Update Linux to v5.10.109

Sourced from [1]

[1] https://cdn.kernel.org/pub/linux/kernel/v5.x/linux-5.10.109.tar.xz

Change-Id: I19bca9fc6762d4e63bcf3e4cba88bbe560d9c76c
Signed-off-by: Olivier Deprez <olivier.deprez@arm.com>
diff --git a/mm/slab_common.c b/mm/slab_common.c
index 8f12824..ec83290 100644
--- a/mm/slab_common.c
+++ b/mm/slab_common.c
@@ -26,6 +26,8 @@
 #define CREATE_TRACE_POINTS
 #include <trace/events/kmem.h>
 
+#include "internal.h"
+
 #include "slab.h"
 
 enum slab_state slab_state;
@@ -127,152 +129,6 @@
 	return i;
 }
 
-#ifdef CONFIG_MEMCG_KMEM
-
-LIST_HEAD(slab_root_caches);
-static DEFINE_SPINLOCK(memcg_kmem_wq_lock);
-
-static void kmemcg_cache_shutdown(struct percpu_ref *percpu_ref);
-
-void slab_init_memcg_params(struct kmem_cache *s)
-{
-	s->memcg_params.root_cache = NULL;
-	RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
-	INIT_LIST_HEAD(&s->memcg_params.children);
-	s->memcg_params.dying = false;
-}
-
-static int init_memcg_params(struct kmem_cache *s,
-			     struct kmem_cache *root_cache)
-{
-	struct memcg_cache_array *arr;
-
-	if (root_cache) {
-		int ret = percpu_ref_init(&s->memcg_params.refcnt,
-					  kmemcg_cache_shutdown,
-					  0, GFP_KERNEL);
-		if (ret)
-			return ret;
-
-		s->memcg_params.root_cache = root_cache;
-		INIT_LIST_HEAD(&s->memcg_params.children_node);
-		INIT_LIST_HEAD(&s->memcg_params.kmem_caches_node);
-		return 0;
-	}
-
-	slab_init_memcg_params(s);
-
-	if (!memcg_nr_cache_ids)
-		return 0;
-
-	arr = kvzalloc(sizeof(struct memcg_cache_array) +
-		       memcg_nr_cache_ids * sizeof(void *),
-		       GFP_KERNEL);
-	if (!arr)
-		return -ENOMEM;
-
-	RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
-	return 0;
-}
-
-static void destroy_memcg_params(struct kmem_cache *s)
-{
-	if (is_root_cache(s)) {
-		kvfree(rcu_access_pointer(s->memcg_params.memcg_caches));
-	} else {
-		mem_cgroup_put(s->memcg_params.memcg);
-		WRITE_ONCE(s->memcg_params.memcg, NULL);
-		percpu_ref_exit(&s->memcg_params.refcnt);
-	}
-}
-
-static void free_memcg_params(struct rcu_head *rcu)
-{
-	struct memcg_cache_array *old;
-
-	old = container_of(rcu, struct memcg_cache_array, rcu);
-	kvfree(old);
-}
-
-static int update_memcg_params(struct kmem_cache *s, int new_array_size)
-{
-	struct memcg_cache_array *old, *new;
-
-	new = kvzalloc(sizeof(struct memcg_cache_array) +
-		       new_array_size * sizeof(void *), GFP_KERNEL);
-	if (!new)
-		return -ENOMEM;
-
-	old = rcu_dereference_protected(s->memcg_params.memcg_caches,
-					lockdep_is_held(&slab_mutex));
-	if (old)
-		memcpy(new->entries, old->entries,
-		       memcg_nr_cache_ids * sizeof(void *));
-
-	rcu_assign_pointer(s->memcg_params.memcg_caches, new);
-	if (old)
-		call_rcu(&old->rcu, free_memcg_params);
-	return 0;
-}
-
-int memcg_update_all_caches(int num_memcgs)
-{
-	struct kmem_cache *s;
-	int ret = 0;
-
-	mutex_lock(&slab_mutex);
-	list_for_each_entry(s, &slab_root_caches, root_caches_node) {
-		ret = update_memcg_params(s, num_memcgs);
-		/*
-		 * Instead of freeing the memory, we'll just leave the caches
-		 * up to this point in an updated state.
-		 */
-		if (ret)
-			break;
-	}
-	mutex_unlock(&slab_mutex);
-	return ret;
-}
-
-void memcg_link_cache(struct kmem_cache *s, struct mem_cgroup *memcg)
-{
-	if (is_root_cache(s)) {
-		list_add(&s->root_caches_node, &slab_root_caches);
-	} else {
-		css_get(&memcg->css);
-		s->memcg_params.memcg = memcg;
-		list_add(&s->memcg_params.children_node,
-			 &s->memcg_params.root_cache->memcg_params.children);
-		list_add(&s->memcg_params.kmem_caches_node,
-			 &s->memcg_params.memcg->kmem_caches);
-	}
-}
-
-static void memcg_unlink_cache(struct kmem_cache *s)
-{
-	if (is_root_cache(s)) {
-		list_del(&s->root_caches_node);
-	} else {
-		list_del(&s->memcg_params.children_node);
-		list_del(&s->memcg_params.kmem_caches_node);
-	}
-}
-#else
-static inline int init_memcg_params(struct kmem_cache *s,
-				    struct kmem_cache *root_cache)
-{
-	return 0;
-}
-
-static inline void destroy_memcg_params(struct kmem_cache *s)
-{
-}
-
-static inline void memcg_unlink_cache(struct kmem_cache *s)
-{
-}
-#endif /* CONFIG_MEMCG_KMEM */
-
 /*
  * Figure out what the alignment of the objects will be given a set of
  * flags, a user specified alignment and the size of the objects.
@@ -310,9 +166,6 @@
 	if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
 		return 1;
 
-	if (!is_root_cache(s))
-		return 1;
-
 	if (s->ctor)
 		return 1;
 
@@ -342,12 +195,12 @@
 	size = ALIGN(size, sizeof(void *));
 	align = calculate_alignment(flags, align, size);
 	size = ALIGN(size, align);
-	flags = kmem_cache_flags(size, flags, name, NULL);
+	flags = kmem_cache_flags(size, flags, name);
 
 	if (flags & SLAB_NEVER_MERGE)
 		return NULL;
 
-	list_for_each_entry_reverse(s, &slab_root_caches, root_caches_node) {
+	list_for_each_entry_reverse(s, &slab_caches, list) {
 		if (slab_unmergeable(s))
 			continue;
 
@@ -379,7 +232,7 @@
 		unsigned int object_size, unsigned int align,
 		slab_flags_t flags, unsigned int useroffset,
 		unsigned int usersize, void (*ctor)(void *),
-		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
+		struct kmem_cache *root_cache)
 {
 	struct kmem_cache *s;
 	int err;
@@ -399,24 +252,18 @@
 	s->useroffset = useroffset;
 	s->usersize = usersize;
 
-	err = init_memcg_params(s, root_cache);
-	if (err)
-		goto out_free_cache;
-
 	err = __kmem_cache_create(s, flags);
 	if (err)
 		goto out_free_cache;
 
 	s->refcount = 1;
 	list_add(&s->list, &slab_caches);
-	memcg_link_cache(s, memcg);
 out:
 	if (err)
 		return ERR_PTR(err);
 	return s;
 
 out_free_cache:
-	destroy_memcg_params(s);
 	kmem_cache_free(kmem_cache, s);
 	goto out;
 }
@@ -462,7 +309,6 @@
 
 	get_online_cpus();
 	get_online_mems();
-	memcg_get_cache_ids();
 
 	mutex_lock(&slab_mutex);
 
@@ -503,7 +349,7 @@
 
 	s = create_cache(cache_name, size,
 			 calculate_alignment(flags, align, size),
-			 flags, useroffset, usersize, ctor, NULL, NULL);
+			 flags, useroffset, usersize, ctor, NULL);
 	if (IS_ERR(s)) {
 		err = PTR_ERR(s);
 		kfree_const(cache_name);
@@ -512,7 +358,6 @@
 out_unlock:
 	mutex_unlock(&slab_mutex);
 
-	memcg_put_cache_ids();
 	put_online_mems();
 	put_online_cpus();
 
@@ -573,7 +418,7 @@
 	/*
 	 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
 	 * @slab_caches_to_rcu_destroy list.  The slab pages are freed
-	 * through RCU and and the associated kmem_cache are dereferenced
+	 * through RCU and the associated kmem_cache are dereferenced
 	 * while freeing the pages, so the kmem_caches should be freed only
 	 * after the pending RCU operations are finished.  As rcu_barrier()
 	 * is a pretty slow operation, we batch all pending destructions
@@ -605,7 +450,6 @@
 	if (__kmem_cache_shutdown(s) != 0)
 		return -EBUSY;
 
-	memcg_unlink_cache(s);
 	list_del(&s->list);
 
 	if (s->flags & SLAB_TYPESAFE_BY_RCU) {
@@ -626,311 +470,9 @@
 	return 0;
 }
 
-#ifdef CONFIG_MEMCG_KMEM
-/*
- * memcg_create_kmem_cache - Create a cache for a memory cgroup.
- * @memcg: The memory cgroup the new cache is for.
- * @root_cache: The parent of the new cache.
- *
- * This function attempts to create a kmem cache that will serve allocation
- * requests going from @memcg to @root_cache. The new cache inherits properties
- * from its parent.
- */
-void memcg_create_kmem_cache(struct mem_cgroup *memcg,
-			     struct kmem_cache *root_cache)
-{
-	static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
-	struct cgroup_subsys_state *css = &memcg->css;
-	struct memcg_cache_array *arr;
-	struct kmem_cache *s = NULL;
-	char *cache_name;
-	int idx;
-
-	get_online_cpus();
-	get_online_mems();
-
-	mutex_lock(&slab_mutex);
-
-	/*
-	 * The memory cgroup could have been offlined while the cache
-	 * creation work was pending.
-	 */
-	if (memcg->kmem_state != KMEM_ONLINE)
-		goto out_unlock;
-
-	idx = memcg_cache_id(memcg);
-	arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
-					lockdep_is_held(&slab_mutex));
-
-	/*
-	 * Since per-memcg caches are created asynchronously on first
-	 * allocation (see memcg_kmem_get_cache()), several threads can try to
-	 * create the same cache, but only one of them may succeed.
-	 */
-	if (arr->entries[idx])
-		goto out_unlock;
-
-	cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
-	cache_name = kasprintf(GFP_KERNEL, "%s(%llu:%s)", root_cache->name,
-			       css->serial_nr, memcg_name_buf);
-	if (!cache_name)
-		goto out_unlock;
-
-	s = create_cache(cache_name, root_cache->object_size,
-			 root_cache->align,
-			 root_cache->flags & CACHE_CREATE_MASK,
-			 root_cache->useroffset, root_cache->usersize,
-			 root_cache->ctor, memcg, root_cache);
-	/*
-	 * If we could not create a memcg cache, do not complain, because
-	 * that's not critical at all as we can always proceed with the root
-	 * cache.
-	 */
-	if (IS_ERR(s)) {
-		kfree(cache_name);
-		goto out_unlock;
-	}
-
-	/*
-	 * Since readers won't lock (see memcg_kmem_get_cache()), we need a
-	 * barrier here to ensure nobody will see the kmem_cache partially
-	 * initialized.
-	 */
-	smp_wmb();
-	arr->entries[idx] = s;
-
-out_unlock:
-	mutex_unlock(&slab_mutex);
-
-	put_online_mems();
-	put_online_cpus();
-}
-
-static void kmemcg_workfn(struct work_struct *work)
-{
-	struct kmem_cache *s = container_of(work, struct kmem_cache,
-					    memcg_params.work);
-
-	get_online_cpus();
-	get_online_mems();
-
-	mutex_lock(&slab_mutex);
-	s->memcg_params.work_fn(s);
-	mutex_unlock(&slab_mutex);
-
-	put_online_mems();
-	put_online_cpus();
-}
-
-static void kmemcg_rcufn(struct rcu_head *head)
-{
-	struct kmem_cache *s = container_of(head, struct kmem_cache,
-					    memcg_params.rcu_head);
-
-	/*
-	 * We need to grab blocking locks.  Bounce to ->work.  The
-	 * work item shares the space with the RCU head and can't be
-	 * initialized eariler.
-	 */
-	INIT_WORK(&s->memcg_params.work, kmemcg_workfn);
-	queue_work(memcg_kmem_cache_wq, &s->memcg_params.work);
-}
-
-static void kmemcg_cache_shutdown_fn(struct kmem_cache *s)
-{
-	WARN_ON(shutdown_cache(s));
-}
-
-static void kmemcg_cache_shutdown(struct percpu_ref *percpu_ref)
-{
-	struct kmem_cache *s = container_of(percpu_ref, struct kmem_cache,
-					    memcg_params.refcnt);
-	unsigned long flags;
-
-	spin_lock_irqsave(&memcg_kmem_wq_lock, flags);
-	if (s->memcg_params.root_cache->memcg_params.dying)
-		goto unlock;
-
-	s->memcg_params.work_fn = kmemcg_cache_shutdown_fn;
-	INIT_WORK(&s->memcg_params.work, kmemcg_workfn);
-	queue_work(memcg_kmem_cache_wq, &s->memcg_params.work);
-
-unlock:
-	spin_unlock_irqrestore(&memcg_kmem_wq_lock, flags);
-}
-
-static void kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s)
-{
-	__kmemcg_cache_deactivate_after_rcu(s);
-	percpu_ref_kill(&s->memcg_params.refcnt);
-}
-
-static void kmemcg_cache_deactivate(struct kmem_cache *s)
-{
-	if (WARN_ON_ONCE(is_root_cache(s)))
-		return;
-
-	__kmemcg_cache_deactivate(s);
-	s->flags |= SLAB_DEACTIVATED;
-
-	/*
-	 * memcg_kmem_wq_lock is used to synchronize memcg_params.dying
-	 * flag and make sure that no new kmem_cache deactivation tasks
-	 * are queued (see flush_memcg_workqueue() ).
-	 */
-	spin_lock_irq(&memcg_kmem_wq_lock);
-	if (s->memcg_params.root_cache->memcg_params.dying)
-		goto unlock;
-
-	s->memcg_params.work_fn = kmemcg_cache_deactivate_after_rcu;
-	call_rcu(&s->memcg_params.rcu_head, kmemcg_rcufn);
-unlock:
-	spin_unlock_irq(&memcg_kmem_wq_lock);
-}
-
-void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg,
-				  struct mem_cgroup *parent)
-{
-	int idx;
-	struct memcg_cache_array *arr;
-	struct kmem_cache *s, *c;
-	unsigned int nr_reparented;
-
-	idx = memcg_cache_id(memcg);
-
-	get_online_cpus();
-	get_online_mems();
-
-	mutex_lock(&slab_mutex);
-	list_for_each_entry(s, &slab_root_caches, root_caches_node) {
-		arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
-						lockdep_is_held(&slab_mutex));
-		c = arr->entries[idx];
-		if (!c)
-			continue;
-
-		kmemcg_cache_deactivate(c);
-		arr->entries[idx] = NULL;
-	}
-	nr_reparented = 0;
-	list_for_each_entry(s, &memcg->kmem_caches,
-			    memcg_params.kmem_caches_node) {
-		WRITE_ONCE(s->memcg_params.memcg, parent);
-		css_put(&memcg->css);
-		nr_reparented++;
-	}
-	if (nr_reparented) {
-		list_splice_init(&memcg->kmem_caches,
-				 &parent->kmem_caches);
-		css_get_many(&parent->css, nr_reparented);
-	}
-	mutex_unlock(&slab_mutex);
-
-	put_online_mems();
-	put_online_cpus();
-}
-
-static int shutdown_memcg_caches(struct kmem_cache *s)
-{
-	struct memcg_cache_array *arr;
-	struct kmem_cache *c, *c2;
-	LIST_HEAD(busy);
-	int i;
-
-	BUG_ON(!is_root_cache(s));
-
-	/*
-	 * First, shutdown active caches, i.e. caches that belong to online
-	 * memory cgroups.
-	 */
-	arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
-					lockdep_is_held(&slab_mutex));
-	for_each_memcg_cache_index(i) {
-		c = arr->entries[i];
-		if (!c)
-			continue;
-		if (shutdown_cache(c))
-			/*
-			 * The cache still has objects. Move it to a temporary
-			 * list so as not to try to destroy it for a second
-			 * time while iterating over inactive caches below.
-			 */
-			list_move(&c->memcg_params.children_node, &busy);
-		else
-			/*
-			 * The cache is empty and will be destroyed soon. Clear
-			 * the pointer to it in the memcg_caches array so that
-			 * it will never be accessed even if the root cache
-			 * stays alive.
-			 */
-			arr->entries[i] = NULL;
-	}
-
-	/*
-	 * Second, shutdown all caches left from memory cgroups that are now
-	 * offline.
-	 */
-	list_for_each_entry_safe(c, c2, &s->memcg_params.children,
-				 memcg_params.children_node)
-		shutdown_cache(c);
-
-	list_splice(&busy, &s->memcg_params.children);
-
-	/*
-	 * A cache being destroyed must be empty. In particular, this means
-	 * that all per memcg caches attached to it must be empty too.
-	 */
-	if (!list_empty(&s->memcg_params.children))
-		return -EBUSY;
-	return 0;
-}
-
-static void memcg_set_kmem_cache_dying(struct kmem_cache *s)
-{
-	spin_lock_irq(&memcg_kmem_wq_lock);
-	s->memcg_params.dying = true;
-	spin_unlock_irq(&memcg_kmem_wq_lock);
-}
-
-static void flush_memcg_workqueue(struct kmem_cache *s)
-{
-	/*
-	 * SLAB and SLUB deactivate the kmem_caches through call_rcu. Make
-	 * sure all registered rcu callbacks have been invoked.
-	 */
-	rcu_barrier();
-
-	/*
-	 * SLAB and SLUB create memcg kmem_caches through workqueue and SLUB
-	 * deactivates the memcg kmem_caches through workqueue. Make sure all
-	 * previous workitems on workqueue are processed.
-	 */
-	if (likely(memcg_kmem_cache_wq))
-		flush_workqueue(memcg_kmem_cache_wq);
-
-	/*
-	 * If we're racing with children kmem_cache deactivation, it might
-	 * take another rcu grace period to complete their destruction.
-	 * At this moment the corresponding percpu_ref_kill() call should be
-	 * done, but it might take another rcu grace period to complete
-	 * switching to the atomic mode.
-	 * Please, note that we check without grabbing the slab_mutex. It's safe
-	 * because at this moment the children list can't grow.
-	 */
-	if (!list_empty(&s->memcg_params.children))
-		rcu_barrier();
-}
-#else
-static inline int shutdown_memcg_caches(struct kmem_cache *s)
-{
-	return 0;
-}
-#endif /* CONFIG_MEMCG_KMEM */
-
 void slab_kmem_cache_release(struct kmem_cache *s)
 {
 	__kmem_cache_release(s);
-	destroy_memcg_params(s);
 	kfree_const(s->name);
 	kmem_cache_free(kmem_cache, s);
 }
@@ -951,36 +493,7 @@
 	if (s->refcount)
 		goto out_unlock;
 
-#ifdef CONFIG_MEMCG_KMEM
-	memcg_set_kmem_cache_dying(s);
-
-	mutex_unlock(&slab_mutex);
-
-	put_online_mems();
-	put_online_cpus();
-
-	flush_memcg_workqueue(s);
-
-	get_online_cpus();
-	get_online_mems();
-
-	mutex_lock(&slab_mutex);
-
-	/*
-	 * Another thread referenced it again
-	 */
-	if (READ_ONCE(s->refcount)) {
-		spin_lock_irq(&memcg_kmem_wq_lock);
-		s->memcg_params.dying = false;
-		spin_unlock_irq(&memcg_kmem_wq_lock);
-		goto out_unlock;
-	}
-#endif
-
-	err = shutdown_memcg_caches(s);
-	if (!err)
-		err = shutdown_cache(s);
-
+	err = shutdown_cache(s);
 	if (err) {
 		pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
 		       s->name);
@@ -1017,43 +530,6 @@
 }
 EXPORT_SYMBOL(kmem_cache_shrink);
 
-/**
- * kmem_cache_shrink_all - shrink a cache and all memcg caches for root cache
- * @s: The cache pointer
- */
-void kmem_cache_shrink_all(struct kmem_cache *s)
-{
-	struct kmem_cache *c;
-
-	if (!IS_ENABLED(CONFIG_MEMCG_KMEM) || !is_root_cache(s)) {
-		kmem_cache_shrink(s);
-		return;
-	}
-
-	get_online_cpus();
-	get_online_mems();
-	kasan_cache_shrink(s);
-	__kmem_cache_shrink(s);
-
-	/*
-	 * We have to take the slab_mutex to protect from the memcg list
-	 * modification.
-	 */
-	mutex_lock(&slab_mutex);
-	for_each_memcg_cache(c, s) {
-		/*
-		 * Don't need to shrink deactivated memcg caches.
-		 */
-		if (s->flags & SLAB_DEACTIVATED)
-			continue;
-		kasan_cache_shrink(c);
-		__kmem_cache_shrink(c);
-	}
-	mutex_unlock(&slab_mutex);
-	put_online_mems();
-	put_online_cpus();
-}
-
 bool slab_is_available(void)
 {
 	return slab_state >= UP;
@@ -1082,8 +558,6 @@
 	s->useroffset = useroffset;
 	s->usersize = usersize;
 
-	slab_init_memcg_params(s);
-
 	err = __kmem_cache_create(s, flags);
 
 	if (err)
@@ -1104,7 +578,6 @@
 
 	create_boot_cache(s, name, size, flags, useroffset, usersize);
 	list_add(&s->list, &slab_caches);
-	memcg_link_cache(s, NULL);
 	s->refcount = 1;
 	return s;
 }
@@ -1174,26 +647,56 @@
 	return kmalloc_caches[kmalloc_type(flags)][index];
 }
 
+#ifdef CONFIG_ZONE_DMA
+#define INIT_KMALLOC_INFO(__size, __short_size)			\
+{								\
+	.name[KMALLOC_NORMAL]  = "kmalloc-" #__short_size,	\
+	.name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size,	\
+	.name[KMALLOC_DMA]     = "dma-kmalloc-" #__short_size,	\
+	.size = __size,						\
+}
+#else
+#define INIT_KMALLOC_INFO(__size, __short_size)			\
+{								\
+	.name[KMALLOC_NORMAL]  = "kmalloc-" #__short_size,	\
+	.name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size,	\
+	.size = __size,						\
+}
+#endif
+
 /*
  * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
  * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
  * kmalloc-67108864.
  */
 const struct kmalloc_info_struct kmalloc_info[] __initconst = {
-	{NULL,                      0},		{"kmalloc-96",             96},
-	{"kmalloc-192",           192},		{"kmalloc-8",               8},
-	{"kmalloc-16",             16},		{"kmalloc-32",             32},
-	{"kmalloc-64",             64},		{"kmalloc-128",           128},
-	{"kmalloc-256",           256},		{"kmalloc-512",           512},
-	{"kmalloc-1k",           1024},		{"kmalloc-2k",           2048},
-	{"kmalloc-4k",           4096},		{"kmalloc-8k",           8192},
-	{"kmalloc-16k",         16384},		{"kmalloc-32k",         32768},
-	{"kmalloc-64k",         65536},		{"kmalloc-128k",       131072},
-	{"kmalloc-256k",       262144},		{"kmalloc-512k",       524288},
-	{"kmalloc-1M",        1048576},		{"kmalloc-2M",        2097152},
-	{"kmalloc-4M",        4194304},		{"kmalloc-8M",        8388608},
-	{"kmalloc-16M",      16777216},		{"kmalloc-32M",      33554432},
-	{"kmalloc-64M",      67108864}
+	INIT_KMALLOC_INFO(0, 0),
+	INIT_KMALLOC_INFO(96, 96),
+	INIT_KMALLOC_INFO(192, 192),
+	INIT_KMALLOC_INFO(8, 8),
+	INIT_KMALLOC_INFO(16, 16),
+	INIT_KMALLOC_INFO(32, 32),
+	INIT_KMALLOC_INFO(64, 64),
+	INIT_KMALLOC_INFO(128, 128),
+	INIT_KMALLOC_INFO(256, 256),
+	INIT_KMALLOC_INFO(512, 512),
+	INIT_KMALLOC_INFO(1024, 1k),
+	INIT_KMALLOC_INFO(2048, 2k),
+	INIT_KMALLOC_INFO(4096, 4k),
+	INIT_KMALLOC_INFO(8192, 8k),
+	INIT_KMALLOC_INFO(16384, 16k),
+	INIT_KMALLOC_INFO(32768, 32k),
+	INIT_KMALLOC_INFO(65536, 64k),
+	INIT_KMALLOC_INFO(131072, 128k),
+	INIT_KMALLOC_INFO(262144, 256k),
+	INIT_KMALLOC_INFO(524288, 512k),
+	INIT_KMALLOC_INFO(1048576, 1M),
+	INIT_KMALLOC_INFO(2097152, 2M),
+	INIT_KMALLOC_INFO(4194304, 4M),
+	INIT_KMALLOC_INFO(8388608, 8M),
+	INIT_KMALLOC_INFO(16777216, 16M),
+	INIT_KMALLOC_INFO(33554432, 32M),
+	INIT_KMALLOC_INFO(67108864, 64M)
 };
 
 /*
@@ -1243,36 +746,14 @@
 	}
 }
 
-static const char *
-kmalloc_cache_name(const char *prefix, unsigned int size)
-{
-
-	static const char units[3] = "\0kM";
-	int idx = 0;
-
-	while (size >= 1024 && (size % 1024 == 0)) {
-		size /= 1024;
-		idx++;
-	}
-
-	return kasprintf(GFP_NOWAIT, "%s-%u%c", prefix, size, units[idx]);
-}
-
 static void __init
-new_kmalloc_cache(int idx, int type, slab_flags_t flags)
+new_kmalloc_cache(int idx, enum kmalloc_cache_type type, slab_flags_t flags)
 {
-	const char *name;
-
-	if (type == KMALLOC_RECLAIM) {
+	if (type == KMALLOC_RECLAIM)
 		flags |= SLAB_RECLAIM_ACCOUNT;
-		name = kmalloc_cache_name("kmalloc-rcl",
-						kmalloc_info[idx].size);
-		BUG_ON(!name);
-	} else {
-		name = kmalloc_info[idx].name;
-	}
 
-	kmalloc_caches[type][idx] = create_kmalloc_cache(name,
+	kmalloc_caches[type][idx] = create_kmalloc_cache(
+					kmalloc_info[idx].name[type],
 					kmalloc_info[idx].size, flags, 0,
 					kmalloc_info[idx].size);
 }
@@ -1284,7 +765,8 @@
  */
 void __init create_kmalloc_caches(slab_flags_t flags)
 {
-	int i, type;
+	int i;
+	enum kmalloc_cache_type type;
 
 	for (type = KMALLOC_NORMAL; type <= KMALLOC_RECLAIM; type++) {
 		for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
@@ -1313,18 +795,29 @@
 		struct kmem_cache *s = kmalloc_caches[KMALLOC_NORMAL][i];
 
 		if (s) {
-			unsigned int size = kmalloc_size(i);
-			const char *n = kmalloc_cache_name("dma-kmalloc", size);
-
-			BUG_ON(!n);
 			kmalloc_caches[KMALLOC_DMA][i] = create_kmalloc_cache(
-				n, size, SLAB_CACHE_DMA | flags, 0, 0);
+				kmalloc_info[i].name[KMALLOC_DMA],
+				kmalloc_info[i].size,
+				SLAB_CACHE_DMA | flags, 0,
+				kmalloc_info[i].size);
 		}
 	}
 #endif
 }
 #endif /* !CONFIG_SLOB */
 
+gfp_t kmalloc_fix_flags(gfp_t flags)
+{
+	gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
+
+	flags &= ~GFP_SLAB_BUG_MASK;
+	pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
+			invalid_mask, &invalid_mask, flags, &flags);
+	dump_stack();
+
+	return flags;
+}
+
 /*
  * To avoid unnecessary overhead, we pass through large allocation requests
  * directly to the page allocator. We use __GFP_COMP, because we will need to
@@ -1335,12 +828,15 @@
 	void *ret = NULL;
 	struct page *page;
 
+	if (unlikely(flags & GFP_SLAB_BUG_MASK))
+		flags = kmalloc_fix_flags(flags);
+
 	flags |= __GFP_COMP;
 	page = alloc_pages(flags, order);
 	if (likely(page)) {
 		ret = page_address(page);
-		mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE,
-				    1 << order);
+		mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
+				      PAGE_SIZE << order);
 	}
 	ret = kasan_kmalloc_large(ret, size, flags);
 	/* As ret might get tagged, call kmemleak hook after KASAN. */
@@ -1437,12 +933,12 @@
 void *slab_start(struct seq_file *m, loff_t *pos)
 {
 	mutex_lock(&slab_mutex);
-	return seq_list_start(&slab_root_caches, *pos);
+	return seq_list_start(&slab_caches, *pos);
 }
 
 void *slab_next(struct seq_file *m, void *p, loff_t *pos)
 {
-	return seq_list_next(p, &slab_root_caches, pos);
+	return seq_list_next(p, &slab_caches, pos);
 }
 
 void slab_stop(struct seq_file *m, void *p)
@@ -1450,27 +946,6 @@
 	mutex_unlock(&slab_mutex);
 }
 
-static void
-memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
-{
-	struct kmem_cache *c;
-	struct slabinfo sinfo;
-
-	if (!is_root_cache(s))
-		return;
-
-	for_each_memcg_cache(c, s) {
-		memset(&sinfo, 0, sizeof(sinfo));
-		get_slabinfo(c, &sinfo);
-
-		info->active_slabs += sinfo.active_slabs;
-		info->num_slabs += sinfo.num_slabs;
-		info->shared_avail += sinfo.shared_avail;
-		info->active_objs += sinfo.active_objs;
-		info->num_objs += sinfo.num_objs;
-	}
-}
-
 static void cache_show(struct kmem_cache *s, struct seq_file *m)
 {
 	struct slabinfo sinfo;
@@ -1478,10 +953,8 @@
 	memset(&sinfo, 0, sizeof(sinfo));
 	get_slabinfo(s, &sinfo);
 
-	memcg_accumulate_slabinfo(s, &sinfo);
-
 	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
-		   cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
+		   s->name, sinfo.active_objs, sinfo.num_objs, s->size,
 		   sinfo.objects_per_slab, (1 << sinfo.cache_order));
 
 	seq_printf(m, " : tunables %4u %4u %4u",
@@ -1494,9 +967,9 @@
 
 static int slab_show(struct seq_file *m, void *p)
 {
-	struct kmem_cache *s = list_entry(p, struct kmem_cache, root_caches_node);
+	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
 
-	if (p == slab_root_caches.next)
+	if (p == slab_caches.next)
 		print_slabinfo_header(m);
 	cache_show(s, m);
 	return 0;
@@ -1523,49 +996,26 @@
 	pr_info("Name                      Used          Total\n");
 
 	list_for_each_entry_safe(s, s2, &slab_caches, list) {
-		if (!is_root_cache(s) || (s->flags & SLAB_RECLAIM_ACCOUNT))
+		if (s->flags & SLAB_RECLAIM_ACCOUNT)
 			continue;
 
 		get_slabinfo(s, &sinfo);
 
 		if (sinfo.num_objs > 0)
-			pr_info("%-17s %10luKB %10luKB\n", cache_name(s),
+			pr_info("%-17s %10luKB %10luKB\n", s->name,
 				(sinfo.active_objs * s->size) / 1024,
 				(sinfo.num_objs * s->size) / 1024);
 	}
 	mutex_unlock(&slab_mutex);
 }
 
-#if defined(CONFIG_MEMCG)
-void *memcg_slab_start(struct seq_file *m, loff_t *pos)
-{
-	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
-
-	mutex_lock(&slab_mutex);
-	return seq_list_start(&memcg->kmem_caches, *pos);
-}
-
-void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos)
-{
-	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
-
-	return seq_list_next(p, &memcg->kmem_caches, pos);
-}
-
-void memcg_slab_stop(struct seq_file *m, void *p)
-{
-	mutex_unlock(&slab_mutex);
-}
-
+#if defined(CONFIG_MEMCG_KMEM)
 int memcg_slab_show(struct seq_file *m, void *p)
 {
-	struct kmem_cache *s = list_entry(p, struct kmem_cache,
-					  memcg_params.kmem_caches_node);
-	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
-
-	if (p == memcg->kmem_caches.next)
-		print_slabinfo_header(m);
-	cache_show(s, m);
+	/*
+	 * Deprecated.
+	 * Please, take a look at tools/cgroup/slabinfo.py .
+	 */
 	return 0;
 }
 #endif
@@ -1595,89 +1045,31 @@
 	return seq_open(file, &slabinfo_op);
 }
 
-static const struct file_operations proc_slabinfo_operations = {
-	.open		= slabinfo_open,
-	.read		= seq_read,
-	.write          = slabinfo_write,
-	.llseek		= seq_lseek,
-	.release	= seq_release,
+static const struct proc_ops slabinfo_proc_ops = {
+	.proc_flags	= PROC_ENTRY_PERMANENT,
+	.proc_open	= slabinfo_open,
+	.proc_read	= seq_read,
+	.proc_write	= slabinfo_write,
+	.proc_lseek	= seq_lseek,
+	.proc_release	= seq_release,
 };
 
 static int __init slab_proc_init(void)
 {
-	proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
-						&proc_slabinfo_operations);
+	proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops);
 	return 0;
 }
 module_init(slab_proc_init);
 
-#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_MEMCG_KMEM)
-/*
- * Display information about kmem caches that have child memcg caches.
- */
-static int memcg_slabinfo_show(struct seq_file *m, void *unused)
-{
-	struct kmem_cache *s, *c;
-	struct slabinfo sinfo;
-
-	mutex_lock(&slab_mutex);
-	seq_puts(m, "# <name> <css_id[:dead|deact]> <active_objs> <num_objs>");
-	seq_puts(m, " <active_slabs> <num_slabs>\n");
-	list_for_each_entry(s, &slab_root_caches, root_caches_node) {
-		/*
-		 * Skip kmem caches that don't have any memcg children.
-		 */
-		if (list_empty(&s->memcg_params.children))
-			continue;
-
-		memset(&sinfo, 0, sizeof(sinfo));
-		get_slabinfo(s, &sinfo);
-		seq_printf(m, "%-17s root       %6lu %6lu %6lu %6lu\n",
-			   cache_name(s), sinfo.active_objs, sinfo.num_objs,
-			   sinfo.active_slabs, sinfo.num_slabs);
-
-		for_each_memcg_cache(c, s) {
-			struct cgroup_subsys_state *css;
-			char *status = "";
-
-			css = &c->memcg_params.memcg->css;
-			if (!(css->flags & CSS_ONLINE))
-				status = ":dead";
-			else if (c->flags & SLAB_DEACTIVATED)
-				status = ":deact";
-
-			memset(&sinfo, 0, sizeof(sinfo));
-			get_slabinfo(c, &sinfo);
-			seq_printf(m, "%-17s %4d%-6s %6lu %6lu %6lu %6lu\n",
-				   cache_name(c), css->id, status,
-				   sinfo.active_objs, sinfo.num_objs,
-				   sinfo.active_slabs, sinfo.num_slabs);
-		}
-	}
-	mutex_unlock(&slab_mutex);
-	return 0;
-}
-DEFINE_SHOW_ATTRIBUTE(memcg_slabinfo);
-
-static int __init memcg_slabinfo_init(void)
-{
-	debugfs_create_file("memcg_slabinfo", S_IFREG | S_IRUGO,
-			    NULL, NULL, &memcg_slabinfo_fops);
-	return 0;
-}
-
-late_initcall(memcg_slabinfo_init);
-#endif /* CONFIG_DEBUG_FS && CONFIG_MEMCG_KMEM */
 #endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
 
 static __always_inline void *__do_krealloc(const void *p, size_t new_size,
 					   gfp_t flags)
 {
 	void *ret;
-	size_t ks = 0;
+	size_t ks;
 
-	if (p)
-		ks = ksize(p);
+	ks = ksize(p);
 
 	if (ks >= new_size) {
 		p = kasan_krealloc((void *)p, new_size, flags);
@@ -1692,28 +1084,6 @@
 }
 
 /**
- * __krealloc - like krealloc() but don't free @p.
- * @p: object to reallocate memory for.
- * @new_size: how many bytes of memory are required.
- * @flags: the type of memory to allocate.
- *
- * This function is like krealloc() except it never frees the originally
- * allocated buffer. Use this if you don't want to free the buffer immediately
- * like, for example, with RCU.
- *
- * Return: pointer to the allocated memory or %NULL in case of error
- */
-void *__krealloc(const void *p, size_t new_size, gfp_t flags)
-{
-	if (unlikely(!new_size))
-		return ZERO_SIZE_PTR;
-
-	return __do_krealloc(p, new_size, flags);
-
-}
-EXPORT_SYMBOL(__krealloc);
-
-/**
  * krealloc - reallocate memory. The contents will remain unchanged.
  * @p: object to reallocate memory for.
  * @new_size: how many bytes of memory are required.
@@ -1744,28 +1114,27 @@
 EXPORT_SYMBOL(krealloc);
 
 /**
- * kzfree - like kfree but zero memory
+ * kfree_sensitive - Clear sensitive information in memory before freeing
  * @p: object to free memory of
  *
  * The memory of the object @p points to is zeroed before freed.
- * If @p is %NULL, kzfree() does nothing.
+ * If @p is %NULL, kfree_sensitive() does nothing.
  *
  * Note: this function zeroes the whole allocated buffer which can be a good
  * deal bigger than the requested buffer size passed to kmalloc(). So be
  * careful when using this function in performance sensitive code.
  */
-void kzfree(const void *p)
+void kfree_sensitive(const void *p)
 {
 	size_t ks;
 	void *mem = (void *)p;
 
-	if (unlikely(ZERO_OR_NULL_PTR(mem)))
-		return;
 	ks = ksize(mem);
-	memzero_explicit(mem, ks);
+	if (ks)
+		memzero_explicit(mem, ks);
 	kfree(mem);
 }
-EXPORT_SYMBOL(kzfree);
+EXPORT_SYMBOL(kfree_sensitive);
 
 /**
  * ksize - get the actual amount of memory allocated for a given object
@@ -1785,8 +1154,6 @@
 {
 	size_t size;
 
-	if (WARN_ON_ONCE(!objp))
-		return 0;
 	/*
 	 * We need to check that the pointed to object is valid, and only then
 	 * unpoison the shadow memory below. We use __kasan_check_read(), to
@@ -1800,7 +1167,7 @@
 	 * We want to perform the check before __ksize(), to avoid potentially
 	 * crashing in __ksize() due to accessing invalid metadata.
 	 */
-	if (unlikely(objp == ZERO_SIZE_PTR) || !__kasan_check_read(objp, 1))
+	if (unlikely(ZERO_OR_NULL_PTR(objp)) || !__kasan_check_read(objp, 1))
 		return 0;
 
 	size = __ksize(objp);