v4.19.13 snapshot.
diff --git a/Documentation/security/keys/core.rst b/Documentation/security/keys/core.rst
new file mode 100644
index 0000000..9ce7256
--- /dev/null
+++ b/Documentation/security/keys/core.rst
@@ -0,0 +1,1546 @@
+============================
+Kernel Key Retention Service
+============================
+
+This service allows cryptographic keys, authentication tokens, cross-domain
+user mappings, and similar to be cached in the kernel for the use of
+filesystems and other kernel services.
+
+Keyrings are permitted; these are a special type of key that can hold links to
+other keys. Processes each have three standard keyring subscriptions that a
+kernel service can search for relevant keys.
+
+The key service can be configured on by enabling:
+
+	"Security options"/"Enable access key retention support" (CONFIG_KEYS)
+
+This document has the following sections:
+
+.. contents:: :local:
+
+
+Key Overview
+============
+
+In this context, keys represent units of cryptographic data, authentication
+tokens, keyrings, etc.. These are represented in the kernel by struct key.
+
+Each key has a number of attributes:
+
+	- A serial number.
+	- A type.
+	- A description (for matching a key in a search).
+	- Access control information.
+	- An expiry time.
+	- A payload.
+	- State.
+
+
+  *  Each key is issued a serial number of type key_serial_t that is unique for
+     the lifetime of that key. All serial numbers are positive non-zero 32-bit
+     integers.
+
+     Userspace programs can use a key's serial numbers as a way to gain access
+     to it, subject to permission checking.
+
+  *  Each key is of a defined "type". Types must be registered inside the
+     kernel by a kernel service (such as a filesystem) before keys of that type
+     can be added or used. Userspace programs cannot define new types directly.
+
+     Key types are represented in the kernel by struct key_type. This defines a
+     number of operations that can be performed on a key of that type.
+
+     Should a type be removed from the system, all the keys of that type will
+     be invalidated.
+
+  *  Each key has a description. This should be a printable string. The key
+     type provides an operation to perform a match between the description on a
+     key and a criterion string.
+
+  *  Each key has an owner user ID, a group ID and a permissions mask. These
+     are used to control what a process may do to a key from userspace, and
+     whether a kernel service will be able to find the key.
+
+  *  Each key can be set to expire at a specific time by the key type's
+     instantiation function. Keys can also be immortal.
+
+  *  Each key can have a payload. This is a quantity of data that represent the
+     actual "key". In the case of a keyring, this is a list of keys to which
+     the keyring links; in the case of a user-defined key, it's an arbitrary
+     blob of data.
+
+     Having a payload is not required; and the payload can, in fact, just be a
+     value stored in the struct key itself.
+
+     When a key is instantiated, the key type's instantiation function is
+     called with a blob of data, and that then creates the key's payload in
+     some way.
+
+     Similarly, when userspace wants to read back the contents of the key, if
+     permitted, another key type operation will be called to convert the key's
+     attached payload back into a blob of data.
+
+  *  Each key can be in one of a number of basic states:
+
+      *  Uninstantiated. The key exists, but does not have any data attached.
+     	 Keys being requested from userspace will be in this state.
+
+      *  Instantiated. This is the normal state. The key is fully formed, and
+	 has data attached.
+
+      *  Negative. This is a relatively short-lived state. The key acts as a
+	 note saying that a previous call out to userspace failed, and acts as
+	 a throttle on key lookups. A negative key can be updated to a normal
+	 state.
+
+      *  Expired. Keys can have lifetimes set. If their lifetime is exceeded,
+	 they traverse to this state. An expired key can be updated back to a
+	 normal state.
+
+      *  Revoked. A key is put in this state by userspace action. It can't be
+	 found or operated upon (apart from by unlinking it).
+
+      *  Dead. The key's type was unregistered, and so the key is now useless.
+
+Keys in the last three states are subject to garbage collection.  See the
+section on "Garbage collection".
+
+
+Key Service Overview
+====================
+
+The key service provides a number of features besides keys:
+
+  *  The key service defines three special key types:
+
+     (+) "keyring"
+
+	 Keyrings are special keys that contain a list of other keys. Keyring
+	 lists can be modified using various system calls. Keyrings should not
+	 be given a payload when created.
+
+     (+) "user"
+
+	 A key of this type has a description and a payload that are arbitrary
+	 blobs of data. These can be created, updated and read by userspace,
+	 and aren't intended for use by kernel services.
+
+     (+) "logon"
+
+	 Like a "user" key, a "logon" key has a payload that is an arbitrary
+	 blob of data. It is intended as a place to store secrets which are
+	 accessible to the kernel but not to userspace programs.
+
+	 The description can be arbitrary, but must be prefixed with a non-zero
+	 length string that describes the key "subclass". The subclass is
+	 separated from the rest of the description by a ':'. "logon" keys can
+	 be created and updated from userspace, but the payload is only
+	 readable from kernel space.
+
+  *  Each process subscribes to three keyrings: a thread-specific keyring, a
+     process-specific keyring, and a session-specific keyring.
+
+     The thread-specific keyring is discarded from the child when any sort of
+     clone, fork, vfork or execve occurs. A new keyring is created only when
+     required.
+
+     The process-specific keyring is replaced with an empty one in the child on
+     clone, fork, vfork unless CLONE_THREAD is supplied, in which case it is
+     shared. execve also discards the process's process keyring and creates a
+     new one.
+
+     The session-specific keyring is persistent across clone, fork, vfork and
+     execve, even when the latter executes a set-UID or set-GID binary. A
+     process can, however, replace its current session keyring with a new one
+     by using PR_JOIN_SESSION_KEYRING. It is permitted to request an anonymous
+     new one, or to attempt to create or join one of a specific name.
+
+     The ownership of the thread keyring changes when the real UID and GID of
+     the thread changes.
+
+  *  Each user ID resident in the system holds two special keyrings: a user
+     specific keyring and a default user session keyring. The default session
+     keyring is initialised with a link to the user-specific keyring.
+
+     When a process changes its real UID, if it used to have no session key, it
+     will be subscribed to the default session key for the new UID.
+
+     If a process attempts to access its session key when it doesn't have one,
+     it will be subscribed to the default for its current UID.
+
+  *  Each user has two quotas against which the keys they own are tracked. One
+     limits the total number of keys and keyrings, the other limits the total
+     amount of description and payload space that can be consumed.
+
+     The user can view information on this and other statistics through procfs
+     files.  The root user may also alter the quota limits through sysctl files
+     (see the section "New procfs files").
+
+     Process-specific and thread-specific keyrings are not counted towards a
+     user's quota.
+
+     If a system call that modifies a key or keyring in some way would put the
+     user over quota, the operation is refused and error EDQUOT is returned.
+
+  *  There's a system call interface by which userspace programs can create and
+     manipulate keys and keyrings.
+
+  *  There's a kernel interface by which services can register types and search
+     for keys.
+
+  *  There's a way for the a search done from the kernel to call back to
+     userspace to request a key that can't be found in a process's keyrings.
+
+  *  An optional filesystem is available through which the key database can be
+     viewed and manipulated.
+
+
+Key Access Permissions
+======================
+
+Keys have an owner user ID, a group access ID, and a permissions mask. The mask
+has up to eight bits each for possessor, user, group and other access. Only
+six of each set of eight bits are defined. These permissions granted are:
+
+  *  View
+
+     This permits a key or keyring's attributes to be viewed - including key
+     type and description.
+
+  *  Read
+
+     This permits a key's payload to be viewed or a keyring's list of linked
+     keys.
+
+  *  Write
+
+     This permits a key's payload to be instantiated or updated, or it allows a
+     link to be added to or removed from a keyring.
+
+  *  Search
+
+     This permits keyrings to be searched and keys to be found. Searches can
+     only recurse into nested keyrings that have search permission set.
+
+  *  Link
+
+     This permits a key or keyring to be linked to. To create a link from a
+     keyring to a key, a process must have Write permission on the keyring and
+     Link permission on the key.
+
+  *  Set Attribute
+
+     This permits a key's UID, GID and permissions mask to be changed.
+
+For changing the ownership, group ID or permissions mask, being the owner of
+the key or having the sysadmin capability is sufficient.
+
+
+SELinux Support
+===============
+
+The security class "key" has been added to SELinux so that mandatory access
+controls can be applied to keys created within various contexts.  This support
+is preliminary, and is likely to change quite significantly in the near future.
+Currently, all of the basic permissions explained above are provided in SELinux
+as well; SELinux is simply invoked after all basic permission checks have been
+performed.
+
+The value of the file /proc/self/attr/keycreate influences the labeling of
+newly-created keys.  If the contents of that file correspond to an SELinux
+security context, then the key will be assigned that context.  Otherwise, the
+key will be assigned the current context of the task that invoked the key
+creation request.  Tasks must be granted explicit permission to assign a
+particular context to newly-created keys, using the "create" permission in the
+key security class.
+
+The default keyrings associated with users will be labeled with the default
+context of the user if and only if the login programs have been instrumented to
+properly initialize keycreate during the login process.  Otherwise, they will
+be labeled with the context of the login program itself.
+
+Note, however, that the default keyrings associated with the root user are
+labeled with the default kernel context, since they are created early in the
+boot process, before root has a chance to log in.
+
+The keyrings associated with new threads are each labeled with the context of
+their associated thread, and both session and process keyrings are handled
+similarly.
+
+
+New ProcFS Files
+================
+
+Two files have been added to procfs by which an administrator can find out
+about the status of the key service:
+
+  *  /proc/keys
+
+     This lists the keys that are currently viewable by the task reading the
+     file, giving information about their type, description and permissions.
+     It is not possible to view the payload of the key this way, though some
+     information about it may be given.
+
+     The only keys included in the list are those that grant View permission to
+     the reading process whether or not it possesses them.  Note that LSM
+     security checks are still performed, and may further filter out keys that
+     the current process is not authorised to view.
+
+     The contents of the file look like this::
+
+	SERIAL   FLAGS  USAGE EXPY PERM     UID   GID   TYPE      DESCRIPTION: SUMMARY
+	00000001 I-----    39 perm 1f3f0000     0     0 keyring   _uid_ses.0: 1/4
+	00000002 I-----     2 perm 1f3f0000     0     0 keyring   _uid.0: empty
+	00000007 I-----     1 perm 1f3f0000     0     0 keyring   _pid.1: empty
+	0000018d I-----     1 perm 1f3f0000     0     0 keyring   _pid.412: empty
+	000004d2 I--Q--     1 perm 1f3f0000    32    -1 keyring   _uid.32: 1/4
+	000004d3 I--Q--     3 perm 1f3f0000    32    -1 keyring   _uid_ses.32: empty
+	00000892 I--QU-     1 perm 1f000000     0     0 user      metal:copper: 0
+	00000893 I--Q-N     1  35s 1f3f0000     0     0 user      metal:silver: 0
+	00000894 I--Q--     1  10h 003f0000     0     0 user      metal:gold: 0
+
+     The flags are::
+
+	I	Instantiated
+	R	Revoked
+	D	Dead
+	Q	Contributes to user's quota
+	U	Under construction by callback to userspace
+	N	Negative key
+
+
+  *  /proc/key-users
+
+     This file lists the tracking data for each user that has at least one key
+     on the system.  Such data includes quota information and statistics::
+
+	[root@andromeda root]# cat /proc/key-users
+	0:     46 45/45 1/100 13/10000
+	29:     2 2/2 2/100 40/10000
+	32:     2 2/2 2/100 40/10000
+	38:     2 2/2 2/100 40/10000
+
+     The format of each line is::
+
+	<UID>:			User ID to which this applies
+	<usage>			Structure refcount
+	<inst>/<keys>		Total number of keys and number instantiated
+	<keys>/<max>		Key count quota
+	<bytes>/<max>		Key size quota
+
+
+Four new sysctl files have been added also for the purpose of controlling the
+quota limits on keys:
+
+  *  /proc/sys/kernel/keys/root_maxkeys
+     /proc/sys/kernel/keys/root_maxbytes
+
+     These files hold the maximum number of keys that root may have and the
+     maximum total number of bytes of data that root may have stored in those
+     keys.
+
+  *  /proc/sys/kernel/keys/maxkeys
+     /proc/sys/kernel/keys/maxbytes
+
+     These files hold the maximum number of keys that each non-root user may
+     have and the maximum total number of bytes of data that each of those
+     users may have stored in their keys.
+
+Root may alter these by writing each new limit as a decimal number string to
+the appropriate file.
+
+
+Userspace System Call Interface
+===============================
+
+Userspace can manipulate keys directly through three new syscalls: add_key,
+request_key and keyctl. The latter provides a number of functions for
+manipulating keys.
+
+When referring to a key directly, userspace programs should use the key's
+serial number (a positive 32-bit integer). However, there are some special
+values available for referring to special keys and keyrings that relate to the
+process making the call::
+
+	CONSTANT			VALUE	KEY REFERENCED
+	==============================	======	===========================
+	KEY_SPEC_THREAD_KEYRING		-1	thread-specific keyring
+	KEY_SPEC_PROCESS_KEYRING	-2	process-specific keyring
+	KEY_SPEC_SESSION_KEYRING	-3	session-specific keyring
+	KEY_SPEC_USER_KEYRING		-4	UID-specific keyring
+	KEY_SPEC_USER_SESSION_KEYRING	-5	UID-session keyring
+	KEY_SPEC_GROUP_KEYRING		-6	GID-specific keyring
+	KEY_SPEC_REQKEY_AUTH_KEY	-7	assumed request_key()
+						  authorisation key
+
+
+The main syscalls are:
+
+  *  Create a new key of given type, description and payload and add it to the
+     nominated keyring::
+
+	key_serial_t add_key(const char *type, const char *desc,
+			     const void *payload, size_t plen,
+			     key_serial_t keyring);
+
+     If a key of the same type and description as that proposed already exists
+     in the keyring, this will try to update it with the given payload, or it
+     will return error EEXIST if that function is not supported by the key
+     type. The process must also have permission to write to the key to be able
+     to update it. The new key will have all user permissions granted and no
+     group or third party permissions.
+
+     Otherwise, this will attempt to create a new key of the specified type and
+     description, and to instantiate it with the supplied payload and attach it
+     to the keyring. In this case, an error will be generated if the process
+     does not have permission to write to the keyring.
+
+     If the key type supports it, if the description is NULL or an empty
+     string, the key type will try and generate a description from the content
+     of the payload.
+
+     The payload is optional, and the pointer can be NULL if not required by
+     the type. The payload is plen in size, and plen can be zero for an empty
+     payload.
+
+     A new keyring can be generated by setting type "keyring", the keyring name
+     as the description (or NULL) and setting the payload to NULL.
+
+     User defined keys can be created by specifying type "user". It is
+     recommended that a user defined key's description by prefixed with a type
+     ID and a colon, such as "krb5tgt:" for a Kerberos 5 ticket granting
+     ticket.
+
+     Any other type must have been registered with the kernel in advance by a
+     kernel service such as a filesystem.
+
+     The ID of the new or updated key is returned if successful.
+
+
+  *  Search the process's keyrings for a key, potentially calling out to
+     userspace to create it::
+
+	key_serial_t request_key(const char *type, const char *description,
+				 const char *callout_info,
+				 key_serial_t dest_keyring);
+
+     This function searches all the process's keyrings in the order thread,
+     process, session for a matching key. This works very much like
+     KEYCTL_SEARCH, including the optional attachment of the discovered key to
+     a keyring.
+
+     If a key cannot be found, and if callout_info is not NULL, then
+     /sbin/request-key will be invoked in an attempt to obtain a key. The
+     callout_info string will be passed as an argument to the program.
+
+     See also Documentation/security/keys/request-key.rst.
+
+
+The keyctl syscall functions are:
+
+  *  Map a special key ID to a real key ID for this process::
+
+	key_serial_t keyctl(KEYCTL_GET_KEYRING_ID, key_serial_t id,
+			    int create);
+
+     The special key specified by "id" is looked up (with the key being created
+     if necessary) and the ID of the key or keyring thus found is returned if
+     it exists.
+
+     If the key does not yet exist, the key will be created if "create" is
+     non-zero; and the error ENOKEY will be returned if "create" is zero.
+
+
+  *  Replace the session keyring this process subscribes to with a new one::
+
+	key_serial_t keyctl(KEYCTL_JOIN_SESSION_KEYRING, const char *name);
+
+     If name is NULL, an anonymous keyring is created attached to the process
+     as its session keyring, displacing the old session keyring.
+
+     If name is not NULL, if a keyring of that name exists, the process
+     attempts to attach it as the session keyring, returning an error if that
+     is not permitted; otherwise a new keyring of that name is created and
+     attached as the session keyring.
+
+     To attach to a named keyring, the keyring must have search permission for
+     the process's ownership.
+
+     The ID of the new session keyring is returned if successful.
+
+
+  *  Update the specified key::
+
+	long keyctl(KEYCTL_UPDATE, key_serial_t key, const void *payload,
+		    size_t plen);
+
+     This will try to update the specified key with the given payload, or it
+     will return error EOPNOTSUPP if that function is not supported by the key
+     type. The process must also have permission to write to the key to be able
+     to update it.
+
+     The payload is of length plen, and may be absent or empty as for
+     add_key().
+
+
+  *  Revoke a key::
+
+	long keyctl(KEYCTL_REVOKE, key_serial_t key);
+
+     This makes a key unavailable for further operations. Further attempts to
+     use the key will be met with error EKEYREVOKED, and the key will no longer
+     be findable.
+
+
+  *  Change the ownership of a key::
+
+	long keyctl(KEYCTL_CHOWN, key_serial_t key, uid_t uid, gid_t gid);
+
+     This function permits a key's owner and group ID to be changed. Either one
+     of uid or gid can be set to -1 to suppress that change.
+
+     Only the superuser can change a key's owner to something other than the
+     key's current owner. Similarly, only the superuser can change a key's
+     group ID to something other than the calling process's group ID or one of
+     its group list members.
+
+
+  *  Change the permissions mask on a key::
+
+	long keyctl(KEYCTL_SETPERM, key_serial_t key, key_perm_t perm);
+
+     This function permits the owner of a key or the superuser to change the
+     permissions mask on a key.
+
+     Only bits the available bits are permitted; if any other bits are set,
+     error EINVAL will be returned.
+
+
+  *  Describe a key::
+
+	long keyctl(KEYCTL_DESCRIBE, key_serial_t key, char *buffer,
+		    size_t buflen);
+
+     This function returns a summary of the key's attributes (but not its
+     payload data) as a string in the buffer provided.
+
+     Unless there's an error, it always returns the amount of data it could
+     produce, even if that's too big for the buffer, but it won't copy more
+     than requested to userspace. If the buffer pointer is NULL then no copy
+     will take place.
+
+     A process must have view permission on the key for this function to be
+     successful.
+
+     If successful, a string is placed in the buffer in the following format::
+
+	<type>;<uid>;<gid>;<perm>;<description>
+
+     Where type and description are strings, uid and gid are decimal, and perm
+     is hexadecimal. A NUL character is included at the end of the string if
+     the buffer is sufficiently big.
+
+     This can be parsed with::
+
+	sscanf(buffer, "%[^;];%d;%d;%o;%s", type, &uid, &gid, &mode, desc);
+
+
+  *  Clear out a keyring::
+
+	long keyctl(KEYCTL_CLEAR, key_serial_t keyring);
+
+     This function clears the list of keys attached to a keyring. The calling
+     process must have write permission on the keyring, and it must be a
+     keyring (or else error ENOTDIR will result).
+
+     This function can also be used to clear special kernel keyrings if they
+     are appropriately marked if the user has CAP_SYS_ADMIN capability.  The
+     DNS resolver cache keyring is an example of this.
+
+
+  *  Link a key into a keyring::
+
+	long keyctl(KEYCTL_LINK, key_serial_t keyring, key_serial_t key);
+
+     This function creates a link from the keyring to the key. The process must
+     have write permission on the keyring and must have link permission on the
+     key.
+
+     Should the keyring not be a keyring, error ENOTDIR will result; and if the
+     keyring is full, error ENFILE will result.
+
+     The link procedure checks the nesting of the keyrings, returning ELOOP if
+     it appears too deep or EDEADLK if the link would introduce a cycle.
+
+     Any links within the keyring to keys that match the new key in terms of
+     type and description will be discarded from the keyring as the new one is
+     added.
+
+
+  *  Unlink a key or keyring from another keyring::
+
+	long keyctl(KEYCTL_UNLINK, key_serial_t keyring, key_serial_t key);
+
+     This function looks through the keyring for the first link to the
+     specified key, and removes it if found. Subsequent links to that key are
+     ignored. The process must have write permission on the keyring.
+
+     If the keyring is not a keyring, error ENOTDIR will result; and if the key
+     is not present, error ENOENT will be the result.
+
+
+  *  Search a keyring tree for a key::
+
+	key_serial_t keyctl(KEYCTL_SEARCH, key_serial_t keyring,
+			    const char *type, const char *description,
+			    key_serial_t dest_keyring);
+
+     This searches the keyring tree headed by the specified keyring until a key
+     is found that matches the type and description criteria. Each keyring is
+     checked for keys before recursion into its children occurs.
+
+     The process must have search permission on the top level keyring, or else
+     error EACCES will result. Only keyrings that the process has search
+     permission on will be recursed into, and only keys and keyrings for which
+     a process has search permission can be matched. If the specified keyring
+     is not a keyring, ENOTDIR will result.
+
+     If the search succeeds, the function will attempt to link the found key
+     into the destination keyring if one is supplied (non-zero ID). All the
+     constraints applicable to KEYCTL_LINK apply in this case too.
+
+     Error ENOKEY, EKEYREVOKED or EKEYEXPIRED will be returned if the search
+     fails. On success, the resulting key ID will be returned.
+
+
+  *  Read the payload data from a key::
+
+	long keyctl(KEYCTL_READ, key_serial_t keyring, char *buffer,
+		    size_t buflen);
+
+     This function attempts to read the payload data from the specified key
+     into the buffer. The process must have read permission on the key to
+     succeed.
+
+     The returned data will be processed for presentation by the key type. For
+     instance, a keyring will return an array of key_serial_t entries
+     representing the IDs of all the keys to which it is subscribed. The user
+     defined key type will return its data as is. If a key type does not
+     implement this function, error EOPNOTSUPP will result.
+
+     If the specified buffer is too small, then the size of the buffer required
+     will be returned.  Note that in this case, the contents of the buffer may
+     have been overwritten in some undefined way.
+
+     Otherwise, on success, the function will return the amount of data copied
+     into the buffer.
+
+  *  Instantiate a partially constructed key::
+
+	long keyctl(KEYCTL_INSTANTIATE, key_serial_t key,
+		    const void *payload, size_t plen,
+		    key_serial_t keyring);
+	long keyctl(KEYCTL_INSTANTIATE_IOV, key_serial_t key,
+		    const struct iovec *payload_iov, unsigned ioc,
+		    key_serial_t keyring);
+
+     If the kernel calls back to userspace to complete the instantiation of a
+     key, userspace should use this call to supply data for the key before the
+     invoked process returns, or else the key will be marked negative
+     automatically.
+
+     The process must have write access on the key to be able to instantiate
+     it, and the key must be uninstantiated.
+
+     If a keyring is specified (non-zero), the key will also be linked into
+     that keyring, however all the constraints applying in KEYCTL_LINK apply in
+     this case too.
+
+     The payload and plen arguments describe the payload data as for add_key().
+
+     The payload_iov and ioc arguments describe the payload data in an iovec
+     array instead of a single buffer.
+
+
+  *  Negatively instantiate a partially constructed key::
+
+	long keyctl(KEYCTL_NEGATE, key_serial_t key,
+		    unsigned timeout, key_serial_t keyring);
+	long keyctl(KEYCTL_REJECT, key_serial_t key,
+		    unsigned timeout, unsigned error, key_serial_t keyring);
+
+     If the kernel calls back to userspace to complete the instantiation of a
+     key, userspace should use this call mark the key as negative before the
+     invoked process returns if it is unable to fulfill the request.
+
+     The process must have write access on the key to be able to instantiate
+     it, and the key must be uninstantiated.
+
+     If a keyring is specified (non-zero), the key will also be linked into
+     that keyring, however all the constraints applying in KEYCTL_LINK apply in
+     this case too.
+
+     If the key is rejected, future searches for it will return the specified
+     error code until the rejected key expires.  Negating the key is the same
+     as rejecting the key with ENOKEY as the error code.
+
+
+  *  Set the default request-key destination keyring::
+
+	long keyctl(KEYCTL_SET_REQKEY_KEYRING, int reqkey_defl);
+
+     This sets the default keyring to which implicitly requested keys will be
+     attached for this thread. reqkey_defl should be one of these constants::
+
+	CONSTANT				VALUE	NEW DEFAULT KEYRING
+	======================================	======	=======================
+	KEY_REQKEY_DEFL_NO_CHANGE		-1	No change
+	KEY_REQKEY_DEFL_DEFAULT			0	Default[1]
+	KEY_REQKEY_DEFL_THREAD_KEYRING		1	Thread keyring
+	KEY_REQKEY_DEFL_PROCESS_KEYRING		2	Process keyring
+	KEY_REQKEY_DEFL_SESSION_KEYRING		3	Session keyring
+	KEY_REQKEY_DEFL_USER_KEYRING		4	User keyring
+	KEY_REQKEY_DEFL_USER_SESSION_KEYRING	5	User session keyring
+	KEY_REQKEY_DEFL_GROUP_KEYRING		6	Group keyring
+
+     The old default will be returned if successful and error EINVAL will be
+     returned if reqkey_defl is not one of the above values.
+
+     The default keyring can be overridden by the keyring indicated to the
+     request_key() system call.
+
+     Note that this setting is inherited across fork/exec.
+
+     [1] The default is: the thread keyring if there is one, otherwise
+     the process keyring if there is one, otherwise the session keyring if
+     there is one, otherwise the user default session keyring.
+
+
+  *  Set the timeout on a key::
+
+	long keyctl(KEYCTL_SET_TIMEOUT, key_serial_t key, unsigned timeout);
+
+     This sets or clears the timeout on a key. The timeout can be 0 to clear
+     the timeout or a number of seconds to set the expiry time that far into
+     the future.
+
+     The process must have attribute modification access on a key to set its
+     timeout. Timeouts may not be set with this function on negative, revoked
+     or expired keys.
+
+
+  *  Assume the authority granted to instantiate a key::
+
+	long keyctl(KEYCTL_ASSUME_AUTHORITY, key_serial_t key);
+
+     This assumes or divests the authority required to instantiate the
+     specified key. Authority can only be assumed if the thread has the
+     authorisation key associated with the specified key in its keyrings
+     somewhere.
+
+     Once authority is assumed, searches for keys will also search the
+     requester's keyrings using the requester's security label, UID, GID and
+     groups.
+
+     If the requested authority is unavailable, error EPERM will be returned,
+     likewise if the authority has been revoked because the target key is
+     already instantiated.
+
+     If the specified key is 0, then any assumed authority will be divested.
+
+     The assumed authoritative key is inherited across fork and exec.
+
+
+  *  Get the LSM security context attached to a key::
+
+	long keyctl(KEYCTL_GET_SECURITY, key_serial_t key, char *buffer,
+		    size_t buflen)
+
+     This function returns a string that represents the LSM security context
+     attached to a key in the buffer provided.
+
+     Unless there's an error, it always returns the amount of data it could
+     produce, even if that's too big for the buffer, but it won't copy more
+     than requested to userspace. If the buffer pointer is NULL then no copy
+     will take place.
+
+     A NUL character is included at the end of the string if the buffer is
+     sufficiently big.  This is included in the returned count.  If no LSM is
+     in force then an empty string will be returned.
+
+     A process must have view permission on the key for this function to be
+     successful.
+
+
+  *  Install the calling process's session keyring on its parent::
+
+	long keyctl(KEYCTL_SESSION_TO_PARENT);
+
+     This functions attempts to install the calling process's session keyring
+     on to the calling process's parent, replacing the parent's current session
+     keyring.
+
+     The calling process must have the same ownership as its parent, the
+     keyring must have the same ownership as the calling process, the calling
+     process must have LINK permission on the keyring and the active LSM module
+     mustn't deny permission, otherwise error EPERM will be returned.
+
+     Error ENOMEM will be returned if there was insufficient memory to complete
+     the operation, otherwise 0 will be returned to indicate success.
+
+     The keyring will be replaced next time the parent process leaves the
+     kernel and resumes executing userspace.
+
+
+  *  Invalidate a key::
+
+	long keyctl(KEYCTL_INVALIDATE, key_serial_t key);
+
+     This function marks a key as being invalidated and then wakes up the
+     garbage collector.  The garbage collector immediately removes invalidated
+     keys from all keyrings and deletes the key when its reference count
+     reaches zero.
+
+     Keys that are marked invalidated become invisible to normal key operations
+     immediately, though they are still visible in /proc/keys until deleted
+     (they're marked with an 'i' flag).
+
+     A process must have search permission on the key for this function to be
+     successful.
+
+  *  Compute a Diffie-Hellman shared secret or public key::
+
+	long keyctl(KEYCTL_DH_COMPUTE, struct keyctl_dh_params *params,
+		    char *buffer, size_t buflen, struct keyctl_kdf_params *kdf);
+
+     The params struct contains serial numbers for three keys::
+
+	 - The prime, p, known to both parties
+	 - The local private key
+	 - The base integer, which is either a shared generator or the
+	   remote public key
+
+     The value computed is::
+
+	result = base ^ private (mod prime)
+
+     If the base is the shared generator, the result is the local
+     public key.  If the base is the remote public key, the result is
+     the shared secret.
+
+     If the parameter kdf is NULL, the following applies:
+
+	 - The buffer length must be at least the length of the prime, or zero.
+
+	 - If the buffer length is nonzero, the length of the result is
+	   returned when it is successfully calculated and copied in to the
+	   buffer. When the buffer length is zero, the minimum required
+	   buffer length is returned.
+
+     The kdf parameter allows the caller to apply a key derivation function
+     (KDF) on the Diffie-Hellman computation where only the result
+     of the KDF is returned to the caller. The KDF is characterized with
+     struct keyctl_kdf_params as follows:
+
+	 - ``char *hashname`` specifies the NUL terminated string identifying
+	   the hash used from the kernel crypto API and applied for the KDF
+	   operation. The KDF implemenation complies with SP800-56A as well
+	   as with SP800-108 (the counter KDF).
+
+	 - ``char *otherinfo`` specifies the OtherInfo data as documented in
+	   SP800-56A section 5.8.1.2. The length of the buffer is given with
+	   otherinfolen. The format of OtherInfo is defined by the caller.
+	   The otherinfo pointer may be NULL if no OtherInfo shall be used.
+
+     This function will return error EOPNOTSUPP if the key type is not
+     supported, error ENOKEY if the key could not be found, or error
+     EACCES if the key is not readable by the caller. In addition, the
+     function will return EMSGSIZE when the parameter kdf is non-NULL
+     and either the buffer length or the OtherInfo length exceeds the
+     allowed length.
+
+  *  Restrict keyring linkage::
+
+	long keyctl(KEYCTL_RESTRICT_KEYRING, key_serial_t keyring,
+		    const char *type, const char *restriction);
+
+     An existing keyring can restrict linkage of additional keys by evaluating
+     the contents of the key according to a restriction scheme.
+
+     "keyring" is the key ID for an existing keyring to apply a restriction
+     to. It may be empty or may already have keys linked. Existing linked keys
+     will remain in the keyring even if the new restriction would reject them.
+
+     "type" is a registered key type.
+
+     "restriction" is a string describing how key linkage is to be restricted.
+     The format varies depending on the key type, and the string is passed to
+     the lookup_restriction() function for the requested type.  It may specify
+     a method and relevant data for the restriction such as signature
+     verification or constraints on key payload. If the requested key type is
+     later unregistered, no keys may be added to the keyring after the key type
+     is removed.
+
+     To apply a keyring restriction the process must have Set Attribute
+     permission and the keyring must not be previously restricted.
+
+     One application of restricted keyrings is to verify X.509 certificate
+     chains or individual certificate signatures using the asymmetric key type.
+     See Documentation/crypto/asymmetric-keys.txt for specific restrictions
+     applicable to the asymmetric key type.
+
+
+Kernel Services
+===============
+
+The kernel services for key management are fairly simple to deal with. They can
+be broken down into two areas: keys and key types.
+
+Dealing with keys is fairly straightforward. Firstly, the kernel service
+registers its type, then it searches for a key of that type. It should retain
+the key as long as it has need of it, and then it should release it. For a
+filesystem or device file, a search would probably be performed during the open
+call, and the key released upon close. How to deal with conflicting keys due to
+two different users opening the same file is left to the filesystem author to
+solve.
+
+To access the key manager, the following header must be #included::
+
+	<linux/key.h>
+
+Specific key types should have a header file under include/keys/ that should be
+used to access that type.  For keys of type "user", for example, that would be::
+
+	<keys/user-type.h>
+
+Note that there are two different types of pointers to keys that may be
+encountered:
+
+  *  struct key *
+
+     This simply points to the key structure itself. Key structures will be at
+     least four-byte aligned.
+
+  *  key_ref_t
+
+     This is equivalent to a ``struct key *``, but the least significant bit is set
+     if the caller "possesses" the key. By "possession" it is meant that the
+     calling processes has a searchable link to the key from one of its
+     keyrings. There are three functions for dealing with these::
+
+	key_ref_t make_key_ref(const struct key *key, bool possession);
+
+	struct key *key_ref_to_ptr(const key_ref_t key_ref);
+
+	bool is_key_possessed(const key_ref_t key_ref);
+
+     The first function constructs a key reference from a key pointer and
+     possession information (which must be true or false).
+
+     The second function retrieves the key pointer from a reference and the
+     third retrieves the possession flag.
+
+When accessing a key's payload contents, certain precautions must be taken to
+prevent access vs modification races. See the section "Notes on accessing
+payload contents" for more information.
+
+ *  To search for a key, call::
+
+	struct key *request_key(const struct key_type *type,
+				const char *description,
+				const char *callout_info);
+
+    This is used to request a key or keyring with a description that matches
+    the description specified according to the key type's match_preparse()
+    method. This permits approximate matching to occur. If callout_string is
+    not NULL, then /sbin/request-key will be invoked in an attempt to obtain
+    the key from userspace. In that case, callout_string will be passed as an
+    argument to the program.
+
+    Should the function fail error ENOKEY, EKEYEXPIRED or EKEYREVOKED will be
+    returned.
+
+    If successful, the key will have been attached to the default keyring for
+    implicitly obtained request-key keys, as set by KEYCTL_SET_REQKEY_KEYRING.
+
+    See also Documentation/security/keys/request-key.rst.
+
+
+ *  To search for a key, passing auxiliary data to the upcaller, call::
+
+	struct key *request_key_with_auxdata(const struct key_type *type,
+					     const char *description,
+					     const void *callout_info,
+					     size_t callout_len,
+					     void *aux);
+
+    This is identical to request_key(), except that the auxiliary data is
+    passed to the key_type->request_key() op if it exists, and the callout_info
+    is a blob of length callout_len, if given (the length may be 0).
+
+
+ *  A key can be requested asynchronously by calling one of::
+
+	struct key *request_key_async(const struct key_type *type,
+				      const char *description,
+				      const void *callout_info,
+				      size_t callout_len);
+
+    or::
+
+	struct key *request_key_async_with_auxdata(const struct key_type *type,
+						   const char *description,
+						   const char *callout_info,
+					     	   size_t callout_len,
+					     	   void *aux);
+
+    which are asynchronous equivalents of request_key() and
+    request_key_with_auxdata() respectively.
+
+    These two functions return with the key potentially still under
+    construction.  To wait for construction completion, the following should be
+    called::
+
+	int wait_for_key_construction(struct key *key, bool intr);
+
+    The function will wait for the key to finish being constructed and then
+    invokes key_validate() to return an appropriate value to indicate the state
+    of the key (0 indicates the key is usable).
+
+    If intr is true, then the wait can be interrupted by a signal, in which
+    case error ERESTARTSYS will be returned.
+
+
+ *  When it is no longer required, the key should be released using::
+
+	void key_put(struct key *key);
+
+    Or::
+
+	void key_ref_put(key_ref_t key_ref);
+
+    These can be called from interrupt context. If CONFIG_KEYS is not set then
+    the argument will not be parsed.
+
+
+ *  Extra references can be made to a key by calling one of the following
+    functions::
+
+	struct key *__key_get(struct key *key);
+	struct key *key_get(struct key *key);
+
+    Keys so references will need to be disposed of by calling key_put() when
+    they've been finished with.  The key pointer passed in will be returned.
+
+    In the case of key_get(), if the pointer is NULL or CONFIG_KEYS is not set
+    then the key will not be dereferenced and no increment will take place.
+
+
+ *  A key's serial number can be obtained by calling::
+
+	key_serial_t key_serial(struct key *key);
+
+    If key is NULL or if CONFIG_KEYS is not set then 0 will be returned (in the
+    latter case without parsing the argument).
+
+
+ *  If a keyring was found in the search, this can be further searched by::
+
+	key_ref_t keyring_search(key_ref_t keyring_ref,
+				 const struct key_type *type,
+				 const char *description)
+
+    This searches the keyring tree specified for a matching key. Error ENOKEY
+    is returned upon failure (use IS_ERR/PTR_ERR to determine). If successful,
+    the returned key will need to be released.
+
+    The possession attribute from the keyring reference is used to control
+    access through the permissions mask and is propagated to the returned key
+    reference pointer if successful.
+
+
+ *  A keyring can be created by::
+
+	struct key *keyring_alloc(const char *description, uid_t uid, gid_t gid,
+				  const struct cred *cred,
+				  key_perm_t perm,
+				  struct key_restriction *restrict_link,
+				  unsigned long flags,
+				  struct key *dest);
+
+    This creates a keyring with the given attributes and returns it.  If dest
+    is not NULL, the new keyring will be linked into the keyring to which it
+    points.  No permission checks are made upon the destination keyring.
+
+    Error EDQUOT can be returned if the keyring would overload the quota (pass
+    KEY_ALLOC_NOT_IN_QUOTA in flags if the keyring shouldn't be accounted
+    towards the user's quota).  Error ENOMEM can also be returned.
+
+    If restrict_link is not NULL, it should point to a structure that contains
+    the function that will be called each time an attempt is made to link a
+    key into the new keyring.  The structure may also contain a key pointer
+    and an associated key type.  The function is called to check whether a key
+    may be added into the keyring or not.  The key type is used by the garbage
+    collector to clean up function or data pointers in this structure if the
+    given key type is unregistered.  Callers of key_create_or_update() within
+    the kernel can pass KEY_ALLOC_BYPASS_RESTRICTION to suppress the check.
+    An example of using this is to manage rings of cryptographic keys that are
+    set up when the kernel boots where userspace is also permitted to add keys
+    - provided they can be verified by a key the kernel already has.
+
+    When called, the restriction function will be passed the keyring being
+    added to, the key type, the payload of the key being added, and data to be
+    used in the restriction check.  Note that when a new key is being created,
+    this is called between payload preparsing and actual key creation.  The
+    function should return 0 to allow the link or an error to reject it.
+
+    A convenience function, restrict_link_reject, exists to always return
+    -EPERM to in this case.
+
+
+ *  To check the validity of a key, this function can be called::
+
+	int validate_key(struct key *key);
+
+    This checks that the key in question hasn't expired or and hasn't been
+    revoked. Should the key be invalid, error EKEYEXPIRED or EKEYREVOKED will
+    be returned. If the key is NULL or if CONFIG_KEYS is not set then 0 will be
+    returned (in the latter case without parsing the argument).
+
+
+ *  To register a key type, the following function should be called::
+
+	int register_key_type(struct key_type *type);
+
+    This will return error EEXIST if a type of the same name is already
+    present.
+
+
+ *  To unregister a key type, call::
+
+	void unregister_key_type(struct key_type *type);
+
+
+Under some circumstances, it may be desirable to deal with a bundle of keys.
+The facility provides access to the keyring type for managing such a bundle::
+
+	struct key_type key_type_keyring;
+
+This can be used with a function such as request_key() to find a specific
+keyring in a process's keyrings.  A keyring thus found can then be searched
+with keyring_search().  Note that it is not possible to use request_key() to
+search a specific keyring, so using keyrings in this way is of limited utility.
+
+
+Notes On Accessing Payload Contents
+===================================
+
+The simplest payload is just data stored in key->payload directly.  In this
+case, there's no need to indulge in RCU or locking when accessing the payload.
+
+More complex payload contents must be allocated and pointers to them set in the
+key->payload.data[] array.  One of the following ways must be selected to
+access the data:
+
+  1) Unmodifiable key type.
+
+     If the key type does not have a modify method, then the key's payload can
+     be accessed without any form of locking, provided that it's known to be
+     instantiated (uninstantiated keys cannot be "found").
+
+  2) The key's semaphore.
+
+     The semaphore could be used to govern access to the payload and to control
+     the payload pointer. It must be write-locked for modifications and would
+     have to be read-locked for general access. The disadvantage of doing this
+     is that the accessor may be required to sleep.
+
+  3) RCU.
+
+     RCU must be used when the semaphore isn't already held; if the semaphore
+     is held then the contents can't change under you unexpectedly as the
+     semaphore must still be used to serialise modifications to the key. The
+     key management code takes care of this for the key type.
+
+     However, this means using::
+
+	rcu_read_lock() ... rcu_dereference() ... rcu_read_unlock()
+
+     to read the pointer, and::
+
+	rcu_dereference() ... rcu_assign_pointer() ... call_rcu()
+
+     to set the pointer and dispose of the old contents after a grace period.
+     Note that only the key type should ever modify a key's payload.
+
+     Furthermore, an RCU controlled payload must hold a struct rcu_head for the
+     use of call_rcu() and, if the payload is of variable size, the length of
+     the payload. key->datalen cannot be relied upon to be consistent with the
+     payload just dereferenced if the key's semaphore is not held.
+
+     Note that key->payload.data[0] has a shadow that is marked for __rcu
+     usage.  This is called key->payload.rcu_data0.  The following accessors
+     wrap the RCU calls to this element:
+
+     a) Set or change the first payload pointer::
+
+		rcu_assign_keypointer(struct key *key, void *data);
+
+     b) Read the first payload pointer with the key semaphore held::
+
+		[const] void *dereference_key_locked([const] struct key *key);
+
+	 Note that the return value will inherit its constness from the key
+	 parameter.  Static analysis will give an error if it things the lock
+	 isn't held.
+
+     c) Read the first payload pointer with the RCU read lock held::
+
+		const void *dereference_key_rcu(const struct key *key);
+
+
+Defining a Key Type
+===================
+
+A kernel service may want to define its own key type. For instance, an AFS
+filesystem might want to define a Kerberos 5 ticket key type. To do this, it
+author fills in a key_type struct and registers it with the system.
+
+Source files that implement key types should include the following header file::
+
+	<linux/key-type.h>
+
+The structure has a number of fields, some of which are mandatory:
+
+  *  ``const char *name``
+
+     The name of the key type. This is used to translate a key type name
+     supplied by userspace into a pointer to the structure.
+
+
+  *  ``size_t def_datalen``
+
+     This is optional - it supplies the default payload data length as
+     contributed to the quota. If the key type's payload is always or almost
+     always the same size, then this is a more efficient way to do things.
+
+     The data length (and quota) on a particular key can always be changed
+     during instantiation or update by calling::
+
+	int key_payload_reserve(struct key *key, size_t datalen);
+
+     With the revised data length. Error EDQUOT will be returned if this is not
+     viable.
+
+
+  *  ``int (*vet_description)(const char *description);``
+
+     This optional method is called to vet a key description.  If the key type
+     doesn't approve of the key description, it may return an error, otherwise
+     it should return 0.
+
+
+  *  ``int (*preparse)(struct key_preparsed_payload *prep);``
+
+     This optional method permits the key type to attempt to parse payload
+     before a key is created (add key) or the key semaphore is taken (update or
+     instantiate key).  The structure pointed to by prep looks like::
+
+	struct key_preparsed_payload {
+		char		*description;
+		union key_payload payload;
+		const void	*data;
+		size_t		datalen;
+		size_t		quotalen;
+		time_t		expiry;
+	};
+
+     Before calling the method, the caller will fill in data and datalen with
+     the payload blob parameters; quotalen will be filled in with the default
+     quota size from the key type; expiry will be set to TIME_T_MAX and the
+     rest will be cleared.
+
+     If a description can be proposed from the payload contents, that should be
+     attached as a string to the description field.  This will be used for the
+     key description if the caller of add_key() passes NULL or "".
+
+     The method can attach anything it likes to payload.  This is merely passed
+     along to the instantiate() or update() operations.  If set, the expiry
+     time will be applied to the key if it is instantiated from this data.
+
+     The method should return 0 if successful or a negative error code
+     otherwise.
+
+
+  *  ``void (*free_preparse)(struct key_preparsed_payload *prep);``
+
+     This method is only required if the preparse() method is provided,
+     otherwise it is unused.  It cleans up anything attached to the description
+     and payload fields of the key_preparsed_payload struct as filled in by the
+     preparse() method.  It will always be called after preparse() returns
+     successfully, even if instantiate() or update() succeed.
+
+
+  *  ``int (*instantiate)(struct key *key, struct key_preparsed_payload *prep);``
+
+     This method is called to attach a payload to a key during construction.
+     The payload attached need not bear any relation to the data passed to this
+     function.
+
+     The prep->data and prep->datalen fields will define the original payload
+     blob.  If preparse() was supplied then other fields may be filled in also.
+
+     If the amount of data attached to the key differs from the size in
+     keytype->def_datalen, then key_payload_reserve() should be called.
+
+     This method does not have to lock the key in order to attach a payload.
+     The fact that KEY_FLAG_INSTANTIATED is not set in key->flags prevents
+     anything else from gaining access to the key.
+
+     It is safe to sleep in this method.
+
+     generic_key_instantiate() is provided to simply copy the data from
+     prep->payload.data[] to key->payload.data[], with RCU-safe assignment on
+     the first element.  It will then clear prep->payload.data[] so that the
+     free_preparse method doesn't release the data.
+
+
+  *  ``int (*update)(struct key *key, const void *data, size_t datalen);``
+
+     If this type of key can be updated, then this method should be provided.
+     It is called to update a key's payload from the blob of data provided.
+
+     The prep->data and prep->datalen fields will define the original payload
+     blob.  If preparse() was supplied then other fields may be filled in also.
+
+     key_payload_reserve() should be called if the data length might change
+     before any changes are actually made. Note that if this succeeds, the type
+     is committed to changing the key because it's already been altered, so all
+     memory allocation must be done first.
+
+     The key will have its semaphore write-locked before this method is called,
+     but this only deters other writers; any changes to the key's payload must
+     be made under RCU conditions, and call_rcu() must be used to dispose of
+     the old payload.
+
+     key_payload_reserve() should be called before the changes are made, but
+     after all allocations and other potentially failing function calls are
+     made.
+
+     It is safe to sleep in this method.
+
+
+  *  ``int (*match_preparse)(struct key_match_data *match_data);``
+
+     This method is optional.  It is called when a key search is about to be
+     performed.  It is given the following structure::
+
+	struct key_match_data {
+		bool (*cmp)(const struct key *key,
+			    const struct key_match_data *match_data);
+		const void	*raw_data;
+		void		*preparsed;
+		unsigned	lookup_type;
+	};
+
+     On entry, raw_data will be pointing to the criteria to be used in matching
+     a key by the caller and should not be modified.  ``(*cmp)()`` will be pointing
+     to the default matcher function (which does an exact description match
+     against raw_data) and lookup_type will be set to indicate a direct lookup.
+
+     The following lookup_type values are available:
+
+       *  KEYRING_SEARCH_LOOKUP_DIRECT - A direct lookup hashes the type and
+      	  description to narrow down the search to a small number of keys.
+
+       *  KEYRING_SEARCH_LOOKUP_ITERATE - An iterative lookup walks all the
+      	  keys in the keyring until one is matched.  This must be used for any
+      	  search that's not doing a simple direct match on the key description.
+
+     The method may set cmp to point to a function of its choice that does some
+     other form of match, may set lookup_type to KEYRING_SEARCH_LOOKUP_ITERATE
+     and may attach something to the preparsed pointer for use by ``(*cmp)()``.
+     ``(*cmp)()`` should return true if a key matches and false otherwise.
+
+     If preparsed is set, it may be necessary to use the match_free() method to
+     clean it up.
+
+     The method should return 0 if successful or a negative error code
+     otherwise.
+
+     It is permitted to sleep in this method, but ``(*cmp)()`` may not sleep as
+     locks will be held over it.
+
+     If match_preparse() is not provided, keys of this type will be matched
+     exactly by their description.
+
+
+  *  ``void (*match_free)(struct key_match_data *match_data);``
+
+     This method is optional.  If given, it called to clean up
+     match_data->preparsed after a successful call to match_preparse().
+
+
+  *  ``void (*revoke)(struct key *key);``
+
+     This method is optional.  It is called to discard part of the payload
+     data upon a key being revoked.  The caller will have the key semaphore
+     write-locked.
+
+     It is safe to sleep in this method, though care should be taken to avoid
+     a deadlock against the key semaphore.
+
+
+  *  ``void (*destroy)(struct key *key);``
+
+     This method is optional. It is called to discard the payload data on a key
+     when it is being destroyed.
+
+     This method does not need to lock the key to access the payload; it can
+     consider the key as being inaccessible at this time. Note that the key's
+     type may have been changed before this function is called.
+
+     It is not safe to sleep in this method; the caller may hold spinlocks.
+
+
+  *  ``void (*describe)(const struct key *key, struct seq_file *p);``
+
+     This method is optional. It is called during /proc/keys reading to
+     summarise a key's description and payload in text form.
+
+     This method will be called with the RCU read lock held. rcu_dereference()
+     should be used to read the payload pointer if the payload is to be
+     accessed. key->datalen cannot be trusted to stay consistent with the
+     contents of the payload.
+
+     The description will not change, though the key's state may.
+
+     It is not safe to sleep in this method; the RCU read lock is held by the
+     caller.
+
+
+  *  ``long (*read)(const struct key *key, char __user *buffer, size_t buflen);``
+
+     This method is optional. It is called by KEYCTL_READ to translate the
+     key's payload into something a blob of data for userspace to deal with.
+     Ideally, the blob should be in the same format as that passed in to the
+     instantiate and update methods.
+
+     If successful, the blob size that could be produced should be returned
+     rather than the size copied.
+
+     This method will be called with the key's semaphore read-locked. This will
+     prevent the key's payload changing. It is not necessary to use RCU locking
+     when accessing the key's payload. It is safe to sleep in this method, such
+     as might happen when the userspace buffer is accessed.
+
+
+  *  ``int (*request_key)(struct key_construction *cons, const char *op, void *aux);``
+
+     This method is optional.  If provided, request_key() and friends will
+     invoke this function rather than upcalling to /sbin/request-key to operate
+     upon a key of this type.
+
+     The aux parameter is as passed to request_key_async_with_auxdata() and
+     similar or is NULL otherwise.  Also passed are the construction record for
+     the key to be operated upon and the operation type (currently only
+     "create").
+
+     This method is permitted to return before the upcall is complete, but the
+     following function must be called under all circumstances to complete the
+     instantiation process, whether or not it succeeds, whether or not there's
+     an error::
+
+	void complete_request_key(struct key_construction *cons, int error);
+
+     The error parameter should be 0 on success, -ve on error.  The
+     construction record is destroyed by this action and the authorisation key
+     will be revoked.  If an error is indicated, the key under construction
+     will be negatively instantiated if it wasn't already instantiated.
+
+     If this method returns an error, that error will be returned to the
+     caller of request_key*().  complete_request_key() must be called prior to
+     returning.
+
+     The key under construction and the authorisation key can be found in the
+     key_construction struct pointed to by cons:
+
+      *  ``struct key *key;``
+
+     	 The key under construction.
+
+      *  ``struct key *authkey;``
+
+     	 The authorisation key.
+
+
+  *  ``struct key_restriction *(*lookup_restriction)(const char *params);``
+
+     This optional method is used to enable userspace configuration of keyring
+     restrictions. The restriction parameter string (not including the key type
+     name) is passed in, and this method returns a pointer to a key_restriction
+     structure containing the relevant functions and data to evaluate each
+     attempted key link operation. If there is no match, -EINVAL is returned.
+
+
+Request-Key Callback Service
+============================
+
+To create a new key, the kernel will attempt to execute the following command
+line::
+
+	/sbin/request-key create <key> <uid> <gid> \
+		<threadring> <processring> <sessionring> <callout_info>
+
+<key> is the key being constructed, and the three keyrings are the process
+keyrings from the process that caused the search to be issued. These are
+included for two reasons:
+
+   1  There may be an authentication token in one of the keyrings that is
+      required to obtain the key, eg: a Kerberos Ticket-Granting Ticket.
+
+   2  The new key should probably be cached in one of these rings.
+
+This program should set it UID and GID to those specified before attempting to
+access any more keys. It may then look around for a user specific process to
+hand the request off to (perhaps a path held in placed in another key by, for
+example, the KDE desktop manager).
+
+The program (or whatever it calls) should finish construction of the key by
+calling KEYCTL_INSTANTIATE or KEYCTL_INSTANTIATE_IOV, which also permits it to
+cache the key in one of the keyrings (probably the session ring) before
+returning.  Alternatively, the key can be marked as negative with KEYCTL_NEGATE
+or KEYCTL_REJECT; this also permits the key to be cached in one of the
+keyrings.
+
+If it returns with the key remaining in the unconstructed state, the key will
+be marked as being negative, it will be added to the session keyring, and an
+error will be returned to the key requestor.
+
+Supplementary information may be provided from whoever or whatever invoked this
+service. This will be passed as the <callout_info> parameter. If no such
+information was made available, then "-" will be passed as this parameter
+instead.
+
+
+Similarly, the kernel may attempt to update an expired or a soon to expire key
+by executing::
+
+	/sbin/request-key update <key> <uid> <gid> \
+		<threadring> <processring> <sessionring>
+
+In this case, the program isn't required to actually attach the key to a ring;
+the rings are provided for reference.
+
+
+Garbage Collection
+==================
+
+Dead keys (for which the type has been removed) will be automatically unlinked
+from those keyrings that point to them and deleted as soon as possible by a
+background garbage collector.
+
+Similarly, revoked and expired keys will be garbage collected, but only after a
+certain amount of time has passed.  This time is set as a number of seconds in::
+
+	/proc/sys/kernel/keys/gc_delay
diff --git a/Documentation/security/keys/ecryptfs.rst b/Documentation/security/keys/ecryptfs.rst
new file mode 100644
index 0000000..4920f3a
--- /dev/null
+++ b/Documentation/security/keys/ecryptfs.rst
@@ -0,0 +1,73 @@
+==========================================
+Encrypted keys for the eCryptfs filesystem
+==========================================
+
+ECryptfs is a stacked filesystem which transparently encrypts and decrypts each
+file using a randomly generated File Encryption Key (FEK).
+
+Each FEK is in turn encrypted with a File Encryption Key Encryption Key (FEFEK)
+either in kernel space or in user space with a daemon called 'ecryptfsd'.  In
+the former case the operation is performed directly by the kernel CryptoAPI
+using a key, the FEFEK, derived from a user prompted passphrase;  in the latter
+the FEK is encrypted by 'ecryptfsd' with the help of external libraries in order
+to support other mechanisms like public key cryptography, PKCS#11 and TPM based
+operations.
+
+The data structure defined by eCryptfs to contain information required for the
+FEK decryption is called authentication token and, currently, can be stored in a
+kernel key of the 'user' type, inserted in the user's session specific keyring
+by the userspace utility 'mount.ecryptfs' shipped with the package
+'ecryptfs-utils'.
+
+The 'encrypted' key type has been extended with the introduction of the new
+format 'ecryptfs' in order to be used in conjunction with the eCryptfs
+filesystem.  Encrypted keys of the newly introduced format store an
+authentication token in its payload with a FEFEK randomly generated by the
+kernel and protected by the parent master key.
+
+In order to avoid known-plaintext attacks, the datablob obtained through
+commands 'keyctl print' or 'keyctl pipe' does not contain the overall
+authentication token, which content is well known, but only the FEFEK in
+encrypted form.
+
+The eCryptfs filesystem may really benefit from using encrypted keys in that the
+required key can be securely generated by an Administrator and provided at boot
+time after the unsealing of a 'trusted' key in order to perform the mount in a
+controlled environment.  Another advantage is that the key is not exposed to
+threats of malicious software, because it is available in clear form only at
+kernel level.
+
+Usage::
+
+   keyctl add encrypted name "new ecryptfs key-type:master-key-name keylen" ring
+   keyctl add encrypted name "load hex_blob" ring
+   keyctl update keyid "update key-type:master-key-name"
+
+Where::
+
+	name:= '<16 hexadecimal characters>'
+	key-type:= 'trusted' | 'user'
+	keylen:= 64
+
+
+Example of encrypted key usage with the eCryptfs filesystem:
+
+Create an encrypted key "1000100010001000" of length 64 bytes with format
+'ecryptfs' and save it using a previously loaded user key "test"::
+
+    $ keyctl add encrypted 1000100010001000 "new ecryptfs user:test 64" @u
+    19184530
+
+    $ keyctl print 19184530
+    ecryptfs user:test 64 490045d4bfe48c99f0d465fbbbb79e7500da954178e2de0697
+    dd85091f5450a0511219e9f7cd70dcd498038181466f78ac8d4c19504fcc72402bfc41c2
+    f253a41b7507ccaa4b2b03fff19a69d1cc0b16e71746473f023a95488b6edfd86f7fdd40
+    9d292e4bacded1258880122dd553a661
+
+    $ keyctl pipe 19184530 > ecryptfs.blob
+
+Mount an eCryptfs filesystem using the created encrypted key "1000100010001000"
+into the '/secret' directory::
+
+    $ mount -i -t ecryptfs -oecryptfs_sig=1000100010001000,\
+      ecryptfs_cipher=aes,ecryptfs_key_bytes=32 /secret /secret
diff --git a/Documentation/security/keys/index.rst b/Documentation/security/keys/index.rst
new file mode 100644
index 0000000..647d58f
--- /dev/null
+++ b/Documentation/security/keys/index.rst
@@ -0,0 +1,11 @@
+===========
+Kernel Keys
+===========
+
+.. toctree::
+   :maxdepth: 1
+
+   core
+   ecryptfs
+   request-key
+   trusted-encrypted
diff --git a/Documentation/security/keys/request-key.rst b/Documentation/security/keys/request-key.rst
new file mode 100644
index 0000000..21e2723
--- /dev/null
+++ b/Documentation/security/keys/request-key.rst
@@ -0,0 +1,199 @@
+===================
+Key Request Service
+===================
+
+The key request service is part of the key retention service (refer to
+Documentation/security/keys/core.rst).  This document explains more fully how
+the requesting algorithm works.
+
+The process starts by either the kernel requesting a service by calling
+``request_key*()``::
+
+	struct key *request_key(const struct key_type *type,
+				const char *description,
+				const char *callout_info);
+
+or::
+
+	struct key *request_key_with_auxdata(const struct key_type *type,
+					     const char *description,
+					     const char *callout_info,
+					     size_t callout_len,
+					     void *aux);
+
+or::
+
+	struct key *request_key_async(const struct key_type *type,
+				      const char *description,
+				      const char *callout_info,
+				      size_t callout_len);
+
+or::
+
+	struct key *request_key_async_with_auxdata(const struct key_type *type,
+						   const char *description,
+						   const char *callout_info,
+					     	   size_t callout_len,
+						   void *aux);
+
+Or by userspace invoking the request_key system call::
+
+	key_serial_t request_key(const char *type,
+				 const char *description,
+				 const char *callout_info,
+				 key_serial_t dest_keyring);
+
+The main difference between the access points is that the in-kernel interface
+does not need to link the key to a keyring to prevent it from being immediately
+destroyed.  The kernel interface returns a pointer directly to the key, and
+it's up to the caller to destroy the key.
+
+The request_key*_with_auxdata() calls are like the in-kernel request_key*()
+calls, except that they permit auxiliary data to be passed to the upcaller (the
+default is NULL).  This is only useful for those key types that define their
+own upcall mechanism rather than using /sbin/request-key.
+
+The two async in-kernel calls may return keys that are still in the process of
+being constructed.  The two non-async ones will wait for construction to
+complete first.
+
+The userspace interface links the key to a keyring associated with the process
+to prevent the key from going away, and returns the serial number of the key to
+the caller.
+
+
+The following example assumes that the key types involved don't define their
+own upcall mechanisms.  If they do, then those should be substituted for the
+forking and execution of /sbin/request-key.
+
+
+The Process
+===========
+
+A request proceeds in the following manner:
+
+  1) Process A calls request_key() [the userspace syscall calls the kernel
+     interface].
+
+  2) request_key() searches the process's subscribed keyrings to see if there's
+     a suitable key there.  If there is, it returns the key.  If there isn't,
+     and callout_info is not set, an error is returned.  Otherwise the process
+     proceeds to the next step.
+
+  3) request_key() sees that A doesn't have the desired key yet, so it creates
+     two things:
+
+      a) An uninstantiated key U of requested type and description.
+
+      b) An authorisation key V that refers to key U and notes that process A
+     	 is the context in which key U should be instantiated and secured, and
+     	 from which associated key requests may be satisfied.
+
+  4) request_key() then forks and executes /sbin/request-key with a new session
+     keyring that contains a link to auth key V.
+
+  5) /sbin/request-key assumes the authority associated with key U.
+
+  6) /sbin/request-key execs an appropriate program to perform the actual
+     instantiation.
+
+  7) The program may want to access another key from A's context (say a
+     Kerberos TGT key).  It just requests the appropriate key, and the keyring
+     search notes that the session keyring has auth key V in its bottom level.
+
+     This will permit it to then search the keyrings of process A with the
+     UID, GID, groups and security info of process A as if it was process A,
+     and come up with key W.
+
+  8) The program then does what it must to get the data with which to
+     instantiate key U, using key W as a reference (perhaps it contacts a
+     Kerberos server using the TGT) and then instantiates key U.
+
+  9) Upon instantiating key U, auth key V is automatically revoked so that it
+     may not be used again.
+
+  10) The program then exits 0 and request_key() deletes key V and returns key
+      U to the caller.
+
+This also extends further.  If key W (step 7 above) didn't exist, key W would
+be created uninstantiated, another auth key (X) would be created (as per step
+3) and another copy of /sbin/request-key spawned (as per step 4); but the
+context specified by auth key X will still be process A, as it was in auth key
+V.
+
+This is because process A's keyrings can't simply be attached to
+/sbin/request-key at the appropriate places because (a) execve will discard two
+of them, and (b) it requires the same UID/GID/Groups all the way through.
+
+
+Negative Instantiation And Rejection
+====================================
+
+Rather than instantiating a key, it is possible for the possessor of an
+authorisation key to negatively instantiate a key that's under construction.
+This is a short duration placeholder that causes any attempt at re-requesting
+the key whilst it exists to fail with error ENOKEY if negated or the specified
+error if rejected.
+
+This is provided to prevent excessive repeated spawning of /sbin/request-key
+processes for a key that will never be obtainable.
+
+Should the /sbin/request-key process exit anything other than 0 or die on a
+signal, the key under construction will be automatically negatively
+instantiated for a short amount of time.
+
+
+The Search Algorithm
+====================
+
+A search of any particular keyring proceeds in the following fashion:
+
+  1) When the key management code searches for a key (keyring_search_aux) it
+     firstly calls key_permission(SEARCH) on the keyring it's starting with,
+     if this denies permission, it doesn't search further.
+
+  2) It considers all the non-keyring keys within that keyring and, if any key
+     matches the criteria specified, calls key_permission(SEARCH) on it to see
+     if the key is allowed to be found.  If it is, that key is returned; if
+     not, the search continues, and the error code is retained if of higher
+     priority than the one currently set.
+
+  3) It then considers all the keyring-type keys in the keyring it's currently
+     searching.  It calls key_permission(SEARCH) on each keyring, and if this
+     grants permission, it recurses, executing steps (2) and (3) on that
+     keyring.
+
+The process stops immediately a valid key is found with permission granted to
+use it.  Any error from a previous match attempt is discarded and the key is
+returned.
+
+When search_process_keyrings() is invoked, it performs the following searches
+until one succeeds:
+
+  1) If extant, the process's thread keyring is searched.
+
+  2) If extant, the process's process keyring is searched.
+
+  3) The process's session keyring is searched.
+
+  4) If the process has assumed the authority associated with a request_key()
+     authorisation key then:
+
+      a) If extant, the calling process's thread keyring is searched.
+
+      b) If extant, the calling process's process keyring is searched.
+
+      c) The calling process's session keyring is searched.
+
+The moment one succeeds, all pending errors are discarded and the found key is
+returned.
+
+Only if all these fail does the whole thing fail with the highest priority
+error.  Note that several errors may have come from LSM.
+
+The error priority is::
+
+	EKEYREVOKED > EKEYEXPIRED > ENOKEY
+
+EACCES/EPERM are only returned on a direct search of a specific keyring where
+the basal keyring does not grant Search permission.
diff --git a/Documentation/security/keys/trusted-encrypted.rst b/Documentation/security/keys/trusted-encrypted.rst
new file mode 100644
index 0000000..3bb24e0
--- /dev/null
+++ b/Documentation/security/keys/trusted-encrypted.rst
@@ -0,0 +1,175 @@
+==========================
+Trusted and Encrypted Keys
+==========================
+
+Trusted and Encrypted Keys are two new key types added to the existing kernel
+key ring service.  Both of these new types are variable length symmetric keys,
+and in both cases all keys are created in the kernel, and user space sees,
+stores, and loads only encrypted blobs.  Trusted Keys require the availability
+of a Trusted Platform Module (TPM) chip for greater security, while Encrypted
+Keys can be used on any system.  All user level blobs, are displayed and loaded
+in hex ascii for convenience, and are integrity verified.
+
+Trusted Keys use a TPM both to generate and to seal the keys.  Keys are sealed
+under a 2048 bit RSA key in the TPM, and optionally sealed to specified PCR
+(integrity measurement) values, and only unsealed by the TPM, if PCRs and blob
+integrity verifications match.  A loaded Trusted Key can be updated with new
+(future) PCR values, so keys are easily migrated to new pcr values, such as
+when the kernel and initramfs are updated.  The same key can have many saved
+blobs under different PCR values, so multiple boots are easily supported.
+
+By default, trusted keys are sealed under the SRK, which has the default
+authorization value (20 zeros).  This can be set at takeownership time with the
+trouser's utility: "tpm_takeownership -u -z".
+
+Usage::
+
+    keyctl add trusted name "new keylen [options]" ring
+    keyctl add trusted name "load hex_blob [pcrlock=pcrnum]" ring
+    keyctl update key "update [options]"
+    keyctl print keyid
+
+    options:
+       keyhandle=    ascii hex value of sealing key default 0x40000000 (SRK)
+       keyauth=	     ascii hex auth for sealing key default 0x00...i
+                     (40 ascii zeros)
+       blobauth=     ascii hex auth for sealed data default 0x00...
+                     (40 ascii zeros)
+       pcrinfo=	     ascii hex of PCR_INFO or PCR_INFO_LONG (no default)
+       pcrlock=	     pcr number to be extended to "lock" blob
+       migratable=   0|1 indicating permission to reseal to new PCR values,
+                     default 1 (resealing allowed)
+       hash=         hash algorithm name as a string. For TPM 1.x the only
+                     allowed value is sha1. For TPM 2.x the allowed values
+                     are sha1, sha256, sha384, sha512 and sm3-256.
+       policydigest= digest for the authorization policy. must be calculated
+                     with the same hash algorithm as specified by the 'hash='
+                     option.
+       policyhandle= handle to an authorization policy session that defines the
+                     same policy and with the same hash algorithm as was used to
+                     seal the key.
+
+"keyctl print" returns an ascii hex copy of the sealed key, which is in standard
+TPM_STORED_DATA format.  The key length for new keys are always in bytes.
+Trusted Keys can be 32 - 128 bytes (256 - 1024 bits), the upper limit is to fit
+within the 2048 bit SRK (RSA) keylength, with all necessary structure/padding.
+
+Encrypted keys do not depend on a TPM, and are faster, as they use AES for
+encryption/decryption.  New keys are created from kernel generated random
+numbers, and are encrypted/decrypted using a specified 'master' key.  The
+'master' key can either be a trusted-key or user-key type.  The main
+disadvantage of encrypted keys is that if they are not rooted in a trusted key,
+they are only as secure as the user key encrypting them.  The master user key
+should therefore be loaded in as secure a way as possible, preferably early in
+boot.
+
+The decrypted portion of encrypted keys can contain either a simple symmetric
+key or a more complex structure. The format of the more complex structure is
+application specific, which is identified by 'format'.
+
+Usage::
+
+    keyctl add encrypted name "new [format] key-type:master-key-name keylen"
+        ring
+    keyctl add encrypted name "load hex_blob" ring
+    keyctl update keyid "update key-type:master-key-name"
+
+Where::
+
+	format:= 'default | ecryptfs'
+	key-type:= 'trusted' | 'user'
+
+
+Examples of trusted and encrypted key usage:
+
+Create and save a trusted key named "kmk" of length 32 bytes::
+
+    $ keyctl add trusted kmk "new 32" @u
+    440502848
+
+    $ keyctl show
+    Session Keyring
+           -3 --alswrv    500   500  keyring: _ses
+     97833714 --alswrv    500    -1   \_ keyring: _uid.500
+    440502848 --alswrv    500   500       \_ trusted: kmk
+
+    $ keyctl print 440502848
+    0101000000000000000001005d01b7e3f4a6be5709930f3b70a743cbb42e0cc95e18e915
+    3f60da455bbf1144ad12e4f92b452f966929f6105fd29ca28e4d4d5a031d068478bacb0b
+    27351119f822911b0a11ba3d3498ba6a32e50dac7f32894dd890eb9ad578e4e292c83722
+    a52e56a097e6a68b3f56f7a52ece0cdccba1eb62cad7d817f6dc58898b3ac15f36026fec
+    d568bd4a706cb60bb37be6d8f1240661199d640b66fb0fe3b079f97f450b9ef9c22c6d5d
+    dd379f0facd1cd020281dfa3c70ba21a3fa6fc2471dc6d13ecf8298b946f65345faa5ef0
+    f1f8fff03ad0acb083725535636addb08d73dedb9832da198081e5deae84bfaf0409c22b
+    e4a8aea2b607ec96931e6f4d4fe563ba
+
+    $ keyctl pipe 440502848 > kmk.blob
+
+Load a trusted key from the saved blob::
+
+    $ keyctl add trusted kmk "load `cat kmk.blob`" @u
+    268728824
+
+    $ keyctl print 268728824
+    0101000000000000000001005d01b7e3f4a6be5709930f3b70a743cbb42e0cc95e18e915
+    3f60da455bbf1144ad12e4f92b452f966929f6105fd29ca28e4d4d5a031d068478bacb0b
+    27351119f822911b0a11ba3d3498ba6a32e50dac7f32894dd890eb9ad578e4e292c83722
+    a52e56a097e6a68b3f56f7a52ece0cdccba1eb62cad7d817f6dc58898b3ac15f36026fec
+    d568bd4a706cb60bb37be6d8f1240661199d640b66fb0fe3b079f97f450b9ef9c22c6d5d
+    dd379f0facd1cd020281dfa3c70ba21a3fa6fc2471dc6d13ecf8298b946f65345faa5ef0
+    f1f8fff03ad0acb083725535636addb08d73dedb9832da198081e5deae84bfaf0409c22b
+    e4a8aea2b607ec96931e6f4d4fe563ba
+
+Reseal a trusted key under new pcr values::
+
+    $ keyctl update 268728824 "update pcrinfo=`cat pcr.blob`"
+    $ keyctl print 268728824
+    010100000000002c0002800093c35a09b70fff26e7a98ae786c641e678ec6ffb6b46d805
+    77c8a6377aed9d3219c6dfec4b23ffe3000001005d37d472ac8a44023fbb3d18583a4f73
+    d3a076c0858f6f1dcaa39ea0f119911ff03f5406df4f7f27f41da8d7194f45c9f4e00f2e
+    df449f266253aa3f52e55c53de147773e00f0f9aca86c64d94c95382265968c354c5eab4
+    9638c5ae99c89de1e0997242edfb0b501744e11ff9762dfd951cffd93227cc513384e7e6
+    e782c29435c7ec2edafaa2f4c1fe6e7a781b59549ff5296371b42133777dcc5b8b971610
+    94bc67ede19e43ddb9dc2baacad374a36feaf0314d700af0a65c164b7082401740e489c9
+    7ef6a24defe4846104209bf0c3eced7fa1a672ed5b125fc9d8cd88b476a658a4434644ef
+    df8ae9a178e9f83ba9f08d10fa47e4226b98b0702f06b3b8
+
+The initial consumer of trusted keys is EVM, which at boot time needs a high
+quality symmetric key for HMAC protection of file metadata.  The use of a
+trusted key provides strong guarantees that the EVM key has not been
+compromised by a user level problem, and when sealed to specific boot PCR
+values, protects against boot and offline attacks.  Create and save an
+encrypted key "evm" using the above trusted key "kmk":
+
+option 1: omitting 'format'::
+
+    $ keyctl add encrypted evm "new trusted:kmk 32" @u
+    159771175
+
+option 2: explicitly defining 'format' as 'default'::
+
+    $ keyctl add encrypted evm "new default trusted:kmk 32" @u
+    159771175
+
+    $ keyctl print 159771175
+    default trusted:kmk 32 2375725ad57798846a9bbd240de8906f006e66c03af53b1b3
+    82dbbc55be2a44616e4959430436dc4f2a7a9659aa60bb4652aeb2120f149ed197c564e0
+    24717c64 5972dcb82ab2dde83376d82b2e3c09ffc
+
+    $ keyctl pipe 159771175 > evm.blob
+
+Load an encrypted key "evm" from saved blob::
+
+    $ keyctl add encrypted evm "load `cat evm.blob`" @u
+    831684262
+
+    $ keyctl print 831684262
+    default trusted:kmk 32 2375725ad57798846a9bbd240de8906f006e66c03af53b1b3
+    82dbbc55be2a44616e4959430436dc4f2a7a9659aa60bb4652aeb2120f149ed197c564e0
+    24717c64 5972dcb82ab2dde83376d82b2e3c09ffc
+
+Other uses for trusted and encrypted keys, such as for disk and file encryption
+are anticipated.  In particular the new format 'ecryptfs' has been defined in
+in order to use encrypted keys to mount an eCryptfs filesystem.  More details
+about the usage can be found in the file
+``Documentation/security/keys/ecryptfs.rst``.