ret;
+}
+
+/*
+ * Check if given entry contain a valid shadow id mapping.
+ * An ID mapping is considered valid only if
+ * both vcpu and pcpu know this mapping.
+ *
+ * The caller must have preemption disabled, and keep it that way until
+ * it has finished with the returned shadow id (either written into the
+ * TLB or arch.shadow_pid, or discarded).
+ */
+static inline int local_sid_lookup(struct id *entry)
+{
+	if (entry && entry->val != 0 &&
+	    __this_cpu_read(pcpu_sids.entry[entry->val]) == entry &&
+	    entry->pentry == this_cpu_ptr(&pcpu_sids.entry[entry->val]))
+		return entry->val;
+	return -1;
+}
+
+/* Invalidate all id mappings on local core -- call with preempt disabled */
+static inline void local_sid_destroy_all(void)
+{
+	__this_cpu_write(pcpu_last_used_sid, 0);
+	memset(this_cpu_ptr(&pcpu_sids), 0, sizeof(pcpu_sids));
+}
+
+static void *kvmppc_e500_id_table_alloc(struct kvmppc_vcpu_e500 *vcpu_e500)
+{
+	vcpu_e500->idt = kzalloc(sizeof(struct vcpu_id_table), GFP_KERNEL);
+	return vcpu_e500->idt;
+}
+
+static void kvmppc_e500_id_table_free(struct kvmppc_vcpu_e500 *vcpu_e500)
+{
+	kfree(vcpu_e500->idt);
+	vcpu_e500->idt = NULL;
+}
+
+/* Map guest pid to shadow.
+ * We use PID to keep shadow of current guest non-zero PID,
+ * and use PID1 to keep shadow of guest zero PID.
+ * So that guest tlbe with TID=0 can be accessed at any time */
+static void kvmppc_e500_recalc_shadow_pid(struct kvmppc_vcpu_e500 *vcpu_e500)
+{
+	preempt_disable();
+	vcpu_e500->vcpu.arch.shadow_pid = kvmppc_e500_get_sid(vcpu_e500,
+			get_cur_as(&vcpu_e500->vcpu),
+			get_cur_pid(&vcpu_e500->vcpu),
+			get_cur_pr(&vcpu_e500->vcpu), 1);
+	vcpu_e500->vcpu.arch.shadow_pid1 = kvmppc_e500_get_sid(vcpu_e500,
+			get_cur_as(&vcpu_e500->vcpu), 0,
+			get_cur_pr(&vcpu_e500->vcpu), 1);
+	preempt_enable();
+}
+
+/* Invalidate all mappings on vcpu */
+static void kvmppc_e500_id_table_reset_all(struct kvmppc_vcpu_e500 *vcpu_e500)
+{
+	memset(vcpu_e500->idt, 0, sizeof(struct vcpu_id_table));
+
+	/* Update shadow pid when mappings are changed */
+	kvmppc_e500_recalc_shadow_pid(vcpu_e500);
+}
+
+/* Invalidate one ID mapping on vcpu */
+static inline void kvmppc_e500_id_table_reset_one(
+			       struct kvmppc_vcpu_e500 *vcpu_e500,
+			       int as, int pid, int pr)
+{
+	struct vcpu_id_table *idt = vcpu_e500->idt;
+
+	BUG_ON(as >= 2);
+	BUG_ON(pid >= NUM_TIDS);
+	BUG_ON(pr >= 2);
+
+	idt->id[as][pid][pr].val = 0;
+	idt->id[as][pid][pr].pentry = NULL;
+
+	/* Update shadow pid when mappings are changed */
+	kvmppc_e500_recalc_shadow_pid(vcpu_e500);
+}
+
+/*
+ * Map guest (vcpu,AS,ID,PR) to physical core shadow id.
+ * This function first lookup if a valid mapping exists,
+ * if not, then creates a new one.
+ *
+ * The caller must have preemption disabled, and keep it that way until
+ * it has finished with the returned shadow id (either written into the
+ * TLB or arch.shadow_pid, or discarded).
+ */
+unsigned int kvmppc_e500_get_sid(struct kvmppc_vcpu_e500 *vcpu_e500,
+				 unsigned int as, unsigned int gid,
+				 unsigned int pr, int avoid_recursion)
+{
+	struct vcpu_id_table *idt = vcpu_e500->idt;
+	int sid;
+
+	BUG_ON(as >= 2);
+	BUG_ON(gid >= NUM_TIDS);
+	BUG_ON(pr >= 2);
+
+	sid = local_sid_lookup(&idt->id[as][gid][pr]);
+
+	while (sid <= 0) {
+		/* No mapping yet */
+		sid = local_sid_setup_one(&idt->id[as][gid][pr]);
+		if (sid <= 0) {
+			_tlbil_all();
+			local_sid_destroy_all();
+		}
+
+		/* Update shadow pid when mappings are changed */
+		if (!avoid_recursion)
+			kvmppc_e500_recalc_shadow_pid(vcpu_e500);
+	}
+
+	return sid;
+}
+
+unsigned int kvmppc_e500_get_tlb_stid(struct kvm_vcpu *vcpu,
+				      struct kvm_book3e_206_tlb_entry *gtlbe)
+{
+	return kvmppc_e500_get_sid(to_e500(vcpu), get_tlb_ts(gtlbe),
+				   get_tlb_tid(gtlbe), get_cur_pr(vcpu), 0);
+}
+
+void kvmppc_set_pid(struct kvm_vcpu *vcpu, u32 pid)
+{
+	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
+
+	if (vcpu->arch.pid != pid) {
+		vcpu_e500->pid[0] = vcpu->arch.pid = pid;
+		kvmppc_e500_recalc_shadow_pid(vcpu_e500);
+	}
+}
+
+/* gtlbe must not be mapped by more than one host tlbe */
+void kvmppc_e500_tlbil_one(struct kvmppc_vcpu_e500 *vcpu_e500,
+                           struct kvm_book3e_206_tlb_entry *gtlbe)
+{
+	struct vcpu_id_table *idt = vcpu_e500->idt;
+	unsigned int pr, tid, ts;
+	int pid;
+	u32 val, eaddr;
+	unsigned long flags;
+
+	ts = get_tlb_ts(gtlbe);
+	tid = get_tlb_tid(gtlbe);
+
+	preempt_disable();
+
+	/* One guest ID may be mapped to two shadow IDs */
+	for (pr = 0; pr < 2; pr++) {
+		/*
+		 * The shadow PID can have a valid mapping on at most one
+		 * host CPU.  In the common case, it will be valid on this
+		 * CPU, in which case we do a local invalidation of the
+		 * specific address.
+		 *
+		 * If the shadow PID is not valid on the current host CPU,
+		 * we invalidate the entire shadow PID.
+		 */
+		pid = local_sid_lookup(&idt->id[ts][tid][pr]);
+		if (pid <= 0) {
+			kvmppc_e500_id_table_reset_one(vcpu_e500, ts, tid, pr);
+			continue;
+		}
+
+		/*
+		 * The guest is invalidating a 4K entry which is in a PID
+		 * that has a valid shadow mapping on this host CPU.  We
+		 * search host TLB to invalidate it's shadow TLB entry,
+		 * similar to __tlbil_va except that we need to look in AS1.
+		 */
+		val = (pid << MAS6_SPID_SHIFT) | MAS6_SAS;
+		eaddr = get_tlb_eaddr(gtlbe);
+
+		local_irq_save(flags);
+
+		mtspr(SPRN_MAS6, val);
+		asm volatile("tlbsx 0, %[eaddr]" : : [eaddr] "r" (eaddr));
+		val = mfspr(SPRN_MAS1);
+		if (val & MAS1_VALID) {
+			mtspr(SPRN_MAS1, val & ~MAS1_VALID);
+			asm volatile("tlbwe");
+		}
+
+		local_irq_restore(flags);
+	}
+
+	preempt_enable();
+}
+
+void kvmppc_e500_tlbil_all(struct kvmppc_vcpu_e500 *vcpu_e500)
+{
+	kvmppc_e500_id_table_reset_all(vcpu_e500);
+}
+
+void kvmppc_mmu_msr_notify(struct kvm_vcpu *vcpu, u32 old_msr)
+{
+	/* Recalc shadow pid since MSR changes */
+	kvmppc_e500_recalc_shadow_pid(to_e500(vcpu));
+}
+
+static void kvmppc_core_vcpu_load_e500(struct kvm_vcpu *vcpu, int cpu)
+{
+	kvmppc_booke_vcpu_load(vcpu, cpu);
+
+	/* Shadow PID may be expired on local core */
+	kvmppc_e500_recalc_shadow_pid(to_e500(vcpu));
+}
+
+static void kvmppc_core_vcpu_put_e500(struct kvm_vcpu *vcpu)
+{
+#ifdef CONFIG_SPE
+	if (vcpu->arch.shadow_msr & MSR_SPE)
+		kvmppc_vcpu_disable_spe(vcpu);
+#endif
+
+	kvmppc_booke_vcpu_put(vcpu);
+}
+
+int kvmppc_core_check_processor_compat(void)
+{
+	int r;
+
+	if (strcmp(cur_cpu_spec->cpu_name, "e500v2") == 0)
+		r = 0;
+	else
+		r = -ENOTSUPP;
+
+	return r;
+}
+
+static void kvmppc_e500_tlb_setup(struct kvmppc_vcpu_e500 *vcpu_e500)
+{
+	struct kvm_book3e_206_tlb_entry *tlbe;
+
+	/* Insert large initial mapping for guest. */
+	tlbe = get_entry(vcpu_e500, 1, 0);
+	tlbe->mas1 = MAS1_VALID | MAS1_TSIZE(BOOK3E_PAGESZ_256M);
+	tlbe->mas2 = 0;
+	tlbe->mas7_3 = E500_TLB_SUPER_PERM_MASK;
+
+	/* 4K map for serial output. Used by kernel wrapper. */
+	tlbe = get_entry(vcpu_e500, 1, 1);
+	tlbe->mas1 = MAS1_VALID | MAS1_TSIZE(BOOK3E_PAGESZ_4K);
+	tlbe->mas2 = (0xe0004500 & 0xFFFFF000) | MAS2_I | MAS2_G;
+	tlbe->mas7_3 = (0xe0004500 & 0xFFFFF000) | E500_TLB_SUPER_PERM_MASK;
+}
+
+int kvmppc_core_vcpu_setup(struct kvm_vcpu *vcpu)
+{
+	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
+
+	kvmppc_e500_tlb_setup(vcpu_e500);
+
+	/* Registers init */
+	vcpu->arch.pvr = mfspr(SPRN_PVR);
+	vcpu_e500->svr = mfspr(SPRN_SVR);
+
+	vcpu->arch.cpu_type = KVM_CPU_E500V2;
+
+	return 0;
+}
+
+static int kvmppc_core_get_sregs_e500(struct kvm_vcpu *vcpu,
+				      struct kvm_sregs *sregs)
+{
+	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
+
+	sregs->u.e.features |= KVM_SREGS_E_ARCH206_MMU | KVM_SREGS_E_SPE |
+	                       KVM_SREGS_E_PM;
+	sregs->u.e.impl_id = KVM_SREGS_E_IMPL_FSL;
+
+	sregs->u.e.impl.fsl.features = 0;
+	sregs->u.e.impl.fsl.svr = vcpu_e500->svr;
+	sregs->u.e.impl.fsl.hid0 = vcpu_e500->hid0;
+	sregs->u.e.impl.fsl.mcar = vcpu_e500->mcar;
+
+	sregs->u.e.ivor_high[0] = vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_UNAVAIL];
+	sregs->u.e.ivor_high[1] = vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_DATA];
+	sregs->u.e.ivor_high[2] = vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_ROUND];
+	sregs->u.e.ivor_high[3] =
+		vcpu->arch.ivor[BOOKE_IRQPRIO_PERFORMANCE_MONITOR];
+
+	kvmppc_get_sregs_ivor(vcpu, sregs);
+	kvmppc_get_sregs_e500_tlb(vcpu, sregs);
+	return 0;
+}
+
+static int kvmppc_core_set_sregs_e500(struct kvm_vcpu *vcpu,
+				      struct kvm_sregs *sregs)
+{
+	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
+	int ret;
+
+	if (sregs->u.e.impl_id == KVM_SREGS_E_IMPL_FSL) {
+		vcpu_e500->svr = sregs->u.e.impl.fsl.svr;
+		vcpu_e500->hid0 = sregs->u.e.impl.fsl.hid0;
+		vcpu_e500->mcar = sregs->u.e.impl.fsl.mcar;
+	}
+
+	ret = kvmppc_set_sregs_e500_tlb(vcpu, sregs);
+	if (ret < 0)
+		return ret;
+
+	if (!(sregs->u.e.features & KVM_SREGS_E_IVOR))
+		return 0;
+
+	if (sregs->u.e.features & KVM_SREGS_E_SPE) {
+		vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_UNAVAIL] =
+			sregs->u.e.ivor_high[0];
+		vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_DATA] =
+			sregs->u.e.ivor_high[1];
+		vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_ROUND] =
+			sregs->u.e.ivor_high[2];
+	}
+
+	if (sregs->u.e.features & KVM_SREGS_E_PM) {
+		vcpu->arch.ivor[BOOKE_IRQPRIO_PERFORMANCE_MONITOR] =
+			sregs->u.e.ivor_high[3];
+	}
+
+	return kvmppc_set_sregs_ivor(vcpu, sregs);
+}
+
+static int kvmppc_get_one_reg_e500(struct kvm_vcpu *vcpu, u64 id,
+				   union kvmppc_one_reg *val)
+{
+	int r = kvmppc_get_one_reg_e500_tlb(vcpu, id, val);
+	return r;
+}
+
+static int kvmppc_set_one_reg_e500(struct kvm_vcpu *vcpu, u64 id,
+				   union kvmppc_one_reg *val)
+{
+	int r = kvmppc_get_one_reg_e500_tlb(vcpu, id, val);
+	return r;
+}
+
+static struct kvm_vcpu *kvmppc_core_vcpu_create_e500(struct kvm *kvm,
+						     unsigned int id)
+{
+	struct kvmppc_vcpu_e500 *vcpu_e500;
+	struct kvm_vcpu *vcpu;
+	int err;
+
+	vcpu_e500 = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
+	if (!vcpu_e500) {
+		err = -ENOMEM;
+		goto out;
+	}
+
+	vcpu = &vcpu_e500->vcpu;
+	err = kvm_vcpu_init(vcpu, kvm, id);
+	if (err)
+		goto free_vcpu;
+
+	if (kvmppc_e500_id_table_alloc(vcpu_e500) == NULL) {
+		err = -ENOMEM;
+		goto uninit_vcpu;
+	}
+
+	err = kvmppc_e500_tlb_init(vcpu_e500);
+	if (err)
+		goto uninit_id;
+
+	vcpu->arch.shared = (void*)__get_free_page(GFP_KERNEL|__GFP_ZERO);
+	if (!vcpu->arch.shared) {
+		err = -ENOMEM;
+		goto uninit_tlb;
+	}
+
+	return vcpu;
+
+uninit_tlb:
+	kvmppc_e500_tlb_uninit(vcpu_e500);
+uninit_id:
+	kvmppc_e500_id_table_free(vcpu_e500);
+uninit_vcpu:
+	kvm_vcpu_uninit(vcpu);
+free_vcpu:
+	kmem_cache_free(kvm_vcpu_cache, vcpu_e500);
+out:
+	return ERR_PTR(err);
+}
+
+static void kvmppc_core_vcpu_free_e500(struct kvm_vcpu *vcpu)
+{
+	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
+
+	free_page((unsigned long)vcpu->arch.shared);
+	kvmppc_e500_tlb_uninit(vcpu_e500);
+	kvmppc_e500_id_table_free(vcpu_e500);
+	kvm_vcpu_uninit(vcpu);
+	kmem_cache_free(kvm_vcpu_cache, vcpu_e500);
+}
+
+static int kvmppc_core_init_vm_e500(struct kvm *kvm)
+{
+	return 0;
+}
+
+static void kvmppc_core_destroy_vm_e500(struct kvm *kvm)
+{
+}
+
+static struct kvmppc_ops kvm_ops_e500 = {
+	.get_sregs = kvmppc_core_get_sregs_e500,
+	.set_sregs = kvmppc_core_set_sregs_e500,
+	.get_one_reg = kvmppc_get_one_reg_e500,
+	.set_one_reg = kvmppc_set_one_reg_e500,
+	.vcpu_load   = kvmppc_core_vcpu_load_e500,
+	.vcpu_put    = kvmppc_core_vcpu_put_e500,
+	.vcpu_create = kvmppc_core_vcpu_create_e500,
+	.vcpu_free   = kvmppc_core_vcpu_free_e500,
+	.mmu_destroy  = kvmppc_mmu_destroy_e500,
+	.init_vm = kvmppc_core_init_vm_e500,
+	.destroy_vm = kvmppc_core_destroy_vm_e500,
+	.emulate_op = kvmppc_core_emulate_op_e500,
+	.emulate_mtspr = kvmppc_core_emulate_mtspr_e500,
+	.emulate_mfspr = kvmppc_core_emulate_mfspr_e500,
+};
+
+static int __init kvmppc_e500_init(void)
+{
+	int r, i;
+	unsigned long ivor[3];
+	/* Process remaining handlers above the generic first 16 */
+	unsigned long *handler = &kvmppc_booke_handler_addr[16];
+	unsigned long handler_len;
+	unsigned long max_ivor = 0;
+
+	r = kvmppc_core_check_processor_compat();
+	if (r)
+		goto err_out;
+
+	r = kvmppc_booke_init();
+	if (r)
+		goto err_out;
+
+	/* copy extra E500 exception handlers */
+	ivor[0] = mfspr(SPRN_IVOR32);
+	ivor[1] = mfspr(SPRN_IVOR33);
+	ivor[2] = mfspr(SPRN_IVOR34);
+	for (i = 0; i < 3; i++) {
+		if (ivor[i] > ivor[max_ivor])
+			max_ivor = i;
+
+		handler_len = handler[i + 1] - handler[i];
+		memcpy((void *)kvmppc_booke_handlers + ivor[i],
+		       (void *)handler[i], handler_len);
+	}
+	handler_len = handler[max_ivor + 1] - handler[max_ivor];
+	flush_icache_range(kvmppc_booke_handlers, kvmppc_booke_handlers +
+			   ivor[max_ivor] + handler_len);
+
+	r = kvm_init(NULL, sizeof(struct kvmppc_vcpu_e500), 0, THIS_MODULE);
+	if (r)
+		goto err_out;
+	kvm_ops_e500.owner = THIS_MODULE;
+	kvmppc_pr_ops = &kvm_ops_e500;
+
+err_out:
+	return r;
+}
+
+static void __exit kvmppc_e500_exit(void)
+{
+	kvmppc_pr_ops = NULL;
+	kvmppc_booke_exit();
+}
+
+module_init(kvmppc_e500_init);
+module_exit(kvmppc_e500_exit);
+MODULE_ALIAS_MISCDEV(KVM_MINOR);
+MODULE_ALIAS("devname:kvm");