Update Linux to v5.10.109
Sourced from [1]
[1] https://cdn.kernel.org/pub/linux/kernel/v5.x/linux-5.10.109.tar.xz
Change-Id: I19bca9fc6762d4e63bcf3e4cba88bbe560d9c76c
Signed-off-by: Olivier Deprez <olivier.deprez@arm.com>
diff --git a/mm/compaction.c b/mm/compaction.c
index d686887..dba4244 100644
--- a/mm/compaction.c
+++ b/mm/compaction.c
@@ -50,6 +50,24 @@
#define pageblock_start_pfn(pfn) block_start_pfn(pfn, pageblock_order)
#define pageblock_end_pfn(pfn) block_end_pfn(pfn, pageblock_order)
+/*
+ * Fragmentation score check interval for proactive compaction purposes.
+ */
+static const unsigned int HPAGE_FRAG_CHECK_INTERVAL_MSEC = 500;
+
+/*
+ * Page order with-respect-to which proactive compaction
+ * calculates external fragmentation, which is used as
+ * the "fragmentation score" of a node/zone.
+ */
+#if defined CONFIG_TRANSPARENT_HUGEPAGE
+#define COMPACTION_HPAGE_ORDER HPAGE_PMD_ORDER
+#elif defined CONFIG_HUGETLBFS
+#define COMPACTION_HPAGE_ORDER HUGETLB_PAGE_ORDER
+#else
+#define COMPACTION_HPAGE_ORDER (PMD_SHIFT - PAGE_SHIFT)
+#endif
+
static unsigned long release_freepages(struct list_head *freelist)
{
struct page *page, *next;
@@ -136,7 +154,7 @@
/*
* Compaction is deferred when compaction fails to result in a page
- * allocation success. 1 << compact_defer_limit compactions are skipped up
+ * allocation success. 1 << compact_defer_shift, compactions are skipped up
* to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
*/
void defer_compaction(struct zone *zone, int order)
@@ -162,11 +180,10 @@
return false;
/* Avoid possible overflow */
- if (++zone->compact_considered > defer_limit)
+ if (++zone->compact_considered >= defer_limit) {
zone->compact_considered = defer_limit;
-
- if (zone->compact_considered >= defer_limit)
return false;
+ }
trace_mm_compaction_deferred(zone, order);
@@ -481,6 +498,7 @@
*/
static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
struct compact_control *cc)
+ __acquires(lock)
{
/* Track if the lock is contended in async mode */
if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
@@ -607,7 +625,7 @@
}
/* Found a free page, will break it into order-0 pages */
- order = page_order(page);
+ order = buddy_order(page);
isolated = __isolate_free_page(page, order);
if (!isolated)
break;
@@ -799,6 +817,10 @@
* delay for some time until fewer pages are isolated
*/
while (unlikely(too_many_isolated(pgdat))) {
+ /* stop isolation if there are still pages not migrated */
+ if (cc->nr_migratepages)
+ return 0;
+
/* async migration should just abort */
if (cc->mode == MIGRATE_ASYNC)
return 0;
@@ -880,7 +902,7 @@
* potential isolation targets.
*/
if (PageBuddy(page)) {
- unsigned long freepage_order = page_order_unsafe(page);
+ unsigned long freepage_order = buddy_order_unsafe(page);
/*
* Without lock, we cannot be sure that what we got is
@@ -894,12 +916,13 @@
/*
* Regardless of being on LRU, compound pages such as THP and
- * hugetlbfs are not to be compacted. We can potentially save
- * a lot of iterations if we skip them at once. The check is
- * racy, but we can consider only valid values and the only
- * danger is skipping too much.
+ * hugetlbfs are not to be compacted unless we are attempting
+ * an allocation much larger than the huge page size (eg CMA).
+ * We can potentially save a lot of iterations if we skip them
+ * at once. The check is racy, but we can consider only valid
+ * values and the only danger is skipping too much.
*/
- if (PageCompound(page)) {
+ if (PageCompound(page) && !cc->alloc_contig) {
const unsigned int order = compound_order(page);
if (likely(order < MAX_ORDER))
@@ -969,7 +992,7 @@
* and it's on LRU. It can only be a THP so the order
* is safe to read and it's 0 for tail pages.
*/
- if (unlikely(PageCompound(page))) {
+ if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
low_pfn += compound_nr(page) - 1;
goto isolate_fail;
}
@@ -981,17 +1004,20 @@
if (__isolate_lru_page(page, isolate_mode) != 0)
goto isolate_fail;
- VM_BUG_ON_PAGE(PageCompound(page), page);
+ /* The whole page is taken off the LRU; skip the tail pages. */
+ if (PageCompound(page))
+ low_pfn += compound_nr(page) - 1;
/* Successfully isolated */
del_page_from_lru_list(page, lruvec, page_lru(page));
- inc_node_page_state(page,
- NR_ISOLATED_ANON + page_is_file_cache(page));
+ mod_node_page_state(page_pgdat(page),
+ NR_ISOLATED_ANON + page_is_file_lru(page),
+ thp_nr_pages(page));
isolate_success:
list_add(&page->lru, &cc->migratepages);
- cc->nr_migratepages++;
- nr_isolated++;
+ cc->nr_migratepages += compound_nr(page);
+ nr_isolated += compound_nr(page);
/*
* Avoid isolating too much unless this block is being
@@ -999,7 +1025,7 @@
* or a lock is contended. For contention, isolate quickly to
* potentially remove one source of contention.
*/
- if (cc->nr_migratepages == COMPACT_CLUSTER_MAX &&
+ if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
!cc->rescan && !cc->contended) {
++low_pfn;
break;
@@ -1110,7 +1136,7 @@
if (!pfn)
break;
- if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
+ if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
break;
}
@@ -1150,7 +1176,7 @@
* the only small danger is that we skip a potentially suitable
* pageblock, so it's not worth to check order for valid range.
*/
- if (page_order_unsafe(page) >= pageblock_order)
+ if (buddy_order_unsafe(page) >= pageblock_order)
return false;
}
@@ -1222,7 +1248,7 @@
fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated)
{
unsigned long start_pfn, end_pfn;
- struct page *page = pfn_to_page(pfn);
+ struct page *page;
/* Do not search around if there are enough pages already */
if (cc->nr_freepages >= cc->nr_migratepages)
@@ -1233,8 +1259,12 @@
return;
/* Pageblock boundaries */
- start_pfn = pageblock_start_pfn(pfn);
- end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone)) - 1;
+ start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
+ end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
+
+ page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
+ if (!page)
+ return;
/* Scan before */
if (start_pfn != pfn) {
@@ -1336,7 +1366,8 @@
pfn = page_to_pfn(freepage);
if (pfn >= highest)
- highest = pageblock_start_pfn(pfn);
+ highest = max(pageblock_start_pfn(pfn),
+ cc->zone->zone_start_pfn);
if (pfn >= low_pfn) {
cc->fast_search_fail = 0;
@@ -1397,7 +1428,7 @@
if (scan_start) {
/*
* Use the highest PFN found above min. If one was
- * not found, be pessemistic for direct compaction
+ * not found, be pessimistic for direct compaction
* and use the min mark.
*/
if (highest) {
@@ -1405,7 +1436,10 @@
cc->free_pfn = highest;
} else {
if (cc->direct_compaction && pfn_valid(min_pfn)) {
- page = pfn_to_page(min_pfn);
+ page = pageblock_pfn_to_page(min_pfn,
+ min(pageblock_end_pfn(min_pfn),
+ zone_end_pfn(cc->zone)),
+ cc->zone);
cc->free_pfn = min_pfn;
}
}
@@ -1453,7 +1487,7 @@
* this pfn aligned down to the pageblock boundary, because we do
* block_start_pfn -= pageblock_nr_pages in the for loop.
* For ending point, take care when isolating in last pageblock of a
- * a zone which ends in the middle of a pageblock.
+ * zone which ends in the middle of a pageblock.
* The low boundary is the end of the pageblock the migration scanner
* is using.
*/
@@ -1591,7 +1625,11 @@
* Allow userspace to control policy on scanning the unevictable LRU for
* compactable pages.
*/
+#ifdef CONFIG_PREEMPT_RT
+int sysctl_compact_unevictable_allowed __read_mostly = 0;
+#else
int sysctl_compact_unevictable_allowed __read_mostly = 1;
+#endif
static inline void
update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
@@ -1844,6 +1882,76 @@
return order == -1;
}
+static bool kswapd_is_running(pg_data_t *pgdat)
+{
+ return pgdat->kswapd && (pgdat->kswapd->state == TASK_RUNNING);
+}
+
+/*
+ * A zone's fragmentation score is the external fragmentation wrt to the
+ * COMPACTION_HPAGE_ORDER scaled by the zone's size. It returns a value
+ * in the range [0, 100].
+ *
+ * The scaling factor ensures that proactive compaction focuses on larger
+ * zones like ZONE_NORMAL, rather than smaller, specialized zones like
+ * ZONE_DMA32. For smaller zones, the score value remains close to zero,
+ * and thus never exceeds the high threshold for proactive compaction.
+ */
+static unsigned int fragmentation_score_zone(struct zone *zone)
+{
+ unsigned long score;
+
+ score = zone->present_pages *
+ extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
+ return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
+}
+
+/*
+ * The per-node proactive (background) compaction process is started by its
+ * corresponding kcompactd thread when the node's fragmentation score
+ * exceeds the high threshold. The compaction process remains active till
+ * the node's score falls below the low threshold, or one of the back-off
+ * conditions is met.
+ */
+static unsigned int fragmentation_score_node(pg_data_t *pgdat)
+{
+ unsigned int score = 0;
+ int zoneid;
+
+ for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
+ struct zone *zone;
+
+ zone = &pgdat->node_zones[zoneid];
+ score += fragmentation_score_zone(zone);
+ }
+
+ return score;
+}
+
+static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
+{
+ unsigned int wmark_low;
+
+ /*
+ * Cap the low watermak to avoid excessive compaction
+ * activity in case a user sets the proactivess tunable
+ * close to 100 (maximum).
+ */
+ wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
+ return low ? wmark_low : min(wmark_low + 10, 100U);
+}
+
+static bool should_proactive_compact_node(pg_data_t *pgdat)
+{
+ int wmark_high;
+
+ if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
+ return false;
+
+ wmark_high = fragmentation_score_wmark(pgdat, false);
+ return fragmentation_score_node(pgdat) > wmark_high;
+}
+
static enum compact_result __compact_finished(struct compact_control *cc)
{
unsigned int order;
@@ -1870,6 +1978,25 @@
return COMPACT_PARTIAL_SKIPPED;
}
+ if (cc->proactive_compaction) {
+ int score, wmark_low;
+ pg_data_t *pgdat;
+
+ pgdat = cc->zone->zone_pgdat;
+ if (kswapd_is_running(pgdat))
+ return COMPACT_PARTIAL_SKIPPED;
+
+ score = fragmentation_score_zone(cc->zone);
+ wmark_low = fragmentation_score_wmark(pgdat, true);
+
+ if (score > wmark_low)
+ ret = COMPACT_CONTINUE;
+ else
+ ret = COMPACT_SUCCESS;
+
+ goto out;
+ }
+
if (is_via_compact_memory(cc->order))
return COMPACT_CONTINUE;
@@ -1928,6 +2055,7 @@
}
}
+out:
if (cc->contended || fatal_signal_pending(current))
ret = COMPACT_CONTENDED;
@@ -1955,7 +2083,7 @@
*/
static enum compact_result __compaction_suitable(struct zone *zone, int order,
unsigned int alloc_flags,
- int classzone_idx,
+ int highest_zoneidx,
unsigned long wmark_target)
{
unsigned long watermark;
@@ -1968,7 +2096,7 @@
* If watermarks for high-order allocation are already met, there
* should be no need for compaction at all.
*/
- if (zone_watermark_ok(zone, order, watermark, classzone_idx,
+ if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
alloc_flags))
return COMPACT_SUCCESS;
@@ -1978,9 +2106,9 @@
* watermark and alloc_flags have to match, or be more pessimistic than
* the check in __isolate_free_page(). We don't use the direct
* compactor's alloc_flags, as they are not relevant for freepage
- * isolation. We however do use the direct compactor's classzone_idx to
- * skip over zones where lowmem reserves would prevent allocation even
- * if compaction succeeds.
+ * isolation. We however do use the direct compactor's highest_zoneidx
+ * to skip over zones where lowmem reserves would prevent allocation
+ * even if compaction succeeds.
* For costly orders, we require low watermark instead of min for
* compaction to proceed to increase its chances.
* ALLOC_CMA is used, as pages in CMA pageblocks are considered
@@ -1989,7 +2117,7 @@
watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
low_wmark_pages(zone) : min_wmark_pages(zone);
watermark += compact_gap(order);
- if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx,
+ if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
ALLOC_CMA, wmark_target))
return COMPACT_SKIPPED;
@@ -1998,12 +2126,12 @@
enum compact_result compaction_suitable(struct zone *zone, int order,
unsigned int alloc_flags,
- int classzone_idx)
+ int highest_zoneidx)
{
enum compact_result ret;
int fragindex;
- ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx,
+ ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx,
zone_page_state(zone, NR_FREE_PAGES));
/*
* fragmentation index determines if allocation failures are due to
@@ -2044,8 +2172,8 @@
* Make sure at least one zone would pass __compaction_suitable if we continue
* retrying the reclaim.
*/
- for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
- ac->nodemask) {
+ for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
+ ac->highest_zoneidx, ac->nodemask) {
unsigned long available;
enum compact_result compact_result;
@@ -2058,7 +2186,7 @@
available = zone_reclaimable_pages(zone) / order;
available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
compact_result = __compaction_suitable(zone, order, alloc_flags,
- ac_classzone_idx(ac), available);
+ ac->highest_zoneidx, available);
if (compact_result != COMPACT_SKIPPED)
return true;
}
@@ -2087,9 +2215,9 @@
INIT_LIST_HEAD(&cc->freepages);
INIT_LIST_HEAD(&cc->migratepages);
- cc->migratetype = gfpflags_to_migratetype(cc->gfp_mask);
+ cc->migratetype = gfp_migratetype(cc->gfp_mask);
ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
- cc->classzone_idx);
+ cc->highest_zoneidx);
/* Compaction is likely to fail */
if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
return ret;
@@ -2172,7 +2300,6 @@
ret = COMPACT_CONTENDED;
putback_movable_pages(&cc->migratepages);
cc->nr_migratepages = 0;
- last_migrated_pfn = 0;
goto out;
case ISOLATE_NONE:
if (update_cached) {
@@ -2233,15 +2360,11 @@
* would succeed.
*/
if (cc->order > 0 && last_migrated_pfn) {
- int cpu;
unsigned long current_block_start =
block_start_pfn(cc->migrate_pfn, cc->order);
if (last_migrated_pfn < current_block_start) {
- cpu = get_cpu();
- lru_add_drain_cpu(cpu);
- drain_local_pages(cc->zone);
- put_cpu();
+ lru_add_drain_cpu_zone(cc->zone);
/* No more flushing until we migrate again */
last_migrated_pfn = 0;
}
@@ -2285,7 +2408,7 @@
static enum compact_result compact_zone_order(struct zone *zone, int order,
gfp_t gfp_mask, enum compact_priority prio,
- unsigned int alloc_flags, int classzone_idx,
+ unsigned int alloc_flags, int highest_zoneidx,
struct page **capture)
{
enum compact_result ret;
@@ -2297,7 +2420,7 @@
.mode = (prio == COMPACT_PRIO_ASYNC) ?
MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
.alloc_flags = alloc_flags,
- .classzone_idx = classzone_idx,
+ .highest_zoneidx = highest_zoneidx,
.direct_compaction = true,
.whole_zone = (prio == MIN_COMPACT_PRIORITY),
.ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
@@ -2364,8 +2487,8 @@
trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
/* Compact each zone in the list */
- for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
- ac->nodemask) {
+ for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
+ ac->highest_zoneidx, ac->nodemask) {
enum compact_result status;
if (prio > MIN_COMPACT_PRIORITY
@@ -2375,7 +2498,7 @@
}
status = compact_zone_order(zone, order, gfp_mask, prio,
- alloc_flags, ac_classzone_idx(ac), capture);
+ alloc_flags, ac->highest_zoneidx, capture);
rc = max(status, rc);
/* The allocation should succeed, stop compacting */
@@ -2413,6 +2536,41 @@
return rc;
}
+/*
+ * Compact all zones within a node till each zone's fragmentation score
+ * reaches within proactive compaction thresholds (as determined by the
+ * proactiveness tunable).
+ *
+ * It is possible that the function returns before reaching score targets
+ * due to various back-off conditions, such as, contention on per-node or
+ * per-zone locks.
+ */
+static void proactive_compact_node(pg_data_t *pgdat)
+{
+ int zoneid;
+ struct zone *zone;
+ struct compact_control cc = {
+ .order = -1,
+ .mode = MIGRATE_SYNC_LIGHT,
+ .ignore_skip_hint = true,
+ .whole_zone = true,
+ .gfp_mask = GFP_KERNEL,
+ .proactive_compaction = true,
+ };
+
+ for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
+ zone = &pgdat->node_zones[zoneid];
+ if (!populated_zone(zone))
+ continue;
+
+ cc.zone = zone;
+
+ compact_zone(&cc, NULL);
+
+ VM_BUG_ON(!list_empty(&cc.freepages));
+ VM_BUG_ON(!list_empty(&cc.migratepages));
+ }
+}
/* Compact all zones within a node */
static void compact_node(int nid)
@@ -2460,11 +2618,18 @@
int sysctl_compact_memory;
/*
+ * Tunable for proactive compaction. It determines how
+ * aggressively the kernel should compact memory in the
+ * background. It takes values in the range [0, 100].
+ */
+unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
+
+/*
* This is the entry point for compacting all nodes via
* /proc/sys/vm/compact_memory
*/
int sysctl_compaction_handler(struct ctl_table *table, int write,
- void __user *buffer, size_t *length, loff_t *ppos)
+ void *buffer, size_t *length, loff_t *ppos)
{
if (write)
compact_nodes();
@@ -2510,16 +2675,16 @@
{
int zoneid;
struct zone *zone;
- enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx;
+ enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
- for (zoneid = 0; zoneid <= classzone_idx; zoneid++) {
+ for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
zone = &pgdat->node_zones[zoneid];
if (!populated_zone(zone))
continue;
if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
- classzone_idx) == COMPACT_CONTINUE)
+ highest_zoneidx) == COMPACT_CONTINUE)
return true;
}
@@ -2537,16 +2702,16 @@
struct compact_control cc = {
.order = pgdat->kcompactd_max_order,
.search_order = pgdat->kcompactd_max_order,
- .classzone_idx = pgdat->kcompactd_classzone_idx,
+ .highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
.mode = MIGRATE_SYNC_LIGHT,
.ignore_skip_hint = false,
.gfp_mask = GFP_KERNEL,
};
trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
- cc.classzone_idx);
+ cc.highest_zoneidx);
count_compact_event(KCOMPACTD_WAKE);
- for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) {
+ for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
int status;
zone = &pgdat->node_zones[zoneid];
@@ -2595,16 +2760,16 @@
/*
* Regardless of success, we are done until woken up next. But remember
- * the requested order/classzone_idx in case it was higher/tighter than
- * our current ones
+ * the requested order/highest_zoneidx in case it was higher/tighter
+ * than our current ones
*/
if (pgdat->kcompactd_max_order <= cc.order)
pgdat->kcompactd_max_order = 0;
- if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx)
- pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
+ if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
+ pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
}
-void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx)
+void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
{
if (!order)
return;
@@ -2612,8 +2777,8 @@
if (pgdat->kcompactd_max_order < order)
pgdat->kcompactd_max_order = order;
- if (pgdat->kcompactd_classzone_idx > classzone_idx)
- pgdat->kcompactd_classzone_idx = classzone_idx;
+ if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
+ pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
/*
* Pairs with implicit barrier in wait_event_freezable()
@@ -2626,7 +2791,7 @@
return;
trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
- classzone_idx);
+ highest_zoneidx);
wake_up_interruptible(&pgdat->kcompactd_wait);
}
@@ -2638,6 +2803,7 @@
{
pg_data_t *pgdat = (pg_data_t*)p;
struct task_struct *tsk = current;
+ unsigned int proactive_defer = 0;
const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
@@ -2647,18 +2813,40 @@
set_freezable();
pgdat->kcompactd_max_order = 0;
- pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
+ pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
while (!kthread_should_stop()) {
unsigned long pflags;
trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
- wait_event_freezable(pgdat->kcompactd_wait,
- kcompactd_work_requested(pgdat));
+ if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
+ kcompactd_work_requested(pgdat),
+ msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC))) {
- psi_memstall_enter(&pflags);
- kcompactd_do_work(pgdat);
- psi_memstall_leave(&pflags);
+ psi_memstall_enter(&pflags);
+ kcompactd_do_work(pgdat);
+ psi_memstall_leave(&pflags);
+ continue;
+ }
+
+ /* kcompactd wait timeout */
+ if (should_proactive_compact_node(pgdat)) {
+ unsigned int prev_score, score;
+
+ if (proactive_defer) {
+ proactive_defer--;
+ continue;
+ }
+ prev_score = fragmentation_score_node(pgdat);
+ proactive_compact_node(pgdat);
+ score = fragmentation_score_node(pgdat);
+ /*
+ * Defer proactive compaction if the fragmentation
+ * score did not go down i.e. no progress made.
+ */
+ proactive_defer = score < prev_score ?
+ 0 : 1 << COMPACT_MAX_DEFER_SHIFT;
+ }
}
return 0;