v4.19.13 snapshot.
diff --git a/arch/arm64/include/asm/cpufeature.h b/arch/arm64/include/asm/cpufeature.h
new file mode 100644
index 0000000..1717ba1
--- /dev/null
+++ b/arch/arm64/include/asm/cpufeature.h
@@ -0,0 +1,535 @@
+/*
+ * Copyright (C) 2014 Linaro Ltd. <ard.biesheuvel@linaro.org>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ */
+
+#ifndef __ASM_CPUFEATURE_H
+#define __ASM_CPUFEATURE_H
+
+#include <asm/cpucaps.h>
+#include <asm/cputype.h>
+#include <asm/hwcap.h>
+#include <asm/sysreg.h>
+
+/*
+ * In the arm64 world (as in the ARM world), elf_hwcap is used both internally
+ * in the kernel and for user space to keep track of which optional features
+ * are supported by the current system. So let's map feature 'x' to HWCAP_x.
+ * Note that HWCAP_x constants are bit fields so we need to take the log.
+ */
+
+#define MAX_CPU_FEATURES	(8 * sizeof(elf_hwcap))
+#define cpu_feature(x)		ilog2(HWCAP_ ## x)
+
+#ifndef __ASSEMBLY__
+
+#include <linux/bug.h>
+#include <linux/jump_label.h>
+#include <linux/kernel.h>
+
+/*
+ * CPU feature register tracking
+ *
+ * The safe value of a CPUID feature field is dependent on the implications
+ * of the values assigned to it by the architecture. Based on the relationship
+ * between the values, the features are classified into 3 types - LOWER_SAFE,
+ * HIGHER_SAFE and EXACT.
+ *
+ * The lowest value of all the CPUs is chosen for LOWER_SAFE and highest
+ * for HIGHER_SAFE. It is expected that all CPUs have the same value for
+ * a field when EXACT is specified, failing which, the safe value specified
+ * in the table is chosen.
+ */
+
+enum ftr_type {
+	FTR_EXACT,	/* Use a predefined safe value */
+	FTR_LOWER_SAFE,	/* Smaller value is safe */
+	FTR_HIGHER_SAFE,/* Bigger value is safe */
+};
+
+#define FTR_STRICT	true	/* SANITY check strict matching required */
+#define FTR_NONSTRICT	false	/* SANITY check ignored */
+
+#define FTR_SIGNED	true	/* Value should be treated as signed */
+#define FTR_UNSIGNED	false	/* Value should be treated as unsigned */
+
+#define FTR_VISIBLE	true	/* Feature visible to the user space */
+#define FTR_HIDDEN	false	/* Feature is hidden from the user */
+
+#define FTR_VISIBLE_IF_IS_ENABLED(config)		\
+	(IS_ENABLED(config) ? FTR_VISIBLE : FTR_HIDDEN)
+
+struct arm64_ftr_bits {
+	bool		sign;	/* Value is signed ? */
+	bool		visible;
+	bool		strict;	/* CPU Sanity check: strict matching required ? */
+	enum ftr_type	type;
+	u8		shift;
+	u8		width;
+	s64		safe_val; /* safe value for FTR_EXACT features */
+};
+
+/*
+ * @arm64_ftr_reg - Feature register
+ * @strict_mask		Bits which should match across all CPUs for sanity.
+ * @sys_val		Safe value across the CPUs (system view)
+ */
+struct arm64_ftr_reg {
+	const char			*name;
+	u64				strict_mask;
+	u64				user_mask;
+	u64				sys_val;
+	u64				user_val;
+	const struct arm64_ftr_bits	*ftr_bits;
+};
+
+extern struct arm64_ftr_reg arm64_ftr_reg_ctrel0;
+
+/*
+ * CPU capabilities:
+ *
+ * We use arm64_cpu_capabilities to represent system features, errata work
+ * arounds (both used internally by kernel and tracked in cpu_hwcaps) and
+ * ELF HWCAPs (which are exposed to user).
+ *
+ * To support systems with heterogeneous CPUs, we need to make sure that we
+ * detect the capabilities correctly on the system and take appropriate
+ * measures to ensure there are no incompatibilities.
+ *
+ * This comment tries to explain how we treat the capabilities.
+ * Each capability has the following list of attributes :
+ *
+ * 1) Scope of Detection : The system detects a given capability by
+ *    performing some checks at runtime. This could be, e.g, checking the
+ *    value of a field in CPU ID feature register or checking the cpu
+ *    model. The capability provides a call back ( @matches() ) to
+ *    perform the check. Scope defines how the checks should be performed.
+ *    There are three cases:
+ *
+ *     a) SCOPE_LOCAL_CPU: check all the CPUs and "detect" if at least one
+ *        matches. This implies, we have to run the check on all the
+ *        booting CPUs, until the system decides that state of the
+ *        capability is finalised. (See section 2 below)
+ *		Or
+ *     b) SCOPE_SYSTEM: check all the CPUs and "detect" if all the CPUs
+ *        matches. This implies, we run the check only once, when the
+ *        system decides to finalise the state of the capability. If the
+ *        capability relies on a field in one of the CPU ID feature
+ *        registers, we use the sanitised value of the register from the
+ *        CPU feature infrastructure to make the decision.
+ *		Or
+ *     c) SCOPE_BOOT_CPU: Check only on the primary boot CPU to detect the
+ *        feature. This category is for features that are "finalised"
+ *        (or used) by the kernel very early even before the SMP cpus
+ *        are brought up.
+ *
+ *    The process of detection is usually denoted by "update" capability
+ *    state in the code.
+ *
+ * 2) Finalise the state : The kernel should finalise the state of a
+ *    capability at some point during its execution and take necessary
+ *    actions if any. Usually, this is done, after all the boot-time
+ *    enabled CPUs are brought up by the kernel, so that it can make
+ *    better decision based on the available set of CPUs. However, there
+ *    are some special cases, where the action is taken during the early
+ *    boot by the primary boot CPU. (e.g, running the kernel at EL2 with
+ *    Virtualisation Host Extensions). The kernel usually disallows any
+ *    changes to the state of a capability once it finalises the capability
+ *    and takes any action, as it may be impossible to execute the actions
+ *    safely. A CPU brought up after a capability is "finalised" is
+ *    referred to as "Late CPU" w.r.t the capability. e.g, all secondary
+ *    CPUs are treated "late CPUs" for capabilities determined by the boot
+ *    CPU.
+ *
+ *    At the moment there are two passes of finalising the capabilities.
+ *      a) Boot CPU scope capabilities - Finalised by primary boot CPU via
+ *         setup_boot_cpu_capabilities().
+ *      b) Everything except (a) - Run via setup_system_capabilities().
+ *
+ * 3) Verification: When a CPU is brought online (e.g, by user or by the
+ *    kernel), the kernel should make sure that it is safe to use the CPU,
+ *    by verifying that the CPU is compliant with the state of the
+ *    capabilities finalised already. This happens via :
+ *
+ *	secondary_start_kernel()-> check_local_cpu_capabilities()
+ *
+ *    As explained in (2) above, capabilities could be finalised at
+ *    different points in the execution. Each newly booted CPU is verified
+ *    against the capabilities that have been finalised by the time it
+ *    boots.
+ *
+ *	a) SCOPE_BOOT_CPU : All CPUs are verified against the capability
+ *	except for the primary boot CPU.
+ *
+ *	b) SCOPE_LOCAL_CPU, SCOPE_SYSTEM: All CPUs hotplugged on by the
+ *	user after the kernel boot are verified against the capability.
+ *
+ *    If there is a conflict, the kernel takes an action, based on the
+ *    severity (e.g, a CPU could be prevented from booting or cause a
+ *    kernel panic). The CPU is allowed to "affect" the state of the
+ *    capability, if it has not been finalised already. See section 5
+ *    for more details on conflicts.
+ *
+ * 4) Action: As mentioned in (2), the kernel can take an action for each
+ *    detected capability, on all CPUs on the system. Appropriate actions
+ *    include, turning on an architectural feature, modifying the control
+ *    registers (e.g, SCTLR, TCR etc.) or patching the kernel via
+ *    alternatives. The kernel patching is batched and performed at later
+ *    point. The actions are always initiated only after the capability
+ *    is finalised. This is usally denoted by "enabling" the capability.
+ *    The actions are initiated as follows :
+ *	a) Action is triggered on all online CPUs, after the capability is
+ *	finalised, invoked within the stop_machine() context from
+ *	enable_cpu_capabilitie().
+ *
+ *	b) Any late CPU, brought up after (1), the action is triggered via:
+ *
+ *	  check_local_cpu_capabilities() -> verify_local_cpu_capabilities()
+ *
+ * 5) Conflicts: Based on the state of the capability on a late CPU vs.
+ *    the system state, we could have the following combinations :
+ *
+ *		x-----------------------------x
+ *		| Type  | System   | Late CPU |
+ *		|-----------------------------|
+ *		|  a    |   y      |    n     |
+ *		|-----------------------------|
+ *		|  b    |   n      |    y     |
+ *		x-----------------------------x
+ *
+ *     Two separate flag bits are defined to indicate whether each kind of
+ *     conflict can be allowed:
+ *		ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU - Case(a) is allowed
+ *		ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU - Case(b) is allowed
+ *
+ *     Case (a) is not permitted for a capability that the system requires
+ *     all CPUs to have in order for the capability to be enabled. This is
+ *     typical for capabilities that represent enhanced functionality.
+ *
+ *     Case (b) is not permitted for a capability that must be enabled
+ *     during boot if any CPU in the system requires it in order to run
+ *     safely. This is typical for erratum work arounds that cannot be
+ *     enabled after the corresponding capability is finalised.
+ *
+ *     In some non-typical cases either both (a) and (b), or neither,
+ *     should be permitted. This can be described by including neither
+ *     or both flags in the capability's type field.
+ */
+
+
+/*
+ * Decide how the capability is detected.
+ * On any local CPU vs System wide vs the primary boot CPU
+ */
+#define ARM64_CPUCAP_SCOPE_LOCAL_CPU		((u16)BIT(0))
+#define ARM64_CPUCAP_SCOPE_SYSTEM		((u16)BIT(1))
+/*
+ * The capabilitiy is detected on the Boot CPU and is used by kernel
+ * during early boot. i.e, the capability should be "detected" and
+ * "enabled" as early as possibly on all booting CPUs.
+ */
+#define ARM64_CPUCAP_SCOPE_BOOT_CPU		((u16)BIT(2))
+#define ARM64_CPUCAP_SCOPE_MASK			\
+	(ARM64_CPUCAP_SCOPE_SYSTEM	|	\
+	 ARM64_CPUCAP_SCOPE_LOCAL_CPU	|	\
+	 ARM64_CPUCAP_SCOPE_BOOT_CPU)
+
+#define SCOPE_SYSTEM				ARM64_CPUCAP_SCOPE_SYSTEM
+#define SCOPE_LOCAL_CPU				ARM64_CPUCAP_SCOPE_LOCAL_CPU
+#define SCOPE_BOOT_CPU				ARM64_CPUCAP_SCOPE_BOOT_CPU
+#define SCOPE_ALL				ARM64_CPUCAP_SCOPE_MASK
+
+/*
+ * Is it permitted for a late CPU to have this capability when system
+ * hasn't already enabled it ?
+ */
+#define ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU	((u16)BIT(4))
+/* Is it safe for a late CPU to miss this capability when system has it */
+#define ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU	((u16)BIT(5))
+
+/*
+ * CPU errata workarounds that need to be enabled at boot time if one or
+ * more CPUs in the system requires it. When one of these capabilities
+ * has been enabled, it is safe to allow any CPU to boot that doesn't
+ * require the workaround. However, it is not safe if a "late" CPU
+ * requires a workaround and the system hasn't enabled it already.
+ */
+#define ARM64_CPUCAP_LOCAL_CPU_ERRATUM		\
+	(ARM64_CPUCAP_SCOPE_LOCAL_CPU | ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU)
+/*
+ * CPU feature detected at boot time based on system-wide value of a
+ * feature. It is safe for a late CPU to have this feature even though
+ * the system hasn't enabled it, although the featuer will not be used
+ * by Linux in this case. If the system has enabled this feature already,
+ * then every late CPU must have it.
+ */
+#define ARM64_CPUCAP_SYSTEM_FEATURE	\
+	(ARM64_CPUCAP_SCOPE_SYSTEM | ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU)
+/*
+ * CPU feature detected at boot time based on feature of one or more CPUs.
+ * All possible conflicts for a late CPU are ignored.
+ */
+#define ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE		\
+	(ARM64_CPUCAP_SCOPE_LOCAL_CPU		|	\
+	 ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU	|	\
+	 ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU)
+
+/*
+ * CPU feature detected at boot time, on one or more CPUs. A late CPU
+ * is not allowed to have the capability when the system doesn't have it.
+ * It is Ok for a late CPU to miss the feature.
+ */
+#define ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE	\
+	(ARM64_CPUCAP_SCOPE_LOCAL_CPU		|	\
+	 ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU)
+
+/*
+ * CPU feature used early in the boot based on the boot CPU. All secondary
+ * CPUs must match the state of the capability as detected by the boot CPU.
+ */
+#define ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE ARM64_CPUCAP_SCOPE_BOOT_CPU
+
+struct arm64_cpu_capabilities {
+	const char *desc;
+	u16 capability;
+	u16 type;
+	bool (*matches)(const struct arm64_cpu_capabilities *caps, int scope);
+	/*
+	 * Take the appropriate actions to enable this capability for this CPU.
+	 * For each successfully booted CPU, this method is called for each
+	 * globally detected capability.
+	 */
+	void (*cpu_enable)(const struct arm64_cpu_capabilities *cap);
+	union {
+		struct {	/* To be used for erratum handling only */
+			struct midr_range midr_range;
+			const struct arm64_midr_revidr {
+				u32 midr_rv;		/* revision/variant */
+				u32 revidr_mask;
+			} * const fixed_revs;
+		};
+
+		const struct midr_range *midr_range_list;
+		struct {	/* Feature register checking */
+			u32 sys_reg;
+			u8 field_pos;
+			u8 min_field_value;
+			u8 hwcap_type;
+			bool sign;
+			unsigned long hwcap;
+		};
+		/*
+		 * A list of "matches/cpu_enable" pair for the same
+		 * "capability" of the same "type" as described by the parent.
+		 * Only matches(), cpu_enable() and fields relevant to these
+		 * methods are significant in the list. The cpu_enable is
+		 * invoked only if the corresponding entry "matches()".
+		 * However, if a cpu_enable() method is associated
+		 * with multiple matches(), care should be taken that either
+		 * the match criteria are mutually exclusive, or that the
+		 * method is robust against being called multiple times.
+		 */
+		const struct arm64_cpu_capabilities *match_list;
+	};
+};
+
+static inline int cpucap_default_scope(const struct arm64_cpu_capabilities *cap)
+{
+	return cap->type & ARM64_CPUCAP_SCOPE_MASK;
+}
+
+static inline bool
+cpucap_late_cpu_optional(const struct arm64_cpu_capabilities *cap)
+{
+	return !!(cap->type & ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU);
+}
+
+static inline bool
+cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities *cap)
+{
+	return !!(cap->type & ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU);
+}
+
+extern DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
+extern struct static_key_false cpu_hwcap_keys[ARM64_NCAPS];
+extern struct static_key_false arm64_const_caps_ready;
+
+bool this_cpu_has_cap(unsigned int cap);
+
+static inline bool cpu_have_feature(unsigned int num)
+{
+	return elf_hwcap & (1UL << num);
+}
+
+/* System capability check for constant caps */
+static inline bool __cpus_have_const_cap(int num)
+{
+	if (num >= ARM64_NCAPS)
+		return false;
+	return static_branch_unlikely(&cpu_hwcap_keys[num]);
+}
+
+static inline bool cpus_have_cap(unsigned int num)
+{
+	if (num >= ARM64_NCAPS)
+		return false;
+	return test_bit(num, cpu_hwcaps);
+}
+
+static inline bool cpus_have_const_cap(int num)
+{
+	if (static_branch_likely(&arm64_const_caps_ready))
+		return __cpus_have_const_cap(num);
+	else
+		return cpus_have_cap(num);
+}
+
+static inline void cpus_set_cap(unsigned int num)
+{
+	if (num >= ARM64_NCAPS) {
+		pr_warn("Attempt to set an illegal CPU capability (%d >= %d)\n",
+			num, ARM64_NCAPS);
+	} else {
+		__set_bit(num, cpu_hwcaps);
+	}
+}
+
+static inline int __attribute_const__
+cpuid_feature_extract_signed_field_width(u64 features, int field, int width)
+{
+	return (s64)(features << (64 - width - field)) >> (64 - width);
+}
+
+static inline int __attribute_const__
+cpuid_feature_extract_signed_field(u64 features, int field)
+{
+	return cpuid_feature_extract_signed_field_width(features, field, 4);
+}
+
+static inline unsigned int __attribute_const__
+cpuid_feature_extract_unsigned_field_width(u64 features, int field, int width)
+{
+	return (u64)(features << (64 - width - field)) >> (64 - width);
+}
+
+static inline unsigned int __attribute_const__
+cpuid_feature_extract_unsigned_field(u64 features, int field)
+{
+	return cpuid_feature_extract_unsigned_field_width(features, field, 4);
+}
+
+static inline u64 arm64_ftr_mask(const struct arm64_ftr_bits *ftrp)
+{
+	return (u64)GENMASK(ftrp->shift + ftrp->width - 1, ftrp->shift);
+}
+
+static inline u64 arm64_ftr_reg_user_value(const struct arm64_ftr_reg *reg)
+{
+	return (reg->user_val | (reg->sys_val & reg->user_mask));
+}
+
+static inline int __attribute_const__
+cpuid_feature_extract_field_width(u64 features, int field, int width, bool sign)
+{
+	return (sign) ?
+		cpuid_feature_extract_signed_field_width(features, field, width) :
+		cpuid_feature_extract_unsigned_field_width(features, field, width);
+}
+
+static inline int __attribute_const__
+cpuid_feature_extract_field(u64 features, int field, bool sign)
+{
+	return cpuid_feature_extract_field_width(features, field, 4, sign);
+}
+
+static inline s64 arm64_ftr_value(const struct arm64_ftr_bits *ftrp, u64 val)
+{
+	return (s64)cpuid_feature_extract_field_width(val, ftrp->shift, ftrp->width, ftrp->sign);
+}
+
+static inline bool id_aa64mmfr0_mixed_endian_el0(u64 mmfr0)
+{
+	return cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_BIGENDEL_SHIFT) == 0x1 ||
+		cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_BIGENDEL0_SHIFT) == 0x1;
+}
+
+static inline bool id_aa64pfr0_32bit_el0(u64 pfr0)
+{
+	u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_EL0_SHIFT);
+
+	return val == ID_AA64PFR0_EL0_32BIT_64BIT;
+}
+
+static inline bool id_aa64pfr0_sve(u64 pfr0)
+{
+	u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_SVE_SHIFT);
+
+	return val > 0;
+}
+
+void __init setup_cpu_features(void);
+void check_local_cpu_capabilities(void);
+
+
+u64 read_sanitised_ftr_reg(u32 id);
+
+static inline bool cpu_supports_mixed_endian_el0(void)
+{
+	return id_aa64mmfr0_mixed_endian_el0(read_cpuid(ID_AA64MMFR0_EL1));
+}
+
+static inline bool system_supports_32bit_el0(void)
+{
+	return cpus_have_const_cap(ARM64_HAS_32BIT_EL0);
+}
+
+static inline bool system_supports_mixed_endian_el0(void)
+{
+	return id_aa64mmfr0_mixed_endian_el0(read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1));
+}
+
+static inline bool system_supports_fpsimd(void)
+{
+	return !cpus_have_const_cap(ARM64_HAS_NO_FPSIMD);
+}
+
+static inline bool system_uses_ttbr0_pan(void)
+{
+	return IS_ENABLED(CONFIG_ARM64_SW_TTBR0_PAN) &&
+		!cpus_have_const_cap(ARM64_HAS_PAN);
+}
+
+static inline bool system_supports_sve(void)
+{
+	return IS_ENABLED(CONFIG_ARM64_SVE) &&
+		cpus_have_const_cap(ARM64_SVE);
+}
+
+#define ARM64_SSBD_UNKNOWN		-1
+#define ARM64_SSBD_FORCE_DISABLE	0
+#define ARM64_SSBD_KERNEL		1
+#define ARM64_SSBD_FORCE_ENABLE		2
+#define ARM64_SSBD_MITIGATED		3
+
+static inline int arm64_get_ssbd_state(void)
+{
+#ifdef CONFIG_ARM64_SSBD
+	extern int ssbd_state;
+	return ssbd_state;
+#else
+	return ARM64_SSBD_UNKNOWN;
+#endif
+}
+
+#ifdef CONFIG_ARM64_SSBD
+void arm64_set_ssbd_mitigation(bool state);
+#else
+static inline void arm64_set_ssbd_mitigation(bool state) {}
+#endif
+
+#endif /* __ASSEMBLY__ */
+
+#endif