v4.19.13 snapshot.
diff --git a/arch/ia64/kernel/efi.c b/arch/ia64/kernel/efi.c
new file mode 100644
index 0000000..9c09bf3
--- /dev/null
+++ b/arch/ia64/kernel/efi.c
@@ -0,0 +1,1351 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Extensible Firmware Interface
+ *
+ * Based on Extensible Firmware Interface Specification version 0.9
+ * April 30, 1999
+ *
+ * Copyright (C) 1999 VA Linux Systems
+ * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
+ * Copyright (C) 1999-2003 Hewlett-Packard Co.
+ *	David Mosberger-Tang <davidm@hpl.hp.com>
+ *	Stephane Eranian <eranian@hpl.hp.com>
+ * (c) Copyright 2006 Hewlett-Packard Development Company, L.P.
+ *	Bjorn Helgaas <bjorn.helgaas@hp.com>
+ *
+ * All EFI Runtime Services are not implemented yet as EFI only
+ * supports physical mode addressing on SoftSDV. This is to be fixed
+ * in a future version.  --drummond 1999-07-20
+ *
+ * Implemented EFI runtime services and virtual mode calls.  --davidm
+ *
+ * Goutham Rao: <goutham.rao@intel.com>
+ *	Skip non-WB memory and ignore empty memory ranges.
+ */
+#include <linux/module.h>
+#include <linux/bootmem.h>
+#include <linux/crash_dump.h>
+#include <linux/kernel.h>
+#include <linux/init.h>
+#include <linux/types.h>
+#include <linux/slab.h>
+#include <linux/time.h>
+#include <linux/efi.h>
+#include <linux/kexec.h>
+#include <linux/mm.h>
+
+#include <asm/io.h>
+#include <asm/kregs.h>
+#include <asm/meminit.h>
+#include <asm/pgtable.h>
+#include <asm/processor.h>
+#include <asm/mca.h>
+#include <asm/setup.h>
+#include <asm/tlbflush.h>
+
+#define EFI_DEBUG	0
+
+static __initdata unsigned long palo_phys;
+
+static __initdata efi_config_table_type_t arch_tables[] = {
+	{PROCESSOR_ABSTRACTION_LAYER_OVERWRITE_GUID, "PALO", &palo_phys},
+	{NULL_GUID, NULL, 0},
+};
+
+extern efi_status_t efi_call_phys (void *, ...);
+
+static efi_runtime_services_t *runtime;
+static u64 mem_limit = ~0UL, max_addr = ~0UL, min_addr = 0UL;
+
+#define efi_call_virt(f, args...)	(*(f))(args)
+
+#define STUB_GET_TIME(prefix, adjust_arg)				       \
+static efi_status_t							       \
+prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc)			       \
+{									       \
+	struct ia64_fpreg fr[6];					       \
+	efi_time_cap_t *atc = NULL;					       \
+	efi_status_t ret;						       \
+									       \
+	if (tc)								       \
+		atc = adjust_arg(tc);					       \
+	ia64_save_scratch_fpregs(fr);					       \
+	ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time),    \
+				adjust_arg(tm), atc);			       \
+	ia64_load_scratch_fpregs(fr);					       \
+	return ret;							       \
+}
+
+#define STUB_SET_TIME(prefix, adjust_arg)				       \
+static efi_status_t							       \
+prefix##_set_time (efi_time_t *tm)					       \
+{									       \
+	struct ia64_fpreg fr[6];					       \
+	efi_status_t ret;						       \
+									       \
+	ia64_save_scratch_fpregs(fr);					       \
+	ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time),    \
+				adjust_arg(tm));			       \
+	ia64_load_scratch_fpregs(fr);					       \
+	return ret;							       \
+}
+
+#define STUB_GET_WAKEUP_TIME(prefix, adjust_arg)			       \
+static efi_status_t							       \
+prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending,	       \
+			  efi_time_t *tm)				       \
+{									       \
+	struct ia64_fpreg fr[6];					       \
+	efi_status_t ret;						       \
+									       \
+	ia64_save_scratch_fpregs(fr);					       \
+	ret = efi_call_##prefix(					       \
+		(efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time),      \
+		adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm));     \
+	ia64_load_scratch_fpregs(fr);					       \
+	return ret;							       \
+}
+
+#define STUB_SET_WAKEUP_TIME(prefix, adjust_arg)			       \
+static efi_status_t							       \
+prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm)		       \
+{									       \
+	struct ia64_fpreg fr[6];					       \
+	efi_time_t *atm = NULL;						       \
+	efi_status_t ret;						       \
+									       \
+	if (tm)								       \
+		atm = adjust_arg(tm);					       \
+	ia64_save_scratch_fpregs(fr);					       \
+	ret = efi_call_##prefix(					       \
+		(efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time),      \
+		enabled, atm);						       \
+	ia64_load_scratch_fpregs(fr);					       \
+	return ret;							       \
+}
+
+#define STUB_GET_VARIABLE(prefix, adjust_arg)				       \
+static efi_status_t							       \
+prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr,      \
+		       unsigned long *data_size, void *data)		       \
+{									       \
+	struct ia64_fpreg fr[6];					       \
+	u32 *aattr = NULL;						       \
+	efi_status_t ret;						       \
+									       \
+	if (attr)							       \
+		aattr = adjust_arg(attr);				       \
+	ia64_save_scratch_fpregs(fr);					       \
+	ret = efi_call_##prefix(					       \
+		(efi_get_variable_t *) __va(runtime->get_variable),	       \
+		adjust_arg(name), adjust_arg(vendor), aattr,		       \
+		adjust_arg(data_size), adjust_arg(data));		       \
+	ia64_load_scratch_fpregs(fr);					       \
+	return ret;							       \
+}
+
+#define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg)			       \
+static efi_status_t							       \
+prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name,      \
+			    efi_guid_t *vendor)				       \
+{									       \
+	struct ia64_fpreg fr[6];					       \
+	efi_status_t ret;						       \
+									       \
+	ia64_save_scratch_fpregs(fr);					       \
+	ret = efi_call_##prefix(					       \
+		(efi_get_next_variable_t *) __va(runtime->get_next_variable),  \
+		adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor));  \
+	ia64_load_scratch_fpregs(fr);					       \
+	return ret;							       \
+}
+
+#define STUB_SET_VARIABLE(prefix, adjust_arg)				       \
+static efi_status_t							       \
+prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor,		       \
+		       u32 attr, unsigned long data_size,		       \
+		       void *data)					       \
+{									       \
+	struct ia64_fpreg fr[6];					       \
+	efi_status_t ret;						       \
+									       \
+	ia64_save_scratch_fpregs(fr);					       \
+	ret = efi_call_##prefix(					       \
+		(efi_set_variable_t *) __va(runtime->set_variable),	       \
+		adjust_arg(name), adjust_arg(vendor), attr, data_size,	       \
+		adjust_arg(data));					       \
+	ia64_load_scratch_fpregs(fr);					       \
+	return ret;							       \
+}
+
+#define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg)		       \
+static efi_status_t							       \
+prefix##_get_next_high_mono_count (u32 *count)				       \
+{									       \
+	struct ia64_fpreg fr[6];					       \
+	efi_status_t ret;						       \
+									       \
+	ia64_save_scratch_fpregs(fr);					       \
+	ret = efi_call_##prefix((efi_get_next_high_mono_count_t *)	       \
+				__va(runtime->get_next_high_mono_count),       \
+				adjust_arg(count));			       \
+	ia64_load_scratch_fpregs(fr);					       \
+	return ret;							       \
+}
+
+#define STUB_RESET_SYSTEM(prefix, adjust_arg)				       \
+static void								       \
+prefix##_reset_system (int reset_type, efi_status_t status,		       \
+		       unsigned long data_size, efi_char16_t *data)	       \
+{									       \
+	struct ia64_fpreg fr[6];					       \
+	efi_char16_t *adata = NULL;					       \
+									       \
+	if (data)							       \
+		adata = adjust_arg(data);				       \
+									       \
+	ia64_save_scratch_fpregs(fr);					       \
+	efi_call_##prefix(						       \
+		(efi_reset_system_t *) __va(runtime->reset_system),	       \
+		reset_type, status, data_size, adata);			       \
+	/* should not return, but just in case... */			       \
+	ia64_load_scratch_fpregs(fr);					       \
+}
+
+#define phys_ptr(arg)	((__typeof__(arg)) ia64_tpa(arg))
+
+STUB_GET_TIME(phys, phys_ptr)
+STUB_SET_TIME(phys, phys_ptr)
+STUB_GET_WAKEUP_TIME(phys, phys_ptr)
+STUB_SET_WAKEUP_TIME(phys, phys_ptr)
+STUB_GET_VARIABLE(phys, phys_ptr)
+STUB_GET_NEXT_VARIABLE(phys, phys_ptr)
+STUB_SET_VARIABLE(phys, phys_ptr)
+STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr)
+STUB_RESET_SYSTEM(phys, phys_ptr)
+
+#define id(arg)	arg
+
+STUB_GET_TIME(virt, id)
+STUB_SET_TIME(virt, id)
+STUB_GET_WAKEUP_TIME(virt, id)
+STUB_SET_WAKEUP_TIME(virt, id)
+STUB_GET_VARIABLE(virt, id)
+STUB_GET_NEXT_VARIABLE(virt, id)
+STUB_SET_VARIABLE(virt, id)
+STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id)
+STUB_RESET_SYSTEM(virt, id)
+
+void
+efi_gettimeofday (struct timespec64 *ts)
+{
+	efi_time_t tm;
+
+	if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS) {
+		memset(ts, 0, sizeof(*ts));
+		return;
+	}
+
+	ts->tv_sec = mktime64(tm.year, tm.month, tm.day,
+			    tm.hour, tm.minute, tm.second);
+	ts->tv_nsec = tm.nanosecond;
+}
+
+static int
+is_memory_available (efi_memory_desc_t *md)
+{
+	if (!(md->attribute & EFI_MEMORY_WB))
+		return 0;
+
+	switch (md->type) {
+	      case EFI_LOADER_CODE:
+	      case EFI_LOADER_DATA:
+	      case EFI_BOOT_SERVICES_CODE:
+	      case EFI_BOOT_SERVICES_DATA:
+	      case EFI_CONVENTIONAL_MEMORY:
+		return 1;
+	}
+	return 0;
+}
+
+typedef struct kern_memdesc {
+	u64 attribute;
+	u64 start;
+	u64 num_pages;
+} kern_memdesc_t;
+
+static kern_memdesc_t *kern_memmap;
+
+#define efi_md_size(md)	(md->num_pages << EFI_PAGE_SHIFT)
+
+static inline u64
+kmd_end(kern_memdesc_t *kmd)
+{
+	return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT));
+}
+
+static inline u64
+efi_md_end(efi_memory_desc_t *md)
+{
+	return (md->phys_addr + efi_md_size(md));
+}
+
+static inline int
+efi_wb(efi_memory_desc_t *md)
+{
+	return (md->attribute & EFI_MEMORY_WB);
+}
+
+static inline int
+efi_uc(efi_memory_desc_t *md)
+{
+	return (md->attribute & EFI_MEMORY_UC);
+}
+
+static void
+walk (efi_freemem_callback_t callback, void *arg, u64 attr)
+{
+	kern_memdesc_t *k;
+	u64 start, end, voff;
+
+	voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET;
+	for (k = kern_memmap; k->start != ~0UL; k++) {
+		if (k->attribute != attr)
+			continue;
+		start = PAGE_ALIGN(k->start);
+		end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK;
+		if (start < end)
+			if ((*callback)(start + voff, end + voff, arg) < 0)
+				return;
+	}
+}
+
+/*
+ * Walk the EFI memory map and call CALLBACK once for each EFI memory
+ * descriptor that has memory that is available for OS use.
+ */
+void
+efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
+{
+	walk(callback, arg, EFI_MEMORY_WB);
+}
+
+/*
+ * Walk the EFI memory map and call CALLBACK once for each EFI memory
+ * descriptor that has memory that is available for uncached allocator.
+ */
+void
+efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg)
+{
+	walk(callback, arg, EFI_MEMORY_UC);
+}
+
+/*
+ * Look for the PAL_CODE region reported by EFI and map it using an
+ * ITR to enable safe PAL calls in virtual mode.  See IA-64 Processor
+ * Abstraction Layer chapter 11 in ADAG
+ */
+void *
+efi_get_pal_addr (void)
+{
+	void *efi_map_start, *efi_map_end, *p;
+	efi_memory_desc_t *md;
+	u64 efi_desc_size;
+	int pal_code_count = 0;
+	u64 vaddr, mask;
+
+	efi_map_start = __va(ia64_boot_param->efi_memmap);
+	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
+	efi_desc_size = ia64_boot_param->efi_memdesc_size;
+
+	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
+		md = p;
+		if (md->type != EFI_PAL_CODE)
+			continue;
+
+		if (++pal_code_count > 1) {
+			printk(KERN_ERR "Too many EFI Pal Code memory ranges, "
+			       "dropped @ %llx\n", md->phys_addr);
+			continue;
+		}
+		/*
+		 * The only ITLB entry in region 7 that is used is the one
+		 * installed by __start().  That entry covers a 64MB range.
+		 */
+		mask  = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1);
+		vaddr = PAGE_OFFSET + md->phys_addr;
+
+		/*
+		 * We must check that the PAL mapping won't overlap with the
+		 * kernel mapping.
+		 *
+		 * PAL code is guaranteed to be aligned on a power of 2 between
+		 * 4k and 256KB and that only one ITR is needed to map it. This
+		 * implies that the PAL code is always aligned on its size,
+		 * i.e., the closest matching page size supported by the TLB.
+		 * Therefore PAL code is guaranteed never to cross a 64MB unless
+		 * it is bigger than 64MB (very unlikely!).  So for now the
+		 * following test is enough to determine whether or not we need
+		 * a dedicated ITR for the PAL code.
+		 */
+		if ((vaddr & mask) == (KERNEL_START & mask)) {
+			printk(KERN_INFO "%s: no need to install ITR for PAL code\n",
+			       __func__);
+			continue;
+		}
+
+		if (efi_md_size(md) > IA64_GRANULE_SIZE)
+			panic("Whoa!  PAL code size bigger than a granule!");
+
+#if EFI_DEBUG
+		mask  = ~((1 << IA64_GRANULE_SHIFT) - 1);
+
+		printk(KERN_INFO "CPU %d: mapping PAL code "
+                       "[0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
+                       smp_processor_id(), md->phys_addr,
+                       md->phys_addr + efi_md_size(md),
+                       vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);
+#endif
+		return __va(md->phys_addr);
+	}
+	printk(KERN_WARNING "%s: no PAL-code memory-descriptor found\n",
+	       __func__);
+	return NULL;
+}
+
+
+static u8 __init palo_checksum(u8 *buffer, u32 length)
+{
+	u8 sum = 0;
+	u8 *end = buffer + length;
+
+	while (buffer < end)
+		sum = (u8) (sum + *(buffer++));
+
+	return sum;
+}
+
+/*
+ * Parse and handle PALO table which is published at:
+ * http://www.dig64.org/home/DIG64_PALO_R1_0.pdf
+ */
+static void __init handle_palo(unsigned long phys_addr)
+{
+	struct palo_table *palo = __va(phys_addr);
+	u8  checksum;
+
+	if (strncmp(palo->signature, PALO_SIG, sizeof(PALO_SIG) - 1)) {
+		printk(KERN_INFO "PALO signature incorrect.\n");
+		return;
+	}
+
+	checksum = palo_checksum((u8 *)palo, palo->length);
+	if (checksum) {
+		printk(KERN_INFO "PALO checksum incorrect.\n");
+		return;
+	}
+
+	setup_ptcg_sem(palo->max_tlb_purges, NPTCG_FROM_PALO);
+}
+
+void
+efi_map_pal_code (void)
+{
+	void *pal_vaddr = efi_get_pal_addr ();
+	u64 psr;
+
+	if (!pal_vaddr)
+		return;
+
+	/*
+	 * Cannot write to CRx with PSR.ic=1
+	 */
+	psr = ia64_clear_ic();
+	ia64_itr(0x1, IA64_TR_PALCODE,
+		 GRANULEROUNDDOWN((unsigned long) pal_vaddr),
+		 pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)),
+		 IA64_GRANULE_SHIFT);
+	ia64_set_psr(psr);		/* restore psr */
+}
+
+void __init
+efi_init (void)
+{
+	void *efi_map_start, *efi_map_end;
+	efi_char16_t *c16;
+	u64 efi_desc_size;
+	char *cp, vendor[100] = "unknown";
+	int i;
+
+	set_bit(EFI_BOOT, &efi.flags);
+	set_bit(EFI_64BIT, &efi.flags);
+
+	/*
+	 * It's too early to be able to use the standard kernel command line
+	 * support...
+	 */
+	for (cp = boot_command_line; *cp; ) {
+		if (memcmp(cp, "mem=", 4) == 0) {
+			mem_limit = memparse(cp + 4, &cp);
+		} else if (memcmp(cp, "max_addr=", 9) == 0) {
+			max_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
+		} else if (memcmp(cp, "min_addr=", 9) == 0) {
+			min_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
+		} else {
+			while (*cp != ' ' && *cp)
+				++cp;
+			while (*cp == ' ')
+				++cp;
+		}
+	}
+	if (min_addr != 0UL)
+		printk(KERN_INFO "Ignoring memory below %lluMB\n",
+		       min_addr >> 20);
+	if (max_addr != ~0UL)
+		printk(KERN_INFO "Ignoring memory above %lluMB\n",
+		       max_addr >> 20);
+
+	efi.systab = __va(ia64_boot_param->efi_systab);
+
+	/*
+	 * Verify the EFI Table
+	 */
+	if (efi.systab == NULL)
+		panic("Whoa! Can't find EFI system table.\n");
+	if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
+		panic("Whoa! EFI system table signature incorrect\n");
+	if ((efi.systab->hdr.revision >> 16) == 0)
+		printk(KERN_WARNING "Warning: EFI system table version "
+		       "%d.%02d, expected 1.00 or greater\n",
+		       efi.systab->hdr.revision >> 16,
+		       efi.systab->hdr.revision & 0xffff);
+
+	/* Show what we know for posterity */
+	c16 = __va(efi.systab->fw_vendor);
+	if (c16) {
+		for (i = 0;i < (int) sizeof(vendor) - 1 && *c16; ++i)
+			vendor[i] = *c16++;
+		vendor[i] = '\0';
+	}
+
+	printk(KERN_INFO "EFI v%u.%.02u by %s:",
+	       efi.systab->hdr.revision >> 16,
+	       efi.systab->hdr.revision & 0xffff, vendor);
+
+	palo_phys      = EFI_INVALID_TABLE_ADDR;
+
+	if (efi_config_init(arch_tables) != 0)
+		return;
+
+	if (palo_phys != EFI_INVALID_TABLE_ADDR)
+		handle_palo(palo_phys);
+
+	runtime = __va(efi.systab->runtime);
+	efi.get_time = phys_get_time;
+	efi.set_time = phys_set_time;
+	efi.get_wakeup_time = phys_get_wakeup_time;
+	efi.set_wakeup_time = phys_set_wakeup_time;
+	efi.get_variable = phys_get_variable;
+	efi.get_next_variable = phys_get_next_variable;
+	efi.set_variable = phys_set_variable;
+	efi.get_next_high_mono_count = phys_get_next_high_mono_count;
+	efi.reset_system = phys_reset_system;
+
+	efi_map_start = __va(ia64_boot_param->efi_memmap);
+	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
+	efi_desc_size = ia64_boot_param->efi_memdesc_size;
+
+#if EFI_DEBUG
+	/* print EFI memory map: */
+	{
+		efi_memory_desc_t *md;
+		void *p;
+
+		for (i = 0, p = efi_map_start; p < efi_map_end;
+		     ++i, p += efi_desc_size)
+		{
+			const char *unit;
+			unsigned long size;
+			char buf[64];
+
+			md = p;
+			size = md->num_pages << EFI_PAGE_SHIFT;
+
+			if ((size >> 40) > 0) {
+				size >>= 40;
+				unit = "TB";
+			} else if ((size >> 30) > 0) {
+				size >>= 30;
+				unit = "GB";
+			} else if ((size >> 20) > 0) {
+				size >>= 20;
+				unit = "MB";
+			} else {
+				size >>= 10;
+				unit = "KB";
+			}
+
+			printk("mem%02d: %s "
+			       "range=[0x%016lx-0x%016lx) (%4lu%s)\n",
+			       i, efi_md_typeattr_format(buf, sizeof(buf), md),
+			       md->phys_addr,
+			       md->phys_addr + efi_md_size(md), size, unit);
+		}
+	}
+#endif
+
+	efi_map_pal_code();
+	efi_enter_virtual_mode();
+}
+
+void
+efi_enter_virtual_mode (void)
+{
+	void *efi_map_start, *efi_map_end, *p;
+	efi_memory_desc_t *md;
+	efi_status_t status;
+	u64 efi_desc_size;
+
+	efi_map_start = __va(ia64_boot_param->efi_memmap);
+	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
+	efi_desc_size = ia64_boot_param->efi_memdesc_size;
+
+	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
+		md = p;
+		if (md->attribute & EFI_MEMORY_RUNTIME) {
+			/*
+			 * Some descriptors have multiple bits set, so the
+			 * order of the tests is relevant.
+			 */
+			if (md->attribute & EFI_MEMORY_WB) {
+				md->virt_addr = (u64) __va(md->phys_addr);
+			} else if (md->attribute & EFI_MEMORY_UC) {
+				md->virt_addr = (u64) ioremap(md->phys_addr, 0);
+			} else if (md->attribute & EFI_MEMORY_WC) {
+#if 0
+				md->virt_addr = ia64_remap(md->phys_addr,
+							   (_PAGE_A |
+							    _PAGE_P |
+							    _PAGE_D |
+							    _PAGE_MA_WC |
+							    _PAGE_PL_0 |
+							    _PAGE_AR_RW));
+#else
+				printk(KERN_INFO "EFI_MEMORY_WC mapping\n");
+				md->virt_addr = (u64) ioremap(md->phys_addr, 0);
+#endif
+			} else if (md->attribute & EFI_MEMORY_WT) {
+#if 0
+				md->virt_addr = ia64_remap(md->phys_addr,
+							   (_PAGE_A |
+							    _PAGE_P |
+							    _PAGE_D |
+							    _PAGE_MA_WT |
+							    _PAGE_PL_0 |
+							    _PAGE_AR_RW));
+#else
+				printk(KERN_INFO "EFI_MEMORY_WT mapping\n");
+				md->virt_addr = (u64) ioremap(md->phys_addr, 0);
+#endif
+			}
+		}
+	}
+
+	status = efi_call_phys(__va(runtime->set_virtual_address_map),
+			       ia64_boot_param->efi_memmap_size,
+			       efi_desc_size,
+			       ia64_boot_param->efi_memdesc_version,
+			       ia64_boot_param->efi_memmap);
+	if (status != EFI_SUCCESS) {
+		printk(KERN_WARNING "warning: unable to switch EFI into "
+		       "virtual mode (status=%lu)\n", status);
+		return;
+	}
+
+	set_bit(EFI_RUNTIME_SERVICES, &efi.flags);
+
+	/*
+	 * Now that EFI is in virtual mode, we call the EFI functions more
+	 * efficiently:
+	 */
+	efi.get_time = virt_get_time;
+	efi.set_time = virt_set_time;
+	efi.get_wakeup_time = virt_get_wakeup_time;
+	efi.set_wakeup_time = virt_set_wakeup_time;
+	efi.get_variable = virt_get_variable;
+	efi.get_next_variable = virt_get_next_variable;
+	efi.set_variable = virt_set_variable;
+	efi.get_next_high_mono_count = virt_get_next_high_mono_count;
+	efi.reset_system = virt_reset_system;
+}
+
+/*
+ * Walk the EFI memory map looking for the I/O port range.  There can only be
+ * one entry of this type, other I/O port ranges should be described via ACPI.
+ */
+u64
+efi_get_iobase (void)
+{
+	void *efi_map_start, *efi_map_end, *p;
+	efi_memory_desc_t *md;
+	u64 efi_desc_size;
+
+	efi_map_start = __va(ia64_boot_param->efi_memmap);
+	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
+	efi_desc_size = ia64_boot_param->efi_memdesc_size;
+
+	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
+		md = p;
+		if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) {
+			if (md->attribute & EFI_MEMORY_UC)
+				return md->phys_addr;
+		}
+	}
+	return 0;
+}
+
+static struct kern_memdesc *
+kern_memory_descriptor (unsigned long phys_addr)
+{
+	struct kern_memdesc *md;
+
+	for (md = kern_memmap; md->start != ~0UL; md++) {
+		if (phys_addr - md->start < (md->num_pages << EFI_PAGE_SHIFT))
+			 return md;
+	}
+	return NULL;
+}
+
+static efi_memory_desc_t *
+efi_memory_descriptor (unsigned long phys_addr)
+{
+	void *efi_map_start, *efi_map_end, *p;
+	efi_memory_desc_t *md;
+	u64 efi_desc_size;
+
+	efi_map_start = __va(ia64_boot_param->efi_memmap);
+	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
+	efi_desc_size = ia64_boot_param->efi_memdesc_size;
+
+	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
+		md = p;
+
+		if (phys_addr - md->phys_addr < efi_md_size(md))
+			 return md;
+	}
+	return NULL;
+}
+
+static int
+efi_memmap_intersects (unsigned long phys_addr, unsigned long size)
+{
+	void *efi_map_start, *efi_map_end, *p;
+	efi_memory_desc_t *md;
+	u64 efi_desc_size;
+	unsigned long end;
+
+	efi_map_start = __va(ia64_boot_param->efi_memmap);
+	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
+	efi_desc_size = ia64_boot_param->efi_memdesc_size;
+
+	end = phys_addr + size;
+
+	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
+		md = p;
+		if (md->phys_addr < end && efi_md_end(md) > phys_addr)
+			return 1;
+	}
+	return 0;
+}
+
+int
+efi_mem_type (unsigned long phys_addr)
+{
+	efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
+
+	if (md)
+		return md->type;
+	return -EINVAL;
+}
+
+u64
+efi_mem_attributes (unsigned long phys_addr)
+{
+	efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
+
+	if (md)
+		return md->attribute;
+	return 0;
+}
+EXPORT_SYMBOL(efi_mem_attributes);
+
+u64
+efi_mem_attribute (unsigned long phys_addr, unsigned long size)
+{
+	unsigned long end = phys_addr + size;
+	efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
+	u64 attr;
+
+	if (!md)
+		return 0;
+
+	/*
+	 * EFI_MEMORY_RUNTIME is not a memory attribute; it just tells
+	 * the kernel that firmware needs this region mapped.
+	 */
+	attr = md->attribute & ~EFI_MEMORY_RUNTIME;
+	do {
+		unsigned long md_end = efi_md_end(md);
+
+		if (end <= md_end)
+			return attr;
+
+		md = efi_memory_descriptor(md_end);
+		if (!md || (md->attribute & ~EFI_MEMORY_RUNTIME) != attr)
+			return 0;
+	} while (md);
+	return 0;	/* never reached */
+}
+
+u64
+kern_mem_attribute (unsigned long phys_addr, unsigned long size)
+{
+	unsigned long end = phys_addr + size;
+	struct kern_memdesc *md;
+	u64 attr;
+
+	/*
+	 * This is a hack for ioremap calls before we set up kern_memmap.
+	 * Maybe we should do efi_memmap_init() earlier instead.
+	 */
+	if (!kern_memmap) {
+		attr = efi_mem_attribute(phys_addr, size);
+		if (attr & EFI_MEMORY_WB)
+			return EFI_MEMORY_WB;
+		return 0;
+	}
+
+	md = kern_memory_descriptor(phys_addr);
+	if (!md)
+		return 0;
+
+	attr = md->attribute;
+	do {
+		unsigned long md_end = kmd_end(md);
+
+		if (end <= md_end)
+			return attr;
+
+		md = kern_memory_descriptor(md_end);
+		if (!md || md->attribute != attr)
+			return 0;
+	} while (md);
+	return 0;	/* never reached */
+}
+EXPORT_SYMBOL(kern_mem_attribute);
+
+int
+valid_phys_addr_range (phys_addr_t phys_addr, unsigned long size)
+{
+	u64 attr;
+
+	/*
+	 * /dev/mem reads and writes use copy_to_user(), which implicitly
+	 * uses a granule-sized kernel identity mapping.  It's really
+	 * only safe to do this for regions in kern_memmap.  For more
+	 * details, see Documentation/ia64/aliasing.txt.
+	 */
+	attr = kern_mem_attribute(phys_addr, size);
+	if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
+		return 1;
+	return 0;
+}
+
+int
+valid_mmap_phys_addr_range (unsigned long pfn, unsigned long size)
+{
+	unsigned long phys_addr = pfn << PAGE_SHIFT;
+	u64 attr;
+
+	attr = efi_mem_attribute(phys_addr, size);
+
+	/*
+	 * /dev/mem mmap uses normal user pages, so we don't need the entire
+	 * granule, but the entire region we're mapping must support the same
+	 * attribute.
+	 */
+	if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
+		return 1;
+
+	/*
+	 * Intel firmware doesn't tell us about all the MMIO regions, so
+	 * in general we have to allow mmap requests.  But if EFI *does*
+	 * tell us about anything inside this region, we should deny it.
+	 * The user can always map a smaller region to avoid the overlap.
+	 */
+	if (efi_memmap_intersects(phys_addr, size))
+		return 0;
+
+	return 1;
+}
+
+pgprot_t
+phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size,
+		     pgprot_t vma_prot)
+{
+	unsigned long phys_addr = pfn << PAGE_SHIFT;
+	u64 attr;
+
+	/*
+	 * For /dev/mem mmap, we use user mappings, but if the region is
+	 * in kern_memmap (and hence may be covered by a kernel mapping),
+	 * we must use the same attribute as the kernel mapping.
+	 */
+	attr = kern_mem_attribute(phys_addr, size);
+	if (attr & EFI_MEMORY_WB)
+		return pgprot_cacheable(vma_prot);
+	else if (attr & EFI_MEMORY_UC)
+		return pgprot_noncached(vma_prot);
+
+	/*
+	 * Some chipsets don't support UC access to memory.  If
+	 * WB is supported, we prefer that.
+	 */
+	if (efi_mem_attribute(phys_addr, size) & EFI_MEMORY_WB)
+		return pgprot_cacheable(vma_prot);
+
+	return pgprot_noncached(vma_prot);
+}
+
+int __init
+efi_uart_console_only(void)
+{
+	efi_status_t status;
+	char *s, name[] = "ConOut";
+	efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID;
+	efi_char16_t *utf16, name_utf16[32];
+	unsigned char data[1024];
+	unsigned long size = sizeof(data);
+	struct efi_generic_dev_path *hdr, *end_addr;
+	int uart = 0;
+
+	/* Convert to UTF-16 */
+	utf16 = name_utf16;
+	s = name;
+	while (*s)
+		*utf16++ = *s++ & 0x7f;
+	*utf16 = 0;
+
+	status = efi.get_variable(name_utf16, &guid, NULL, &size, data);
+	if (status != EFI_SUCCESS) {
+		printk(KERN_ERR "No EFI %s variable?\n", name);
+		return 0;
+	}
+
+	hdr = (struct efi_generic_dev_path *) data;
+	end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size);
+	while (hdr < end_addr) {
+		if (hdr->type == EFI_DEV_MSG &&
+		    hdr->sub_type == EFI_DEV_MSG_UART)
+			uart = 1;
+		else if (hdr->type == EFI_DEV_END_PATH ||
+			  hdr->type == EFI_DEV_END_PATH2) {
+			if (!uart)
+				return 0;
+			if (hdr->sub_type == EFI_DEV_END_ENTIRE)
+				return 1;
+			uart = 0;
+		}
+		hdr = (struct efi_generic_dev_path *)((u8 *) hdr + hdr->length);
+	}
+	printk(KERN_ERR "Malformed %s value\n", name);
+	return 0;
+}
+
+/*
+ * Look for the first granule aligned memory descriptor memory
+ * that is big enough to hold EFI memory map. Make sure this
+ * descriptor is at least granule sized so it does not get trimmed
+ */
+struct kern_memdesc *
+find_memmap_space (void)
+{
+	u64	contig_low=0, contig_high=0;
+	u64	as = 0, ae;
+	void *efi_map_start, *efi_map_end, *p, *q;
+	efi_memory_desc_t *md, *pmd = NULL, *check_md;
+	u64	space_needed, efi_desc_size;
+	unsigned long total_mem = 0;
+
+	efi_map_start = __va(ia64_boot_param->efi_memmap);
+	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
+	efi_desc_size = ia64_boot_param->efi_memdesc_size;
+
+	/*
+	 * Worst case: we need 3 kernel descriptors for each efi descriptor
+	 * (if every entry has a WB part in the middle, and UC head and tail),
+	 * plus one for the end marker.
+	 */
+	space_needed = sizeof(kern_memdesc_t) *
+		(3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1);
+
+	for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
+		md = p;
+		if (!efi_wb(md)) {
+			continue;
+		}
+		if (pmd == NULL || !efi_wb(pmd) ||
+		    efi_md_end(pmd) != md->phys_addr) {
+			contig_low = GRANULEROUNDUP(md->phys_addr);
+			contig_high = efi_md_end(md);
+			for (q = p + efi_desc_size; q < efi_map_end;
+			     q += efi_desc_size) {
+				check_md = q;
+				if (!efi_wb(check_md))
+					break;
+				if (contig_high != check_md->phys_addr)
+					break;
+				contig_high = efi_md_end(check_md);
+			}
+			contig_high = GRANULEROUNDDOWN(contig_high);
+		}
+		if (!is_memory_available(md) || md->type == EFI_LOADER_DATA)
+			continue;
+
+		/* Round ends inward to granule boundaries */
+		as = max(contig_low, md->phys_addr);
+		ae = min(contig_high, efi_md_end(md));
+
+		/* keep within max_addr= and min_addr= command line arg */
+		as = max(as, min_addr);
+		ae = min(ae, max_addr);
+		if (ae <= as)
+			continue;
+
+		/* avoid going over mem= command line arg */
+		if (total_mem + (ae - as) > mem_limit)
+			ae -= total_mem + (ae - as) - mem_limit;
+
+		if (ae <= as)
+			continue;
+
+		if (ae - as > space_needed)
+			break;
+	}
+	if (p >= efi_map_end)
+		panic("Can't allocate space for kernel memory descriptors");
+
+	return __va(as);
+}
+
+/*
+ * Walk the EFI memory map and gather all memory available for kernel
+ * to use.  We can allocate partial granules only if the unavailable
+ * parts exist, and are WB.
+ */
+unsigned long
+efi_memmap_init(u64 *s, u64 *e)
+{
+	struct kern_memdesc *k, *prev = NULL;
+	u64	contig_low=0, contig_high=0;
+	u64	as, ae, lim;
+	void *efi_map_start, *efi_map_end, *p, *q;
+	efi_memory_desc_t *md, *pmd = NULL, *check_md;
+	u64	efi_desc_size;
+	unsigned long total_mem = 0;
+
+	k = kern_memmap = find_memmap_space();
+
+	efi_map_start = __va(ia64_boot_param->efi_memmap);
+	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
+	efi_desc_size = ia64_boot_param->efi_memdesc_size;
+
+	for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
+		md = p;
+		if (!efi_wb(md)) {
+			if (efi_uc(md) &&
+			    (md->type == EFI_CONVENTIONAL_MEMORY ||
+			     md->type == EFI_BOOT_SERVICES_DATA)) {
+				k->attribute = EFI_MEMORY_UC;
+				k->start = md->phys_addr;
+				k->num_pages = md->num_pages;
+				k++;
+			}
+			continue;
+		}
+		if (pmd == NULL || !efi_wb(pmd) ||
+		    efi_md_end(pmd) != md->phys_addr) {
+			contig_low = GRANULEROUNDUP(md->phys_addr);
+			contig_high = efi_md_end(md);
+			for (q = p + efi_desc_size; q < efi_map_end;
+			     q += efi_desc_size) {
+				check_md = q;
+				if (!efi_wb(check_md))
+					break;
+				if (contig_high != check_md->phys_addr)
+					break;
+				contig_high = efi_md_end(check_md);
+			}
+			contig_high = GRANULEROUNDDOWN(contig_high);
+		}
+		if (!is_memory_available(md))
+			continue;
+
+		/*
+		 * Round ends inward to granule boundaries
+		 * Give trimmings to uncached allocator
+		 */
+		if (md->phys_addr < contig_low) {
+			lim = min(efi_md_end(md), contig_low);
+			if (efi_uc(md)) {
+				if (k > kern_memmap &&
+				    (k-1)->attribute == EFI_MEMORY_UC &&
+				    kmd_end(k-1) == md->phys_addr) {
+					(k-1)->num_pages +=
+						(lim - md->phys_addr)
+						>> EFI_PAGE_SHIFT;
+				} else {
+					k->attribute = EFI_MEMORY_UC;
+					k->start = md->phys_addr;
+					k->num_pages = (lim - md->phys_addr)
+						>> EFI_PAGE_SHIFT;
+					k++;
+				}
+			}
+			as = contig_low;
+		} else
+			as = md->phys_addr;
+
+		if (efi_md_end(md) > contig_high) {
+			lim = max(md->phys_addr, contig_high);
+			if (efi_uc(md)) {
+				if (lim == md->phys_addr && k > kern_memmap &&
+				    (k-1)->attribute == EFI_MEMORY_UC &&
+				    kmd_end(k-1) == md->phys_addr) {
+					(k-1)->num_pages += md->num_pages;
+				} else {
+					k->attribute = EFI_MEMORY_UC;
+					k->start = lim;
+					k->num_pages = (efi_md_end(md) - lim)
+						>> EFI_PAGE_SHIFT;
+					k++;
+				}
+			}
+			ae = contig_high;
+		} else
+			ae = efi_md_end(md);
+
+		/* keep within max_addr= and min_addr= command line arg */
+		as = max(as, min_addr);
+		ae = min(ae, max_addr);
+		if (ae <= as)
+			continue;
+
+		/* avoid going over mem= command line arg */
+		if (total_mem + (ae - as) > mem_limit)
+			ae -= total_mem + (ae - as) - mem_limit;
+
+		if (ae <= as)
+			continue;
+		if (prev && kmd_end(prev) == md->phys_addr) {
+			prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT;
+			total_mem += ae - as;
+			continue;
+		}
+		k->attribute = EFI_MEMORY_WB;
+		k->start = as;
+		k->num_pages = (ae - as) >> EFI_PAGE_SHIFT;
+		total_mem += ae - as;
+		prev = k++;
+	}
+	k->start = ~0L; /* end-marker */
+
+	/* reserve the memory we are using for kern_memmap */
+	*s = (u64)kern_memmap;
+	*e = (u64)++k;
+
+	return total_mem;
+}
+
+void
+efi_initialize_iomem_resources(struct resource *code_resource,
+			       struct resource *data_resource,
+			       struct resource *bss_resource)
+{
+	struct resource *res;
+	void *efi_map_start, *efi_map_end, *p;
+	efi_memory_desc_t *md;
+	u64 efi_desc_size;
+	char *name;
+	unsigned long flags, desc;
+
+	efi_map_start = __va(ia64_boot_param->efi_memmap);
+	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
+	efi_desc_size = ia64_boot_param->efi_memdesc_size;
+
+	res = NULL;
+
+	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
+		md = p;
+
+		if (md->num_pages == 0) /* should not happen */
+			continue;
+
+		flags = IORESOURCE_MEM | IORESOURCE_BUSY;
+		desc = IORES_DESC_NONE;
+
+		switch (md->type) {
+
+			case EFI_MEMORY_MAPPED_IO:
+			case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
+				continue;
+
+			case EFI_LOADER_CODE:
+			case EFI_LOADER_DATA:
+			case EFI_BOOT_SERVICES_DATA:
+			case EFI_BOOT_SERVICES_CODE:
+			case EFI_CONVENTIONAL_MEMORY:
+				if (md->attribute & EFI_MEMORY_WP) {
+					name = "System ROM";
+					flags |= IORESOURCE_READONLY;
+				} else if (md->attribute == EFI_MEMORY_UC) {
+					name = "Uncached RAM";
+				} else {
+					name = "System RAM";
+					flags |= IORESOURCE_SYSRAM;
+				}
+				break;
+
+			case EFI_ACPI_MEMORY_NVS:
+				name = "ACPI Non-volatile Storage";
+				desc = IORES_DESC_ACPI_NV_STORAGE;
+				break;
+
+			case EFI_UNUSABLE_MEMORY:
+				name = "reserved";
+				flags |= IORESOURCE_DISABLED;
+				break;
+
+			case EFI_PERSISTENT_MEMORY:
+				name = "Persistent Memory";
+				desc = IORES_DESC_PERSISTENT_MEMORY;
+				break;
+
+			case EFI_RESERVED_TYPE:
+			case EFI_RUNTIME_SERVICES_CODE:
+			case EFI_RUNTIME_SERVICES_DATA:
+			case EFI_ACPI_RECLAIM_MEMORY:
+			default:
+				name = "reserved";
+				break;
+		}
+
+		if ((res = kzalloc(sizeof(struct resource),
+				   GFP_KERNEL)) == NULL) {
+			printk(KERN_ERR
+			       "failed to allocate resource for iomem\n");
+			return;
+		}
+
+		res->name = name;
+		res->start = md->phys_addr;
+		res->end = md->phys_addr + efi_md_size(md) - 1;
+		res->flags = flags;
+		res->desc = desc;
+
+		if (insert_resource(&iomem_resource, res) < 0)
+			kfree(res);
+		else {
+			/*
+			 * We don't know which region contains
+			 * kernel data so we try it repeatedly and
+			 * let the resource manager test it.
+			 */
+			insert_resource(res, code_resource);
+			insert_resource(res, data_resource);
+			insert_resource(res, bss_resource);
+#ifdef CONFIG_KEXEC
+                        insert_resource(res, &efi_memmap_res);
+                        insert_resource(res, &boot_param_res);
+			if (crashk_res.end > crashk_res.start)
+				insert_resource(res, &crashk_res);
+#endif
+		}
+	}
+}
+
+#ifdef CONFIG_KEXEC
+/* find a block of memory aligned to 64M exclude reserved regions
+   rsvd_regions are sorted
+ */
+unsigned long __init
+kdump_find_rsvd_region (unsigned long size, struct rsvd_region *r, int n)
+{
+	int i;
+	u64 start, end;
+	u64 alignment = 1UL << _PAGE_SIZE_64M;
+	void *efi_map_start, *efi_map_end, *p;
+	efi_memory_desc_t *md;
+	u64 efi_desc_size;
+
+	efi_map_start = __va(ia64_boot_param->efi_memmap);
+	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
+	efi_desc_size = ia64_boot_param->efi_memdesc_size;
+
+	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
+		md = p;
+		if (!efi_wb(md))
+			continue;
+		start = ALIGN(md->phys_addr, alignment);
+		end = efi_md_end(md);
+		for (i = 0; i < n; i++) {
+			if (__pa(r[i].start) >= start && __pa(r[i].end) < end) {
+				if (__pa(r[i].start) > start + size)
+					return start;
+				start = ALIGN(__pa(r[i].end), alignment);
+				if (i < n-1 &&
+				    __pa(r[i+1].start) < start + size)
+					continue;
+				else
+					break;
+			}
+		}
+		if (end > start + size)
+			return start;
+	}
+
+	printk(KERN_WARNING
+	       "Cannot reserve 0x%lx byte of memory for crashdump\n", size);
+	return ~0UL;
+}
+#endif
+
+#ifdef CONFIG_CRASH_DUMP
+/* locate the size find a the descriptor at a certain address */
+unsigned long __init
+vmcore_find_descriptor_size (unsigned long address)
+{
+	void *efi_map_start, *efi_map_end, *p;
+	efi_memory_desc_t *md;
+	u64 efi_desc_size;
+	unsigned long ret = 0;
+
+	efi_map_start = __va(ia64_boot_param->efi_memmap);
+	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
+	efi_desc_size = ia64_boot_param->efi_memdesc_size;
+
+	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
+		md = p;
+		if (efi_wb(md) && md->type == EFI_LOADER_DATA
+		    && md->phys_addr == address) {
+			ret = efi_md_size(md);
+			break;
+		}
+	}
+
+	if (ret == 0)
+		printk(KERN_WARNING "Cannot locate EFI vmcore descriptor\n");
+
+	return ret;
+}
+#endif