v4.19.13 snapshot.
diff --git a/arch/arm/net/Makefile b/arch/arm/net/Makefile
new file mode 100644
index 0000000..c2c1084
--- /dev/null
+++ b/arch/arm/net/Makefile
@@ -0,0 +1,3 @@
+# ARM-specific networking code
+
+obj-$(CONFIG_BPF_JIT) += bpf_jit_32.o
diff --git a/arch/arm/net/bpf_jit_32.c b/arch/arm/net/bpf_jit_32.c
new file mode 100644
index 0000000..25b3ee8
--- /dev/null
+++ b/arch/arm/net/bpf_jit_32.c
@@ -0,0 +1,1955 @@
+/*
+ * Just-In-Time compiler for eBPF filters on 32bit ARM
+ *
+ * Copyright (c) 2017 Shubham Bansal <illusionist.neo@gmail.com>
+ * Copyright (c) 2011 Mircea Gherzan <mgherzan@gmail.com>
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License as published by the
+ * Free Software Foundation; version 2 of the License.
+ */
+
+#include <linux/bpf.h>
+#include <linux/bitops.h>
+#include <linux/compiler.h>
+#include <linux/errno.h>
+#include <linux/filter.h>
+#include <linux/netdevice.h>
+#include <linux/string.h>
+#include <linux/slab.h>
+#include <linux/if_vlan.h>
+
+#include <asm/cacheflush.h>
+#include <asm/hwcap.h>
+#include <asm/opcodes.h>
+#include <asm/system_info.h>
+
+#include "bpf_jit_32.h"
+
+/*
+ * eBPF prog stack layout:
+ *
+ *                         high
+ * original ARM_SP =>     +-----+
+ *                        |     | callee saved registers
+ *                        +-----+ <= (BPF_FP + SCRATCH_SIZE)
+ *                        | ... | eBPF JIT scratch space
+ * eBPF fp register =>    +-----+
+ *   (BPF_FP)             | ... | eBPF prog stack
+ *                        +-----+
+ *                        |RSVD | JIT scratchpad
+ * current ARM_SP =>      +-----+ <= (BPF_FP - STACK_SIZE + SCRATCH_SIZE)
+ *                        |     |
+ *                        | ... | Function call stack
+ *                        |     |
+ *                        +-----+
+ *                          low
+ *
+ * The callee saved registers depends on whether frame pointers are enabled.
+ * With frame pointers (to be compliant with the ABI):
+ *
+ *                              high
+ * original ARM_SP =>     +--------------+ \
+ *                        |      pc      | |
+ * current ARM_FP =>      +--------------+ } callee saved registers
+ *                        |r4-r9,fp,ip,lr| |
+ *                        +--------------+ /
+ *                              low
+ *
+ * Without frame pointers:
+ *
+ *                              high
+ * original ARM_SP =>     +--------------+
+ *                        |  r4-r9,fp,lr | callee saved registers
+ * current ARM_FP =>      +--------------+
+ *                              low
+ *
+ * When popping registers off the stack at the end of a BPF function, we
+ * reference them via the current ARM_FP register.
+ */
+#define CALLEE_MASK	(1 << ARM_R4 | 1 << ARM_R5 | 1 << ARM_R6 | \
+			 1 << ARM_R7 | 1 << ARM_R8 | 1 << ARM_R9 | \
+			 1 << ARM_FP)
+#define CALLEE_PUSH_MASK (CALLEE_MASK | 1 << ARM_LR)
+#define CALLEE_POP_MASK  (CALLEE_MASK | 1 << ARM_PC)
+
+enum {
+	/* Stack layout - these are offsets from (top of stack - 4) */
+	BPF_R2_HI,
+	BPF_R2_LO,
+	BPF_R3_HI,
+	BPF_R3_LO,
+	BPF_R4_HI,
+	BPF_R4_LO,
+	BPF_R5_HI,
+	BPF_R5_LO,
+	BPF_R7_HI,
+	BPF_R7_LO,
+	BPF_R8_HI,
+	BPF_R8_LO,
+	BPF_R9_HI,
+	BPF_R9_LO,
+	BPF_FP_HI,
+	BPF_FP_LO,
+	BPF_TC_HI,
+	BPF_TC_LO,
+	BPF_AX_HI,
+	BPF_AX_LO,
+	/* Stack space for BPF_REG_2, BPF_REG_3, BPF_REG_4,
+	 * BPF_REG_5, BPF_REG_7, BPF_REG_8, BPF_REG_9,
+	 * BPF_REG_FP and Tail call counts.
+	 */
+	BPF_JIT_SCRATCH_REGS,
+};
+
+/*
+ * Negative "register" values indicate the register is stored on the stack
+ * and are the offset from the top of the eBPF JIT scratch space.
+ */
+#define STACK_OFFSET(k)	(-4 - (k) * 4)
+#define SCRATCH_SIZE	(BPF_JIT_SCRATCH_REGS * 4)
+
+#ifdef CONFIG_FRAME_POINTER
+#define EBPF_SCRATCH_TO_ARM_FP(x) ((x) - 4 * hweight16(CALLEE_PUSH_MASK) - 4)
+#else
+#define EBPF_SCRATCH_TO_ARM_FP(x) (x)
+#endif
+
+#define TMP_REG_1	(MAX_BPF_JIT_REG + 0)	/* TEMP Register 1 */
+#define TMP_REG_2	(MAX_BPF_JIT_REG + 1)	/* TEMP Register 2 */
+#define TCALL_CNT	(MAX_BPF_JIT_REG + 2)	/* Tail Call Count */
+
+#define FLAG_IMM_OVERFLOW	(1 << 0)
+
+/*
+ * Map eBPF registers to ARM 32bit registers or stack scratch space.
+ *
+ * 1. First argument is passed using the arm 32bit registers and rest of the
+ * arguments are passed on stack scratch space.
+ * 2. First callee-saved argument is mapped to arm 32 bit registers and rest
+ * arguments are mapped to scratch space on stack.
+ * 3. We need two 64 bit temp registers to do complex operations on eBPF
+ * registers.
+ *
+ * As the eBPF registers are all 64 bit registers and arm has only 32 bit
+ * registers, we have to map each eBPF registers with two arm 32 bit regs or
+ * scratch memory space and we have to build eBPF 64 bit register from those.
+ *
+ */
+static const s8 bpf2a32[][2] = {
+	/* return value from in-kernel function, and exit value from eBPF */
+	[BPF_REG_0] = {ARM_R1, ARM_R0},
+	/* arguments from eBPF program to in-kernel function */
+	[BPF_REG_1] = {ARM_R3, ARM_R2},
+	/* Stored on stack scratch space */
+	[BPF_REG_2] = {STACK_OFFSET(BPF_R2_HI), STACK_OFFSET(BPF_R2_LO)},
+	[BPF_REG_3] = {STACK_OFFSET(BPF_R3_HI), STACK_OFFSET(BPF_R3_LO)},
+	[BPF_REG_4] = {STACK_OFFSET(BPF_R4_HI), STACK_OFFSET(BPF_R4_LO)},
+	[BPF_REG_5] = {STACK_OFFSET(BPF_R5_HI), STACK_OFFSET(BPF_R5_LO)},
+	/* callee saved registers that in-kernel function will preserve */
+	[BPF_REG_6] = {ARM_R5, ARM_R4},
+	/* Stored on stack scratch space */
+	[BPF_REG_7] = {STACK_OFFSET(BPF_R7_HI), STACK_OFFSET(BPF_R7_LO)},
+	[BPF_REG_8] = {STACK_OFFSET(BPF_R8_HI), STACK_OFFSET(BPF_R8_LO)},
+	[BPF_REG_9] = {STACK_OFFSET(BPF_R9_HI), STACK_OFFSET(BPF_R9_LO)},
+	/* Read only Frame Pointer to access Stack */
+	[BPF_REG_FP] = {STACK_OFFSET(BPF_FP_HI), STACK_OFFSET(BPF_FP_LO)},
+	/* Temporary Register for internal BPF JIT, can be used
+	 * for constant blindings and others.
+	 */
+	[TMP_REG_1] = {ARM_R7, ARM_R6},
+	[TMP_REG_2] = {ARM_R9, ARM_R8},
+	/* Tail call count. Stored on stack scratch space. */
+	[TCALL_CNT] = {STACK_OFFSET(BPF_TC_HI), STACK_OFFSET(BPF_TC_LO)},
+	/* temporary register for blinding constants.
+	 * Stored on stack scratch space.
+	 */
+	[BPF_REG_AX] = {STACK_OFFSET(BPF_AX_HI), STACK_OFFSET(BPF_AX_LO)},
+};
+
+#define	dst_lo	dst[1]
+#define dst_hi	dst[0]
+#define src_lo	src[1]
+#define src_hi	src[0]
+
+/*
+ * JIT Context:
+ *
+ * prog			:	bpf_prog
+ * idx			:	index of current last JITed instruction.
+ * prologue_bytes	:	bytes used in prologue.
+ * epilogue_offset	:	offset of epilogue starting.
+ * offsets		:	array of eBPF instruction offsets in
+ *				JITed code.
+ * target		:	final JITed code.
+ * epilogue_bytes	:	no of bytes used in epilogue.
+ * imm_count		:	no of immediate counts used for global
+ *				variables.
+ * imms			:	array of global variable addresses.
+ */
+
+struct jit_ctx {
+	const struct bpf_prog *prog;
+	unsigned int idx;
+	unsigned int prologue_bytes;
+	unsigned int epilogue_offset;
+	unsigned int cpu_architecture;
+	u32 flags;
+	u32 *offsets;
+	u32 *target;
+	u32 stack_size;
+#if __LINUX_ARM_ARCH__ < 7
+	u16 epilogue_bytes;
+	u16 imm_count;
+	u32 *imms;
+#endif
+};
+
+/*
+ * Wrappers which handle both OABI and EABI and assures Thumb2 interworking
+ * (where the assembly routines like __aeabi_uidiv could cause problems).
+ */
+static u32 jit_udiv32(u32 dividend, u32 divisor)
+{
+	return dividend / divisor;
+}
+
+static u32 jit_mod32(u32 dividend, u32 divisor)
+{
+	return dividend % divisor;
+}
+
+static inline void _emit(int cond, u32 inst, struct jit_ctx *ctx)
+{
+	inst |= (cond << 28);
+	inst = __opcode_to_mem_arm(inst);
+
+	if (ctx->target != NULL)
+		ctx->target[ctx->idx] = inst;
+
+	ctx->idx++;
+}
+
+/*
+ * Emit an instruction that will be executed unconditionally.
+ */
+static inline void emit(u32 inst, struct jit_ctx *ctx)
+{
+	_emit(ARM_COND_AL, inst, ctx);
+}
+
+/*
+ * This is rather horrid, but necessary to convert an integer constant
+ * to an immediate operand for the opcodes, and be able to detect at
+ * build time whether the constant can't be converted (iow, usable in
+ * BUILD_BUG_ON()).
+ */
+#define imm12val(v, s) (rol32(v, (s)) | (s) << 7)
+#define const_imm8m(x)					\
+	({ int r;					\
+	   u32 v = (x);					\
+	   if (!(v & ~0x000000ff))			\
+		r = imm12val(v, 0);			\
+	   else if (!(v & ~0xc000003f))			\
+		r = imm12val(v, 2);			\
+	   else if (!(v & ~0xf000000f))			\
+		r = imm12val(v, 4);			\
+	   else if (!(v & ~0xfc000003))			\
+		r = imm12val(v, 6);			\
+	   else if (!(v & ~0xff000000))			\
+		r = imm12val(v, 8);			\
+	   else if (!(v & ~0x3fc00000))			\
+		r = imm12val(v, 10);			\
+	   else if (!(v & ~0x0ff00000))			\
+		r = imm12val(v, 12);			\
+	   else if (!(v & ~0x03fc0000))			\
+		r = imm12val(v, 14);			\
+	   else if (!(v & ~0x00ff0000))			\
+		r = imm12val(v, 16);			\
+	   else if (!(v & ~0x003fc000))			\
+		r = imm12val(v, 18);			\
+	   else if (!(v & ~0x000ff000))			\
+		r = imm12val(v, 20);			\
+	   else if (!(v & ~0x0003fc00))			\
+		r = imm12val(v, 22);			\
+	   else if (!(v & ~0x0000ff00))			\
+		r = imm12val(v, 24);			\
+	   else if (!(v & ~0x00003fc0))			\
+		r = imm12val(v, 26);			\
+	   else if (!(v & ~0x00000ff0))			\
+		r = imm12val(v, 28);			\
+	   else if (!(v & ~0x000003fc))			\
+		r = imm12val(v, 30);			\
+	   else						\
+		r = -1;					\
+	   r; })
+
+/*
+ * Checks if immediate value can be converted to imm12(12 bits) value.
+ */
+static int imm8m(u32 x)
+{
+	u32 rot;
+
+	for (rot = 0; rot < 16; rot++)
+		if ((x & ~ror32(0xff, 2 * rot)) == 0)
+			return rol32(x, 2 * rot) | (rot << 8);
+	return -1;
+}
+
+#define imm8m(x) (__builtin_constant_p(x) ? const_imm8m(x) : imm8m(x))
+
+static u32 arm_bpf_ldst_imm12(u32 op, u8 rt, u8 rn, s16 imm12)
+{
+	op |= rt << 12 | rn << 16;
+	if (imm12 >= 0)
+		op |= ARM_INST_LDST__U;
+	else
+		imm12 = -imm12;
+	return op | (imm12 & ARM_INST_LDST__IMM12);
+}
+
+static u32 arm_bpf_ldst_imm8(u32 op, u8 rt, u8 rn, s16 imm8)
+{
+	op |= rt << 12 | rn << 16;
+	if (imm8 >= 0)
+		op |= ARM_INST_LDST__U;
+	else
+		imm8 = -imm8;
+	return op | (imm8 & 0xf0) << 4 | (imm8 & 0x0f);
+}
+
+#define ARM_LDR_I(rt, rn, off)	arm_bpf_ldst_imm12(ARM_INST_LDR_I, rt, rn, off)
+#define ARM_LDRB_I(rt, rn, off)	arm_bpf_ldst_imm12(ARM_INST_LDRB_I, rt, rn, off)
+#define ARM_LDRD_I(rt, rn, off)	arm_bpf_ldst_imm8(ARM_INST_LDRD_I, rt, rn, off)
+#define ARM_LDRH_I(rt, rn, off)	arm_bpf_ldst_imm8(ARM_INST_LDRH_I, rt, rn, off)
+
+#define ARM_STR_I(rt, rn, off)	arm_bpf_ldst_imm12(ARM_INST_STR_I, rt, rn, off)
+#define ARM_STRB_I(rt, rn, off)	arm_bpf_ldst_imm12(ARM_INST_STRB_I, rt, rn, off)
+#define ARM_STRD_I(rt, rn, off)	arm_bpf_ldst_imm8(ARM_INST_STRD_I, rt, rn, off)
+#define ARM_STRH_I(rt, rn, off)	arm_bpf_ldst_imm8(ARM_INST_STRH_I, rt, rn, off)
+
+/*
+ * Initializes the JIT space with undefined instructions.
+ */
+static void jit_fill_hole(void *area, unsigned int size)
+{
+	u32 *ptr;
+	/* We are guaranteed to have aligned memory. */
+	for (ptr = area; size >= sizeof(u32); size -= sizeof(u32))
+		*ptr++ = __opcode_to_mem_arm(ARM_INST_UDF);
+}
+
+#if defined(CONFIG_AEABI) && (__LINUX_ARM_ARCH__ >= 5)
+/* EABI requires the stack to be aligned to 64-bit boundaries */
+#define STACK_ALIGNMENT	8
+#else
+/* Stack must be aligned to 32-bit boundaries */
+#define STACK_ALIGNMENT	4
+#endif
+
+/* total stack size used in JITed code */
+#define _STACK_SIZE	(ctx->prog->aux->stack_depth + SCRATCH_SIZE)
+#define STACK_SIZE	ALIGN(_STACK_SIZE, STACK_ALIGNMENT)
+
+#if __LINUX_ARM_ARCH__ < 7
+
+static u16 imm_offset(u32 k, struct jit_ctx *ctx)
+{
+	unsigned int i = 0, offset;
+	u16 imm;
+
+	/* on the "fake" run we just count them (duplicates included) */
+	if (ctx->target == NULL) {
+		ctx->imm_count++;
+		return 0;
+	}
+
+	while ((i < ctx->imm_count) && ctx->imms[i]) {
+		if (ctx->imms[i] == k)
+			break;
+		i++;
+	}
+
+	if (ctx->imms[i] == 0)
+		ctx->imms[i] = k;
+
+	/* constants go just after the epilogue */
+	offset =  ctx->offsets[ctx->prog->len - 1] * 4;
+	offset += ctx->prologue_bytes;
+	offset += ctx->epilogue_bytes;
+	offset += i * 4;
+
+	ctx->target[offset / 4] = k;
+
+	/* PC in ARM mode == address of the instruction + 8 */
+	imm = offset - (8 + ctx->idx * 4);
+
+	if (imm & ~0xfff) {
+		/*
+		 * literal pool is too far, signal it into flags. we
+		 * can only detect it on the second pass unfortunately.
+		 */
+		ctx->flags |= FLAG_IMM_OVERFLOW;
+		return 0;
+	}
+
+	return imm;
+}
+
+#endif /* __LINUX_ARM_ARCH__ */
+
+static inline int bpf2a32_offset(int bpf_to, int bpf_from,
+				 const struct jit_ctx *ctx) {
+	int to, from;
+
+	if (ctx->target == NULL)
+		return 0;
+	to = ctx->offsets[bpf_to];
+	from = ctx->offsets[bpf_from];
+
+	return to - from - 1;
+}
+
+/*
+ * Move an immediate that's not an imm8m to a core register.
+ */
+static inline void emit_mov_i_no8m(const u8 rd, u32 val, struct jit_ctx *ctx)
+{
+#if __LINUX_ARM_ARCH__ < 7
+	emit(ARM_LDR_I(rd, ARM_PC, imm_offset(val, ctx)), ctx);
+#else
+	emit(ARM_MOVW(rd, val & 0xffff), ctx);
+	if (val > 0xffff)
+		emit(ARM_MOVT(rd, val >> 16), ctx);
+#endif
+}
+
+static inline void emit_mov_i(const u8 rd, u32 val, struct jit_ctx *ctx)
+{
+	int imm12 = imm8m(val);
+
+	if (imm12 >= 0)
+		emit(ARM_MOV_I(rd, imm12), ctx);
+	else
+		emit_mov_i_no8m(rd, val, ctx);
+}
+
+static void emit_bx_r(u8 tgt_reg, struct jit_ctx *ctx)
+{
+	if (elf_hwcap & HWCAP_THUMB)
+		emit(ARM_BX(tgt_reg), ctx);
+	else
+		emit(ARM_MOV_R(ARM_PC, tgt_reg), ctx);
+}
+
+static inline void emit_blx_r(u8 tgt_reg, struct jit_ctx *ctx)
+{
+#if __LINUX_ARM_ARCH__ < 5
+	emit(ARM_MOV_R(ARM_LR, ARM_PC), ctx);
+	emit_bx_r(tgt_reg, ctx);
+#else
+	emit(ARM_BLX_R(tgt_reg), ctx);
+#endif
+}
+
+static inline int epilogue_offset(const struct jit_ctx *ctx)
+{
+	int to, from;
+	/* No need for 1st dummy run */
+	if (ctx->target == NULL)
+		return 0;
+	to = ctx->epilogue_offset;
+	from = ctx->idx;
+
+	return to - from - 2;
+}
+
+static inline void emit_udivmod(u8 rd, u8 rm, u8 rn, struct jit_ctx *ctx, u8 op)
+{
+	const s8 *tmp = bpf2a32[TMP_REG_1];
+
+#if __LINUX_ARM_ARCH__ == 7
+	if (elf_hwcap & HWCAP_IDIVA) {
+		if (op == BPF_DIV)
+			emit(ARM_UDIV(rd, rm, rn), ctx);
+		else {
+			emit(ARM_UDIV(ARM_IP, rm, rn), ctx);
+			emit(ARM_MLS(rd, rn, ARM_IP, rm), ctx);
+		}
+		return;
+	}
+#endif
+
+	/*
+	 * For BPF_ALU | BPF_DIV | BPF_K instructions
+	 * As ARM_R1 and ARM_R0 contains 1st argument of bpf
+	 * function, we need to save it on caller side to save
+	 * it from getting destroyed within callee.
+	 * After the return from the callee, we restore ARM_R0
+	 * ARM_R1.
+	 */
+	if (rn != ARM_R1) {
+		emit(ARM_MOV_R(tmp[0], ARM_R1), ctx);
+		emit(ARM_MOV_R(ARM_R1, rn), ctx);
+	}
+	if (rm != ARM_R0) {
+		emit(ARM_MOV_R(tmp[1], ARM_R0), ctx);
+		emit(ARM_MOV_R(ARM_R0, rm), ctx);
+	}
+
+	/* Call appropriate function */
+	emit_mov_i(ARM_IP, op == BPF_DIV ?
+		   (u32)jit_udiv32 : (u32)jit_mod32, ctx);
+	emit_blx_r(ARM_IP, ctx);
+
+	/* Save return value */
+	if (rd != ARM_R0)
+		emit(ARM_MOV_R(rd, ARM_R0), ctx);
+
+	/* Restore ARM_R0 and ARM_R1 */
+	if (rn != ARM_R1)
+		emit(ARM_MOV_R(ARM_R1, tmp[0]), ctx);
+	if (rm != ARM_R0)
+		emit(ARM_MOV_R(ARM_R0, tmp[1]), ctx);
+}
+
+/* Is the translated BPF register on stack? */
+static bool is_stacked(s8 reg)
+{
+	return reg < 0;
+}
+
+/* If a BPF register is on the stack (stk is true), load it to the
+ * supplied temporary register and return the temporary register
+ * for subsequent operations, otherwise just use the CPU register.
+ */
+static s8 arm_bpf_get_reg32(s8 reg, s8 tmp, struct jit_ctx *ctx)
+{
+	if (is_stacked(reg)) {
+		emit(ARM_LDR_I(tmp, ARM_FP, EBPF_SCRATCH_TO_ARM_FP(reg)), ctx);
+		reg = tmp;
+	}
+	return reg;
+}
+
+static const s8 *arm_bpf_get_reg64(const s8 *reg, const s8 *tmp,
+				   struct jit_ctx *ctx)
+{
+	if (is_stacked(reg[1])) {
+		if (__LINUX_ARM_ARCH__ >= 6 ||
+		    ctx->cpu_architecture >= CPU_ARCH_ARMv5TE) {
+			emit(ARM_LDRD_I(tmp[1], ARM_FP,
+					EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
+		} else {
+			emit(ARM_LDR_I(tmp[1], ARM_FP,
+				       EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
+			emit(ARM_LDR_I(tmp[0], ARM_FP,
+				       EBPF_SCRATCH_TO_ARM_FP(reg[0])), ctx);
+		}
+		reg = tmp;
+	}
+	return reg;
+}
+
+/* If a BPF register is on the stack (stk is true), save the register
+ * back to the stack.  If the source register is not the same, then
+ * move it into the correct register.
+ */
+static void arm_bpf_put_reg32(s8 reg, s8 src, struct jit_ctx *ctx)
+{
+	if (is_stacked(reg))
+		emit(ARM_STR_I(src, ARM_FP, EBPF_SCRATCH_TO_ARM_FP(reg)), ctx);
+	else if (reg != src)
+		emit(ARM_MOV_R(reg, src), ctx);
+}
+
+static void arm_bpf_put_reg64(const s8 *reg, const s8 *src,
+			      struct jit_ctx *ctx)
+{
+	if (is_stacked(reg[1])) {
+		if (__LINUX_ARM_ARCH__ >= 6 ||
+		    ctx->cpu_architecture >= CPU_ARCH_ARMv5TE) {
+			emit(ARM_STRD_I(src[1], ARM_FP,
+				       EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
+		} else {
+			emit(ARM_STR_I(src[1], ARM_FP,
+				       EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
+			emit(ARM_STR_I(src[0], ARM_FP,
+				       EBPF_SCRATCH_TO_ARM_FP(reg[0])), ctx);
+		}
+	} else {
+		if (reg[1] != src[1])
+			emit(ARM_MOV_R(reg[1], src[1]), ctx);
+		if (reg[0] != src[0])
+			emit(ARM_MOV_R(reg[0], src[0]), ctx);
+	}
+}
+
+static inline void emit_a32_mov_i(const s8 dst, const u32 val,
+				  struct jit_ctx *ctx)
+{
+	const s8 *tmp = bpf2a32[TMP_REG_1];
+
+	if (is_stacked(dst)) {
+		emit_mov_i(tmp[1], val, ctx);
+		arm_bpf_put_reg32(dst, tmp[1], ctx);
+	} else {
+		emit_mov_i(dst, val, ctx);
+	}
+}
+
+static void emit_a32_mov_i64(const s8 dst[], u64 val, struct jit_ctx *ctx)
+{
+	const s8 *tmp = bpf2a32[TMP_REG_1];
+	const s8 *rd = is_stacked(dst_lo) ? tmp : dst;
+
+	emit_mov_i(rd[1], (u32)val, ctx);
+	emit_mov_i(rd[0], val >> 32, ctx);
+
+	arm_bpf_put_reg64(dst, rd, ctx);
+}
+
+/* Sign extended move */
+static inline void emit_a32_mov_se_i64(const bool is64, const s8 dst[],
+				       const u32 val, struct jit_ctx *ctx) {
+	u64 val64 = val;
+
+	if (is64 && (val & (1<<31)))
+		val64 |= 0xffffffff00000000ULL;
+	emit_a32_mov_i64(dst, val64, ctx);
+}
+
+static inline void emit_a32_add_r(const u8 dst, const u8 src,
+			      const bool is64, const bool hi,
+			      struct jit_ctx *ctx) {
+	/* 64 bit :
+	 *	adds dst_lo, dst_lo, src_lo
+	 *	adc dst_hi, dst_hi, src_hi
+	 * 32 bit :
+	 *	add dst_lo, dst_lo, src_lo
+	 */
+	if (!hi && is64)
+		emit(ARM_ADDS_R(dst, dst, src), ctx);
+	else if (hi && is64)
+		emit(ARM_ADC_R(dst, dst, src), ctx);
+	else
+		emit(ARM_ADD_R(dst, dst, src), ctx);
+}
+
+static inline void emit_a32_sub_r(const u8 dst, const u8 src,
+				  const bool is64, const bool hi,
+				  struct jit_ctx *ctx) {
+	/* 64 bit :
+	 *	subs dst_lo, dst_lo, src_lo
+	 *	sbc dst_hi, dst_hi, src_hi
+	 * 32 bit :
+	 *	sub dst_lo, dst_lo, src_lo
+	 */
+	if (!hi && is64)
+		emit(ARM_SUBS_R(dst, dst, src), ctx);
+	else if (hi && is64)
+		emit(ARM_SBC_R(dst, dst, src), ctx);
+	else
+		emit(ARM_SUB_R(dst, dst, src), ctx);
+}
+
+static inline void emit_alu_r(const u8 dst, const u8 src, const bool is64,
+			      const bool hi, const u8 op, struct jit_ctx *ctx){
+	switch (BPF_OP(op)) {
+	/* dst = dst + src */
+	case BPF_ADD:
+		emit_a32_add_r(dst, src, is64, hi, ctx);
+		break;
+	/* dst = dst - src */
+	case BPF_SUB:
+		emit_a32_sub_r(dst, src, is64, hi, ctx);
+		break;
+	/* dst = dst | src */
+	case BPF_OR:
+		emit(ARM_ORR_R(dst, dst, src), ctx);
+		break;
+	/* dst = dst & src */
+	case BPF_AND:
+		emit(ARM_AND_R(dst, dst, src), ctx);
+		break;
+	/* dst = dst ^ src */
+	case BPF_XOR:
+		emit(ARM_EOR_R(dst, dst, src), ctx);
+		break;
+	/* dst = dst * src */
+	case BPF_MUL:
+		emit(ARM_MUL(dst, dst, src), ctx);
+		break;
+	/* dst = dst << src */
+	case BPF_LSH:
+		emit(ARM_LSL_R(dst, dst, src), ctx);
+		break;
+	/* dst = dst >> src */
+	case BPF_RSH:
+		emit(ARM_LSR_R(dst, dst, src), ctx);
+		break;
+	/* dst = dst >> src (signed)*/
+	case BPF_ARSH:
+		emit(ARM_MOV_SR(dst, dst, SRTYPE_ASR, src), ctx);
+		break;
+	}
+}
+
+/* ALU operation (32 bit)
+ * dst = dst (op) src
+ */
+static inline void emit_a32_alu_r(const s8 dst, const s8 src,
+				  struct jit_ctx *ctx, const bool is64,
+				  const bool hi, const u8 op) {
+	const s8 *tmp = bpf2a32[TMP_REG_1];
+	s8 rn, rd;
+
+	rn = arm_bpf_get_reg32(src, tmp[1], ctx);
+	rd = arm_bpf_get_reg32(dst, tmp[0], ctx);
+	/* ALU operation */
+	emit_alu_r(rd, rn, is64, hi, op, ctx);
+	arm_bpf_put_reg32(dst, rd, ctx);
+}
+
+/* ALU operation (64 bit) */
+static inline void emit_a32_alu_r64(const bool is64, const s8 dst[],
+				  const s8 src[], struct jit_ctx *ctx,
+				  const u8 op) {
+	const s8 *tmp = bpf2a32[TMP_REG_1];
+	const s8 *tmp2 = bpf2a32[TMP_REG_2];
+	const s8 *rd;
+
+	rd = arm_bpf_get_reg64(dst, tmp, ctx);
+	if (is64) {
+		const s8 *rs;
+
+		rs = arm_bpf_get_reg64(src, tmp2, ctx);
+
+		/* ALU operation */
+		emit_alu_r(rd[1], rs[1], true, false, op, ctx);
+		emit_alu_r(rd[0], rs[0], true, true, op, ctx);
+	} else {
+		s8 rs;
+
+		rs = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
+
+		/* ALU operation */
+		emit_alu_r(rd[1], rs, true, false, op, ctx);
+		emit_a32_mov_i(rd[0], 0, ctx);
+	}
+
+	arm_bpf_put_reg64(dst, rd, ctx);
+}
+
+/* dst = src (4 bytes)*/
+static inline void emit_a32_mov_r(const s8 dst, const s8 src,
+				  struct jit_ctx *ctx) {
+	const s8 *tmp = bpf2a32[TMP_REG_1];
+	s8 rt;
+
+	rt = arm_bpf_get_reg32(src, tmp[0], ctx);
+	arm_bpf_put_reg32(dst, rt, ctx);
+}
+
+/* dst = src */
+static inline void emit_a32_mov_r64(const bool is64, const s8 dst[],
+				  const s8 src[],
+				  struct jit_ctx *ctx) {
+	if (!is64) {
+		emit_a32_mov_r(dst_lo, src_lo, ctx);
+		/* Zero out high 4 bytes */
+		emit_a32_mov_i(dst_hi, 0, ctx);
+	} else if (__LINUX_ARM_ARCH__ < 6 &&
+		   ctx->cpu_architecture < CPU_ARCH_ARMv5TE) {
+		/* complete 8 byte move */
+		emit_a32_mov_r(dst_lo, src_lo, ctx);
+		emit_a32_mov_r(dst_hi, src_hi, ctx);
+	} else if (is_stacked(src_lo) && is_stacked(dst_lo)) {
+		const u8 *tmp = bpf2a32[TMP_REG_1];
+
+		emit(ARM_LDRD_I(tmp[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(src_lo)), ctx);
+		emit(ARM_STRD_I(tmp[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(dst_lo)), ctx);
+	} else if (is_stacked(src_lo)) {
+		emit(ARM_LDRD_I(dst[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(src_lo)), ctx);
+	} else if (is_stacked(dst_lo)) {
+		emit(ARM_STRD_I(src[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(dst_lo)), ctx);
+	} else {
+		emit(ARM_MOV_R(dst[0], src[0]), ctx);
+		emit(ARM_MOV_R(dst[1], src[1]), ctx);
+	}
+}
+
+/* Shift operations */
+static inline void emit_a32_alu_i(const s8 dst, const u32 val,
+				struct jit_ctx *ctx, const u8 op) {
+	const s8 *tmp = bpf2a32[TMP_REG_1];
+	s8 rd;
+
+	rd = arm_bpf_get_reg32(dst, tmp[0], ctx);
+
+	/* Do shift operation */
+	switch (op) {
+	case BPF_LSH:
+		emit(ARM_LSL_I(rd, rd, val), ctx);
+		break;
+	case BPF_RSH:
+		emit(ARM_LSR_I(rd, rd, val), ctx);
+		break;
+	case BPF_NEG:
+		emit(ARM_RSB_I(rd, rd, val), ctx);
+		break;
+	}
+
+	arm_bpf_put_reg32(dst, rd, ctx);
+}
+
+/* dst = ~dst (64 bit) */
+static inline void emit_a32_neg64(const s8 dst[],
+				struct jit_ctx *ctx){
+	const s8 *tmp = bpf2a32[TMP_REG_1];
+	const s8 *rd;
+
+	/* Setup Operand */
+	rd = arm_bpf_get_reg64(dst, tmp, ctx);
+
+	/* Do Negate Operation */
+	emit(ARM_RSBS_I(rd[1], rd[1], 0), ctx);
+	emit(ARM_RSC_I(rd[0], rd[0], 0), ctx);
+
+	arm_bpf_put_reg64(dst, rd, ctx);
+}
+
+/* dst = dst << src */
+static inline void emit_a32_lsh_r64(const s8 dst[], const s8 src[],
+				    struct jit_ctx *ctx) {
+	const s8 *tmp = bpf2a32[TMP_REG_1];
+	const s8 *tmp2 = bpf2a32[TMP_REG_2];
+	const s8 *rd;
+	s8 rt;
+
+	/* Setup Operands */
+	rt = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
+	rd = arm_bpf_get_reg64(dst, tmp, ctx);
+
+	/* Do LSH operation */
+	emit(ARM_SUB_I(ARM_IP, rt, 32), ctx);
+	emit(ARM_RSB_I(tmp2[0], rt, 32), ctx);
+	emit(ARM_MOV_SR(ARM_LR, rd[0], SRTYPE_ASL, rt), ctx);
+	emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[1], SRTYPE_ASL, ARM_IP), ctx);
+	emit(ARM_ORR_SR(ARM_IP, ARM_LR, rd[1], SRTYPE_LSR, tmp2[0]), ctx);
+	emit(ARM_MOV_SR(ARM_LR, rd[1], SRTYPE_ASL, rt), ctx);
+
+	arm_bpf_put_reg32(dst_lo, ARM_LR, ctx);
+	arm_bpf_put_reg32(dst_hi, ARM_IP, ctx);
+}
+
+/* dst = dst >> src (signed)*/
+static inline void emit_a32_arsh_r64(const s8 dst[], const s8 src[],
+				     struct jit_ctx *ctx) {
+	const s8 *tmp = bpf2a32[TMP_REG_1];
+	const s8 *tmp2 = bpf2a32[TMP_REG_2];
+	const s8 *rd;
+	s8 rt;
+
+	/* Setup Operands */
+	rt = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
+	rd = arm_bpf_get_reg64(dst, tmp, ctx);
+
+	/* Do the ARSH operation */
+	emit(ARM_RSB_I(ARM_IP, rt, 32), ctx);
+	emit(ARM_SUBS_I(tmp2[0], rt, 32), ctx);
+	emit(ARM_MOV_SR(ARM_LR, rd[1], SRTYPE_LSR, rt), ctx);
+	emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_ASL, ARM_IP), ctx);
+	_emit(ARM_COND_MI, ARM_B(0), ctx);
+	emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_ASR, tmp2[0]), ctx);
+	emit(ARM_MOV_SR(ARM_IP, rd[0], SRTYPE_ASR, rt), ctx);
+
+	arm_bpf_put_reg32(dst_lo, ARM_LR, ctx);
+	arm_bpf_put_reg32(dst_hi, ARM_IP, ctx);
+}
+
+/* dst = dst >> src */
+static inline void emit_a32_rsh_r64(const s8 dst[], const s8 src[],
+				    struct jit_ctx *ctx) {
+	const s8 *tmp = bpf2a32[TMP_REG_1];
+	const s8 *tmp2 = bpf2a32[TMP_REG_2];
+	const s8 *rd;
+	s8 rt;
+
+	/* Setup Operands */
+	rt = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
+	rd = arm_bpf_get_reg64(dst, tmp, ctx);
+
+	/* Do RSH operation */
+	emit(ARM_RSB_I(ARM_IP, rt, 32), ctx);
+	emit(ARM_SUBS_I(tmp2[0], rt, 32), ctx);
+	emit(ARM_MOV_SR(ARM_LR, rd[1], SRTYPE_LSR, rt), ctx);
+	emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_ASL, ARM_IP), ctx);
+	emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_LSR, tmp2[0]), ctx);
+	emit(ARM_MOV_SR(ARM_IP, rd[0], SRTYPE_LSR, rt), ctx);
+
+	arm_bpf_put_reg32(dst_lo, ARM_LR, ctx);
+	arm_bpf_put_reg32(dst_hi, ARM_IP, ctx);
+}
+
+/* dst = dst << val */
+static inline void emit_a32_lsh_i64(const s8 dst[],
+				    const u32 val, struct jit_ctx *ctx){
+	const s8 *tmp = bpf2a32[TMP_REG_1];
+	const s8 *tmp2 = bpf2a32[TMP_REG_2];
+	const s8 *rd;
+
+	/* Setup operands */
+	rd = arm_bpf_get_reg64(dst, tmp, ctx);
+
+	/* Do LSH operation */
+	if (val < 32) {
+		emit(ARM_MOV_SI(tmp2[0], rd[0], SRTYPE_ASL, val), ctx);
+		emit(ARM_ORR_SI(rd[0], tmp2[0], rd[1], SRTYPE_LSR, 32 - val), ctx);
+		emit(ARM_MOV_SI(rd[1], rd[1], SRTYPE_ASL, val), ctx);
+	} else {
+		if (val == 32)
+			emit(ARM_MOV_R(rd[0], rd[1]), ctx);
+		else
+			emit(ARM_MOV_SI(rd[0], rd[1], SRTYPE_ASL, val - 32), ctx);
+		emit(ARM_EOR_R(rd[1], rd[1], rd[1]), ctx);
+	}
+
+	arm_bpf_put_reg64(dst, rd, ctx);
+}
+
+/* dst = dst >> val */
+static inline void emit_a32_rsh_i64(const s8 dst[],
+				    const u32 val, struct jit_ctx *ctx) {
+	const s8 *tmp = bpf2a32[TMP_REG_1];
+	const s8 *tmp2 = bpf2a32[TMP_REG_2];
+	const s8 *rd;
+
+	/* Setup operands */
+	rd = arm_bpf_get_reg64(dst, tmp, ctx);
+
+	/* Do LSR operation */
+	if (val < 32) {
+		emit(ARM_MOV_SI(tmp2[1], rd[1], SRTYPE_LSR, val), ctx);
+		emit(ARM_ORR_SI(rd[1], tmp2[1], rd[0], SRTYPE_ASL, 32 - val), ctx);
+		emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_LSR, val), ctx);
+	} else if (val == 32) {
+		emit(ARM_MOV_R(rd[1], rd[0]), ctx);
+		emit(ARM_MOV_I(rd[0], 0), ctx);
+	} else {
+		emit(ARM_MOV_SI(rd[1], rd[0], SRTYPE_LSR, val - 32), ctx);
+		emit(ARM_MOV_I(rd[0], 0), ctx);
+	}
+
+	arm_bpf_put_reg64(dst, rd, ctx);
+}
+
+/* dst = dst >> val (signed) */
+static inline void emit_a32_arsh_i64(const s8 dst[],
+				     const u32 val, struct jit_ctx *ctx){
+	const s8 *tmp = bpf2a32[TMP_REG_1];
+	const s8 *tmp2 = bpf2a32[TMP_REG_2];
+	const s8 *rd;
+
+	/* Setup operands */
+	rd = arm_bpf_get_reg64(dst, tmp, ctx);
+
+	/* Do ARSH operation */
+	if (val < 32) {
+		emit(ARM_MOV_SI(tmp2[1], rd[1], SRTYPE_LSR, val), ctx);
+		emit(ARM_ORR_SI(rd[1], tmp2[1], rd[0], SRTYPE_ASL, 32 - val), ctx);
+		emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_ASR, val), ctx);
+	} else if (val == 32) {
+		emit(ARM_MOV_R(rd[1], rd[0]), ctx);
+		emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_ASR, 31), ctx);
+	} else {
+		emit(ARM_MOV_SI(rd[1], rd[0], SRTYPE_ASR, val - 32), ctx);
+		emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_ASR, 31), ctx);
+	}
+
+	arm_bpf_put_reg64(dst, rd, ctx);
+}
+
+static inline void emit_a32_mul_r64(const s8 dst[], const s8 src[],
+				    struct jit_ctx *ctx) {
+	const s8 *tmp = bpf2a32[TMP_REG_1];
+	const s8 *tmp2 = bpf2a32[TMP_REG_2];
+	const s8 *rd, *rt;
+
+	/* Setup operands for multiplication */
+	rd = arm_bpf_get_reg64(dst, tmp, ctx);
+	rt = arm_bpf_get_reg64(src, tmp2, ctx);
+
+	/* Do Multiplication */
+	emit(ARM_MUL(ARM_IP, rd[1], rt[0]), ctx);
+	emit(ARM_MUL(ARM_LR, rd[0], rt[1]), ctx);
+	emit(ARM_ADD_R(ARM_LR, ARM_IP, ARM_LR), ctx);
+
+	emit(ARM_UMULL(ARM_IP, rd[0], rd[1], rt[1]), ctx);
+	emit(ARM_ADD_R(rd[0], ARM_LR, rd[0]), ctx);
+
+	arm_bpf_put_reg32(dst_lo, ARM_IP, ctx);
+	arm_bpf_put_reg32(dst_hi, rd[0], ctx);
+}
+
+/* *(size *)(dst + off) = src */
+static inline void emit_str_r(const s8 dst, const s8 src[],
+			      s32 off, struct jit_ctx *ctx, const u8 sz){
+	const s8 *tmp = bpf2a32[TMP_REG_1];
+	s32 off_max;
+	s8 rd;
+
+	rd = arm_bpf_get_reg32(dst, tmp[1], ctx);
+
+	if (sz == BPF_H)
+		off_max = 0xff;
+	else
+		off_max = 0xfff;
+
+	if (off < 0 || off > off_max) {
+		emit_a32_mov_i(tmp[0], off, ctx);
+		emit(ARM_ADD_R(tmp[0], tmp[0], rd), ctx);
+		rd = tmp[0];
+		off = 0;
+	}
+	switch (sz) {
+	case BPF_B:
+		/* Store a Byte */
+		emit(ARM_STRB_I(src_lo, rd, off), ctx);
+		break;
+	case BPF_H:
+		/* Store a HalfWord */
+		emit(ARM_STRH_I(src_lo, rd, off), ctx);
+		break;
+	case BPF_W:
+		/* Store a Word */
+		emit(ARM_STR_I(src_lo, rd, off), ctx);
+		break;
+	case BPF_DW:
+		/* Store a Double Word */
+		emit(ARM_STR_I(src_lo, rd, off), ctx);
+		emit(ARM_STR_I(src_hi, rd, off + 4), ctx);
+		break;
+	}
+}
+
+/* dst = *(size*)(src + off) */
+static inline void emit_ldx_r(const s8 dst[], const s8 src,
+			      s32 off, struct jit_ctx *ctx, const u8 sz){
+	const s8 *tmp = bpf2a32[TMP_REG_1];
+	const s8 *rd = is_stacked(dst_lo) ? tmp : dst;
+	s8 rm = src;
+	s32 off_max;
+
+	if (sz == BPF_H)
+		off_max = 0xff;
+	else
+		off_max = 0xfff;
+
+	if (off < 0 || off > off_max) {
+		emit_a32_mov_i(tmp[0], off, ctx);
+		emit(ARM_ADD_R(tmp[0], tmp[0], src), ctx);
+		rm = tmp[0];
+		off = 0;
+	} else if (rd[1] == rm) {
+		emit(ARM_MOV_R(tmp[0], rm), ctx);
+		rm = tmp[0];
+	}
+	switch (sz) {
+	case BPF_B:
+		/* Load a Byte */
+		emit(ARM_LDRB_I(rd[1], rm, off), ctx);
+		emit_a32_mov_i(rd[0], 0, ctx);
+		break;
+	case BPF_H:
+		/* Load a HalfWord */
+		emit(ARM_LDRH_I(rd[1], rm, off), ctx);
+		emit_a32_mov_i(rd[0], 0, ctx);
+		break;
+	case BPF_W:
+		/* Load a Word */
+		emit(ARM_LDR_I(rd[1], rm, off), ctx);
+		emit_a32_mov_i(rd[0], 0, ctx);
+		break;
+	case BPF_DW:
+		/* Load a Double Word */
+		emit(ARM_LDR_I(rd[1], rm, off), ctx);
+		emit(ARM_LDR_I(rd[0], rm, off + 4), ctx);
+		break;
+	}
+	arm_bpf_put_reg64(dst, rd, ctx);
+}
+
+/* Arithmatic Operation */
+static inline void emit_ar_r(const u8 rd, const u8 rt, const u8 rm,
+			     const u8 rn, struct jit_ctx *ctx, u8 op) {
+	switch (op) {
+	case BPF_JSET:
+		emit(ARM_AND_R(ARM_IP, rt, rn), ctx);
+		emit(ARM_AND_R(ARM_LR, rd, rm), ctx);
+		emit(ARM_ORRS_R(ARM_IP, ARM_LR, ARM_IP), ctx);
+		break;
+	case BPF_JEQ:
+	case BPF_JNE:
+	case BPF_JGT:
+	case BPF_JGE:
+	case BPF_JLE:
+	case BPF_JLT:
+		emit(ARM_CMP_R(rd, rm), ctx);
+		_emit(ARM_COND_EQ, ARM_CMP_R(rt, rn), ctx);
+		break;
+	case BPF_JSLE:
+	case BPF_JSGT:
+		emit(ARM_CMP_R(rn, rt), ctx);
+		emit(ARM_SBCS_R(ARM_IP, rm, rd), ctx);
+		break;
+	case BPF_JSLT:
+	case BPF_JSGE:
+		emit(ARM_CMP_R(rt, rn), ctx);
+		emit(ARM_SBCS_R(ARM_IP, rd, rm), ctx);
+		break;
+	}
+}
+
+static int out_offset = -1; /* initialized on the first pass of build_body() */
+static int emit_bpf_tail_call(struct jit_ctx *ctx)
+{
+
+	/* bpf_tail_call(void *prog_ctx, struct bpf_array *array, u64 index) */
+	const s8 *r2 = bpf2a32[BPF_REG_2];
+	const s8 *r3 = bpf2a32[BPF_REG_3];
+	const s8 *tmp = bpf2a32[TMP_REG_1];
+	const s8 *tmp2 = bpf2a32[TMP_REG_2];
+	const s8 *tcc = bpf2a32[TCALL_CNT];
+	const s8 *tc;
+	const int idx0 = ctx->idx;
+#define cur_offset (ctx->idx - idx0)
+#define jmp_offset (out_offset - (cur_offset) - 2)
+	u32 lo, hi;
+	s8 r_array, r_index;
+	int off;
+
+	/* if (index >= array->map.max_entries)
+	 *	goto out;
+	 */
+	BUILD_BUG_ON(offsetof(struct bpf_array, map.max_entries) >
+		     ARM_INST_LDST__IMM12);
+	off = offsetof(struct bpf_array, map.max_entries);
+	r_array = arm_bpf_get_reg32(r2[1], tmp2[0], ctx);
+	/* index is 32-bit for arrays */
+	r_index = arm_bpf_get_reg32(r3[1], tmp2[1], ctx);
+	/* array->map.max_entries */
+	emit(ARM_LDR_I(tmp[1], r_array, off), ctx);
+	/* index >= array->map.max_entries */
+	emit(ARM_CMP_R(r_index, tmp[1]), ctx);
+	_emit(ARM_COND_CS, ARM_B(jmp_offset), ctx);
+
+	/* tmp2[0] = array, tmp2[1] = index */
+
+	/* if (tail_call_cnt > MAX_TAIL_CALL_CNT)
+	 *	goto out;
+	 * tail_call_cnt++;
+	 */
+	lo = (u32)MAX_TAIL_CALL_CNT;
+	hi = (u32)((u64)MAX_TAIL_CALL_CNT >> 32);
+	tc = arm_bpf_get_reg64(tcc, tmp, ctx);
+	emit(ARM_CMP_I(tc[0], hi), ctx);
+	_emit(ARM_COND_EQ, ARM_CMP_I(tc[1], lo), ctx);
+	_emit(ARM_COND_HI, ARM_B(jmp_offset), ctx);
+	emit(ARM_ADDS_I(tc[1], tc[1], 1), ctx);
+	emit(ARM_ADC_I(tc[0], tc[0], 0), ctx);
+	arm_bpf_put_reg64(tcc, tmp, ctx);
+
+	/* prog = array->ptrs[index]
+	 * if (prog == NULL)
+	 *	goto out;
+	 */
+	BUILD_BUG_ON(imm8m(offsetof(struct bpf_array, ptrs)) < 0);
+	off = imm8m(offsetof(struct bpf_array, ptrs));
+	emit(ARM_ADD_I(tmp[1], r_array, off), ctx);
+	emit(ARM_LDR_R_SI(tmp[1], tmp[1], r_index, SRTYPE_ASL, 2), ctx);
+	emit(ARM_CMP_I(tmp[1], 0), ctx);
+	_emit(ARM_COND_EQ, ARM_B(jmp_offset), ctx);
+
+	/* goto *(prog->bpf_func + prologue_size); */
+	BUILD_BUG_ON(offsetof(struct bpf_prog, bpf_func) >
+		     ARM_INST_LDST__IMM12);
+	off = offsetof(struct bpf_prog, bpf_func);
+	emit(ARM_LDR_I(tmp[1], tmp[1], off), ctx);
+	emit(ARM_ADD_I(tmp[1], tmp[1], ctx->prologue_bytes), ctx);
+	emit_bx_r(tmp[1], ctx);
+
+	/* out: */
+	if (out_offset == -1)
+		out_offset = cur_offset;
+	if (cur_offset != out_offset) {
+		pr_err_once("tail_call out_offset = %d, expected %d!\n",
+			    cur_offset, out_offset);
+		return -1;
+	}
+	return 0;
+#undef cur_offset
+#undef jmp_offset
+}
+
+/* 0xabcd => 0xcdab */
+static inline void emit_rev16(const u8 rd, const u8 rn, struct jit_ctx *ctx)
+{
+#if __LINUX_ARM_ARCH__ < 6
+	const s8 *tmp2 = bpf2a32[TMP_REG_2];
+
+	emit(ARM_AND_I(tmp2[1], rn, 0xff), ctx);
+	emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 8), ctx);
+	emit(ARM_AND_I(tmp2[0], tmp2[0], 0xff), ctx);
+	emit(ARM_ORR_SI(rd, tmp2[0], tmp2[1], SRTYPE_LSL, 8), ctx);
+#else /* ARMv6+ */
+	emit(ARM_REV16(rd, rn), ctx);
+#endif
+}
+
+/* 0xabcdefgh => 0xghefcdab */
+static inline void emit_rev32(const u8 rd, const u8 rn, struct jit_ctx *ctx)
+{
+#if __LINUX_ARM_ARCH__ < 6
+	const s8 *tmp2 = bpf2a32[TMP_REG_2];
+
+	emit(ARM_AND_I(tmp2[1], rn, 0xff), ctx);
+	emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 24), ctx);
+	emit(ARM_ORR_SI(ARM_IP, tmp2[0], tmp2[1], SRTYPE_LSL, 24), ctx);
+
+	emit(ARM_MOV_SI(tmp2[1], rn, SRTYPE_LSR, 8), ctx);
+	emit(ARM_AND_I(tmp2[1], tmp2[1], 0xff), ctx);
+	emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 16), ctx);
+	emit(ARM_AND_I(tmp2[0], tmp2[0], 0xff), ctx);
+	emit(ARM_MOV_SI(tmp2[0], tmp2[0], SRTYPE_LSL, 8), ctx);
+	emit(ARM_ORR_SI(tmp2[0], tmp2[0], tmp2[1], SRTYPE_LSL, 16), ctx);
+	emit(ARM_ORR_R(rd, ARM_IP, tmp2[0]), ctx);
+
+#else /* ARMv6+ */
+	emit(ARM_REV(rd, rn), ctx);
+#endif
+}
+
+// push the scratch stack register on top of the stack
+static inline void emit_push_r64(const s8 src[], struct jit_ctx *ctx)
+{
+	const s8 *tmp2 = bpf2a32[TMP_REG_2];
+	const s8 *rt;
+	u16 reg_set = 0;
+
+	rt = arm_bpf_get_reg64(src, tmp2, ctx);
+
+	reg_set = (1 << rt[1]) | (1 << rt[0]);
+	emit(ARM_PUSH(reg_set), ctx);
+}
+
+static void build_prologue(struct jit_ctx *ctx)
+{
+	const s8 r0 = bpf2a32[BPF_REG_0][1];
+	const s8 r2 = bpf2a32[BPF_REG_1][1];
+	const s8 r3 = bpf2a32[BPF_REG_1][0];
+	const s8 r4 = bpf2a32[BPF_REG_6][1];
+	const s8 fplo = bpf2a32[BPF_REG_FP][1];
+	const s8 fphi = bpf2a32[BPF_REG_FP][0];
+	const s8 *tcc = bpf2a32[TCALL_CNT];
+
+	/* Save callee saved registers. */
+#ifdef CONFIG_FRAME_POINTER
+	u16 reg_set = CALLEE_PUSH_MASK | 1 << ARM_IP | 1 << ARM_PC;
+	emit(ARM_MOV_R(ARM_IP, ARM_SP), ctx);
+	emit(ARM_PUSH(reg_set), ctx);
+	emit(ARM_SUB_I(ARM_FP, ARM_IP, 4), ctx);
+#else
+	emit(ARM_PUSH(CALLEE_PUSH_MASK), ctx);
+	emit(ARM_MOV_R(ARM_FP, ARM_SP), ctx);
+#endif
+	/* Save frame pointer for later */
+	emit(ARM_SUB_I(ARM_IP, ARM_SP, SCRATCH_SIZE), ctx);
+
+	ctx->stack_size = imm8m(STACK_SIZE);
+
+	/* Set up function call stack */
+	emit(ARM_SUB_I(ARM_SP, ARM_SP, ctx->stack_size), ctx);
+
+	/* Set up BPF prog stack base register */
+	emit_a32_mov_r(fplo, ARM_IP, ctx);
+	emit_a32_mov_i(fphi, 0, ctx);
+
+	/* mov r4, 0 */
+	emit(ARM_MOV_I(r4, 0), ctx);
+
+	/* Move BPF_CTX to BPF_R1 */
+	emit(ARM_MOV_R(r3, r4), ctx);
+	emit(ARM_MOV_R(r2, r0), ctx);
+	/* Initialize Tail Count */
+	emit(ARM_STR_I(r4, ARM_FP, EBPF_SCRATCH_TO_ARM_FP(tcc[0])), ctx);
+	emit(ARM_STR_I(r4, ARM_FP, EBPF_SCRATCH_TO_ARM_FP(tcc[1])), ctx);
+	/* end of prologue */
+}
+
+/* restore callee saved registers. */
+static void build_epilogue(struct jit_ctx *ctx)
+{
+#ifdef CONFIG_FRAME_POINTER
+	/* When using frame pointers, some additional registers need to
+	 * be loaded. */
+	u16 reg_set = CALLEE_POP_MASK | 1 << ARM_SP;
+	emit(ARM_SUB_I(ARM_SP, ARM_FP, hweight16(reg_set) * 4), ctx);
+	emit(ARM_LDM(ARM_SP, reg_set), ctx);
+#else
+	/* Restore callee saved registers. */
+	emit(ARM_MOV_R(ARM_SP, ARM_FP), ctx);
+	emit(ARM_POP(CALLEE_POP_MASK), ctx);
+#endif
+}
+
+/*
+ * Convert an eBPF instruction to native instruction, i.e
+ * JITs an eBPF instruction.
+ * Returns :
+ *	0  - Successfully JITed an 8-byte eBPF instruction
+ *	>0 - Successfully JITed a 16-byte eBPF instruction
+ *	<0 - Failed to JIT.
+ */
+static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx)
+{
+	const u8 code = insn->code;
+	const s8 *dst = bpf2a32[insn->dst_reg];
+	const s8 *src = bpf2a32[insn->src_reg];
+	const s8 *tmp = bpf2a32[TMP_REG_1];
+	const s8 *tmp2 = bpf2a32[TMP_REG_2];
+	const s16 off = insn->off;
+	const s32 imm = insn->imm;
+	const int i = insn - ctx->prog->insnsi;
+	const bool is64 = BPF_CLASS(code) == BPF_ALU64;
+	const s8 *rd, *rs;
+	s8 rd_lo, rt, rm, rn;
+	s32 jmp_offset;
+
+#define check_imm(bits, imm) do {				\
+	if ((imm) >= (1 << ((bits) - 1)) ||			\
+	    (imm) < -(1 << ((bits) - 1))) {			\
+		pr_info("[%2d] imm=%d(0x%x) out of range\n",	\
+			i, imm, imm);				\
+		return -EINVAL;					\
+	}							\
+} while (0)
+#define check_imm24(imm) check_imm(24, imm)
+
+	switch (code) {
+	/* ALU operations */
+
+	/* dst = src */
+	case BPF_ALU | BPF_MOV | BPF_K:
+	case BPF_ALU | BPF_MOV | BPF_X:
+	case BPF_ALU64 | BPF_MOV | BPF_K:
+	case BPF_ALU64 | BPF_MOV | BPF_X:
+		switch (BPF_SRC(code)) {
+		case BPF_X:
+			emit_a32_mov_r64(is64, dst, src, ctx);
+			break;
+		case BPF_K:
+			/* Sign-extend immediate value to destination reg */
+			emit_a32_mov_se_i64(is64, dst, imm, ctx);
+			break;
+		}
+		break;
+	/* dst = dst + src/imm */
+	/* dst = dst - src/imm */
+	/* dst = dst | src/imm */
+	/* dst = dst & src/imm */
+	/* dst = dst ^ src/imm */
+	/* dst = dst * src/imm */
+	/* dst = dst << src */
+	/* dst = dst >> src */
+	case BPF_ALU | BPF_ADD | BPF_K:
+	case BPF_ALU | BPF_ADD | BPF_X:
+	case BPF_ALU | BPF_SUB | BPF_K:
+	case BPF_ALU | BPF_SUB | BPF_X:
+	case BPF_ALU | BPF_OR | BPF_K:
+	case BPF_ALU | BPF_OR | BPF_X:
+	case BPF_ALU | BPF_AND | BPF_K:
+	case BPF_ALU | BPF_AND | BPF_X:
+	case BPF_ALU | BPF_XOR | BPF_K:
+	case BPF_ALU | BPF_XOR | BPF_X:
+	case BPF_ALU | BPF_MUL | BPF_K:
+	case BPF_ALU | BPF_MUL | BPF_X:
+	case BPF_ALU | BPF_LSH | BPF_X:
+	case BPF_ALU | BPF_RSH | BPF_X:
+	case BPF_ALU | BPF_ARSH | BPF_K:
+	case BPF_ALU | BPF_ARSH | BPF_X:
+	case BPF_ALU64 | BPF_ADD | BPF_K:
+	case BPF_ALU64 | BPF_ADD | BPF_X:
+	case BPF_ALU64 | BPF_SUB | BPF_K:
+	case BPF_ALU64 | BPF_SUB | BPF_X:
+	case BPF_ALU64 | BPF_OR | BPF_K:
+	case BPF_ALU64 | BPF_OR | BPF_X:
+	case BPF_ALU64 | BPF_AND | BPF_K:
+	case BPF_ALU64 | BPF_AND | BPF_X:
+	case BPF_ALU64 | BPF_XOR | BPF_K:
+	case BPF_ALU64 | BPF_XOR | BPF_X:
+		switch (BPF_SRC(code)) {
+		case BPF_X:
+			emit_a32_alu_r64(is64, dst, src, ctx, BPF_OP(code));
+			break;
+		case BPF_K:
+			/* Move immediate value to the temporary register
+			 * and then do the ALU operation on the temporary
+			 * register as this will sign-extend the immediate
+			 * value into temporary reg and then it would be
+			 * safe to do the operation on it.
+			 */
+			emit_a32_mov_se_i64(is64, tmp2, imm, ctx);
+			emit_a32_alu_r64(is64, dst, tmp2, ctx, BPF_OP(code));
+			break;
+		}
+		break;
+	/* dst = dst / src(imm) */
+	/* dst = dst % src(imm) */
+	case BPF_ALU | BPF_DIV | BPF_K:
+	case BPF_ALU | BPF_DIV | BPF_X:
+	case BPF_ALU | BPF_MOD | BPF_K:
+	case BPF_ALU | BPF_MOD | BPF_X:
+		rd_lo = arm_bpf_get_reg32(dst_lo, tmp2[1], ctx);
+		switch (BPF_SRC(code)) {
+		case BPF_X:
+			rt = arm_bpf_get_reg32(src_lo, tmp2[0], ctx);
+			break;
+		case BPF_K:
+			rt = tmp2[0];
+			emit_a32_mov_i(rt, imm, ctx);
+			break;
+		default:
+			rt = src_lo;
+			break;
+		}
+		emit_udivmod(rd_lo, rd_lo, rt, ctx, BPF_OP(code));
+		arm_bpf_put_reg32(dst_lo, rd_lo, ctx);
+		emit_a32_mov_i(dst_hi, 0, ctx);
+		break;
+	case BPF_ALU64 | BPF_DIV | BPF_K:
+	case BPF_ALU64 | BPF_DIV | BPF_X:
+	case BPF_ALU64 | BPF_MOD | BPF_K:
+	case BPF_ALU64 | BPF_MOD | BPF_X:
+		goto notyet;
+	/* dst = dst >> imm */
+	/* dst = dst << imm */
+	case BPF_ALU | BPF_RSH | BPF_K:
+	case BPF_ALU | BPF_LSH | BPF_K:
+		if (unlikely(imm > 31))
+			return -EINVAL;
+		if (imm)
+			emit_a32_alu_i(dst_lo, imm, ctx, BPF_OP(code));
+		emit_a32_mov_i(dst_hi, 0, ctx);
+		break;
+	/* dst = dst << imm */
+	case BPF_ALU64 | BPF_LSH | BPF_K:
+		if (unlikely(imm > 63))
+			return -EINVAL;
+		emit_a32_lsh_i64(dst, imm, ctx);
+		break;
+	/* dst = dst >> imm */
+	case BPF_ALU64 | BPF_RSH | BPF_K:
+		if (unlikely(imm > 63))
+			return -EINVAL;
+		emit_a32_rsh_i64(dst, imm, ctx);
+		break;
+	/* dst = dst << src */
+	case BPF_ALU64 | BPF_LSH | BPF_X:
+		emit_a32_lsh_r64(dst, src, ctx);
+		break;
+	/* dst = dst >> src */
+	case BPF_ALU64 | BPF_RSH | BPF_X:
+		emit_a32_rsh_r64(dst, src, ctx);
+		break;
+	/* dst = dst >> src (signed) */
+	case BPF_ALU64 | BPF_ARSH | BPF_X:
+		emit_a32_arsh_r64(dst, src, ctx);
+		break;
+	/* dst = dst >> imm (signed) */
+	case BPF_ALU64 | BPF_ARSH | BPF_K:
+		if (unlikely(imm > 63))
+			return -EINVAL;
+		emit_a32_arsh_i64(dst, imm, ctx);
+		break;
+	/* dst = ~dst */
+	case BPF_ALU | BPF_NEG:
+		emit_a32_alu_i(dst_lo, 0, ctx, BPF_OP(code));
+		emit_a32_mov_i(dst_hi, 0, ctx);
+		break;
+	/* dst = ~dst (64 bit) */
+	case BPF_ALU64 | BPF_NEG:
+		emit_a32_neg64(dst, ctx);
+		break;
+	/* dst = dst * src/imm */
+	case BPF_ALU64 | BPF_MUL | BPF_X:
+	case BPF_ALU64 | BPF_MUL | BPF_K:
+		switch (BPF_SRC(code)) {
+		case BPF_X:
+			emit_a32_mul_r64(dst, src, ctx);
+			break;
+		case BPF_K:
+			/* Move immediate value to the temporary register
+			 * and then do the multiplication on it as this
+			 * will sign-extend the immediate value into temp
+			 * reg then it would be safe to do the operation
+			 * on it.
+			 */
+			emit_a32_mov_se_i64(is64, tmp2, imm, ctx);
+			emit_a32_mul_r64(dst, tmp2, ctx);
+			break;
+		}
+		break;
+	/* dst = htole(dst) */
+	/* dst = htobe(dst) */
+	case BPF_ALU | BPF_END | BPF_FROM_LE:
+	case BPF_ALU | BPF_END | BPF_FROM_BE:
+		rd = arm_bpf_get_reg64(dst, tmp, ctx);
+		if (BPF_SRC(code) == BPF_FROM_LE)
+			goto emit_bswap_uxt;
+		switch (imm) {
+		case 16:
+			emit_rev16(rd[1], rd[1], ctx);
+			goto emit_bswap_uxt;
+		case 32:
+			emit_rev32(rd[1], rd[1], ctx);
+			goto emit_bswap_uxt;
+		case 64:
+			emit_rev32(ARM_LR, rd[1], ctx);
+			emit_rev32(rd[1], rd[0], ctx);
+			emit(ARM_MOV_R(rd[0], ARM_LR), ctx);
+			break;
+		}
+		goto exit;
+emit_bswap_uxt:
+		switch (imm) {
+		case 16:
+			/* zero-extend 16 bits into 64 bits */
+#if __LINUX_ARM_ARCH__ < 6
+			emit_a32_mov_i(tmp2[1], 0xffff, ctx);
+			emit(ARM_AND_R(rd[1], rd[1], tmp2[1]), ctx);
+#else /* ARMv6+ */
+			emit(ARM_UXTH(rd[1], rd[1]), ctx);
+#endif
+			emit(ARM_EOR_R(rd[0], rd[0], rd[0]), ctx);
+			break;
+		case 32:
+			/* zero-extend 32 bits into 64 bits */
+			emit(ARM_EOR_R(rd[0], rd[0], rd[0]), ctx);
+			break;
+		case 64:
+			/* nop */
+			break;
+		}
+exit:
+		arm_bpf_put_reg64(dst, rd, ctx);
+		break;
+	/* dst = imm64 */
+	case BPF_LD | BPF_IMM | BPF_DW:
+	{
+		u64 val = (u32)imm | (u64)insn[1].imm << 32;
+
+		emit_a32_mov_i64(dst, val, ctx);
+
+		return 1;
+	}
+	/* LDX: dst = *(size *)(src + off) */
+	case BPF_LDX | BPF_MEM | BPF_W:
+	case BPF_LDX | BPF_MEM | BPF_H:
+	case BPF_LDX | BPF_MEM | BPF_B:
+	case BPF_LDX | BPF_MEM | BPF_DW:
+		rn = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
+		emit_ldx_r(dst, rn, off, ctx, BPF_SIZE(code));
+		break;
+	/* ST: *(size *)(dst + off) = imm */
+	case BPF_ST | BPF_MEM | BPF_W:
+	case BPF_ST | BPF_MEM | BPF_H:
+	case BPF_ST | BPF_MEM | BPF_B:
+	case BPF_ST | BPF_MEM | BPF_DW:
+		switch (BPF_SIZE(code)) {
+		case BPF_DW:
+			/* Sign-extend immediate value into temp reg */
+			emit_a32_mov_se_i64(true, tmp2, imm, ctx);
+			break;
+		case BPF_W:
+		case BPF_H:
+		case BPF_B:
+			emit_a32_mov_i(tmp2[1], imm, ctx);
+			break;
+		}
+		emit_str_r(dst_lo, tmp2, off, ctx, BPF_SIZE(code));
+		break;
+	/* STX XADD: lock *(u32 *)(dst + off) += src */
+	case BPF_STX | BPF_XADD | BPF_W:
+	/* STX XADD: lock *(u64 *)(dst + off) += src */
+	case BPF_STX | BPF_XADD | BPF_DW:
+		goto notyet;
+	/* STX: *(size *)(dst + off) = src */
+	case BPF_STX | BPF_MEM | BPF_W:
+	case BPF_STX | BPF_MEM | BPF_H:
+	case BPF_STX | BPF_MEM | BPF_B:
+	case BPF_STX | BPF_MEM | BPF_DW:
+		rs = arm_bpf_get_reg64(src, tmp2, ctx);
+		emit_str_r(dst_lo, rs, off, ctx, BPF_SIZE(code));
+		break;
+	/* PC += off if dst == src */
+	/* PC += off if dst > src */
+	/* PC += off if dst >= src */
+	/* PC += off if dst < src */
+	/* PC += off if dst <= src */
+	/* PC += off if dst != src */
+	/* PC += off if dst > src (signed) */
+	/* PC += off if dst >= src (signed) */
+	/* PC += off if dst < src (signed) */
+	/* PC += off if dst <= src (signed) */
+	/* PC += off if dst & src */
+	case BPF_JMP | BPF_JEQ | BPF_X:
+	case BPF_JMP | BPF_JGT | BPF_X:
+	case BPF_JMP | BPF_JGE | BPF_X:
+	case BPF_JMP | BPF_JNE | BPF_X:
+	case BPF_JMP | BPF_JSGT | BPF_X:
+	case BPF_JMP | BPF_JSGE | BPF_X:
+	case BPF_JMP | BPF_JSET | BPF_X:
+	case BPF_JMP | BPF_JLE | BPF_X:
+	case BPF_JMP | BPF_JLT | BPF_X:
+	case BPF_JMP | BPF_JSLT | BPF_X:
+	case BPF_JMP | BPF_JSLE | BPF_X:
+		/* Setup source registers */
+		rm = arm_bpf_get_reg32(src_hi, tmp2[0], ctx);
+		rn = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
+		goto go_jmp;
+	/* PC += off if dst == imm */
+	/* PC += off if dst > imm */
+	/* PC += off if dst >= imm */
+	/* PC += off if dst < imm */
+	/* PC += off if dst <= imm */
+	/* PC += off if dst != imm */
+	/* PC += off if dst > imm (signed) */
+	/* PC += off if dst >= imm (signed) */
+	/* PC += off if dst < imm (signed) */
+	/* PC += off if dst <= imm (signed) */
+	/* PC += off if dst & imm */
+	case BPF_JMP | BPF_JEQ | BPF_K:
+	case BPF_JMP | BPF_JGT | BPF_K:
+	case BPF_JMP | BPF_JGE | BPF_K:
+	case BPF_JMP | BPF_JNE | BPF_K:
+	case BPF_JMP | BPF_JSGT | BPF_K:
+	case BPF_JMP | BPF_JSGE | BPF_K:
+	case BPF_JMP | BPF_JSET | BPF_K:
+	case BPF_JMP | BPF_JLT | BPF_K:
+	case BPF_JMP | BPF_JLE | BPF_K:
+	case BPF_JMP | BPF_JSLT | BPF_K:
+	case BPF_JMP | BPF_JSLE | BPF_K:
+		if (off == 0)
+			break;
+		rm = tmp2[0];
+		rn = tmp2[1];
+		/* Sign-extend immediate value */
+		emit_a32_mov_se_i64(true, tmp2, imm, ctx);
+go_jmp:
+		/* Setup destination register */
+		rd = arm_bpf_get_reg64(dst, tmp, ctx);
+
+		/* Check for the condition */
+		emit_ar_r(rd[0], rd[1], rm, rn, ctx, BPF_OP(code));
+
+		/* Setup JUMP instruction */
+		jmp_offset = bpf2a32_offset(i+off, i, ctx);
+		switch (BPF_OP(code)) {
+		case BPF_JNE:
+		case BPF_JSET:
+			_emit(ARM_COND_NE, ARM_B(jmp_offset), ctx);
+			break;
+		case BPF_JEQ:
+			_emit(ARM_COND_EQ, ARM_B(jmp_offset), ctx);
+			break;
+		case BPF_JGT:
+			_emit(ARM_COND_HI, ARM_B(jmp_offset), ctx);
+			break;
+		case BPF_JGE:
+			_emit(ARM_COND_CS, ARM_B(jmp_offset), ctx);
+			break;
+		case BPF_JSGT:
+			_emit(ARM_COND_LT, ARM_B(jmp_offset), ctx);
+			break;
+		case BPF_JSGE:
+			_emit(ARM_COND_GE, ARM_B(jmp_offset), ctx);
+			break;
+		case BPF_JLE:
+			_emit(ARM_COND_LS, ARM_B(jmp_offset), ctx);
+			break;
+		case BPF_JLT:
+			_emit(ARM_COND_CC, ARM_B(jmp_offset), ctx);
+			break;
+		case BPF_JSLT:
+			_emit(ARM_COND_LT, ARM_B(jmp_offset), ctx);
+			break;
+		case BPF_JSLE:
+			_emit(ARM_COND_GE, ARM_B(jmp_offset), ctx);
+			break;
+		}
+		break;
+	/* JMP OFF */
+	case BPF_JMP | BPF_JA:
+	{
+		if (off == 0)
+			break;
+		jmp_offset = bpf2a32_offset(i+off, i, ctx);
+		check_imm24(jmp_offset);
+		emit(ARM_B(jmp_offset), ctx);
+		break;
+	}
+	/* tail call */
+	case BPF_JMP | BPF_TAIL_CALL:
+		if (emit_bpf_tail_call(ctx))
+			return -EFAULT;
+		break;
+	/* function call */
+	case BPF_JMP | BPF_CALL:
+	{
+		const s8 *r0 = bpf2a32[BPF_REG_0];
+		const s8 *r1 = bpf2a32[BPF_REG_1];
+		const s8 *r2 = bpf2a32[BPF_REG_2];
+		const s8 *r3 = bpf2a32[BPF_REG_3];
+		const s8 *r4 = bpf2a32[BPF_REG_4];
+		const s8 *r5 = bpf2a32[BPF_REG_5];
+		const u32 func = (u32)__bpf_call_base + (u32)imm;
+
+		emit_a32_mov_r64(true, r0, r1, ctx);
+		emit_a32_mov_r64(true, r1, r2, ctx);
+		emit_push_r64(r5, ctx);
+		emit_push_r64(r4, ctx);
+		emit_push_r64(r3, ctx);
+
+		emit_a32_mov_i(tmp[1], func, ctx);
+		emit_blx_r(tmp[1], ctx);
+
+		emit(ARM_ADD_I(ARM_SP, ARM_SP, imm8m(24)), ctx); // callee clean
+		break;
+	}
+	/* function return */
+	case BPF_JMP | BPF_EXIT:
+		/* Optimization: when last instruction is EXIT
+		 * simply fallthrough to epilogue.
+		 */
+		if (i == ctx->prog->len - 1)
+			break;
+		jmp_offset = epilogue_offset(ctx);
+		check_imm24(jmp_offset);
+		emit(ARM_B(jmp_offset), ctx);
+		break;
+notyet:
+		pr_info_once("*** NOT YET: opcode %02x ***\n", code);
+		return -EFAULT;
+	default:
+		pr_err_once("unknown opcode %02x\n", code);
+		return -EINVAL;
+	}
+
+	if (ctx->flags & FLAG_IMM_OVERFLOW)
+		/*
+		 * this instruction generated an overflow when
+		 * trying to access the literal pool, so
+		 * delegate this filter to the kernel interpreter.
+		 */
+		return -1;
+	return 0;
+}
+
+static int build_body(struct jit_ctx *ctx)
+{
+	const struct bpf_prog *prog = ctx->prog;
+	unsigned int i;
+
+	for (i = 0; i < prog->len; i++) {
+		const struct bpf_insn *insn = &(prog->insnsi[i]);
+		int ret;
+
+		ret = build_insn(insn, ctx);
+
+		/* It's used with loading the 64 bit immediate value. */
+		if (ret > 0) {
+			i++;
+			if (ctx->target == NULL)
+				ctx->offsets[i] = ctx->idx;
+			continue;
+		}
+
+		if (ctx->target == NULL)
+			ctx->offsets[i] = ctx->idx;
+
+		/* If unsuccesfull, return with error code */
+		if (ret)
+			return ret;
+	}
+	return 0;
+}
+
+static int validate_code(struct jit_ctx *ctx)
+{
+	int i;
+
+	for (i = 0; i < ctx->idx; i++) {
+		if (ctx->target[i] == __opcode_to_mem_arm(ARM_INST_UDF))
+			return -1;
+	}
+
+	return 0;
+}
+
+void bpf_jit_compile(struct bpf_prog *prog)
+{
+	/* Nothing to do here. We support Internal BPF. */
+}
+
+struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
+{
+	struct bpf_prog *tmp, *orig_prog = prog;
+	struct bpf_binary_header *header;
+	bool tmp_blinded = false;
+	struct jit_ctx ctx;
+	unsigned int tmp_idx;
+	unsigned int image_size;
+	u8 *image_ptr;
+
+	/* If BPF JIT was not enabled then we must fall back to
+	 * the interpreter.
+	 */
+	if (!prog->jit_requested)
+		return orig_prog;
+
+	/* If constant blinding was enabled and we failed during blinding
+	 * then we must fall back to the interpreter. Otherwise, we save
+	 * the new JITed code.
+	 */
+	tmp = bpf_jit_blind_constants(prog);
+
+	if (IS_ERR(tmp))
+		return orig_prog;
+	if (tmp != prog) {
+		tmp_blinded = true;
+		prog = tmp;
+	}
+
+	memset(&ctx, 0, sizeof(ctx));
+	ctx.prog = prog;
+	ctx.cpu_architecture = cpu_architecture();
+
+	/* Not able to allocate memory for offsets[] , then
+	 * we must fall back to the interpreter
+	 */
+	ctx.offsets = kcalloc(prog->len, sizeof(int), GFP_KERNEL);
+	if (ctx.offsets == NULL) {
+		prog = orig_prog;
+		goto out;
+	}
+
+	/* 1) fake pass to find in the length of the JITed code,
+	 * to compute ctx->offsets and other context variables
+	 * needed to compute final JITed code.
+	 * Also, calculate random starting pointer/start of JITed code
+	 * which is prefixed by random number of fault instructions.
+	 *
+	 * If the first pass fails then there is no chance of it
+	 * being successful in the second pass, so just fall back
+	 * to the interpreter.
+	 */
+	if (build_body(&ctx)) {
+		prog = orig_prog;
+		goto out_off;
+	}
+
+	tmp_idx = ctx.idx;
+	build_prologue(&ctx);
+	ctx.prologue_bytes = (ctx.idx - tmp_idx) * 4;
+
+	ctx.epilogue_offset = ctx.idx;
+
+#if __LINUX_ARM_ARCH__ < 7
+	tmp_idx = ctx.idx;
+	build_epilogue(&ctx);
+	ctx.epilogue_bytes = (ctx.idx - tmp_idx) * 4;
+
+	ctx.idx += ctx.imm_count;
+	if (ctx.imm_count) {
+		ctx.imms = kcalloc(ctx.imm_count, sizeof(u32), GFP_KERNEL);
+		if (ctx.imms == NULL) {
+			prog = orig_prog;
+			goto out_off;
+		}
+	}
+#else
+	/* there's nothing about the epilogue on ARMv7 */
+	build_epilogue(&ctx);
+#endif
+	/* Now we can get the actual image size of the JITed arm code.
+	 * Currently, we are not considering the THUMB-2 instructions
+	 * for jit, although it can decrease the size of the image.
+	 *
+	 * As each arm instruction is of length 32bit, we are translating
+	 * number of JITed intructions into the size required to store these
+	 * JITed code.
+	 */
+	image_size = sizeof(u32) * ctx.idx;
+
+	/* Now we know the size of the structure to make */
+	header = bpf_jit_binary_alloc(image_size, &image_ptr,
+				      sizeof(u32), jit_fill_hole);
+	/* Not able to allocate memory for the structure then
+	 * we must fall back to the interpretation
+	 */
+	if (header == NULL) {
+		prog = orig_prog;
+		goto out_imms;
+	}
+
+	/* 2.) Actual pass to generate final JIT code */
+	ctx.target = (u32 *) image_ptr;
+	ctx.idx = 0;
+
+	build_prologue(&ctx);
+
+	/* If building the body of the JITed code fails somehow,
+	 * we fall back to the interpretation.
+	 */
+	if (build_body(&ctx) < 0) {
+		image_ptr = NULL;
+		bpf_jit_binary_free(header);
+		prog = orig_prog;
+		goto out_imms;
+	}
+	build_epilogue(&ctx);
+
+	/* 3.) Extra pass to validate JITed Code */
+	if (validate_code(&ctx)) {
+		image_ptr = NULL;
+		bpf_jit_binary_free(header);
+		prog = orig_prog;
+		goto out_imms;
+	}
+	flush_icache_range((u32)header, (u32)(ctx.target + ctx.idx));
+
+	if (bpf_jit_enable > 1)
+		/* there are 2 passes here */
+		bpf_jit_dump(prog->len, image_size, 2, ctx.target);
+
+	bpf_jit_binary_lock_ro(header);
+	prog->bpf_func = (void *)ctx.target;
+	prog->jited = 1;
+	prog->jited_len = image_size;
+
+out_imms:
+#if __LINUX_ARM_ARCH__ < 7
+	if (ctx.imm_count)
+		kfree(ctx.imms);
+#endif
+out_off:
+	kfree(ctx.offsets);
+out:
+	if (tmp_blinded)
+		bpf_jit_prog_release_other(prog, prog == orig_prog ?
+					   tmp : orig_prog);
+	return prog;
+}
+
diff --git a/arch/arm/net/bpf_jit_32.h b/arch/arm/net/bpf_jit_32.h
new file mode 100644
index 0000000..f4e58bc
--- /dev/null
+++ b/arch/arm/net/bpf_jit_32.h
@@ -0,0 +1,274 @@
+/*
+ * Just-In-Time compiler for BPF filters on 32bit ARM
+ *
+ * Copyright (c) 2011 Mircea Gherzan <mgherzan@gmail.com>
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License as published by the
+ * Free Software Foundation; version 2 of the License.
+ */
+
+#ifndef PFILTER_OPCODES_ARM_H
+#define PFILTER_OPCODES_ARM_H
+
+/* ARM 32bit Registers */
+#define ARM_R0	0
+#define ARM_R1	1
+#define ARM_R2	2
+#define ARM_R3	3
+#define ARM_R4	4
+#define ARM_R5	5
+#define ARM_R6	6
+#define ARM_R7	7
+#define ARM_R8	8
+#define ARM_R9	9
+#define ARM_R10	10
+#define ARM_FP	11	/* Frame Pointer */
+#define ARM_IP	12	/* Intra-procedure scratch register */
+#define ARM_SP	13	/* Stack pointer: as load/store base reg */
+#define ARM_LR	14	/* Link Register */
+#define ARM_PC	15	/* Program counter */
+
+#define ARM_COND_EQ		0x0	/* == */
+#define ARM_COND_NE		0x1	/* != */
+#define ARM_COND_CS		0x2	/* unsigned >= */
+#define ARM_COND_HS		ARM_COND_CS
+#define ARM_COND_CC		0x3	/* unsigned < */
+#define ARM_COND_LO		ARM_COND_CC
+#define ARM_COND_MI		0x4	/* < 0 */
+#define ARM_COND_PL		0x5	/* >= 0 */
+#define ARM_COND_VS		0x6	/* Signed Overflow */
+#define ARM_COND_VC		0x7	/* No Signed Overflow */
+#define ARM_COND_HI		0x8	/* unsigned > */
+#define ARM_COND_LS		0x9	/* unsigned <= */
+#define ARM_COND_GE		0xa	/* Signed >= */
+#define ARM_COND_LT		0xb	/* Signed < */
+#define ARM_COND_GT		0xc	/* Signed > */
+#define ARM_COND_LE		0xd	/* Signed <= */
+#define ARM_COND_AL		0xe	/* None */
+
+/* register shift types */
+#define SRTYPE_LSL		0
+#define SRTYPE_LSR		1
+#define SRTYPE_ASR		2
+#define SRTYPE_ROR		3
+#define SRTYPE_ASL		(SRTYPE_LSL)
+
+#define ARM_INST_ADD_R		0x00800000
+#define ARM_INST_ADDS_R		0x00900000
+#define ARM_INST_ADC_R		0x00a00000
+#define ARM_INST_ADC_I		0x02a00000
+#define ARM_INST_ADD_I		0x02800000
+#define ARM_INST_ADDS_I		0x02900000
+
+#define ARM_INST_AND_R		0x00000000
+#define ARM_INST_AND_I		0x02000000
+
+#define ARM_INST_BIC_R		0x01c00000
+#define ARM_INST_BIC_I		0x03c00000
+
+#define ARM_INST_B		0x0a000000
+#define ARM_INST_BX		0x012FFF10
+#define ARM_INST_BLX_R		0x012fff30
+
+#define ARM_INST_CMP_R		0x01500000
+#define ARM_INST_CMP_I		0x03500000
+
+#define ARM_INST_EOR_R		0x00200000
+#define ARM_INST_EOR_I		0x02200000
+
+#define ARM_INST_LDST__U	0x00800000
+#define ARM_INST_LDST__IMM12	0x00000fff
+#define ARM_INST_LDRB_I		0x05500000
+#define ARM_INST_LDRB_R		0x07d00000
+#define ARM_INST_LDRD_I		0x014000d0
+#define ARM_INST_LDRH_I		0x015000b0
+#define ARM_INST_LDRH_R		0x019000b0
+#define ARM_INST_LDR_I		0x05100000
+#define ARM_INST_LDR_R		0x07900000
+
+#define ARM_INST_LDM		0x08900000
+#define ARM_INST_LDM_IA		0x08b00000
+
+#define ARM_INST_LSL_I		0x01a00000
+#define ARM_INST_LSL_R		0x01a00010
+
+#define ARM_INST_LSR_I		0x01a00020
+#define ARM_INST_LSR_R		0x01a00030
+
+#define ARM_INST_MOV_R		0x01a00000
+#define ARM_INST_MOVS_R		0x01b00000
+#define ARM_INST_MOV_I		0x03a00000
+#define ARM_INST_MOVW		0x03000000
+#define ARM_INST_MOVT		0x03400000
+
+#define ARM_INST_MUL		0x00000090
+
+#define ARM_INST_POP		0x08bd0000
+#define ARM_INST_PUSH		0x092d0000
+
+#define ARM_INST_ORR_R		0x01800000
+#define ARM_INST_ORRS_R		0x01900000
+#define ARM_INST_ORR_I		0x03800000
+
+#define ARM_INST_REV		0x06bf0f30
+#define ARM_INST_REV16		0x06bf0fb0
+
+#define ARM_INST_RSB_I		0x02600000
+#define ARM_INST_RSBS_I		0x02700000
+#define ARM_INST_RSC_I		0x02e00000
+
+#define ARM_INST_SUB_R		0x00400000
+#define ARM_INST_SUBS_R		0x00500000
+#define ARM_INST_RSB_R		0x00600000
+#define ARM_INST_SUB_I		0x02400000
+#define ARM_INST_SUBS_I		0x02500000
+#define ARM_INST_SBC_I		0x02c00000
+#define ARM_INST_SBC_R		0x00c00000
+#define ARM_INST_SBCS_R		0x00d00000
+
+#define ARM_INST_STR_I		0x05000000
+#define ARM_INST_STRB_I		0x05400000
+#define ARM_INST_STRD_I		0x014000f0
+#define ARM_INST_STRH_I		0x014000b0
+
+#define ARM_INST_TST_R		0x01100000
+#define ARM_INST_TST_I		0x03100000
+
+#define ARM_INST_UDIV		0x0730f010
+
+#define ARM_INST_UMULL		0x00800090
+
+#define ARM_INST_MLS		0x00600090
+
+#define ARM_INST_UXTH		0x06ff0070
+
+/*
+ * Use a suitable undefined instruction to use for ARM/Thumb2 faulting.
+ * We need to be careful not to conflict with those used by other modules
+ * (BUG, kprobes, etc) and the register_undef_hook() system.
+ *
+ * The ARM architecture reference manual guarantees that the following
+ * instruction space will produce an undefined instruction exception on
+ * all CPUs:
+ *
+ * ARM:   xxxx 0111 1111 xxxx xxxx xxxx 1111 xxxx	ARMv7-AR, section A5.4
+ * Thumb: 1101 1110 xxxx xxxx				ARMv7-M, section A5.2.6
+ */
+#define ARM_INST_UDF		0xe7fddef1
+
+/* register */
+#define _AL3_R(op, rd, rn, rm)	((op ## _R) | (rd) << 12 | (rn) << 16 | (rm))
+/* immediate */
+#define _AL3_I(op, rd, rn, imm)	((op ## _I) | (rd) << 12 | (rn) << 16 | (imm))
+/* register with register-shift */
+#define _AL3_SR(inst)	(inst | (1 << 4))
+
+#define ARM_ADD_R(rd, rn, rm)	_AL3_R(ARM_INST_ADD, rd, rn, rm)
+#define ARM_ADDS_R(rd, rn, rm)	_AL3_R(ARM_INST_ADDS, rd, rn, rm)
+#define ARM_ADD_I(rd, rn, imm)	_AL3_I(ARM_INST_ADD, rd, rn, imm)
+#define ARM_ADDS_I(rd, rn, imm)	_AL3_I(ARM_INST_ADDS, rd, rn, imm)
+#define ARM_ADC_R(rd, rn, rm)	_AL3_R(ARM_INST_ADC, rd, rn, rm)
+#define ARM_ADC_I(rd, rn, imm)	_AL3_I(ARM_INST_ADC, rd, rn, imm)
+
+#define ARM_AND_R(rd, rn, rm)	_AL3_R(ARM_INST_AND, rd, rn, rm)
+#define ARM_AND_I(rd, rn, imm)	_AL3_I(ARM_INST_AND, rd, rn, imm)
+
+#define ARM_BIC_R(rd, rn, rm)	_AL3_R(ARM_INST_BIC, rd, rn, rm)
+#define ARM_BIC_I(rd, rn, imm)	_AL3_I(ARM_INST_BIC, rd, rn, imm)
+
+#define ARM_B(imm24)		(ARM_INST_B | ((imm24) & 0xffffff))
+#define ARM_BX(rm)		(ARM_INST_BX | (rm))
+#define ARM_BLX_R(rm)		(ARM_INST_BLX_R | (rm))
+
+#define ARM_CMP_R(rn, rm)	_AL3_R(ARM_INST_CMP, 0, rn, rm)
+#define ARM_CMP_I(rn, imm)	_AL3_I(ARM_INST_CMP, 0, rn, imm)
+
+#define ARM_EOR_R(rd, rn, rm)	_AL3_R(ARM_INST_EOR, rd, rn, rm)
+#define ARM_EOR_I(rd, rn, imm)	_AL3_I(ARM_INST_EOR, rd, rn, imm)
+
+#define ARM_LDR_R(rt, rn, rm)	(ARM_INST_LDR_R | ARM_INST_LDST__U \
+				 | (rt) << 12 | (rn) << 16 \
+				 | (rm))
+#define ARM_LDR_R_SI(rt, rn, rm, type, imm) \
+				(ARM_INST_LDR_R | ARM_INST_LDST__U \
+				 | (rt) << 12 | (rn) << 16 \
+				 | (imm) << 7 | (type) << 5 | (rm))
+#define ARM_LDRB_R(rt, rn, rm)	(ARM_INST_LDRB_R | ARM_INST_LDST__U \
+				 | (rt) << 12 | (rn) << 16 \
+				 | (rm))
+#define ARM_LDRH_R(rt, rn, rm)	(ARM_INST_LDRH_R | ARM_INST_LDST__U \
+				 | (rt) << 12 | (rn) << 16 \
+				 | (rm))
+
+#define ARM_LDM(rn, regs)	(ARM_INST_LDM | (rn) << 16 | (regs))
+#define ARM_LDM_IA(rn, regs)	(ARM_INST_LDM_IA | (rn) << 16 | (regs))
+
+#define ARM_LSL_R(rd, rn, rm)	(_AL3_R(ARM_INST_LSL, rd, 0, rn) | (rm) << 8)
+#define ARM_LSL_I(rd, rn, imm)	(_AL3_I(ARM_INST_LSL, rd, 0, rn) | (imm) << 7)
+
+#define ARM_LSR_R(rd, rn, rm)	(_AL3_R(ARM_INST_LSR, rd, 0, rn) | (rm) << 8)
+#define ARM_LSR_I(rd, rn, imm)	(_AL3_I(ARM_INST_LSR, rd, 0, rn) | (imm) << 7)
+#define ARM_ASR_R(rd, rn, rm)   (_AL3_R(ARM_INST_ASR, rd, 0, rn) | (rm) << 8)
+#define ARM_ASR_I(rd, rn, imm)  (_AL3_I(ARM_INST_ASR, rd, 0, rn) | (imm) << 7)
+
+#define ARM_MOV_R(rd, rm)	_AL3_R(ARM_INST_MOV, rd, 0, rm)
+#define ARM_MOVS_R(rd, rm)	_AL3_R(ARM_INST_MOVS, rd, 0, rm)
+#define ARM_MOV_I(rd, imm)	_AL3_I(ARM_INST_MOV, rd, 0, imm)
+#define ARM_MOV_SR(rd, rm, type, rs)	\
+	(_AL3_SR(ARM_MOV_R(rd, rm)) | (type) << 5 | (rs) << 8)
+#define ARM_MOV_SI(rd, rm, type, imm6)	\
+	(ARM_MOV_R(rd, rm) | (type) << 5 | (imm6) << 7)
+
+#define ARM_MOVW(rd, imm)	\
+	(ARM_INST_MOVW | ((imm) >> 12) << 16 | (rd) << 12 | ((imm) & 0x0fff))
+
+#define ARM_MOVT(rd, imm)	\
+	(ARM_INST_MOVT | ((imm) >> 12) << 16 | (rd) << 12 | ((imm) & 0x0fff))
+
+#define ARM_MUL(rd, rm, rn)	(ARM_INST_MUL | (rd) << 16 | (rm) << 8 | (rn))
+
+#define ARM_POP(regs)		(ARM_INST_POP | (regs))
+#define ARM_PUSH(regs)		(ARM_INST_PUSH | (regs))
+
+#define ARM_ORR_R(rd, rn, rm)	_AL3_R(ARM_INST_ORR, rd, rn, rm)
+#define ARM_ORR_I(rd, rn, imm)	_AL3_I(ARM_INST_ORR, rd, rn, imm)
+#define ARM_ORR_SR(rd, rn, rm, type, rs)	\
+	(_AL3_SR(ARM_ORR_R(rd, rn, rm)) | (type) << 5 | (rs) << 8)
+#define ARM_ORRS_R(rd, rn, rm)	_AL3_R(ARM_INST_ORRS, rd, rn, rm)
+#define ARM_ORRS_SR(rd, rn, rm, type, rs)	\
+	(_AL3_SR(ARM_ORRS_R(rd, rn, rm)) | (type) << 5 | (rs) << 8)
+#define ARM_ORR_SI(rd, rn, rm, type, imm6)	\
+	(ARM_ORR_R(rd, rn, rm) | (type) << 5 | (imm6) << 7)
+#define ARM_ORRS_SI(rd, rn, rm, type, imm6)	\
+	(ARM_ORRS_R(rd, rn, rm) | (type) << 5 | (imm6) << 7)
+
+#define ARM_REV(rd, rm)		(ARM_INST_REV | (rd) << 12 | (rm))
+#define ARM_REV16(rd, rm)	(ARM_INST_REV16 | (rd) << 12 | (rm))
+
+#define ARM_RSB_I(rd, rn, imm)	_AL3_I(ARM_INST_RSB, rd, rn, imm)
+#define ARM_RSBS_I(rd, rn, imm)	_AL3_I(ARM_INST_RSBS, rd, rn, imm)
+#define ARM_RSC_I(rd, rn, imm)	_AL3_I(ARM_INST_RSC, rd, rn, imm)
+
+#define ARM_SUB_R(rd, rn, rm)	_AL3_R(ARM_INST_SUB, rd, rn, rm)
+#define ARM_SUBS_R(rd, rn, rm)	_AL3_R(ARM_INST_SUBS, rd, rn, rm)
+#define ARM_RSB_R(rd, rn, rm)	_AL3_R(ARM_INST_RSB, rd, rn, rm)
+#define ARM_SBC_R(rd, rn, rm)	_AL3_R(ARM_INST_SBC, rd, rn, rm)
+#define ARM_SBCS_R(rd, rn, rm)	_AL3_R(ARM_INST_SBCS, rd, rn, rm)
+#define ARM_SUB_I(rd, rn, imm)	_AL3_I(ARM_INST_SUB, rd, rn, imm)
+#define ARM_SUBS_I(rd, rn, imm)	_AL3_I(ARM_INST_SUBS, rd, rn, imm)
+#define ARM_SBC_I(rd, rn, imm)	_AL3_I(ARM_INST_SBC, rd, rn, imm)
+
+#define ARM_TST_R(rn, rm)	_AL3_R(ARM_INST_TST, 0, rn, rm)
+#define ARM_TST_I(rn, imm)	_AL3_I(ARM_INST_TST, 0, rn, imm)
+
+#define ARM_UDIV(rd, rn, rm)	(ARM_INST_UDIV | (rd) << 16 | (rn) | (rm) << 8)
+
+#define ARM_UMULL(rd_lo, rd_hi, rn, rm)	(ARM_INST_UMULL | (rd_hi) << 16 \
+					 | (rd_lo) << 12 | (rm) << 8 | rn)
+
+#define ARM_MLS(rd, rn, rm, ra)	(ARM_INST_MLS | (rd) << 16 | (rn) | (rm) << 8 \
+				 | (ra) << 12)
+#define ARM_UXTH(rd, rm)	(ARM_INST_UXTH | (rd) << 12 | (rm))
+
+#endif /* PFILTER_OPCODES_ARM_H */