Update Linux to v5.10.109

Sourced from [1]

[1] https://cdn.kernel.org/pub/linux/kernel/v5.x/linux-5.10.109.tar.xz

Change-Id: I19bca9fc6762d4e63bcf3e4cba88bbe560d9c76c
Signed-off-by: Olivier Deprez <olivier.deprez@arm.com>
diff --git a/fs/btrfs/discard.c b/fs/btrfs/discard.c
new file mode 100644
index 0000000..9e1a061
--- /dev/null
+++ b/fs/btrfs/discard.c
@@ -0,0 +1,709 @@
+// SPDX-License-Identifier: GPL-2.0
+
+#include <linux/jiffies.h>
+#include <linux/kernel.h>
+#include <linux/ktime.h>
+#include <linux/list.h>
+#include <linux/math64.h>
+#include <linux/sizes.h>
+#include <linux/workqueue.h>
+#include "ctree.h"
+#include "block-group.h"
+#include "discard.h"
+#include "free-space-cache.h"
+
+/*
+ * This contains the logic to handle async discard.
+ *
+ * Async discard manages trimming of free space outside of transaction commit.
+ * Discarding is done by managing the block_groups on a LRU list based on free
+ * space recency.  Two passes are used to first prioritize discarding extents
+ * and then allow for trimming in the bitmap the best opportunity to coalesce.
+ * The block_groups are maintained on multiple lists to allow for multiple
+ * passes with different discard filter requirements.  A delayed work item is
+ * used to manage discarding with timeout determined by a max of the delay
+ * incurred by the iops rate limit, the byte rate limit, and the max delay of
+ * BTRFS_DISCARD_MAX_DELAY.
+ *
+ * Note, this only keeps track of block_groups that are explicitly for data.
+ * Mixed block_groups are not supported.
+ *
+ * The first list is special to manage discarding of fully free block groups.
+ * This is necessary because we issue a final trim for a full free block group
+ * after forgetting it.  When a block group becomes unused, instead of directly
+ * being added to the unused_bgs list, we add it to this first list.  Then
+ * from there, if it becomes fully discarded, we place it onto the unused_bgs
+ * list.
+ *
+ * The in-memory free space cache serves as the backing state for discard.
+ * Consequently this means there is no persistence.  We opt to load all the
+ * block groups in as not discarded, so the mount case degenerates to the
+ * crashing case.
+ *
+ * As the free space cache uses bitmaps, there exists a tradeoff between
+ * ease/efficiency for find_free_extent() and the accuracy of discard state.
+ * Here we opt to let untrimmed regions merge with everything while only letting
+ * trimmed regions merge with other trimmed regions.  This can cause
+ * overtrimming, but the coalescing benefit seems to be worth it.  Additionally,
+ * bitmap state is tracked as a whole.  If we're able to fully trim a bitmap,
+ * the trimmed flag is set on the bitmap.  Otherwise, if an allocation comes in,
+ * this resets the state and we will retry trimming the whole bitmap.  This is a
+ * tradeoff between discard state accuracy and the cost of accounting.
+ */
+
+/* This is an initial delay to give some chance for block reuse */
+#define BTRFS_DISCARD_DELAY		(120ULL * NSEC_PER_SEC)
+#define BTRFS_DISCARD_UNUSED_DELAY	(10ULL * NSEC_PER_SEC)
+
+/* Target completion latency of discarding all discardable extents */
+#define BTRFS_DISCARD_TARGET_MSEC	(6 * 60 * 60UL * MSEC_PER_SEC)
+#define BTRFS_DISCARD_MIN_DELAY_MSEC	(1UL)
+#define BTRFS_DISCARD_MAX_DELAY_MSEC	(1000UL)
+#define BTRFS_DISCARD_MAX_IOPS		(10U)
+
+/* Montonically decreasing minimum length filters after index 0 */
+static int discard_minlen[BTRFS_NR_DISCARD_LISTS] = {
+	0,
+	BTRFS_ASYNC_DISCARD_MAX_FILTER,
+	BTRFS_ASYNC_DISCARD_MIN_FILTER
+};
+
+static struct list_head *get_discard_list(struct btrfs_discard_ctl *discard_ctl,
+					  struct btrfs_block_group *block_group)
+{
+	return &discard_ctl->discard_list[block_group->discard_index];
+}
+
+static void __add_to_discard_list(struct btrfs_discard_ctl *discard_ctl,
+				  struct btrfs_block_group *block_group)
+{
+	if (!btrfs_run_discard_work(discard_ctl))
+		return;
+
+	if (list_empty(&block_group->discard_list) ||
+	    block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED) {
+		if (block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED)
+			block_group->discard_index = BTRFS_DISCARD_INDEX_START;
+		block_group->discard_eligible_time = (ktime_get_ns() +
+						      BTRFS_DISCARD_DELAY);
+		block_group->discard_state = BTRFS_DISCARD_RESET_CURSOR;
+	}
+
+	list_move_tail(&block_group->discard_list,
+		       get_discard_list(discard_ctl, block_group));
+}
+
+static void add_to_discard_list(struct btrfs_discard_ctl *discard_ctl,
+				struct btrfs_block_group *block_group)
+{
+	if (!btrfs_is_block_group_data_only(block_group))
+		return;
+
+	spin_lock(&discard_ctl->lock);
+	__add_to_discard_list(discard_ctl, block_group);
+	spin_unlock(&discard_ctl->lock);
+}
+
+static void add_to_discard_unused_list(struct btrfs_discard_ctl *discard_ctl,
+				       struct btrfs_block_group *block_group)
+{
+	spin_lock(&discard_ctl->lock);
+
+	if (!btrfs_run_discard_work(discard_ctl)) {
+		spin_unlock(&discard_ctl->lock);
+		return;
+	}
+
+	list_del_init(&block_group->discard_list);
+
+	block_group->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
+	block_group->discard_eligible_time = (ktime_get_ns() +
+					      BTRFS_DISCARD_UNUSED_DELAY);
+	block_group->discard_state = BTRFS_DISCARD_RESET_CURSOR;
+	list_add_tail(&block_group->discard_list,
+		      &discard_ctl->discard_list[BTRFS_DISCARD_INDEX_UNUSED]);
+
+	spin_unlock(&discard_ctl->lock);
+}
+
+static bool remove_from_discard_list(struct btrfs_discard_ctl *discard_ctl,
+				     struct btrfs_block_group *block_group)
+{
+	bool running = false;
+
+	spin_lock(&discard_ctl->lock);
+
+	if (block_group == discard_ctl->block_group) {
+		running = true;
+		discard_ctl->block_group = NULL;
+	}
+
+	block_group->discard_eligible_time = 0;
+	list_del_init(&block_group->discard_list);
+
+	spin_unlock(&discard_ctl->lock);
+
+	return running;
+}
+
+/**
+ * find_next_block_group - find block_group that's up next for discarding
+ * @discard_ctl: discard control
+ * @now: current time
+ *
+ * Iterate over the discard lists to find the next block_group up for
+ * discarding checking the discard_eligible_time of block_group.
+ */
+static struct btrfs_block_group *find_next_block_group(
+					struct btrfs_discard_ctl *discard_ctl,
+					u64 now)
+{
+	struct btrfs_block_group *ret_block_group = NULL, *block_group;
+	int i;
+
+	for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++) {
+		struct list_head *discard_list = &discard_ctl->discard_list[i];
+
+		if (!list_empty(discard_list)) {
+			block_group = list_first_entry(discard_list,
+						       struct btrfs_block_group,
+						       discard_list);
+
+			if (!ret_block_group)
+				ret_block_group = block_group;
+
+			if (ret_block_group->discard_eligible_time < now)
+				break;
+
+			if (ret_block_group->discard_eligible_time >
+			    block_group->discard_eligible_time)
+				ret_block_group = block_group;
+		}
+	}
+
+	return ret_block_group;
+}
+
+/**
+ * peek_discard_list - wrap find_next_block_group()
+ * @discard_ctl: discard control
+ * @discard_state: the discard_state of the block_group after state management
+ * @discard_index: the discard_index of the block_group after state management
+ *
+ * This wraps find_next_block_group() and sets the block_group to be in use.
+ * discard_state's control flow is managed here.  Variables related to
+ * discard_state are reset here as needed (eg discard_cursor).  @discard_state
+ * and @discard_index are remembered as it may change while we're discarding,
+ * but we want the discard to execute in the context determined here.
+ */
+static struct btrfs_block_group *peek_discard_list(
+					struct btrfs_discard_ctl *discard_ctl,
+					enum btrfs_discard_state *discard_state,
+					int *discard_index, u64 now)
+{
+	struct btrfs_block_group *block_group;
+
+	spin_lock(&discard_ctl->lock);
+again:
+	block_group = find_next_block_group(discard_ctl, now);
+
+	if (block_group && now >= block_group->discard_eligible_time) {
+		if (block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED &&
+		    block_group->used != 0) {
+			if (btrfs_is_block_group_data_only(block_group))
+				__add_to_discard_list(discard_ctl, block_group);
+			else
+				list_del_init(&block_group->discard_list);
+			goto again;
+		}
+		if (block_group->discard_state == BTRFS_DISCARD_RESET_CURSOR) {
+			block_group->discard_cursor = block_group->start;
+			block_group->discard_state = BTRFS_DISCARD_EXTENTS;
+		}
+		discard_ctl->block_group = block_group;
+	}
+	if (block_group) {
+		*discard_state = block_group->discard_state;
+		*discard_index = block_group->discard_index;
+	}
+	spin_unlock(&discard_ctl->lock);
+
+	return block_group;
+}
+
+/**
+ * btrfs_discard_check_filter - updates a block groups filters
+ * @block_group: block group of interest
+ * @bytes: recently freed region size after coalescing
+ *
+ * Async discard maintains multiple lists with progressively smaller filters
+ * to prioritize discarding based on size.  Should a free space that matches
+ * a larger filter be returned to the free_space_cache, prioritize that discard
+ * by moving @block_group to the proper filter.
+ */
+void btrfs_discard_check_filter(struct btrfs_block_group *block_group,
+				u64 bytes)
+{
+	struct btrfs_discard_ctl *discard_ctl;
+
+	if (!block_group ||
+	    !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
+		return;
+
+	discard_ctl = &block_group->fs_info->discard_ctl;
+
+	if (block_group->discard_index > BTRFS_DISCARD_INDEX_START &&
+	    bytes >= discard_minlen[block_group->discard_index - 1]) {
+		int i;
+
+		remove_from_discard_list(discard_ctl, block_group);
+
+		for (i = BTRFS_DISCARD_INDEX_START; i < BTRFS_NR_DISCARD_LISTS;
+		     i++) {
+			if (bytes >= discard_minlen[i]) {
+				block_group->discard_index = i;
+				add_to_discard_list(discard_ctl, block_group);
+				break;
+			}
+		}
+	}
+}
+
+/**
+ * btrfs_update_discard_index - moves a block group along the discard lists
+ * @discard_ctl: discard control
+ * @block_group: block_group of interest
+ *
+ * Increment @block_group's discard_index.  If it falls of the list, let it be.
+ * Otherwise add it back to the appropriate list.
+ */
+static void btrfs_update_discard_index(struct btrfs_discard_ctl *discard_ctl,
+				       struct btrfs_block_group *block_group)
+{
+	block_group->discard_index++;
+	if (block_group->discard_index == BTRFS_NR_DISCARD_LISTS) {
+		block_group->discard_index = 1;
+		return;
+	}
+
+	add_to_discard_list(discard_ctl, block_group);
+}
+
+/**
+ * btrfs_discard_cancel_work - remove a block_group from the discard lists
+ * @discard_ctl: discard control
+ * @block_group: block_group of interest
+ *
+ * This removes @block_group from the discard lists.  If necessary, it waits on
+ * the current work and then reschedules the delayed work.
+ */
+void btrfs_discard_cancel_work(struct btrfs_discard_ctl *discard_ctl,
+			       struct btrfs_block_group *block_group)
+{
+	if (remove_from_discard_list(discard_ctl, block_group)) {
+		cancel_delayed_work_sync(&discard_ctl->work);
+		btrfs_discard_schedule_work(discard_ctl, true);
+	}
+}
+
+/**
+ * btrfs_discard_queue_work - handles queuing the block_groups
+ * @discard_ctl: discard control
+ * @block_group: block_group of interest
+ *
+ * This maintains the LRU order of the discard lists.
+ */
+void btrfs_discard_queue_work(struct btrfs_discard_ctl *discard_ctl,
+			      struct btrfs_block_group *block_group)
+{
+	if (!block_group || !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
+		return;
+
+	if (block_group->used == 0)
+		add_to_discard_unused_list(discard_ctl, block_group);
+	else
+		add_to_discard_list(discard_ctl, block_group);
+
+	if (!delayed_work_pending(&discard_ctl->work))
+		btrfs_discard_schedule_work(discard_ctl, false);
+}
+
+static void __btrfs_discard_schedule_work(struct btrfs_discard_ctl *discard_ctl,
+					  u64 now, bool override)
+{
+	struct btrfs_block_group *block_group;
+
+	if (!btrfs_run_discard_work(discard_ctl))
+		return;
+	if (!override && delayed_work_pending(&discard_ctl->work))
+		return;
+
+	block_group = find_next_block_group(discard_ctl, now);
+	if (block_group) {
+		unsigned long delay = discard_ctl->delay;
+		u32 kbps_limit = READ_ONCE(discard_ctl->kbps_limit);
+
+		/*
+		 * A single delayed workqueue item is responsible for
+		 * discarding, so we can manage the bytes rate limit by keeping
+		 * track of the previous discard.
+		 */
+		if (kbps_limit && discard_ctl->prev_discard) {
+			u64 bps_limit = ((u64)kbps_limit) * SZ_1K;
+			u64 bps_delay = div64_u64(discard_ctl->prev_discard *
+						  MSEC_PER_SEC, bps_limit);
+
+			delay = max(delay, msecs_to_jiffies(bps_delay));
+		}
+
+		/*
+		 * This timeout is to hopefully prevent immediate discarding
+		 * in a recently allocated block group.
+		 */
+		if (now < block_group->discard_eligible_time) {
+			u64 bg_timeout = block_group->discard_eligible_time - now;
+
+			delay = max(delay, nsecs_to_jiffies(bg_timeout));
+		}
+
+		mod_delayed_work(discard_ctl->discard_workers,
+				 &discard_ctl->work, delay);
+	}
+}
+
+/*
+ * btrfs_discard_schedule_work - responsible for scheduling the discard work
+ * @discard_ctl:  discard control
+ * @override:     override the current timer
+ *
+ * Discards are issued by a delayed workqueue item.  @override is used to
+ * update the current delay as the baseline delay interval is reevaluated on
+ * transaction commit.  This is also maxed with any other rate limit.
+ */
+void btrfs_discard_schedule_work(struct btrfs_discard_ctl *discard_ctl,
+				 bool override)
+{
+	const u64 now = ktime_get_ns();
+
+	spin_lock(&discard_ctl->lock);
+	__btrfs_discard_schedule_work(discard_ctl, now, override);
+	spin_unlock(&discard_ctl->lock);
+}
+
+/**
+ * btrfs_finish_discard_pass - determine next step of a block_group
+ * @discard_ctl: discard control
+ * @block_group: block_group of interest
+ *
+ * This determines the next step for a block group after it's finished going
+ * through a pass on a discard list.  If it is unused and fully trimmed, we can
+ * mark it unused and send it to the unused_bgs path.  Otherwise, pass it onto
+ * the appropriate filter list or let it fall off.
+ */
+static void btrfs_finish_discard_pass(struct btrfs_discard_ctl *discard_ctl,
+				      struct btrfs_block_group *block_group)
+{
+	remove_from_discard_list(discard_ctl, block_group);
+
+	if (block_group->used == 0) {
+		if (btrfs_is_free_space_trimmed(block_group))
+			btrfs_mark_bg_unused(block_group);
+		else
+			add_to_discard_unused_list(discard_ctl, block_group);
+	} else {
+		btrfs_update_discard_index(discard_ctl, block_group);
+	}
+}
+
+/**
+ * btrfs_discard_workfn - discard work function
+ * @work: work
+ *
+ * This finds the next block_group to start discarding and then discards a
+ * single region.  It does this in a two-pass fashion: first extents and second
+ * bitmaps.  Completely discarded block groups are sent to the unused_bgs path.
+ */
+static void btrfs_discard_workfn(struct work_struct *work)
+{
+	struct btrfs_discard_ctl *discard_ctl;
+	struct btrfs_block_group *block_group;
+	enum btrfs_discard_state discard_state;
+	int discard_index = 0;
+	u64 trimmed = 0;
+	u64 minlen = 0;
+	u64 now = ktime_get_ns();
+
+	discard_ctl = container_of(work, struct btrfs_discard_ctl, work.work);
+
+	block_group = peek_discard_list(discard_ctl, &discard_state,
+					&discard_index, now);
+	if (!block_group || !btrfs_run_discard_work(discard_ctl))
+		return;
+	if (now < block_group->discard_eligible_time) {
+		btrfs_discard_schedule_work(discard_ctl, false);
+		return;
+	}
+
+	/* Perform discarding */
+	minlen = discard_minlen[discard_index];
+
+	if (discard_state == BTRFS_DISCARD_BITMAPS) {
+		u64 maxlen = 0;
+
+		/*
+		 * Use the previous levels minimum discard length as the max
+		 * length filter.  In the case something is added to make a
+		 * region go beyond the max filter, the entire bitmap is set
+		 * back to BTRFS_TRIM_STATE_UNTRIMMED.
+		 */
+		if (discard_index != BTRFS_DISCARD_INDEX_UNUSED)
+			maxlen = discard_minlen[discard_index - 1];
+
+		btrfs_trim_block_group_bitmaps(block_group, &trimmed,
+				       block_group->discard_cursor,
+				       btrfs_block_group_end(block_group),
+				       minlen, maxlen, true);
+		discard_ctl->discard_bitmap_bytes += trimmed;
+	} else {
+		btrfs_trim_block_group_extents(block_group, &trimmed,
+				       block_group->discard_cursor,
+				       btrfs_block_group_end(block_group),
+				       minlen, true);
+		discard_ctl->discard_extent_bytes += trimmed;
+	}
+
+	discard_ctl->prev_discard = trimmed;
+
+	/* Determine next steps for a block_group */
+	if (block_group->discard_cursor >= btrfs_block_group_end(block_group)) {
+		if (discard_state == BTRFS_DISCARD_BITMAPS) {
+			btrfs_finish_discard_pass(discard_ctl, block_group);
+		} else {
+			block_group->discard_cursor = block_group->start;
+			spin_lock(&discard_ctl->lock);
+			if (block_group->discard_state !=
+			    BTRFS_DISCARD_RESET_CURSOR)
+				block_group->discard_state =
+							BTRFS_DISCARD_BITMAPS;
+			spin_unlock(&discard_ctl->lock);
+		}
+	}
+
+	spin_lock(&discard_ctl->lock);
+	discard_ctl->block_group = NULL;
+	__btrfs_discard_schedule_work(discard_ctl, now, false);
+	spin_unlock(&discard_ctl->lock);
+}
+
+/**
+ * btrfs_run_discard_work - determines if async discard should be running
+ * @discard_ctl: discard control
+ *
+ * Checks if the file system is writeable and BTRFS_FS_DISCARD_RUNNING is set.
+ */
+bool btrfs_run_discard_work(struct btrfs_discard_ctl *discard_ctl)
+{
+	struct btrfs_fs_info *fs_info = container_of(discard_ctl,
+						     struct btrfs_fs_info,
+						     discard_ctl);
+
+	return (!(fs_info->sb->s_flags & SB_RDONLY) &&
+		test_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags));
+}
+
+/**
+ * btrfs_discard_calc_delay - recalculate the base delay
+ * @discard_ctl: discard control
+ *
+ * Recalculate the base delay which is based off the total number of
+ * discardable_extents.  Clamp this between the lower_limit (iops_limit or 1ms)
+ * and the upper_limit (BTRFS_DISCARD_MAX_DELAY_MSEC).
+ */
+void btrfs_discard_calc_delay(struct btrfs_discard_ctl *discard_ctl)
+{
+	s32 discardable_extents;
+	s64 discardable_bytes;
+	u32 iops_limit;
+	unsigned long delay;
+	unsigned long lower_limit = BTRFS_DISCARD_MIN_DELAY_MSEC;
+
+	discardable_extents = atomic_read(&discard_ctl->discardable_extents);
+	if (!discardable_extents)
+		return;
+
+	spin_lock(&discard_ctl->lock);
+
+	/*
+	 * The following is to fix a potential -1 discrepenancy that we're not
+	 * sure how to reproduce. But given that this is the only place that
+	 * utilizes these numbers and this is only called by from
+	 * btrfs_finish_extent_commit() which is synchronized, we can correct
+	 * here.
+	 */
+	if (discardable_extents < 0)
+		atomic_add(-discardable_extents,
+			   &discard_ctl->discardable_extents);
+
+	discardable_bytes = atomic64_read(&discard_ctl->discardable_bytes);
+	if (discardable_bytes < 0)
+		atomic64_add(-discardable_bytes,
+			     &discard_ctl->discardable_bytes);
+
+	if (discardable_extents <= 0) {
+		spin_unlock(&discard_ctl->lock);
+		return;
+	}
+
+	iops_limit = READ_ONCE(discard_ctl->iops_limit);
+	if (iops_limit)
+		lower_limit = max_t(unsigned long, lower_limit,
+				    MSEC_PER_SEC / iops_limit);
+
+	delay = BTRFS_DISCARD_TARGET_MSEC / discardable_extents;
+	delay = clamp(delay, lower_limit, BTRFS_DISCARD_MAX_DELAY_MSEC);
+	discard_ctl->delay = msecs_to_jiffies(delay);
+
+	spin_unlock(&discard_ctl->lock);
+}
+
+/**
+ * btrfs_discard_update_discardable - propagate discard counters
+ * @block_group: block_group of interest
+ * @ctl: free_space_ctl of @block_group
+ *
+ * This propagates deltas of counters up to the discard_ctl.  It maintains a
+ * current counter and a previous counter passing the delta up to the global
+ * stat.  Then the current counter value becomes the previous counter value.
+ */
+void btrfs_discard_update_discardable(struct btrfs_block_group *block_group,
+				      struct btrfs_free_space_ctl *ctl)
+{
+	struct btrfs_discard_ctl *discard_ctl;
+	s32 extents_delta;
+	s64 bytes_delta;
+
+	if (!block_group ||
+	    !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC) ||
+	    !btrfs_is_block_group_data_only(block_group))
+		return;
+
+	discard_ctl = &block_group->fs_info->discard_ctl;
+
+	extents_delta = ctl->discardable_extents[BTRFS_STAT_CURR] -
+			ctl->discardable_extents[BTRFS_STAT_PREV];
+	if (extents_delta) {
+		atomic_add(extents_delta, &discard_ctl->discardable_extents);
+		ctl->discardable_extents[BTRFS_STAT_PREV] =
+			ctl->discardable_extents[BTRFS_STAT_CURR];
+	}
+
+	bytes_delta = ctl->discardable_bytes[BTRFS_STAT_CURR] -
+		      ctl->discardable_bytes[BTRFS_STAT_PREV];
+	if (bytes_delta) {
+		atomic64_add(bytes_delta, &discard_ctl->discardable_bytes);
+		ctl->discardable_bytes[BTRFS_STAT_PREV] =
+			ctl->discardable_bytes[BTRFS_STAT_CURR];
+	}
+}
+
+/**
+ * btrfs_discard_punt_unused_bgs_list - punt unused_bgs list to discard lists
+ * @fs_info: fs_info of interest
+ *
+ * The unused_bgs list needs to be punted to the discard lists because the
+ * order of operations is changed.  In the normal sychronous discard path, the
+ * block groups are trimmed via a single large trim in transaction commit.  This
+ * is ultimately what we are trying to avoid with asynchronous discard.  Thus,
+ * it must be done before going down the unused_bgs path.
+ */
+void btrfs_discard_punt_unused_bgs_list(struct btrfs_fs_info *fs_info)
+{
+	struct btrfs_block_group *block_group, *next;
+
+	spin_lock(&fs_info->unused_bgs_lock);
+	/* We enabled async discard, so punt all to the queue */
+	list_for_each_entry_safe(block_group, next, &fs_info->unused_bgs,
+				 bg_list) {
+		list_del_init(&block_group->bg_list);
+		btrfs_put_block_group(block_group);
+		btrfs_discard_queue_work(&fs_info->discard_ctl, block_group);
+	}
+	spin_unlock(&fs_info->unused_bgs_lock);
+}
+
+/**
+ * btrfs_discard_purge_list - purge discard lists
+ * @discard_ctl: discard control
+ *
+ * If we are disabling async discard, we may have intercepted block groups that
+ * are completely free and ready for the unused_bgs path.  As discarding will
+ * now happen in transaction commit or not at all, we can safely mark the
+ * corresponding block groups as unused and they will be sent on their merry
+ * way to the unused_bgs list.
+ */
+static void btrfs_discard_purge_list(struct btrfs_discard_ctl *discard_ctl)
+{
+	struct btrfs_block_group *block_group, *next;
+	int i;
+
+	spin_lock(&discard_ctl->lock);
+	for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++) {
+		list_for_each_entry_safe(block_group, next,
+					 &discard_ctl->discard_list[i],
+					 discard_list) {
+			list_del_init(&block_group->discard_list);
+			spin_unlock(&discard_ctl->lock);
+			if (block_group->used == 0)
+				btrfs_mark_bg_unused(block_group);
+			spin_lock(&discard_ctl->lock);
+		}
+	}
+	spin_unlock(&discard_ctl->lock);
+}
+
+void btrfs_discard_resume(struct btrfs_fs_info *fs_info)
+{
+	if (!btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
+		btrfs_discard_cleanup(fs_info);
+		return;
+	}
+
+	btrfs_discard_punt_unused_bgs_list(fs_info);
+
+	set_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags);
+}
+
+void btrfs_discard_stop(struct btrfs_fs_info *fs_info)
+{
+	clear_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags);
+}
+
+void btrfs_discard_init(struct btrfs_fs_info *fs_info)
+{
+	struct btrfs_discard_ctl *discard_ctl = &fs_info->discard_ctl;
+	int i;
+
+	spin_lock_init(&discard_ctl->lock);
+	INIT_DELAYED_WORK(&discard_ctl->work, btrfs_discard_workfn);
+
+	for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++)
+		INIT_LIST_HEAD(&discard_ctl->discard_list[i]);
+
+	discard_ctl->prev_discard = 0;
+	atomic_set(&discard_ctl->discardable_extents, 0);
+	atomic64_set(&discard_ctl->discardable_bytes, 0);
+	discard_ctl->max_discard_size = BTRFS_ASYNC_DISCARD_DEFAULT_MAX_SIZE;
+	discard_ctl->delay = BTRFS_DISCARD_MAX_DELAY_MSEC;
+	discard_ctl->iops_limit = BTRFS_DISCARD_MAX_IOPS;
+	discard_ctl->kbps_limit = 0;
+	discard_ctl->discard_extent_bytes = 0;
+	discard_ctl->discard_bitmap_bytes = 0;
+	atomic64_set(&discard_ctl->discard_bytes_saved, 0);
+}
+
+void btrfs_discard_cleanup(struct btrfs_fs_info *fs_info)
+{
+	btrfs_discard_stop(fs_info);
+	cancel_delayed_work_sync(&fs_info->discard_ctl.work);
+	btrfs_discard_purge_list(&fs_info->discard_ctl);
+}