Update Linux to v5.10.109

Sourced from [1]

[1] https://cdn.kernel.org/pub/linux/kernel/v5.x/linux-5.10.109.tar.xz

Change-Id: I19bca9fc6762d4e63bcf3e4cba88bbe560d9c76c
Signed-off-by: Olivier Deprez <olivier.deprez@arm.com>
diff --git a/arch/x86/kvm/svm/avic.c b/arch/x86/kvm/svm/avic.c
new file mode 100644
index 0000000..a8b5533
--- /dev/null
+++ b/arch/x86/kvm/svm/avic.c
@@ -0,0 +1,1024 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Kernel-based Virtual Machine driver for Linux
+ *
+ * AMD SVM support
+ *
+ * Copyright (C) 2006 Qumranet, Inc.
+ * Copyright 2010 Red Hat, Inc. and/or its affiliates.
+ *
+ * Authors:
+ *   Yaniv Kamay  <yaniv@qumranet.com>
+ *   Avi Kivity   <avi@qumranet.com>
+ */
+
+#define pr_fmt(fmt) "SVM: " fmt
+
+#include <linux/kvm_types.h>
+#include <linux/hashtable.h>
+#include <linux/amd-iommu.h>
+#include <linux/kvm_host.h>
+
+#include <asm/irq_remapping.h>
+
+#include "trace.h"
+#include "lapic.h"
+#include "x86.h"
+#include "irq.h"
+#include "svm.h"
+
+/* enable / disable AVIC */
+int avic;
+#ifdef CONFIG_X86_LOCAL_APIC
+module_param(avic, int, S_IRUGO);
+#endif
+
+#define SVM_AVIC_DOORBELL	0xc001011b
+
+#define AVIC_HPA_MASK	~((0xFFFULL << 52) | 0xFFF)
+
+/*
+ * 0xff is broadcast, so the max index allowed for physical APIC ID
+ * table is 0xfe.  APIC IDs above 0xff are reserved.
+ */
+#define AVIC_MAX_PHYSICAL_ID_COUNT	255
+
+#define AVIC_UNACCEL_ACCESS_WRITE_MASK		1
+#define AVIC_UNACCEL_ACCESS_OFFSET_MASK		0xFF0
+#define AVIC_UNACCEL_ACCESS_VECTOR_MASK		0xFFFFFFFF
+
+/* AVIC GATAG is encoded using VM and VCPU IDs */
+#define AVIC_VCPU_ID_BITS		8
+#define AVIC_VCPU_ID_MASK		((1 << AVIC_VCPU_ID_BITS) - 1)
+
+#define AVIC_VM_ID_BITS			24
+#define AVIC_VM_ID_NR			(1 << AVIC_VM_ID_BITS)
+#define AVIC_VM_ID_MASK			((1 << AVIC_VM_ID_BITS) - 1)
+
+#define AVIC_GATAG(x, y)		(((x & AVIC_VM_ID_MASK) << AVIC_VCPU_ID_BITS) | \
+						(y & AVIC_VCPU_ID_MASK))
+#define AVIC_GATAG_TO_VMID(x)		((x >> AVIC_VCPU_ID_BITS) & AVIC_VM_ID_MASK)
+#define AVIC_GATAG_TO_VCPUID(x)		(x & AVIC_VCPU_ID_MASK)
+
+/* Note:
+ * This hash table is used to map VM_ID to a struct kvm_svm,
+ * when handling AMD IOMMU GALOG notification to schedule in
+ * a particular vCPU.
+ */
+#define SVM_VM_DATA_HASH_BITS	8
+static DEFINE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS);
+static u32 next_vm_id = 0;
+static bool next_vm_id_wrapped = 0;
+static DEFINE_SPINLOCK(svm_vm_data_hash_lock);
+
+/*
+ * This is a wrapper of struct amd_iommu_ir_data.
+ */
+struct amd_svm_iommu_ir {
+	struct list_head node;	/* Used by SVM for per-vcpu ir_list */
+	void *data;		/* Storing pointer to struct amd_ir_data */
+};
+
+enum avic_ipi_failure_cause {
+	AVIC_IPI_FAILURE_INVALID_INT_TYPE,
+	AVIC_IPI_FAILURE_TARGET_NOT_RUNNING,
+	AVIC_IPI_FAILURE_INVALID_TARGET,
+	AVIC_IPI_FAILURE_INVALID_BACKING_PAGE,
+};
+
+/* Note:
+ * This function is called from IOMMU driver to notify
+ * SVM to schedule in a particular vCPU of a particular VM.
+ */
+int avic_ga_log_notifier(u32 ga_tag)
+{
+	unsigned long flags;
+	struct kvm_svm *kvm_svm;
+	struct kvm_vcpu *vcpu = NULL;
+	u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag);
+	u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag);
+
+	pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id);
+	trace_kvm_avic_ga_log(vm_id, vcpu_id);
+
+	spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
+	hash_for_each_possible(svm_vm_data_hash, kvm_svm, hnode, vm_id) {
+		if (kvm_svm->avic_vm_id != vm_id)
+			continue;
+		vcpu = kvm_get_vcpu_by_id(&kvm_svm->kvm, vcpu_id);
+		break;
+	}
+	spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
+
+	/* Note:
+	 * At this point, the IOMMU should have already set the pending
+	 * bit in the vAPIC backing page. So, we just need to schedule
+	 * in the vcpu.
+	 */
+	if (vcpu)
+		kvm_vcpu_wake_up(vcpu);
+
+	return 0;
+}
+
+void avic_vm_destroy(struct kvm *kvm)
+{
+	unsigned long flags;
+	struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
+
+	if (!avic)
+		return;
+
+	if (kvm_svm->avic_logical_id_table_page)
+		__free_page(kvm_svm->avic_logical_id_table_page);
+	if (kvm_svm->avic_physical_id_table_page)
+		__free_page(kvm_svm->avic_physical_id_table_page);
+
+	spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
+	hash_del(&kvm_svm->hnode);
+	spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
+}
+
+int avic_vm_init(struct kvm *kvm)
+{
+	unsigned long flags;
+	int err = -ENOMEM;
+	struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
+	struct kvm_svm *k2;
+	struct page *p_page;
+	struct page *l_page;
+	u32 vm_id;
+
+	if (!avic)
+		return 0;
+
+	/* Allocating physical APIC ID table (4KB) */
+	p_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
+	if (!p_page)
+		goto free_avic;
+
+	kvm_svm->avic_physical_id_table_page = p_page;
+
+	/* Allocating logical APIC ID table (4KB) */
+	l_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
+	if (!l_page)
+		goto free_avic;
+
+	kvm_svm->avic_logical_id_table_page = l_page;
+
+	spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
+ again:
+	vm_id = next_vm_id = (next_vm_id + 1) & AVIC_VM_ID_MASK;
+	if (vm_id == 0) { /* id is 1-based, zero is not okay */
+		next_vm_id_wrapped = 1;
+		goto again;
+	}
+	/* Is it still in use? Only possible if wrapped at least once */
+	if (next_vm_id_wrapped) {
+		hash_for_each_possible(svm_vm_data_hash, k2, hnode, vm_id) {
+			if (k2->avic_vm_id == vm_id)
+				goto again;
+		}
+	}
+	kvm_svm->avic_vm_id = vm_id;
+	hash_add(svm_vm_data_hash, &kvm_svm->hnode, kvm_svm->avic_vm_id);
+	spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
+
+	return 0;
+
+free_avic:
+	avic_vm_destroy(kvm);
+	return err;
+}
+
+void avic_init_vmcb(struct vcpu_svm *svm)
+{
+	struct vmcb *vmcb = svm->vmcb;
+	struct kvm_svm *kvm_svm = to_kvm_svm(svm->vcpu.kvm);
+	phys_addr_t bpa = __sme_set(page_to_phys(svm->avic_backing_page));
+	phys_addr_t lpa = __sme_set(page_to_phys(kvm_svm->avic_logical_id_table_page));
+	phys_addr_t ppa = __sme_set(page_to_phys(kvm_svm->avic_physical_id_table_page));
+
+	vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK;
+	vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK;
+	vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK;
+	vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID_COUNT;
+	if (kvm_apicv_activated(svm->vcpu.kvm))
+		vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
+	else
+		vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK;
+}
+
+static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu,
+				       unsigned int index)
+{
+	u64 *avic_physical_id_table;
+	struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
+
+	if (index >= AVIC_MAX_PHYSICAL_ID_COUNT)
+		return NULL;
+
+	avic_physical_id_table = page_address(kvm_svm->avic_physical_id_table_page);
+
+	return &avic_physical_id_table[index];
+}
+
+/**
+ * Note:
+ * AVIC hardware walks the nested page table to check permissions,
+ * but does not use the SPA address specified in the leaf page
+ * table entry since it uses  address in the AVIC_BACKING_PAGE pointer
+ * field of the VMCB. Therefore, we set up the
+ * APIC_ACCESS_PAGE_PRIVATE_MEMSLOT (4KB) here.
+ */
+static int avic_update_access_page(struct kvm *kvm, bool activate)
+{
+	int ret = 0;
+
+	mutex_lock(&kvm->slots_lock);
+	/*
+	 * During kvm_destroy_vm(), kvm_pit_set_reinject() could trigger
+	 * APICv mode change, which update APIC_ACCESS_PAGE_PRIVATE_MEMSLOT
+	 * memory region. So, we need to ensure that kvm->mm == current->mm.
+	 */
+	if ((kvm->arch.apic_access_page_done == activate) ||
+	    (kvm->mm != current->mm))
+		goto out;
+
+	ret = __x86_set_memory_region(kvm,
+				      APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
+				      APIC_DEFAULT_PHYS_BASE,
+				      activate ? PAGE_SIZE : 0);
+	if (ret)
+		goto out;
+
+	kvm->arch.apic_access_page_done = activate;
+out:
+	mutex_unlock(&kvm->slots_lock);
+	return ret;
+}
+
+static int avic_init_backing_page(struct kvm_vcpu *vcpu)
+{
+	u64 *entry, new_entry;
+	int id = vcpu->vcpu_id;
+	struct vcpu_svm *svm = to_svm(vcpu);
+
+	if (id >= AVIC_MAX_PHYSICAL_ID_COUNT)
+		return -EINVAL;
+
+	if (!svm->vcpu.arch.apic->regs)
+		return -EINVAL;
+
+	if (kvm_apicv_activated(vcpu->kvm)) {
+		int ret;
+
+		ret = avic_update_access_page(vcpu->kvm, true);
+		if (ret)
+			return ret;
+	}
+
+	svm->avic_backing_page = virt_to_page(svm->vcpu.arch.apic->regs);
+
+	/* Setting AVIC backing page address in the phy APIC ID table */
+	entry = avic_get_physical_id_entry(vcpu, id);
+	if (!entry)
+		return -EINVAL;
+
+	new_entry = __sme_set((page_to_phys(svm->avic_backing_page) &
+			      AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) |
+			      AVIC_PHYSICAL_ID_ENTRY_VALID_MASK);
+	WRITE_ONCE(*entry, new_entry);
+
+	svm->avic_physical_id_cache = entry;
+
+	return 0;
+}
+
+int avic_incomplete_ipi_interception(struct vcpu_svm *svm)
+{
+	u32 icrh = svm->vmcb->control.exit_info_1 >> 32;
+	u32 icrl = svm->vmcb->control.exit_info_1;
+	u32 id = svm->vmcb->control.exit_info_2 >> 32;
+	u32 index = svm->vmcb->control.exit_info_2 & 0xFF;
+	struct kvm_lapic *apic = svm->vcpu.arch.apic;
+
+	trace_kvm_avic_incomplete_ipi(svm->vcpu.vcpu_id, icrh, icrl, id, index);
+
+	switch (id) {
+	case AVIC_IPI_FAILURE_INVALID_INT_TYPE:
+		/*
+		 * AVIC hardware handles the generation of
+		 * IPIs when the specified Message Type is Fixed
+		 * (also known as fixed delivery mode) and
+		 * the Trigger Mode is edge-triggered. The hardware
+		 * also supports self and broadcast delivery modes
+		 * specified via the Destination Shorthand(DSH)
+		 * field of the ICRL. Logical and physical APIC ID
+		 * formats are supported. All other IPI types cause
+		 * a #VMEXIT, which needs to emulated.
+		 */
+		kvm_lapic_reg_write(apic, APIC_ICR2, icrh);
+		kvm_lapic_reg_write(apic, APIC_ICR, icrl);
+		break;
+	case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING: {
+		int i;
+		struct kvm_vcpu *vcpu;
+		struct kvm *kvm = svm->vcpu.kvm;
+		struct kvm_lapic *apic = svm->vcpu.arch.apic;
+
+		/*
+		 * At this point, we expect that the AVIC HW has already
+		 * set the appropriate IRR bits on the valid target
+		 * vcpus. So, we just need to kick the appropriate vcpu.
+		 */
+		kvm_for_each_vcpu(i, vcpu, kvm) {
+			bool m = kvm_apic_match_dest(vcpu, apic,
+						     icrl & APIC_SHORT_MASK,
+						     GET_APIC_DEST_FIELD(icrh),
+						     icrl & APIC_DEST_MASK);
+
+			if (m && !avic_vcpu_is_running(vcpu))
+				kvm_vcpu_wake_up(vcpu);
+		}
+		break;
+	}
+	case AVIC_IPI_FAILURE_INVALID_TARGET:
+		break;
+	case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE:
+		WARN_ONCE(1, "Invalid backing page\n");
+		break;
+	default:
+		pr_err("Unknown IPI interception\n");
+	}
+
+	return 1;
+}
+
+static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat)
+{
+	struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
+	int index;
+	u32 *logical_apic_id_table;
+	int dlid = GET_APIC_LOGICAL_ID(ldr);
+
+	if (!dlid)
+		return NULL;
+
+	if (flat) { /* flat */
+		index = ffs(dlid) - 1;
+		if (index > 7)
+			return NULL;
+	} else { /* cluster */
+		int cluster = (dlid & 0xf0) >> 4;
+		int apic = ffs(dlid & 0x0f) - 1;
+
+		if ((apic < 0) || (apic > 7) ||
+		    (cluster >= 0xf))
+			return NULL;
+		index = (cluster << 2) + apic;
+	}
+
+	logical_apic_id_table = (u32 *) page_address(kvm_svm->avic_logical_id_table_page);
+
+	return &logical_apic_id_table[index];
+}
+
+static int avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr)
+{
+	bool flat;
+	u32 *entry, new_entry;
+
+	flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT;
+	entry = avic_get_logical_id_entry(vcpu, ldr, flat);
+	if (!entry)
+		return -EINVAL;
+
+	new_entry = READ_ONCE(*entry);
+	new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
+	new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK);
+	new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
+	WRITE_ONCE(*entry, new_entry);
+
+	return 0;
+}
+
+static void avic_invalidate_logical_id_entry(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_svm *svm = to_svm(vcpu);
+	bool flat = svm->dfr_reg == APIC_DFR_FLAT;
+	u32 *entry = avic_get_logical_id_entry(vcpu, svm->ldr_reg, flat);
+
+	if (entry)
+		clear_bit(AVIC_LOGICAL_ID_ENTRY_VALID_BIT, (unsigned long *)entry);
+}
+
+static int avic_handle_ldr_update(struct kvm_vcpu *vcpu)
+{
+	int ret = 0;
+	struct vcpu_svm *svm = to_svm(vcpu);
+	u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR);
+	u32 id = kvm_xapic_id(vcpu->arch.apic);
+
+	if (ldr == svm->ldr_reg)
+		return 0;
+
+	avic_invalidate_logical_id_entry(vcpu);
+
+	if (ldr)
+		ret = avic_ldr_write(vcpu, id, ldr);
+
+	if (!ret)
+		svm->ldr_reg = ldr;
+
+	return ret;
+}
+
+static int avic_handle_apic_id_update(struct kvm_vcpu *vcpu)
+{
+	u64 *old, *new;
+	struct vcpu_svm *svm = to_svm(vcpu);
+	u32 id = kvm_xapic_id(vcpu->arch.apic);
+
+	if (vcpu->vcpu_id == id)
+		return 0;
+
+	old = avic_get_physical_id_entry(vcpu, vcpu->vcpu_id);
+	new = avic_get_physical_id_entry(vcpu, id);
+	if (!new || !old)
+		return 1;
+
+	/* We need to move physical_id_entry to new offset */
+	*new = *old;
+	*old = 0ULL;
+	to_svm(vcpu)->avic_physical_id_cache = new;
+
+	/*
+	 * Also update the guest physical APIC ID in the logical
+	 * APIC ID table entry if already setup the LDR.
+	 */
+	if (svm->ldr_reg)
+		avic_handle_ldr_update(vcpu);
+
+	return 0;
+}
+
+static void avic_handle_dfr_update(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_svm *svm = to_svm(vcpu);
+	u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR);
+
+	if (svm->dfr_reg == dfr)
+		return;
+
+	avic_invalidate_logical_id_entry(vcpu);
+	svm->dfr_reg = dfr;
+}
+
+static int avic_unaccel_trap_write(struct vcpu_svm *svm)
+{
+	struct kvm_lapic *apic = svm->vcpu.arch.apic;
+	u32 offset = svm->vmcb->control.exit_info_1 &
+				AVIC_UNACCEL_ACCESS_OFFSET_MASK;
+
+	switch (offset) {
+	case APIC_ID:
+		if (avic_handle_apic_id_update(&svm->vcpu))
+			return 0;
+		break;
+	case APIC_LDR:
+		if (avic_handle_ldr_update(&svm->vcpu))
+			return 0;
+		break;
+	case APIC_DFR:
+		avic_handle_dfr_update(&svm->vcpu);
+		break;
+	default:
+		break;
+	}
+
+	kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset));
+
+	return 1;
+}
+
+static bool is_avic_unaccelerated_access_trap(u32 offset)
+{
+	bool ret = false;
+
+	switch (offset) {
+	case APIC_ID:
+	case APIC_EOI:
+	case APIC_RRR:
+	case APIC_LDR:
+	case APIC_DFR:
+	case APIC_SPIV:
+	case APIC_ESR:
+	case APIC_ICR:
+	case APIC_LVTT:
+	case APIC_LVTTHMR:
+	case APIC_LVTPC:
+	case APIC_LVT0:
+	case APIC_LVT1:
+	case APIC_LVTERR:
+	case APIC_TMICT:
+	case APIC_TDCR:
+		ret = true;
+		break;
+	default:
+		break;
+	}
+	return ret;
+}
+
+int avic_unaccelerated_access_interception(struct vcpu_svm *svm)
+{
+	int ret = 0;
+	u32 offset = svm->vmcb->control.exit_info_1 &
+		     AVIC_UNACCEL_ACCESS_OFFSET_MASK;
+	u32 vector = svm->vmcb->control.exit_info_2 &
+		     AVIC_UNACCEL_ACCESS_VECTOR_MASK;
+	bool write = (svm->vmcb->control.exit_info_1 >> 32) &
+		     AVIC_UNACCEL_ACCESS_WRITE_MASK;
+	bool trap = is_avic_unaccelerated_access_trap(offset);
+
+	trace_kvm_avic_unaccelerated_access(svm->vcpu.vcpu_id, offset,
+					    trap, write, vector);
+	if (trap) {
+		/* Handling Trap */
+		WARN_ONCE(!write, "svm: Handling trap read.\n");
+		ret = avic_unaccel_trap_write(svm);
+	} else {
+		/* Handling Fault */
+		ret = kvm_emulate_instruction(&svm->vcpu, 0);
+	}
+
+	return ret;
+}
+
+int avic_init_vcpu(struct vcpu_svm *svm)
+{
+	int ret;
+	struct kvm_vcpu *vcpu = &svm->vcpu;
+
+	if (!avic || !irqchip_in_kernel(vcpu->kvm))
+		return 0;
+
+	ret = avic_init_backing_page(&svm->vcpu);
+	if (ret)
+		return ret;
+
+	INIT_LIST_HEAD(&svm->ir_list);
+	spin_lock_init(&svm->ir_list_lock);
+	svm->dfr_reg = APIC_DFR_FLAT;
+
+	return ret;
+}
+
+void avic_post_state_restore(struct kvm_vcpu *vcpu)
+{
+	if (avic_handle_apic_id_update(vcpu) != 0)
+		return;
+	avic_handle_dfr_update(vcpu);
+	avic_handle_ldr_update(vcpu);
+}
+
+void svm_toggle_avic_for_irq_window(struct kvm_vcpu *vcpu, bool activate)
+{
+	if (!avic || !lapic_in_kernel(vcpu))
+		return;
+
+	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
+	kvm_request_apicv_update(vcpu->kvm, activate,
+				 APICV_INHIBIT_REASON_IRQWIN);
+	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
+}
+
+void svm_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
+{
+	return;
+}
+
+void svm_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
+{
+}
+
+void svm_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
+{
+}
+
+static int svm_set_pi_irte_mode(struct kvm_vcpu *vcpu, bool activate)
+{
+	int ret = 0;
+	unsigned long flags;
+	struct amd_svm_iommu_ir *ir;
+	struct vcpu_svm *svm = to_svm(vcpu);
+
+	if (!kvm_arch_has_assigned_device(vcpu->kvm))
+		return 0;
+
+	/*
+	 * Here, we go through the per-vcpu ir_list to update all existing
+	 * interrupt remapping table entry targeting this vcpu.
+	 */
+	spin_lock_irqsave(&svm->ir_list_lock, flags);
+
+	if (list_empty(&svm->ir_list))
+		goto out;
+
+	list_for_each_entry(ir, &svm->ir_list, node) {
+		if (activate)
+			ret = amd_iommu_activate_guest_mode(ir->data);
+		else
+			ret = amd_iommu_deactivate_guest_mode(ir->data);
+		if (ret)
+			break;
+	}
+out:
+	spin_unlock_irqrestore(&svm->ir_list_lock, flags);
+	return ret;
+}
+
+void svm_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_svm *svm = to_svm(vcpu);
+	struct vmcb *vmcb = svm->vmcb;
+	bool activated = kvm_vcpu_apicv_active(vcpu);
+
+	if (!avic)
+		return;
+
+	if (activated) {
+		/**
+		 * During AVIC temporary deactivation, guest could update
+		 * APIC ID, DFR and LDR registers, which would not be trapped
+		 * by avic_unaccelerated_access_interception(). In this case,
+		 * we need to check and update the AVIC logical APIC ID table
+		 * accordingly before re-activating.
+		 */
+		avic_post_state_restore(vcpu);
+		vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
+	} else {
+		vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK;
+	}
+	vmcb_mark_dirty(vmcb, VMCB_AVIC);
+
+	svm_set_pi_irte_mode(vcpu, activated);
+}
+
+void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
+{
+	return;
+}
+
+int svm_deliver_avic_intr(struct kvm_vcpu *vcpu, int vec)
+{
+	if (!vcpu->arch.apicv_active)
+		return -1;
+
+	kvm_lapic_set_irr(vec, vcpu->arch.apic);
+	smp_mb__after_atomic();
+
+	if (avic_vcpu_is_running(vcpu)) {
+		int cpuid = vcpu->cpu;
+
+		if (cpuid != get_cpu())
+			wrmsrl(SVM_AVIC_DOORBELL, kvm_cpu_get_apicid(cpuid));
+		put_cpu();
+	} else
+		kvm_vcpu_wake_up(vcpu);
+
+	return 0;
+}
+
+bool svm_dy_apicv_has_pending_interrupt(struct kvm_vcpu *vcpu)
+{
+	return false;
+}
+
+static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
+{
+	unsigned long flags;
+	struct amd_svm_iommu_ir *cur;
+
+	spin_lock_irqsave(&svm->ir_list_lock, flags);
+	list_for_each_entry(cur, &svm->ir_list, node) {
+		if (cur->data != pi->ir_data)
+			continue;
+		list_del(&cur->node);
+		kfree(cur);
+		break;
+	}
+	spin_unlock_irqrestore(&svm->ir_list_lock, flags);
+}
+
+static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
+{
+	int ret = 0;
+	unsigned long flags;
+	struct amd_svm_iommu_ir *ir;
+
+	/**
+	 * In some cases, the existing irte is updaed and re-set,
+	 * so we need to check here if it's already been * added
+	 * to the ir_list.
+	 */
+	if (pi->ir_data && (pi->prev_ga_tag != 0)) {
+		struct kvm *kvm = svm->vcpu.kvm;
+		u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag);
+		struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
+		struct vcpu_svm *prev_svm;
+
+		if (!prev_vcpu) {
+			ret = -EINVAL;
+			goto out;
+		}
+
+		prev_svm = to_svm(prev_vcpu);
+		svm_ir_list_del(prev_svm, pi);
+	}
+
+	/**
+	 * Allocating new amd_iommu_pi_data, which will get
+	 * add to the per-vcpu ir_list.
+	 */
+	ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL_ACCOUNT);
+	if (!ir) {
+		ret = -ENOMEM;
+		goto out;
+	}
+	ir->data = pi->ir_data;
+
+	spin_lock_irqsave(&svm->ir_list_lock, flags);
+	list_add(&ir->node, &svm->ir_list);
+	spin_unlock_irqrestore(&svm->ir_list_lock, flags);
+out:
+	return ret;
+}
+
+/**
+ * Note:
+ * The HW cannot support posting multicast/broadcast
+ * interrupts to a vCPU. So, we still use legacy interrupt
+ * remapping for these kind of interrupts.
+ *
+ * For lowest-priority interrupts, we only support
+ * those with single CPU as the destination, e.g. user
+ * configures the interrupts via /proc/irq or uses
+ * irqbalance to make the interrupts single-CPU.
+ */
+static int
+get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
+		 struct vcpu_data *vcpu_info, struct vcpu_svm **svm)
+{
+	struct kvm_lapic_irq irq;
+	struct kvm_vcpu *vcpu = NULL;
+
+	kvm_set_msi_irq(kvm, e, &irq);
+
+	if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu) ||
+	    !kvm_irq_is_postable(&irq)) {
+		pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n",
+			 __func__, irq.vector);
+		return -1;
+	}
+
+	pr_debug("SVM: %s: use GA mode for irq %u\n", __func__,
+		 irq.vector);
+	*svm = to_svm(vcpu);
+	vcpu_info->pi_desc_addr = __sme_set(page_to_phys((*svm)->avic_backing_page));
+	vcpu_info->vector = irq.vector;
+
+	return 0;
+}
+
+/*
+ * svm_update_pi_irte - set IRTE for Posted-Interrupts
+ *
+ * @kvm: kvm
+ * @host_irq: host irq of the interrupt
+ * @guest_irq: gsi of the interrupt
+ * @set: set or unset PI
+ * returns 0 on success, < 0 on failure
+ */
+int svm_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
+		       uint32_t guest_irq, bool set)
+{
+	struct kvm_kernel_irq_routing_entry *e;
+	struct kvm_irq_routing_table *irq_rt;
+	int idx, ret = -EINVAL;
+
+	if (!kvm_arch_has_assigned_device(kvm) ||
+	    !irq_remapping_cap(IRQ_POSTING_CAP))
+		return 0;
+
+	pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n",
+		 __func__, host_irq, guest_irq, set);
+
+	idx = srcu_read_lock(&kvm->irq_srcu);
+	irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
+	WARN_ON(guest_irq >= irq_rt->nr_rt_entries);
+
+	hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
+		struct vcpu_data vcpu_info;
+		struct vcpu_svm *svm = NULL;
+
+		if (e->type != KVM_IRQ_ROUTING_MSI)
+			continue;
+
+		/**
+		 * Here, we setup with legacy mode in the following cases:
+		 * 1. When cannot target interrupt to a specific vcpu.
+		 * 2. Unsetting posted interrupt.
+		 * 3. APIC virtialization is disabled for the vcpu.
+		 * 4. IRQ has incompatible delivery mode (SMI, INIT, etc)
+		 */
+		if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set &&
+		    kvm_vcpu_apicv_active(&svm->vcpu)) {
+			struct amd_iommu_pi_data pi;
+
+			/* Try to enable guest_mode in IRTE */
+			pi.base = __sme_set(page_to_phys(svm->avic_backing_page) &
+					    AVIC_HPA_MASK);
+			pi.ga_tag = AVIC_GATAG(to_kvm_svm(kvm)->avic_vm_id,
+						     svm->vcpu.vcpu_id);
+			pi.is_guest_mode = true;
+			pi.vcpu_data = &vcpu_info;
+			ret = irq_set_vcpu_affinity(host_irq, &pi);
+
+			/**
+			 * Here, we successfully setting up vcpu affinity in
+			 * IOMMU guest mode. Now, we need to store the posted
+			 * interrupt information in a per-vcpu ir_list so that
+			 * we can reference to them directly when we update vcpu
+			 * scheduling information in IOMMU irte.
+			 */
+			if (!ret && pi.is_guest_mode)
+				svm_ir_list_add(svm, &pi);
+		} else {
+			/* Use legacy mode in IRTE */
+			struct amd_iommu_pi_data pi;
+
+			/**
+			 * Here, pi is used to:
+			 * - Tell IOMMU to use legacy mode for this interrupt.
+			 * - Retrieve ga_tag of prior interrupt remapping data.
+			 */
+			pi.prev_ga_tag = 0;
+			pi.is_guest_mode = false;
+			ret = irq_set_vcpu_affinity(host_irq, &pi);
+
+			/**
+			 * Check if the posted interrupt was previously
+			 * setup with the guest_mode by checking if the ga_tag
+			 * was cached. If so, we need to clean up the per-vcpu
+			 * ir_list.
+			 */
+			if (!ret && pi.prev_ga_tag) {
+				int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag);
+				struct kvm_vcpu *vcpu;
+
+				vcpu = kvm_get_vcpu_by_id(kvm, id);
+				if (vcpu)
+					svm_ir_list_del(to_svm(vcpu), &pi);
+			}
+		}
+
+		if (!ret && svm) {
+			trace_kvm_pi_irte_update(host_irq, svm->vcpu.vcpu_id,
+						 e->gsi, vcpu_info.vector,
+						 vcpu_info.pi_desc_addr, set);
+		}
+
+		if (ret < 0) {
+			pr_err("%s: failed to update PI IRTE\n", __func__);
+			goto out;
+		}
+	}
+
+	ret = 0;
+out:
+	srcu_read_unlock(&kvm->irq_srcu, idx);
+	return ret;
+}
+
+bool svm_check_apicv_inhibit_reasons(ulong bit)
+{
+	ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) |
+			  BIT(APICV_INHIBIT_REASON_HYPERV) |
+			  BIT(APICV_INHIBIT_REASON_NESTED) |
+			  BIT(APICV_INHIBIT_REASON_IRQWIN) |
+			  BIT(APICV_INHIBIT_REASON_PIT_REINJ) |
+			  BIT(APICV_INHIBIT_REASON_X2APIC);
+
+	return supported & BIT(bit);
+}
+
+void svm_pre_update_apicv_exec_ctrl(struct kvm *kvm, bool activate)
+{
+	avic_update_access_page(kvm, activate);
+}
+
+static inline int
+avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r)
+{
+	int ret = 0;
+	unsigned long flags;
+	struct amd_svm_iommu_ir *ir;
+	struct vcpu_svm *svm = to_svm(vcpu);
+
+	if (!kvm_arch_has_assigned_device(vcpu->kvm))
+		return 0;
+
+	/*
+	 * Here, we go through the per-vcpu ir_list to update all existing
+	 * interrupt remapping table entry targeting this vcpu.
+	 */
+	spin_lock_irqsave(&svm->ir_list_lock, flags);
+
+	if (list_empty(&svm->ir_list))
+		goto out;
+
+	list_for_each_entry(ir, &svm->ir_list, node) {
+		ret = amd_iommu_update_ga(cpu, r, ir->data);
+		if (ret)
+			break;
+	}
+out:
+	spin_unlock_irqrestore(&svm->ir_list_lock, flags);
+	return ret;
+}
+
+void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
+{
+	u64 entry;
+	/* ID = 0xff (broadcast), ID > 0xff (reserved) */
+	int h_physical_id = kvm_cpu_get_apicid(cpu);
+	struct vcpu_svm *svm = to_svm(vcpu);
+
+	if (!kvm_vcpu_apicv_active(vcpu))
+		return;
+
+	/*
+	 * Since the host physical APIC id is 8 bits,
+	 * we can support host APIC ID upto 255.
+	 */
+	if (WARN_ON(h_physical_id > AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK))
+		return;
+
+	entry = READ_ONCE(*(svm->avic_physical_id_cache));
+	WARN_ON(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
+
+	entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK;
+	entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK);
+
+	entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
+	if (svm->avic_is_running)
+		entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
+
+	WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
+	avic_update_iommu_vcpu_affinity(vcpu, h_physical_id,
+					svm->avic_is_running);
+}
+
+void avic_vcpu_put(struct kvm_vcpu *vcpu)
+{
+	u64 entry;
+	struct vcpu_svm *svm = to_svm(vcpu);
+
+	if (!kvm_vcpu_apicv_active(vcpu))
+		return;
+
+	entry = READ_ONCE(*(svm->avic_physical_id_cache));
+	if (entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK)
+		avic_update_iommu_vcpu_affinity(vcpu, -1, 0);
+
+	entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
+	WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
+}
+
+/**
+ * This function is called during VCPU halt/unhalt.
+ */
+static void avic_set_running(struct kvm_vcpu *vcpu, bool is_run)
+{
+	struct vcpu_svm *svm = to_svm(vcpu);
+
+	svm->avic_is_running = is_run;
+	if (is_run)
+		avic_vcpu_load(vcpu, vcpu->cpu);
+	else
+		avic_vcpu_put(vcpu);
+}
+
+void svm_vcpu_blocking(struct kvm_vcpu *vcpu)
+{
+	avic_set_running(vcpu, false);
+}
+
+void svm_vcpu_unblocking(struct kvm_vcpu *vcpu)
+{
+	if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
+		kvm_vcpu_update_apicv(vcpu);
+	avic_set_running(vcpu, true);
+}
diff --git a/arch/x86/kvm/svm/nested.c b/arch/x86/kvm/svm/nested.c
new file mode 100644
index 0000000..23910e6
--- /dev/null
+++ b/arch/x86/kvm/svm/nested.c
@@ -0,0 +1,1265 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Kernel-based Virtual Machine driver for Linux
+ *
+ * AMD SVM support
+ *
+ * Copyright (C) 2006 Qumranet, Inc.
+ * Copyright 2010 Red Hat, Inc. and/or its affiliates.
+ *
+ * Authors:
+ *   Yaniv Kamay  <yaniv@qumranet.com>
+ *   Avi Kivity   <avi@qumranet.com>
+ */
+
+#define pr_fmt(fmt) "SVM: " fmt
+
+#include <linux/kvm_types.h>
+#include <linux/kvm_host.h>
+#include <linux/kernel.h>
+
+#include <asm/msr-index.h>
+#include <asm/debugreg.h>
+
+#include "kvm_emulate.h"
+#include "trace.h"
+#include "mmu.h"
+#include "x86.h"
+#include "cpuid.h"
+#include "lapic.h"
+#include "svm.h"
+
+static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
+				       struct x86_exception *fault)
+{
+	struct vcpu_svm *svm = to_svm(vcpu);
+
+	if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
+		/*
+		 * TODO: track the cause of the nested page fault, and
+		 * correctly fill in the high bits of exit_info_1.
+		 */
+		svm->vmcb->control.exit_code = SVM_EXIT_NPF;
+		svm->vmcb->control.exit_code_hi = 0;
+		svm->vmcb->control.exit_info_1 = (1ULL << 32);
+		svm->vmcb->control.exit_info_2 = fault->address;
+	}
+
+	svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
+	svm->vmcb->control.exit_info_1 |= fault->error_code;
+
+	nested_svm_vmexit(svm);
+}
+
+static void svm_inject_page_fault_nested(struct kvm_vcpu *vcpu, struct x86_exception *fault)
+{
+       struct vcpu_svm *svm = to_svm(vcpu);
+       WARN_ON(!is_guest_mode(vcpu));
+
+       if (vmcb_is_intercept(&svm->nested.ctl, INTERCEPT_EXCEPTION_OFFSET + PF_VECTOR) &&
+	   !svm->nested.nested_run_pending) {
+               svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + PF_VECTOR;
+               svm->vmcb->control.exit_code_hi = 0;
+               svm->vmcb->control.exit_info_1 = fault->error_code;
+               svm->vmcb->control.exit_info_2 = fault->address;
+               nested_svm_vmexit(svm);
+       } else {
+               kvm_inject_page_fault(vcpu, fault);
+       }
+}
+
+static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
+{
+	struct vcpu_svm *svm = to_svm(vcpu);
+	u64 cr3 = svm->nested.ctl.nested_cr3;
+	u64 pdpte;
+	int ret;
+
+	ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(cr3), &pdpte,
+				       offset_in_page(cr3) + index * 8, 8);
+	if (ret)
+		return 0;
+	return pdpte;
+}
+
+static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_svm *svm = to_svm(vcpu);
+
+	return svm->nested.ctl.nested_cr3;
+}
+
+static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_svm *svm = to_svm(vcpu);
+	struct vmcb *hsave = svm->nested.hsave;
+
+	WARN_ON(mmu_is_nested(vcpu));
+
+	vcpu->arch.mmu = &vcpu->arch.guest_mmu;
+	kvm_init_shadow_npt_mmu(vcpu, X86_CR0_PG, hsave->save.cr4, hsave->save.efer,
+				svm->nested.ctl.nested_cr3);
+	vcpu->arch.mmu->get_guest_pgd     = nested_svm_get_tdp_cr3;
+	vcpu->arch.mmu->get_pdptr         = nested_svm_get_tdp_pdptr;
+	vcpu->arch.mmu->inject_page_fault = nested_svm_inject_npf_exit;
+	reset_shadow_zero_bits_mask(vcpu, vcpu->arch.mmu);
+	vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
+}
+
+static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
+{
+	vcpu->arch.mmu = &vcpu->arch.root_mmu;
+	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
+}
+
+void recalc_intercepts(struct vcpu_svm *svm)
+{
+	struct vmcb_control_area *c, *h, *g;
+	unsigned int i;
+
+	vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
+
+	if (!is_guest_mode(&svm->vcpu))
+		return;
+
+	c = &svm->vmcb->control;
+	h = &svm->nested.hsave->control;
+	g = &svm->nested.ctl;
+
+	for (i = 0; i < MAX_INTERCEPT; i++)
+		c->intercepts[i] = h->intercepts[i];
+
+	if (g->int_ctl & V_INTR_MASKING_MASK) {
+		/* We only want the cr8 intercept bits of L1 */
+		vmcb_clr_intercept(c, INTERCEPT_CR8_READ);
+		vmcb_clr_intercept(c, INTERCEPT_CR8_WRITE);
+
+		/*
+		 * Once running L2 with HF_VINTR_MASK, EFLAGS.IF does not
+		 * affect any interrupt we may want to inject; therefore,
+		 * interrupt window vmexits are irrelevant to L0.
+		 */
+		vmcb_clr_intercept(c, INTERCEPT_VINTR);
+	}
+
+	/* We don't want to see VMMCALLs from a nested guest */
+	vmcb_clr_intercept(c, INTERCEPT_VMMCALL);
+
+	for (i = 0; i < MAX_INTERCEPT; i++)
+		c->intercepts[i] |= g->intercepts[i];
+
+	vmcb_set_intercept(c, INTERCEPT_VMLOAD);
+	vmcb_set_intercept(c, INTERCEPT_VMSAVE);
+}
+
+static void copy_vmcb_control_area(struct vmcb_control_area *dst,
+				   struct vmcb_control_area *from)
+{
+	unsigned int i;
+
+	for (i = 0; i < MAX_INTERCEPT; i++)
+		dst->intercepts[i] = from->intercepts[i];
+
+	dst->iopm_base_pa         = from->iopm_base_pa;
+	dst->msrpm_base_pa        = from->msrpm_base_pa;
+	dst->tsc_offset           = from->tsc_offset;
+	/* asid not copied, it is handled manually for svm->vmcb.  */
+	dst->tlb_ctl              = from->tlb_ctl;
+	dst->int_ctl              = from->int_ctl;
+	dst->int_vector           = from->int_vector;
+	dst->int_state            = from->int_state;
+	dst->exit_code            = from->exit_code;
+	dst->exit_code_hi         = from->exit_code_hi;
+	dst->exit_info_1          = from->exit_info_1;
+	dst->exit_info_2          = from->exit_info_2;
+	dst->exit_int_info        = from->exit_int_info;
+	dst->exit_int_info_err    = from->exit_int_info_err;
+	dst->nested_ctl           = from->nested_ctl;
+	dst->event_inj            = from->event_inj;
+	dst->event_inj_err        = from->event_inj_err;
+	dst->nested_cr3           = from->nested_cr3;
+	dst->virt_ext              = from->virt_ext;
+	dst->pause_filter_count   = from->pause_filter_count;
+	dst->pause_filter_thresh  = from->pause_filter_thresh;
+}
+
+static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
+{
+	/*
+	 * This function merges the msr permission bitmaps of kvm and the
+	 * nested vmcb. It is optimized in that it only merges the parts where
+	 * the kvm msr permission bitmap may contain zero bits
+	 */
+	int i;
+
+	if (!(vmcb_is_intercept(&svm->nested.ctl, INTERCEPT_MSR_PROT)))
+		return true;
+
+	for (i = 0; i < MSRPM_OFFSETS; i++) {
+		u32 value, p;
+		u64 offset;
+
+		if (msrpm_offsets[i] == 0xffffffff)
+			break;
+
+		p      = msrpm_offsets[i];
+		offset = svm->nested.ctl.msrpm_base_pa + (p * 4);
+
+		if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4))
+			return false;
+
+		svm->nested.msrpm[p] = svm->msrpm[p] | value;
+	}
+
+	svm->vmcb->control.msrpm_base_pa = __sme_set(__pa(svm->nested.msrpm));
+
+	return true;
+}
+
+static bool svm_get_nested_state_pages(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_svm *svm = to_svm(vcpu);
+
+	if (WARN_ON(!is_guest_mode(vcpu)))
+		return true;
+
+	if (!nested_svm_vmrun_msrpm(svm)) {
+		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
+		vcpu->run->internal.suberror =
+			KVM_INTERNAL_ERROR_EMULATION;
+		vcpu->run->internal.ndata = 0;
+		return false;
+	}
+
+	return true;
+}
+
+static bool nested_vmcb_check_controls(struct vmcb_control_area *control)
+{
+	if ((vmcb_is_intercept(control, INTERCEPT_VMRUN)) == 0)
+		return false;
+
+	if (control->asid == 0)
+		return false;
+
+	if ((control->nested_ctl & SVM_NESTED_CTL_NP_ENABLE) &&
+	    !npt_enabled)
+		return false;
+
+	return true;
+}
+
+static bool nested_vmcb_check_save(struct vcpu_svm *svm, struct vmcb *vmcb12)
+{
+	struct kvm_vcpu *vcpu = &svm->vcpu;
+	bool vmcb12_lma;
+
+	/*
+	 * FIXME: these should be done after copying the fields,
+	 * to avoid TOC/TOU races.  For these save area checks
+	 * the possible damage is limited since kvm_set_cr0 and
+	 * kvm_set_cr4 handle failure; EFER_SVME is an exception
+	 * so it is force-set later in nested_prepare_vmcb_save.
+	 */
+	if ((vmcb12->save.efer & EFER_SVME) == 0)
+		return false;
+
+	if (((vmcb12->save.cr0 & X86_CR0_CD) == 0) && (vmcb12->save.cr0 & X86_CR0_NW))
+		return false;
+
+	if (!kvm_dr6_valid(vmcb12->save.dr6) || !kvm_dr7_valid(vmcb12->save.dr7))
+		return false;
+
+	vmcb12_lma = (vmcb12->save.efer & EFER_LME) && (vmcb12->save.cr0 & X86_CR0_PG);
+
+	if (vmcb12_lma) {
+		if (!(vmcb12->save.cr4 & X86_CR4_PAE) ||
+		    !(vmcb12->save.cr0 & X86_CR0_PE) ||
+		    (vmcb12->save.cr3 & vcpu->arch.cr3_lm_rsvd_bits))
+			return false;
+	}
+	if (kvm_valid_cr4(&svm->vcpu, vmcb12->save.cr4))
+		return false;
+
+	return true;
+}
+
+static void load_nested_vmcb_control(struct vcpu_svm *svm,
+				     struct vmcb_control_area *control)
+{
+	copy_vmcb_control_area(&svm->nested.ctl, control);
+
+	/* Copy it here because nested_svm_check_controls will check it.  */
+	svm->nested.ctl.asid           = control->asid;
+	svm->nested.ctl.msrpm_base_pa &= ~0x0fffULL;
+	svm->nested.ctl.iopm_base_pa  &= ~0x0fffULL;
+}
+
+/*
+ * Synchronize fields that are written by the processor, so that
+ * they can be copied back into the nested_vmcb.
+ */
+void sync_nested_vmcb_control(struct vcpu_svm *svm)
+{
+	u32 mask;
+	svm->nested.ctl.event_inj      = svm->vmcb->control.event_inj;
+	svm->nested.ctl.event_inj_err  = svm->vmcb->control.event_inj_err;
+
+	/* Only a few fields of int_ctl are written by the processor.  */
+	mask = V_IRQ_MASK | V_TPR_MASK;
+	if (!(svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK) &&
+	    svm_is_intercept(svm, INTERCEPT_VINTR)) {
+		/*
+		 * In order to request an interrupt window, L0 is usurping
+		 * svm->vmcb->control.int_ctl and possibly setting V_IRQ
+		 * even if it was clear in L1's VMCB.  Restoring it would be
+		 * wrong.  However, in this case V_IRQ will remain true until
+		 * interrupt_window_interception calls svm_clear_vintr and
+		 * restores int_ctl.  We can just leave it aside.
+		 */
+		mask &= ~V_IRQ_MASK;
+	}
+	svm->nested.ctl.int_ctl        &= ~mask;
+	svm->nested.ctl.int_ctl        |= svm->vmcb->control.int_ctl & mask;
+}
+
+/*
+ * Transfer any event that L0 or L1 wanted to inject into L2 to
+ * EXIT_INT_INFO.
+ */
+static void nested_vmcb_save_pending_event(struct vcpu_svm *svm,
+					   struct vmcb *vmcb12)
+{
+	struct kvm_vcpu *vcpu = &svm->vcpu;
+	u32 exit_int_info = 0;
+	unsigned int nr;
+
+	if (vcpu->arch.exception.injected) {
+		nr = vcpu->arch.exception.nr;
+		exit_int_info = nr | SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_EXEPT;
+
+		if (vcpu->arch.exception.has_error_code) {
+			exit_int_info |= SVM_EVTINJ_VALID_ERR;
+			vmcb12->control.exit_int_info_err =
+				vcpu->arch.exception.error_code;
+		}
+
+	} else if (vcpu->arch.nmi_injected) {
+		exit_int_info = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
+
+	} else if (vcpu->arch.interrupt.injected) {
+		nr = vcpu->arch.interrupt.nr;
+		exit_int_info = nr | SVM_EVTINJ_VALID;
+
+		if (vcpu->arch.interrupt.soft)
+			exit_int_info |= SVM_EVTINJ_TYPE_SOFT;
+		else
+			exit_int_info |= SVM_EVTINJ_TYPE_INTR;
+	}
+
+	vmcb12->control.exit_int_info = exit_int_info;
+}
+
+static inline bool nested_npt_enabled(struct vcpu_svm *svm)
+{
+	return svm->nested.ctl.nested_ctl & SVM_NESTED_CTL_NP_ENABLE;
+}
+
+/*
+ * Load guest's/host's cr3 on nested vmentry or vmexit. @nested_npt is true
+ * if we are emulating VM-Entry into a guest with NPT enabled.
+ */
+static int nested_svm_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3,
+			       bool nested_npt)
+{
+	if (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63))
+		return -EINVAL;
+
+	if (!nested_npt && is_pae_paging(vcpu) &&
+	    (cr3 != kvm_read_cr3(vcpu) || pdptrs_changed(vcpu))) {
+		if (!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
+			return -EINVAL;
+	}
+
+	/*
+	 * TODO: optimize unconditional TLB flush/MMU sync here and in
+	 * kvm_init_shadow_npt_mmu().
+	 */
+	if (!nested_npt)
+		kvm_mmu_new_pgd(vcpu, cr3, false, false);
+
+	vcpu->arch.cr3 = cr3;
+	kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
+
+	kvm_init_mmu(vcpu, false);
+
+	return 0;
+}
+
+static void nested_prepare_vmcb_save(struct vcpu_svm *svm, struct vmcb *vmcb12)
+{
+	/* Load the nested guest state */
+	svm->vmcb->save.es = vmcb12->save.es;
+	svm->vmcb->save.cs = vmcb12->save.cs;
+	svm->vmcb->save.ss = vmcb12->save.ss;
+	svm->vmcb->save.ds = vmcb12->save.ds;
+	svm->vmcb->save.gdtr = vmcb12->save.gdtr;
+	svm->vmcb->save.idtr = vmcb12->save.idtr;
+	kvm_set_rflags(&svm->vcpu, vmcb12->save.rflags);
+
+	/*
+	 * Force-set EFER_SVME even though it is checked earlier on the
+	 * VMCB12, because the guest can flip the bit between the check
+	 * and now.  Clearing EFER_SVME would call svm_free_nested.
+	 */
+	svm_set_efer(&svm->vcpu, vmcb12->save.efer | EFER_SVME);
+
+	svm_set_cr0(&svm->vcpu, vmcb12->save.cr0);
+	svm_set_cr4(&svm->vcpu, vmcb12->save.cr4);
+	svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = vmcb12->save.cr2;
+	kvm_rax_write(&svm->vcpu, vmcb12->save.rax);
+	kvm_rsp_write(&svm->vcpu, vmcb12->save.rsp);
+	kvm_rip_write(&svm->vcpu, vmcb12->save.rip);
+
+	/* In case we don't even reach vcpu_run, the fields are not updated */
+	svm->vmcb->save.rax = vmcb12->save.rax;
+	svm->vmcb->save.rsp = vmcb12->save.rsp;
+	svm->vmcb->save.rip = vmcb12->save.rip;
+	svm->vmcb->save.dr7 = vmcb12->save.dr7;
+	svm->vcpu.arch.dr6  = vmcb12->save.dr6;
+	svm->vmcb->save.cpl = vmcb12->save.cpl;
+}
+
+static void nested_prepare_vmcb_control(struct vcpu_svm *svm)
+{
+	const u32 int_ctl_vmcb01_bits =
+		V_INTR_MASKING_MASK | V_GIF_MASK | V_GIF_ENABLE_MASK;
+
+	const u32 int_ctl_vmcb12_bits = V_TPR_MASK | V_IRQ_INJECTION_BITS_MASK;
+
+	if (nested_npt_enabled(svm))
+		nested_svm_init_mmu_context(&svm->vcpu);
+
+	svm->vmcb->control.tsc_offset = svm->vcpu.arch.tsc_offset =
+		svm->vcpu.arch.l1_tsc_offset + svm->nested.ctl.tsc_offset;
+
+	svm->vmcb->control.int_ctl =
+		(svm->nested.ctl.int_ctl & int_ctl_vmcb12_bits) |
+		(svm->nested.hsave->control.int_ctl & int_ctl_vmcb01_bits);
+
+	svm->vmcb->control.int_vector          = svm->nested.ctl.int_vector;
+	svm->vmcb->control.int_state           = svm->nested.ctl.int_state;
+	svm->vmcb->control.event_inj           = svm->nested.ctl.event_inj;
+	svm->vmcb->control.event_inj_err       = svm->nested.ctl.event_inj_err;
+
+	svm->vmcb->control.pause_filter_count  = svm->nested.ctl.pause_filter_count;
+	svm->vmcb->control.pause_filter_thresh = svm->nested.ctl.pause_filter_thresh;
+
+	/* Enter Guest-Mode */
+	enter_guest_mode(&svm->vcpu);
+
+	/*
+	 * Merge guest and host intercepts - must be called  with vcpu in
+	 * guest-mode to take affect here
+	 */
+	recalc_intercepts(svm);
+
+	vmcb_mark_all_dirty(svm->vmcb);
+}
+
+int enter_svm_guest_mode(struct vcpu_svm *svm, u64 vmcb12_gpa,
+			 struct vmcb *vmcb12)
+{
+	int ret;
+
+	svm->nested.vmcb12_gpa = vmcb12_gpa;
+	nested_prepare_vmcb_save(svm, vmcb12);
+	nested_prepare_vmcb_control(svm);
+
+	ret = nested_svm_load_cr3(&svm->vcpu, vmcb12->save.cr3,
+				  nested_npt_enabled(svm));
+	if (ret)
+		return ret;
+
+	if (!npt_enabled)
+		svm->vcpu.arch.mmu->inject_page_fault = svm_inject_page_fault_nested;
+
+	svm_set_gif(svm, true);
+
+	return 0;
+}
+
+int nested_svm_vmrun(struct vcpu_svm *svm)
+{
+	int ret;
+	struct vmcb *vmcb12;
+	struct vmcb *hsave = svm->nested.hsave;
+	struct vmcb *vmcb = svm->vmcb;
+	struct kvm_host_map map;
+	u64 vmcb12_gpa;
+
+	if (is_smm(&svm->vcpu)) {
+		kvm_queue_exception(&svm->vcpu, UD_VECTOR);
+		return 1;
+	}
+
+	vmcb12_gpa = svm->vmcb->save.rax;
+	ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(vmcb12_gpa), &map);
+	if (ret == -EINVAL) {
+		kvm_inject_gp(&svm->vcpu, 0);
+		return 1;
+	} else if (ret) {
+		return kvm_skip_emulated_instruction(&svm->vcpu);
+	}
+
+	ret = kvm_skip_emulated_instruction(&svm->vcpu);
+
+	vmcb12 = map.hva;
+
+	if (WARN_ON_ONCE(!svm->nested.initialized))
+		return -EINVAL;
+
+	load_nested_vmcb_control(svm, &vmcb12->control);
+
+	if (!nested_vmcb_check_save(svm, vmcb12) ||
+	    !nested_vmcb_check_controls(&svm->nested.ctl)) {
+		vmcb12->control.exit_code    = SVM_EXIT_ERR;
+		vmcb12->control.exit_code_hi = 0;
+		vmcb12->control.exit_info_1  = 0;
+		vmcb12->control.exit_info_2  = 0;
+		goto out;
+	}
+
+	trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb12_gpa,
+			       vmcb12->save.rip,
+			       vmcb12->control.int_ctl,
+			       vmcb12->control.event_inj,
+			       vmcb12->control.nested_ctl);
+
+	trace_kvm_nested_intercepts(vmcb12->control.intercepts[INTERCEPT_CR] & 0xffff,
+				    vmcb12->control.intercepts[INTERCEPT_CR] >> 16,
+				    vmcb12->control.intercepts[INTERCEPT_EXCEPTION],
+				    vmcb12->control.intercepts[INTERCEPT_WORD3],
+				    vmcb12->control.intercepts[INTERCEPT_WORD4],
+				    vmcb12->control.intercepts[INTERCEPT_WORD5]);
+
+	/* Clear internal status */
+	kvm_clear_exception_queue(&svm->vcpu);
+	kvm_clear_interrupt_queue(&svm->vcpu);
+
+	/*
+	 * Save the old vmcb, so we don't need to pick what we save, but can
+	 * restore everything when a VMEXIT occurs
+	 */
+	hsave->save.es     = vmcb->save.es;
+	hsave->save.cs     = vmcb->save.cs;
+	hsave->save.ss     = vmcb->save.ss;
+	hsave->save.ds     = vmcb->save.ds;
+	hsave->save.gdtr   = vmcb->save.gdtr;
+	hsave->save.idtr   = vmcb->save.idtr;
+	hsave->save.efer   = svm->vcpu.arch.efer;
+	hsave->save.cr0    = kvm_read_cr0(&svm->vcpu);
+	hsave->save.cr4    = svm->vcpu.arch.cr4;
+	hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
+	hsave->save.rip    = kvm_rip_read(&svm->vcpu);
+	hsave->save.rsp    = vmcb->save.rsp;
+	hsave->save.rax    = vmcb->save.rax;
+	if (npt_enabled)
+		hsave->save.cr3    = vmcb->save.cr3;
+	else
+		hsave->save.cr3    = kvm_read_cr3(&svm->vcpu);
+
+	copy_vmcb_control_area(&hsave->control, &vmcb->control);
+
+	svm->nested.nested_run_pending = 1;
+
+	if (enter_svm_guest_mode(svm, vmcb12_gpa, vmcb12))
+		goto out_exit_err;
+
+	if (nested_svm_vmrun_msrpm(svm))
+		goto out;
+
+out_exit_err:
+	svm->nested.nested_run_pending = 0;
+
+	svm->vmcb->control.exit_code    = SVM_EXIT_ERR;
+	svm->vmcb->control.exit_code_hi = 0;
+	svm->vmcb->control.exit_info_1  = 0;
+	svm->vmcb->control.exit_info_2  = 0;
+
+	nested_svm_vmexit(svm);
+
+out:
+	kvm_vcpu_unmap(&svm->vcpu, &map, true);
+
+	return ret;
+}
+
+void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
+{
+	to_vmcb->save.fs = from_vmcb->save.fs;
+	to_vmcb->save.gs = from_vmcb->save.gs;
+	to_vmcb->save.tr = from_vmcb->save.tr;
+	to_vmcb->save.ldtr = from_vmcb->save.ldtr;
+	to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
+	to_vmcb->save.star = from_vmcb->save.star;
+	to_vmcb->save.lstar = from_vmcb->save.lstar;
+	to_vmcb->save.cstar = from_vmcb->save.cstar;
+	to_vmcb->save.sfmask = from_vmcb->save.sfmask;
+	to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
+	to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
+	to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
+}
+
+int nested_svm_vmexit(struct vcpu_svm *svm)
+{
+	int rc;
+	struct vmcb *vmcb12;
+	struct vmcb *hsave = svm->nested.hsave;
+	struct vmcb *vmcb = svm->vmcb;
+	struct kvm_host_map map;
+
+	rc = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->nested.vmcb12_gpa), &map);
+	if (rc) {
+		if (rc == -EINVAL)
+			kvm_inject_gp(&svm->vcpu, 0);
+		return 1;
+	}
+
+	vmcb12 = map.hva;
+
+	/* Exit Guest-Mode */
+	leave_guest_mode(&svm->vcpu);
+	svm->nested.vmcb12_gpa = 0;
+	WARN_ON_ONCE(svm->nested.nested_run_pending);
+
+	kvm_clear_request(KVM_REQ_GET_NESTED_STATE_PAGES, &svm->vcpu);
+
+	/* in case we halted in L2 */
+	svm->vcpu.arch.mp_state = KVM_MP_STATE_RUNNABLE;
+
+	/* Give the current vmcb to the guest */
+
+	vmcb12->save.es     = vmcb->save.es;
+	vmcb12->save.cs     = vmcb->save.cs;
+	vmcb12->save.ss     = vmcb->save.ss;
+	vmcb12->save.ds     = vmcb->save.ds;
+	vmcb12->save.gdtr   = vmcb->save.gdtr;
+	vmcb12->save.idtr   = vmcb->save.idtr;
+	vmcb12->save.efer   = svm->vcpu.arch.efer;
+	vmcb12->save.cr0    = kvm_read_cr0(&svm->vcpu);
+	vmcb12->save.cr3    = kvm_read_cr3(&svm->vcpu);
+	vmcb12->save.cr2    = vmcb->save.cr2;
+	vmcb12->save.cr4    = svm->vcpu.arch.cr4;
+	vmcb12->save.rflags = kvm_get_rflags(&svm->vcpu);
+	vmcb12->save.rip    = kvm_rip_read(&svm->vcpu);
+	vmcb12->save.rsp    = kvm_rsp_read(&svm->vcpu);
+	vmcb12->save.rax    = kvm_rax_read(&svm->vcpu);
+	vmcb12->save.dr7    = vmcb->save.dr7;
+	vmcb12->save.dr6    = svm->vcpu.arch.dr6;
+	vmcb12->save.cpl    = vmcb->save.cpl;
+
+	vmcb12->control.int_state         = vmcb->control.int_state;
+	vmcb12->control.exit_code         = vmcb->control.exit_code;
+	vmcb12->control.exit_code_hi      = vmcb->control.exit_code_hi;
+	vmcb12->control.exit_info_1       = vmcb->control.exit_info_1;
+	vmcb12->control.exit_info_2       = vmcb->control.exit_info_2;
+
+	if (vmcb12->control.exit_code != SVM_EXIT_ERR)
+		nested_vmcb_save_pending_event(svm, vmcb12);
+
+	if (svm->nrips_enabled)
+		vmcb12->control.next_rip  = vmcb->control.next_rip;
+
+	vmcb12->control.int_ctl           = svm->nested.ctl.int_ctl;
+	vmcb12->control.tlb_ctl           = svm->nested.ctl.tlb_ctl;
+	vmcb12->control.event_inj         = svm->nested.ctl.event_inj;
+	vmcb12->control.event_inj_err     = svm->nested.ctl.event_inj_err;
+
+	vmcb12->control.pause_filter_count =
+		svm->vmcb->control.pause_filter_count;
+	vmcb12->control.pause_filter_thresh =
+		svm->vmcb->control.pause_filter_thresh;
+
+	/* Restore the original control entries */
+	copy_vmcb_control_area(&vmcb->control, &hsave->control);
+
+	/* On vmexit the  GIF is set to false */
+	svm_set_gif(svm, false);
+
+	svm->vmcb->control.tsc_offset = svm->vcpu.arch.tsc_offset =
+		svm->vcpu.arch.l1_tsc_offset;
+
+	svm->nested.ctl.nested_cr3 = 0;
+
+	/* Restore selected save entries */
+	svm->vmcb->save.es = hsave->save.es;
+	svm->vmcb->save.cs = hsave->save.cs;
+	svm->vmcb->save.ss = hsave->save.ss;
+	svm->vmcb->save.ds = hsave->save.ds;
+	svm->vmcb->save.gdtr = hsave->save.gdtr;
+	svm->vmcb->save.idtr = hsave->save.idtr;
+	kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
+	svm_set_efer(&svm->vcpu, hsave->save.efer);
+	svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
+	svm_set_cr4(&svm->vcpu, hsave->save.cr4);
+	kvm_rax_write(&svm->vcpu, hsave->save.rax);
+	kvm_rsp_write(&svm->vcpu, hsave->save.rsp);
+	kvm_rip_write(&svm->vcpu, hsave->save.rip);
+	svm->vmcb->save.dr7 = 0;
+	svm->vmcb->save.cpl = 0;
+	svm->vmcb->control.exit_int_info = 0;
+
+	vmcb_mark_all_dirty(svm->vmcb);
+
+	trace_kvm_nested_vmexit_inject(vmcb12->control.exit_code,
+				       vmcb12->control.exit_info_1,
+				       vmcb12->control.exit_info_2,
+				       vmcb12->control.exit_int_info,
+				       vmcb12->control.exit_int_info_err,
+				       KVM_ISA_SVM);
+
+	kvm_vcpu_unmap(&svm->vcpu, &map, true);
+
+	nested_svm_uninit_mmu_context(&svm->vcpu);
+
+	rc = nested_svm_load_cr3(&svm->vcpu, hsave->save.cr3, false);
+	if (rc)
+		return 1;
+
+	if (npt_enabled)
+		svm->vmcb->save.cr3 = hsave->save.cr3;
+
+	/*
+	 * Drop what we picked up for L2 via svm_complete_interrupts() so it
+	 * doesn't end up in L1.
+	 */
+	svm->vcpu.arch.nmi_injected = false;
+	kvm_clear_exception_queue(&svm->vcpu);
+	kvm_clear_interrupt_queue(&svm->vcpu);
+
+	return 0;
+}
+
+int svm_allocate_nested(struct vcpu_svm *svm)
+{
+	struct page *hsave_page;
+
+	if (svm->nested.initialized)
+		return 0;
+
+	hsave_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
+	if (!hsave_page)
+		return -ENOMEM;
+	svm->nested.hsave = page_address(hsave_page);
+
+	svm->nested.msrpm = svm_vcpu_alloc_msrpm();
+	if (!svm->nested.msrpm)
+		goto err_free_hsave;
+	svm_vcpu_init_msrpm(&svm->vcpu, svm->nested.msrpm);
+
+	svm->nested.initialized = true;
+	return 0;
+
+err_free_hsave:
+	__free_page(hsave_page);
+	return -ENOMEM;
+}
+
+void svm_free_nested(struct vcpu_svm *svm)
+{
+	if (!svm->nested.initialized)
+		return;
+
+	svm_vcpu_free_msrpm(svm->nested.msrpm);
+	svm->nested.msrpm = NULL;
+
+	__free_page(virt_to_page(svm->nested.hsave));
+	svm->nested.hsave = NULL;
+
+	svm->nested.initialized = false;
+}
+
+/*
+ * Forcibly leave nested mode in order to be able to reset the VCPU later on.
+ */
+void svm_leave_nested(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_svm *svm = to_svm(vcpu);
+
+	if (is_guest_mode(&svm->vcpu)) {
+		struct vmcb *hsave = svm->nested.hsave;
+		struct vmcb *vmcb = svm->vmcb;
+
+		svm->nested.nested_run_pending = 0;
+		leave_guest_mode(&svm->vcpu);
+		copy_vmcb_control_area(&vmcb->control, &hsave->control);
+		nested_svm_uninit_mmu_context(&svm->vcpu);
+	}
+
+	kvm_clear_request(KVM_REQ_GET_NESTED_STATE_PAGES, &svm->vcpu);
+}
+
+static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
+{
+	u32 offset, msr, value;
+	int write, mask;
+
+	if (!(vmcb_is_intercept(&svm->nested.ctl, INTERCEPT_MSR_PROT)))
+		return NESTED_EXIT_HOST;
+
+	msr    = svm->vcpu.arch.regs[VCPU_REGS_RCX];
+	offset = svm_msrpm_offset(msr);
+	write  = svm->vmcb->control.exit_info_1 & 1;
+	mask   = 1 << ((2 * (msr & 0xf)) + write);
+
+	if (offset == MSR_INVALID)
+		return NESTED_EXIT_DONE;
+
+	/* Offset is in 32 bit units but need in 8 bit units */
+	offset *= 4;
+
+	if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.ctl.msrpm_base_pa + offset, &value, 4))
+		return NESTED_EXIT_DONE;
+
+	return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
+}
+
+static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
+{
+	unsigned port, size, iopm_len;
+	u16 val, mask;
+	u8 start_bit;
+	u64 gpa;
+
+	if (!(vmcb_is_intercept(&svm->nested.ctl, INTERCEPT_IOIO_PROT)))
+		return NESTED_EXIT_HOST;
+
+	port = svm->vmcb->control.exit_info_1 >> 16;
+	size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
+		SVM_IOIO_SIZE_SHIFT;
+	gpa  = svm->nested.ctl.iopm_base_pa + (port / 8);
+	start_bit = port % 8;
+	iopm_len = (start_bit + size > 8) ? 2 : 1;
+	mask = (0xf >> (4 - size)) << start_bit;
+	val = 0;
+
+	if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len))
+		return NESTED_EXIT_DONE;
+
+	return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
+}
+
+static int nested_svm_intercept(struct vcpu_svm *svm)
+{
+	u32 exit_code = svm->vmcb->control.exit_code;
+	int vmexit = NESTED_EXIT_HOST;
+
+	switch (exit_code) {
+	case SVM_EXIT_MSR:
+		vmexit = nested_svm_exit_handled_msr(svm);
+		break;
+	case SVM_EXIT_IOIO:
+		vmexit = nested_svm_intercept_ioio(svm);
+		break;
+	case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
+		if (vmcb_is_intercept(&svm->nested.ctl, exit_code))
+			vmexit = NESTED_EXIT_DONE;
+		break;
+	}
+	case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
+		if (vmcb_is_intercept(&svm->nested.ctl, exit_code))
+			vmexit = NESTED_EXIT_DONE;
+		break;
+	}
+	case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
+		/*
+		 * Host-intercepted exceptions have been checked already in
+		 * nested_svm_exit_special.  There is nothing to do here,
+		 * the vmexit is injected by svm_check_nested_events.
+		 */
+		vmexit = NESTED_EXIT_DONE;
+		break;
+	}
+	case SVM_EXIT_ERR: {
+		vmexit = NESTED_EXIT_DONE;
+		break;
+	}
+	default: {
+		if (vmcb_is_intercept(&svm->nested.ctl, exit_code))
+			vmexit = NESTED_EXIT_DONE;
+	}
+	}
+
+	return vmexit;
+}
+
+int nested_svm_exit_handled(struct vcpu_svm *svm)
+{
+	int vmexit;
+
+	vmexit = nested_svm_intercept(svm);
+
+	if (vmexit == NESTED_EXIT_DONE)
+		nested_svm_vmexit(svm);
+
+	return vmexit;
+}
+
+int nested_svm_check_permissions(struct vcpu_svm *svm)
+{
+	if (!(svm->vcpu.arch.efer & EFER_SVME) ||
+	    !is_paging(&svm->vcpu)) {
+		kvm_queue_exception(&svm->vcpu, UD_VECTOR);
+		return 1;
+	}
+
+	if (svm->vmcb->save.cpl) {
+		kvm_inject_gp(&svm->vcpu, 0);
+		return 1;
+	}
+
+	return 0;
+}
+
+static bool nested_exit_on_exception(struct vcpu_svm *svm)
+{
+	unsigned int nr = svm->vcpu.arch.exception.nr;
+
+	return (svm->nested.ctl.intercepts[INTERCEPT_EXCEPTION] & BIT(nr));
+}
+
+static void nested_svm_inject_exception_vmexit(struct vcpu_svm *svm)
+{
+	unsigned int nr = svm->vcpu.arch.exception.nr;
+
+	svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
+	svm->vmcb->control.exit_code_hi = 0;
+
+	if (svm->vcpu.arch.exception.has_error_code)
+		svm->vmcb->control.exit_info_1 = svm->vcpu.arch.exception.error_code;
+
+	/*
+	 * EXITINFO2 is undefined for all exception intercepts other
+	 * than #PF.
+	 */
+	if (nr == PF_VECTOR) {
+		if (svm->vcpu.arch.exception.nested_apf)
+			svm->vmcb->control.exit_info_2 = svm->vcpu.arch.apf.nested_apf_token;
+		else if (svm->vcpu.arch.exception.has_payload)
+			svm->vmcb->control.exit_info_2 = svm->vcpu.arch.exception.payload;
+		else
+			svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
+	} else if (nr == DB_VECTOR) {
+		/* See inject_pending_event.  */
+		kvm_deliver_exception_payload(&svm->vcpu);
+		if (svm->vcpu.arch.dr7 & DR7_GD) {
+			svm->vcpu.arch.dr7 &= ~DR7_GD;
+			kvm_update_dr7(&svm->vcpu);
+		}
+	} else
+		WARN_ON(svm->vcpu.arch.exception.has_payload);
+
+	nested_svm_vmexit(svm);
+}
+
+static void nested_svm_smi(struct vcpu_svm *svm)
+{
+	svm->vmcb->control.exit_code = SVM_EXIT_SMI;
+	svm->vmcb->control.exit_info_1 = 0;
+	svm->vmcb->control.exit_info_2 = 0;
+
+	nested_svm_vmexit(svm);
+}
+
+static void nested_svm_nmi(struct vcpu_svm *svm)
+{
+	svm->vmcb->control.exit_code = SVM_EXIT_NMI;
+	svm->vmcb->control.exit_info_1 = 0;
+	svm->vmcb->control.exit_info_2 = 0;
+
+	nested_svm_vmexit(svm);
+}
+
+static void nested_svm_intr(struct vcpu_svm *svm)
+{
+	trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
+
+	svm->vmcb->control.exit_code   = SVM_EXIT_INTR;
+	svm->vmcb->control.exit_info_1 = 0;
+	svm->vmcb->control.exit_info_2 = 0;
+
+	nested_svm_vmexit(svm);
+}
+
+static inline bool nested_exit_on_init(struct vcpu_svm *svm)
+{
+	return vmcb_is_intercept(&svm->nested.ctl, INTERCEPT_INIT);
+}
+
+static void nested_svm_init(struct vcpu_svm *svm)
+{
+	svm->vmcb->control.exit_code   = SVM_EXIT_INIT;
+	svm->vmcb->control.exit_info_1 = 0;
+	svm->vmcb->control.exit_info_2 = 0;
+
+	nested_svm_vmexit(svm);
+}
+
+
+static int svm_check_nested_events(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_svm *svm = to_svm(vcpu);
+	bool block_nested_events =
+		kvm_event_needs_reinjection(vcpu) || svm->nested.nested_run_pending;
+	struct kvm_lapic *apic = vcpu->arch.apic;
+
+	if (lapic_in_kernel(vcpu) &&
+	    test_bit(KVM_APIC_INIT, &apic->pending_events)) {
+		if (block_nested_events)
+			return -EBUSY;
+		if (!nested_exit_on_init(svm))
+			return 0;
+		nested_svm_init(svm);
+		return 0;
+	}
+
+	if (vcpu->arch.exception.pending) {
+		if (block_nested_events)
+                        return -EBUSY;
+		if (!nested_exit_on_exception(svm))
+			return 0;
+		nested_svm_inject_exception_vmexit(svm);
+		return 0;
+	}
+
+	if (vcpu->arch.smi_pending && !svm_smi_blocked(vcpu)) {
+		if (block_nested_events)
+			return -EBUSY;
+		if (!nested_exit_on_smi(svm))
+			return 0;
+		nested_svm_smi(svm);
+		return 0;
+	}
+
+	if (vcpu->arch.nmi_pending && !svm_nmi_blocked(vcpu)) {
+		if (block_nested_events)
+			return -EBUSY;
+		if (!nested_exit_on_nmi(svm))
+			return 0;
+		nested_svm_nmi(svm);
+		return 0;
+	}
+
+	if (kvm_cpu_has_interrupt(vcpu) && !svm_interrupt_blocked(vcpu)) {
+		if (block_nested_events)
+			return -EBUSY;
+		if (!nested_exit_on_intr(svm))
+			return 0;
+		nested_svm_intr(svm);
+		return 0;
+	}
+
+	return 0;
+}
+
+int nested_svm_exit_special(struct vcpu_svm *svm)
+{
+	u32 exit_code = svm->vmcb->control.exit_code;
+
+	switch (exit_code) {
+	case SVM_EXIT_INTR:
+	case SVM_EXIT_NMI:
+	case SVM_EXIT_NPF:
+		return NESTED_EXIT_HOST;
+	case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
+		u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
+
+		if (get_host_vmcb(svm)->control.intercepts[INTERCEPT_EXCEPTION] &
+				excp_bits)
+			return NESTED_EXIT_HOST;
+		else if (exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR &&
+			 svm->vcpu.arch.apf.host_apf_flags)
+			/* Trap async PF even if not shadowing */
+			return NESTED_EXIT_HOST;
+		break;
+	}
+	default:
+		break;
+	}
+
+	return NESTED_EXIT_CONTINUE;
+}
+
+static int svm_get_nested_state(struct kvm_vcpu *vcpu,
+				struct kvm_nested_state __user *user_kvm_nested_state,
+				u32 user_data_size)
+{
+	struct vcpu_svm *svm;
+	struct kvm_nested_state kvm_state = {
+		.flags = 0,
+		.format = KVM_STATE_NESTED_FORMAT_SVM,
+		.size = sizeof(kvm_state),
+	};
+	struct vmcb __user *user_vmcb = (struct vmcb __user *)
+		&user_kvm_nested_state->data.svm[0];
+
+	if (!vcpu)
+		return kvm_state.size + KVM_STATE_NESTED_SVM_VMCB_SIZE;
+
+	svm = to_svm(vcpu);
+
+	if (user_data_size < kvm_state.size)
+		goto out;
+
+	/* First fill in the header and copy it out.  */
+	if (is_guest_mode(vcpu)) {
+		kvm_state.hdr.svm.vmcb_pa = svm->nested.vmcb12_gpa;
+		kvm_state.size += KVM_STATE_NESTED_SVM_VMCB_SIZE;
+		kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
+
+		if (svm->nested.nested_run_pending)
+			kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
+	}
+
+	if (gif_set(svm))
+		kvm_state.flags |= KVM_STATE_NESTED_GIF_SET;
+
+	if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
+		return -EFAULT;
+
+	if (!is_guest_mode(vcpu))
+		goto out;
+
+	/*
+	 * Copy over the full size of the VMCB rather than just the size
+	 * of the structs.
+	 */
+	if (clear_user(user_vmcb, KVM_STATE_NESTED_SVM_VMCB_SIZE))
+		return -EFAULT;
+	if (copy_to_user(&user_vmcb->control, &svm->nested.ctl,
+			 sizeof(user_vmcb->control)))
+		return -EFAULT;
+	if (copy_to_user(&user_vmcb->save, &svm->nested.hsave->save,
+			 sizeof(user_vmcb->save)))
+		return -EFAULT;
+
+out:
+	return kvm_state.size;
+}
+
+static int svm_set_nested_state(struct kvm_vcpu *vcpu,
+				struct kvm_nested_state __user *user_kvm_nested_state,
+				struct kvm_nested_state *kvm_state)
+{
+	struct vcpu_svm *svm = to_svm(vcpu);
+	struct vmcb *hsave = svm->nested.hsave;
+	struct vmcb __user *user_vmcb = (struct vmcb __user *)
+		&user_kvm_nested_state->data.svm[0];
+	struct vmcb_control_area *ctl;
+	struct vmcb_save_area *save;
+	int ret;
+	u32 cr0;
+
+	BUILD_BUG_ON(sizeof(struct vmcb_control_area) + sizeof(struct vmcb_save_area) >
+		     KVM_STATE_NESTED_SVM_VMCB_SIZE);
+
+	if (kvm_state->format != KVM_STATE_NESTED_FORMAT_SVM)
+		return -EINVAL;
+
+	if (kvm_state->flags & ~(KVM_STATE_NESTED_GUEST_MODE |
+				 KVM_STATE_NESTED_RUN_PENDING |
+				 KVM_STATE_NESTED_GIF_SET))
+		return -EINVAL;
+
+	/*
+	 * If in guest mode, vcpu->arch.efer actually refers to the L2 guest's
+	 * EFER.SVME, but EFER.SVME still has to be 1 for VMRUN to succeed.
+	 */
+	if (!(vcpu->arch.efer & EFER_SVME)) {
+		/* GIF=1 and no guest mode are required if SVME=0.  */
+		if (kvm_state->flags != KVM_STATE_NESTED_GIF_SET)
+			return -EINVAL;
+	}
+
+	/* SMM temporarily disables SVM, so we cannot be in guest mode.  */
+	if (is_smm(vcpu) && (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
+		return -EINVAL;
+
+	if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE)) {
+		svm_leave_nested(vcpu);
+		svm_set_gif(svm, !!(kvm_state->flags & KVM_STATE_NESTED_GIF_SET));
+		return 0;
+	}
+
+	if (!page_address_valid(vcpu, kvm_state->hdr.svm.vmcb_pa))
+		return -EINVAL;
+	if (kvm_state->size < sizeof(*kvm_state) + KVM_STATE_NESTED_SVM_VMCB_SIZE)
+		return -EINVAL;
+
+	ret  = -ENOMEM;
+	ctl  = kzalloc(sizeof(*ctl),  GFP_KERNEL);
+	save = kzalloc(sizeof(*save), GFP_KERNEL);
+	if (!ctl || !save)
+		goto out_free;
+
+	ret = -EFAULT;
+	if (copy_from_user(ctl, &user_vmcb->control, sizeof(*ctl)))
+		goto out_free;
+	if (copy_from_user(save, &user_vmcb->save, sizeof(*save)))
+		goto out_free;
+
+	ret = -EINVAL;
+	if (!nested_vmcb_check_controls(ctl))
+		goto out_free;
+
+	/*
+	 * Processor state contains L2 state.  Check that it is
+	 * valid for guest mode (see nested_vmcb_checks).
+	 */
+	cr0 = kvm_read_cr0(vcpu);
+        if (((cr0 & X86_CR0_CD) == 0) && (cr0 & X86_CR0_NW))
+		goto out_free;
+
+	/*
+	 * Validate host state saved from before VMRUN (see
+	 * nested_svm_check_permissions).
+	 * TODO: validate reserved bits for all saved state.
+	 */
+	if (!(save->cr0 & X86_CR0_PG))
+		goto out_free;
+	if (!(save->efer & EFER_SVME))
+		goto out_free;
+
+	/*
+	 * All checks done, we can enter guest mode.  L1 control fields
+	 * come from the nested save state.  Guest state is already
+	 * in the registers, the save area of the nested state instead
+	 * contains saved L1 state.
+	 */
+	copy_vmcb_control_area(&hsave->control, &svm->vmcb->control);
+	hsave->save = *save;
+
+	if (is_guest_mode(vcpu))
+		svm_leave_nested(vcpu);
+
+	svm->nested.vmcb12_gpa = kvm_state->hdr.svm.vmcb_pa;
+	load_nested_vmcb_control(svm, ctl);
+	nested_prepare_vmcb_control(svm);
+
+	kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
+	ret = 0;
+out_free:
+	kfree(save);
+	kfree(ctl);
+
+	return ret;
+}
+
+struct kvm_x86_nested_ops svm_nested_ops = {
+	.leave_nested = svm_leave_nested,
+	.check_events = svm_check_nested_events,
+	.get_nested_state_pages = svm_get_nested_state_pages,
+	.get_state = svm_get_nested_state,
+	.set_state = svm_set_nested_state,
+};
diff --git a/arch/x86/kvm/svm/pmu.c b/arch/x86/kvm/svm/pmu.c
new file mode 100644
index 0000000..4e7093b
--- /dev/null
+++ b/arch/x86/kvm/svm/pmu.c
@@ -0,0 +1,328 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * KVM PMU support for AMD
+ *
+ * Copyright 2015, Red Hat, Inc. and/or its affiliates.
+ *
+ * Author:
+ *   Wei Huang <wei@redhat.com>
+ *
+ * Implementation is based on pmu_intel.c file
+ */
+#include <linux/types.h>
+#include <linux/kvm_host.h>
+#include <linux/perf_event.h>
+#include "x86.h"
+#include "cpuid.h"
+#include "lapic.h"
+#include "pmu.h"
+
+enum pmu_type {
+	PMU_TYPE_COUNTER = 0,
+	PMU_TYPE_EVNTSEL,
+};
+
+enum index {
+	INDEX_ZERO = 0,
+	INDEX_ONE,
+	INDEX_TWO,
+	INDEX_THREE,
+	INDEX_FOUR,
+	INDEX_FIVE,
+	INDEX_ERROR,
+};
+
+/* duplicated from amd_perfmon_event_map, K7 and above should work. */
+static struct kvm_event_hw_type_mapping amd_event_mapping[] = {
+	[0] = { 0x76, 0x00, PERF_COUNT_HW_CPU_CYCLES },
+	[1] = { 0xc0, 0x00, PERF_COUNT_HW_INSTRUCTIONS },
+	[2] = { 0x7d, 0x07, PERF_COUNT_HW_CACHE_REFERENCES },
+	[3] = { 0x7e, 0x07, PERF_COUNT_HW_CACHE_MISSES },
+	[4] = { 0xc2, 0x00, PERF_COUNT_HW_BRANCH_INSTRUCTIONS },
+	[5] = { 0xc3, 0x00, PERF_COUNT_HW_BRANCH_MISSES },
+	[6] = { 0xd0, 0x00, PERF_COUNT_HW_STALLED_CYCLES_FRONTEND },
+	[7] = { 0xd1, 0x00, PERF_COUNT_HW_STALLED_CYCLES_BACKEND },
+};
+
+static unsigned int get_msr_base(struct kvm_pmu *pmu, enum pmu_type type)
+{
+	struct kvm_vcpu *vcpu = pmu_to_vcpu(pmu);
+
+	if (guest_cpuid_has(vcpu, X86_FEATURE_PERFCTR_CORE)) {
+		if (type == PMU_TYPE_COUNTER)
+			return MSR_F15H_PERF_CTR;
+		else
+			return MSR_F15H_PERF_CTL;
+	} else {
+		if (type == PMU_TYPE_COUNTER)
+			return MSR_K7_PERFCTR0;
+		else
+			return MSR_K7_EVNTSEL0;
+	}
+}
+
+static enum index msr_to_index(u32 msr)
+{
+	switch (msr) {
+	case MSR_F15H_PERF_CTL0:
+	case MSR_F15H_PERF_CTR0:
+	case MSR_K7_EVNTSEL0:
+	case MSR_K7_PERFCTR0:
+		return INDEX_ZERO;
+	case MSR_F15H_PERF_CTL1:
+	case MSR_F15H_PERF_CTR1:
+	case MSR_K7_EVNTSEL1:
+	case MSR_K7_PERFCTR1:
+		return INDEX_ONE;
+	case MSR_F15H_PERF_CTL2:
+	case MSR_F15H_PERF_CTR2:
+	case MSR_K7_EVNTSEL2:
+	case MSR_K7_PERFCTR2:
+		return INDEX_TWO;
+	case MSR_F15H_PERF_CTL3:
+	case MSR_F15H_PERF_CTR3:
+	case MSR_K7_EVNTSEL3:
+	case MSR_K7_PERFCTR3:
+		return INDEX_THREE;
+	case MSR_F15H_PERF_CTL4:
+	case MSR_F15H_PERF_CTR4:
+		return INDEX_FOUR;
+	case MSR_F15H_PERF_CTL5:
+	case MSR_F15H_PERF_CTR5:
+		return INDEX_FIVE;
+	default:
+		return INDEX_ERROR;
+	}
+}
+
+static inline struct kvm_pmc *get_gp_pmc_amd(struct kvm_pmu *pmu, u32 msr,
+					     enum pmu_type type)
+{
+	switch (msr) {
+	case MSR_F15H_PERF_CTL0:
+	case MSR_F15H_PERF_CTL1:
+	case MSR_F15H_PERF_CTL2:
+	case MSR_F15H_PERF_CTL3:
+	case MSR_F15H_PERF_CTL4:
+	case MSR_F15H_PERF_CTL5:
+	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
+		if (type != PMU_TYPE_EVNTSEL)
+			return NULL;
+		break;
+	case MSR_F15H_PERF_CTR0:
+	case MSR_F15H_PERF_CTR1:
+	case MSR_F15H_PERF_CTR2:
+	case MSR_F15H_PERF_CTR3:
+	case MSR_F15H_PERF_CTR4:
+	case MSR_F15H_PERF_CTR5:
+	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
+		if (type != PMU_TYPE_COUNTER)
+			return NULL;
+		break;
+	default:
+		return NULL;
+	}
+
+	return &pmu->gp_counters[msr_to_index(msr)];
+}
+
+static unsigned int amd_pmc_perf_hw_id(struct kvm_pmc *pmc)
+{
+	u8 event_select = pmc->eventsel & ARCH_PERFMON_EVENTSEL_EVENT;
+	u8 unit_mask = (pmc->eventsel & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
+	int i;
+
+	for (i = 0; i < ARRAY_SIZE(amd_event_mapping); i++)
+		if (amd_event_mapping[i].eventsel == event_select
+		    && amd_event_mapping[i].unit_mask == unit_mask)
+			break;
+
+	if (i == ARRAY_SIZE(amd_event_mapping))
+		return PERF_COUNT_HW_MAX;
+
+	return amd_event_mapping[i].event_type;
+}
+
+/* return PERF_COUNT_HW_MAX as AMD doesn't have fixed events */
+static unsigned amd_find_fixed_event(int idx)
+{
+	return PERF_COUNT_HW_MAX;
+}
+
+/* check if a PMC is enabled by comparing it against global_ctrl bits. Because
+ * AMD CPU doesn't have global_ctrl MSR, all PMCs are enabled (return TRUE).
+ */
+static bool amd_pmc_is_enabled(struct kvm_pmc *pmc)
+{
+	return true;
+}
+
+static struct kvm_pmc *amd_pmc_idx_to_pmc(struct kvm_pmu *pmu, int pmc_idx)
+{
+	unsigned int base = get_msr_base(pmu, PMU_TYPE_COUNTER);
+	struct kvm_vcpu *vcpu = pmu_to_vcpu(pmu);
+
+	if (guest_cpuid_has(vcpu, X86_FEATURE_PERFCTR_CORE)) {
+		/*
+		 * The idx is contiguous. The MSRs are not. The counter MSRs
+		 * are interleaved with the event select MSRs.
+		 */
+		pmc_idx *= 2;
+	}
+
+	return get_gp_pmc_amd(pmu, base + pmc_idx, PMU_TYPE_COUNTER);
+}
+
+/* returns 0 if idx's corresponding MSR exists; otherwise returns 1. */
+static int amd_is_valid_rdpmc_ecx(struct kvm_vcpu *vcpu, unsigned int idx)
+{
+	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
+
+	idx &= ~(3u << 30);
+
+	return (idx >= pmu->nr_arch_gp_counters);
+}
+
+/* idx is the ECX register of RDPMC instruction */
+static struct kvm_pmc *amd_rdpmc_ecx_to_pmc(struct kvm_vcpu *vcpu,
+	unsigned int idx, u64 *mask)
+{
+	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
+	struct kvm_pmc *counters;
+
+	idx &= ~(3u << 30);
+	if (idx >= pmu->nr_arch_gp_counters)
+		return NULL;
+	counters = pmu->gp_counters;
+
+	return &counters[idx];
+}
+
+static bool amd_is_valid_msr(struct kvm_vcpu *vcpu, u32 msr)
+{
+	/* All MSRs refer to exactly one PMC, so msr_idx_to_pmc is enough.  */
+	return false;
+}
+
+static struct kvm_pmc *amd_msr_idx_to_pmc(struct kvm_vcpu *vcpu, u32 msr)
+{
+	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
+	struct kvm_pmc *pmc;
+
+	pmc = get_gp_pmc_amd(pmu, msr, PMU_TYPE_COUNTER);
+	pmc = pmc ? pmc : get_gp_pmc_amd(pmu, msr, PMU_TYPE_EVNTSEL);
+
+	return pmc;
+}
+
+static int amd_pmu_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
+{
+	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
+	struct kvm_pmc *pmc;
+	u32 msr = msr_info->index;
+
+	/* MSR_PERFCTRn */
+	pmc = get_gp_pmc_amd(pmu, msr, PMU_TYPE_COUNTER);
+	if (pmc) {
+		msr_info->data = pmc_read_counter(pmc);
+		return 0;
+	}
+	/* MSR_EVNTSELn */
+	pmc = get_gp_pmc_amd(pmu, msr, PMU_TYPE_EVNTSEL);
+	if (pmc) {
+		msr_info->data = pmc->eventsel;
+		return 0;
+	}
+
+	return 1;
+}
+
+static int amd_pmu_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
+{
+	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
+	struct kvm_pmc *pmc;
+	u32 msr = msr_info->index;
+	u64 data = msr_info->data;
+
+	/* MSR_PERFCTRn */
+	pmc = get_gp_pmc_amd(pmu, msr, PMU_TYPE_COUNTER);
+	if (pmc) {
+		pmc->counter += data - pmc_read_counter(pmc);
+		return 0;
+	}
+	/* MSR_EVNTSELn */
+	pmc = get_gp_pmc_amd(pmu, msr, PMU_TYPE_EVNTSEL);
+	if (pmc) {
+		if (data == pmc->eventsel)
+			return 0;
+		if (!(data & pmu->reserved_bits)) {
+			reprogram_gp_counter(pmc, data);
+			return 0;
+		}
+	}
+
+	return 1;
+}
+
+static void amd_pmu_refresh(struct kvm_vcpu *vcpu)
+{
+	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
+
+	if (guest_cpuid_has(vcpu, X86_FEATURE_PERFCTR_CORE))
+		pmu->nr_arch_gp_counters = AMD64_NUM_COUNTERS_CORE;
+	else
+		pmu->nr_arch_gp_counters = AMD64_NUM_COUNTERS;
+
+	pmu->counter_bitmask[KVM_PMC_GP] = ((u64)1 << 48) - 1;
+	pmu->reserved_bits = 0xfffffff000280000ull;
+	pmu->version = 1;
+	/* not applicable to AMD; but clean them to prevent any fall out */
+	pmu->counter_bitmask[KVM_PMC_FIXED] = 0;
+	pmu->nr_arch_fixed_counters = 0;
+	pmu->global_status = 0;
+	bitmap_set(pmu->all_valid_pmc_idx, 0, pmu->nr_arch_gp_counters);
+}
+
+static void amd_pmu_init(struct kvm_vcpu *vcpu)
+{
+	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
+	int i;
+
+	BUILD_BUG_ON(AMD64_NUM_COUNTERS_CORE > INTEL_PMC_MAX_GENERIC);
+
+	for (i = 0; i < AMD64_NUM_COUNTERS_CORE ; i++) {
+		pmu->gp_counters[i].type = KVM_PMC_GP;
+		pmu->gp_counters[i].vcpu = vcpu;
+		pmu->gp_counters[i].idx = i;
+		pmu->gp_counters[i].current_config = 0;
+	}
+}
+
+static void amd_pmu_reset(struct kvm_vcpu *vcpu)
+{
+	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
+	int i;
+
+	for (i = 0; i < AMD64_NUM_COUNTERS_CORE; i++) {
+		struct kvm_pmc *pmc = &pmu->gp_counters[i];
+
+		pmc_stop_counter(pmc);
+		pmc->counter = pmc->eventsel = 0;
+	}
+}
+
+struct kvm_pmu_ops amd_pmu_ops = {
+	.pmc_perf_hw_id = amd_pmc_perf_hw_id,
+	.find_fixed_event = amd_find_fixed_event,
+	.pmc_is_enabled = amd_pmc_is_enabled,
+	.pmc_idx_to_pmc = amd_pmc_idx_to_pmc,
+	.rdpmc_ecx_to_pmc = amd_rdpmc_ecx_to_pmc,
+	.msr_idx_to_pmc = amd_msr_idx_to_pmc,
+	.is_valid_rdpmc_ecx = amd_is_valid_rdpmc_ecx,
+	.is_valid_msr = amd_is_valid_msr,
+	.get_msr = amd_pmu_get_msr,
+	.set_msr = amd_pmu_set_msr,
+	.refresh = amd_pmu_refresh,
+	.init = amd_pmu_init,
+	.reset = amd_pmu_reset,
+};
diff --git a/arch/x86/kvm/svm/sev.c b/arch/x86/kvm/svm/sev.c
new file mode 100644
index 0000000..6c82ef2
--- /dev/null
+++ b/arch/x86/kvm/svm/sev.c
@@ -0,0 +1,1201 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Kernel-based Virtual Machine driver for Linux
+ *
+ * AMD SVM-SEV support
+ *
+ * Copyright 2010 Red Hat, Inc. and/or its affiliates.
+ */
+
+#include <linux/kvm_types.h>
+#include <linux/kvm_host.h>
+#include <linux/kernel.h>
+#include <linux/highmem.h>
+#include <linux/psp-sev.h>
+#include <linux/pagemap.h>
+#include <linux/swap.h>
+
+#include "x86.h"
+#include "svm.h"
+
+static int sev_flush_asids(void);
+static DECLARE_RWSEM(sev_deactivate_lock);
+static DEFINE_MUTEX(sev_bitmap_lock);
+unsigned int max_sev_asid;
+static unsigned int min_sev_asid;
+static unsigned long *sev_asid_bitmap;
+static unsigned long *sev_reclaim_asid_bitmap;
+#define __sme_page_pa(x) __sme_set(page_to_pfn(x) << PAGE_SHIFT)
+
+struct enc_region {
+	struct list_head list;
+	unsigned long npages;
+	struct page **pages;
+	unsigned long uaddr;
+	unsigned long size;
+};
+
+static int sev_flush_asids(void)
+{
+	int ret, error = 0;
+
+	/*
+	 * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail,
+	 * so it must be guarded.
+	 */
+	down_write(&sev_deactivate_lock);
+
+	wbinvd_on_all_cpus();
+	ret = sev_guest_df_flush(&error);
+
+	up_write(&sev_deactivate_lock);
+
+	if (ret)
+		pr_err("SEV: DF_FLUSH failed, ret=%d, error=%#x\n", ret, error);
+
+	return ret;
+}
+
+/* Must be called with the sev_bitmap_lock held */
+static bool __sev_recycle_asids(void)
+{
+	int pos;
+
+	/* Check if there are any ASIDs to reclaim before performing a flush */
+	pos = find_next_bit(sev_reclaim_asid_bitmap,
+			    max_sev_asid, min_sev_asid - 1);
+	if (pos >= max_sev_asid)
+		return false;
+
+	if (sev_flush_asids())
+		return false;
+
+	bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap,
+		   max_sev_asid);
+	bitmap_zero(sev_reclaim_asid_bitmap, max_sev_asid);
+
+	return true;
+}
+
+static int sev_asid_new(void)
+{
+	bool retry = true;
+	int pos;
+
+	mutex_lock(&sev_bitmap_lock);
+
+	/*
+	 * SEV-enabled guest must use asid from min_sev_asid to max_sev_asid.
+	 */
+again:
+	pos = find_next_zero_bit(sev_asid_bitmap, max_sev_asid, min_sev_asid - 1);
+	if (pos >= max_sev_asid) {
+		if (retry && __sev_recycle_asids()) {
+			retry = false;
+			goto again;
+		}
+		mutex_unlock(&sev_bitmap_lock);
+		return -EBUSY;
+	}
+
+	__set_bit(pos, sev_asid_bitmap);
+
+	mutex_unlock(&sev_bitmap_lock);
+
+	return pos + 1;
+}
+
+static int sev_get_asid(struct kvm *kvm)
+{
+	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
+
+	return sev->asid;
+}
+
+static void sev_asid_free(int asid)
+{
+	struct svm_cpu_data *sd;
+	int cpu, pos;
+
+	mutex_lock(&sev_bitmap_lock);
+
+	pos = asid - 1;
+	__set_bit(pos, sev_reclaim_asid_bitmap);
+
+	for_each_possible_cpu(cpu) {
+		sd = per_cpu(svm_data, cpu);
+		sd->sev_vmcbs[asid] = NULL;
+	}
+
+	mutex_unlock(&sev_bitmap_lock);
+}
+
+static void sev_decommission(unsigned int handle)
+{
+	struct sev_data_decommission *decommission;
+
+	if (!handle)
+		return;
+
+	decommission = kzalloc(sizeof(*decommission), GFP_KERNEL);
+	if (!decommission)
+		return;
+
+	decommission->handle = handle;
+	sev_guest_decommission(decommission, NULL);
+
+	kfree(decommission);
+}
+
+static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
+{
+	struct sev_data_deactivate *data;
+
+	if (!handle)
+		return;
+
+	data = kzalloc(sizeof(*data), GFP_KERNEL);
+	if (!data)
+		return;
+
+	/* deactivate handle */
+	data->handle = handle;
+
+	/* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */
+	down_read(&sev_deactivate_lock);
+	sev_guest_deactivate(data, NULL);
+	up_read(&sev_deactivate_lock);
+
+	kfree(data);
+
+	sev_decommission(handle);
+}
+
+static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
+{
+	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
+	int asid, ret;
+
+	if (kvm->created_vcpus)
+		return -EINVAL;
+
+	ret = -EBUSY;
+	if (unlikely(sev->active))
+		return ret;
+
+	asid = sev_asid_new();
+	if (asid < 0)
+		return ret;
+
+	ret = sev_platform_init(&argp->error);
+	if (ret)
+		goto e_free;
+
+	sev->active = true;
+	sev->asid = asid;
+	INIT_LIST_HEAD(&sev->regions_list);
+
+	return 0;
+
+e_free:
+	sev_asid_free(asid);
+	return ret;
+}
+
+static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
+{
+	struct sev_data_activate *data;
+	int asid = sev_get_asid(kvm);
+	int ret;
+
+	data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
+	if (!data)
+		return -ENOMEM;
+
+	/* activate ASID on the given handle */
+	data->handle = handle;
+	data->asid   = asid;
+	ret = sev_guest_activate(data, error);
+	kfree(data);
+
+	return ret;
+}
+
+static int __sev_issue_cmd(int fd, int id, void *data, int *error)
+{
+	struct fd f;
+	int ret;
+
+	f = fdget(fd);
+	if (!f.file)
+		return -EBADF;
+
+	ret = sev_issue_cmd_external_user(f.file, id, data, error);
+
+	fdput(f);
+	return ret;
+}
+
+static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
+{
+	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
+
+	return __sev_issue_cmd(sev->fd, id, data, error);
+}
+
+static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
+{
+	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
+	struct sev_data_launch_start *start;
+	struct kvm_sev_launch_start params;
+	void *dh_blob, *session_blob;
+	int *error = &argp->error;
+	int ret;
+
+	if (!sev_guest(kvm))
+		return -ENOTTY;
+
+	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
+		return -EFAULT;
+
+	start = kzalloc(sizeof(*start), GFP_KERNEL_ACCOUNT);
+	if (!start)
+		return -ENOMEM;
+
+	dh_blob = NULL;
+	if (params.dh_uaddr) {
+		dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
+		if (IS_ERR(dh_blob)) {
+			ret = PTR_ERR(dh_blob);
+			goto e_free;
+		}
+
+		start->dh_cert_address = __sme_set(__pa(dh_blob));
+		start->dh_cert_len = params.dh_len;
+	}
+
+	session_blob = NULL;
+	if (params.session_uaddr) {
+		session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
+		if (IS_ERR(session_blob)) {
+			ret = PTR_ERR(session_blob);
+			goto e_free_dh;
+		}
+
+		start->session_address = __sme_set(__pa(session_blob));
+		start->session_len = params.session_len;
+	}
+
+	start->handle = params.handle;
+	start->policy = params.policy;
+
+	/* create memory encryption context */
+	ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, start, error);
+	if (ret)
+		goto e_free_session;
+
+	/* Bind ASID to this guest */
+	ret = sev_bind_asid(kvm, start->handle, error);
+	if (ret) {
+		sev_decommission(start->handle);
+		goto e_free_session;
+	}
+
+	/* return handle to userspace */
+	params.handle = start->handle;
+	if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params))) {
+		sev_unbind_asid(kvm, start->handle);
+		ret = -EFAULT;
+		goto e_free_session;
+	}
+
+	sev->handle = start->handle;
+	sev->fd = argp->sev_fd;
+
+e_free_session:
+	kfree(session_blob);
+e_free_dh:
+	kfree(dh_blob);
+e_free:
+	kfree(start);
+	return ret;
+}
+
+static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
+				    unsigned long ulen, unsigned long *n,
+				    int write)
+{
+	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
+	unsigned long npages, size;
+	int npinned;
+	unsigned long locked, lock_limit;
+	struct page **pages;
+	unsigned long first, last;
+	int ret;
+
+	lockdep_assert_held(&kvm->lock);
+
+	if (ulen == 0 || uaddr + ulen < uaddr)
+		return ERR_PTR(-EINVAL);
+
+	/* Calculate number of pages. */
+	first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
+	last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
+	npages = (last - first + 1);
+
+	locked = sev->pages_locked + npages;
+	lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
+	if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
+		pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
+		return ERR_PTR(-ENOMEM);
+	}
+
+	if (WARN_ON_ONCE(npages > INT_MAX))
+		return ERR_PTR(-EINVAL);
+
+	/* Avoid using vmalloc for smaller buffers. */
+	size = npages * sizeof(struct page *);
+	if (size > PAGE_SIZE)
+		pages = __vmalloc(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
+	else
+		pages = kmalloc(size, GFP_KERNEL_ACCOUNT);
+
+	if (!pages)
+		return ERR_PTR(-ENOMEM);
+
+	/* Pin the user virtual address. */
+	npinned = pin_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages);
+	if (npinned != npages) {
+		pr_err("SEV: Failure locking %lu pages.\n", npages);
+		ret = -ENOMEM;
+		goto err;
+	}
+
+	*n = npages;
+	sev->pages_locked = locked;
+
+	return pages;
+
+err:
+	if (npinned > 0)
+		unpin_user_pages(pages, npinned);
+
+	kvfree(pages);
+	return ERR_PTR(ret);
+}
+
+static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
+			     unsigned long npages)
+{
+	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
+
+	unpin_user_pages(pages, npages);
+	kvfree(pages);
+	sev->pages_locked -= npages;
+}
+
+static void sev_clflush_pages(struct page *pages[], unsigned long npages)
+{
+	uint8_t *page_virtual;
+	unsigned long i;
+
+	if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 ||
+	    pages == NULL)
+		return;
+
+	for (i = 0; i < npages; i++) {
+		page_virtual = kmap_atomic(pages[i]);
+		clflush_cache_range(page_virtual, PAGE_SIZE);
+		kunmap_atomic(page_virtual);
+	}
+}
+
+static unsigned long get_num_contig_pages(unsigned long idx,
+				struct page **inpages, unsigned long npages)
+{
+	unsigned long paddr, next_paddr;
+	unsigned long i = idx + 1, pages = 1;
+
+	/* find the number of contiguous pages starting from idx */
+	paddr = __sme_page_pa(inpages[idx]);
+	while (i < npages) {
+		next_paddr = __sme_page_pa(inpages[i++]);
+		if ((paddr + PAGE_SIZE) == next_paddr) {
+			pages++;
+			paddr = next_paddr;
+			continue;
+		}
+		break;
+	}
+
+	return pages;
+}
+
+static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
+{
+	unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i;
+	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
+	struct kvm_sev_launch_update_data params;
+	struct sev_data_launch_update_data *data;
+	struct page **inpages;
+	int ret;
+
+	if (!sev_guest(kvm))
+		return -ENOTTY;
+
+	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
+		return -EFAULT;
+
+	data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
+	if (!data)
+		return -ENOMEM;
+
+	vaddr = params.uaddr;
+	size = params.len;
+	vaddr_end = vaddr + size;
+
+	/* Lock the user memory. */
+	inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1);
+	if (IS_ERR(inpages)) {
+		ret = PTR_ERR(inpages);
+		goto e_free;
+	}
+
+	/*
+	 * Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in
+	 * place; the cache may contain the data that was written unencrypted.
+	 */
+	sev_clflush_pages(inpages, npages);
+
+	for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
+		int offset, len;
+
+		/*
+		 * If the user buffer is not page-aligned, calculate the offset
+		 * within the page.
+		 */
+		offset = vaddr & (PAGE_SIZE - 1);
+
+		/* Calculate the number of pages that can be encrypted in one go. */
+		pages = get_num_contig_pages(i, inpages, npages);
+
+		len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
+
+		data->handle = sev->handle;
+		data->len = len;
+		data->address = __sme_page_pa(inpages[i]) + offset;
+		ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, data, &argp->error);
+		if (ret)
+			goto e_unpin;
+
+		size -= len;
+		next_vaddr = vaddr + len;
+	}
+
+e_unpin:
+	/* content of memory is updated, mark pages dirty */
+	for (i = 0; i < npages; i++) {
+		set_page_dirty_lock(inpages[i]);
+		mark_page_accessed(inpages[i]);
+	}
+	/* unlock the user pages */
+	sev_unpin_memory(kvm, inpages, npages);
+e_free:
+	kfree(data);
+	return ret;
+}
+
+static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
+{
+	void __user *measure = (void __user *)(uintptr_t)argp->data;
+	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
+	struct sev_data_launch_measure *data;
+	struct kvm_sev_launch_measure params;
+	void __user *p = NULL;
+	void *blob = NULL;
+	int ret;
+
+	if (!sev_guest(kvm))
+		return -ENOTTY;
+
+	if (copy_from_user(&params, measure, sizeof(params)))
+		return -EFAULT;
+
+	data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
+	if (!data)
+		return -ENOMEM;
+
+	/* User wants to query the blob length */
+	if (!params.len)
+		goto cmd;
+
+	p = (void __user *)(uintptr_t)params.uaddr;
+	if (p) {
+		if (params.len > SEV_FW_BLOB_MAX_SIZE) {
+			ret = -EINVAL;
+			goto e_free;
+		}
+
+		ret = -ENOMEM;
+		blob = kmalloc(params.len, GFP_KERNEL);
+		if (!blob)
+			goto e_free;
+
+		data->address = __psp_pa(blob);
+		data->len = params.len;
+	}
+
+cmd:
+	data->handle = sev->handle;
+	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, data, &argp->error);
+
+	/*
+	 * If we query the session length, FW responded with expected data.
+	 */
+	if (!params.len)
+		goto done;
+
+	if (ret)
+		goto e_free_blob;
+
+	if (blob) {
+		if (copy_to_user(p, blob, params.len))
+			ret = -EFAULT;
+	}
+
+done:
+	params.len = data->len;
+	if (copy_to_user(measure, &params, sizeof(params)))
+		ret = -EFAULT;
+e_free_blob:
+	kfree(blob);
+e_free:
+	kfree(data);
+	return ret;
+}
+
+static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
+{
+	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
+	struct sev_data_launch_finish *data;
+	int ret;
+
+	if (!sev_guest(kvm))
+		return -ENOTTY;
+
+	data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
+	if (!data)
+		return -ENOMEM;
+
+	data->handle = sev->handle;
+	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, data, &argp->error);
+
+	kfree(data);
+	return ret;
+}
+
+static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
+{
+	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
+	struct kvm_sev_guest_status params;
+	struct sev_data_guest_status *data;
+	int ret;
+
+	if (!sev_guest(kvm))
+		return -ENOTTY;
+
+	data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
+	if (!data)
+		return -ENOMEM;
+
+	data->handle = sev->handle;
+	ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, data, &argp->error);
+	if (ret)
+		goto e_free;
+
+	params.policy = data->policy;
+	params.state = data->state;
+	params.handle = data->handle;
+
+	if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params)))
+		ret = -EFAULT;
+e_free:
+	kfree(data);
+	return ret;
+}
+
+static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
+			       unsigned long dst, int size,
+			       int *error, bool enc)
+{
+	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
+	struct sev_data_dbg *data;
+	int ret;
+
+	data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
+	if (!data)
+		return -ENOMEM;
+
+	data->handle = sev->handle;
+	data->dst_addr = dst;
+	data->src_addr = src;
+	data->len = size;
+
+	ret = sev_issue_cmd(kvm,
+			    enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
+			    data, error);
+	kfree(data);
+	return ret;
+}
+
+static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
+			     unsigned long dst_paddr, int sz, int *err)
+{
+	int offset;
+
+	/*
+	 * Its safe to read more than we are asked, caller should ensure that
+	 * destination has enough space.
+	 */
+	offset = src_paddr & 15;
+	src_paddr = round_down(src_paddr, 16);
+	sz = round_up(sz + offset, 16);
+
+	return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
+}
+
+static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
+				  unsigned long __user dst_uaddr,
+				  unsigned long dst_paddr,
+				  int size, int *err)
+{
+	struct page *tpage = NULL;
+	int ret, offset;
+
+	/* if inputs are not 16-byte then use intermediate buffer */
+	if (!IS_ALIGNED(dst_paddr, 16) ||
+	    !IS_ALIGNED(paddr,     16) ||
+	    !IS_ALIGNED(size,      16)) {
+		tpage = (void *)alloc_page(GFP_KERNEL);
+		if (!tpage)
+			return -ENOMEM;
+
+		dst_paddr = __sme_page_pa(tpage);
+	}
+
+	ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
+	if (ret)
+		goto e_free;
+
+	if (tpage) {
+		offset = paddr & 15;
+		if (copy_to_user((void __user *)(uintptr_t)dst_uaddr,
+				 page_address(tpage) + offset, size))
+			ret = -EFAULT;
+	}
+
+e_free:
+	if (tpage)
+		__free_page(tpage);
+
+	return ret;
+}
+
+static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
+				  unsigned long __user vaddr,
+				  unsigned long dst_paddr,
+				  unsigned long __user dst_vaddr,
+				  int size, int *error)
+{
+	struct page *src_tpage = NULL;
+	struct page *dst_tpage = NULL;
+	int ret, len = size;
+
+	/* If source buffer is not aligned then use an intermediate buffer */
+	if (!IS_ALIGNED(vaddr, 16)) {
+		src_tpage = alloc_page(GFP_KERNEL);
+		if (!src_tpage)
+			return -ENOMEM;
+
+		if (copy_from_user(page_address(src_tpage),
+				(void __user *)(uintptr_t)vaddr, size)) {
+			__free_page(src_tpage);
+			return -EFAULT;
+		}
+
+		paddr = __sme_page_pa(src_tpage);
+	}
+
+	/*
+	 *  If destination buffer or length is not aligned then do read-modify-write:
+	 *   - decrypt destination in an intermediate buffer
+	 *   - copy the source buffer in an intermediate buffer
+	 *   - use the intermediate buffer as source buffer
+	 */
+	if (!IS_ALIGNED(dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
+		int dst_offset;
+
+		dst_tpage = alloc_page(GFP_KERNEL);
+		if (!dst_tpage) {
+			ret = -ENOMEM;
+			goto e_free;
+		}
+
+		ret = __sev_dbg_decrypt(kvm, dst_paddr,
+					__sme_page_pa(dst_tpage), size, error);
+		if (ret)
+			goto e_free;
+
+		/*
+		 *  If source is kernel buffer then use memcpy() otherwise
+		 *  copy_from_user().
+		 */
+		dst_offset = dst_paddr & 15;
+
+		if (src_tpage)
+			memcpy(page_address(dst_tpage) + dst_offset,
+			       page_address(src_tpage), size);
+		else {
+			if (copy_from_user(page_address(dst_tpage) + dst_offset,
+					   (void __user *)(uintptr_t)vaddr, size)) {
+				ret = -EFAULT;
+				goto e_free;
+			}
+		}
+
+		paddr = __sme_page_pa(dst_tpage);
+		dst_paddr = round_down(dst_paddr, 16);
+		len = round_up(size, 16);
+	}
+
+	ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
+
+e_free:
+	if (src_tpage)
+		__free_page(src_tpage);
+	if (dst_tpage)
+		__free_page(dst_tpage);
+	return ret;
+}
+
+static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
+{
+	unsigned long vaddr, vaddr_end, next_vaddr;
+	unsigned long dst_vaddr;
+	struct page **src_p, **dst_p;
+	struct kvm_sev_dbg debug;
+	unsigned long n;
+	unsigned int size;
+	int ret;
+
+	if (!sev_guest(kvm))
+		return -ENOTTY;
+
+	if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug)))
+		return -EFAULT;
+
+	if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr)
+		return -EINVAL;
+	if (!debug.dst_uaddr)
+		return -EINVAL;
+
+	vaddr = debug.src_uaddr;
+	size = debug.len;
+	vaddr_end = vaddr + size;
+	dst_vaddr = debug.dst_uaddr;
+
+	for (; vaddr < vaddr_end; vaddr = next_vaddr) {
+		int len, s_off, d_off;
+
+		/* lock userspace source and destination page */
+		src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
+		if (IS_ERR(src_p))
+			return PTR_ERR(src_p);
+
+		dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1);
+		if (IS_ERR(dst_p)) {
+			sev_unpin_memory(kvm, src_p, n);
+			return PTR_ERR(dst_p);
+		}
+
+		/*
+		 * Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify
+		 * the pages; flush the destination too so that future accesses do not
+		 * see stale data.
+		 */
+		sev_clflush_pages(src_p, 1);
+		sev_clflush_pages(dst_p, 1);
+
+		/*
+		 * Since user buffer may not be page aligned, calculate the
+		 * offset within the page.
+		 */
+		s_off = vaddr & ~PAGE_MASK;
+		d_off = dst_vaddr & ~PAGE_MASK;
+		len = min_t(size_t, (PAGE_SIZE - s_off), size);
+
+		if (dec)
+			ret = __sev_dbg_decrypt_user(kvm,
+						     __sme_page_pa(src_p[0]) + s_off,
+						     dst_vaddr,
+						     __sme_page_pa(dst_p[0]) + d_off,
+						     len, &argp->error);
+		else
+			ret = __sev_dbg_encrypt_user(kvm,
+						     __sme_page_pa(src_p[0]) + s_off,
+						     vaddr,
+						     __sme_page_pa(dst_p[0]) + d_off,
+						     dst_vaddr,
+						     len, &argp->error);
+
+		sev_unpin_memory(kvm, src_p, n);
+		sev_unpin_memory(kvm, dst_p, n);
+
+		if (ret)
+			goto err;
+
+		next_vaddr = vaddr + len;
+		dst_vaddr = dst_vaddr + len;
+		size -= len;
+	}
+err:
+	return ret;
+}
+
+static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
+{
+	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
+	struct sev_data_launch_secret *data;
+	struct kvm_sev_launch_secret params;
+	struct page **pages;
+	void *blob, *hdr;
+	unsigned long n, i;
+	int ret, offset;
+
+	if (!sev_guest(kvm))
+		return -ENOTTY;
+
+	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
+		return -EFAULT;
+
+	pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1);
+	if (IS_ERR(pages))
+		return PTR_ERR(pages);
+
+	/*
+	 * Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in
+	 * place; the cache may contain the data that was written unencrypted.
+	 */
+	sev_clflush_pages(pages, n);
+
+	/*
+	 * The secret must be copied into contiguous memory region, lets verify
+	 * that userspace memory pages are contiguous before we issue command.
+	 */
+	if (get_num_contig_pages(0, pages, n) != n) {
+		ret = -EINVAL;
+		goto e_unpin_memory;
+	}
+
+	ret = -ENOMEM;
+	data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
+	if (!data)
+		goto e_unpin_memory;
+
+	offset = params.guest_uaddr & (PAGE_SIZE - 1);
+	data->guest_address = __sme_page_pa(pages[0]) + offset;
+	data->guest_len = params.guest_len;
+
+	blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
+	if (IS_ERR(blob)) {
+		ret = PTR_ERR(blob);
+		goto e_free;
+	}
+
+	data->trans_address = __psp_pa(blob);
+	data->trans_len = params.trans_len;
+
+	hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
+	if (IS_ERR(hdr)) {
+		ret = PTR_ERR(hdr);
+		goto e_free_blob;
+	}
+	data->hdr_address = __psp_pa(hdr);
+	data->hdr_len = params.hdr_len;
+
+	data->handle = sev->handle;
+	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, data, &argp->error);
+
+	kfree(hdr);
+
+e_free_blob:
+	kfree(blob);
+e_free:
+	kfree(data);
+e_unpin_memory:
+	/* content of memory is updated, mark pages dirty */
+	for (i = 0; i < n; i++) {
+		set_page_dirty_lock(pages[i]);
+		mark_page_accessed(pages[i]);
+	}
+	sev_unpin_memory(kvm, pages, n);
+	return ret;
+}
+
+int svm_mem_enc_op(struct kvm *kvm, void __user *argp)
+{
+	struct kvm_sev_cmd sev_cmd;
+	int r;
+
+	if (!svm_sev_enabled())
+		return -ENOTTY;
+
+	if (!argp)
+		return 0;
+
+	if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
+		return -EFAULT;
+
+	mutex_lock(&kvm->lock);
+
+	switch (sev_cmd.id) {
+	case KVM_SEV_INIT:
+		r = sev_guest_init(kvm, &sev_cmd);
+		break;
+	case KVM_SEV_LAUNCH_START:
+		r = sev_launch_start(kvm, &sev_cmd);
+		break;
+	case KVM_SEV_LAUNCH_UPDATE_DATA:
+		r = sev_launch_update_data(kvm, &sev_cmd);
+		break;
+	case KVM_SEV_LAUNCH_MEASURE:
+		r = sev_launch_measure(kvm, &sev_cmd);
+		break;
+	case KVM_SEV_LAUNCH_FINISH:
+		r = sev_launch_finish(kvm, &sev_cmd);
+		break;
+	case KVM_SEV_GUEST_STATUS:
+		r = sev_guest_status(kvm, &sev_cmd);
+		break;
+	case KVM_SEV_DBG_DECRYPT:
+		r = sev_dbg_crypt(kvm, &sev_cmd, true);
+		break;
+	case KVM_SEV_DBG_ENCRYPT:
+		r = sev_dbg_crypt(kvm, &sev_cmd, false);
+		break;
+	case KVM_SEV_LAUNCH_SECRET:
+		r = sev_launch_secret(kvm, &sev_cmd);
+		break;
+	default:
+		r = -EINVAL;
+		goto out;
+	}
+
+	if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
+		r = -EFAULT;
+
+out:
+	mutex_unlock(&kvm->lock);
+	return r;
+}
+
+int svm_register_enc_region(struct kvm *kvm,
+			    struct kvm_enc_region *range)
+{
+	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
+	struct enc_region *region;
+	int ret = 0;
+
+	if (!sev_guest(kvm))
+		return -ENOTTY;
+
+	if (range->addr > ULONG_MAX || range->size > ULONG_MAX)
+		return -EINVAL;
+
+	region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT);
+	if (!region)
+		return -ENOMEM;
+
+	mutex_lock(&kvm->lock);
+	region->pages = sev_pin_memory(kvm, range->addr, range->size, &region->npages, 1);
+	if (IS_ERR(region->pages)) {
+		ret = PTR_ERR(region->pages);
+		mutex_unlock(&kvm->lock);
+		goto e_free;
+	}
+
+	region->uaddr = range->addr;
+	region->size = range->size;
+
+	list_add_tail(&region->list, &sev->regions_list);
+	mutex_unlock(&kvm->lock);
+
+	/*
+	 * The guest may change the memory encryption attribute from C=0 -> C=1
+	 * or vice versa for this memory range. Lets make sure caches are
+	 * flushed to ensure that guest data gets written into memory with
+	 * correct C-bit.
+	 */
+	sev_clflush_pages(region->pages, region->npages);
+
+	return ret;
+
+e_free:
+	kfree(region);
+	return ret;
+}
+
+static struct enc_region *
+find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
+{
+	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
+	struct list_head *head = &sev->regions_list;
+	struct enc_region *i;
+
+	list_for_each_entry(i, head, list) {
+		if (i->uaddr == range->addr &&
+		    i->size == range->size)
+			return i;
+	}
+
+	return NULL;
+}
+
+static void __unregister_enc_region_locked(struct kvm *kvm,
+					   struct enc_region *region)
+{
+	sev_unpin_memory(kvm, region->pages, region->npages);
+	list_del(&region->list);
+	kfree(region);
+}
+
+int svm_unregister_enc_region(struct kvm *kvm,
+			      struct kvm_enc_region *range)
+{
+	struct enc_region *region;
+	int ret;
+
+	mutex_lock(&kvm->lock);
+
+	if (!sev_guest(kvm)) {
+		ret = -ENOTTY;
+		goto failed;
+	}
+
+	region = find_enc_region(kvm, range);
+	if (!region) {
+		ret = -EINVAL;
+		goto failed;
+	}
+
+	/*
+	 * Ensure that all guest tagged cache entries are flushed before
+	 * releasing the pages back to the system for use. CLFLUSH will
+	 * not do this, so issue a WBINVD.
+	 */
+	wbinvd_on_all_cpus();
+
+	__unregister_enc_region_locked(kvm, region);
+
+	mutex_unlock(&kvm->lock);
+	return 0;
+
+failed:
+	mutex_unlock(&kvm->lock);
+	return ret;
+}
+
+void sev_vm_destroy(struct kvm *kvm)
+{
+	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
+	struct list_head *head = &sev->regions_list;
+	struct list_head *pos, *q;
+
+	if (!sev_guest(kvm))
+		return;
+
+	mutex_lock(&kvm->lock);
+
+	/*
+	 * Ensure that all guest tagged cache entries are flushed before
+	 * releasing the pages back to the system for use. CLFLUSH will
+	 * not do this, so issue a WBINVD.
+	 */
+	wbinvd_on_all_cpus();
+
+	/*
+	 * if userspace was terminated before unregistering the memory regions
+	 * then lets unpin all the registered memory.
+	 */
+	if (!list_empty(head)) {
+		list_for_each_safe(pos, q, head) {
+			__unregister_enc_region_locked(kvm,
+				list_entry(pos, struct enc_region, list));
+			cond_resched();
+		}
+	}
+
+	mutex_unlock(&kvm->lock);
+
+	sev_unbind_asid(kvm, sev->handle);
+	sev_asid_free(sev->asid);
+}
+
+int __init sev_hardware_setup(void)
+{
+	/* Maximum number of encrypted guests supported simultaneously */
+	max_sev_asid = cpuid_ecx(0x8000001F);
+
+	if (!svm_sev_enabled())
+		return 1;
+
+	/* Minimum ASID value that should be used for SEV guest */
+	min_sev_asid = cpuid_edx(0x8000001F);
+
+	/* Initialize SEV ASID bitmaps */
+	sev_asid_bitmap = bitmap_zalloc(max_sev_asid, GFP_KERNEL);
+	if (!sev_asid_bitmap)
+		return 1;
+
+	sev_reclaim_asid_bitmap = bitmap_zalloc(max_sev_asid, GFP_KERNEL);
+	if (!sev_reclaim_asid_bitmap)
+		return 1;
+
+	pr_info("SEV supported\n");
+
+	return 0;
+}
+
+void sev_hardware_teardown(void)
+{
+	if (!svm_sev_enabled())
+		return;
+
+	bitmap_free(sev_asid_bitmap);
+	bitmap_free(sev_reclaim_asid_bitmap);
+
+	sev_flush_asids();
+}
+
+void pre_sev_run(struct vcpu_svm *svm, int cpu)
+{
+	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
+	int asid = sev_get_asid(svm->vcpu.kvm);
+
+	/* Assign the asid allocated with this SEV guest */
+	svm->vmcb->control.asid = asid;
+
+	/*
+	 * Flush guest TLB:
+	 *
+	 * 1) when different VMCB for the same ASID is to be run on the same host CPU.
+	 * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
+	 */
+	if (sd->sev_vmcbs[asid] == svm->vmcb &&
+	    svm->vcpu.arch.last_vmentry_cpu == cpu)
+		return;
+
+	sd->sev_vmcbs[asid] = svm->vmcb;
+	svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
+	vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
+}
diff --git a/arch/x86/kvm/svm/svm.c b/arch/x86/kvm/svm/svm.c
new file mode 100644
index 0000000..7773a76
--- /dev/null
+++ b/arch/x86/kvm/svm/svm.c
@@ -0,0 +1,4359 @@
+#define pr_fmt(fmt) "SVM: " fmt
+
+#include <linux/kvm_host.h>
+
+#include "irq.h"
+#include "mmu.h"
+#include "kvm_cache_regs.h"
+#include "x86.h"
+#include "cpuid.h"
+#include "pmu.h"
+
+#include <linux/module.h>
+#include <linux/mod_devicetable.h>
+#include <linux/kernel.h>
+#include <linux/vmalloc.h>
+#include <linux/highmem.h>
+#include <linux/amd-iommu.h>
+#include <linux/sched.h>
+#include <linux/trace_events.h>
+#include <linux/slab.h>
+#include <linux/hashtable.h>
+#include <linux/objtool.h>
+#include <linux/psp-sev.h>
+#include <linux/file.h>
+#include <linux/pagemap.h>
+#include <linux/swap.h>
+#include <linux/rwsem.h>
+
+#include <asm/apic.h>
+#include <asm/perf_event.h>
+#include <asm/tlbflush.h>
+#include <asm/desc.h>
+#include <asm/debugreg.h>
+#include <asm/kvm_para.h>
+#include <asm/irq_remapping.h>
+#include <asm/mce.h>
+#include <asm/spec-ctrl.h>
+#include <asm/cpu_device_id.h>
+
+#include <asm/virtext.h>
+#include "trace.h"
+
+#include "svm.h"
+
+#define __ex(x) __kvm_handle_fault_on_reboot(x)
+
+MODULE_AUTHOR("Qumranet");
+MODULE_LICENSE("GPL");
+
+#ifdef MODULE
+static const struct x86_cpu_id svm_cpu_id[] = {
+	X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL),
+	{}
+};
+MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
+#endif
+
+#define IOPM_ALLOC_ORDER 2
+#define MSRPM_ALLOC_ORDER 1
+
+#define SEG_TYPE_LDT 2
+#define SEG_TYPE_BUSY_TSS16 3
+
+#define SVM_FEATURE_LBRV           (1 <<  1)
+#define SVM_FEATURE_SVML           (1 <<  2)
+#define SVM_FEATURE_TSC_RATE       (1 <<  4)
+#define SVM_FEATURE_VMCB_CLEAN     (1 <<  5)
+#define SVM_FEATURE_FLUSH_ASID     (1 <<  6)
+#define SVM_FEATURE_DECODE_ASSIST  (1 <<  7)
+#define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
+
+#define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
+
+#define TSC_RATIO_RSVD          0xffffff0000000000ULL
+#define TSC_RATIO_MIN		0x0000000000000001ULL
+#define TSC_RATIO_MAX		0x000000ffffffffffULL
+
+static bool erratum_383_found __read_mostly;
+
+u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
+
+/*
+ * Set osvw_len to higher value when updated Revision Guides
+ * are published and we know what the new status bits are
+ */
+static uint64_t osvw_len = 4, osvw_status;
+
+static DEFINE_PER_CPU(u64, current_tsc_ratio);
+#define TSC_RATIO_DEFAULT	0x0100000000ULL
+
+static const struct svm_direct_access_msrs {
+	u32 index;   /* Index of the MSR */
+	bool always; /* True if intercept is always on */
+} direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = {
+	{ .index = MSR_STAR,				.always = true  },
+	{ .index = MSR_IA32_SYSENTER_CS,		.always = true  },
+#ifdef CONFIG_X86_64
+	{ .index = MSR_GS_BASE,				.always = true  },
+	{ .index = MSR_FS_BASE,				.always = true  },
+	{ .index = MSR_KERNEL_GS_BASE,			.always = true  },
+	{ .index = MSR_LSTAR,				.always = true  },
+	{ .index = MSR_CSTAR,				.always = true  },
+	{ .index = MSR_SYSCALL_MASK,			.always = true  },
+#endif
+	{ .index = MSR_IA32_SPEC_CTRL,			.always = false },
+	{ .index = MSR_IA32_PRED_CMD,			.always = false },
+	{ .index = MSR_IA32_LASTBRANCHFROMIP,		.always = false },
+	{ .index = MSR_IA32_LASTBRANCHTOIP,		.always = false },
+	{ .index = MSR_IA32_LASTINTFROMIP,		.always = false },
+	{ .index = MSR_IA32_LASTINTTOIP,		.always = false },
+	{ .index = MSR_INVALID,				.always = false },
+};
+
+/* enable NPT for AMD64 and X86 with PAE */
+#if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
+bool npt_enabled = true;
+#else
+bool npt_enabled;
+#endif
+
+/*
+ * These 2 parameters are used to config the controls for Pause-Loop Exiting:
+ * pause_filter_count: On processors that support Pause filtering(indicated
+ *	by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
+ *	count value. On VMRUN this value is loaded into an internal counter.
+ *	Each time a pause instruction is executed, this counter is decremented
+ *	until it reaches zero at which time a #VMEXIT is generated if pause
+ *	intercept is enabled. Refer to  AMD APM Vol 2 Section 15.14.4 Pause
+ *	Intercept Filtering for more details.
+ *	This also indicate if ple logic enabled.
+ *
+ * pause_filter_thresh: In addition, some processor families support advanced
+ *	pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
+ *	the amount of time a guest is allowed to execute in a pause loop.
+ *	In this mode, a 16-bit pause filter threshold field is added in the
+ *	VMCB. The threshold value is a cycle count that is used to reset the
+ *	pause counter. As with simple pause filtering, VMRUN loads the pause
+ *	count value from VMCB into an internal counter. Then, on each pause
+ *	instruction the hardware checks the elapsed number of cycles since
+ *	the most recent pause instruction against the pause filter threshold.
+ *	If the elapsed cycle count is greater than the pause filter threshold,
+ *	then the internal pause count is reloaded from the VMCB and execution
+ *	continues. If the elapsed cycle count is less than the pause filter
+ *	threshold, then the internal pause count is decremented. If the count
+ *	value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
+ *	triggered. If advanced pause filtering is supported and pause filter
+ *	threshold field is set to zero, the filter will operate in the simpler,
+ *	count only mode.
+ */
+
+static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
+module_param(pause_filter_thresh, ushort, 0444);
+
+static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
+module_param(pause_filter_count, ushort, 0444);
+
+/* Default doubles per-vcpu window every exit. */
+static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
+module_param(pause_filter_count_grow, ushort, 0444);
+
+/* Default resets per-vcpu window every exit to pause_filter_count. */
+static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
+module_param(pause_filter_count_shrink, ushort, 0444);
+
+/* Default is to compute the maximum so we can never overflow. */
+static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
+module_param(pause_filter_count_max, ushort, 0444);
+
+/* allow nested paging (virtualized MMU) for all guests */
+static int npt = true;
+module_param(npt, int, S_IRUGO);
+
+/* allow nested virtualization in KVM/SVM */
+static int nested = true;
+module_param(nested, int, S_IRUGO);
+
+/* enable/disable Next RIP Save */
+static int nrips = true;
+module_param(nrips, int, 0444);
+
+/* enable/disable Virtual VMLOAD VMSAVE */
+static int vls = true;
+module_param(vls, int, 0444);
+
+/* enable/disable Virtual GIF */
+static int vgif = true;
+module_param(vgif, int, 0444);
+
+/* enable/disable SEV support */
+static int sev = IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT);
+module_param(sev, int, 0444);
+
+static bool __read_mostly dump_invalid_vmcb = 0;
+module_param(dump_invalid_vmcb, bool, 0644);
+
+static u8 rsm_ins_bytes[] = "\x0f\xaa";
+
+static void svm_complete_interrupts(struct vcpu_svm *svm);
+
+static unsigned long iopm_base;
+
+struct kvm_ldttss_desc {
+	u16 limit0;
+	u16 base0;
+	unsigned base1:8, type:5, dpl:2, p:1;
+	unsigned limit1:4, zero0:3, g:1, base2:8;
+	u32 base3;
+	u32 zero1;
+} __attribute__((packed));
+
+DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
+
+static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
+
+#define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
+#define MSRS_RANGE_SIZE 2048
+#define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
+
+u32 svm_msrpm_offset(u32 msr)
+{
+	u32 offset;
+	int i;
+
+	for (i = 0; i < NUM_MSR_MAPS; i++) {
+		if (msr < msrpm_ranges[i] ||
+		    msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
+			continue;
+
+		offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
+		offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
+
+		/* Now we have the u8 offset - but need the u32 offset */
+		return offset / 4;
+	}
+
+	/* MSR not in any range */
+	return MSR_INVALID;
+}
+
+#define MAX_INST_SIZE 15
+
+static inline void clgi(void)
+{
+	asm volatile (__ex("clgi"));
+}
+
+static inline void stgi(void)
+{
+	asm volatile (__ex("stgi"));
+}
+
+static inline void invlpga(unsigned long addr, u32 asid)
+{
+	asm volatile (__ex("invlpga %1, %0") : : "c"(asid), "a"(addr));
+}
+
+static int get_max_npt_level(void)
+{
+#ifdef CONFIG_X86_64
+	return PT64_ROOT_4LEVEL;
+#else
+	return PT32E_ROOT_LEVEL;
+#endif
+}
+
+int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
+{
+	struct vcpu_svm *svm = to_svm(vcpu);
+	u64 old_efer = vcpu->arch.efer;
+	vcpu->arch.efer = efer;
+
+	if (!npt_enabled) {
+		/* Shadow paging assumes NX to be available.  */
+		efer |= EFER_NX;
+
+		if (!(efer & EFER_LMA))
+			efer &= ~EFER_LME;
+	}
+
+	if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) {
+		if (!(efer & EFER_SVME)) {
+			svm_leave_nested(vcpu);
+			svm_set_gif(svm, true);
+
+			/*
+			 * Free the nested guest state, unless we are in SMM.
+			 * In this case we will return to the nested guest
+			 * as soon as we leave SMM.
+			 */
+			if (!is_smm(&svm->vcpu))
+				svm_free_nested(svm);
+
+		} else {
+			int ret = svm_allocate_nested(svm);
+
+			if (ret) {
+				vcpu->arch.efer = old_efer;
+				return ret;
+			}
+		}
+	}
+
+	svm->vmcb->save.efer = efer | EFER_SVME;
+	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
+	return 0;
+}
+
+static int is_external_interrupt(u32 info)
+{
+	info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
+	return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
+}
+
+static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_svm *svm = to_svm(vcpu);
+	u32 ret = 0;
+
+	if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
+		ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
+	return ret;
+}
+
+static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
+{
+	struct vcpu_svm *svm = to_svm(vcpu);
+
+	if (mask == 0)
+		svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
+	else
+		svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
+
+}
+
+static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_svm *svm = to_svm(vcpu);
+
+	if (nrips && svm->vmcb->control.next_rip != 0) {
+		WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
+		svm->next_rip = svm->vmcb->control.next_rip;
+	}
+
+	if (!svm->next_rip) {
+		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
+			return 0;
+	} else {
+		kvm_rip_write(vcpu, svm->next_rip);
+	}
+	svm_set_interrupt_shadow(vcpu, 0);
+
+	return 1;
+}
+
+static void svm_queue_exception(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_svm *svm = to_svm(vcpu);
+	unsigned nr = vcpu->arch.exception.nr;
+	bool has_error_code = vcpu->arch.exception.has_error_code;
+	u32 error_code = vcpu->arch.exception.error_code;
+
+	kvm_deliver_exception_payload(&svm->vcpu);
+
+	if (nr == BP_VECTOR && !nrips) {
+		unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
+
+		/*
+		 * For guest debugging where we have to reinject #BP if some
+		 * INT3 is guest-owned:
+		 * Emulate nRIP by moving RIP forward. Will fail if injection
+		 * raises a fault that is not intercepted. Still better than
+		 * failing in all cases.
+		 */
+		(void)skip_emulated_instruction(&svm->vcpu);
+		rip = kvm_rip_read(&svm->vcpu);
+		svm->int3_rip = rip + svm->vmcb->save.cs.base;
+		svm->int3_injected = rip - old_rip;
+	}
+
+	svm->vmcb->control.event_inj = nr
+		| SVM_EVTINJ_VALID
+		| (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
+		| SVM_EVTINJ_TYPE_EXEPT;
+	svm->vmcb->control.event_inj_err = error_code;
+}
+
+static void svm_init_erratum_383(void)
+{
+	u32 low, high;
+	int err;
+	u64 val;
+
+	if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
+		return;
+
+	/* Use _safe variants to not break nested virtualization */
+	val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
+	if (err)
+		return;
+
+	val |= (1ULL << 47);
+
+	low  = lower_32_bits(val);
+	high = upper_32_bits(val);
+
+	native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
+
+	erratum_383_found = true;
+}
+
+static void svm_init_osvw(struct kvm_vcpu *vcpu)
+{
+	/*
+	 * Guests should see errata 400 and 415 as fixed (assuming that
+	 * HLT and IO instructions are intercepted).
+	 */
+	vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
+	vcpu->arch.osvw.status = osvw_status & ~(6ULL);
+
+	/*
+	 * By increasing VCPU's osvw.length to 3 we are telling the guest that
+	 * all osvw.status bits inside that length, including bit 0 (which is
+	 * reserved for erratum 298), are valid. However, if host processor's
+	 * osvw_len is 0 then osvw_status[0] carries no information. We need to
+	 * be conservative here and therefore we tell the guest that erratum 298
+	 * is present (because we really don't know).
+	 */
+	if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
+		vcpu->arch.osvw.status |= 1;
+}
+
+static int has_svm(void)
+{
+	const char *msg;
+
+	if (!cpu_has_svm(&msg)) {
+		printk(KERN_INFO "has_svm: %s\n", msg);
+		return 0;
+	}
+
+	if (sev_active()) {
+		pr_info("KVM is unsupported when running as an SEV guest\n");
+		return 0;
+	}
+
+	return 1;
+}
+
+static void svm_hardware_disable(void)
+{
+	/* Make sure we clean up behind us */
+	if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
+		wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
+
+	cpu_svm_disable();
+
+	amd_pmu_disable_virt();
+}
+
+static int svm_hardware_enable(void)
+{
+
+	struct svm_cpu_data *sd;
+	uint64_t efer;
+	struct desc_struct *gdt;
+	int me = raw_smp_processor_id();
+
+	rdmsrl(MSR_EFER, efer);
+	if (efer & EFER_SVME)
+		return -EBUSY;
+
+	if (!has_svm()) {
+		pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
+		return -EINVAL;
+	}
+	sd = per_cpu(svm_data, me);
+	if (!sd) {
+		pr_err("%s: svm_data is NULL on %d\n", __func__, me);
+		return -EINVAL;
+	}
+
+	sd->asid_generation = 1;
+	sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
+	sd->next_asid = sd->max_asid + 1;
+	sd->min_asid = max_sev_asid + 1;
+
+	gdt = get_current_gdt_rw();
+	sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
+
+	wrmsrl(MSR_EFER, efer | EFER_SVME);
+
+	wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
+
+	if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
+		wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
+		__this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
+	}
+
+
+	/*
+	 * Get OSVW bits.
+	 *
+	 * Note that it is possible to have a system with mixed processor
+	 * revisions and therefore different OSVW bits. If bits are not the same
+	 * on different processors then choose the worst case (i.e. if erratum
+	 * is present on one processor and not on another then assume that the
+	 * erratum is present everywhere).
+	 */
+	if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
+		uint64_t len, status = 0;
+		int err;
+
+		len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
+		if (!err)
+			status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
+						      &err);
+
+		if (err)
+			osvw_status = osvw_len = 0;
+		else {
+			if (len < osvw_len)
+				osvw_len = len;
+			osvw_status |= status;
+			osvw_status &= (1ULL << osvw_len) - 1;
+		}
+	} else
+		osvw_status = osvw_len = 0;
+
+	svm_init_erratum_383();
+
+	amd_pmu_enable_virt();
+
+	return 0;
+}
+
+static void svm_cpu_uninit(int cpu)
+{
+	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
+
+	if (!sd)
+		return;
+
+	per_cpu(svm_data, cpu) = NULL;
+	kfree(sd->sev_vmcbs);
+	__free_page(sd->save_area);
+	kfree(sd);
+}
+
+static int svm_cpu_init(int cpu)
+{
+	struct svm_cpu_data *sd;
+
+	sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
+	if (!sd)
+		return -ENOMEM;
+	sd->cpu = cpu;
+	sd->save_area = alloc_page(GFP_KERNEL);
+	if (!sd->save_area)
+		goto free_cpu_data;
+
+	if (svm_sev_enabled()) {
+		sd->sev_vmcbs = kmalloc_array(max_sev_asid + 1,
+					      sizeof(void *),
+					      GFP_KERNEL);
+		if (!sd->sev_vmcbs)
+			goto free_save_area;
+	}
+
+	per_cpu(svm_data, cpu) = sd;
+
+	return 0;
+
+free_save_area:
+	__free_page(sd->save_area);
+free_cpu_data:
+	kfree(sd);
+	return -ENOMEM;
+
+}
+
+static int direct_access_msr_slot(u32 msr)
+{
+	u32 i;
+
+	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
+		if (direct_access_msrs[i].index == msr)
+			return i;
+
+	return -ENOENT;
+}
+
+static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read,
+				     int write)
+{
+	struct vcpu_svm *svm = to_svm(vcpu);
+	int slot = direct_access_msr_slot(msr);
+
+	if (slot == -ENOENT)
+		return;
+
+	/* Set the shadow bitmaps to the desired intercept states */
+	if (read)
+		set_bit(slot, svm->shadow_msr_intercept.read);
+	else
+		clear_bit(slot, svm->shadow_msr_intercept.read);
+
+	if (write)
+		set_bit(slot, svm->shadow_msr_intercept.write);
+	else
+		clear_bit(slot, svm->shadow_msr_intercept.write);
+}
+
+static bool valid_msr_intercept(u32 index)
+{
+	return direct_access_msr_slot(index) != -ENOENT;
+}
+
+static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
+{
+	u8 bit_write;
+	unsigned long tmp;
+	u32 offset;
+	u32 *msrpm;
+
+	msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
+				      to_svm(vcpu)->msrpm;
+
+	offset    = svm_msrpm_offset(msr);
+	bit_write = 2 * (msr & 0x0f) + 1;
+	tmp       = msrpm[offset];
+
+	BUG_ON(offset == MSR_INVALID);
+
+	return !!test_bit(bit_write,  &tmp);
+}
+
+static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm,
+					u32 msr, int read, int write)
+{
+	u8 bit_read, bit_write;
+	unsigned long tmp;
+	u32 offset;
+
+	/*
+	 * If this warning triggers extend the direct_access_msrs list at the
+	 * beginning of the file
+	 */
+	WARN_ON(!valid_msr_intercept(msr));
+
+	/* Enforce non allowed MSRs to trap */
+	if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ))
+		read = 0;
+
+	if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE))
+		write = 0;
+
+	offset    = svm_msrpm_offset(msr);
+	bit_read  = 2 * (msr & 0x0f);
+	bit_write = 2 * (msr & 0x0f) + 1;
+	tmp       = msrpm[offset];
+
+	BUG_ON(offset == MSR_INVALID);
+
+	read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
+	write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
+
+	msrpm[offset] = tmp;
+}
+
+static void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr,
+				 int read, int write)
+{
+	set_shadow_msr_intercept(vcpu, msr, read, write);
+	set_msr_interception_bitmap(vcpu, msrpm, msr, read, write);
+}
+
+u32 *svm_vcpu_alloc_msrpm(void)
+{
+	struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, MSRPM_ALLOC_ORDER);
+	u32 *msrpm;
+
+	if (!pages)
+		return NULL;
+
+	msrpm = page_address(pages);
+	memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
+
+	return msrpm;
+}
+
+void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm)
+{
+	int i;
+
+	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
+		if (!direct_access_msrs[i].always)
+			continue;
+		set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1);
+	}
+}
+
+
+void svm_vcpu_free_msrpm(u32 *msrpm)
+{
+	__free_pages(virt_to_page(msrpm), MSRPM_ALLOC_ORDER);
+}
+
+static void svm_msr_filter_changed(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_svm *svm = to_svm(vcpu);
+	u32 i;
+
+	/*
+	 * Set intercept permissions for all direct access MSRs again. They
+	 * will automatically get filtered through the MSR filter, so we are
+	 * back in sync after this.
+	 */
+	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
+		u32 msr = direct_access_msrs[i].index;
+		u32 read = test_bit(i, svm->shadow_msr_intercept.read);
+		u32 write = test_bit(i, svm->shadow_msr_intercept.write);
+
+		set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write);
+	}
+}
+
+static void add_msr_offset(u32 offset)
+{
+	int i;
+
+	for (i = 0; i < MSRPM_OFFSETS; ++i) {
+
+		/* Offset already in list? */
+		if (msrpm_offsets[i] == offset)
+			return;
+
+		/* Slot used by another offset? */
+		if (msrpm_offsets[i] != MSR_INVALID)
+			continue;
+
+		/* Add offset to list */
+		msrpm_offsets[i] = offset;
+
+		return;
+	}
+
+	/*
+	 * If this BUG triggers the msrpm_offsets table has an overflow. Just
+	 * increase MSRPM_OFFSETS in this case.
+	 */
+	BUG();
+}
+
+static void init_msrpm_offsets(void)
+{
+	int i;
+
+	memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
+
+	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
+		u32 offset;
+
+		offset = svm_msrpm_offset(direct_access_msrs[i].index);
+		BUG_ON(offset == MSR_INVALID);
+
+		add_msr_offset(offset);
+	}
+}
+
+static void svm_enable_lbrv(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_svm *svm = to_svm(vcpu);
+
+	svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
+	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
+	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
+	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
+	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
+}
+
+static void svm_disable_lbrv(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_svm *svm = to_svm(vcpu);
+
+	svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
+	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
+	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
+	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
+	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
+}
+
+void disable_nmi_singlestep(struct vcpu_svm *svm)
+{
+	svm->nmi_singlestep = false;
+
+	if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
+		/* Clear our flags if they were not set by the guest */
+		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
+			svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
+		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
+			svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
+	}
+}
+
+static void grow_ple_window(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_svm *svm = to_svm(vcpu);
+	struct vmcb_control_area *control = &svm->vmcb->control;
+	int old = control->pause_filter_count;
+
+	control->pause_filter_count = __grow_ple_window(old,
+							pause_filter_count,
+							pause_filter_count_grow,
+							pause_filter_count_max);
+
+	if (control->pause_filter_count != old) {
+		vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
+		trace_kvm_ple_window_update(vcpu->vcpu_id,
+					    control->pause_filter_count, old);
+	}
+}
+
+static void shrink_ple_window(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_svm *svm = to_svm(vcpu);
+	struct vmcb_control_area *control = &svm->vmcb->control;
+	int old = control->pause_filter_count;
+
+	control->pause_filter_count =
+				__shrink_ple_window(old,
+						    pause_filter_count,
+						    pause_filter_count_shrink,
+						    pause_filter_count);
+	if (control->pause_filter_count != old) {
+		vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
+		trace_kvm_ple_window_update(vcpu->vcpu_id,
+					    control->pause_filter_count, old);
+	}
+}
+
+/*
+ * The default MMIO mask is a single bit (excluding the present bit),
+ * which could conflict with the memory encryption bit. Check for
+ * memory encryption support and override the default MMIO mask if
+ * memory encryption is enabled.
+ */
+static __init void svm_adjust_mmio_mask(void)
+{
+	unsigned int enc_bit, mask_bit;
+	u64 msr, mask;
+
+	/* If there is no memory encryption support, use existing mask */
+	if (cpuid_eax(0x80000000) < 0x8000001f)
+		return;
+
+	/* If memory encryption is not enabled, use existing mask */
+	rdmsrl(MSR_K8_SYSCFG, msr);
+	if (!(msr & MSR_K8_SYSCFG_MEM_ENCRYPT))
+		return;
+
+	enc_bit = cpuid_ebx(0x8000001f) & 0x3f;
+	mask_bit = boot_cpu_data.x86_phys_bits;
+
+	/* Increment the mask bit if it is the same as the encryption bit */
+	if (enc_bit == mask_bit)
+		mask_bit++;
+
+	/*
+	 * If the mask bit location is below 52, then some bits above the
+	 * physical addressing limit will always be reserved, so use the
+	 * rsvd_bits() function to generate the mask. This mask, along with
+	 * the present bit, will be used to generate a page fault with
+	 * PFER.RSV = 1.
+	 *
+	 * If the mask bit location is 52 (or above), then clear the mask.
+	 */
+	mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0;
+
+	kvm_mmu_set_mmio_spte_mask(mask, PT_WRITABLE_MASK | PT_USER_MASK);
+}
+
+static void svm_hardware_teardown(void)
+{
+	int cpu;
+
+	if (svm_sev_enabled())
+		sev_hardware_teardown();
+
+	for_each_possible_cpu(cpu)
+		svm_cpu_uninit(cpu);
+
+	__free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
+	iopm_base = 0;
+}
+
+static __init void svm_set_cpu_caps(void)
+{
+	kvm_set_cpu_caps();
+
+	supported_xss = 0;
+
+	/* CPUID 0x80000001 and 0x8000000A (SVM features) */
+	if (nested) {
+		kvm_cpu_cap_set(X86_FEATURE_SVM);
+
+		if (nrips)
+			kvm_cpu_cap_set(X86_FEATURE_NRIPS);
+
+		if (npt_enabled)
+			kvm_cpu_cap_set(X86_FEATURE_NPT);
+	}
+
+	/* CPUID 0x80000008 */
+	if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
+	    boot_cpu_has(X86_FEATURE_AMD_SSBD))
+		kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
+
+	/* Enable INVPCID feature */
+	kvm_cpu_cap_check_and_set(X86_FEATURE_INVPCID);
+}
+
+static __init int svm_hardware_setup(void)
+{
+	int cpu;
+	struct page *iopm_pages;
+	void *iopm_va;
+	int r;
+
+	iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
+
+	if (!iopm_pages)
+		return -ENOMEM;
+
+	iopm_va = page_address(iopm_pages);
+	memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
+	iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
+
+	init_msrpm_offsets();
+
+	supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
+
+	if (boot_cpu_has(X86_FEATURE_NX))
+		kvm_enable_efer_bits(EFER_NX);
+
+	if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
+		kvm_enable_efer_bits(EFER_FFXSR);
+
+	if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
+		kvm_has_tsc_control = true;
+		kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
+		kvm_tsc_scaling_ratio_frac_bits = 32;
+	}
+
+	/* Check for pause filtering support */
+	if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
+		pause_filter_count = 0;
+		pause_filter_thresh = 0;
+	} else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
+		pause_filter_thresh = 0;
+	}
+
+	if (nested) {
+		printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
+		kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
+	}
+
+	if (sev) {
+		if (boot_cpu_has(X86_FEATURE_SEV) &&
+		    IS_ENABLED(CONFIG_KVM_AMD_SEV)) {
+			r = sev_hardware_setup();
+			if (r)
+				sev = false;
+		} else {
+			sev = false;
+		}
+	}
+
+	svm_adjust_mmio_mask();
+
+	for_each_possible_cpu(cpu) {
+		r = svm_cpu_init(cpu);
+		if (r)
+			goto err;
+	}
+
+	if (!boot_cpu_has(X86_FEATURE_NPT))
+		npt_enabled = false;
+
+	if (npt_enabled && !npt)
+		npt_enabled = false;
+
+	kvm_configure_mmu(npt_enabled, get_max_npt_level(), PG_LEVEL_1G);
+	pr_info("kvm: Nested Paging %sabled\n", npt_enabled ? "en" : "dis");
+
+	if (nrips) {
+		if (!boot_cpu_has(X86_FEATURE_NRIPS))
+			nrips = false;
+	}
+
+	if (avic) {
+		if (!npt_enabled ||
+		    !boot_cpu_has(X86_FEATURE_AVIC) ||
+		    !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) {
+			avic = false;
+		} else {
+			pr_info("AVIC enabled\n");
+
+			amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
+		}
+	}
+
+	if (vls) {
+		if (!npt_enabled ||
+		    !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
+		    !IS_ENABLED(CONFIG_X86_64)) {
+			vls = false;
+		} else {
+			pr_info("Virtual VMLOAD VMSAVE supported\n");
+		}
+	}
+
+	if (vgif) {
+		if (!boot_cpu_has(X86_FEATURE_VGIF))
+			vgif = false;
+		else
+			pr_info("Virtual GIF supported\n");
+	}
+
+	svm_set_cpu_caps();
+
+	/*
+	 * It seems that on AMD processors PTE's accessed bit is
+	 * being set by the CPU hardware before the NPF vmexit.
+	 * This is not expected behaviour and our tests fail because
+	 * of it.
+	 * A workaround here is to disable support for
+	 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled.
+	 * In this case userspace can know if there is support using
+	 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle
+	 * it
+	 * If future AMD CPU models change the behaviour described above,
+	 * this variable can be changed accordingly
+	 */
+	allow_smaller_maxphyaddr = !npt_enabled;
+
+	return 0;
+
+err:
+	svm_hardware_teardown();
+	return r;
+}
+
+static void init_seg(struct vmcb_seg *seg)
+{
+	seg->selector = 0;
+	seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
+		      SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
+	seg->limit = 0xffff;
+	seg->base = 0;
+}
+
+static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
+{
+	seg->selector = 0;
+	seg->attrib = SVM_SELECTOR_P_MASK | type;
+	seg->limit = 0xffff;
+	seg->base = 0;
+}
+
+static u64 svm_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
+{
+	struct vcpu_svm *svm = to_svm(vcpu);
+	u64 g_tsc_offset = 0;
+
+	if (is_guest_mode(vcpu)) {
+		/* Write L1's TSC offset.  */
+		g_tsc_offset = svm->vmcb->control.tsc_offset -
+			       svm->nested.hsave->control.tsc_offset;
+		svm->nested.hsave->control.tsc_offset = offset;
+	}
+
+	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
+				   svm->vmcb->control.tsc_offset - g_tsc_offset,
+				   offset);
+
+	svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
+
+	vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
+	return svm->vmcb->control.tsc_offset;
+}
+
+static void svm_check_invpcid(struct vcpu_svm *svm)
+{
+	/*
+	 * Intercept INVPCID if shadow paging is enabled to sync/free shadow
+	 * roots, or if INVPCID is disabled in the guest to inject #UD.
+	 */
+	if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) {
+		if (!npt_enabled ||
+		    !guest_cpuid_has(&svm->vcpu, X86_FEATURE_INVPCID))
+			svm_set_intercept(svm, INTERCEPT_INVPCID);
+		else
+			svm_clr_intercept(svm, INTERCEPT_INVPCID);
+	}
+}
+
+static void init_vmcb(struct vcpu_svm *svm)
+{
+	struct vmcb_control_area *control = &svm->vmcb->control;
+	struct vmcb_save_area *save = &svm->vmcb->save;
+
+	svm->vcpu.arch.hflags = 0;
+
+	svm_set_intercept(svm, INTERCEPT_CR0_READ);
+	svm_set_intercept(svm, INTERCEPT_CR3_READ);
+	svm_set_intercept(svm, INTERCEPT_CR4_READ);
+	svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
+	svm_set_intercept(svm, INTERCEPT_CR3_WRITE);
+	svm_set_intercept(svm, INTERCEPT_CR4_WRITE);
+	if (!kvm_vcpu_apicv_active(&svm->vcpu))
+		svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
+
+	set_dr_intercepts(svm);
+
+	set_exception_intercept(svm, PF_VECTOR);
+	set_exception_intercept(svm, UD_VECTOR);
+	set_exception_intercept(svm, MC_VECTOR);
+	set_exception_intercept(svm, AC_VECTOR);
+	set_exception_intercept(svm, DB_VECTOR);
+	/*
+	 * Guest access to VMware backdoor ports could legitimately
+	 * trigger #GP because of TSS I/O permission bitmap.
+	 * We intercept those #GP and allow access to them anyway
+	 * as VMware does.
+	 */
+	if (enable_vmware_backdoor)
+		set_exception_intercept(svm, GP_VECTOR);
+
+	svm_set_intercept(svm, INTERCEPT_INTR);
+	svm_set_intercept(svm, INTERCEPT_NMI);
+	svm_set_intercept(svm, INTERCEPT_SMI);
+	svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
+	svm_set_intercept(svm, INTERCEPT_RDPMC);
+	svm_set_intercept(svm, INTERCEPT_CPUID);
+	svm_set_intercept(svm, INTERCEPT_INVD);
+	svm_set_intercept(svm, INTERCEPT_INVLPG);
+	svm_set_intercept(svm, INTERCEPT_INVLPGA);
+	svm_set_intercept(svm, INTERCEPT_IOIO_PROT);
+	svm_set_intercept(svm, INTERCEPT_MSR_PROT);
+	svm_set_intercept(svm, INTERCEPT_TASK_SWITCH);
+	svm_set_intercept(svm, INTERCEPT_SHUTDOWN);
+	svm_set_intercept(svm, INTERCEPT_VMRUN);
+	svm_set_intercept(svm, INTERCEPT_VMMCALL);
+	svm_set_intercept(svm, INTERCEPT_VMLOAD);
+	svm_set_intercept(svm, INTERCEPT_VMSAVE);
+	svm_set_intercept(svm, INTERCEPT_STGI);
+	svm_set_intercept(svm, INTERCEPT_CLGI);
+	svm_set_intercept(svm, INTERCEPT_SKINIT);
+	svm_set_intercept(svm, INTERCEPT_WBINVD);
+	svm_set_intercept(svm, INTERCEPT_XSETBV);
+	svm_set_intercept(svm, INTERCEPT_RDPRU);
+	svm_set_intercept(svm, INTERCEPT_RSM);
+
+	if (!kvm_mwait_in_guest(svm->vcpu.kvm)) {
+		svm_set_intercept(svm, INTERCEPT_MONITOR);
+		svm_set_intercept(svm, INTERCEPT_MWAIT);
+	}
+
+	if (!kvm_hlt_in_guest(svm->vcpu.kvm))
+		svm_set_intercept(svm, INTERCEPT_HLT);
+
+	control->iopm_base_pa = __sme_set(iopm_base);
+	control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
+	control->int_ctl = V_INTR_MASKING_MASK;
+
+	init_seg(&save->es);
+	init_seg(&save->ss);
+	init_seg(&save->ds);
+	init_seg(&save->fs);
+	init_seg(&save->gs);
+
+	save->cs.selector = 0xf000;
+	save->cs.base = 0xffff0000;
+	/* Executable/Readable Code Segment */
+	save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
+		SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
+	save->cs.limit = 0xffff;
+
+	save->gdtr.limit = 0xffff;
+	save->idtr.limit = 0xffff;
+
+	init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
+	init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
+
+	svm_set_cr4(&svm->vcpu, 0);
+	svm_set_efer(&svm->vcpu, 0);
+	save->dr6 = 0xffff0ff0;
+	kvm_set_rflags(&svm->vcpu, 2);
+	save->rip = 0x0000fff0;
+	svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
+
+	/*
+	 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
+	 * It also updates the guest-visible cr0 value.
+	 */
+	svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
+	kvm_mmu_reset_context(&svm->vcpu);
+
+	save->cr4 = X86_CR4_PAE;
+	/* rdx = ?? */
+
+	if (npt_enabled) {
+		/* Setup VMCB for Nested Paging */
+		control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
+		svm_clr_intercept(svm, INTERCEPT_INVLPG);
+		clr_exception_intercept(svm, PF_VECTOR);
+		svm_clr_intercept(svm, INTERCEPT_CR3_READ);
+		svm_clr_intercept(svm, INTERCEPT_CR3_WRITE);
+		save->g_pat = svm->vcpu.arch.pat;
+		save->cr3 = 0;
+		save->cr4 = 0;
+	}
+	svm->asid_generation = 0;
+
+	svm->nested.vmcb12_gpa = 0;
+	svm->vcpu.arch.hflags = 0;
+
+	if (!kvm_pause_in_guest(svm->vcpu.kvm)) {
+		control->pause_filter_count = pause_filter_count;
+		if (pause_filter_thresh)
+			control->pause_filter_thresh = pause_filter_thresh;
+		svm_set_intercept(svm, INTERCEPT_PAUSE);
+	} else {
+		svm_clr_intercept(svm, INTERCEPT_PAUSE);
+	}
+
+	svm_check_invpcid(svm);
+
+	if (kvm_vcpu_apicv_active(&svm->vcpu))
+		avic_init_vmcb(svm);
+
+	/*
+	 * If hardware supports Virtual VMLOAD VMSAVE then enable it
+	 * in VMCB and clear intercepts to avoid #VMEXIT.
+	 */
+	if (vls) {
+		svm_clr_intercept(svm, INTERCEPT_VMLOAD);
+		svm_clr_intercept(svm, INTERCEPT_VMSAVE);
+		svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
+	}
+
+	if (vgif) {
+		svm_clr_intercept(svm, INTERCEPT_STGI);
+		svm_clr_intercept(svm, INTERCEPT_CLGI);
+		svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
+	}
+
+	if (sev_guest(svm->vcpu.kvm)) {
+		svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
+		clr_exception_intercept(svm, UD_VECTOR);
+	}
+
+	vmcb_mark_all_dirty(svm->vmcb);
+
+	enable_gif(svm);
+
+}
+
+static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
+{
+	struct vcpu_svm *svm = to_svm(vcpu);
+	u32 dummy;
+	u32 eax = 1;
+
+	svm->spec_ctrl = 0;
+	svm->virt_spec_ctrl = 0;
+
+	if (!init_event) {
+		svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
+					   MSR_IA32_APICBASE_ENABLE;
+		if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
+			svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
+	}
+	init_vmcb(svm);
+
+	kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, false);
+	kvm_rdx_write(vcpu, eax);
+
+	if (kvm_vcpu_apicv_active(vcpu) && !init_event)
+		avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE);
+}
+
+static int svm_create_vcpu(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_svm *svm;
+	struct page *vmcb_page;
+	int err;
+
+	BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0);
+	svm = to_svm(vcpu);
+
+	err = -ENOMEM;
+	vmcb_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
+	if (!vmcb_page)
+		goto out;
+
+	err = avic_init_vcpu(svm);
+	if (err)
+		goto error_free_vmcb_page;
+
+	/* We initialize this flag to true to make sure that the is_running
+	 * bit would be set the first time the vcpu is loaded.
+	 */
+	if (irqchip_in_kernel(vcpu->kvm) && kvm_apicv_activated(vcpu->kvm))
+		svm->avic_is_running = true;
+
+	svm->msrpm = svm_vcpu_alloc_msrpm();
+	if (!svm->msrpm) {
+		err = -ENOMEM;
+		goto error_free_vmcb_page;
+	}
+
+	svm_vcpu_init_msrpm(vcpu, svm->msrpm);
+
+	svm->vmcb = page_address(vmcb_page);
+	svm->vmcb_pa = __sme_set(page_to_pfn(vmcb_page) << PAGE_SHIFT);
+	svm->asid_generation = 0;
+	init_vmcb(svm);
+
+	svm_init_osvw(vcpu);
+	vcpu->arch.microcode_version = 0x01000065;
+
+	return 0;
+
+error_free_vmcb_page:
+	__free_page(vmcb_page);
+out:
+	return err;
+}
+
+static void svm_clear_current_vmcb(struct vmcb *vmcb)
+{
+	int i;
+
+	for_each_online_cpu(i)
+		cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL);
+}
+
+static void svm_free_vcpu(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_svm *svm = to_svm(vcpu);
+
+	/*
+	 * The vmcb page can be recycled, causing a false negative in
+	 * svm_vcpu_load(). So, ensure that no logical CPU has this
+	 * vmcb page recorded as its current vmcb.
+	 */
+	svm_clear_current_vmcb(svm->vmcb);
+
+	svm_free_nested(svm);
+
+	__free_page(pfn_to_page(__sme_clr(svm->vmcb_pa) >> PAGE_SHIFT));
+	__free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
+}
+
+static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
+{
+	struct vcpu_svm *svm = to_svm(vcpu);
+	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
+	int i;
+
+	if (unlikely(cpu != vcpu->cpu)) {
+		svm->asid_generation = 0;
+		vmcb_mark_all_dirty(svm->vmcb);
+	}
+
+#ifdef CONFIG_X86_64
+	rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
+#endif
+	savesegment(fs, svm->host.fs);
+	savesegment(gs, svm->host.gs);
+	svm->host.ldt = kvm_read_ldt();
+
+	for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
+		rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
+
+	if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
+		u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
+		if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
+			__this_cpu_write(current_tsc_ratio, tsc_ratio);
+			wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
+		}
+	}
+	/* This assumes that the kernel never uses MSR_TSC_AUX */
+	if (static_cpu_has(X86_FEATURE_RDTSCP))
+		wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
+
+	if (sd->current_vmcb != svm->vmcb) {
+		sd->current_vmcb = svm->vmcb;
+		indirect_branch_prediction_barrier();
+	}
+	avic_vcpu_load(vcpu, cpu);
+}
+
+static void svm_vcpu_put(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_svm *svm = to_svm(vcpu);
+	int i;
+
+	avic_vcpu_put(vcpu);
+
+	++vcpu->stat.host_state_reload;
+	kvm_load_ldt(svm->host.ldt);
+#ifdef CONFIG_X86_64
+	loadsegment(fs, svm->host.fs);
+	wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gsbase);
+	load_gs_index(svm->host.gs);
+#else
+#ifdef CONFIG_X86_32_LAZY_GS
+	loadsegment(gs, svm->host.gs);
+#endif
+#endif
+	for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
+		wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
+}
+
+static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_svm *svm = to_svm(vcpu);
+	unsigned long rflags = svm->vmcb->save.rflags;
+
+	if (svm->nmi_singlestep) {
+		/* Hide our flags if they were not set by the guest */
+		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
+			rflags &= ~X86_EFLAGS_TF;
+		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
+			rflags &= ~X86_EFLAGS_RF;
+	}
+	return rflags;
+}
+
+static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
+{
+	if (to_svm(vcpu)->nmi_singlestep)
+		rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
+
+       /*
+        * Any change of EFLAGS.VM is accompanied by a reload of SS
+        * (caused by either a task switch or an inter-privilege IRET),
+        * so we do not need to update the CPL here.
+        */
+	to_svm(vcpu)->vmcb->save.rflags = rflags;
+}
+
+static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
+{
+	switch (reg) {
+	case VCPU_EXREG_PDPTR:
+		BUG_ON(!npt_enabled);
+		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
+		break;
+	default:
+		WARN_ON_ONCE(1);
+	}
+}
+
+static void svm_set_vintr(struct vcpu_svm *svm)
+{
+	struct vmcb_control_area *control;
+
+	/* The following fields are ignored when AVIC is enabled */
+	WARN_ON(kvm_vcpu_apicv_active(&svm->vcpu));
+	svm_set_intercept(svm, INTERCEPT_VINTR);
+
+	/*
+	 * This is just a dummy VINTR to actually cause a vmexit to happen.
+	 * Actual injection of virtual interrupts happens through EVENTINJ.
+	 */
+	control = &svm->vmcb->control;
+	control->int_vector = 0x0;
+	control->int_ctl &= ~V_INTR_PRIO_MASK;
+	control->int_ctl |= V_IRQ_MASK |
+		((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
+	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
+}
+
+static void svm_clear_vintr(struct vcpu_svm *svm)
+{
+	svm_clr_intercept(svm, INTERCEPT_VINTR);
+
+	/* Drop int_ctl fields related to VINTR injection.  */
+	svm->vmcb->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
+	if (is_guest_mode(&svm->vcpu)) {
+		svm->nested.hsave->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
+
+		WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) !=
+			(svm->nested.ctl.int_ctl & V_TPR_MASK));
+		svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl &
+			V_IRQ_INJECTION_BITS_MASK;
+
+		svm->vmcb->control.int_vector = svm->nested.ctl.int_vector;
+	}
+
+	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
+}
+
+static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
+{
+	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
+
+	switch (seg) {
+	case VCPU_SREG_CS: return &save->cs;
+	case VCPU_SREG_DS: return &save->ds;
+	case VCPU_SREG_ES: return &save->es;
+	case VCPU_SREG_FS: return &save->fs;
+	case VCPU_SREG_GS: return &save->gs;
+	case VCPU_SREG_SS: return &save->ss;
+	case VCPU_SREG_TR: return &save->tr;
+	case VCPU_SREG_LDTR: return &save->ldtr;
+	}
+	BUG();
+	return NULL;
+}
+
+static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
+{
+	struct vmcb_seg *s = svm_seg(vcpu, seg);
+
+	return s->base;
+}
+
+static void svm_get_segment(struct kvm_vcpu *vcpu,
+			    struct kvm_segment *var, int seg)
+{
+	struct vmcb_seg *s = svm_seg(vcpu, seg);
+
+	var->base = s->base;
+	var->limit = s->limit;
+	var->selector = s->selector;
+	var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
+	var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
+	var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
+	var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
+	var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
+	var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
+	var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
+
+	/*
+	 * AMD CPUs circa 2014 track the G bit for all segments except CS.
+	 * However, the SVM spec states that the G bit is not observed by the
+	 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
+	 * So let's synthesize a legal G bit for all segments, this helps
+	 * running KVM nested. It also helps cross-vendor migration, because
+	 * Intel's vmentry has a check on the 'G' bit.
+	 */
+	var->g = s->limit > 0xfffff;
+
+	/*
+	 * AMD's VMCB does not have an explicit unusable field, so emulate it
+	 * for cross vendor migration purposes by "not present"
+	 */
+	var->unusable = !var->present;
+
+	switch (seg) {
+	case VCPU_SREG_TR:
+		/*
+		 * Work around a bug where the busy flag in the tr selector
+		 * isn't exposed
+		 */
+		var->type |= 0x2;
+		break;
+	case VCPU_SREG_DS:
+	case VCPU_SREG_ES:
+	case VCPU_SREG_FS:
+	case VCPU_SREG_GS:
+		/*
+		 * The accessed bit must always be set in the segment
+		 * descriptor cache, although it can be cleared in the
+		 * descriptor, the cached bit always remains at 1. Since
+		 * Intel has a check on this, set it here to support
+		 * cross-vendor migration.
+		 */
+		if (!var->unusable)
+			var->type |= 0x1;
+		break;
+	case VCPU_SREG_SS:
+		/*
+		 * On AMD CPUs sometimes the DB bit in the segment
+		 * descriptor is left as 1, although the whole segment has
+		 * been made unusable. Clear it here to pass an Intel VMX
+		 * entry check when cross vendor migrating.
+		 */
+		if (var->unusable)
+			var->db = 0;
+		/* This is symmetric with svm_set_segment() */
+		var->dpl = to_svm(vcpu)->vmcb->save.cpl;
+		break;
+	}
+}
+
+static int svm_get_cpl(struct kvm_vcpu *vcpu)
+{
+	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
+
+	return save->cpl;
+}
+
+static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
+{
+	struct vcpu_svm *svm = to_svm(vcpu);
+
+	dt->size = svm->vmcb->save.idtr.limit;
+	dt->address = svm->vmcb->save.idtr.base;
+}
+
+static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
+{
+	struct vcpu_svm *svm = to_svm(vcpu);
+
+	svm->vmcb->save.idtr.limit = dt->size;
+	svm->vmcb->save.idtr.base = dt->address ;
+	vmcb_mark_dirty(svm->vmcb, VMCB_DT);
+}
+
+static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
+{
+	struct vcpu_svm *svm = to_svm(vcpu);
+
+	dt->size = svm->vmcb->save.gdtr.limit;
+	dt->address = svm->vmcb->save.gdtr.base;
+}
+
+static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
+{
+	struct vcpu_svm *svm = to_svm(vcpu);
+
+	svm->vmcb->save.gdtr.limit = dt->size;
+	svm->vmcb->save.gdtr.base = dt->address ;
+	vmcb_mark_dirty(svm->vmcb, VMCB_DT);
+}
+
+static void update_cr0_intercept(struct vcpu_svm *svm)
+{
+	ulong gcr0 = svm->vcpu.arch.cr0;
+	u64 *hcr0 = &svm->vmcb->save.cr0;
+
+	*hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
+		| (gcr0 & SVM_CR0_SELECTIVE_MASK);
+
+	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
+
+	if (gcr0 == *hcr0) {
+		svm_clr_intercept(svm, INTERCEPT_CR0_READ);
+		svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
+	} else {
+		svm_set_intercept(svm, INTERCEPT_CR0_READ);
+		svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
+	}
+}
+
+void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
+{
+	struct vcpu_svm *svm = to_svm(vcpu);
+
+#ifdef CONFIG_X86_64
+	if (vcpu->arch.efer & EFER_LME) {
+		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
+			vcpu->arch.efer |= EFER_LMA;
+			svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
+		}
+
+		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
+			vcpu->arch.efer &= ~EFER_LMA;
+			svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
+		}
+	}
+#endif
+	vcpu->arch.cr0 = cr0;
+
+	if (!npt_enabled)
+		cr0 |= X86_CR0_PG | X86_CR0_WP;
+
+	/*
+	 * re-enable caching here because the QEMU bios
+	 * does not do it - this results in some delay at
+	 * reboot
+	 */
+	if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
+		cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
+	svm->vmcb->save.cr0 = cr0;
+	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
+	update_cr0_intercept(svm);
+}
+
+int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
+{
+	unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
+	unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
+
+	if (cr4 & X86_CR4_VMXE)
+		return 1;
+
+	if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
+		svm_flush_tlb(vcpu);
+
+	vcpu->arch.cr4 = cr4;
+	if (!npt_enabled)
+		cr4 |= X86_CR4_PAE;
+	cr4 |= host_cr4_mce;
+	to_svm(vcpu)->vmcb->save.cr4 = cr4;
+	vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
+	return 0;
+}
+
+static void svm_set_segment(struct kvm_vcpu *vcpu,
+			    struct kvm_segment *var, int seg)
+{
+	struct vcpu_svm *svm = to_svm(vcpu);
+	struct vmcb_seg *s = svm_seg(vcpu, seg);
+
+	s->base = var->base;
+	s->limit = var->limit;
+	s->selector = var->selector;
+	s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
+	s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
+	s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
+	s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
+	s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
+	s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
+	s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
+	s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
+
+	/*
+	 * This is always accurate, except if SYSRET returned to a segment
+	 * with SS.DPL != 3.  Intel does not have this quirk, and always
+	 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
+	 * would entail passing the CPL to userspace and back.
+	 */
+	if (seg == VCPU_SREG_SS)
+		/* This is symmetric with svm_get_segment() */
+		svm->vmcb->save.cpl = (var->dpl & 3);
+
+	vmcb_mark_dirty(svm->vmcb, VMCB_SEG);
+}
+
+static void update_exception_bitmap(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_svm *svm = to_svm(vcpu);
+
+	clr_exception_intercept(svm, BP_VECTOR);
+
+	if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
+		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
+			set_exception_intercept(svm, BP_VECTOR);
+	}
+}
+
+static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
+{
+	if (sd->next_asid > sd->max_asid) {
+		++sd->asid_generation;
+		sd->next_asid = sd->min_asid;
+		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
+	}
+
+	svm->asid_generation = sd->asid_generation;
+	svm->vmcb->control.asid = sd->next_asid++;
+
+	vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
+}
+
+static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value)
+{
+	struct vmcb *vmcb = svm->vmcb;
+
+	if (unlikely(value != vmcb->save.dr6)) {
+		vmcb->save.dr6 = value;
+		vmcb_mark_dirty(vmcb, VMCB_DR);
+	}
+}
+
+static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_svm *svm = to_svm(vcpu);
+
+	get_debugreg(vcpu->arch.db[0], 0);
+	get_debugreg(vcpu->arch.db[1], 1);
+	get_debugreg(vcpu->arch.db[2], 2);
+	get_debugreg(vcpu->arch.db[3], 3);
+	/*
+	 * We cannot reset svm->vmcb->save.dr6 to DR6_FIXED_1|DR6_RTM here,
+	 * because db_interception might need it.  We can do it before vmentry.
+	 */
+	vcpu->arch.dr6 = svm->vmcb->save.dr6;
+	vcpu->arch.dr7 = svm->vmcb->save.dr7;
+	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
+	set_dr_intercepts(svm);
+}
+
+static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
+{
+	struct vcpu_svm *svm = to_svm(vcpu);
+
+	svm->vmcb->save.dr7 = value;
+	vmcb_mark_dirty(svm->vmcb, VMCB_DR);
+}
+
+static int pf_interception(struct vcpu_svm *svm)
+{
+	u64 fault_address = svm->vmcb->control.exit_info_2;
+	u64 error_code = svm->vmcb->control.exit_info_1;
+
+	return kvm_handle_page_fault(&svm->vcpu, error_code, fault_address,
+			static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
+			svm->vmcb->control.insn_bytes : NULL,
+			svm->vmcb->control.insn_len);
+}
+
+static int npf_interception(struct vcpu_svm *svm)
+{
+	u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
+	u64 error_code = svm->vmcb->control.exit_info_1;
+
+	trace_kvm_page_fault(fault_address, error_code);
+	return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
+			static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
+			svm->vmcb->control.insn_bytes : NULL,
+			svm->vmcb->control.insn_len);
+}
+
+static int db_interception(struct vcpu_svm *svm)
+{
+	struct kvm_run *kvm_run = svm->vcpu.run;
+	struct kvm_vcpu *vcpu = &svm->vcpu;
+
+	if (!(svm->vcpu.guest_debug &
+	      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
+		!svm->nmi_singlestep) {
+		u32 payload = (svm->vmcb->save.dr6 ^ DR6_RTM) & ~DR6_FIXED_1;
+		kvm_queue_exception_p(&svm->vcpu, DB_VECTOR, payload);
+		return 1;
+	}
+
+	if (svm->nmi_singlestep) {
+		disable_nmi_singlestep(svm);
+		/* Make sure we check for pending NMIs upon entry */
+		kvm_make_request(KVM_REQ_EVENT, vcpu);
+	}
+
+	if (svm->vcpu.guest_debug &
+	    (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
+		kvm_run->exit_reason = KVM_EXIT_DEBUG;
+		kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6;
+		kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7;
+		kvm_run->debug.arch.pc =
+			svm->vmcb->save.cs.base + svm->vmcb->save.rip;
+		kvm_run->debug.arch.exception = DB_VECTOR;
+		return 0;
+	}
+
+	return 1;
+}
+
+static int bp_interception(struct vcpu_svm *svm)
+{
+	struct kvm_run *kvm_run = svm->vcpu.run;
+
+	kvm_run->exit_reason = KVM_EXIT_DEBUG;
+	kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
+	kvm_run->debug.arch.exception = BP_VECTOR;
+	return 0;
+}
+
+static int ud_interception(struct vcpu_svm *svm)
+{
+	return handle_ud(&svm->vcpu);
+}
+
+static int ac_interception(struct vcpu_svm *svm)
+{
+	kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0);
+	return 1;
+}
+
+static int gp_interception(struct vcpu_svm *svm)
+{
+	struct kvm_vcpu *vcpu = &svm->vcpu;
+	u32 error_code = svm->vmcb->control.exit_info_1;
+
+	WARN_ON_ONCE(!enable_vmware_backdoor);
+
+	/*
+	 * VMware backdoor emulation on #GP interception only handles IN{S},
+	 * OUT{S}, and RDPMC, none of which generate a non-zero error code.
+	 */
+	if (error_code) {
+		kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
+		return 1;
+	}
+	return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
+}
+
+static bool is_erratum_383(void)
+{
+	int err, i;
+	u64 value;
+
+	if (!erratum_383_found)
+		return false;
+
+	value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
+	if (err)
+		return false;
+
+	/* Bit 62 may or may not be set for this mce */
+	value &= ~(1ULL << 62);
+
+	if (value != 0xb600000000010015ULL)
+		return false;
+
+	/* Clear MCi_STATUS registers */
+	for (i = 0; i < 6; ++i)
+		native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
+
+	value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
+	if (!err) {
+		u32 low, high;
+
+		value &= ~(1ULL << 2);
+		low    = lower_32_bits(value);
+		high   = upper_32_bits(value);
+
+		native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
+	}
+
+	/* Flush tlb to evict multi-match entries */
+	__flush_tlb_all();
+
+	return true;
+}
+
+/*
+ * Trigger machine check on the host. We assume all the MSRs are already set up
+ * by the CPU and that we still run on the same CPU as the MCE occurred on.
+ * We pass a fake environment to the machine check handler because we want
+ * the guest to be always treated like user space, no matter what context
+ * it used internally.
+ */
+static void kvm_machine_check(void)
+{
+#if defined(CONFIG_X86_MCE)
+	struct pt_regs regs = {
+		.cs = 3, /* Fake ring 3 no matter what the guest ran on */
+		.flags = X86_EFLAGS_IF,
+	};
+
+	do_machine_check(&regs);
+#endif
+}
+
+static void svm_handle_mce(struct vcpu_svm *svm)
+{
+	if (is_erratum_383()) {
+		/*
+		 * Erratum 383 triggered. Guest state is corrupt so kill the
+		 * guest.
+		 */
+		pr_err("KVM: Guest triggered AMD Erratum 383\n");
+
+		kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
+
+		return;
+	}
+
+	/*
+	 * On an #MC intercept the MCE handler is not called automatically in
+	 * the host. So do it by hand here.
+	 */
+	kvm_machine_check();
+}
+
+static int mc_interception(struct vcpu_svm *svm)
+{
+	return 1;
+}
+
+static int shutdown_interception(struct vcpu_svm *svm)
+{
+	struct kvm_run *kvm_run = svm->vcpu.run;
+
+	/*
+	 * VMCB is undefined after a SHUTDOWN intercept
+	 * so reinitialize it.
+	 */
+	clear_page(svm->vmcb);
+	init_vmcb(svm);
+
+	kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
+	return 0;
+}
+
+static int io_interception(struct vcpu_svm *svm)
+{
+	struct kvm_vcpu *vcpu = &svm->vcpu;
+	u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
+	int size, in, string;
+	unsigned port;
+
+	++svm->vcpu.stat.io_exits;
+	string = (io_info & SVM_IOIO_STR_MASK) != 0;
+	in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
+	if (string)
+		return kvm_emulate_instruction(vcpu, 0);
+
+	port = io_info >> 16;
+	size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
+	svm->next_rip = svm->vmcb->control.exit_info_2;
+
+	return kvm_fast_pio(&svm->vcpu, size, port, in);
+}
+
+static int nmi_interception(struct vcpu_svm *svm)
+{
+	return 1;
+}
+
+static int intr_interception(struct vcpu_svm *svm)
+{
+	++svm->vcpu.stat.irq_exits;
+	return 1;
+}
+
+static int nop_on_interception(struct vcpu_svm *svm)
+{
+	return 1;
+}
+
+static int halt_interception(struct vcpu_svm *svm)
+{
+	return kvm_emulate_halt(&svm->vcpu);
+}
+
+static int vmmcall_interception(struct vcpu_svm *svm)
+{
+	return kvm_emulate_hypercall(&svm->vcpu);
+}
+
+static int vmload_interception(struct vcpu_svm *svm)
+{
+	struct vmcb *nested_vmcb;
+	struct kvm_host_map map;
+	int ret;
+
+	if (nested_svm_check_permissions(svm))
+		return 1;
+
+	ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
+	if (ret) {
+		if (ret == -EINVAL)
+			kvm_inject_gp(&svm->vcpu, 0);
+		return 1;
+	}
+
+	nested_vmcb = map.hva;
+
+	ret = kvm_skip_emulated_instruction(&svm->vcpu);
+
+	nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
+	kvm_vcpu_unmap(&svm->vcpu, &map, true);
+
+	return ret;
+}
+
+static int vmsave_interception(struct vcpu_svm *svm)
+{
+	struct vmcb *nested_vmcb;
+	struct kvm_host_map map;
+	int ret;
+
+	if (nested_svm_check_permissions(svm))
+		return 1;
+
+	ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
+	if (ret) {
+		if (ret == -EINVAL)
+			kvm_inject_gp(&svm->vcpu, 0);
+		return 1;
+	}
+
+	nested_vmcb = map.hva;
+
+	ret = kvm_skip_emulated_instruction(&svm->vcpu);
+
+	nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
+	kvm_vcpu_unmap(&svm->vcpu, &map, true);
+
+	return ret;
+}
+
+static int vmrun_interception(struct vcpu_svm *svm)
+{
+	if (nested_svm_check_permissions(svm))
+		return 1;
+
+	return nested_svm_vmrun(svm);
+}
+
+void svm_set_gif(struct vcpu_svm *svm, bool value)
+{
+	if (value) {
+		/*
+		 * If VGIF is enabled, the STGI intercept is only added to
+		 * detect the opening of the SMI/NMI window; remove it now.
+		 * Likewise, clear the VINTR intercept, we will set it
+		 * again while processing KVM_REQ_EVENT if needed.
+		 */
+		if (vgif_enabled(svm))
+			svm_clr_intercept(svm, INTERCEPT_STGI);
+		if (svm_is_intercept(svm, INTERCEPT_VINTR))
+			svm_clear_vintr(svm);
+
+		enable_gif(svm);
+		if (svm->vcpu.arch.smi_pending ||
+		    svm->vcpu.arch.nmi_pending ||
+		    kvm_cpu_has_injectable_intr(&svm->vcpu))
+			kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
+	} else {
+		disable_gif(svm);
+
+		/*
+		 * After a CLGI no interrupts should come.  But if vGIF is
+		 * in use, we still rely on the VINTR intercept (rather than
+		 * STGI) to detect an open interrupt window.
+		*/
+		if (!vgif_enabled(svm))
+			svm_clear_vintr(svm);
+	}
+}
+
+static int stgi_interception(struct vcpu_svm *svm)
+{
+	int ret;
+
+	if (nested_svm_check_permissions(svm))
+		return 1;
+
+	ret = kvm_skip_emulated_instruction(&svm->vcpu);
+	svm_set_gif(svm, true);
+	return ret;
+}
+
+static int clgi_interception(struct vcpu_svm *svm)
+{
+	int ret;
+
+	if (nested_svm_check_permissions(svm))
+		return 1;
+
+	ret = kvm_skip_emulated_instruction(&svm->vcpu);
+	svm_set_gif(svm, false);
+	return ret;
+}
+
+static int invlpga_interception(struct vcpu_svm *svm)
+{
+	struct kvm_vcpu *vcpu = &svm->vcpu;
+
+	trace_kvm_invlpga(svm->vmcb->save.rip, kvm_rcx_read(&svm->vcpu),
+			  kvm_rax_read(&svm->vcpu));
+
+	/* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
+	kvm_mmu_invlpg(vcpu, kvm_rax_read(&svm->vcpu));
+
+	return kvm_skip_emulated_instruction(&svm->vcpu);
+}
+
+static int skinit_interception(struct vcpu_svm *svm)
+{
+	trace_kvm_skinit(svm->vmcb->save.rip, kvm_rax_read(&svm->vcpu));
+
+	kvm_queue_exception(&svm->vcpu, UD_VECTOR);
+	return 1;
+}
+
+static int wbinvd_interception(struct vcpu_svm *svm)
+{
+	return kvm_emulate_wbinvd(&svm->vcpu);
+}
+
+static int xsetbv_interception(struct vcpu_svm *svm)
+{
+	u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
+	u32 index = kvm_rcx_read(&svm->vcpu);
+
+	if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
+		return kvm_skip_emulated_instruction(&svm->vcpu);
+	}
+
+	return 1;
+}
+
+static int rdpru_interception(struct vcpu_svm *svm)
+{
+	kvm_queue_exception(&svm->vcpu, UD_VECTOR);
+	return 1;
+}
+
+static int task_switch_interception(struct vcpu_svm *svm)
+{
+	u16 tss_selector;
+	int reason;
+	int int_type = svm->vmcb->control.exit_int_info &
+		SVM_EXITINTINFO_TYPE_MASK;
+	int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
+	uint32_t type =
+		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
+	uint32_t idt_v =
+		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
+	bool has_error_code = false;
+	u32 error_code = 0;
+
+	tss_selector = (u16)svm->vmcb->control.exit_info_1;
+
+	if (svm->vmcb->control.exit_info_2 &
+	    (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
+		reason = TASK_SWITCH_IRET;
+	else if (svm->vmcb->control.exit_info_2 &
+		 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
+		reason = TASK_SWITCH_JMP;
+	else if (idt_v)
+		reason = TASK_SWITCH_GATE;
+	else
+		reason = TASK_SWITCH_CALL;
+
+	if (reason == TASK_SWITCH_GATE) {
+		switch (type) {
+		case SVM_EXITINTINFO_TYPE_NMI:
+			svm->vcpu.arch.nmi_injected = false;
+			break;
+		case SVM_EXITINTINFO_TYPE_EXEPT:
+			if (svm->vmcb->control.exit_info_2 &
+			    (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
+				has_error_code = true;
+				error_code =
+					(u32)svm->vmcb->control.exit_info_2;
+			}
+			kvm_clear_exception_queue(&svm->vcpu);
+			break;
+		case SVM_EXITINTINFO_TYPE_INTR:
+			kvm_clear_interrupt_queue(&svm->vcpu);
+			break;
+		default:
+			break;
+		}
+	}
+
+	if (reason != TASK_SWITCH_GATE ||
+	    int_type == SVM_EXITINTINFO_TYPE_SOFT ||
+	    (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
+	     (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
+		if (!skip_emulated_instruction(&svm->vcpu))
+			return 0;
+	}
+
+	if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
+		int_vec = -1;
+
+	return kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
+			       has_error_code, error_code);
+}
+
+static int cpuid_interception(struct vcpu_svm *svm)
+{
+	return kvm_emulate_cpuid(&svm->vcpu);
+}
+
+static int iret_interception(struct vcpu_svm *svm)
+{
+	++svm->vcpu.stat.nmi_window_exits;
+	svm_clr_intercept(svm, INTERCEPT_IRET);
+	svm->vcpu.arch.hflags |= HF_IRET_MASK;
+	svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
+	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
+	return 1;
+}
+
+static int invd_interception(struct vcpu_svm *svm)
+{
+	/* Treat an INVD instruction as a NOP and just skip it. */
+	return kvm_skip_emulated_instruction(&svm->vcpu);
+}
+
+static int invlpg_interception(struct vcpu_svm *svm)
+{
+	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
+		return kvm_emulate_instruction(&svm->vcpu, 0);
+
+	kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
+	return kvm_skip_emulated_instruction(&svm->vcpu);
+}
+
+static int emulate_on_interception(struct vcpu_svm *svm)
+{
+	return kvm_emulate_instruction(&svm->vcpu, 0);
+}
+
+static int rsm_interception(struct vcpu_svm *svm)
+{
+	return kvm_emulate_instruction_from_buffer(&svm->vcpu, rsm_ins_bytes, 2);
+}
+
+static int rdpmc_interception(struct vcpu_svm *svm)
+{
+	int err;
+
+	if (!nrips)
+		return emulate_on_interception(svm);
+
+	err = kvm_rdpmc(&svm->vcpu);
+	return kvm_complete_insn_gp(&svm->vcpu, err);
+}
+
+static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
+					    unsigned long val)
+{
+	unsigned long cr0 = svm->vcpu.arch.cr0;
+	bool ret = false;
+
+	if (!is_guest_mode(&svm->vcpu) ||
+	    (!(vmcb_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0))))
+		return false;
+
+	cr0 &= ~SVM_CR0_SELECTIVE_MASK;
+	val &= ~SVM_CR0_SELECTIVE_MASK;
+
+	if (cr0 ^ val) {
+		svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
+		ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
+	}
+
+	return ret;
+}
+
+#define CR_VALID (1ULL << 63)
+
+static int cr_interception(struct vcpu_svm *svm)
+{
+	int reg, cr;
+	unsigned long val;
+	int err;
+
+	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
+		return emulate_on_interception(svm);
+
+	if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
+		return emulate_on_interception(svm);
+
+	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
+	if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
+		cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
+	else
+		cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
+
+	err = 0;
+	if (cr >= 16) { /* mov to cr */
+		cr -= 16;
+		val = kvm_register_readl(&svm->vcpu, reg);
+		trace_kvm_cr_write(cr, val);
+		switch (cr) {
+		case 0:
+			if (!check_selective_cr0_intercepted(svm, val))
+				err = kvm_set_cr0(&svm->vcpu, val);
+			else
+				return 1;
+
+			break;
+		case 3:
+			err = kvm_set_cr3(&svm->vcpu, val);
+			break;
+		case 4:
+			err = kvm_set_cr4(&svm->vcpu, val);
+			break;
+		case 8:
+			err = kvm_set_cr8(&svm->vcpu, val);
+			break;
+		default:
+			WARN(1, "unhandled write to CR%d", cr);
+			kvm_queue_exception(&svm->vcpu, UD_VECTOR);
+			return 1;
+		}
+	} else { /* mov from cr */
+		switch (cr) {
+		case 0:
+			val = kvm_read_cr0(&svm->vcpu);
+			break;
+		case 2:
+			val = svm->vcpu.arch.cr2;
+			break;
+		case 3:
+			val = kvm_read_cr3(&svm->vcpu);
+			break;
+		case 4:
+			val = kvm_read_cr4(&svm->vcpu);
+			break;
+		case 8:
+			val = kvm_get_cr8(&svm->vcpu);
+			break;
+		default:
+			WARN(1, "unhandled read from CR%d", cr);
+			kvm_queue_exception(&svm->vcpu, UD_VECTOR);
+			return 1;
+		}
+		kvm_register_writel(&svm->vcpu, reg, val);
+		trace_kvm_cr_read(cr, val);
+	}
+	return kvm_complete_insn_gp(&svm->vcpu, err);
+}
+
+static int dr_interception(struct vcpu_svm *svm)
+{
+	int reg, dr;
+	unsigned long val;
+
+	if (svm->vcpu.guest_debug == 0) {
+		/*
+		 * No more DR vmexits; force a reload of the debug registers
+		 * and reenter on this instruction.  The next vmexit will
+		 * retrieve the full state of the debug registers.
+		 */
+		clr_dr_intercepts(svm);
+		svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
+		return 1;
+	}
+
+	if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
+		return emulate_on_interception(svm);
+
+	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
+	dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
+
+	if (dr >= 16) { /* mov to DRn */
+		if (!kvm_require_dr(&svm->vcpu, dr - 16))
+			return 1;
+		val = kvm_register_readl(&svm->vcpu, reg);
+		kvm_set_dr(&svm->vcpu, dr - 16, val);
+	} else {
+		if (!kvm_require_dr(&svm->vcpu, dr))
+			return 1;
+		kvm_get_dr(&svm->vcpu, dr, &val);
+		kvm_register_writel(&svm->vcpu, reg, val);
+	}
+
+	return kvm_skip_emulated_instruction(&svm->vcpu);
+}
+
+static int cr8_write_interception(struct vcpu_svm *svm)
+{
+	struct kvm_run *kvm_run = svm->vcpu.run;
+	int r;
+
+	u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
+	/* instruction emulation calls kvm_set_cr8() */
+	r = cr_interception(svm);
+	if (lapic_in_kernel(&svm->vcpu))
+		return r;
+	if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
+		return r;
+	kvm_run->exit_reason = KVM_EXIT_SET_TPR;
+	return 0;
+}
+
+static int svm_get_msr_feature(struct kvm_msr_entry *msr)
+{
+	msr->data = 0;
+
+	switch (msr->index) {
+	case MSR_F10H_DECFG:
+		if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC))
+			msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE;
+		break;
+	case MSR_IA32_PERF_CAPABILITIES:
+		return 0;
+	default:
+		return KVM_MSR_RET_INVALID;
+	}
+
+	return 0;
+}
+
+static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
+{
+	struct vcpu_svm *svm = to_svm(vcpu);
+
+	switch (msr_info->index) {
+	case MSR_STAR:
+		msr_info->data = svm->vmcb->save.star;
+		break;
+#ifdef CONFIG_X86_64
+	case MSR_LSTAR:
+		msr_info->data = svm->vmcb->save.lstar;
+		break;
+	case MSR_CSTAR:
+		msr_info->data = svm->vmcb->save.cstar;
+		break;
+	case MSR_KERNEL_GS_BASE:
+		msr_info->data = svm->vmcb->save.kernel_gs_base;
+		break;
+	case MSR_SYSCALL_MASK:
+		msr_info->data = svm->vmcb->save.sfmask;
+		break;
+#endif
+	case MSR_IA32_SYSENTER_CS:
+		msr_info->data = svm->vmcb->save.sysenter_cs;
+		break;
+	case MSR_IA32_SYSENTER_EIP:
+		msr_info->data = svm->sysenter_eip;
+		break;
+	case MSR_IA32_SYSENTER_ESP:
+		msr_info->data = svm->sysenter_esp;
+		break;
+	case MSR_TSC_AUX:
+		if (!boot_cpu_has(X86_FEATURE_RDTSCP))
+			return 1;
+		if (!msr_info->host_initiated &&
+		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
+			return 1;
+		msr_info->data = svm->tsc_aux;
+		break;
+	/*
+	 * Nobody will change the following 5 values in the VMCB so we can
+	 * safely return them on rdmsr. They will always be 0 until LBRV is
+	 * implemented.
+	 */
+	case MSR_IA32_DEBUGCTLMSR:
+		msr_info->data = svm->vmcb->save.dbgctl;
+		break;
+	case MSR_IA32_LASTBRANCHFROMIP:
+		msr_info->data = svm->vmcb->save.br_from;
+		break;
+	case MSR_IA32_LASTBRANCHTOIP:
+		msr_info->data = svm->vmcb->save.br_to;
+		break;
+	case MSR_IA32_LASTINTFROMIP:
+		msr_info->data = svm->vmcb->save.last_excp_from;
+		break;
+	case MSR_IA32_LASTINTTOIP:
+		msr_info->data = svm->vmcb->save.last_excp_to;
+		break;
+	case MSR_VM_HSAVE_PA:
+		msr_info->data = svm->nested.hsave_msr;
+		break;
+	case MSR_VM_CR:
+		msr_info->data = svm->nested.vm_cr_msr;
+		break;
+	case MSR_IA32_SPEC_CTRL:
+		if (!msr_info->host_initiated &&
+		    !guest_has_spec_ctrl_msr(vcpu))
+			return 1;
+
+		msr_info->data = svm->spec_ctrl;
+		break;
+	case MSR_AMD64_VIRT_SPEC_CTRL:
+		if (!msr_info->host_initiated &&
+		    !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
+			return 1;
+
+		msr_info->data = svm->virt_spec_ctrl;
+		break;
+	case MSR_F15H_IC_CFG: {
+
+		int family, model;
+
+		family = guest_cpuid_family(vcpu);
+		model  = guest_cpuid_model(vcpu);
+
+		if (family < 0 || model < 0)
+			return kvm_get_msr_common(vcpu, msr_info);
+
+		msr_info->data = 0;
+
+		if (family == 0x15 &&
+		    (model >= 0x2 && model < 0x20))
+			msr_info->data = 0x1E;
+		}
+		break;
+	case MSR_F10H_DECFG:
+		msr_info->data = svm->msr_decfg;
+		break;
+	default:
+		return kvm_get_msr_common(vcpu, msr_info);
+	}
+	return 0;
+}
+
+static int rdmsr_interception(struct vcpu_svm *svm)
+{
+	return kvm_emulate_rdmsr(&svm->vcpu);
+}
+
+static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
+{
+	struct vcpu_svm *svm = to_svm(vcpu);
+	int svm_dis, chg_mask;
+
+	if (data & ~SVM_VM_CR_VALID_MASK)
+		return 1;
+
+	chg_mask = SVM_VM_CR_VALID_MASK;
+
+	if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
+		chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
+
+	svm->nested.vm_cr_msr &= ~chg_mask;
+	svm->nested.vm_cr_msr |= (data & chg_mask);
+
+	svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
+
+	/* check for svm_disable while efer.svme is set */
+	if (svm_dis && (vcpu->arch.efer & EFER_SVME))
+		return 1;
+
+	return 0;
+}
+
+static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
+{
+	struct vcpu_svm *svm = to_svm(vcpu);
+
+	u32 ecx = msr->index;
+	u64 data = msr->data;
+	switch (ecx) {
+	case MSR_IA32_CR_PAT:
+		if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
+			return 1;
+		vcpu->arch.pat = data;
+		svm->vmcb->save.g_pat = data;
+		vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
+		break;
+	case MSR_IA32_SPEC_CTRL:
+		if (!msr->host_initiated &&
+		    !guest_has_spec_ctrl_msr(vcpu))
+			return 1;
+
+		if (kvm_spec_ctrl_test_value(data))
+			return 1;
+
+		svm->spec_ctrl = data;
+		if (!data)
+			break;
+
+		/*
+		 * For non-nested:
+		 * When it's written (to non-zero) for the first time, pass
+		 * it through.
+		 *
+		 * For nested:
+		 * The handling of the MSR bitmap for L2 guests is done in
+		 * nested_svm_vmrun_msrpm.
+		 * We update the L1 MSR bit as well since it will end up
+		 * touching the MSR anyway now.
+		 */
+		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
+		break;
+	case MSR_IA32_PRED_CMD:
+		if (!msr->host_initiated &&
+		    !guest_has_pred_cmd_msr(vcpu))
+			return 1;
+
+		if (data & ~PRED_CMD_IBPB)
+			return 1;
+		if (!boot_cpu_has(X86_FEATURE_IBPB))
+			return 1;
+		if (!data)
+			break;
+
+		wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
+		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0, 1);
+		break;
+	case MSR_AMD64_VIRT_SPEC_CTRL:
+		if (!msr->host_initiated &&
+		    !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
+			return 1;
+
+		if (data & ~SPEC_CTRL_SSBD)
+			return 1;
+
+		svm->virt_spec_ctrl = data;
+		break;
+	case MSR_STAR:
+		svm->vmcb->save.star = data;
+		break;
+#ifdef CONFIG_X86_64
+	case MSR_LSTAR:
+		svm->vmcb->save.lstar = data;
+		break;
+	case MSR_CSTAR:
+		svm->vmcb->save.cstar = data;
+		break;
+	case MSR_KERNEL_GS_BASE:
+		svm->vmcb->save.kernel_gs_base = data;
+		break;
+	case MSR_SYSCALL_MASK:
+		svm->vmcb->save.sfmask = data;
+		break;
+#endif
+	case MSR_IA32_SYSENTER_CS:
+		svm->vmcb->save.sysenter_cs = data;
+		break;
+	case MSR_IA32_SYSENTER_EIP:
+		svm->sysenter_eip = data;
+		svm->vmcb->save.sysenter_eip = data;
+		break;
+	case MSR_IA32_SYSENTER_ESP:
+		svm->sysenter_esp = data;
+		svm->vmcb->save.sysenter_esp = data;
+		break;
+	case MSR_TSC_AUX:
+		if (!boot_cpu_has(X86_FEATURE_RDTSCP))
+			return 1;
+
+		if (!msr->host_initiated &&
+		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
+			return 1;
+
+		/*
+		 * This is rare, so we update the MSR here instead of using
+		 * direct_access_msrs.  Doing that would require a rdmsr in
+		 * svm_vcpu_put.
+		 */
+		svm->tsc_aux = data;
+		wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
+		break;
+	case MSR_IA32_DEBUGCTLMSR:
+		if (!boot_cpu_has(X86_FEATURE_LBRV)) {
+			vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
+				    __func__, data);
+			break;
+		}
+		if (data & DEBUGCTL_RESERVED_BITS)
+			return 1;
+
+		svm->vmcb->save.dbgctl = data;
+		vmcb_mark_dirty(svm->vmcb, VMCB_LBR);
+		if (data & (1ULL<<0))
+			svm_enable_lbrv(vcpu);
+		else
+			svm_disable_lbrv(vcpu);
+		break;
+	case MSR_VM_HSAVE_PA:
+		/*
+		 * Old kernels did not validate the value written to
+		 * MSR_VM_HSAVE_PA.  Allow KVM_SET_MSR to set an invalid
+		 * value to allow live migrating buggy or malicious guests
+		 * originating from those kernels.
+		 */
+		if (!msr->host_initiated && !page_address_valid(vcpu, data))
+			return 1;
+
+		svm->nested.hsave_msr = data & PAGE_MASK;
+		break;
+	case MSR_VM_CR:
+		return svm_set_vm_cr(vcpu, data);
+	case MSR_VM_IGNNE:
+		vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
+		break;
+	case MSR_F10H_DECFG: {
+		struct kvm_msr_entry msr_entry;
+
+		msr_entry.index = msr->index;
+		if (svm_get_msr_feature(&msr_entry))
+			return 1;
+
+		/* Check the supported bits */
+		if (data & ~msr_entry.data)
+			return 1;
+
+		/* Don't allow the guest to change a bit, #GP */
+		if (!msr->host_initiated && (data ^ msr_entry.data))
+			return 1;
+
+		svm->msr_decfg = data;
+		break;
+	}
+	case MSR_IA32_APICBASE:
+		if (kvm_vcpu_apicv_active(vcpu))
+			avic_update_vapic_bar(to_svm(vcpu), data);
+		fallthrough;
+	default:
+		return kvm_set_msr_common(vcpu, msr);
+	}
+	return 0;
+}
+
+static int wrmsr_interception(struct vcpu_svm *svm)
+{
+	return kvm_emulate_wrmsr(&svm->vcpu);
+}
+
+static int msr_interception(struct vcpu_svm *svm)
+{
+	if (svm->vmcb->control.exit_info_1)
+		return wrmsr_interception(svm);
+	else
+		return rdmsr_interception(svm);
+}
+
+static int interrupt_window_interception(struct vcpu_svm *svm)
+{
+	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
+	svm_clear_vintr(svm);
+
+	/*
+	 * For AVIC, the only reason to end up here is ExtINTs.
+	 * In this case AVIC was temporarily disabled for
+	 * requesting the IRQ window and we have to re-enable it.
+	 */
+	svm_toggle_avic_for_irq_window(&svm->vcpu, true);
+
+	++svm->vcpu.stat.irq_window_exits;
+	return 1;
+}
+
+static int pause_interception(struct vcpu_svm *svm)
+{
+	struct kvm_vcpu *vcpu = &svm->vcpu;
+	bool in_kernel = (svm_get_cpl(vcpu) == 0);
+
+	if (!kvm_pause_in_guest(vcpu->kvm))
+		grow_ple_window(vcpu);
+
+	kvm_vcpu_on_spin(vcpu, in_kernel);
+	return 1;
+}
+
+static int nop_interception(struct vcpu_svm *svm)
+{
+	return kvm_skip_emulated_instruction(&(svm->vcpu));
+}
+
+static int monitor_interception(struct vcpu_svm *svm)
+{
+	printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
+	return nop_interception(svm);
+}
+
+static int mwait_interception(struct vcpu_svm *svm)
+{
+	printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
+	return nop_interception(svm);
+}
+
+static int invpcid_interception(struct vcpu_svm *svm)
+{
+	struct kvm_vcpu *vcpu = &svm->vcpu;
+	unsigned long type;
+	gva_t gva;
+
+	if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
+		kvm_queue_exception(vcpu, UD_VECTOR);
+		return 1;
+	}
+
+	/*
+	 * For an INVPCID intercept:
+	 * EXITINFO1 provides the linear address of the memory operand.
+	 * EXITINFO2 provides the contents of the register operand.
+	 */
+	type = svm->vmcb->control.exit_info_2;
+	gva = svm->vmcb->control.exit_info_1;
+
+	if (type > 3) {
+		kvm_inject_gp(vcpu, 0);
+		return 1;
+	}
+
+	return kvm_handle_invpcid(vcpu, type, gva);
+}
+
+static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
+	[SVM_EXIT_READ_CR0]			= cr_interception,
+	[SVM_EXIT_READ_CR3]			= cr_interception,
+	[SVM_EXIT_READ_CR4]			= cr_interception,
+	[SVM_EXIT_READ_CR8]			= cr_interception,
+	[SVM_EXIT_CR0_SEL_WRITE]		= cr_interception,
+	[SVM_EXIT_WRITE_CR0]			= cr_interception,
+	[SVM_EXIT_WRITE_CR3]			= cr_interception,
+	[SVM_EXIT_WRITE_CR4]			= cr_interception,
+	[SVM_EXIT_WRITE_CR8]			= cr8_write_interception,
+	[SVM_EXIT_READ_DR0]			= dr_interception,
+	[SVM_EXIT_READ_DR1]			= dr_interception,
+	[SVM_EXIT_READ_DR2]			= dr_interception,
+	[SVM_EXIT_READ_DR3]			= dr_interception,
+	[SVM_EXIT_READ_DR4]			= dr_interception,
+	[SVM_EXIT_READ_DR5]			= dr_interception,
+	[SVM_EXIT_READ_DR6]			= dr_interception,
+	[SVM_EXIT_READ_DR7]			= dr_interception,
+	[SVM_EXIT_WRITE_DR0]			= dr_interception,
+	[SVM_EXIT_WRITE_DR1]			= dr_interception,
+	[SVM_EXIT_WRITE_DR2]			= dr_interception,
+	[SVM_EXIT_WRITE_DR3]			= dr_interception,
+	[SVM_EXIT_WRITE_DR4]			= dr_interception,
+	[SVM_EXIT_WRITE_DR5]			= dr_interception,
+	[SVM_EXIT_WRITE_DR6]			= dr_interception,
+	[SVM_EXIT_WRITE_DR7]			= dr_interception,
+	[SVM_EXIT_EXCP_BASE + DB_VECTOR]	= db_interception,
+	[SVM_EXIT_EXCP_BASE + BP_VECTOR]	= bp_interception,
+	[SVM_EXIT_EXCP_BASE + UD_VECTOR]	= ud_interception,
+	[SVM_EXIT_EXCP_BASE + PF_VECTOR]	= pf_interception,
+	[SVM_EXIT_EXCP_BASE + MC_VECTOR]	= mc_interception,
+	[SVM_EXIT_EXCP_BASE + AC_VECTOR]	= ac_interception,
+	[SVM_EXIT_EXCP_BASE + GP_VECTOR]	= gp_interception,
+	[SVM_EXIT_INTR]				= intr_interception,
+	[SVM_EXIT_NMI]				= nmi_interception,
+	[SVM_EXIT_SMI]				= nop_on_interception,
+	[SVM_EXIT_INIT]				= nop_on_interception,
+	[SVM_EXIT_VINTR]			= interrupt_window_interception,
+	[SVM_EXIT_RDPMC]			= rdpmc_interception,
+	[SVM_EXIT_CPUID]			= cpuid_interception,
+	[SVM_EXIT_IRET]                         = iret_interception,
+	[SVM_EXIT_INVD]                         = invd_interception,
+	[SVM_EXIT_PAUSE]			= pause_interception,
+	[SVM_EXIT_HLT]				= halt_interception,
+	[SVM_EXIT_INVLPG]			= invlpg_interception,
+	[SVM_EXIT_INVLPGA]			= invlpga_interception,
+	[SVM_EXIT_IOIO]				= io_interception,
+	[SVM_EXIT_MSR]				= msr_interception,
+	[SVM_EXIT_TASK_SWITCH]			= task_switch_interception,
+	[SVM_EXIT_SHUTDOWN]			= shutdown_interception,
+	[SVM_EXIT_VMRUN]			= vmrun_interception,
+	[SVM_EXIT_VMMCALL]			= vmmcall_interception,
+	[SVM_EXIT_VMLOAD]			= vmload_interception,
+	[SVM_EXIT_VMSAVE]			= vmsave_interception,
+	[SVM_EXIT_STGI]				= stgi_interception,
+	[SVM_EXIT_CLGI]				= clgi_interception,
+	[SVM_EXIT_SKINIT]			= skinit_interception,
+	[SVM_EXIT_WBINVD]                       = wbinvd_interception,
+	[SVM_EXIT_MONITOR]			= monitor_interception,
+	[SVM_EXIT_MWAIT]			= mwait_interception,
+	[SVM_EXIT_XSETBV]			= xsetbv_interception,
+	[SVM_EXIT_RDPRU]			= rdpru_interception,
+	[SVM_EXIT_INVPCID]                      = invpcid_interception,
+	[SVM_EXIT_NPF]				= npf_interception,
+	[SVM_EXIT_RSM]                          = rsm_interception,
+	[SVM_EXIT_AVIC_INCOMPLETE_IPI]		= avic_incomplete_ipi_interception,
+	[SVM_EXIT_AVIC_UNACCELERATED_ACCESS]	= avic_unaccelerated_access_interception,
+};
+
+static void dump_vmcb(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_svm *svm = to_svm(vcpu);
+	struct vmcb_control_area *control = &svm->vmcb->control;
+	struct vmcb_save_area *save = &svm->vmcb->save;
+
+	if (!dump_invalid_vmcb) {
+		pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
+		return;
+	}
+
+	pr_err("VMCB Control Area:\n");
+	pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff);
+	pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16);
+	pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff);
+	pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16);
+	pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]);
+	pr_err("%-20s%08x %08x\n", "intercepts:",
+              control->intercepts[INTERCEPT_WORD3],
+	       control->intercepts[INTERCEPT_WORD4]);
+	pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
+	pr_err("%-20s%d\n", "pause filter threshold:",
+	       control->pause_filter_thresh);
+	pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
+	pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
+	pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
+	pr_err("%-20s%d\n", "asid:", control->asid);
+	pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
+	pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
+	pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
+	pr_err("%-20s%08x\n", "int_state:", control->int_state);
+	pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
+	pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
+	pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
+	pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
+	pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
+	pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
+	pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
+	pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
+	pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
+	pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
+	pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
+	pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
+	pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
+	pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
+	pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
+	pr_err("VMCB State Save Area:\n");
+	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
+	       "es:",
+	       save->es.selector, save->es.attrib,
+	       save->es.limit, save->es.base);
+	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
+	       "cs:",
+	       save->cs.selector, save->cs.attrib,
+	       save->cs.limit, save->cs.base);
+	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
+	       "ss:",
+	       save->ss.selector, save->ss.attrib,
+	       save->ss.limit, save->ss.base);
+	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
+	       "ds:",
+	       save->ds.selector, save->ds.attrib,
+	       save->ds.limit, save->ds.base);
+	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
+	       "fs:",
+	       save->fs.selector, save->fs.attrib,
+	       save->fs.limit, save->fs.base);
+	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
+	       "gs:",
+	       save->gs.selector, save->gs.attrib,
+	       save->gs.limit, save->gs.base);
+	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
+	       "gdtr:",
+	       save->gdtr.selector, save->gdtr.attrib,
+	       save->gdtr.limit, save->gdtr.base);
+	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
+	       "ldtr:",
+	       save->ldtr.selector, save->ldtr.attrib,
+	       save->ldtr.limit, save->ldtr.base);
+	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
+	       "idtr:",
+	       save->idtr.selector, save->idtr.attrib,
+	       save->idtr.limit, save->idtr.base);
+	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
+	       "tr:",
+	       save->tr.selector, save->tr.attrib,
+	       save->tr.limit, save->tr.base);
+	pr_err("cpl:            %d                efer:         %016llx\n",
+		save->cpl, save->efer);
+	pr_err("%-15s %016llx %-13s %016llx\n",
+	       "cr0:", save->cr0, "cr2:", save->cr2);
+	pr_err("%-15s %016llx %-13s %016llx\n",
+	       "cr3:", save->cr3, "cr4:", save->cr4);
+	pr_err("%-15s %016llx %-13s %016llx\n",
+	       "dr6:", save->dr6, "dr7:", save->dr7);
+	pr_err("%-15s %016llx %-13s %016llx\n",
+	       "rip:", save->rip, "rflags:", save->rflags);
+	pr_err("%-15s %016llx %-13s %016llx\n",
+	       "rsp:", save->rsp, "rax:", save->rax);
+	pr_err("%-15s %016llx %-13s %016llx\n",
+	       "star:", save->star, "lstar:", save->lstar);
+	pr_err("%-15s %016llx %-13s %016llx\n",
+	       "cstar:", save->cstar, "sfmask:", save->sfmask);
+	pr_err("%-15s %016llx %-13s %016llx\n",
+	       "kernel_gs_base:", save->kernel_gs_base,
+	       "sysenter_cs:", save->sysenter_cs);
+	pr_err("%-15s %016llx %-13s %016llx\n",
+	       "sysenter_esp:", save->sysenter_esp,
+	       "sysenter_eip:", save->sysenter_eip);
+	pr_err("%-15s %016llx %-13s %016llx\n",
+	       "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
+	pr_err("%-15s %016llx %-13s %016llx\n",
+	       "br_from:", save->br_from, "br_to:", save->br_to);
+	pr_err("%-15s %016llx %-13s %016llx\n",
+	       "excp_from:", save->last_excp_from,
+	       "excp_to:", save->last_excp_to);
+}
+
+static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2,
+			      u32 *intr_info, u32 *error_code)
+{
+	struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
+
+	*info1 = control->exit_info_1;
+	*info2 = control->exit_info_2;
+	*intr_info = control->exit_int_info;
+	if ((*intr_info & SVM_EXITINTINFO_VALID) &&
+	    (*intr_info & SVM_EXITINTINFO_VALID_ERR))
+		*error_code = control->exit_int_info_err;
+	else
+		*error_code = 0;
+}
+
+static int handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
+{
+	struct vcpu_svm *svm = to_svm(vcpu);
+	struct kvm_run *kvm_run = vcpu->run;
+	u32 exit_code = svm->vmcb->control.exit_code;
+
+	trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
+
+	if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE))
+		vcpu->arch.cr0 = svm->vmcb->save.cr0;
+	if (npt_enabled)
+		vcpu->arch.cr3 = svm->vmcb->save.cr3;
+
+	if (is_guest_mode(vcpu)) {
+		int vmexit;
+
+		trace_kvm_nested_vmexit(exit_code, vcpu, KVM_ISA_SVM);
+
+		vmexit = nested_svm_exit_special(svm);
+
+		if (vmexit == NESTED_EXIT_CONTINUE)
+			vmexit = nested_svm_exit_handled(svm);
+
+		if (vmexit == NESTED_EXIT_DONE)
+			return 1;
+	}
+
+	if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
+		kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
+		kvm_run->fail_entry.hardware_entry_failure_reason
+			= svm->vmcb->control.exit_code;
+		kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
+		dump_vmcb(vcpu);
+		return 0;
+	}
+
+	if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
+	    exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
+	    exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
+	    exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
+		printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
+		       "exit_code 0x%x\n",
+		       __func__, svm->vmcb->control.exit_int_info,
+		       exit_code);
+
+	if (exit_fastpath != EXIT_FASTPATH_NONE)
+		return 1;
+
+	if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
+	    || !svm_exit_handlers[exit_code]) {
+		vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%x\n", exit_code);
+		dump_vmcb(vcpu);
+		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
+		vcpu->run->internal.suberror =
+			KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
+		vcpu->run->internal.ndata = 2;
+		vcpu->run->internal.data[0] = exit_code;
+		vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
+		return 0;
+	}
+
+#ifdef CONFIG_RETPOLINE
+	if (exit_code == SVM_EXIT_MSR)
+		return msr_interception(svm);
+	else if (exit_code == SVM_EXIT_VINTR)
+		return interrupt_window_interception(svm);
+	else if (exit_code == SVM_EXIT_INTR)
+		return intr_interception(svm);
+	else if (exit_code == SVM_EXIT_HLT)
+		return halt_interception(svm);
+	else if (exit_code == SVM_EXIT_NPF)
+		return npf_interception(svm);
+#endif
+	return svm_exit_handlers[exit_code](svm);
+}
+
+static void reload_tss(struct kvm_vcpu *vcpu)
+{
+	struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
+
+	sd->tss_desc->type = 9; /* available 32/64-bit TSS */
+	load_TR_desc();
+}
+
+static void pre_svm_run(struct vcpu_svm *svm)
+{
+	struct svm_cpu_data *sd = per_cpu(svm_data, svm->vcpu.cpu);
+
+	if (sev_guest(svm->vcpu.kvm))
+		return pre_sev_run(svm, svm->vcpu.cpu);
+
+	/* FIXME: handle wraparound of asid_generation */
+	if (svm->asid_generation != sd->asid_generation)
+		new_asid(svm, sd);
+}
+
+static void svm_inject_nmi(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_svm *svm = to_svm(vcpu);
+
+	svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
+	vcpu->arch.hflags |= HF_NMI_MASK;
+	svm_set_intercept(svm, INTERCEPT_IRET);
+	++vcpu->stat.nmi_injections;
+}
+
+static void svm_set_irq(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_svm *svm = to_svm(vcpu);
+
+	BUG_ON(!(gif_set(svm)));
+
+	trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
+	++vcpu->stat.irq_injections;
+
+	svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
+		SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
+}
+
+static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
+{
+	struct vcpu_svm *svm = to_svm(vcpu);
+
+	if (nested_svm_virtualize_tpr(vcpu))
+		return;
+
+	svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
+
+	if (irr == -1)
+		return;
+
+	if (tpr >= irr)
+		svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
+}
+
+bool svm_nmi_blocked(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_svm *svm = to_svm(vcpu);
+	struct vmcb *vmcb = svm->vmcb;
+	bool ret;
+
+	if (!gif_set(svm))
+		return true;
+
+	if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
+		return false;
+
+	ret = (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) ||
+	      (svm->vcpu.arch.hflags & HF_NMI_MASK);
+
+	return ret;
+}
+
+static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
+{
+	struct vcpu_svm *svm = to_svm(vcpu);
+	if (svm->nested.nested_run_pending)
+		return -EBUSY;
+
+	/* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
+	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
+		return -EBUSY;
+
+	return !svm_nmi_blocked(vcpu);
+}
+
+static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_svm *svm = to_svm(vcpu);
+
+	return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
+}
+
+static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
+{
+	struct vcpu_svm *svm = to_svm(vcpu);
+
+	if (masked) {
+		svm->vcpu.arch.hflags |= HF_NMI_MASK;
+		svm_set_intercept(svm, INTERCEPT_IRET);
+	} else {
+		svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
+		svm_clr_intercept(svm, INTERCEPT_IRET);
+	}
+}
+
+bool svm_interrupt_blocked(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_svm *svm = to_svm(vcpu);
+	struct vmcb *vmcb = svm->vmcb;
+
+	if (!gif_set(svm))
+		return true;
+
+	if (is_guest_mode(vcpu)) {
+		/* As long as interrupts are being delivered...  */
+		if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK)
+		    ? !(svm->nested.hsave->save.rflags & X86_EFLAGS_IF)
+		    : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
+			return true;
+
+		/* ... vmexits aren't blocked by the interrupt shadow  */
+		if (nested_exit_on_intr(svm))
+			return false;
+	} else {
+		if (!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
+			return true;
+	}
+
+	return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK);
+}
+
+static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
+{
+	struct vcpu_svm *svm = to_svm(vcpu);
+	if (svm->nested.nested_run_pending)
+		return -EBUSY;
+
+	/*
+	 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
+	 * e.g. if the IRQ arrived asynchronously after checking nested events.
+	 */
+	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm))
+		return -EBUSY;
+
+	return !svm_interrupt_blocked(vcpu);
+}
+
+static void enable_irq_window(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_svm *svm = to_svm(vcpu);
+
+	/*
+	 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
+	 * 1, because that's a separate STGI/VMRUN intercept.  The next time we
+	 * get that intercept, this function will be called again though and
+	 * we'll get the vintr intercept. However, if the vGIF feature is
+	 * enabled, the STGI interception will not occur. Enable the irq
+	 * window under the assumption that the hardware will set the GIF.
+	 */
+	if (vgif_enabled(svm) || gif_set(svm)) {
+		/*
+		 * IRQ window is not needed when AVIC is enabled,
+		 * unless we have pending ExtINT since it cannot be injected
+		 * via AVIC. In such case, we need to temporarily disable AVIC,
+		 * and fallback to injecting IRQ via V_IRQ.
+		 */
+		svm_toggle_avic_for_irq_window(vcpu, false);
+		svm_set_vintr(svm);
+	}
+}
+
+static void enable_nmi_window(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_svm *svm = to_svm(vcpu);
+
+	if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
+	    == HF_NMI_MASK)
+		return; /* IRET will cause a vm exit */
+
+	if (!gif_set(svm)) {
+		if (vgif_enabled(svm))
+			svm_set_intercept(svm, INTERCEPT_STGI);
+		return; /* STGI will cause a vm exit */
+	}
+
+	/*
+	 * Something prevents NMI from been injected. Single step over possible
+	 * problem (IRET or exception injection or interrupt shadow)
+	 */
+	svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
+	svm->nmi_singlestep = true;
+	svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
+}
+
+static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
+{
+	return 0;
+}
+
+static int svm_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
+{
+	return 0;
+}
+
+void svm_flush_tlb(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_svm *svm = to_svm(vcpu);
+
+	/*
+	 * Flush only the current ASID even if the TLB flush was invoked via
+	 * kvm_flush_remote_tlbs().  Although flushing remote TLBs requires all
+	 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and
+	 * unconditionally does a TLB flush on both nested VM-Enter and nested
+	 * VM-Exit (via kvm_mmu_reset_context()).
+	 */
+	if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
+		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
+	else
+		svm->asid_generation--;
+}
+
+static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
+{
+	struct vcpu_svm *svm = to_svm(vcpu);
+
+	invlpga(gva, svm->vmcb->control.asid);
+}
+
+static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
+{
+}
+
+static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_svm *svm = to_svm(vcpu);
+
+	if (nested_svm_virtualize_tpr(vcpu))
+		return;
+
+	if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) {
+		int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
+		kvm_set_cr8(vcpu, cr8);
+	}
+}
+
+static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_svm *svm = to_svm(vcpu);
+	u64 cr8;
+
+	if (nested_svm_virtualize_tpr(vcpu) ||
+	    kvm_vcpu_apicv_active(vcpu))
+		return;
+
+	cr8 = kvm_get_cr8(vcpu);
+	svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
+	svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
+}
+
+static void svm_complete_interrupts(struct vcpu_svm *svm)
+{
+	u8 vector;
+	int type;
+	u32 exitintinfo = svm->vmcb->control.exit_int_info;
+	unsigned int3_injected = svm->int3_injected;
+
+	svm->int3_injected = 0;
+
+	/*
+	 * If we've made progress since setting HF_IRET_MASK, we've
+	 * executed an IRET and can allow NMI injection.
+	 */
+	if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
+	    && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
+		svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
+		kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
+	}
+
+	svm->vcpu.arch.nmi_injected = false;
+	kvm_clear_exception_queue(&svm->vcpu);
+	kvm_clear_interrupt_queue(&svm->vcpu);
+
+	if (!(exitintinfo & SVM_EXITINTINFO_VALID))
+		return;
+
+	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
+
+	vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
+	type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
+
+	switch (type) {
+	case SVM_EXITINTINFO_TYPE_NMI:
+		svm->vcpu.arch.nmi_injected = true;
+		break;
+	case SVM_EXITINTINFO_TYPE_EXEPT:
+		/*
+		 * In case of software exceptions, do not reinject the vector,
+		 * but re-execute the instruction instead. Rewind RIP first
+		 * if we emulated INT3 before.
+		 */
+		if (kvm_exception_is_soft(vector)) {
+			if (vector == BP_VECTOR && int3_injected &&
+			    kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
+				kvm_rip_write(&svm->vcpu,
+					      kvm_rip_read(&svm->vcpu) -
+					      int3_injected);
+			break;
+		}
+		if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
+			u32 err = svm->vmcb->control.exit_int_info_err;
+			kvm_requeue_exception_e(&svm->vcpu, vector, err);
+
+		} else
+			kvm_requeue_exception(&svm->vcpu, vector);
+		break;
+	case SVM_EXITINTINFO_TYPE_INTR:
+		kvm_queue_interrupt(&svm->vcpu, vector, false);
+		break;
+	default:
+		break;
+	}
+}
+
+static void svm_cancel_injection(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_svm *svm = to_svm(vcpu);
+	struct vmcb_control_area *control = &svm->vmcb->control;
+
+	control->exit_int_info = control->event_inj;
+	control->exit_int_info_err = control->event_inj_err;
+	control->event_inj = 0;
+	svm_complete_interrupts(svm);
+}
+
+static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
+{
+	if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_MSR &&
+	    to_svm(vcpu)->vmcb->control.exit_info_1)
+		return handle_fastpath_set_msr_irqoff(vcpu);
+
+	return EXIT_FASTPATH_NONE;
+}
+
+void __svm_vcpu_run(unsigned long vmcb_pa, unsigned long *regs);
+
+static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu,
+					struct vcpu_svm *svm)
+{
+	/*
+	 * VMENTER enables interrupts (host state), but the kernel state is
+	 * interrupts disabled when this is invoked. Also tell RCU about
+	 * it. This is the same logic as for exit_to_user_mode().
+	 *
+	 * This ensures that e.g. latency analysis on the host observes
+	 * guest mode as interrupt enabled.
+	 *
+	 * guest_enter_irqoff() informs context tracking about the
+	 * transition to guest mode and if enabled adjusts RCU state
+	 * accordingly.
+	 */
+	instrumentation_begin();
+	trace_hardirqs_on_prepare();
+	lockdep_hardirqs_on_prepare(CALLER_ADDR0);
+	instrumentation_end();
+
+	guest_enter_irqoff();
+	lockdep_hardirqs_on(CALLER_ADDR0);
+
+	__svm_vcpu_run(svm->vmcb_pa, (unsigned long *)&svm->vcpu.arch.regs);
+
+#ifdef CONFIG_X86_64
+	native_wrmsrl(MSR_GS_BASE, svm->host.gs_base);
+#else
+	loadsegment(fs, svm->host.fs);
+#ifndef CONFIG_X86_32_LAZY_GS
+	loadsegment(gs, svm->host.gs);
+#endif
+#endif
+
+	/*
+	 * VMEXIT disables interrupts (host state), but tracing and lockdep
+	 * have them in state 'on' as recorded before entering guest mode.
+	 * Same as enter_from_user_mode().
+	 *
+	 * context_tracking_guest_exit() restores host context and reinstates
+	 * RCU if enabled and required.
+	 *
+	 * This needs to be done before the below as native_read_msr()
+	 * contains a tracepoint and x86_spec_ctrl_restore_host() calls
+	 * into world and some more.
+	 */
+	lockdep_hardirqs_off(CALLER_ADDR0);
+	context_tracking_guest_exit();
+
+	instrumentation_begin();
+	trace_hardirqs_off_finish();
+	instrumentation_end();
+}
+
+static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_svm *svm = to_svm(vcpu);
+
+	svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
+	svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
+	svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
+
+	/*
+	 * Disable singlestep if we're injecting an interrupt/exception.
+	 * We don't want our modified rflags to be pushed on the stack where
+	 * we might not be able to easily reset them if we disabled NMI
+	 * singlestep later.
+	 */
+	if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
+		/*
+		 * Event injection happens before external interrupts cause a
+		 * vmexit and interrupts are disabled here, so smp_send_reschedule
+		 * is enough to force an immediate vmexit.
+		 */
+		disable_nmi_singlestep(svm);
+		smp_send_reschedule(vcpu->cpu);
+	}
+
+	pre_svm_run(svm);
+
+	sync_lapic_to_cr8(vcpu);
+
+	svm->vmcb->save.cr2 = vcpu->arch.cr2;
+
+	/*
+	 * Run with all-zero DR6 unless needed, so that we can get the exact cause
+	 * of a #DB.
+	 */
+	if (unlikely(svm->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
+		svm_set_dr6(svm, vcpu->arch.dr6);
+	else
+		svm_set_dr6(svm, DR6_FIXED_1 | DR6_RTM);
+
+	clgi();
+	kvm_load_guest_xsave_state(vcpu);
+
+	kvm_wait_lapic_expire(vcpu);
+
+	/*
+	 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
+	 * it's non-zero. Since vmentry is serialising on affected CPUs, there
+	 * is no need to worry about the conditional branch over the wrmsr
+	 * being speculatively taken.
+	 */
+	x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl);
+
+	svm_vcpu_enter_exit(vcpu, svm);
+
+	/*
+	 * We do not use IBRS in the kernel. If this vCPU has used the
+	 * SPEC_CTRL MSR it may have left it on; save the value and
+	 * turn it off. This is much more efficient than blindly adding
+	 * it to the atomic save/restore list. Especially as the former
+	 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
+	 *
+	 * For non-nested case:
+	 * If the L01 MSR bitmap does not intercept the MSR, then we need to
+	 * save it.
+	 *
+	 * For nested case:
+	 * If the L02 MSR bitmap does not intercept the MSR, then we need to
+	 * save it.
+	 */
+	if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
+		svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
+
+	reload_tss(vcpu);
+
+	x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl);
+
+	vcpu->arch.cr2 = svm->vmcb->save.cr2;
+	vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
+	vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
+	vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
+
+	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
+		kvm_before_interrupt(&svm->vcpu);
+
+	kvm_load_host_xsave_state(vcpu);
+	stgi();
+
+	/* Any pending NMI will happen here */
+
+	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
+		kvm_after_interrupt(&svm->vcpu);
+
+	sync_cr8_to_lapic(vcpu);
+
+	svm->next_rip = 0;
+	if (is_guest_mode(&svm->vcpu)) {
+		sync_nested_vmcb_control(svm);
+		svm->nested.nested_run_pending = 0;
+	}
+
+	svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
+	vmcb_mark_all_clean(svm->vmcb);
+
+	/* if exit due to PF check for async PF */
+	if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
+		svm->vcpu.arch.apf.host_apf_flags =
+			kvm_read_and_reset_apf_flags();
+
+	if (npt_enabled) {
+		vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
+		vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
+	}
+
+	/*
+	 * We need to handle MC intercepts here before the vcpu has a chance to
+	 * change the physical cpu
+	 */
+	if (unlikely(svm->vmcb->control.exit_code ==
+		     SVM_EXIT_EXCP_BASE + MC_VECTOR))
+		svm_handle_mce(svm);
+
+	svm_complete_interrupts(svm);
+
+	if (is_guest_mode(vcpu))
+		return EXIT_FASTPATH_NONE;
+
+	return svm_exit_handlers_fastpath(vcpu);
+}
+
+static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, unsigned long root,
+			     int root_level)
+{
+	struct vcpu_svm *svm = to_svm(vcpu);
+	unsigned long cr3;
+
+	cr3 = __sme_set(root);
+	if (npt_enabled) {
+		svm->vmcb->control.nested_cr3 = cr3;
+		vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
+
+		/* Loading L2's CR3 is handled by enter_svm_guest_mode.  */
+		if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
+			return;
+		cr3 = vcpu->arch.cr3;
+	}
+
+	svm->vmcb->save.cr3 = cr3;
+	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
+}
+
+static int is_disabled(void)
+{
+	u64 vm_cr;
+
+	rdmsrl(MSR_VM_CR, vm_cr);
+	if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
+		return 1;
+
+	return 0;
+}
+
+static void
+svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
+{
+	/*
+	 * Patch in the VMMCALL instruction:
+	 */
+	hypercall[0] = 0x0f;
+	hypercall[1] = 0x01;
+	hypercall[2] = 0xd9;
+}
+
+static int __init svm_check_processor_compat(void)
+{
+	return 0;
+}
+
+static bool svm_cpu_has_accelerated_tpr(void)
+{
+	return false;
+}
+
+static bool svm_has_emulated_msr(u32 index)
+{
+	switch (index) {
+	case MSR_IA32_MCG_EXT_CTL:
+	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
+		return false;
+	default:
+		break;
+	}
+
+	return true;
+}
+
+static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
+{
+	return 0;
+}
+
+static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_svm *svm = to_svm(vcpu);
+	struct kvm_cpuid_entry2 *best;
+
+	vcpu->arch.xsaves_enabled = guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
+				    boot_cpu_has(X86_FEATURE_XSAVE) &&
+				    boot_cpu_has(X86_FEATURE_XSAVES);
+
+	/* Update nrips enabled cache */
+	svm->nrips_enabled = kvm_cpu_cap_has(X86_FEATURE_NRIPS) &&
+			     guest_cpuid_has(&svm->vcpu, X86_FEATURE_NRIPS);
+
+	/* Check again if INVPCID interception if required */
+	svm_check_invpcid(svm);
+
+	/* For sev guests, the memory encryption bit is not reserved in CR3.  */
+	if (sev_guest(vcpu->kvm)) {
+		best = kvm_find_cpuid_entry(vcpu, 0x8000001F, 0);
+		if (best)
+			vcpu->arch.cr3_lm_rsvd_bits &= ~(1UL << (best->ebx & 0x3f));
+	}
+
+	if (!kvm_vcpu_apicv_active(vcpu))
+		return;
+
+	/*
+	 * AVIC does not work with an x2APIC mode guest. If the X2APIC feature
+	 * is exposed to the guest, disable AVIC.
+	 */
+	if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC))
+		kvm_request_apicv_update(vcpu->kvm, false,
+					 APICV_INHIBIT_REASON_X2APIC);
+
+	/*
+	 * Currently, AVIC does not work with nested virtualization.
+	 * So, we disable AVIC when cpuid for SVM is set in the L1 guest.
+	 */
+	if (nested && guest_cpuid_has(vcpu, X86_FEATURE_SVM))
+		kvm_request_apicv_update(vcpu->kvm, false,
+					 APICV_INHIBIT_REASON_NESTED);
+}
+
+static bool svm_has_wbinvd_exit(void)
+{
+	return true;
+}
+
+#define PRE_EX(exit)  { .exit_code = (exit), \
+			.stage = X86_ICPT_PRE_EXCEPT, }
+#define POST_EX(exit) { .exit_code = (exit), \
+			.stage = X86_ICPT_POST_EXCEPT, }
+#define POST_MEM(exit) { .exit_code = (exit), \
+			.stage = X86_ICPT_POST_MEMACCESS, }
+
+static const struct __x86_intercept {
+	u32 exit_code;
+	enum x86_intercept_stage stage;
+} x86_intercept_map[] = {
+	[x86_intercept_cr_read]		= POST_EX(SVM_EXIT_READ_CR0),
+	[x86_intercept_cr_write]	= POST_EX(SVM_EXIT_WRITE_CR0),
+	[x86_intercept_clts]		= POST_EX(SVM_EXIT_WRITE_CR0),
+	[x86_intercept_lmsw]		= POST_EX(SVM_EXIT_WRITE_CR0),
+	[x86_intercept_smsw]		= POST_EX(SVM_EXIT_READ_CR0),
+	[x86_intercept_dr_read]		= POST_EX(SVM_EXIT_READ_DR0),
+	[x86_intercept_dr_write]	= POST_EX(SVM_EXIT_WRITE_DR0),
+	[x86_intercept_sldt]		= POST_EX(SVM_EXIT_LDTR_READ),
+	[x86_intercept_str]		= POST_EX(SVM_EXIT_TR_READ),
+	[x86_intercept_lldt]		= POST_EX(SVM_EXIT_LDTR_WRITE),
+	[x86_intercept_ltr]		= POST_EX(SVM_EXIT_TR_WRITE),
+	[x86_intercept_sgdt]		= POST_EX(SVM_EXIT_GDTR_READ),
+	[x86_intercept_sidt]		= POST_EX(SVM_EXIT_IDTR_READ),
+	[x86_intercept_lgdt]		= POST_EX(SVM_EXIT_GDTR_WRITE),
+	[x86_intercept_lidt]		= POST_EX(SVM_EXIT_IDTR_WRITE),
+	[x86_intercept_vmrun]		= POST_EX(SVM_EXIT_VMRUN),
+	[x86_intercept_vmmcall]		= POST_EX(SVM_EXIT_VMMCALL),
+	[x86_intercept_vmload]		= POST_EX(SVM_EXIT_VMLOAD),
+	[x86_intercept_vmsave]		= POST_EX(SVM_EXIT_VMSAVE),
+	[x86_intercept_stgi]		= POST_EX(SVM_EXIT_STGI),
+	[x86_intercept_clgi]		= POST_EX(SVM_EXIT_CLGI),
+	[x86_intercept_skinit]		= POST_EX(SVM_EXIT_SKINIT),
+	[x86_intercept_invlpga]		= POST_EX(SVM_EXIT_INVLPGA),
+	[x86_intercept_rdtscp]		= POST_EX(SVM_EXIT_RDTSCP),
+	[x86_intercept_monitor]		= POST_MEM(SVM_EXIT_MONITOR),
+	[x86_intercept_mwait]		= POST_EX(SVM_EXIT_MWAIT),
+	[x86_intercept_invlpg]		= POST_EX(SVM_EXIT_INVLPG),
+	[x86_intercept_invd]		= POST_EX(SVM_EXIT_INVD),
+	[x86_intercept_wbinvd]		= POST_EX(SVM_EXIT_WBINVD),
+	[x86_intercept_wrmsr]		= POST_EX(SVM_EXIT_MSR),
+	[x86_intercept_rdtsc]		= POST_EX(SVM_EXIT_RDTSC),
+	[x86_intercept_rdmsr]		= POST_EX(SVM_EXIT_MSR),
+	[x86_intercept_rdpmc]		= POST_EX(SVM_EXIT_RDPMC),
+	[x86_intercept_cpuid]		= PRE_EX(SVM_EXIT_CPUID),
+	[x86_intercept_rsm]		= PRE_EX(SVM_EXIT_RSM),
+	[x86_intercept_pause]		= PRE_EX(SVM_EXIT_PAUSE),
+	[x86_intercept_pushf]		= PRE_EX(SVM_EXIT_PUSHF),
+	[x86_intercept_popf]		= PRE_EX(SVM_EXIT_POPF),
+	[x86_intercept_intn]		= PRE_EX(SVM_EXIT_SWINT),
+	[x86_intercept_iret]		= PRE_EX(SVM_EXIT_IRET),
+	[x86_intercept_icebp]		= PRE_EX(SVM_EXIT_ICEBP),
+	[x86_intercept_hlt]		= POST_EX(SVM_EXIT_HLT),
+	[x86_intercept_in]		= POST_EX(SVM_EXIT_IOIO),
+	[x86_intercept_ins]		= POST_EX(SVM_EXIT_IOIO),
+	[x86_intercept_out]		= POST_EX(SVM_EXIT_IOIO),
+	[x86_intercept_outs]		= POST_EX(SVM_EXIT_IOIO),
+	[x86_intercept_xsetbv]		= PRE_EX(SVM_EXIT_XSETBV),
+};
+
+#undef PRE_EX
+#undef POST_EX
+#undef POST_MEM
+
+static int svm_check_intercept(struct kvm_vcpu *vcpu,
+			       struct x86_instruction_info *info,
+			       enum x86_intercept_stage stage,
+			       struct x86_exception *exception)
+{
+	struct vcpu_svm *svm = to_svm(vcpu);
+	int vmexit, ret = X86EMUL_CONTINUE;
+	struct __x86_intercept icpt_info;
+	struct vmcb *vmcb = svm->vmcb;
+
+	if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
+		goto out;
+
+	icpt_info = x86_intercept_map[info->intercept];
+
+	if (stage != icpt_info.stage)
+		goto out;
+
+	switch (icpt_info.exit_code) {
+	case SVM_EXIT_READ_CR0:
+		if (info->intercept == x86_intercept_cr_read)
+			icpt_info.exit_code += info->modrm_reg;
+		break;
+	case SVM_EXIT_WRITE_CR0: {
+		unsigned long cr0, val;
+
+		if (info->intercept == x86_intercept_cr_write)
+			icpt_info.exit_code += info->modrm_reg;
+
+		if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
+		    info->intercept == x86_intercept_clts)
+			break;
+
+		if (!(vmcb_is_intercept(&svm->nested.ctl,
+					INTERCEPT_SELECTIVE_CR0)))
+			break;
+
+		cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
+		val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
+
+		if (info->intercept == x86_intercept_lmsw) {
+			cr0 &= 0xfUL;
+			val &= 0xfUL;
+			/* lmsw can't clear PE - catch this here */
+			if (cr0 & X86_CR0_PE)
+				val |= X86_CR0_PE;
+		}
+
+		if (cr0 ^ val)
+			icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
+
+		break;
+	}
+	case SVM_EXIT_READ_DR0:
+	case SVM_EXIT_WRITE_DR0:
+		icpt_info.exit_code += info->modrm_reg;
+		break;
+	case SVM_EXIT_MSR:
+		if (info->intercept == x86_intercept_wrmsr)
+			vmcb->control.exit_info_1 = 1;
+		else
+			vmcb->control.exit_info_1 = 0;
+		break;
+	case SVM_EXIT_PAUSE:
+		/*
+		 * We get this for NOP only, but pause
+		 * is rep not, check this here
+		 */
+		if (info->rep_prefix != REPE_PREFIX)
+			goto out;
+		break;
+	case SVM_EXIT_IOIO: {
+		u64 exit_info;
+		u32 bytes;
+
+		if (info->intercept == x86_intercept_in ||
+		    info->intercept == x86_intercept_ins) {
+			exit_info = ((info->src_val & 0xffff) << 16) |
+				SVM_IOIO_TYPE_MASK;
+			bytes = info->dst_bytes;
+		} else {
+			exit_info = (info->dst_val & 0xffff) << 16;
+			bytes = info->src_bytes;
+		}
+
+		if (info->intercept == x86_intercept_outs ||
+		    info->intercept == x86_intercept_ins)
+			exit_info |= SVM_IOIO_STR_MASK;
+
+		if (info->rep_prefix)
+			exit_info |= SVM_IOIO_REP_MASK;
+
+		bytes = min(bytes, 4u);
+
+		exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
+
+		exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
+
+		vmcb->control.exit_info_1 = exit_info;
+		vmcb->control.exit_info_2 = info->next_rip;
+
+		break;
+	}
+	default:
+		break;
+	}
+
+	/* TODO: Advertise NRIPS to guest hypervisor unconditionally */
+	if (static_cpu_has(X86_FEATURE_NRIPS))
+		vmcb->control.next_rip  = info->next_rip;
+	vmcb->control.exit_code = icpt_info.exit_code;
+	vmexit = nested_svm_exit_handled(svm);
+
+	ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
+					   : X86EMUL_CONTINUE;
+
+out:
+	return ret;
+}
+
+static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
+{
+}
+
+static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
+{
+	if (!kvm_pause_in_guest(vcpu->kvm))
+		shrink_ple_window(vcpu);
+}
+
+static void svm_setup_mce(struct kvm_vcpu *vcpu)
+{
+	/* [63:9] are reserved. */
+	vcpu->arch.mcg_cap &= 0x1ff;
+}
+
+bool svm_smi_blocked(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_svm *svm = to_svm(vcpu);
+
+	/* Per APM Vol.2 15.22.2 "Response to SMI" */
+	if (!gif_set(svm))
+		return true;
+
+	return is_smm(vcpu);
+}
+
+static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
+{
+	struct vcpu_svm *svm = to_svm(vcpu);
+	if (svm->nested.nested_run_pending)
+		return -EBUSY;
+
+	/* An SMI must not be injected into L2 if it's supposed to VM-Exit.  */
+	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm))
+		return -EBUSY;
+
+	return !svm_smi_blocked(vcpu);
+}
+
+static int svm_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
+{
+	struct vcpu_svm *svm = to_svm(vcpu);
+	int ret;
+
+	if (is_guest_mode(vcpu)) {
+		/* FED8h - SVM Guest */
+		put_smstate(u64, smstate, 0x7ed8, 1);
+		/* FEE0h - SVM Guest VMCB Physical Address */
+		put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb12_gpa);
+
+		svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
+		svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
+		svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
+
+		ret = nested_svm_vmexit(svm);
+		if (ret)
+			return ret;
+	}
+	return 0;
+}
+
+static int svm_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
+{
+	struct vcpu_svm *svm = to_svm(vcpu);
+	struct kvm_host_map map;
+	int ret = 0;
+
+	if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) {
+		u64 saved_efer = GET_SMSTATE(u64, smstate, 0x7ed0);
+		u64 guest = GET_SMSTATE(u64, smstate, 0x7ed8);
+		u64 vmcb12_gpa = GET_SMSTATE(u64, smstate, 0x7ee0);
+
+		if (guest) {
+			if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM))
+				return 1;
+
+			if (!(saved_efer & EFER_SVME))
+				return 1;
+
+			if (kvm_vcpu_map(&svm->vcpu,
+					 gpa_to_gfn(vmcb12_gpa), &map) == -EINVAL)
+				return 1;
+
+			if (svm_allocate_nested(svm))
+				return 1;
+
+			ret = enter_svm_guest_mode(svm, vmcb12_gpa, map.hva);
+			kvm_vcpu_unmap(&svm->vcpu, &map, true);
+		}
+	}
+
+	return ret;
+}
+
+static void enable_smi_window(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_svm *svm = to_svm(vcpu);
+
+	if (!gif_set(svm)) {
+		if (vgif_enabled(svm))
+			svm_set_intercept(svm, INTERCEPT_STGI);
+		/* STGI will cause a vm exit */
+	} else {
+		/* We must be in SMM; RSM will cause a vmexit anyway.  */
+	}
+}
+
+static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, void *insn, int insn_len)
+{
+	bool smep, smap, is_user;
+	unsigned long cr4;
+
+	/* Emulation is always possible when KVM has access to all guest state. */
+	if (!sev_guest(vcpu->kvm))
+		return true;
+
+	/*
+	 * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
+	 *
+	 * Errata:
+	 * When CPU raise #NPF on guest data access and vCPU CR4.SMAP=1, it is
+	 * possible that CPU microcode implementing DecodeAssist will fail
+	 * to read bytes of instruction which caused #NPF. In this case,
+	 * GuestIntrBytes field of the VMCB on a VMEXIT will incorrectly
+	 * return 0 instead of the correct guest instruction bytes.
+	 *
+	 * This happens because CPU microcode reading instruction bytes
+	 * uses a special opcode which attempts to read data using CPL=0
+	 * priviledges. The microcode reads CS:RIP and if it hits a SMAP
+	 * fault, it gives up and returns no instruction bytes.
+	 *
+	 * Detection:
+	 * We reach here in case CPU supports DecodeAssist, raised #NPF and
+	 * returned 0 in GuestIntrBytes field of the VMCB.
+	 * First, errata can only be triggered in case vCPU CR4.SMAP=1.
+	 * Second, if vCPU CR4.SMEP=1, errata could only be triggered
+	 * in case vCPU CPL==3 (Because otherwise guest would have triggered
+	 * a SMEP fault instead of #NPF).
+	 * Otherwise, vCPU CR4.SMEP=0, errata could be triggered by any vCPU CPL.
+	 * As most guests enable SMAP if they have also enabled SMEP, use above
+	 * logic in order to attempt minimize false-positive of detecting errata
+	 * while still preserving all cases semantic correctness.
+	 *
+	 * Workaround:
+	 * To determine what instruction the guest was executing, the hypervisor
+	 * will have to decode the instruction at the instruction pointer.
+	 *
+	 * In non SEV guest, hypervisor will be able to read the guest
+	 * memory to decode the instruction pointer when insn_len is zero
+	 * so we return true to indicate that decoding is possible.
+	 *
+	 * But in the SEV guest, the guest memory is encrypted with the
+	 * guest specific key and hypervisor will not be able to decode the
+	 * instruction pointer so we will not able to workaround it. Lets
+	 * print the error and request to kill the guest.
+	 */
+	if (likely(!insn || insn_len))
+		return true;
+
+	cr4 = kvm_read_cr4(vcpu);
+	smep = cr4 & X86_CR4_SMEP;
+	smap = cr4 & X86_CR4_SMAP;
+	is_user = svm_get_cpl(vcpu) == 3;
+	if (smap && (!smep || is_user)) {
+		pr_err_ratelimited("KVM: SEV Guest triggered AMD Erratum 1096\n");
+
+		/*
+		 * If the fault occurred in userspace, arbitrarily inject #GP
+		 * to avoid killing the guest and to hopefully avoid confusing
+		 * the guest kernel too much, e.g. injecting #PF would not be
+		 * coherent with respect to the guest's page tables.  Request
+		 * triple fault if the fault occurred in the kernel as there's
+		 * no fault that KVM can inject without confusing the guest.
+		 * In practice, the triple fault is moot as no sane SEV kernel
+		 * will execute from user memory while also running with SMAP=1.
+		 */
+		if (is_user)
+			kvm_inject_gp(vcpu, 0);
+		else
+			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
+	}
+
+	return false;
+}
+
+static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_svm *svm = to_svm(vcpu);
+
+	/*
+	 * TODO: Last condition latch INIT signals on vCPU when
+	 * vCPU is in guest-mode and vmcb12 defines intercept on INIT.
+	 * To properly emulate the INIT intercept,
+	 * svm_check_nested_events() should call nested_svm_vmexit()
+	 * if an INIT signal is pending.
+	 */
+	return !gif_set(svm) ||
+		   (vmcb_is_intercept(&svm->vmcb->control, INTERCEPT_INIT));
+}
+
+static void svm_vm_destroy(struct kvm *kvm)
+{
+	avic_vm_destroy(kvm);
+	sev_vm_destroy(kvm);
+}
+
+static int svm_vm_init(struct kvm *kvm)
+{
+	if (!pause_filter_count || !pause_filter_thresh)
+		kvm->arch.pause_in_guest = true;
+
+	if (avic) {
+		int ret = avic_vm_init(kvm);
+		if (ret)
+			return ret;
+	}
+
+	kvm_apicv_init(kvm, avic);
+	return 0;
+}
+
+static struct kvm_x86_ops svm_x86_ops __initdata = {
+	.hardware_unsetup = svm_hardware_teardown,
+	.hardware_enable = svm_hardware_enable,
+	.hardware_disable = svm_hardware_disable,
+	.cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
+	.has_emulated_msr = svm_has_emulated_msr,
+
+	.vcpu_create = svm_create_vcpu,
+	.vcpu_free = svm_free_vcpu,
+	.vcpu_reset = svm_vcpu_reset,
+
+	.vm_size = sizeof(struct kvm_svm),
+	.vm_init = svm_vm_init,
+	.vm_destroy = svm_vm_destroy,
+
+	.prepare_guest_switch = svm_prepare_guest_switch,
+	.vcpu_load = svm_vcpu_load,
+	.vcpu_put = svm_vcpu_put,
+	.vcpu_blocking = svm_vcpu_blocking,
+	.vcpu_unblocking = svm_vcpu_unblocking,
+
+	.update_exception_bitmap = update_exception_bitmap,
+	.get_msr_feature = svm_get_msr_feature,
+	.get_msr = svm_get_msr,
+	.set_msr = svm_set_msr,
+	.get_segment_base = svm_get_segment_base,
+	.get_segment = svm_get_segment,
+	.set_segment = svm_set_segment,
+	.get_cpl = svm_get_cpl,
+	.get_cs_db_l_bits = kvm_get_cs_db_l_bits,
+	.set_cr0 = svm_set_cr0,
+	.set_cr4 = svm_set_cr4,
+	.set_efer = svm_set_efer,
+	.get_idt = svm_get_idt,
+	.set_idt = svm_set_idt,
+	.get_gdt = svm_get_gdt,
+	.set_gdt = svm_set_gdt,
+	.set_dr7 = svm_set_dr7,
+	.sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
+	.cache_reg = svm_cache_reg,
+	.get_rflags = svm_get_rflags,
+	.set_rflags = svm_set_rflags,
+
+	.tlb_flush_all = svm_flush_tlb,
+	.tlb_flush_current = svm_flush_tlb,
+	.tlb_flush_gva = svm_flush_tlb_gva,
+	.tlb_flush_guest = svm_flush_tlb,
+
+	.run = svm_vcpu_run,
+	.handle_exit = handle_exit,
+	.skip_emulated_instruction = skip_emulated_instruction,
+	.update_emulated_instruction = NULL,
+	.set_interrupt_shadow = svm_set_interrupt_shadow,
+	.get_interrupt_shadow = svm_get_interrupt_shadow,
+	.patch_hypercall = svm_patch_hypercall,
+	.set_irq = svm_set_irq,
+	.set_nmi = svm_inject_nmi,
+	.queue_exception = svm_queue_exception,
+	.cancel_injection = svm_cancel_injection,
+	.interrupt_allowed = svm_interrupt_allowed,
+	.nmi_allowed = svm_nmi_allowed,
+	.get_nmi_mask = svm_get_nmi_mask,
+	.set_nmi_mask = svm_set_nmi_mask,
+	.enable_nmi_window = enable_nmi_window,
+	.enable_irq_window = enable_irq_window,
+	.update_cr8_intercept = update_cr8_intercept,
+	.set_virtual_apic_mode = svm_set_virtual_apic_mode,
+	.refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
+	.check_apicv_inhibit_reasons = svm_check_apicv_inhibit_reasons,
+	.pre_update_apicv_exec_ctrl = svm_pre_update_apicv_exec_ctrl,
+	.load_eoi_exitmap = svm_load_eoi_exitmap,
+	.hwapic_irr_update = svm_hwapic_irr_update,
+	.hwapic_isr_update = svm_hwapic_isr_update,
+	.sync_pir_to_irr = kvm_lapic_find_highest_irr,
+	.apicv_post_state_restore = avic_post_state_restore,
+
+	.set_tss_addr = svm_set_tss_addr,
+	.set_identity_map_addr = svm_set_identity_map_addr,
+	.get_mt_mask = svm_get_mt_mask,
+
+	.get_exit_info = svm_get_exit_info,
+
+	.vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid,
+
+	.has_wbinvd_exit = svm_has_wbinvd_exit,
+
+	.write_l1_tsc_offset = svm_write_l1_tsc_offset,
+
+	.load_mmu_pgd = svm_load_mmu_pgd,
+
+	.check_intercept = svm_check_intercept,
+	.handle_exit_irqoff = svm_handle_exit_irqoff,
+
+	.request_immediate_exit = __kvm_request_immediate_exit,
+
+	.sched_in = svm_sched_in,
+
+	.pmu_ops = &amd_pmu_ops,
+	.nested_ops = &svm_nested_ops,
+
+	.deliver_posted_interrupt = svm_deliver_avic_intr,
+	.dy_apicv_has_pending_interrupt = svm_dy_apicv_has_pending_interrupt,
+	.update_pi_irte = svm_update_pi_irte,
+	.setup_mce = svm_setup_mce,
+
+	.smi_allowed = svm_smi_allowed,
+	.pre_enter_smm = svm_pre_enter_smm,
+	.pre_leave_smm = svm_pre_leave_smm,
+	.enable_smi_window = enable_smi_window,
+
+	.mem_enc_op = svm_mem_enc_op,
+	.mem_enc_reg_region = svm_register_enc_region,
+	.mem_enc_unreg_region = svm_unregister_enc_region,
+
+	.can_emulate_instruction = svm_can_emulate_instruction,
+
+	.apic_init_signal_blocked = svm_apic_init_signal_blocked,
+
+	.msr_filter_changed = svm_msr_filter_changed,
+};
+
+static struct kvm_x86_init_ops svm_init_ops __initdata = {
+	.cpu_has_kvm_support = has_svm,
+	.disabled_by_bios = is_disabled,
+	.hardware_setup = svm_hardware_setup,
+	.check_processor_compatibility = svm_check_processor_compat,
+
+	.runtime_ops = &svm_x86_ops,
+};
+
+static int __init svm_init(void)
+{
+	__unused_size_checks();
+
+	return kvm_init(&svm_init_ops, sizeof(struct vcpu_svm),
+			__alignof__(struct vcpu_svm), THIS_MODULE);
+}
+
+static void __exit svm_exit(void)
+{
+	kvm_exit();
+}
+
+module_init(svm_init)
+module_exit(svm_exit)
diff --git a/arch/x86/kvm/svm/svm.h b/arch/x86/kvm/svm/svm.h
new file mode 100644
index 0000000..2c00724
--- /dev/null
+++ b/arch/x86/kvm/svm/svm.h
@@ -0,0 +1,498 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Kernel-based Virtual Machine driver for Linux
+ *
+ * AMD SVM support
+ *
+ * Copyright (C) 2006 Qumranet, Inc.
+ * Copyright 2010 Red Hat, Inc. and/or its affiliates.
+ *
+ * Authors:
+ *   Yaniv Kamay  <yaniv@qumranet.com>
+ *   Avi Kivity   <avi@qumranet.com>
+ */
+
+#ifndef __SVM_SVM_H
+#define __SVM_SVM_H
+
+#include <linux/kvm_types.h>
+#include <linux/kvm_host.h>
+
+#include <asm/svm.h>
+
+static const u32 host_save_user_msrs[] = {
+#ifdef CONFIG_X86_64
+	MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
+	MSR_FS_BASE,
+#endif
+	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
+	MSR_TSC_AUX,
+};
+
+#define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
+
+#define MAX_DIRECT_ACCESS_MSRS	15
+#define MSRPM_OFFSETS	16
+extern u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
+extern bool npt_enabled;
+
+enum {
+	VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
+			    pause filter count */
+	VMCB_PERM_MAP,   /* IOPM Base and MSRPM Base */
+	VMCB_ASID,	 /* ASID */
+	VMCB_INTR,	 /* int_ctl, int_vector */
+	VMCB_NPT,        /* npt_en, nCR3, gPAT */
+	VMCB_CR,	 /* CR0, CR3, CR4, EFER */
+	VMCB_DR,         /* DR6, DR7 */
+	VMCB_DT,         /* GDT, IDT */
+	VMCB_SEG,        /* CS, DS, SS, ES, CPL */
+	VMCB_CR2,        /* CR2 only */
+	VMCB_LBR,        /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
+	VMCB_AVIC,       /* AVIC APIC_BAR, AVIC APIC_BACKING_PAGE,
+			  * AVIC PHYSICAL_TABLE pointer,
+			  * AVIC LOGICAL_TABLE pointer
+			  */
+	VMCB_DIRTY_MAX,
+};
+
+/* TPR and CR2 are always written before VMRUN */
+#define VMCB_ALWAYS_DIRTY_MASK	((1U << VMCB_INTR) | (1U << VMCB_CR2))
+
+struct kvm_sev_info {
+	bool active;		/* SEV enabled guest */
+	unsigned int asid;	/* ASID used for this guest */
+	unsigned int handle;	/* SEV firmware handle */
+	int fd;			/* SEV device fd */
+	unsigned long pages_locked; /* Number of pages locked */
+	struct list_head regions_list;  /* List of registered regions */
+};
+
+struct kvm_svm {
+	struct kvm kvm;
+
+	/* Struct members for AVIC */
+	u32 avic_vm_id;
+	struct page *avic_logical_id_table_page;
+	struct page *avic_physical_id_table_page;
+	struct hlist_node hnode;
+
+	struct kvm_sev_info sev_info;
+};
+
+struct kvm_vcpu;
+
+struct svm_nested_state {
+	struct vmcb *hsave;
+	u64 hsave_msr;
+	u64 vm_cr_msr;
+	u64 vmcb12_gpa;
+
+	/* These are the merged vectors */
+	u32 *msrpm;
+
+	/* A VMRUN has started but has not yet been performed, so
+	 * we cannot inject a nested vmexit yet.  */
+	bool nested_run_pending;
+
+	/* cache for control fields of the guest */
+	struct vmcb_control_area ctl;
+
+	bool initialized;
+};
+
+struct vcpu_svm {
+	struct kvm_vcpu vcpu;
+	struct vmcb *vmcb;
+	unsigned long vmcb_pa;
+	struct svm_cpu_data *svm_data;
+	uint64_t asid_generation;
+	uint64_t sysenter_esp;
+	uint64_t sysenter_eip;
+	uint64_t tsc_aux;
+
+	u64 msr_decfg;
+
+	u64 next_rip;
+
+	u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
+	struct {
+		u16 fs;
+		u16 gs;
+		u16 ldt;
+		u64 gs_base;
+	} host;
+
+	u64 spec_ctrl;
+	/*
+	 * Contains guest-controlled bits of VIRT_SPEC_CTRL, which will be
+	 * translated into the appropriate L2_CFG bits on the host to
+	 * perform speculative control.
+	 */
+	u64 virt_spec_ctrl;
+
+	u32 *msrpm;
+
+	ulong nmi_iret_rip;
+
+	struct svm_nested_state nested;
+
+	bool nmi_singlestep;
+	u64 nmi_singlestep_guest_rflags;
+
+	unsigned int3_injected;
+	unsigned long int3_rip;
+
+	/* cached guest cpuid flags for faster access */
+	bool nrips_enabled	: 1;
+
+	u32 ldr_reg;
+	u32 dfr_reg;
+	struct page *avic_backing_page;
+	u64 *avic_physical_id_cache;
+	bool avic_is_running;
+
+	/*
+	 * Per-vcpu list of struct amd_svm_iommu_ir:
+	 * This is used mainly to store interrupt remapping information used
+	 * when update the vcpu affinity. This avoids the need to scan for
+	 * IRTE and try to match ga_tag in the IOMMU driver.
+	 */
+	struct list_head ir_list;
+	spinlock_t ir_list_lock;
+
+	/* Save desired MSR intercept (read: pass-through) state */
+	struct {
+		DECLARE_BITMAP(read, MAX_DIRECT_ACCESS_MSRS);
+		DECLARE_BITMAP(write, MAX_DIRECT_ACCESS_MSRS);
+	} shadow_msr_intercept;
+};
+
+struct svm_cpu_data {
+	int cpu;
+
+	u64 asid_generation;
+	u32 max_asid;
+	u32 next_asid;
+	u32 min_asid;
+	struct kvm_ldttss_desc *tss_desc;
+
+	struct page *save_area;
+	struct vmcb *current_vmcb;
+
+	/* index = sev_asid, value = vmcb pointer */
+	struct vmcb **sev_vmcbs;
+};
+
+DECLARE_PER_CPU(struct svm_cpu_data *, svm_data);
+
+void recalc_intercepts(struct vcpu_svm *svm);
+
+static inline struct kvm_svm *to_kvm_svm(struct kvm *kvm)
+{
+	return container_of(kvm, struct kvm_svm, kvm);
+}
+
+static inline void vmcb_mark_all_dirty(struct vmcb *vmcb)
+{
+	vmcb->control.clean = 0;
+}
+
+static inline void vmcb_mark_all_clean(struct vmcb *vmcb)
+{
+	vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
+			       & ~VMCB_ALWAYS_DIRTY_MASK;
+}
+
+static inline void vmcb_mark_dirty(struct vmcb *vmcb, int bit)
+{
+	vmcb->control.clean &= ~(1 << bit);
+}
+
+static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
+{
+	return container_of(vcpu, struct vcpu_svm, vcpu);
+}
+
+static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
+{
+	if (is_guest_mode(&svm->vcpu))
+		return svm->nested.hsave;
+	else
+		return svm->vmcb;
+}
+
+static inline void vmcb_set_intercept(struct vmcb_control_area *control, u32 bit)
+{
+	WARN_ON_ONCE(bit >= 32 * MAX_INTERCEPT);
+	__set_bit(bit, (unsigned long *)&control->intercepts);
+}
+
+static inline void vmcb_clr_intercept(struct vmcb_control_area *control, u32 bit)
+{
+	WARN_ON_ONCE(bit >= 32 * MAX_INTERCEPT);
+	__clear_bit(bit, (unsigned long *)&control->intercepts);
+}
+
+static inline bool vmcb_is_intercept(struct vmcb_control_area *control, u32 bit)
+{
+	WARN_ON_ONCE(bit >= 32 * MAX_INTERCEPT);
+	return test_bit(bit, (unsigned long *)&control->intercepts);
+}
+
+static inline void set_dr_intercepts(struct vcpu_svm *svm)
+{
+	struct vmcb *vmcb = get_host_vmcb(svm);
+
+	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_READ);
+	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_READ);
+	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_READ);
+	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_READ);
+	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_READ);
+	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_READ);
+	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_READ);
+	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ);
+	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_WRITE);
+	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_WRITE);
+	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_WRITE);
+	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_WRITE);
+	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_WRITE);
+	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_WRITE);
+	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_WRITE);
+	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE);
+
+	recalc_intercepts(svm);
+}
+
+static inline void clr_dr_intercepts(struct vcpu_svm *svm)
+{
+	struct vmcb *vmcb = get_host_vmcb(svm);
+
+	vmcb->control.intercepts[INTERCEPT_DR] = 0;
+
+	recalc_intercepts(svm);
+}
+
+static inline void set_exception_intercept(struct vcpu_svm *svm, u32 bit)
+{
+	struct vmcb *vmcb = get_host_vmcb(svm);
+
+	WARN_ON_ONCE(bit >= 32);
+	vmcb_set_intercept(&vmcb->control, INTERCEPT_EXCEPTION_OFFSET + bit);
+
+	recalc_intercepts(svm);
+}
+
+static inline void clr_exception_intercept(struct vcpu_svm *svm, u32 bit)
+{
+	struct vmcb *vmcb = get_host_vmcb(svm);
+
+	WARN_ON_ONCE(bit >= 32);
+	vmcb_clr_intercept(&vmcb->control, INTERCEPT_EXCEPTION_OFFSET + bit);
+
+	recalc_intercepts(svm);
+}
+
+static inline void svm_set_intercept(struct vcpu_svm *svm, int bit)
+{
+	struct vmcb *vmcb = get_host_vmcb(svm);
+
+	vmcb_set_intercept(&vmcb->control, bit);
+
+	recalc_intercepts(svm);
+}
+
+static inline void svm_clr_intercept(struct vcpu_svm *svm, int bit)
+{
+	struct vmcb *vmcb = get_host_vmcb(svm);
+
+	vmcb_clr_intercept(&vmcb->control, bit);
+
+	recalc_intercepts(svm);
+}
+
+static inline bool svm_is_intercept(struct vcpu_svm *svm, int bit)
+{
+	return vmcb_is_intercept(&svm->vmcb->control, bit);
+}
+
+static inline bool vgif_enabled(struct vcpu_svm *svm)
+{
+	return !!(svm->vmcb->control.int_ctl & V_GIF_ENABLE_MASK);
+}
+
+static inline void enable_gif(struct vcpu_svm *svm)
+{
+	if (vgif_enabled(svm))
+		svm->vmcb->control.int_ctl |= V_GIF_MASK;
+	else
+		svm->vcpu.arch.hflags |= HF_GIF_MASK;
+}
+
+static inline void disable_gif(struct vcpu_svm *svm)
+{
+	if (vgif_enabled(svm))
+		svm->vmcb->control.int_ctl &= ~V_GIF_MASK;
+	else
+		svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
+}
+
+static inline bool gif_set(struct vcpu_svm *svm)
+{
+	if (vgif_enabled(svm))
+		return !!(svm->vmcb->control.int_ctl & V_GIF_MASK);
+	else
+		return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
+}
+
+/* svm.c */
+#define MSR_INVALID				0xffffffffU
+
+u32 svm_msrpm_offset(u32 msr);
+u32 *svm_vcpu_alloc_msrpm(void);
+void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm);
+void svm_vcpu_free_msrpm(u32 *msrpm);
+
+int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer);
+void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
+int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
+void svm_flush_tlb(struct kvm_vcpu *vcpu);
+void disable_nmi_singlestep(struct vcpu_svm *svm);
+bool svm_smi_blocked(struct kvm_vcpu *vcpu);
+bool svm_nmi_blocked(struct kvm_vcpu *vcpu);
+bool svm_interrupt_blocked(struct kvm_vcpu *vcpu);
+void svm_set_gif(struct vcpu_svm *svm, bool value);
+
+/* nested.c */
+
+#define NESTED_EXIT_HOST	0	/* Exit handled on host level */
+#define NESTED_EXIT_DONE	1	/* Exit caused nested vmexit  */
+#define NESTED_EXIT_CONTINUE	2	/* Further checks needed      */
+
+static inline bool nested_svm_virtualize_tpr(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_svm *svm = to_svm(vcpu);
+
+	return is_guest_mode(vcpu) && (svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK);
+}
+
+static inline bool nested_exit_on_smi(struct vcpu_svm *svm)
+{
+	return vmcb_is_intercept(&svm->nested.ctl, INTERCEPT_SMI);
+}
+
+static inline bool nested_exit_on_intr(struct vcpu_svm *svm)
+{
+	return vmcb_is_intercept(&svm->nested.ctl, INTERCEPT_INTR);
+}
+
+static inline bool nested_exit_on_nmi(struct vcpu_svm *svm)
+{
+	return vmcb_is_intercept(&svm->nested.ctl, INTERCEPT_NMI);
+}
+
+int enter_svm_guest_mode(struct vcpu_svm *svm, u64 vmcb_gpa,
+			 struct vmcb *nested_vmcb);
+void svm_leave_nested(struct kvm_vcpu *vcpu);
+void svm_free_nested(struct vcpu_svm *svm);
+int svm_allocate_nested(struct vcpu_svm *svm);
+int nested_svm_vmrun(struct vcpu_svm *svm);
+void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb);
+int nested_svm_vmexit(struct vcpu_svm *svm);
+int nested_svm_exit_handled(struct vcpu_svm *svm);
+int nested_svm_check_permissions(struct vcpu_svm *svm);
+int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
+			       bool has_error_code, u32 error_code);
+int nested_svm_exit_special(struct vcpu_svm *svm);
+void sync_nested_vmcb_control(struct vcpu_svm *svm);
+
+extern struct kvm_x86_nested_ops svm_nested_ops;
+
+/* avic.c */
+
+#define AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK	(0xFF)
+#define AVIC_LOGICAL_ID_ENTRY_VALID_BIT			31
+#define AVIC_LOGICAL_ID_ENTRY_VALID_MASK		(1 << 31)
+
+#define AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK	(0xFFULL)
+#define AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK	(0xFFFFFFFFFFULL << 12)
+#define AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK		(1ULL << 62)
+#define AVIC_PHYSICAL_ID_ENTRY_VALID_MASK		(1ULL << 63)
+
+#define VMCB_AVIC_APIC_BAR_MASK		0xFFFFFFFFFF000ULL
+
+extern int avic;
+
+static inline void avic_update_vapic_bar(struct vcpu_svm *svm, u64 data)
+{
+	svm->vmcb->control.avic_vapic_bar = data & VMCB_AVIC_APIC_BAR_MASK;
+	vmcb_mark_dirty(svm->vmcb, VMCB_AVIC);
+}
+
+static inline bool avic_vcpu_is_running(struct kvm_vcpu *vcpu)
+{
+	struct vcpu_svm *svm = to_svm(vcpu);
+	u64 *entry = svm->avic_physical_id_cache;
+
+	if (!entry)
+		return false;
+
+	return (READ_ONCE(*entry) & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
+}
+
+int avic_ga_log_notifier(u32 ga_tag);
+void avic_vm_destroy(struct kvm *kvm);
+int avic_vm_init(struct kvm *kvm);
+void avic_init_vmcb(struct vcpu_svm *svm);
+void svm_toggle_avic_for_irq_window(struct kvm_vcpu *vcpu, bool activate);
+int avic_incomplete_ipi_interception(struct vcpu_svm *svm);
+int avic_unaccelerated_access_interception(struct vcpu_svm *svm);
+int avic_init_vcpu(struct vcpu_svm *svm);
+void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
+void avic_vcpu_put(struct kvm_vcpu *vcpu);
+void avic_post_state_restore(struct kvm_vcpu *vcpu);
+void svm_set_virtual_apic_mode(struct kvm_vcpu *vcpu);
+void svm_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu);
+bool svm_check_apicv_inhibit_reasons(ulong bit);
+void svm_pre_update_apicv_exec_ctrl(struct kvm *kvm, bool activate);
+void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap);
+void svm_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr);
+void svm_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr);
+int svm_deliver_avic_intr(struct kvm_vcpu *vcpu, int vec);
+bool svm_dy_apicv_has_pending_interrupt(struct kvm_vcpu *vcpu);
+int svm_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
+		       uint32_t guest_irq, bool set);
+void svm_vcpu_blocking(struct kvm_vcpu *vcpu);
+void svm_vcpu_unblocking(struct kvm_vcpu *vcpu);
+
+/* sev.c */
+
+extern unsigned int max_sev_asid;
+
+static inline bool sev_guest(struct kvm *kvm)
+{
+#ifdef CONFIG_KVM_AMD_SEV
+	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
+
+	return sev->active;
+#else
+	return false;
+#endif
+}
+
+static inline bool svm_sev_enabled(void)
+{
+	return IS_ENABLED(CONFIG_KVM_AMD_SEV) ? max_sev_asid : 0;
+}
+
+void sev_vm_destroy(struct kvm *kvm);
+int svm_mem_enc_op(struct kvm *kvm, void __user *argp);
+int svm_register_enc_region(struct kvm *kvm,
+			    struct kvm_enc_region *range);
+int svm_unregister_enc_region(struct kvm *kvm,
+			      struct kvm_enc_region *range);
+void pre_sev_run(struct vcpu_svm *svm, int cpu);
+int __init sev_hardware_setup(void);
+void sev_hardware_teardown(void);
+
+#endif
diff --git a/arch/x86/kvm/svm/vmenter.S b/arch/x86/kvm/svm/vmenter.S
new file mode 100644
index 0000000..1ec1ac4
--- /dev/null
+++ b/arch/x86/kvm/svm/vmenter.S
@@ -0,0 +1,170 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#include <linux/linkage.h>
+#include <asm/asm.h>
+#include <asm/bitsperlong.h>
+#include <asm/kvm_vcpu_regs.h>
+#include <asm/nospec-branch.h>
+
+#define WORD_SIZE (BITS_PER_LONG / 8)
+
+/* Intentionally omit RAX as it's context switched by hardware */
+#define VCPU_RCX	__VCPU_REGS_RCX * WORD_SIZE
+#define VCPU_RDX	__VCPU_REGS_RDX * WORD_SIZE
+#define VCPU_RBX	__VCPU_REGS_RBX * WORD_SIZE
+/* Intentionally omit RSP as it's context switched by hardware */
+#define VCPU_RBP	__VCPU_REGS_RBP * WORD_SIZE
+#define VCPU_RSI	__VCPU_REGS_RSI * WORD_SIZE
+#define VCPU_RDI	__VCPU_REGS_RDI * WORD_SIZE
+
+#ifdef CONFIG_X86_64
+#define VCPU_R8		__VCPU_REGS_R8  * WORD_SIZE
+#define VCPU_R9		__VCPU_REGS_R9  * WORD_SIZE
+#define VCPU_R10	__VCPU_REGS_R10 * WORD_SIZE
+#define VCPU_R11	__VCPU_REGS_R11 * WORD_SIZE
+#define VCPU_R12	__VCPU_REGS_R12 * WORD_SIZE
+#define VCPU_R13	__VCPU_REGS_R13 * WORD_SIZE
+#define VCPU_R14	__VCPU_REGS_R14 * WORD_SIZE
+#define VCPU_R15	__VCPU_REGS_R15 * WORD_SIZE
+#endif
+
+.section .noinstr.text, "ax"
+
+/**
+ * __svm_vcpu_run - Run a vCPU via a transition to SVM guest mode
+ * @vmcb_pa:	unsigned long
+ * @regs:	unsigned long * (to guest registers)
+ */
+SYM_FUNC_START(__svm_vcpu_run)
+	push %_ASM_BP
+#ifdef CONFIG_X86_64
+	push %r15
+	push %r14
+	push %r13
+	push %r12
+#else
+	push %edi
+	push %esi
+#endif
+	push %_ASM_BX
+
+	/* Save @regs. */
+	push %_ASM_ARG2
+
+	/* Save @vmcb. */
+	push %_ASM_ARG1
+
+	/* Move @regs to RAX. */
+	mov %_ASM_ARG2, %_ASM_AX
+
+	/* Load guest registers. */
+	mov VCPU_RCX(%_ASM_AX), %_ASM_CX
+	mov VCPU_RDX(%_ASM_AX), %_ASM_DX
+	mov VCPU_RBX(%_ASM_AX), %_ASM_BX
+	mov VCPU_RBP(%_ASM_AX), %_ASM_BP
+	mov VCPU_RSI(%_ASM_AX), %_ASM_SI
+	mov VCPU_RDI(%_ASM_AX), %_ASM_DI
+#ifdef CONFIG_X86_64
+	mov VCPU_R8 (%_ASM_AX),  %r8
+	mov VCPU_R9 (%_ASM_AX),  %r9
+	mov VCPU_R10(%_ASM_AX), %r10
+	mov VCPU_R11(%_ASM_AX), %r11
+	mov VCPU_R12(%_ASM_AX), %r12
+	mov VCPU_R13(%_ASM_AX), %r13
+	mov VCPU_R14(%_ASM_AX), %r14
+	mov VCPU_R15(%_ASM_AX), %r15
+#endif
+
+	/* "POP" @vmcb to RAX. */
+	pop %_ASM_AX
+
+	/* Enter guest mode */
+	sti
+1:	vmload %_ASM_AX
+	jmp 3f
+2:	cmpb $0, kvm_rebooting
+	jne 3f
+	ud2
+	_ASM_EXTABLE(1b, 2b)
+
+3:	vmrun %_ASM_AX
+	jmp 5f
+4:	cmpb $0, kvm_rebooting
+	jne 5f
+	ud2
+	_ASM_EXTABLE(3b, 4b)
+
+5:	vmsave %_ASM_AX
+	jmp 7f
+6:	cmpb $0, kvm_rebooting
+	jne 7f
+	ud2
+	_ASM_EXTABLE(5b, 6b)
+7:
+	cli
+
+#ifdef CONFIG_RETPOLINE
+	/* IMPORTANT: Stuff the RSB immediately after VM-Exit, before RET! */
+	FILL_RETURN_BUFFER %_ASM_AX, RSB_CLEAR_LOOPS, X86_FEATURE_RETPOLINE
+#endif
+
+	/* "POP" @regs to RAX. */
+	pop %_ASM_AX
+
+	/* Save all guest registers.  */
+	mov %_ASM_CX,   VCPU_RCX(%_ASM_AX)
+	mov %_ASM_DX,   VCPU_RDX(%_ASM_AX)
+	mov %_ASM_BX,   VCPU_RBX(%_ASM_AX)
+	mov %_ASM_BP,   VCPU_RBP(%_ASM_AX)
+	mov %_ASM_SI,   VCPU_RSI(%_ASM_AX)
+	mov %_ASM_DI,   VCPU_RDI(%_ASM_AX)
+#ifdef CONFIG_X86_64
+	mov %r8,  VCPU_R8 (%_ASM_AX)
+	mov %r9,  VCPU_R9 (%_ASM_AX)
+	mov %r10, VCPU_R10(%_ASM_AX)
+	mov %r11, VCPU_R11(%_ASM_AX)
+	mov %r12, VCPU_R12(%_ASM_AX)
+	mov %r13, VCPU_R13(%_ASM_AX)
+	mov %r14, VCPU_R14(%_ASM_AX)
+	mov %r15, VCPU_R15(%_ASM_AX)
+#endif
+
+	/*
+	 * Clear all general purpose registers except RSP and RAX to prevent
+	 * speculative use of the guest's values, even those that are reloaded
+	 * via the stack.  In theory, an L1 cache miss when restoring registers
+	 * could lead to speculative execution with the guest's values.
+	 * Zeroing XORs are dirt cheap, i.e. the extra paranoia is essentially
+	 * free.  RSP and RAX are exempt as they are restored by hardware
+	 * during VM-Exit.
+	 */
+	xor %ecx, %ecx
+	xor %edx, %edx
+	xor %ebx, %ebx
+	xor %ebp, %ebp
+	xor %esi, %esi
+	xor %edi, %edi
+#ifdef CONFIG_X86_64
+	xor %r8d,  %r8d
+	xor %r9d,  %r9d
+	xor %r10d, %r10d
+	xor %r11d, %r11d
+	xor %r12d, %r12d
+	xor %r13d, %r13d
+	xor %r14d, %r14d
+	xor %r15d, %r15d
+#endif
+
+	pop %_ASM_BX
+
+#ifdef CONFIG_X86_64
+	pop %r12
+	pop %r13
+	pop %r14
+	pop %r15
+#else
+	pop %esi
+	pop %edi
+#endif
+	pop %_ASM_BP
+	ret
+SYM_FUNC_END(__svm_vcpu_run)