Update Linux to v5.10.109

Sourced from [1]

[1] https://cdn.kernel.org/pub/linux/kernel/v5.x/linux-5.10.109.tar.xz

Change-Id: I19bca9fc6762d4e63bcf3e4cba88bbe560d9c76c
Signed-off-by: Olivier Deprez <olivier.deprez@arm.com>
diff --git a/Documentation/driver-api/media/drivers/bttv-devel.rst b/Documentation/driver-api/media/drivers/bttv-devel.rst
new file mode 100644
index 0000000..c9aa8b9
--- /dev/null
+++ b/Documentation/driver-api/media/drivers/bttv-devel.rst
@@ -0,0 +1,116 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+The bttv driver
+===============
+
+bttv and sound mini howto
+-------------------------
+
+There are a lot of different bt848/849/878/879 based boards available.
+Making video work often is not a big deal, because this is handled
+completely by the bt8xx chip, which is common on all boards.  But
+sound is handled in slightly different ways on each board.
+
+To handle the grabber boards correctly, there is a array tvcards[] in
+bttv-cards.c, which holds the information required for each board.
+Sound will work only, if the correct entry is used (for video it often
+makes no difference).  The bttv driver prints a line to the kernel
+log, telling which card type is used.  Like this one::
+
+	bttv0: model: BT848(Hauppauge old) [autodetected]
+
+You should verify this is correct.  If it isn't, you have to pass the
+correct board type as insmod argument, ``insmod bttv card=2`` for
+example.  The file :doc:`/admin-guide/media/bttv-cardlist` has a list
+of valid arguments for card.
+
+If your card isn't listed there, you might check the source code for
+new entries which are not listed yet.  If there isn't one for your
+card, you can check if one of the existing entries does work for you
+(just trial and error...).
+
+Some boards have an extra processor for sound to do stereo decoding
+and other nice features.  The msp34xx chips are used by Hauppauge for
+example.  If your board has one, you might have to load a helper
+module like ``msp3400`` to make sound work.  If there isn't one for the
+chip used on your board:  Bad luck.  Start writing a new one.  Well,
+you might want to check the video4linux mailing list archive first...
+
+Of course you need a correctly installed soundcard unless you have the
+speakers connected directly to the grabber board.  Hint: check the
+mixer settings too.  ALSA for example has everything muted by default.
+
+
+How sound works in detail
+~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Still doesn't work?  Looks like some driver hacking is required.
+Below is a do-it-yourself description for you.
+
+The bt8xx chips have 32 general purpose pins, and registers to control
+these pins.  One register is the output enable register
+(``BT848_GPIO_OUT_EN``), it says which pins are actively driven by the
+bt848 chip.  Another one is the data register (``BT848_GPIO_DATA``), where
+you can get/set the status if these pins.  They can be used for input
+and output.
+
+Most grabber board vendors use these pins to control an external chip
+which does the sound routing.  But every board is a little different.
+These pins are also used by some companies to drive remote control
+receiver chips.  Some boards use the i2c bus instead of the gpio pins
+to connect the mux chip.
+
+As mentioned above, there is a array which holds the required
+information for each known board.  You basically have to create a new
+line for your board.  The important fields are these two::
+
+  struct tvcard
+  {
+	[ ... ]
+	u32 gpiomask;
+	u32 audiomux[6]; /* Tuner, Radio, external, internal, mute, stereo */
+  };
+
+gpiomask specifies which pins are used to control the audio mux chip.
+The corresponding bits in the output enable register
+(``BT848_GPIO_OUT_EN``) will be set as these pins must be driven by the
+bt848 chip.
+
+The ``audiomux[]`` array holds the data values for the different inputs
+(i.e. which pins must be high/low for tuner/mute/...).  This will be
+written to the data register (``BT848_GPIO_DATA``) to switch the audio
+mux.
+
+
+What you have to do is figure out the correct values for gpiomask and
+the audiomux array.  If you have Windows and the drivers four your
+card installed, you might to check out if you can read these registers
+values used by the windows driver.  A tool to do this is available
+from http://btwincap.sourceforge.net/download.html.
+
+You might also dig around in the ``*.ini`` files of the Windows applications.
+You can have a look at the board to see which of the gpio pins are
+connected at all and then start trial-and-error ...
+
+
+Starting with release 0.7.41 bttv has a number of insmod options to
+make the gpio debugging easier:
+
+	=================	==============================================
+	bttv_gpio=0/1		enable/disable gpio debug messages
+	gpiomask=n		set the gpiomask value
+	audiomux=i,j,...	set the values of the audiomux array
+	audioall=a		set the values of the audiomux array (one
+				value for all array elements, useful to check
+				out which effect the particular value has).
+	=================	==============================================
+
+The messages printed with ``bttv_gpio=1`` look like this::
+
+	bttv0: gpio: en=00000027, out=00000024 in=00ffffd8 [audio: off]
+
+	en  =	output _en_able register (BT848_GPIO_OUT_EN)
+	out =	_out_put bits of the data register (BT848_GPIO_DATA),
+		i.e. BT848_GPIO_DATA & BT848_GPIO_OUT_EN
+	in  = 	_in_put bits of the data register,
+		i.e. BT848_GPIO_DATA & ~BT848_GPIO_OUT_EN
diff --git a/Documentation/driver-api/media/drivers/contributors.rst b/Documentation/driver-api/media/drivers/contributors.rst
new file mode 100644
index 0000000..f23b6e6
--- /dev/null
+++ b/Documentation/driver-api/media/drivers/contributors.rst
@@ -0,0 +1,131 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+Contributors
+============
+
+.. note::
+
+   This documentation is outdated. There are several other DVB contributors
+   that aren't listed below.
+
+Thanks go to the following people for patches and contributions:
+
+- Michael Hunold <m.hunold@gmx.de>
+
+  - for the initial saa7146 driver and its recent overhaul
+
+- Christian Theiss
+
+  - for his work on the initial Linux DVB driver
+
+- Marcus Metzler <mocm@metzlerbros.de> and
+  Ralph Metzler <rjkm@metzlerbros.de>
+
+  - for their continuing work on the DVB driver
+
+- Michael Holzt <kju@debian.org>
+
+  - for his contributions to the dvb-net driver
+
+- Diego Picciani <d.picciani@novacomp.it>
+
+  - for CyberLogin for Linux which allows logging onto EON
+    (in case you are wondering where CyberLogin is, EON changed its login
+    procedure and CyberLogin is no longer used.)
+
+- Martin Schaller <martin@smurf.franken.de>
+
+  - for patching the cable card decoder driver
+
+- Klaus Schmidinger <Klaus.Schmidinger@cadsoft.de>
+
+  - for various fixes regarding tuning, OSD and CI stuff and his work on VDR
+
+- Steve Brown <sbrown@cortland.com>
+
+  - for his AFC kernel thread
+
+- Christoph Martin <martin@uni-mainz.de>
+
+  - for his LIRC infrared handler
+
+- Andreas Oberritter <obi@linuxtv.org>,
+  Dennis Noermann <dennis.noermann@noernet.de>,
+  Felix Domke <tmbinc@elitedvb.net>,
+  Florian Schirmer <jolt@tuxbox.org>,
+  Ronny Strutz <3des@elitedvb.de>,
+  Wolfram Joost <dbox2@frokaschwei.de>
+  and all the other dbox2 people
+
+  - for many bugfixes in the generic DVB Core, frontend drivers and
+    their work on the dbox2 port of the DVB driver
+
+- Oliver Endriss <o.endriss@gmx.de>
+
+  - for many bugfixes
+
+- Andrew de Quincey <adq_dvb@lidskialf.net>
+
+  - for the tda1004x frontend driver, and various bugfixes
+
+- Peter Schildmann <peter.schildmann@web.de>
+
+  - for the driver for the Technisat SkyStar2 PCI DVB card
+
+- Vadim Catana <skystar@moldova.cc>,
+  Roberto Ragusa <r.ragusa@libero.it> and
+  Augusto Cardoso <augusto@carhil.net>
+
+  - for all the work for the FlexCopII chipset by B2C2,Inc.
+
+- Davor Emard <emard@softhome.net>
+
+  - for his work on the budget drivers, the demux code,
+    the module unloading problems, ...
+
+- Hans-Frieder Vogt <hfvogt@arcor.de>
+
+  - for his work on calculating and checking the crc's for the
+    TechnoTrend/Hauppauge DEC driver firmware
+
+- Michael Dreher <michael@5dot1.de> and
+  Andreas 'randy' Weinberger
+
+  - for the support of the Fujitsu-Siemens Activy budget DVB-S
+
+- Kenneth Aafløy <ke-aa@frisurf.no>
+
+  - for adding support for Typhoon DVB-S budget card
+
+- Ernst Peinlich <e.peinlich@inode.at>
+
+  - for tuning/DiSEqC support for the DEC 3000-s
+
+- Peter Beutner <p.beutner@gmx.net>
+
+  - for the IR code for the ttusb-dec driver
+
+- Wilson Michaels <wilsonmichaels@earthlink.net>
+
+  - for the lgdt330x frontend driver, and various bugfixes
+
+- Michael Krufky <mkrufky@linuxtv.org>
+
+  - for maintaining v4l/dvb inter-tree dependencies
+
+- Taylor Jacob <rtjacob@earthlink.net>
+
+  - for the nxt2002 frontend driver
+
+- Jean-Francois Thibert <jeanfrancois@sagetv.com>
+
+  - for the nxt2004 frontend driver
+
+- Kirk Lapray <kirk.lapray@gmail.com>
+
+  - for the or51211 and or51132 frontend drivers, and
+    for merging the nxt2002 and nxt2004 modules into a
+    single nxt200x frontend driver.
+
+(If you think you should be in this list, but you are not, drop a
+line to the DVB mailing list)
diff --git a/Documentation/driver-api/media/drivers/cpia2_devel.rst b/Documentation/driver-api/media/drivers/cpia2_devel.rst
new file mode 100644
index 0000000..decaa47
--- /dev/null
+++ b/Documentation/driver-api/media/drivers/cpia2_devel.rst
@@ -0,0 +1,56 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+The cpia2 driver
+================
+
+Authors: Peter Pregler <Peter_Pregler@email.com>,
+Scott J. Bertin <scottbertin@yahoo.com>, and
+Jarl Totland <Jarl.Totland@bdc.no> for the original cpia driver, which
+this one was modelled from.
+
+
+Notes to developers
+~~~~~~~~~~~~~~~~~~~
+
+   - This is a driver version stripped of the 2.4 back compatibility
+     and old MJPEG ioctl API. See cpia2.sf.net for 2.4 support.
+
+Programmer's overview of cpia2 driver
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Cpia2 is the second generation video coprocessor from VLSI Vision Ltd (now a
+division of ST Microelectronics).  There are two versions.  The first is the
+STV0672, which is capable of up to 30 frames per second (fps) in frame sizes
+up to CIF, and 15 fps for VGA frames.  The STV0676 is an improved version,
+which can handle up to 30 fps VGA.  Both coprocessors can be attached to two
+CMOS sensors - the vvl6410 CIF sensor and the vvl6500 VGA sensor.  These will
+be referred to as the 410 and the 500 sensors, or the CIF and VGA sensors.
+
+The two chipsets operate almost identically.  The core is an 8051 processor,
+running two different versions of firmware.  The 672 runs the VP4 video
+processor code, the 676 runs VP5.  There are a few differences in register
+mappings for the two chips.  In these cases, the symbols defined in the
+header files are marked with VP4 or VP5 as part of the symbol name.
+
+The cameras appear externally as three sets of registers. Setting register
+values is the only way to control the camera.  Some settings are
+interdependant, such as the sequence required to power up the camera. I will
+try to make note of all of these cases.
+
+The register sets are called blocks.  Block 0 is the system block.  This
+section is always powered on when the camera is plugged in.  It contains
+registers that control housekeeping functions such as powering up the video
+processor.  The video processor is the VP block.  These registers control
+how the video from the sensor is processed.  Examples are timing registers,
+user mode (vga, qvga), scaling, cropping, framerates, and so on.  The last
+block is the video compressor (VC).  The video stream sent from the camera is
+compressed as Motion JPEG (JPEGA).  The VC controls all of the compression
+parameters.  Looking at the file cpia2_registers.h, you can get a full view
+of these registers and the possible values for most of them.
+
+One or more registers can be set or read by sending a usb control message to
+the camera.  There are three modes for this.  Block mode requests a number
+of contiguous registers.  Random mode reads or writes random registers with
+a tuple structure containing address/value pairs.  The repeat mode is only
+used by VP4 to load a firmware patch.  It contains a starting address and
+a sequence of bytes to be written into a gpio port.
diff --git a/Documentation/driver-api/media/drivers/cx2341x-devel.rst b/Documentation/driver-api/media/drivers/cx2341x-devel.rst
new file mode 100644
index 0000000..97699df
--- /dev/null
+++ b/Documentation/driver-api/media/drivers/cx2341x-devel.rst
@@ -0,0 +1,3685 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+The cx2341x driver
+==================
+
+Memory at cx2341x chips
+-----------------------
+
+This section describes the cx2341x memory map and documents some of the
+register space.
+
+.. note:: the memory long words are little-endian ('intel format').
+
+.. warning::
+
+	This information was figured out from searching through the memory
+	and registers, this information may not be correct and is certainly
+	not complete, and was not derived from anything more than searching
+	through the memory space with commands like:
+
+	.. code-block:: none
+
+		ivtvctl -O min=0x02000000,max=0x020000ff
+
+	So take this as is, I'm always searching for more stuff, it's a large
+	register space :-).
+
+Memory Map
+~~~~~~~~~~
+
+The cx2341x exposes its entire 64M memory space to the PCI host via the PCI BAR0
+(Base Address Register 0). The addresses here are offsets relative to the
+address held in BAR0.
+
+.. code-block:: none
+
+	0x00000000-0x00ffffff Encoder memory space
+	0x00000000-0x0003ffff Encode.rom
+	???-???         MPEG buffer(s)
+	???-???         Raw video capture buffer(s)
+	???-???         Raw audio capture buffer(s)
+	???-???         Display buffers (6 or 9)
+
+	0x01000000-0x01ffffff Decoder memory space
+	0x01000000-0x0103ffff Decode.rom
+	???-???         MPEG buffers(s)
+	0x0114b000-0x0115afff Audio.rom (deprecated?)
+
+	0x02000000-0x0200ffff Register Space
+
+Registers
+~~~~~~~~~
+
+The registers occupy the 64k space starting at the 0x02000000 offset from BAR0.
+All of these registers are 32 bits wide.
+
+.. code-block:: none
+
+	DMA Registers 0x000-0xff:
+
+	0x00 - Control:
+		0=reset/cancel, 1=read, 2=write, 4=stop
+	0x04 - DMA status:
+		1=read busy, 2=write busy, 4=read error, 8=write error, 16=link list error
+	0x08 - pci DMA pointer for read link list
+	0x0c - pci DMA pointer for write link list
+	0x10 - read/write DMA enable:
+		1=read enable, 2=write enable
+	0x14 - always 0xffffffff, if set any lower instability occurs, 0x00 crashes
+	0x18 - ??
+	0x1c - always 0x20 or 32, smaller values slow down DMA transactions
+	0x20 - always value of 0x780a010a
+	0x24-0x3c - usually just random values???
+	0x40 - Interrupt status
+	0x44 - Write a bit here and shows up in Interrupt status 0x40
+	0x48 - Interrupt Mask
+	0x4C - always value of 0xfffdffff,
+		if changed to 0xffffffff DMA write interrupts break.
+	0x50 - always 0xffffffff
+	0x54 - always 0xffffffff (0x4c, 0x50, 0x54 seem like interrupt masks, are
+		3 processors on chip, Java ones, VPU, SPU, APU, maybe these are the
+		interrupt masks???).
+	0x60-0x7C - random values
+	0x80 - first write linked list reg, for Encoder Memory addr
+	0x84 - first write linked list reg, for pci memory addr
+	0x88 - first write linked list reg, for length of buffer in memory addr
+		(|0x80000000 or this for last link)
+	0x8c-0xdc - rest of write linked list reg, 8 sets of 3 total, DMA goes here
+		from linked list addr in reg 0x0c, firmware must push through or
+		something.
+	0xe0 - first (and only) read linked list reg, for pci memory addr
+	0xe4 - first (and only) read linked list reg, for Decoder memory addr
+	0xe8 - first (and only) read linked list reg, for length of buffer
+	0xec-0xff - Nothing seems to be in these registers, 0xec-f4 are 0x00000000.
+
+Memory locations for Encoder Buffers 0x700-0x7ff:
+
+These registers show offsets of memory locations pertaining to each
+buffer area used for encoding, have to shift them by <<1 first.
+
+- 0x07F8: Encoder SDRAM refresh
+- 0x07FC: Encoder SDRAM pre-charge
+
+Memory locations for Decoder Buffers 0x800-0x8ff:
+
+These registers show offsets of memory locations pertaining to each
+buffer area used for decoding, have to shift them by <<1 first.
+
+- 0x08F8: Decoder SDRAM refresh
+- 0x08FC: Decoder SDRAM pre-charge
+
+Other memory locations:
+
+- 0x2800: Video Display Module control
+- 0x2D00: AO (audio output?) control
+- 0x2D24: Bytes Flushed
+- 0x7000: LSB I2C write clock bit (inverted)
+- 0x7004: LSB I2C write data bit (inverted)
+- 0x7008: LSB I2C read clock bit
+- 0x700c: LSB I2C read data bit
+- 0x9008: GPIO get input state
+- 0x900c: GPIO set output state
+- 0x9020: GPIO direction (Bit7 (GPIO 0..7) - 0:input, 1:output)
+- 0x9050: SPU control
+- 0x9054: Reset HW blocks
+- 0x9058: VPU control
+- 0xA018: Bit6: interrupt pending?
+- 0xA064: APU command
+
+
+Interrupt Status Register
+~~~~~~~~~~~~~~~~~~~~~~~~~
+
+The definition of the bits in the interrupt status register 0x0040, and the
+interrupt mask 0x0048. If a bit is cleared in the mask, then we want our ISR to
+execute.
+
+- bit 31 Encoder Start Capture
+- bit 30 Encoder EOS
+- bit 29 Encoder VBI capture
+- bit 28 Encoder Video Input Module reset event
+- bit 27 Encoder DMA complete
+- bit 24 Decoder audio mode change detection event (through event notification)
+- bit 22 Decoder data request
+- bit 20 Decoder DMA complete
+- bit 19 Decoder VBI re-insertion
+- bit 18 Decoder DMA err (linked-list bad)
+
+Missing documentation
+---------------------
+
+- Encoder API post(?)
+- Decoder API post(?)
+- Decoder VTRACE event
+
+
+The cx2341x firmware upload
+---------------------------
+
+This document describes how to upload the cx2341x firmware to the card.
+
+How to find
+~~~~~~~~~~~
+
+See the web pages of the various projects that uses this chip for information
+on how to obtain the firmware.
+
+The firmware stored in a Windows driver can be detected as follows:
+
+- Each firmware image is 256k bytes.
+- The 1st 32-bit word of the Encoder image is 0x0000da7
+- The 1st 32-bit word of the Decoder image is 0x00003a7
+- The 2nd 32-bit word of both images is 0xaa55bb66
+
+How to load
+~~~~~~~~~~~
+
+- Issue the FWapi command to stop the encoder if it is running. Wait for the
+  command to complete.
+- Issue the FWapi command to stop the decoder if it is running. Wait for the
+  command to complete.
+- Issue the I2C command to the digitizer to stop emitting VSYNC events.
+- Issue the FWapi command to halt the encoder's firmware.
+- Sleep for 10ms.
+- Issue the FWapi command to halt the decoder's firmware.
+- Sleep for 10ms.
+- Write 0x00000000 to register 0x2800 to stop the Video Display Module.
+- Write 0x00000005 to register 0x2D00 to stop the AO (audio output?).
+- Write 0x00000000 to register 0xA064 to ping? the APU.
+- Write 0xFFFFFFFE to register 0x9058 to stop the VPU.
+- Write 0xFFFFFFFF to register 0x9054 to reset the HW blocks.
+- Write 0x00000001 to register 0x9050 to stop the SPU.
+- Sleep for 10ms.
+- Write 0x0000001A to register 0x07FC to init the Encoder SDRAM's pre-charge.
+- Write 0x80000640 to register 0x07F8 to init the Encoder SDRAM's refresh to 1us.
+- Write 0x0000001A to register 0x08FC to init the Decoder SDRAM's pre-charge.
+- Write 0x80000640 to register 0x08F8 to init the Decoder SDRAM's refresh to 1us.
+- Sleep for 512ms. (600ms is recommended)
+- Transfer the encoder's firmware image to offset 0 in Encoder memory space.
+- Transfer the decoder's firmware image to offset 0 in Decoder memory space.
+- Use a read-modify-write operation to Clear bit 0 of register 0x9050 to
+  re-enable the SPU.
+- Sleep for 1 second.
+- Use a read-modify-write operation to Clear bits 3 and 0 of register 0x9058
+  to re-enable the VPU.
+- Sleep for 1 second.
+- Issue status API commands to both firmware images to verify.
+
+
+How to call the firmware API
+----------------------------
+
+The preferred calling convention is known as the firmware mailbox. The
+mailboxes are basically a fixed length array that serves as the call-stack.
+
+Firmware mailboxes can be located by searching the encoder and decoder memory
+for a 16 byte signature. That signature will be located on a 256-byte boundary.
+
+Signature:
+
+.. code-block:: none
+
+	0x78, 0x56, 0x34, 0x12, 0x12, 0x78, 0x56, 0x34,
+	0x34, 0x12, 0x78, 0x56, 0x56, 0x34, 0x12, 0x78
+
+The firmware implements 20 mailboxes of 20 32-bit words. The first 10 are
+reserved for API calls. The second 10 are used by the firmware for event
+notification.
+
+  ====== =================
+  Index  Name
+  ====== =================
+  0      Flags
+  1      Command
+  2      Return value
+  3      Timeout
+  4-19   Parameter/Result
+  ====== =================
+
+
+The flags are defined in the following table. The direction is from the
+perspective of the firmware.
+
+  ==== ========== ============================================
+  Bit  Direction  Purpose
+  ==== ========== ============================================
+  2    O          Firmware has processed the command.
+  1    I          Driver has finished setting the parameters.
+  0    I          Driver is using this mailbox.
+  ==== ========== ============================================
+
+The command is a 32-bit enumerator. The API specifics may be found in this
+chapter.
+
+The return value is a 32-bit enumerator. Only two values are currently defined:
+
+- 0=success
+- -1=command undefined.
+
+There are 16 parameters/results 32-bit fields. The driver populates these fields
+with values for all the parameters required by the call. The driver overwrites
+these fields with result values returned by the call.
+
+The timeout value protects the card from a hung driver thread. If the driver
+doesn't handle the completed call within the timeout specified, the firmware
+will reset that mailbox.
+
+To make an API call, the driver iterates over each mailbox looking for the
+first one available (bit 0 has been cleared). The driver sets that bit, fills
+in the command enumerator, the timeout value and any required parameters. The
+driver then sets the parameter ready bit (bit 1). The firmware scans the
+mailboxes for pending commands, processes them, sets the result code, populates
+the result value array with that call's return values and sets the call
+complete bit (bit 2). Once bit 2 is set, the driver should retrieve the results
+and clear all the flags. If the driver does not perform this task within the
+time set in the timeout register, the firmware will reset that mailbox.
+
+Event notifications are sent from the firmware to the host. The host tells the
+firmware which events it is interested in via an API call. That call tells the
+firmware which notification mailbox to use. The firmware signals the host via
+an interrupt. Only the 16 Results fields are used, the Flags, Command, Return
+value and Timeout words are not used.
+
+
+OSD firmware API description
+----------------------------
+
+.. note:: this API is part of the decoder firmware, so it's cx23415 only.
+
+
+
+CX2341X_OSD_GET_FRAMEBUFFER
+~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Enum: 65/0x41
+
+Description
+^^^^^^^^^^^
+
+Return base and length of contiguous OSD memory.
+
+Result[0]
+^^^^^^^^^
+
+OSD base address
+
+Result[1]
+^^^^^^^^^
+
+OSD length
+
+
+
+CX2341X_OSD_GET_PIXEL_FORMAT
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Enum: 66/0x42
+
+Description
+^^^^^^^^^^^
+
+Query OSD format
+
+Result[0]
+^^^^^^^^^
+
+0=8bit index
+1=16bit RGB 5:6:5
+2=16bit ARGB 1:5:5:5
+3=16bit ARGB 1:4:4:4
+4=32bit ARGB 8:8:8:8
+
+
+
+CX2341X_OSD_SET_PIXEL_FORMAT
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Enum: 67/0x43
+
+Description
+^^^^^^^^^^^
+
+Assign pixel format
+
+Param[0]
+^^^^^^^^
+
+- 0=8bit index
+- 1=16bit RGB 5:6:5
+- 2=16bit ARGB 1:5:5:5
+- 3=16bit ARGB 1:4:4:4
+- 4=32bit ARGB 8:8:8:8
+
+
+
+CX2341X_OSD_GET_STATE
+~~~~~~~~~~~~~~~~~~~~~
+
+Enum: 68/0x44
+
+Description
+^^^^^^^^^^^
+
+Query OSD state
+
+Result[0]
+^^^^^^^^^
+
+- Bit  0   0=off, 1=on
+- Bits 1:2 alpha control
+- Bits 3:5 pixel format
+
+
+
+CX2341X_OSD_SET_STATE
+~~~~~~~~~~~~~~~~~~~~~
+
+Enum: 69/0x45
+
+Description
+^^^^^^^^^^^
+
+OSD switch
+
+Param[0]
+^^^^^^^^
+
+0=off, 1=on
+
+
+
+CX2341X_OSD_GET_OSD_COORDS
+~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Enum: 70/0x46
+
+Description
+^^^^^^^^^^^
+
+Retrieve coordinates of OSD area blended with video
+
+Result[0]
+^^^^^^^^^
+
+OSD buffer address
+
+Result[1]
+^^^^^^^^^
+
+Stride in pixels
+
+Result[2]
+^^^^^^^^^
+
+Lines in OSD buffer
+
+Result[3]
+^^^^^^^^^
+
+Horizontal offset in buffer
+
+Result[4]
+^^^^^^^^^
+
+Vertical offset in buffer
+
+
+
+CX2341X_OSD_SET_OSD_COORDS
+~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Enum: 71/0x47
+
+Description
+^^^^^^^^^^^
+
+Assign the coordinates of the OSD area to blend with video
+
+Param[0]
+^^^^^^^^
+
+buffer address
+
+Param[1]
+^^^^^^^^
+
+buffer stride in pixels
+
+Param[2]
+^^^^^^^^
+
+lines in buffer
+
+Param[3]
+^^^^^^^^
+
+horizontal offset
+
+Param[4]
+^^^^^^^^
+
+vertical offset
+
+
+
+CX2341X_OSD_GET_SCREEN_COORDS
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Enum: 72/0x48
+
+Description
+^^^^^^^^^^^
+
+Retrieve OSD screen area coordinates
+
+Result[0]
+^^^^^^^^^
+
+top left horizontal offset
+
+Result[1]
+^^^^^^^^^
+
+top left vertical offset
+
+Result[2]
+^^^^^^^^^
+
+bottom right horizontal offset
+
+Result[3]
+^^^^^^^^^
+
+bottom right vertical offset
+
+
+
+CX2341X_OSD_SET_SCREEN_COORDS
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Enum: 73/0x49
+
+Description
+^^^^^^^^^^^
+
+Assign the coordinates of the screen area to blend with video
+
+Param[0]
+^^^^^^^^
+
+top left horizontal offset
+
+Param[1]
+^^^^^^^^
+
+top left vertical offset
+
+Param[2]
+^^^^^^^^
+
+bottom left horizontal offset
+
+Param[3]
+^^^^^^^^
+
+bottom left vertical offset
+
+
+
+CX2341X_OSD_GET_GLOBAL_ALPHA
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Enum: 74/0x4A
+
+Description
+^^^^^^^^^^^
+
+Retrieve OSD global alpha
+
+Result[0]
+^^^^^^^^^
+
+global alpha: 0=off, 1=on
+
+Result[1]
+^^^^^^^^^
+
+bits 0:7 global alpha
+
+
+
+CX2341X_OSD_SET_GLOBAL_ALPHA
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Enum: 75/0x4B
+
+Description
+^^^^^^^^^^^
+
+Update global alpha
+
+Param[0]
+^^^^^^^^
+
+global alpha: 0=off, 1=on
+
+Param[1]
+^^^^^^^^
+
+global alpha (8 bits)
+
+Param[2]
+^^^^^^^^
+
+local alpha: 0=on, 1=off
+
+
+
+CX2341X_OSD_SET_BLEND_COORDS
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Enum: 78/0x4C
+
+Description
+^^^^^^^^^^^
+
+Move start of blending area within display buffer
+
+Param[0]
+^^^^^^^^
+
+horizontal offset in buffer
+
+Param[1]
+^^^^^^^^
+
+vertical offset in buffer
+
+
+
+CX2341X_OSD_GET_FLICKER_STATE
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Enum: 79/0x4F
+
+Description
+^^^^^^^^^^^
+
+Retrieve flicker reduction module state
+
+Result[0]
+^^^^^^^^^
+
+flicker state: 0=off, 1=on
+
+
+
+CX2341X_OSD_SET_FLICKER_STATE
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Enum: 80/0x50
+
+Description
+^^^^^^^^^^^
+
+Set flicker reduction module state
+
+Param[0]
+^^^^^^^^
+
+State: 0=off, 1=on
+
+
+
+CX2341X_OSD_BLT_COPY
+~~~~~~~~~~~~~~~~~~~~
+
+Enum: 82/0x52
+
+Description
+^^^^^^^^^^^
+
+BLT copy
+
+Param[0]
+^^^^^^^^
+
+.. code-block:: none
+
+	'0000'  zero
+	'0001' ~destination AND ~source
+	'0010' ~destination AND  source
+	'0011' ~destination
+	'0100'  destination AND ~source
+	'0101'                  ~source
+	'0110'  destination XOR  source
+	'0111' ~destination OR  ~source
+	'1000' ~destination AND ~source
+	'1001'  destination XNOR source
+	'1010'                   source
+	'1011' ~destination OR   source
+	'1100'  destination
+	'1101'  destination OR  ~source
+	'1110'  destination OR   source
+	'1111'  one
+
+
+Param[1]
+^^^^^^^^
+
+Resulting alpha blending
+
+- '01' source_alpha
+- '10' destination_alpha
+- '11' source_alpha*destination_alpha+1
+  (zero if both source and destination alpha are zero)
+
+Param[2]
+^^^^^^^^
+
+.. code-block:: none
+
+	'00' output_pixel = source_pixel
+
+	'01' if source_alpha=0:
+		 output_pixel = destination_pixel
+	     if 256 > source_alpha > 1:
+		 output_pixel = ((source_alpha + 1)*source_pixel +
+				 (255 - source_alpha)*destination_pixel)/256
+
+	'10' if destination_alpha=0:
+		 output_pixel = source_pixel
+	      if 255 > destination_alpha > 0:
+		 output_pixel = ((255 - destination_alpha)*source_pixel +
+				 (destination_alpha + 1)*destination_pixel)/256
+
+	'11' if source_alpha=0:
+		 source_temp = 0
+	     if source_alpha=255:
+		 source_temp = source_pixel*256
+	     if 255 > source_alpha > 0:
+		 source_temp = source_pixel*(source_alpha + 1)
+	     if destination_alpha=0:
+		 destination_temp = 0
+	     if destination_alpha=255:
+		 destination_temp = destination_pixel*256
+	     if 255 > destination_alpha > 0:
+		 destination_temp = destination_pixel*(destination_alpha + 1)
+	     output_pixel = (source_temp + destination_temp)/256
+
+Param[3]
+^^^^^^^^
+
+width
+
+Param[4]
+^^^^^^^^
+
+height
+
+Param[5]
+^^^^^^^^
+
+destination pixel mask
+
+Param[6]
+^^^^^^^^
+
+destination rectangle start address
+
+Param[7]
+^^^^^^^^
+
+destination stride in dwords
+
+Param[8]
+^^^^^^^^
+
+source stride in dwords
+
+Param[9]
+^^^^^^^^
+
+source rectangle start address
+
+
+
+CX2341X_OSD_BLT_FILL
+~~~~~~~~~~~~~~~~~~~~
+
+Enum: 83/0x53
+
+Description
+^^^^^^^^^^^
+
+BLT fill color
+
+Param[0]
+^^^^^^^^
+
+Same as Param[0] on API 0x52
+
+Param[1]
+^^^^^^^^
+
+Same as Param[1] on API 0x52
+
+Param[2]
+^^^^^^^^
+
+Same as Param[2] on API 0x52
+
+Param[3]
+^^^^^^^^
+
+width
+
+Param[4]
+^^^^^^^^
+
+height
+
+Param[5]
+^^^^^^^^
+
+destination pixel mask
+
+Param[6]
+^^^^^^^^
+
+destination rectangle start address
+
+Param[7]
+^^^^^^^^
+
+destination stride in dwords
+
+Param[8]
+^^^^^^^^
+
+color fill value
+
+
+
+CX2341X_OSD_BLT_TEXT
+~~~~~~~~~~~~~~~~~~~~
+
+Enum: 84/0x54
+
+Description
+^^^^^^^^^^^
+
+BLT for 8 bit alpha text source
+
+Param[0]
+^^^^^^^^
+
+Same as Param[0] on API 0x52
+
+Param[1]
+^^^^^^^^
+
+Same as Param[1] on API 0x52
+
+Param[2]
+^^^^^^^^
+
+Same as Param[2] on API 0x52
+
+Param[3]
+^^^^^^^^
+
+width
+
+Param[4]
+^^^^^^^^
+
+height
+
+Param[5]
+^^^^^^^^
+
+destination pixel mask
+
+Param[6]
+^^^^^^^^
+
+destination rectangle start address
+
+Param[7]
+^^^^^^^^
+
+destination stride in dwords
+
+Param[8]
+^^^^^^^^
+
+source stride in dwords
+
+Param[9]
+^^^^^^^^
+
+source rectangle start address
+
+Param[10]
+^^^^^^^^^
+
+color fill value
+
+
+
+CX2341X_OSD_SET_FRAMEBUFFER_WINDOW
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Enum: 86/0x56
+
+Description
+^^^^^^^^^^^
+
+Positions the main output window on the screen. The coordinates must be
+such that the entire window fits on the screen.
+
+Param[0]
+^^^^^^^^
+
+window width
+
+Param[1]
+^^^^^^^^
+
+window height
+
+Param[2]
+^^^^^^^^
+
+top left window corner horizontal offset
+
+Param[3]
+^^^^^^^^
+
+top left window corner vertical offset
+
+
+
+CX2341X_OSD_SET_CHROMA_KEY
+~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Enum: 96/0x60
+
+Description
+^^^^^^^^^^^
+
+Chroma key switch and color
+
+Param[0]
+^^^^^^^^
+
+state: 0=off, 1=on
+
+Param[1]
+^^^^^^^^
+
+color
+
+
+
+CX2341X_OSD_GET_ALPHA_CONTENT_INDEX
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Enum: 97/0x61
+
+Description
+^^^^^^^^^^^
+
+Retrieve alpha content index
+
+Result[0]
+^^^^^^^^^
+
+alpha content index, Range 0:15
+
+
+
+CX2341X_OSD_SET_ALPHA_CONTENT_INDEX
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Enum: 98/0x62
+
+Description
+^^^^^^^^^^^
+
+Assign alpha content index
+
+Param[0]
+^^^^^^^^
+
+alpha content index, range 0:15
+
+
+Encoder firmware API description
+--------------------------------
+
+CX2341X_ENC_PING_FW
+~~~~~~~~~~~~~~~~~~~
+
+Enum: 128/0x80
+
+Description
+^^^^^^^^^^^
+
+Does nothing. Can be used to check if the firmware is responding.
+
+
+
+CX2341X_ENC_START_CAPTURE
+~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Enum: 129/0x81
+
+Description
+^^^^^^^^^^^
+
+Commences the capture of video, audio and/or VBI data. All encoding
+parameters must be initialized prior to this API call. Captures frames
+continuously or until a predefined number of frames have been captured.
+
+Param[0]
+^^^^^^^^
+
+Capture stream type:
+
+	- 0=MPEG
+	- 1=Raw
+	- 2=Raw passthrough
+	- 3=VBI
+
+
+Param[1]
+^^^^^^^^
+
+Bitmask:
+
+	- Bit 0 when set, captures YUV
+	- Bit 1 when set, captures PCM audio
+	- Bit 2 when set, captures VBI (same as param[0]=3)
+	- Bit 3 when set, the capture destination is the decoder
+	  (same as param[0]=2)
+	- Bit 4 when set, the capture destination is the host
+
+.. note:: this parameter is only meaningful for RAW capture type.
+
+
+
+CX2341X_ENC_STOP_CAPTURE
+~~~~~~~~~~~~~~~~~~~~~~~~
+
+Enum: 130/0x82
+
+Description
+^^^^^^^^^^^
+
+Ends a capture in progress
+
+Param[0]
+^^^^^^^^
+
+- 0=stop at end of GOP (generates IRQ)
+- 1=stop immediate (no IRQ)
+
+Param[1]
+^^^^^^^^
+
+Stream type to stop, see param[0] of API 0x81
+
+Param[2]
+^^^^^^^^
+
+Subtype, see param[1] of API 0x81
+
+
+
+CX2341X_ENC_SET_AUDIO_ID
+~~~~~~~~~~~~~~~~~~~~~~~~
+
+Enum: 137/0x89
+
+Description
+^^^^^^^^^^^
+
+Assigns the transport stream ID of the encoded audio stream
+
+Param[0]
+^^^^^^^^
+
+Audio Stream ID
+
+
+
+CX2341X_ENC_SET_VIDEO_ID
+~~~~~~~~~~~~~~~~~~~~~~~~
+
+Enum: 139/0x8B
+
+Description
+^^^^^^^^^^^
+
+Set video transport stream ID
+
+Param[0]
+^^^^^^^^
+
+Video stream ID
+
+
+
+CX2341X_ENC_SET_PCR_ID
+~~~~~~~~~~~~~~~~~~~~~~
+
+Enum: 141/0x8D
+
+Description
+^^^^^^^^^^^
+
+Assigns the transport stream ID for PCR packets
+
+Param[0]
+^^^^^^^^
+
+PCR Stream ID
+
+
+
+CX2341X_ENC_SET_FRAME_RATE
+~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Enum: 143/0x8F
+
+Description
+^^^^^^^^^^^
+
+Set video frames per second. Change occurs at start of new GOP.
+
+Param[0]
+^^^^^^^^
+
+- 0=30fps
+- 1=25fps
+
+
+
+CX2341X_ENC_SET_FRAME_SIZE
+~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Enum: 145/0x91
+
+Description
+^^^^^^^^^^^
+
+Select video stream encoding resolution.
+
+Param[0]
+^^^^^^^^
+
+Height in lines. Default 480
+
+Param[1]
+^^^^^^^^
+
+Width in pixels. Default 720
+
+
+
+CX2341X_ENC_SET_BIT_RATE
+~~~~~~~~~~~~~~~~~~~~~~~~
+
+Enum: 149/0x95
+
+Description
+^^^^^^^^^^^
+
+Assign average video stream bitrate.
+
+Param[0]
+^^^^^^^^
+
+0=variable bitrate, 1=constant bitrate
+
+Param[1]
+^^^^^^^^
+
+bitrate in bits per second
+
+Param[2]
+^^^^^^^^
+
+peak bitrate in bits per second, divided by 400
+
+Param[3]
+^^^^^^^^
+
+Mux bitrate in bits per second, divided by 400. May be 0 (default).
+
+Param[4]
+^^^^^^^^
+
+Rate Control VBR Padding
+
+Param[5]
+^^^^^^^^
+
+VBV Buffer used by encoder
+
+.. note::
+
+	#) Param\[3\] and Param\[4\] seem to be always 0
+	#) Param\[5\] doesn't seem to be used.
+
+
+
+CX2341X_ENC_SET_GOP_PROPERTIES
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Enum: 151/0x97
+
+Description
+^^^^^^^^^^^
+
+Setup the GOP structure
+
+Param[0]
+^^^^^^^^
+
+GOP size (maximum is 34)
+
+Param[1]
+^^^^^^^^
+
+Number of B frames between the I and P frame, plus 1.
+For example: IBBPBBPBBPBB --> GOP size: 12, number of B frames: 2+1 = 3
+
+.. note::
+
+	GOP size must be a multiple of (B-frames + 1).
+
+
+
+CX2341X_ENC_SET_ASPECT_RATIO
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Enum: 153/0x99
+
+Description
+^^^^^^^^^^^
+
+Sets the encoding aspect ratio. Changes in the aspect ratio take effect
+at the start of the next GOP.
+
+Param[0]
+^^^^^^^^
+
+- '0000' forbidden
+- '0001' 1:1 square
+- '0010' 4:3
+- '0011' 16:9
+- '0100' 2.21:1
+- '0101' to '1111' reserved
+
+
+
+CX2341X_ENC_SET_DNR_FILTER_MODE
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Enum: 155/0x9B
+
+Description
+^^^^^^^^^^^
+
+Assign Dynamic Noise Reduction operating mode
+
+Param[0]
+^^^^^^^^
+
+Bit0: Spatial filter, set=auto, clear=manual
+Bit1: Temporal filter, set=auto, clear=manual
+
+Param[1]
+^^^^^^^^
+
+Median filter:
+
+- 0=Disabled
+- 1=Horizontal
+- 2=Vertical
+- 3=Horiz/Vert
+- 4=Diagonal
+
+
+
+CX2341X_ENC_SET_DNR_FILTER_PROPS
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Enum: 157/0x9D
+
+Description
+^^^^^^^^^^^
+
+These Dynamic Noise Reduction filter values are only meaningful when
+the respective filter is set to "manual" (See API 0x9B)
+
+Param[0]
+^^^^^^^^
+
+Spatial filter: default 0, range 0:15
+
+Param[1]
+^^^^^^^^
+
+Temporal filter: default 0, range 0:31
+
+
+
+CX2341X_ENC_SET_CORING_LEVELS
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Enum: 159/0x9F
+
+Description
+^^^^^^^^^^^
+
+Assign Dynamic Noise Reduction median filter properties.
+
+Param[0]
+^^^^^^^^
+
+Threshold above which the luminance median filter is enabled.
+Default: 0, range 0:255
+
+Param[1]
+^^^^^^^^
+
+Threshold below which the luminance median filter is enabled.
+Default: 255, range 0:255
+
+Param[2]
+^^^^^^^^
+
+Threshold above which the chrominance median filter is enabled.
+Default: 0, range 0:255
+
+Param[3]
+^^^^^^^^
+
+Threshold below which the chrominance median filter is enabled.
+Default: 255, range 0:255
+
+
+
+CX2341X_ENC_SET_SPATIAL_FILTER_TYPE
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Enum: 161/0xA1
+
+Description
+^^^^^^^^^^^
+
+Assign spatial prefilter parameters
+
+Param[0]
+^^^^^^^^
+
+Luminance filter
+
+- 0=Off
+- 1=1D Horizontal
+- 2=1D Vertical
+- 3=2D H/V Separable (default)
+- 4=2D Symmetric non-separable
+
+Param[1]
+^^^^^^^^
+
+Chrominance filter
+
+- 0=Off
+- 1=1D Horizontal (default)
+
+
+
+CX2341X_ENC_SET_VBI_LINE
+~~~~~~~~~~~~~~~~~~~~~~~~
+
+Enum: 183/0xB7
+
+Description
+^^^^^^^^^^^
+
+Selects VBI line number.
+
+Param[0]
+^^^^^^^^
+
+- Bits 0:4 	line number
+- Bit  31		0=top_field, 1=bottom_field
+- Bits 0:31 	all set specifies "all lines"
+
+Param[1]
+^^^^^^^^
+
+VBI line information features: 0=disabled, 1=enabled
+
+Param[2]
+^^^^^^^^
+
+Slicing: 0=None, 1=Closed Caption
+Almost certainly not implemented. Set to 0.
+
+Param[3]
+^^^^^^^^
+
+Luminance samples in this line.
+Almost certainly not implemented. Set to 0.
+
+Param[4]
+^^^^^^^^
+
+Chrominance samples in this line
+Almost certainly not implemented. Set to 0.
+
+
+
+CX2341X_ENC_SET_STREAM_TYPE
+~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Enum: 185/0xB9
+
+Description
+^^^^^^^^^^^
+
+Assign stream type
+
+.. note::
+
+	Transport stream is not working in recent firmwares.
+	And in older firmwares the timestamps in the TS seem to be
+	unreliable.
+
+Param[0]
+^^^^^^^^
+
+- 0=Program stream
+- 1=Transport stream
+- 2=MPEG1 stream
+- 3=PES A/V stream
+- 5=PES Video stream
+- 7=PES Audio stream
+- 10=DVD stream
+- 11=VCD stream
+- 12=SVCD stream
+- 13=DVD_S1 stream
+- 14=DVD_S2 stream
+
+
+
+CX2341X_ENC_SET_OUTPUT_PORT
+~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Enum: 187/0xBB
+
+Description
+^^^^^^^^^^^
+
+Assign stream output port. Normally 0 when the data is copied through
+the PCI bus (DMA), and 1 when the data is streamed to another chip
+(pvrusb and cx88-blackbird).
+
+Param[0]
+^^^^^^^^
+
+- 0=Memory (default)
+- 1=Streaming
+- 2=Serial
+
+Param[1]
+^^^^^^^^
+
+Unknown, but leaving this to 0 seems to work best. Indications are that
+this might have to do with USB support, although passing anything but 0
+only breaks things.
+
+
+
+CX2341X_ENC_SET_AUDIO_PROPERTIES
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Enum: 189/0xBD
+
+Description
+^^^^^^^^^^^
+
+Set audio stream properties, may be called while encoding is in progress.
+
+.. note::
+
+	All bitfields are consistent with ISO11172 documentation except
+	bits 2:3 which ISO docs define as:
+
+	- '11' Layer I
+	- '10' Layer II
+	- '01' Layer III
+	- '00' Undefined
+
+	This discrepancy may indicate a possible error in the documentation.
+	Testing indicated that only Layer II is actually working, and that
+	the minimum bitrate should be 192 kbps.
+
+Param[0]
+^^^^^^^^
+
+Bitmask:
+
+.. code-block:: none
+
+	   0:1  '00' 44.1Khz
+		'01' 48Khz
+		'10' 32Khz
+		'11' reserved
+
+	   2:3  '01'=Layer I
+		'10'=Layer II
+
+	   4:7  Bitrate:
+		     Index | Layer I     | Layer II
+		     ------+-------------+------------
+		    '0000' | free format | free format
+		    '0001' |  32 kbit/s  |  32 kbit/s
+		    '0010' |  64 kbit/s  |  48 kbit/s
+		    '0011' |  96 kbit/s  |  56 kbit/s
+		    '0100' | 128 kbit/s  |  64 kbit/s
+		    '0101' | 160 kbit/s  |  80 kbit/s
+		    '0110' | 192 kbit/s  |  96 kbit/s
+		    '0111' | 224 kbit/s  | 112 kbit/s
+		    '1000' | 256 kbit/s  | 128 kbit/s
+		    '1001' | 288 kbit/s  | 160 kbit/s
+		    '1010' | 320 kbit/s  | 192 kbit/s
+		    '1011' | 352 kbit/s  | 224 kbit/s
+		    '1100' | 384 kbit/s  | 256 kbit/s
+		    '1101' | 416 kbit/s  | 320 kbit/s
+		    '1110' | 448 kbit/s  | 384 kbit/s
+
+		.. note::
+
+			For Layer II, not all combinations of total bitrate
+			and mode are allowed. See ISO11172-3 3-Annex B,
+			Table 3-B.2
+
+	   8:9  '00'=Stereo
+		'01'=JointStereo
+		'10'=Dual
+		'11'=Mono
+
+		.. note::
+
+			The cx23415 cannot decode Joint Stereo properly.
+
+	  10:11 Mode Extension used in joint_stereo mode.
+		In Layer I and II they indicate which subbands are in
+		intensity_stereo. All other subbands are coded in stereo.
+		    '00' subbands 4-31 in intensity_stereo, bound==4
+		    '01' subbands 8-31 in intensity_stereo, bound==8
+		    '10' subbands 12-31 in intensity_stereo, bound==12
+		    '11' subbands 16-31 in intensity_stereo, bound==16
+
+	  12:13 Emphasis:
+		    '00' None
+		    '01' 50/15uS
+		    '10' reserved
+		    '11' CCITT J.17
+
+	  14 	CRC:
+		    '0' off
+		    '1' on
+
+	  15    Copyright:
+		    '0' off
+		    '1' on
+
+	  16    Generation:
+		    '0' copy
+		    '1' original
+
+
+
+CX2341X_ENC_HALT_FW
+~~~~~~~~~~~~~~~~~~~
+
+Enum: 195/0xC3
+
+Description
+^^^^^^^^^^^
+
+The firmware is halted and no further API calls are serviced until the
+firmware is uploaded again.
+
+
+
+CX2341X_ENC_GET_VERSION
+~~~~~~~~~~~~~~~~~~~~~~~
+
+Enum: 196/0xC4
+
+Description
+^^^^^^^^^^^
+
+Returns the version of the encoder firmware.
+
+Result[0]
+^^^^^^^^^
+
+Version bitmask:
+- Bits  0:15 build
+- Bits 16:23 minor
+- Bits 24:31 major
+
+
+
+CX2341X_ENC_SET_GOP_CLOSURE
+~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Enum: 197/0xC5
+
+Description
+^^^^^^^^^^^
+
+Assigns the GOP open/close property.
+
+Param[0]
+^^^^^^^^
+
+- 0=Open
+- 1=Closed
+
+
+
+CX2341X_ENC_GET_SEQ_END
+~~~~~~~~~~~~~~~~~~~~~~~
+
+Enum: 198/0xC6
+
+Description
+^^^^^^^^^^^
+
+Obtains the sequence end code of the encoder's buffer. When a capture
+is started a number of interrupts are still generated, the last of
+which will have Result[0] set to 1 and Result[1] will contain the size
+of the buffer.
+
+Result[0]
+^^^^^^^^^
+
+State of the transfer (1 if last buffer)
+
+Result[1]
+^^^^^^^^^
+
+If Result[0] is 1, this contains the size of the last buffer, undefined
+otherwise.
+
+
+
+CX2341X_ENC_SET_PGM_INDEX_INFO
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Enum: 199/0xC7
+
+Description
+^^^^^^^^^^^
+
+Sets the Program Index Information.
+The information is stored as follows:
+
+.. code-block:: c
+
+	struct info {
+		u32 length;		// Length of this frame
+		u32 offset_low;		// Offset in the file of the
+		u32 offset_high;	// start of this frame
+		u32 mask1;		// Bits 0-2 are the type mask:
+					// 1=I, 2=P, 4=B
+					// 0=End of Program Index, other fields
+					//   are invalid.
+		u32 pts;		// The PTS of the frame
+		u32 mask2;		// Bit 0 is bit 32 of the pts.
+	};
+	u32 table_ptr;
+	struct info index[400];
+
+The table_ptr is the encoder memory address in the table were
+*new* entries will be written.
+
+.. note:: This is a ringbuffer, so the table_ptr will wraparound.
+
+Param[0]
+^^^^^^^^
+
+Picture Mask:
+- 0=No index capture
+- 1=I frames
+- 3=I,P frames
+- 7=I,P,B frames
+
+(Seems to be ignored, it always indexes I, P and B frames)
+
+Param[1]
+^^^^^^^^
+
+Elements requested (up to 400)
+
+Result[0]
+^^^^^^^^^
+
+Offset in the encoder memory of the start of the table.
+
+Result[1]
+^^^^^^^^^
+
+Number of allocated elements up to a maximum of Param[1]
+
+
+
+CX2341X_ENC_SET_VBI_CONFIG
+~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Enum: 200/0xC8
+
+Description
+^^^^^^^^^^^
+
+Configure VBI settings
+
+Param[0]
+^^^^^^^^
+
+Bitmap:
+
+.. code-block:: none
+
+	    0    Mode '0' Sliced, '1' Raw
+	    1:3  Insertion:
+		     '000' insert in extension & user data
+		     '001' insert in private packets
+		     '010' separate stream and user data
+		     '111' separate stream and private data
+	    8:15 Stream ID (normally 0xBD)
+
+Param[1]
+^^^^^^^^
+
+Frames per interrupt (max 8). Only valid in raw mode.
+
+Param[2]
+^^^^^^^^
+
+Total raw VBI frames. Only valid in raw mode.
+
+Param[3]
+^^^^^^^^
+
+Start codes
+
+Param[4]
+^^^^^^^^
+
+Stop codes
+
+Param[5]
+^^^^^^^^
+
+Lines per frame
+
+Param[6]
+^^^^^^^^
+
+Byte per line
+
+Result[0]
+^^^^^^^^^
+
+Observed frames per interrupt in raw mode only. Rage 1 to Param[1]
+
+Result[1]
+^^^^^^^^^
+
+Observed number of frames in raw mode. Range 1 to Param[2]
+
+Result[2]
+^^^^^^^^^
+
+Memory offset to start or raw VBI data
+
+
+
+CX2341X_ENC_SET_DMA_BLOCK_SIZE
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Enum: 201/0xC9
+
+Description
+^^^^^^^^^^^
+
+Set DMA transfer block size
+
+Param[0]
+^^^^^^^^
+
+DMA transfer block size in bytes or frames. When unit is bytes,
+supported block sizes are 2^7, 2^8 and 2^9 bytes.
+
+Param[1]
+^^^^^^^^
+
+Unit: 0=bytes, 1=frames
+
+
+
+CX2341X_ENC_GET_PREV_DMA_INFO_MB_10
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Enum: 202/0xCA
+
+Description
+^^^^^^^^^^^
+
+Returns information on the previous DMA transfer in conjunction with
+bit 27 of the interrupt mask. Uses mailbox 10.
+
+Result[0]
+^^^^^^^^^
+
+Type of stream
+
+Result[1]
+^^^^^^^^^
+
+Address Offset
+
+Result[2]
+^^^^^^^^^
+
+Maximum size of transfer
+
+
+
+CX2341X_ENC_GET_PREV_DMA_INFO_MB_9
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Enum: 203/0xCB
+
+Description
+^^^^^^^^^^^
+
+Returns information on the previous DMA transfer in conjunction with
+bit 27 or 18 of the interrupt mask. Uses mailbox 9.
+
+Result[0]
+^^^^^^^^^
+
+Status bits:
+- 0   read completed
+- 1   write completed
+- 2   DMA read error
+- 3   DMA write error
+- 4   Scatter-Gather array error
+
+Result[1]
+^^^^^^^^^
+
+DMA type
+
+Result[2]
+^^^^^^^^^
+
+Presentation Time Stamp bits 0..31
+
+Result[3]
+^^^^^^^^^
+
+Presentation Time Stamp bit 32
+
+
+
+CX2341X_ENC_SCHED_DMA_TO_HOST
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Enum: 204/0xCC
+
+Description
+^^^^^^^^^^^
+
+Setup DMA to host operation
+
+Param[0]
+^^^^^^^^
+
+Memory address of link list
+
+Param[1]
+^^^^^^^^
+
+Length of link list (wtf: what units ???)
+
+Param[2]
+^^^^^^^^
+
+DMA type (0=MPEG)
+
+
+
+CX2341X_ENC_INITIALIZE_INPUT
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Enum: 205/0xCD
+
+Description
+^^^^^^^^^^^
+
+Initializes the video input
+
+
+
+CX2341X_ENC_SET_FRAME_DROP_RATE
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Enum: 208/0xD0
+
+Description
+^^^^^^^^^^^
+
+For each frame captured, skip specified number of frames.
+
+Param[0]
+^^^^^^^^
+
+Number of frames to skip
+
+
+
+CX2341X_ENC_PAUSE_ENCODER
+~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Enum: 210/0xD2
+
+Description
+^^^^^^^^^^^
+
+During a pause condition, all frames are dropped instead of being encoded.
+
+Param[0]
+^^^^^^^^
+
+- 0=Pause encoding
+- 1=Continue encoding
+
+
+
+CX2341X_ENC_REFRESH_INPUT
+~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Enum: 211/0xD3
+
+Description
+^^^^^^^^^^^
+
+Refreshes the video input
+
+
+
+CX2341X_ENC_SET_COPYRIGHT
+~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Enum: 212/0xD4
+
+Description
+^^^^^^^^^^^
+
+Sets stream copyright property
+
+Param[0]
+^^^^^^^^
+
+
+- 0=Stream is not copyrighted
+- 1=Stream is copyrighted
+
+
+
+CX2341X_ENC_SET_EVENT_NOTIFICATION
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Enum: 213/0xD5
+
+Description
+^^^^^^^^^^^
+
+Setup firmware to notify the host about a particular event. Host must
+unmask the interrupt bit.
+
+Param[0]
+^^^^^^^^
+
+Event (0=refresh encoder input)
+
+Param[1]
+^^^^^^^^
+
+Notification 0=disabled 1=enabled
+
+Param[2]
+^^^^^^^^
+
+Interrupt bit
+
+Param[3]
+^^^^^^^^
+
+Mailbox slot, -1 if no mailbox required.
+
+
+
+CX2341X_ENC_SET_NUM_VSYNC_LINES
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Enum: 214/0xD6
+
+Description
+^^^^^^^^^^^
+
+Depending on the analog video decoder used, this assigns the number
+of lines for field 1 and 2.
+
+Param[0]
+^^^^^^^^
+
+Field 1 number of lines:
+- 0x00EF for SAA7114
+- 0x00F0 for SAA7115
+- 0x0105 for Micronas
+
+Param[1]
+^^^^^^^^
+
+Field 2 number of lines:
+- 0x00EF for SAA7114
+- 0x00F0 for SAA7115
+- 0x0106 for Micronas
+
+
+
+CX2341X_ENC_SET_PLACEHOLDER
+~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Enum: 215/0xD7
+
+Description
+^^^^^^^^^^^
+
+Provides a mechanism of inserting custom user data in the MPEG stream.
+
+Param[0]
+^^^^^^^^
+
+- 0=extension & user data
+- 1=private packet with stream ID 0xBD
+
+Param[1]
+^^^^^^^^
+
+Rate at which to insert data, in units of frames (for private packet)
+or GOPs (for ext. & user data)
+
+Param[2]
+^^^^^^^^
+
+Number of data DWORDs (below) to insert
+
+Param[3]
+^^^^^^^^
+
+Custom data 0
+
+Param[4]
+^^^^^^^^
+
+Custom data 1
+
+Param[5]
+^^^^^^^^
+
+Custom data 2
+
+Param[6]
+^^^^^^^^
+
+Custom data 3
+
+Param[7]
+^^^^^^^^
+
+Custom data 4
+
+Param[8]
+^^^^^^^^
+
+Custom data 5
+
+Param[9]
+^^^^^^^^
+
+Custom data 6
+
+Param[10]
+^^^^^^^^^
+
+Custom data 7
+
+Param[11]
+^^^^^^^^^
+
+Custom data 8
+
+
+
+CX2341X_ENC_MUTE_VIDEO
+~~~~~~~~~~~~~~~~~~~~~~
+
+Enum: 217/0xD9
+
+Description
+^^^^^^^^^^^
+
+Video muting
+
+Param[0]
+^^^^^^^^
+
+Bit usage:
+
+.. code-block:: none
+
+	 0    	'0'=video not muted
+		'1'=video muted, creates frames with the YUV color defined below
+	 1:7  	Unused
+	 8:15 	V chrominance information
+	16:23 	U chrominance information
+	24:31 	Y luminance information
+
+
+
+CX2341X_ENC_MUTE_AUDIO
+~~~~~~~~~~~~~~~~~~~~~~
+
+Enum: 218/0xDA
+
+Description
+^^^^^^^^^^^
+
+Audio muting
+
+Param[0]
+^^^^^^^^
+
+- 0=audio not muted
+- 1=audio muted (produces silent mpeg audio stream)
+
+
+
+CX2341X_ENC_SET_VERT_CROP_LINE
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Enum: 219/0xDB
+
+Description
+^^^^^^^^^^^
+
+Something to do with 'Vertical Crop Line'
+
+Param[0]
+^^^^^^^^
+
+If saa7114 and raw VBI capture and 60 Hz, then set to 10001.
+Else 0.
+
+
+
+CX2341X_ENC_MISC
+~~~~~~~~~~~~~~~~
+
+Enum: 220/0xDC
+
+Description
+^^^^^^^^^^^
+
+Miscellaneous actions. Not known for 100% what it does. It's really a
+sort of ioctl call. The first parameter is a command number, the second
+the value.
+
+Param[0]
+^^^^^^^^
+
+Command number:
+
+.. code-block:: none
+
+	 1=set initial SCR value when starting encoding (works).
+	 2=set quality mode (apparently some test setting).
+	 3=setup advanced VIM protection handling.
+	   Always 1 for the cx23416 and 0 for cx23415.
+	 4=generate DVD compatible PTS timestamps
+	 5=USB flush mode
+	 6=something to do with the quantization matrix
+	 7=set navigation pack insertion for DVD: adds 0xbf (private stream 2)
+	   packets to the MPEG. The size of these packets is 2048 bytes (including
+	   the header of 6 bytes: 0x000001bf + length). The payload is zeroed and
+	   it is up to the application to fill them in. These packets are apparently
+	   inserted every four frames.
+	 8=enable scene change detection (seems to be a failure)
+	 9=set history parameters of the video input module
+	10=set input field order of VIM
+	11=set quantization matrix
+	12=reset audio interface after channel change or input switch (has no argument).
+	   Needed for the cx2584x, not needed for the mspx4xx, but it doesn't seem to
+	   do any harm calling it regardless.
+	13=set audio volume delay
+	14=set audio delay
+
+
+Param[1]
+^^^^^^^^
+
+Command value.
+
+Decoder firmware API description
+--------------------------------
+
+.. note:: this API is part of the decoder firmware, so it's cx23415 only.
+
+
+
+CX2341X_DEC_PING_FW
+~~~~~~~~~~~~~~~~~~~
+
+Enum: 0/0x00
+
+Description
+^^^^^^^^^^^
+
+This API call does nothing. It may be used to check if the firmware
+is responding.
+
+
+
+CX2341X_DEC_START_PLAYBACK
+~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Enum: 1/0x01
+
+Description
+^^^^^^^^^^^
+
+Begin or resume playback.
+
+Param[0]
+^^^^^^^^
+
+0 based frame number in GOP to begin playback from.
+
+Param[1]
+^^^^^^^^
+
+Specifies the number of muted audio frames to play before normal
+audio resumes. (This is not implemented in the firmware, leave at 0)
+
+
+
+CX2341X_DEC_STOP_PLAYBACK
+~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Enum: 2/0x02
+
+Description
+^^^^^^^^^^^
+
+Ends playback and clears all decoder buffers. If PTS is not zero,
+playback stops at specified PTS.
+
+Param[0]
+^^^^^^^^
+
+Display 0=last frame, 1=black
+
+.. note::
+
+	this takes effect immediately, so if you want to wait for a PTS,
+	then use '0', otherwise the screen goes to black at once.
+	You can call this later (even if there is no playback) with a 1 value
+	to set the screen to black.
+
+Param[1]
+^^^^^^^^
+
+PTS low
+
+Param[2]
+^^^^^^^^
+
+PTS high
+
+
+
+CX2341X_DEC_SET_PLAYBACK_SPEED
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Enum: 3/0x03
+
+Description
+^^^^^^^^^^^
+
+Playback stream at speed other than normal. There are two modes of
+operation:
+
+	- Smooth: host transfers entire stream and firmware drops unused
+	  frames.
+	- Coarse: host drops frames based on indexing as required to achieve
+	  desired speed.
+
+Param[0]
+^^^^^^^^
+
+.. code-block:: none
+
+	Bitmap:
+	    0:7  0 normal
+		 1 fast only "1.5 times"
+		 n nX fast, 1/nX slow
+	    30   Framedrop:
+		     '0' during 1.5 times play, every other B frame is dropped
+		     '1' during 1.5 times play, stream is unchanged (bitrate
+			 must not exceed 8mbps)
+	    31   Speed:
+		     '0' slow
+		     '1' fast
+
+.. note::
+
+	n is limited to 2. Anything higher does not result in
+	faster playback. Instead the host should start dropping frames.
+
+Param[1]
+^^^^^^^^
+
+Direction: 0=forward, 1=reverse
+
+.. note::
+
+	to make reverse playback work you have to write full GOPs in
+	reverse order.
+
+Param[2]
+^^^^^^^^
+
+.. code-block:: none
+
+	Picture mask:
+	    1=I frames
+	    3=I, P frames
+	    7=I, P, B frames
+
+Param[3]
+^^^^^^^^
+
+B frames per GOP (for reverse play only)
+
+.. note::
+
+	for reverse playback the Picture Mask should be set to I or I, P.
+	Adding B frames to the mask will result in corrupt video. This field
+	has to be set to the correct value in order to keep the timing correct.
+
+Param[4]
+^^^^^^^^
+
+Mute audio: 0=disable, 1=enable
+
+Param[5]
+^^^^^^^^
+
+Display 0=frame, 1=field
+
+Param[6]
+^^^^^^^^
+
+Specifies the number of muted audio frames to play before normal audio
+resumes. (Not implemented in the firmware, leave at 0)
+
+
+
+CX2341X_DEC_STEP_VIDEO
+~~~~~~~~~~~~~~~~~~~~~~
+
+Enum: 5/0x05
+
+Description
+^^^^^^^^^^^
+
+Each call to this API steps the playback to the next unit defined below
+in the current playback direction.
+
+Param[0]
+^^^^^^^^
+
+0=frame, 1=top field, 2=bottom field
+
+
+
+CX2341X_DEC_SET_DMA_BLOCK_SIZE
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Enum: 8/0x08
+
+Description
+^^^^^^^^^^^
+
+Set DMA transfer block size. Counterpart to API 0xC9
+
+Param[0]
+^^^^^^^^
+
+DMA transfer block size in bytes. A different size may be specified
+when issuing the DMA transfer command.
+
+
+
+CX2341X_DEC_GET_XFER_INFO
+~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Enum: 9/0x09
+
+Description
+^^^^^^^^^^^
+
+This API call may be used to detect an end of stream condition.
+
+Result[0]
+^^^^^^^^^
+
+Stream type
+
+Result[1]
+^^^^^^^^^
+
+Address offset
+
+Result[2]
+^^^^^^^^^
+
+Maximum bytes to transfer
+
+Result[3]
+^^^^^^^^^
+
+Buffer fullness
+
+
+
+CX2341X_DEC_GET_DMA_STATUS
+~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Enum: 10/0x0A
+
+Description
+^^^^^^^^^^^
+
+Status of the last DMA transfer
+
+Result[0]
+^^^^^^^^^
+
+Bit 1 set means transfer complete
+Bit 2 set means DMA error
+Bit 3 set means linked list error
+
+Result[1]
+^^^^^^^^^
+
+DMA type: 0=MPEG, 1=OSD, 2=YUV
+
+
+
+CX2341X_DEC_SCHED_DMA_FROM_HOST
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Enum: 11/0x0B
+
+Description
+^^^^^^^^^^^
+
+Setup DMA from host operation. Counterpart to API 0xCC
+
+Param[0]
+^^^^^^^^
+
+Memory address of link list
+
+Param[1]
+^^^^^^^^
+
+Total # of bytes to transfer
+
+Param[2]
+^^^^^^^^
+
+DMA type (0=MPEG, 1=OSD, 2=YUV)
+
+
+
+CX2341X_DEC_PAUSE_PLAYBACK
+~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Enum: 13/0x0D
+
+Description
+^^^^^^^^^^^
+
+Freeze playback immediately. In this mode, when internal buffers are
+full, no more data will be accepted and data request IRQs will be
+masked.
+
+Param[0]
+^^^^^^^^
+
+Display: 0=last frame, 1=black
+
+
+
+CX2341X_DEC_HALT_FW
+~~~~~~~~~~~~~~~~~~~
+
+Enum: 14/0x0E
+
+Description
+^^^^^^^^^^^
+
+The firmware is halted and no further API calls are serviced until
+the firmware is uploaded again.
+
+
+
+CX2341X_DEC_SET_STANDARD
+~~~~~~~~~~~~~~~~~~~~~~~~
+
+Enum: 16/0x10
+
+Description
+^^^^^^^^^^^
+
+Selects display standard
+
+Param[0]
+^^^^^^^^
+
+0=NTSC, 1=PAL
+
+
+
+CX2341X_DEC_GET_VERSION
+~~~~~~~~~~~~~~~~~~~~~~~
+
+Enum: 17/0x11
+
+Description
+^^^^^^^^^^^
+
+Returns decoder firmware version information
+
+Result[0]
+^^^^^^^^^
+
+Version bitmask:
+	- Bits  0:15 build
+	- Bits 16:23 minor
+	- Bits 24:31 major
+
+
+
+CX2341X_DEC_SET_STREAM_INPUT
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Enum: 20/0x14
+
+Description
+^^^^^^^^^^^
+
+Select decoder stream input port
+
+Param[0]
+^^^^^^^^
+
+0=memory (default), 1=streaming
+
+
+
+CX2341X_DEC_GET_TIMING_INFO
+~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Enum: 21/0x15
+
+Description
+^^^^^^^^^^^
+
+Returns timing information from start of playback
+
+Result[0]
+^^^^^^^^^
+
+Frame count by decode order
+
+Result[1]
+^^^^^^^^^
+
+Video PTS bits 0:31 by display order
+
+Result[2]
+^^^^^^^^^
+
+Video PTS bit 32 by display order
+
+Result[3]
+^^^^^^^^^
+
+SCR bits 0:31 by display order
+
+Result[4]
+^^^^^^^^^
+
+SCR bit 32 by display order
+
+
+
+CX2341X_DEC_SET_AUDIO_MODE
+~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Enum: 22/0x16
+
+Description
+^^^^^^^^^^^
+
+Select audio mode
+
+Param[0]
+^^^^^^^^
+
+Dual mono mode action
+	0=Stereo, 1=Left, 2=Right, 3=Mono, 4=Swap, -1=Unchanged
+
+Param[1]
+^^^^^^^^
+
+Stereo mode action:
+	0=Stereo, 1=Left, 2=Right, 3=Mono, 4=Swap, -1=Unchanged
+
+
+
+CX2341X_DEC_SET_EVENT_NOTIFICATION
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Enum: 23/0x17
+
+Description
+^^^^^^^^^^^
+
+Setup firmware to notify the host about a particular event.
+Counterpart to API 0xD5
+
+Param[0]
+^^^^^^^^
+
+Event:
+	- 0=Audio mode change between mono, (joint) stereo and dual channel.
+	- 3=Decoder started
+	- 4=Unknown: goes off 10-15 times per second while decoding.
+	- 5=Some sync event: goes off once per frame.
+
+Param[1]
+^^^^^^^^
+
+Notification 0=disabled, 1=enabled
+
+Param[2]
+^^^^^^^^
+
+Interrupt bit
+
+Param[3]
+^^^^^^^^
+
+Mailbox slot, -1 if no mailbox required.
+
+
+
+CX2341X_DEC_SET_DISPLAY_BUFFERS
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Enum: 24/0x18
+
+Description
+^^^^^^^^^^^
+
+Number of display buffers. To decode all frames in reverse playback you
+must use nine buffers.
+
+Param[0]
+^^^^^^^^
+
+0=six buffers, 1=nine buffers
+
+
+
+CX2341X_DEC_EXTRACT_VBI
+~~~~~~~~~~~~~~~~~~~~~~~
+
+Enum: 25/0x19
+
+Description
+^^^^^^^^^^^
+
+Extracts VBI data
+
+Param[0]
+^^^^^^^^
+
+0=extract from extension & user data, 1=extract from private packets
+
+Result[0]
+^^^^^^^^^
+
+VBI table location
+
+Result[1]
+^^^^^^^^^
+
+VBI table size
+
+
+
+CX2341X_DEC_SET_DECODER_SOURCE
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Enum: 26/0x1A
+
+Description
+^^^^^^^^^^^
+
+Selects decoder source. Ensure that the parameters passed to this
+API match the encoder settings.
+
+Param[0]
+^^^^^^^^
+
+Mode: 0=MPEG from host, 1=YUV from encoder, 2=YUV from host
+
+Param[1]
+^^^^^^^^
+
+YUV picture width
+
+Param[2]
+^^^^^^^^
+
+YUV picture height
+
+Param[3]
+^^^^^^^^
+
+Bitmap: see Param[0] of API 0xBD
+
+
+
+CX2341X_DEC_SET_PREBUFFERING
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Enum: 30/0x1E
+
+Description
+^^^^^^^^^^^
+
+Decoder prebuffering, when enabled up to 128KB are buffered for
+streams <8mpbs or 640KB for streams >8mbps
+
+Param[0]
+^^^^^^^^
+
+0=off, 1=on
+
+PVR350 Video decoder registers 0x02002800 -> 0x02002B00
+-------------------------------------------------------
+
+Author: Ian Armstrong <ian@iarmst.demon.co.uk>
+
+Version: v0.4
+
+Date: 12 March 2007
+
+
+This list has been worked out through trial and error. There will be mistakes
+and omissions. Some registers have no obvious effect so it's hard to say what
+they do, while others interact with each other, or require a certain load
+sequence. Horizontal filter setup is one example, with six registers working
+in unison and requiring a certain load sequence to correctly configure. The
+indexed colour palette is much easier to set at just two registers, but again
+it requires a certain load sequence.
+
+Some registers are fussy about what they are set to. Load in a bad value & the
+decoder will fail. A firmware reload will often recover, but sometimes a reset
+is required. For registers containing size information, setting them to 0 is
+generally a bad idea. For other control registers i.e. 2878, you'll only find
+out what values are bad when it hangs.
+
+.. code-block:: none
+
+	--------------------------------------------------------------------------------
+	2800
+	bit 0
+		Decoder enable
+		0 = disable
+		1 = enable
+	--------------------------------------------------------------------------------
+	2804
+	bits 0:31
+		Decoder horizontal Y alias register 1
+	---------------
+	2808
+	bits 0:31
+		Decoder horizontal Y alias register 2
+	---------------
+	280C
+	bits 0:31
+		Decoder horizontal Y alias register 3
+	---------------
+	2810
+	bits 0:31
+		Decoder horizontal Y alias register 4
+	---------------
+	2814
+	bits 0:31
+		Decoder horizontal Y alias register 5
+	---------------
+	2818
+	bits 0:31
+		Decoder horizontal Y alias trigger
+
+	These six registers control the horizontal aliasing filter for the Y plane.
+	The first five registers must all be loaded before accessing the trigger
+	(2818), as this register actually clocks the data through for the first
+	five.
+
+	To correctly program set the filter, this whole procedure must be done 16
+	times. The actual register contents are copied from a lookup-table in the
+	firmware which contains 4 different filter settings.
+
+	--------------------------------------------------------------------------------
+	281C
+	bits 0:31
+		Decoder horizontal UV alias register 1
+	---------------
+	2820
+	bits 0:31
+		Decoder horizontal UV alias register 2
+	---------------
+	2824
+	bits 0:31
+		Decoder horizontal UV alias register 3
+	---------------
+	2828
+	bits 0:31
+		Decoder horizontal UV alias register 4
+	---------------
+	282C
+	bits 0:31
+		Decoder horizontal UV alias register 5
+	---------------
+	2830
+	bits 0:31
+		Decoder horizontal UV alias trigger
+
+	These six registers control the horizontal aliasing for the UV plane.
+	Operation is the same as the Y filter, with 2830 being the trigger
+	register.
+
+	--------------------------------------------------------------------------------
+	2834
+	bits 0:15
+		Decoder Y source width in pixels
+
+	bits 16:31
+		Decoder Y destination width in pixels
+	---------------
+	2838
+	bits 0:15
+		Decoder UV source width in pixels
+
+	bits 16:31
+		Decoder UV destination width in pixels
+
+	NOTE: For both registers, the resulting image must be fully visible on
+	screen. If the image exceeds the right edge both the source and destination
+	size must be adjusted to reflect the visible portion. For the source width,
+	you must take into account the scaling when calculating the new value.
+	--------------------------------------------------------------------------------
+
+	283C
+	bits 0:31
+		Decoder Y horizontal scaling
+			Normally = Reg 2854 >> 2
+	---------------
+	2840
+	bits 0:31
+		Decoder ?? unknown - horizontal scaling
+		Usually 0x00080514
+	---------------
+	2844
+	bits 0:31
+		Decoder UV horizontal scaling
+		Normally = Reg 2854 >> 2
+	---------------
+	2848
+	bits 0:31
+		Decoder ?? unknown - horizontal scaling
+		Usually 0x00100514
+	---------------
+	284C
+	bits 0:31
+		Decoder ?? unknown - Y plane
+		Usually 0x00200020
+	---------------
+	2850
+	bits 0:31
+		Decoder ?? unknown - UV plane
+		Usually 0x00200020
+	---------------
+	2854
+	bits 0:31
+		Decoder 'master' value for horizontal scaling
+	---------------
+	2858
+	bits 0:31
+		Decoder ?? unknown
+		Usually 0
+	---------------
+	285C
+	bits 0:31
+		Decoder ?? unknown
+		Normally = Reg 2854 >> 1
+	---------------
+	2860
+	bits 0:31
+		Decoder ?? unknown
+		Usually 0
+	---------------
+	2864
+	bits 0:31
+		Decoder ?? unknown
+		Normally = Reg 2854 >> 1
+	---------------
+	2868
+	bits 0:31
+		Decoder ?? unknown
+		Usually 0
+
+	Most of these registers either control horizontal scaling, or appear linked
+	to it in some way. Register 2854 contains the 'master' value & the other
+	registers can be calculated from that one. You must also remember to
+	correctly set the divider in Reg 2874.
+
+	To enlarge:
+		Reg 2854 = (source_width * 0x00200000) / destination_width
+		Reg 2874 = No divide
+
+	To reduce from full size down to half size:
+		Reg 2854 = (source_width/2 * 0x00200000) / destination width
+		Reg 2874 = Divide by 2
+
+	To reduce from half size down to quarter size:
+		Reg 2854 = (source_width/4 * 0x00200000) / destination width
+		Reg 2874 = Divide by 4
+
+	The result is always rounded up.
+
+	--------------------------------------------------------------------------------
+	286C
+	bits 0:15
+		Decoder horizontal Y buffer offset
+
+	bits 15:31
+		Decoder horizontal UV buffer offset
+
+	Offset into the video image buffer. If the offset is gradually incremented,
+	the on screen image will move left & wrap around higher up on the right.
+
+	--------------------------------------------------------------------------------
+	2870
+	bits 0:15
+		Decoder horizontal Y output offset
+
+	bits 16:31
+		Decoder horizontal UV output offset
+
+	Offsets the actual video output. Controls output alignment of the Y & UV
+	planes. The higher the value, the greater the shift to the left. Use
+	reg 2890 to move the image right.
+
+	--------------------------------------------------------------------------------
+	2874
+	bits 0:1
+		Decoder horizontal Y output size divider
+		00 = No divide
+		01 = Divide by 2
+		10 = Divide by 3
+
+	bits 4:5
+		Decoder horizontal UV output size divider
+		00 = No divide
+		01 = Divide by 2
+		10 = Divide by 3
+
+	bit 8
+		Decoder ?? unknown
+		0 = Normal
+		1 = Affects video output levels
+
+	bit 16
+		Decoder ?? unknown
+		0 = Normal
+		1 = Disable horizontal filter
+
+	--------------------------------------------------------------------------------
+	2878
+	bit 0
+		?? unknown
+
+	bit 1
+		osd on/off
+		0 = osd off
+		1 = osd on
+
+	bit 2
+		Decoder + osd video timing
+		0 = NTSC
+		1 = PAL
+
+	bits 3:4
+		?? unknown
+
+	bit 5
+		Decoder + osd
+		Swaps upper & lower fields
+
+	--------------------------------------------------------------------------------
+	287C
+	bits 0:10
+		Decoder & osd ?? unknown
+		Moves entire screen horizontally. Starts at 0x005 with the screen
+		shifted heavily to the right. Incrementing in steps of 0x004 will
+		gradually shift the screen to the left.
+
+	bits 11:31
+		?? unknown
+
+	Normally contents are 0x00101111 (NTSC) or 0x1010111d (PAL)
+
+	--------------------------------------------------------------------------------
+	2880  --------    ?? unknown
+	2884  --------    ?? unknown
+	--------------------------------------------------------------------------------
+	2888
+	bit 0
+		Decoder + osd ?? unknown
+		0 = Normal
+		1 = Misaligned fields (Correctable through 289C & 28A4)
+
+	bit 4
+		?? unknown
+
+	bit 8
+		?? unknown
+
+	Warning: Bad values will require a firmware reload to recover.
+			Known to be bad are 0x000,0x011,0x100,0x111
+	--------------------------------------------------------------------------------
+	288C
+	bits 0:15
+		osd ?? unknown
+		Appears to affect the osd position stability. The higher the value the
+		more unstable it becomes. Decoder output remains stable.
+
+	bits 16:31
+		osd ?? unknown
+		Same as bits 0:15
+
+	--------------------------------------------------------------------------------
+	2890
+	bits 0:11
+		Decoder output horizontal offset.
+
+	Horizontal offset moves the video image right. A small left shift is
+	possible, but it's better to use reg 2870 for that due to its greater
+	range.
+
+	NOTE: Video corruption will occur if video window is shifted off the right
+	edge. To avoid this read the notes for 2834 & 2838.
+	--------------------------------------------------------------------------------
+	2894
+	bits 0:23
+		Decoder output video surround colour.
+
+	Contains the colour (in yuv) used to fill the screen when the video is
+	running in a window.
+	--------------------------------------------------------------------------------
+	2898
+	bits 0:23
+		Decoder video window colour
+		Contains the colour (in yuv) used to fill the video window when the
+		video is turned off.
+
+	bit 24
+		Decoder video output
+		0 = Video on
+		1 = Video off
+
+	bit 28
+		Decoder plane order
+		0 = Y,UV
+		1 = UV,Y
+
+	bit 29
+		Decoder second plane byte order
+		0 = Normal (UV)
+		1 = Swapped (VU)
+
+	In normal usage, the first plane is Y & the second plane is UV. Though the
+	order of the planes can be swapped, only the byte order of the second plane
+	can be swapped. This isn't much use for the Y plane, but can be useful for
+	the UV plane.
+
+	--------------------------------------------------------------------------------
+	289C
+	bits 0:15
+		Decoder vertical field offset 1
+
+	bits 16:31
+		Decoder vertical field offset 2
+
+	Controls field output vertical alignment. The higher the number, the lower
+	the image on screen. Known starting values are 0x011E0017 (NTSC) &
+	0x01500017 (PAL)
+	--------------------------------------------------------------------------------
+	28A0
+	bits 0:15
+		Decoder & osd width in pixels
+
+	bits 16:31
+		Decoder & osd height in pixels
+
+	All output from the decoder & osd are disabled beyond this area. Decoder
+	output will simply go black outside of this region. If the osd tries to
+	exceed this area it will become corrupt.
+	--------------------------------------------------------------------------------
+	28A4
+	bits 0:11
+		osd left shift.
+
+	Has a range of 0x770->0x7FF. With the exception of 0, any value outside of
+	this range corrupts the osd.
+	--------------------------------------------------------------------------------
+	28A8
+	bits 0:15
+		osd vertical field offset 1
+
+	bits 16:31
+		osd vertical field offset 2
+
+	Controls field output vertical alignment. The higher the number, the lower
+	the image on screen. Known starting values are 0x011E0017 (NTSC) &
+	0x01500017 (PAL)
+	--------------------------------------------------------------------------------
+	28AC  --------    ?? unknown
+	|
+	V
+	28BC  --------    ?? unknown
+	--------------------------------------------------------------------------------
+	28C0
+	bit 0
+		Current output field
+		0 = first field
+		1 = second field
+
+	bits 16:31
+		Current scanline
+		The scanline counts from the top line of the first field
+		through to the last line of the second field.
+	--------------------------------------------------------------------------------
+	28C4  --------    ?? unknown
+	|
+	V
+	28F8  --------    ?? unknown
+	--------------------------------------------------------------------------------
+	28FC
+	bit 0
+		?? unknown
+		0 = Normal
+		1 = Breaks decoder & osd output
+	--------------------------------------------------------------------------------
+	2900
+	bits 0:31
+		Decoder vertical Y alias register 1
+	---------------
+	2904
+	bits 0:31
+		Decoder vertical Y alias register 2
+	---------------
+	2908
+	bits 0:31
+		Decoder vertical Y alias trigger
+
+	These three registers control the vertical aliasing filter for the Y plane.
+	Operation is similar to the horizontal Y filter (2804). The only real
+	difference is that there are only two registers to set before accessing
+	the trigger register (2908). As for the horizontal filter, the values are
+	taken from a lookup table in the firmware, and the procedure must be
+	repeated 16 times to fully program the filter.
+	--------------------------------------------------------------------------------
+	290C
+	bits 0:31
+		Decoder vertical UV alias register 1
+	---------------
+	2910
+	bits 0:31
+		Decoder vertical UV alias register 2
+	---------------
+	2914
+	bits 0:31
+		Decoder vertical UV alias trigger
+
+	These three registers control the vertical aliasing filter for the UV
+	plane. Operation is the same as the Y filter, with 2914 being the trigger.
+	--------------------------------------------------------------------------------
+	2918
+	bits 0:15
+		Decoder Y source height in pixels
+
+	bits 16:31
+		Decoder Y destination height in pixels
+	---------------
+	291C
+	bits 0:15
+		Decoder UV source height in pixels divided by 2
+
+	bits 16:31
+		Decoder UV destination height in pixels
+
+	NOTE: For both registers, the resulting image must be fully visible on
+	screen. If the image exceeds the bottom edge both the source and
+	destination size must be adjusted to reflect the visible portion. For the
+	source height, you must take into account the scaling when calculating the
+	new value.
+	--------------------------------------------------------------------------------
+	2920
+	bits 0:31
+		Decoder Y vertical scaling
+		Normally = Reg 2930 >> 2
+	---------------
+	2924
+	bits 0:31
+		Decoder Y vertical scaling
+		Normally = Reg 2920 + 0x514
+	---------------
+	2928
+	bits 0:31
+		Decoder UV vertical scaling
+		When enlarging = Reg 2930 >> 2
+		When reducing = Reg 2930 >> 3
+	---------------
+	292C
+	bits 0:31
+		Decoder UV vertical scaling
+		Normally = Reg 2928 + 0x514
+	---------------
+	2930
+	bits 0:31
+		Decoder 'master' value for vertical scaling
+	---------------
+	2934
+	bits 0:31
+		Decoder ?? unknown - Y vertical scaling
+	---------------
+	2938
+	bits 0:31
+		Decoder Y vertical scaling
+		Normally = Reg 2930
+	---------------
+	293C
+	bits 0:31
+		Decoder ?? unknown - Y vertical scaling
+	---------------
+	2940
+	bits 0:31
+		Decoder UV vertical scaling
+		When enlarging = Reg 2930 >> 1
+		When reducing = Reg 2930
+	---------------
+	2944
+	bits 0:31
+		Decoder ?? unknown - UV vertical scaling
+	---------------
+	2948
+	bits 0:31
+		Decoder UV vertical scaling
+		Normally = Reg 2940
+	---------------
+	294C
+	bits 0:31
+		Decoder ?? unknown - UV vertical scaling
+
+	Most of these registers either control vertical scaling, or appear linked
+	to it in some way. Register 2930 contains the 'master' value & all other
+	registers can be calculated from that one. You must also remember to
+	correctly set the divider in Reg 296C
+
+	To enlarge:
+		Reg 2930 = (source_height * 0x00200000) / destination_height
+		Reg 296C = No divide
+
+	To reduce from full size down to half size:
+		Reg 2930 = (source_height/2 * 0x00200000) / destination height
+		Reg 296C = Divide by 2
+
+	To reduce from half down to quarter.
+		Reg 2930 = (source_height/4 * 0x00200000) / destination height
+		Reg 296C = Divide by 4
+
+	--------------------------------------------------------------------------------
+	2950
+	bits 0:15
+		Decoder Y line index into display buffer, first field
+
+	bits 16:31
+		Decoder Y vertical line skip, first field
+	--------------------------------------------------------------------------------
+	2954
+	bits 0:15
+		Decoder Y line index into display buffer, second field
+
+	bits 16:31
+		Decoder Y vertical line skip, second field
+	--------------------------------------------------------------------------------
+	2958
+	bits 0:15
+		Decoder UV line index into display buffer, first field
+
+	bits 16:31
+		Decoder UV vertical line skip, first field
+	--------------------------------------------------------------------------------
+	295C
+	bits 0:15
+		Decoder UV line index into display buffer, second field
+
+	bits 16:31
+		Decoder UV vertical line skip, second field
+	--------------------------------------------------------------------------------
+	2960
+	bits 0:15
+		Decoder destination height minus 1
+
+	bits 16:31
+		Decoder destination height divided by 2
+	--------------------------------------------------------------------------------
+	2964
+	bits 0:15
+		Decoder Y vertical offset, second field
+
+	bits 16:31
+		Decoder Y vertical offset, first field
+
+	These two registers shift the Y plane up. The higher the number, the
+	greater the shift.
+	--------------------------------------------------------------------------------
+	2968
+	bits 0:15
+		Decoder UV vertical offset, second field
+
+	bits 16:31
+		Decoder UV vertical offset, first field
+
+	These two registers shift the UV plane up. The higher the number, the
+	greater the shift.
+	--------------------------------------------------------------------------------
+	296C
+	bits 0:1
+		Decoder vertical Y output size divider
+		00 = No divide
+		01 = Divide by 2
+		10 = Divide by 4
+
+	bits 8:9
+		Decoder vertical UV output size divider
+		00 = No divide
+		01 = Divide by 2
+		10 = Divide by 4
+	--------------------------------------------------------------------------------
+	2970
+	bit 0
+		Decoder ?? unknown
+		0 = Normal
+		1 = Affect video output levels
+
+	bit 16
+		Decoder ?? unknown
+		0 = Normal
+		1 = Disable vertical filter
+
+	--------------------------------------------------------------------------------
+	2974  --------   ?? unknown
+	|
+	V
+	29EF  --------   ?? unknown
+	--------------------------------------------------------------------------------
+	2A00
+	bits 0:2
+		osd colour mode
+		000 = 8 bit indexed
+		001 = 16 bit (565)
+		010 = 15 bit (555)
+		011 = 12 bit (444)
+		100 = 32 bit (8888)
+
+	bits 4:5
+		osd display bpp
+		01 = 8 bit
+		10 = 16 bit
+		11 = 32 bit
+
+	bit 8
+		osd global alpha
+		0 = Off
+		1 = On
+
+	bit 9
+		osd local alpha
+		0 = Off
+		1 = On
+
+	bit 10
+		osd colour key
+		0 = Off
+		1 = On
+
+	bit 11
+		osd ?? unknown
+		Must be 1
+
+	bit 13
+		osd colour space
+		0 = ARGB
+		1 = AYVU
+
+	bits 16:31
+		osd ?? unknown
+		Must be 0x001B (some kind of buffer pointer ?)
+
+	When the bits-per-pixel is set to 8, the colour mode is ignored and
+	assumed to be 8 bit indexed. For 16 & 32 bits-per-pixel the colour depth
+	is honoured, and when using a colour depth that requires fewer bytes than
+	allocated the extra bytes are used as padding. So for a 32 bpp with 8 bit
+	index colour, there are 3 padding bytes per pixel. It's also possible to
+	select 16bpp with a 32 bit colour mode. This results in the pixel width
+	being doubled, but the color key will not work as expected in this mode.
+
+	Colour key is as it suggests. You designate a colour which will become
+	completely transparent. When using 565, 555 or 444 colour modes, the
+	colour key is always 16 bits wide. The colour to key on is set in Reg 2A18.
+
+	Local alpha works differently depending on the colour mode. For 32bpp & 8
+	bit indexed, local alpha is a per-pixel 256 step transparency, with 0 being
+	transparent and 255 being solid. For the 16bpp modes 555 & 444, the unused
+	bit(s) act as a simple transparency switch, with 0 being solid & 1 being
+	fully transparent. There is no local alpha support for 16bit 565.
+
+	Global alpha is a 256 step transparency that applies to the entire osd,
+	with 0 being transparent & 255 being solid.
+
+	It's possible to combine colour key, local alpha & global alpha.
+	--------------------------------------------------------------------------------
+	2A04
+	bits 0:15
+		osd x coord for left edge
+
+	bits 16:31
+		osd y coord for top edge
+	---------------
+	2A08
+	bits 0:15
+		osd x coord for right edge
+
+	bits 16:31
+		osd y coord for bottom edge
+
+	For both registers, (0,0) = top left corner of the display area. These
+	registers do not control the osd size, only where it's positioned & how
+	much is visible. The visible osd area cannot exceed the right edge of the
+	display, otherwise the osd will become corrupt. See reg 2A10 for
+	setting osd width.
+	--------------------------------------------------------------------------------
+	2A0C
+	bits 0:31
+		osd buffer index
+
+	An index into the osd buffer. Slowly incrementing this moves the osd left,
+	wrapping around onto the right edge
+	--------------------------------------------------------------------------------
+	2A10
+	bits 0:11
+		osd buffer 32 bit word width
+
+	Contains the width of the osd measured in 32 bit words. This means that all
+	colour modes are restricted to a byte width which is divisible by 4.
+	--------------------------------------------------------------------------------
+	2A14
+	bits 0:15
+		osd height in pixels
+
+	bits 16:32
+		osd line index into buffer
+		osd will start displaying from this line.
+	--------------------------------------------------------------------------------
+	2A18
+	bits 0:31
+		osd colour key
+
+	Contains the colour value which will be transparent.
+	--------------------------------------------------------------------------------
+	2A1C
+	bits 0:7
+		osd global alpha
+
+	Contains the global alpha value (equiv ivtvfbctl --alpha XX)
+	--------------------------------------------------------------------------------
+	2A20  --------    ?? unknown
+	|
+	V
+	2A2C  --------    ?? unknown
+	--------------------------------------------------------------------------------
+	2A30
+	bits 0:7
+		osd colour to change in indexed palette
+	---------------
+	2A34
+	bits 0:31
+		osd colour for indexed palette
+
+	To set the new palette, first load the index of the colour to change into
+	2A30, then load the new colour into 2A34. The full palette is 256 colours,
+	so the index range is 0x00-0xFF
+	--------------------------------------------------------------------------------
+	2A38  --------    ?? unknown
+	2A3C  --------    ?? unknown
+	--------------------------------------------------------------------------------
+	2A40
+	bits 0:31
+		osd ?? unknown
+
+	Affects overall brightness, wrapping around to black
+	--------------------------------------------------------------------------------
+	2A44
+	bits 0:31
+		osd ?? unknown
+
+	Green tint
+	--------------------------------------------------------------------------------
+	2A48
+	bits 0:31
+		osd ?? unknown
+
+	Red tint
+	--------------------------------------------------------------------------------
+	2A4C
+	bits 0:31
+		osd ?? unknown
+
+	Affects overall brightness, wrapping around to black
+	--------------------------------------------------------------------------------
+	2A50
+	bits 0:31
+		osd ?? unknown
+
+	Colour shift
+	--------------------------------------------------------------------------------
+	2A54
+	bits 0:31
+		osd ?? unknown
+
+	Colour shift
+	--------------------------------------------------------------------------------
+	2A58  --------    ?? unknown
+	|
+	V
+	2AFC  --------    ?? unknown
+	--------------------------------------------------------------------------------
+	2B00
+	bit 0
+		osd filter control
+		0 = filter off
+		1 = filter on
+
+	bits 1:4
+		osd ?? unknown
+
+	--------------------------------------------------------------------------------
+
+The cx231xx DMA engine
+----------------------
+
+
+This page describes the structures and procedures used by the cx2341x DMA
+engine.
+
+Introduction
+~~~~~~~~~~~~
+
+The cx2341x PCI interface is busmaster capable. This means it has a DMA
+engine to efficiently transfer large volumes of data between the card and main
+memory without requiring help from a CPU. Like most hardware, it must operate
+on contiguous physical memory. This is difficult to come by in large quantities
+on virtual memory machines.
+
+Therefore, it also supports a technique called "scatter-gather". The card can
+transfer multiple buffers in one operation. Instead of allocating one large
+contiguous buffer, the driver can allocate several smaller buffers.
+
+In practice, I've seen the average transfer to be roughly 80K, but transfers
+above 128K were not uncommon, particularly at startup. The 128K figure is
+important, because that is the largest block that the kernel can normally
+allocate. Even still, 128K blocks are hard to come by, so the driver writer is
+urged to choose a smaller block size and learn the scatter-gather technique.
+
+Mailbox #10 is reserved for DMA transfer information.
+
+Note: the hardware expects little-endian data ('intel format').
+
+Flow
+~~~~
+
+This section describes, in general, the order of events when handling DMA
+transfers. Detailed information follows this section.
+
+- The card raises the Encoder interrupt.
+- The driver reads the transfer type, offset and size from Mailbox #10.
+- The driver constructs the scatter-gather array from enough free dma buffers
+  to cover the size.
+- The driver schedules the DMA transfer via the ScheduleDMAtoHost API call.
+- The card raises the DMA Complete interrupt.
+- The driver checks the DMA status register for any errors.
+- The driver post-processes the newly transferred buffers.
+
+NOTE! It is possible that the Encoder and DMA Complete interrupts get raised
+simultaneously. (End of the last, start of the next, etc.)
+
+Mailbox #10
+~~~~~~~~~~~
+
+The Flags, Command, Return Value and Timeout fields are ignored.
+
+- Name:       Mailbox #10
+- Results[0]: Type: 0: MPEG.
+- Results[1]: Offset: The position relative to the card's memory space.
+- Results[2]: Size: The exact number of bytes to transfer.
+
+My speculation is that since the StartCapture API has a capture type of "RAW"
+available, that the type field will have other values that correspond to YUV
+and PCM data.
+
+Scatter-Gather Array
+~~~~~~~~~~~~~~~~~~~~
+
+The scatter-gather array is a contiguously allocated block of memory that
+tells the card the source and destination of each data-block to transfer.
+Card "addresses" are derived from the offset supplied by Mailbox #10. Host
+addresses are the physical memory location of the target DMA buffer.
+
+Each S-G array element is a struct of three 32-bit words. The first word is
+the source address, the second is the destination address. Both take up the
+entire 32 bits. The lowest 18 bits of the third word is the transfer byte
+count. The high-bit of the third word is the "last" flag. The last-flag tells
+the card to raise the DMA_DONE interrupt. From hard personal experience, if
+you forget to set this bit, the card will still "work" but the stream will
+most likely get corrupted.
+
+The transfer count must be a multiple of 256. Therefore, the driver will need
+to track how much data in the target buffer is valid and deal with it
+accordingly.
+
+Array Element:
+
+- 32-bit Source Address
+- 32-bit Destination Address
+- 14-bit reserved (high bit is the last flag)
+- 18-bit byte count
+
+DMA Transfer Status
+~~~~~~~~~~~~~~~~~~~
+
+Register 0x0004 holds the DMA Transfer Status:
+
+- bit 0:   read completed
+- bit 1:   write completed
+- bit 2:   DMA read error
+- bit 3:   DMA write error
+- bit 4:   Scatter-Gather array error
diff --git a/Documentation/driver-api/media/drivers/cx88-devel.rst b/Documentation/driver-api/media/drivers/cx88-devel.rst
new file mode 100644
index 0000000..cfe7c03
--- /dev/null
+++ b/Documentation/driver-api/media/drivers/cx88-devel.rst
@@ -0,0 +1,113 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+The cx88 driver
+===============
+
+Author:  Gerd Hoffmann
+
+Documentation missing at the cx88 datasheet
+-------------------------------------------
+
+MO_OUTPUT_FORMAT (0x310164)
+
+.. code-block:: none
+
+  Previous default from DScaler: 0x1c1f0008
+  Digit 8: 31-28
+  28: PREVREMOD = 1
+
+  Digit 7: 27-24 (0xc = 12 = b1100 )
+  27: COMBALT = 1
+  26: PAL_INV_PHASE
+    (DScaler apparently set this to 1, resulted in sucky picture)
+
+  Digits 6,5: 23-16
+  25-16: COMB_RANGE = 0x1f [default] (9 bits -> max 512)
+
+  Digit 4: 15-12
+  15: DISIFX = 0
+  14: INVCBF = 0
+  13: DISADAPT = 0
+  12: NARROWADAPT = 0
+
+  Digit 3: 11-8
+  11: FORCE2H
+  10: FORCEREMD
+  9: NCHROMAEN
+  8: NREMODEN
+
+  Digit 2: 7-4
+  7-6: YCORE
+  5-4: CCORE
+
+  Digit 1: 3-0
+  3: RANGE = 1
+  2: HACTEXT
+  1: HSFMT
+
+0x47 is the sync byte for MPEG-2 transport stream packets.
+Datasheet incorrectly states to use 47 decimal. 188 is the length.
+All DVB compliant frontends output packets with this start code.
+
+Hauppauge WinTV cx88 IR information
+-----------------------------------
+
+The controls for the mux are GPIO [0,1] for source, and GPIO 2 for muting.
+
+====== ======== =================================================
+GPIO0  GPIO1
+====== ======== =================================================
+  0        0    TV Audio
+  1        0    FM radio
+  0        1    Line-In
+  1        1    Mono tuner bypass or CD passthru (tuner specific)
+====== ======== =================================================
+
+GPIO 16(I believe) is tied to the IR port (if present).
+
+
+From the data sheet:
+
+- Register 24'h20004  PCI Interrupt Status
+
+ - bit [18]  IR_SMP_INT Set when 32 input samples have been collected over
+ - gpio[16] pin into GP_SAMPLE register.
+
+What's missing from the data sheet:
+
+- Setup 4KHz sampling rate (roughly 2x oversampled; good enough for our RC5
+  compat remote)
+- set register 0x35C050 to  0xa80a80
+- enable sampling
+- set register 0x35C054 to 0x5
+- enable the IRQ bit 18 in the interrupt mask register (and
+  provide for a handler)
+
+GP_SAMPLE register is at 0x35C058
+
+Bits are then right shifted into the GP_SAMPLE register at the specified
+rate; you get an interrupt when a full DWORD is received.
+You need to recover the actual RC5 bits out of the (oversampled) IR sensor
+bits. (Hint: look for the 0/1and 1/0 crossings of the RC5 bi-phase data)  An
+actual raw RC5 code will span 2-3 DWORDS, depending on the actual alignment.
+
+I'm pretty sure when no IR signal is present the receiver is always in a
+marking state(1); but stray light, etc can cause intermittent noise values
+as well.  Remember, this is a free running sample of the IR receiver state
+over time, so don't assume any sample starts at any particular place.
+
+Additional info
+~~~~~~~~~~~~~~~
+
+This data sheet (google search) seems to have a lovely description of the
+RC5 basics:
+http://www.atmel.com/dyn/resources/prod_documents/doc2817.pdf
+
+This document has more data:
+http://www.nenya.be/beor/electronics/rc5.htm
+
+This document has a  how to decode a bi-phase data stream:
+http://www.ee.washington.edu/circuit_archive/text/ir_decode.txt
+
+This document has still more info:
+http://www.xs4all.nl/~sbp/knowledge/ir/rc5.htm
diff --git a/Documentation/driver-api/media/drivers/davinci-vpbe-devel.rst b/Documentation/driver-api/media/drivers/davinci-vpbe-devel.rst
new file mode 100644
index 0000000..f096167
--- /dev/null
+++ b/Documentation/driver-api/media/drivers/davinci-vpbe-devel.rst
@@ -0,0 +1,39 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+The VPBE V4L2 driver design
+===========================
+
+File partitioning
+-----------------
+
+ V4L2 display device driver
+         drivers/media/platform/davinci/vpbe_display.c
+         drivers/media/platform/davinci/vpbe_display.h
+
+ VPBE display controller
+         drivers/media/platform/davinci/vpbe.c
+         drivers/media/platform/davinci/vpbe.h
+
+ VPBE venc sub device driver
+         drivers/media/platform/davinci/vpbe_venc.c
+         drivers/media/platform/davinci/vpbe_venc.h
+         drivers/media/platform/davinci/vpbe_venc_regs.h
+
+ VPBE osd driver
+         drivers/media/platform/davinci/vpbe_osd.c
+         drivers/media/platform/davinci/vpbe_osd.h
+         drivers/media/platform/davinci/vpbe_osd_regs.h
+
+To be done
+----------
+
+vpbe display controller
+    - Add support for external encoders.
+    - add support for selecting external encoder as default at probe time.
+
+vpbe venc sub device
+    - add timings for supporting ths8200
+    - add support for LogicPD LCD.
+
+FB drivers
+    - Add support for fbdev drivers.- Ready and part of subsequent patches.
diff --git a/Documentation/driver-api/media/drivers/dvb-usb.rst b/Documentation/driver-api/media/drivers/dvb-usb.rst
new file mode 100644
index 0000000..b2d5d9e
--- /dev/null
+++ b/Documentation/driver-api/media/drivers/dvb-usb.rst
@@ -0,0 +1,357 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+Idea behind the dvb-usb-framework
+=================================
+
+.. note::
+
+   #) This documentation is outdated. Please check at the DVB wiki
+      at https://linuxtv.org/wiki for more updated info.
+
+   #) **deprecated:** Newer DVB USB drivers should use the dvb-usb-v2 framework.
+
+In March 2005 I got the new Twinhan USB2.0 DVB-T device. They provided specs
+and a firmware.
+
+Quite keen I wanted to put the driver (with some quirks of course) into dibusb.
+After reading some specs and doing some USB snooping, it realized, that the
+dibusb-driver would be a complete mess afterwards. So I decided to do it in a
+different way: With the help of a dvb-usb-framework.
+
+The framework provides generic functions (mostly kernel API calls), such as:
+
+- Transport Stream URB handling in conjunction with dvb-demux-feed-control
+  (bulk and isoc are supported)
+- registering the device for the DVB-API
+- registering an I2C-adapter if applicable
+- remote-control/input-device handling
+- firmware requesting and loading (currently just for the Cypress USB
+  controllers)
+- other functions/methods which can be shared by several drivers (such as
+  functions for bulk-control-commands)
+- TODO: a I2C-chunker. It creates device-specific chunks of register-accesses
+  depending on length of a register and the number of values that can be
+  multi-written and multi-read.
+
+The source code of the particular DVB USB devices does just the communication
+with the device via the bus. The connection between the DVB-API-functionality
+is done via callbacks, assigned in a static device-description (struct
+dvb_usb_device) each device-driver has to have.
+
+For an example have a look in drivers/media/usb/dvb-usb/vp7045*.
+
+Objective is to migrate all the usb-devices (dibusb, cinergyT2, maybe the
+ttusb; flexcop-usb already benefits from the generic flexcop-device) to use
+the dvb-usb-lib.
+
+TODO: dynamic enabling and disabling of the pid-filter in regard to number of
+feeds requested.
+
+Supported devices
+-----------------
+
+See the LinuxTV DVB Wiki at https://linuxtv.org for a complete list of
+cards/drivers/firmwares:
+https://linuxtv.org/wiki/index.php/DVB_USB
+
+0. History & News:
+
+  2005-06-30
+
+  - added support for WideView WT-220U (Thanks to Steve Chang)
+
+  2005-05-30
+
+  - added basic isochronous support to the dvb-usb-framework
+  - added support for Conexant Hybrid reference design and Nebula
+	       DigiTV USB
+
+  2005-04-17
+
+  - all dibusb devices ported to make use of the dvb-usb-framework
+
+  2005-04-02
+
+  - re-enabled and improved remote control code.
+
+  2005-03-31
+
+  - ported the Yakumo/Hama/Typhoon DVB-T USB2.0 device to dvb-usb.
+
+  2005-03-30
+
+  - first commit of the dvb-usb-module based on the dibusb-source.
+    First device is a new driver for the
+    TwinhanDTV Alpha / MagicBox II USB2.0-only DVB-T device.
+  - (change from dvb-dibusb to dvb-usb)
+
+  2005-03-28
+
+  - added support for the AVerMedia AverTV DVB-T USB2.0 device
+    (Thanks to Glen Harris and Jiun-Kuei Jung, AVerMedia)
+
+  2005-03-14
+
+  - added support for the Typhoon/Yakumo/HAMA DVB-T mobile USB2.0
+
+  2005-02-11
+
+  - added support for the KWorld/ADSTech Instant DVB-T USB2.0.
+    Thanks a lot to Joachim von Caron
+
+  2005-02-02
+  - added support for the Hauppauge Win-TV Nova-T USB2
+
+  2005-01-31
+  - distorted streaming is gone for USB1.1 devices
+
+  2005-01-13
+
+  - moved the mirrored pid_filter_table back to dvb-dibusb
+    first almost working version for HanfTek UMT-010
+    found out, that Yakumo/HAMA/Typhoon are predecessors of the HanfTek UMT-010
+
+  2005-01-10
+
+  - refactoring completed, now everything is very delightful
+
+  - tuner quirks for some weird devices (Artec T1 AN2235 device has sometimes a
+    Panasonic Tuner assembled). Tunerprobing implemented.
+    Thanks a lot to Gunnar Wittich.
+
+  2004-12-29
+
+  - after several days of struggling around bug of no returning URBs fixed.
+
+  2004-12-26
+
+  - refactored the dibusb-driver, split into separate files
+  - i2c-probing enabled
+
+  2004-12-06
+
+  - possibility for demod i2c-address probing
+  - new usb IDs (Compro, Artec)
+
+  2004-11-23
+
+  - merged changes from DiB3000MC_ver2.1
+  - revised the debugging
+  - possibility to deliver the complete TS for USB2.0
+
+  2004-11-21
+
+  - first working version of the dib3000mc/p frontend driver.
+
+  2004-11-12
+
+  - added additional remote control keys. Thanks to Uwe Hanke.
+
+  2004-11-07
+
+  - added remote control support. Thanks to David Matthews.
+
+  2004-11-05
+
+  - added support for a new devices (Grandtec/Avermedia/Artec)
+  - merged my changes (for dib3000mb/dibusb) to the FE_REFACTORING, because it became HEAD
+  - moved transfer control (pid filter, fifo control) from usb driver to frontend, it seems
+    better settled there (added xfer_ops-struct)
+  - created a common files for frontends (mc/p/mb)
+
+  2004-09-28
+
+  - added support for a new device (Unknown, vendor ID is Hyper-Paltek)
+
+  2004-09-20
+
+  - added support for a new device (Compro DVB-U2000), thanks
+    to Amaury Demol for reporting
+  - changed usb TS transfer method (several urbs, stopping transfer
+    before setting a new pid)
+
+  2004-09-13
+
+  - added support for a new device (Artec T1 USB TVBOX), thanks
+    to Christian Motschke for reporting
+
+  2004-09-05
+
+  - released the dibusb device and dib3000mb-frontend driver
+    (old news for vp7041.c)
+
+  2004-07-15
+
+  - found out, by accident, that the device has a TUA6010XS for PLL
+
+  2004-07-12
+
+  - figured out, that the driver should also work with the
+    CTS Portable (Chinese Television System)
+
+  2004-07-08
+
+  - firmware-extraction-2.422-problem solved, driver is now working
+    properly with firmware extracted from 2.422
+  - #if for 2.6.4 (dvb), compile issue
+  - changed firmware handling, see vp7041.txt sec 1.1
+
+  2004-07-02
+
+  - some tuner modifications, v0.1, cleanups, first public
+
+  2004-06-28
+
+  - now using the dvb_dmx_swfilter_packets, everything runs fine now
+
+  2004-06-27
+
+  - able to watch and switching channels (pre-alpha)
+  - no section filtering yet
+
+  2004-06-06
+
+  - first TS received, but kernel oops :/
+
+  2004-05-14
+
+  - firmware loader is working
+
+  2004-05-11
+
+  - start writing the driver
+
+How to use?
+-----------
+
+Firmware
+~~~~~~~~
+
+Most of the USB drivers need to download a firmware to the device before start
+working.
+
+Have a look at the Wikipage for the DVB-USB-drivers to find out, which firmware
+you need for your device:
+
+https://linuxtv.org/wiki/index.php/DVB_USB
+
+Compiling
+~~~~~~~~~
+
+Since the driver is in the linux kernel, activating the driver in
+your favorite config-environment should sufficient. I recommend
+to compile the driver as module. Hotplug does the rest.
+
+If you use dvb-kernel enter the build-2.6 directory run 'make' and 'insmod.sh
+load' afterwards.
+
+Loading the drivers
+~~~~~~~~~~~~~~~~~~~
+
+Hotplug is able to load the driver, when it is needed (because you plugged
+in the device).
+
+If you want to enable debug output, you have to load the driver manually and
+from within the dvb-kernel cvs repository.
+
+first have a look, which debug level are available:
+
+.. code-block:: none
+
+	# modinfo dvb-usb
+	# modinfo dvb-usb-vp7045
+
+	etc.
+
+.. code-block:: none
+
+	modprobe dvb-usb debug=<level>
+	modprobe dvb-usb-vp7045 debug=<level>
+	etc.
+
+should do the trick.
+
+When the driver is loaded successfully, the firmware file was in
+the right place and the device is connected, the "Power"-LED should be
+turned on.
+
+At this point you should be able to start a dvb-capable application. I'm use
+(t|s)zap, mplayer and dvbscan to test the basics. VDR-xine provides the
+long-term test scenario.
+
+Known problems and bugs
+-----------------------
+
+- Don't remove the USB device while running an DVB application, your system
+  will go crazy or die most likely.
+
+Adding support for devices
+~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+TODO
+
+USB1.1 Bandwidth limitation
+~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+A lot of the currently supported devices are USB1.1 and thus they have a
+maximum bandwidth of about 5-6 MBit/s when connected to a USB2.0 hub.
+This is not enough for receiving the complete transport stream of a
+DVB-T channel (which is about 16 MBit/s). Normally this is not a
+problem, if you only want to watch TV (this does not apply for HDTV),
+but watching a channel while recording another channel on the same
+frequency simply does not work very well. This applies to all USB1.1
+DVB-T devices, not just the dvb-usb-devices)
+
+The bug, where the TS is distorted by a heavy usage of the device is gone
+definitely. All dvb-usb-devices I was using (Twinhan, Kworld, DiBcom) are
+working like charm now with VDR. Sometimes I even was able to record a channel
+and watch another one.
+
+Comments
+~~~~~~~~
+
+Patches, comments and suggestions are very very welcome.
+
+3. Acknowledgements
+-------------------
+
+   Amaury Demol (Amaury.Demol@parrot.com) and Francois Kanounnikoff from DiBcom for
+   providing specs, code and help, on which the dvb-dibusb, dib3000mb and
+   dib3000mc are based.
+
+   David Matthews for identifying a new device type (Artec T1 with AN2235)
+   and for extending dibusb with remote control event handling. Thank you.
+
+   Alex Woods for frequently answering question about usb and dvb
+   stuff, a big thank you.
+
+   Bernd Wagner for helping with huge bug reports and discussions.
+
+   Gunnar Wittich and Joachim von Caron for their trust for providing
+   root-shells on their machines to implement support for new devices.
+
+   Allan Third and Michael Hutchinson for their help to write the Nebula
+   digitv-driver.
+
+   Glen Harris for bringing up, that there is a new dibusb-device and Jiun-Kuei
+   Jung from AVerMedia who kindly provided a special firmware to get the device
+   up and running in Linux.
+
+   Jennifer Chen, Jeff and Jack from Twinhan for kindly supporting by
+   writing the vp7045-driver.
+
+   Steve Chang from WideView for providing information for new devices and
+   firmware files.
+
+   Michael Paxton for submitting remote control keymaps.
+
+   Some guys on the linux-dvb mailing list for encouraging me.
+
+   Peter Schildmann >peter.schildmann-nospam-at-web.de< for his
+   user-level firmware loader, which saves a lot of time
+   (when writing the vp7041 driver)
+
+   Ulf Hermenau for helping me out with traditional chinese.
+
+   André Smoktun and Christian Frömmel for supporting me with
+   hardware and listening to my problems very patiently.
diff --git a/Documentation/driver-api/media/drivers/fimc-devel.rst b/Documentation/driver-api/media/drivers/fimc-devel.rst
new file mode 100644
index 0000000..956e3a9
--- /dev/null
+++ b/Documentation/driver-api/media/drivers/fimc-devel.rst
@@ -0,0 +1,33 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+.. include:: <isonum.txt>
+
+The Samsung S5P/EXYNOS4 FIMC driver
+===================================
+
+Copyright |copy| 2012 - 2013 Samsung Electronics Co., Ltd.
+
+Files partitioning
+------------------
+
+- media device driver
+
+  drivers/media/platform/exynos4-is/media-dev.[ch]
+
+- camera capture video device driver
+
+  drivers/media/platform/exynos4-is/fimc-capture.c
+
+- MIPI-CSI2 receiver subdev
+
+  drivers/media/platform/exynos4-is/mipi-csis.[ch]
+
+- video post-processor (mem-to-mem)
+
+  drivers/media/platform/exynos4-is/fimc-core.c
+
+- common files
+
+  drivers/media/platform/exynos4-is/fimc-core.h
+  drivers/media/platform/exynos4-is/fimc-reg.h
+  drivers/media/platform/exynos4-is/regs-fimc.h
diff --git a/Documentation/driver-api/media/drivers/frontends.rst b/Documentation/driver-api/media/drivers/frontends.rst
new file mode 100644
index 0000000..7b8336e
--- /dev/null
+++ b/Documentation/driver-api/media/drivers/frontends.rst
@@ -0,0 +1,32 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+****************
+Frontend drivers
+****************
+
+Frontend attach headers
+***********************
+
+.. Keep it on alphabetic order
+
+.. kernel-doc:: drivers/media/dvb-frontends/a8293.h
+.. kernel-doc:: drivers/media/dvb-frontends/af9013.h
+.. kernel-doc:: drivers/media/dvb-frontends/ascot2e.h
+.. kernel-doc:: drivers/media/dvb-frontends/cxd2820r.h
+.. kernel-doc:: drivers/media/dvb-frontends/drxk.h
+.. kernel-doc:: drivers/media/dvb-frontends/dvb-pll.h
+.. kernel-doc:: drivers/media/dvb-frontends/helene.h
+.. kernel-doc:: drivers/media/dvb-frontends/horus3a.h
+.. kernel-doc:: drivers/media/dvb-frontends/ix2505v.h
+.. kernel-doc:: drivers/media/dvb-frontends/m88ds3103.h
+.. kernel-doc:: drivers/media/dvb-frontends/mb86a20s.h
+.. kernel-doc:: drivers/media/dvb-frontends/mn88472.h
+.. kernel-doc:: drivers/media/dvb-frontends/rtl2830.h
+.. kernel-doc:: drivers/media/dvb-frontends/rtl2832.h
+.. kernel-doc:: drivers/media/dvb-frontends/rtl2832_sdr.h
+.. kernel-doc:: drivers/media/dvb-frontends/stb6000.h
+.. kernel-doc:: drivers/media/dvb-frontends/tda10071.h
+.. kernel-doc:: drivers/media/dvb-frontends/tda826x.h
+.. kernel-doc:: drivers/media/dvb-frontends/zd1301_demod.h
+.. kernel-doc:: drivers/media/dvb-frontends/zl10036.h
+
diff --git a/Documentation/driver-api/media/drivers/index.rst b/Documentation/driver-api/media/drivers/index.rst
new file mode 100644
index 0000000..eb70117
--- /dev/null
+++ b/Documentation/driver-api/media/drivers/index.rst
@@ -0,0 +1,40 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+.. include:: <isonum.txt>
+
+===================================
+Media driver-specific documentation
+===================================
+
+Video4Linux (V4L) drivers
+=========================
+
+.. toctree::
+	:maxdepth: 5
+
+	bttv-devel
+	cpia2_devel
+	cx2341x-devel
+	cx88-devel
+	davinci-vpbe-devel
+	fimc-devel
+	pvrusb2
+	pxa_camera
+	radiotrack
+	saa7134-devel
+	sh_mobile_ceu_camera
+	tuners
+	vimc-devel
+	zoran
+
+
+Digital TV drivers
+==================
+
+.. toctree::
+	:maxdepth: 5
+
+	dvb-usb
+	frontends
+	vidtv
+	contributors
diff --git a/Documentation/driver-api/media/drivers/pvrusb2.rst b/Documentation/driver-api/media/drivers/pvrusb2.rst
new file mode 100644
index 0000000..cbd9359
--- /dev/null
+++ b/Documentation/driver-api/media/drivers/pvrusb2.rst
@@ -0,0 +1,202 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+The pvrusb2 driver
+==================
+
+Author: Mike Isely <isely@pobox.com>
+
+Background
+----------
+
+This driver is intended for the "Hauppauge WinTV PVR USB 2.0", which
+is a USB 2.0 hosted TV Tuner.  This driver is a work in progress.
+Its history started with the reverse-engineering effort by Björn
+Danielsson <pvrusb2@dax.nu> whose web page can be found here:
+http://pvrusb2.dax.nu/
+
+From there Aurelien Alleaume <slts@free.fr> began an effort to
+create a video4linux compatible driver.  I began with Aurelien's
+last known snapshot and evolved the driver to the state it is in
+here.
+
+More information on this driver can be found at:
+https://www.isely.net/pvrusb2.html
+
+
+This driver has a strong separation of layers.  They are very
+roughly:
+
+1. Low level wire-protocol implementation with the device.
+
+2. I2C adaptor implementation and corresponding I2C client drivers
+   implemented elsewhere in V4L.
+
+3. High level hardware driver implementation which coordinates all
+   activities that ensure correct operation of the device.
+
+4. A "context" layer which manages instancing of driver, setup,
+   tear-down, arbitration, and interaction with high level
+   interfaces appropriately as devices are hotplugged in the
+   system.
+
+5. High level interfaces which glue the driver to various published
+   Linux APIs (V4L, sysfs, maybe DVB in the future).
+
+The most important shearing layer is between the top 2 layers.  A
+lot of work went into the driver to ensure that any kind of
+conceivable API can be laid on top of the core driver.  (Yes, the
+driver internally leverages V4L to do its work but that really has
+nothing to do with the API published by the driver to the outside
+world.)  The architecture allows for different APIs to
+simultaneously access the driver.  I have a strong sense of fairness
+about APIs and also feel that it is a good design principle to keep
+implementation and interface isolated from each other.  Thus while
+right now the V4L high level interface is the most complete, the
+sysfs high level interface will work equally well for similar
+functions, and there's no reason I see right now why it shouldn't be
+possible to produce a DVB high level interface that can sit right
+alongside V4L.
+
+Building
+--------
+
+To build these modules essentially amounts to just running "Make",
+but you need the kernel source tree nearby and you will likely also
+want to set a few controlling environment variables first in order
+to link things up with that source tree.  Please see the Makefile
+here for comments that explain how to do that.
+
+Source file list / functional overview
+--------------------------------------
+
+(Note: The term "module" used below generally refers to loosely
+defined functional units within the pvrusb2 driver and bears no
+relation to the Linux kernel's concept of a loadable module.)
+
+pvrusb2-audio.[ch] - This is glue logic that resides between this
+    driver and the msp3400.ko I2C client driver (which is found
+    elsewhere in V4L).
+
+pvrusb2-context.[ch] - This module implements the context for an
+    instance of the driver.  Everything else eventually ties back to
+    or is otherwise instanced within the data structures implemented
+    here.  Hotplugging is ultimately coordinated here.  All high level
+    interfaces tie into the driver through this module.  This module
+    helps arbitrate each interface's access to the actual driver core,
+    and is designed to allow concurrent access through multiple
+    instances of multiple interfaces (thus you can for example change
+    the tuner's frequency through sysfs while simultaneously streaming
+    video through V4L out to an instance of mplayer).
+
+pvrusb2-debug.h - This header defines a printk() wrapper and a mask
+    of debugging bit definitions for the various kinds of debug
+    messages that can be enabled within the driver.
+
+pvrusb2-debugifc.[ch] - This module implements a crude command line
+    oriented debug interface into the driver.  Aside from being part
+    of the process for implementing manual firmware extraction (see
+    the pvrusb2 web site mentioned earlier), probably I'm the only one
+    who has ever used this.  It is mainly a debugging aid.
+
+pvrusb2-eeprom.[ch] - This is glue logic that resides between this
+    driver the tveeprom.ko module, which is itself implemented
+    elsewhere in V4L.
+
+pvrusb2-encoder.[ch] - This module implements all protocol needed to
+    interact with the Conexant mpeg2 encoder chip within the pvrusb2
+    device.  It is a crude echo of corresponding logic in ivtv,
+    however the design goals (strict isolation) and physical layer
+    (proxy through USB instead of PCI) are enough different that this
+    implementation had to be completely different.
+
+pvrusb2-hdw-internal.h - This header defines the core data structure
+    in the driver used to track ALL internal state related to control
+    of the hardware.  Nobody outside of the core hardware-handling
+    modules should have any business using this header.  All external
+    access to the driver should be through one of the high level
+    interfaces (e.g. V4L, sysfs, etc), and in fact even those high
+    level interfaces are restricted to the API defined in
+    pvrusb2-hdw.h and NOT this header.
+
+pvrusb2-hdw.h - This header defines the full internal API for
+    controlling the hardware.  High level interfaces (e.g. V4L, sysfs)
+    will work through here.
+
+pvrusb2-hdw.c - This module implements all the various bits of logic
+    that handle overall control of a specific pvrusb2 device.
+    (Policy, instantiation, and arbitration of pvrusb2 devices fall
+    within the jurisdiction of pvrusb-context not here).
+
+pvrusb2-i2c-chips-\*.c - These modules implement the glue logic to
+    tie together and configure various I2C modules as they attach to
+    the I2C bus.  There are two versions of this file.  The "v4l2"
+    version is intended to be used in-tree alongside V4L, where we
+    implement just the logic that makes sense for a pure V4L
+    environment.  The "all" version is intended for use outside of
+    V4L, where we might encounter other possibly "challenging" modules
+    from ivtv or older kernel snapshots (or even the support modules
+    in the standalone snapshot).
+
+pvrusb2-i2c-cmd-v4l1.[ch] - This module implements generic V4L1
+    compatible commands to the I2C modules.  It is here where state
+    changes inside the pvrusb2 driver are translated into V4L1
+    commands that are in turn send to the various I2C modules.
+
+pvrusb2-i2c-cmd-v4l2.[ch] - This module implements generic V4L2
+    compatible commands to the I2C modules.  It is here where state
+    changes inside the pvrusb2 driver are translated into V4L2
+    commands that are in turn send to the various I2C modules.
+
+pvrusb2-i2c-core.[ch] - This module provides an implementation of a
+    kernel-friendly I2C adaptor driver, through which other external
+    I2C client drivers (e.g. msp3400, tuner, lirc) may connect and
+    operate corresponding chips within the pvrusb2 device.  It is
+    through here that other V4L modules can reach into this driver to
+    operate specific pieces (and those modules are in turn driven by
+    glue logic which is coordinated by pvrusb2-hdw, doled out by
+    pvrusb2-context, and then ultimately made available to users
+    through one of the high level interfaces).
+
+pvrusb2-io.[ch] - This module implements a very low level ring of
+    transfer buffers, required in order to stream data from the
+    device.  This module is *very* low level.  It only operates the
+    buffers and makes no attempt to define any policy or mechanism for
+    how such buffers might be used.
+
+pvrusb2-ioread.[ch] - This module layers on top of pvrusb2-io.[ch]
+    to provide a streaming API usable by a read() system call style of
+    I/O.  Right now this is the only layer on top of pvrusb2-io.[ch],
+    however the underlying architecture here was intended to allow for
+    other styles of I/O to be implemented with additional modules, like
+    mmap()'ed buffers or something even more exotic.
+
+pvrusb2-main.c - This is the top level of the driver.  Module level
+    and USB core entry points are here.  This is our "main".
+
+pvrusb2-sysfs.[ch] - This is the high level interface which ties the
+    pvrusb2 driver into sysfs.  Through this interface you can do
+    everything with the driver except actually stream data.
+
+pvrusb2-tuner.[ch] - This is glue logic that resides between this
+    driver and the tuner.ko I2C client driver (which is found
+    elsewhere in V4L).
+
+pvrusb2-util.h - This header defines some common macros used
+    throughout the driver.  These macros are not really specific to
+    the driver, but they had to go somewhere.
+
+pvrusb2-v4l2.[ch] - This is the high level interface which ties the
+    pvrusb2 driver into video4linux.  It is through here that V4L
+    applications can open and operate the driver in the usual V4L
+    ways.  Note that **ALL** V4L functionality is published only
+    through here and nowhere else.
+
+pvrusb2-video-\*.[ch] - This is glue logic that resides between this
+    driver and the saa711x.ko I2C client driver (which is found
+    elsewhere in V4L).  Note that saa711x.ko used to be known as
+    saa7115.ko in ivtv.  There are two versions of this; one is
+    selected depending on the particular saa711[5x].ko that is found.
+
+pvrusb2.h - This header contains compile time tunable parameters
+    (and at the moment the driver has very little that needs to be
+    tuned).
diff --git a/Documentation/driver-api/media/drivers/pxa_camera.rst b/Documentation/driver-api/media/drivers/pxa_camera.rst
new file mode 100644
index 0000000..ee1bd96
--- /dev/null
+++ b/Documentation/driver-api/media/drivers/pxa_camera.rst
@@ -0,0 +1,194 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+PXA-Camera Host Driver
+======================
+
+Author: Robert Jarzmik <robert.jarzmik@free.fr>
+
+Constraints
+-----------
+
+a) Image size for YUV422P format
+   All YUV422P images are enforced to have width x height % 16 = 0.
+   This is due to DMA constraints, which transfers only planes of 8 byte
+   multiples.
+
+
+Global video workflow
+---------------------
+
+a) QCI stopped
+   Initially, the QCI interface is stopped.
+   When a buffer is queued (pxa_videobuf_ops->buf_queue), the QCI starts.
+
+b) QCI started
+   More buffers can be queued while the QCI is started without halting the
+   capture.  The new buffers are "appended" at the tail of the DMA chain, and
+   smoothly captured one frame after the other.
+
+   Once a buffer is filled in the QCI interface, it is marked as "DONE" and
+   removed from the active buffers list. It can be then requeud or dequeued by
+   userland application.
+
+   Once the last buffer is filled in, the QCI interface stops.
+
+c) Capture global finite state machine schema
+
+.. code-block:: none
+
+	+----+                             +---+  +----+
+	| DQ |                             | Q |  | DQ |
+	|    v                             |   v  |    v
+	+-----------+                     +------------------------+
+	|   STOP    |                     | Wait for capture start |
+	+-----------+         Q           +------------------------+
+	+-> | QCI: stop | ------------------> | QCI: run               | <------------+
+	|   | DMA: stop |                     | DMA: stop              |              |
+	|   +-----------+             +-----> +------------------------+              |
+	|                            /                            |                   |
+	|                           /             +---+  +----+   |                   |
+	|capture list empty        /              | Q |  | DQ |   | QCI Irq EOF       |
+	|                         /               |   v  |    v   v                   |
+	|   +--------------------+             +----------------------+               |
+	|   | DMA hotlink missed |             |    Capture running   |               |
+	|   +--------------------+             +----------------------+               |
+	|   | QCI: run           |     +-----> | QCI: run             | <-+           |
+	|   | DMA: stop          |    /        | DMA: run             |   |           |
+	|   +--------------------+   /         +----------------------+   | Other     |
+	|     ^                     /DMA still            |               | channels  |
+	|     | capture list       /  running             | DMA Irq End   | not       |
+	|     | not empty         /                       |               | finished  |
+	|     |                  /                        v               | yet       |
+	|   +----------------------+           +----------------------+   |           |
+	|   |  Videobuf released   |           |  Channel completed   |   |           |
+	|   +----------------------+           +----------------------+   |           |
+	+-- | QCI: run             |           | QCI: run             | --+           |
+	| DMA: run             |           | DMA: run             |               |
+	+----------------------+           +----------------------+               |
+		^                      /           |                           |
+		|          no overrun /            | overrun                   |
+		|                    /             v                           |
+	+--------------------+         /   +----------------------+               |
+	|  Frame completed   |        /    |     Frame overran    |               |
+	+--------------------+ <-----+     +----------------------+ restart frame |
+	| QCI: run           |             | QCI: stop            | --------------+
+	| DMA: run           |             | DMA: stop            |
+	+--------------------+             +----------------------+
+
+	Legend: - each box is a FSM state
+		- each arrow is the condition to transition to another state
+		- an arrow with a comment is a mandatory transition (no condition)
+		- arrow "Q" means : a buffer was enqueued
+		- arrow "DQ" means : a buffer was dequeued
+		- "QCI: stop" means the QCI interface is not enabled
+		- "DMA: stop" means all 3 DMA channels are stopped
+		- "DMA: run" means at least 1 DMA channel is still running
+
+DMA usage
+---------
+
+a) DMA flow
+     - first buffer queued for capture
+       Once a first buffer is queued for capture, the QCI is started, but data
+       transfer is not started. On "End Of Frame" interrupt, the irq handler
+       starts the DMA chain.
+     - capture of one videobuffer
+       The DMA chain starts transferring data into videobuffer RAM pages.
+       When all pages are transferred, the DMA irq is raised on "ENDINTR" status
+     - finishing one videobuffer
+       The DMA irq handler marks the videobuffer as "done", and removes it from
+       the active running queue
+       Meanwhile, the next videobuffer (if there is one), is transferred by DMA
+     - finishing the last videobuffer
+       On the DMA irq of the last videobuffer, the QCI is stopped.
+
+b) DMA prepared buffer will have this structure
+
+.. code-block:: none
+
+     +------------+-----+---------------+-----------------+
+     | desc-sg[0] | ... | desc-sg[last] | finisher/linker |
+     +------------+-----+---------------+-----------------+
+
+This structure is pointed by dma->sg_cpu.
+The descriptors are used as follows:
+
+- desc-sg[i]: i-th descriptor, transferring the i-th sg
+  element to the video buffer scatter gather
+- finisher: has ddadr=DADDR_STOP, dcmd=ENDIRQEN
+- linker: has ddadr= desc-sg[0] of next video buffer, dcmd=0
+
+For the next schema, let's assume d0=desc-sg[0] .. dN=desc-sg[N],
+"f" stands for finisher and "l" for linker.
+A typical running chain is :
+
+.. code-block:: none
+
+         Videobuffer 1         Videobuffer 2
+     +---------+----+---+  +----+----+----+---+
+     | d0 | .. | dN | l |  | d0 | .. | dN | f |
+     +---------+----+-|-+  ^----+----+----+---+
+                      |    |
+                      +----+
+
+After the chaining is finished, the chain looks like :
+
+.. code-block:: none
+
+         Videobuffer 1         Videobuffer 2         Videobuffer 3
+     +---------+----+---+  +----+----+----+---+  +----+----+----+---+
+     | d0 | .. | dN | l |  | d0 | .. | dN | l |  | d0 | .. | dN | f |
+     +---------+----+-|-+  ^----+----+----+-|-+  ^----+----+----+---+
+                      |    |                |    |
+                      +----+                +----+
+                                           new_link
+
+c) DMA hot chaining timeslice issue
+
+As DMA chaining is done while DMA _is_ running, the linking may be done
+while the DMA jumps from one Videobuffer to another. On the schema, that
+would be a problem if the following sequence is encountered :
+
+- DMA chain is Videobuffer1 + Videobuffer2
+- pxa_videobuf_queue() is called to queue Videobuffer3
+- DMA controller finishes Videobuffer2, and DMA stops
+
+.. code-block:: none
+
+      =>
+         Videobuffer 1         Videobuffer 2
+     +---------+----+---+  +----+----+----+---+
+     | d0 | .. | dN | l |  | d0 | .. | dN | f |
+     +---------+----+-|-+  ^----+----+----+-^-+
+                      |    |                |
+                      +----+                +-- DMA DDADR loads DDADR_STOP
+
+- pxa_dma_add_tail_buf() is called, the Videobuffer2 "finisher" is
+  replaced by a "linker" to Videobuffer3 (creation of new_link)
+- pxa_videobuf_queue() finishes
+- the DMA irq handler is called, which terminates Videobuffer2
+- Videobuffer3 capture is not scheduled on DMA chain (as it stopped !!!)
+
+.. code-block:: none
+
+         Videobuffer 1         Videobuffer 2         Videobuffer 3
+     +---------+----+---+  +----+----+----+---+  +----+----+----+---+
+     | d0 | .. | dN | l |  | d0 | .. | dN | l |  | d0 | .. | dN | f |
+     +---------+----+-|-+  ^----+----+----+-|-+  ^----+----+----+---+
+                      |    |                |    |
+                      +----+                +----+
+                                           new_link
+                                          DMA DDADR still is DDADR_STOP
+
+- pxa_camera_check_link_miss() is called
+  This checks if the DMA is finished and a buffer is still on the
+  pcdev->capture list. If that's the case, the capture will be restarted,
+  and Videobuffer3 is scheduled on DMA chain.
+- the DMA irq handler finishes
+
+.. note::
+
+     If DMA stops just after pxa_camera_check_link_miss() reads DDADR()
+     value, we have the guarantee that the DMA irq handler will be called back
+     when the DMA will finish the buffer, and pxa_camera_check_link_miss() will
+     be called again, to reschedule Videobuffer3.
diff --git a/Documentation/driver-api/media/drivers/radiotrack.rst b/Documentation/driver-api/media/drivers/radiotrack.rst
new file mode 100644
index 0000000..a85cb62
--- /dev/null
+++ b/Documentation/driver-api/media/drivers/radiotrack.rst
@@ -0,0 +1,168 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+The Radiotrack radio driver
+===========================
+
+Author: Stephen M. Benoit <benoits@servicepro.com>
+
+Date:  Dec 14, 1996
+
+ACKNOWLEDGMENTS
+----------------
+
+This document was made based on 'C' code for Linux from Gideon le Grange
+(legrang@active.co.za or legrang@cs.sun.ac.za) in 1994, and elaborations from
+Frans Brinkman (brinkman@esd.nl) in 1996.  The results reported here are from
+experiments that the author performed on his own setup, so your mileage may
+vary... I make no guarantees, claims or warranties to the suitability or
+validity of this information.  No other documentation on the AIMS
+Lab (http://www.aimslab.com/) RadioTrack card was made available to the
+author.  This document is offered in the hopes that it might help users who
+want to use the RadioTrack card in an environment other than MS Windows.
+
+WHY THIS DOCUMENT?
+------------------
+
+I have a RadioTrack card from back when I ran an MS-Windows platform.  After
+converting to Linux, I found Gideon le Grange's command-line software for
+running the card, and found that it was good!  Frans Brinkman made a
+comfortable X-windows interface, and added a scanning feature.  For hack
+value, I wanted to see if the tuner could be tuned beyond the usual FM radio
+broadcast band, so I could pick up the audio carriers from North American
+broadcast TV channels, situated just below and above the 87.0-109.0 MHz range.
+I did not get much success, but I learned about programming ioports under
+Linux and gained some insights about the hardware design used for the card.
+
+So, without further delay, here are the details.
+
+
+PHYSICAL DESCRIPTION
+--------------------
+
+The RadioTrack card is an ISA 8-bit FM radio card.  The radio frequency (RF)
+input is simply an antenna lead, and the output is a power audio signal
+available through a miniature phone plug.  Its RF frequencies of operation are
+more or less limited from 87.0 to 109.0 MHz (the commercial FM broadcast
+band).  Although the registers can be programmed to request frequencies beyond
+these limits, experiments did not give promising results.  The variable
+frequency oscillator (VFO) that demodulates the intermediate frequency (IF)
+signal probably has a small range of useful frequencies, and wraps around or
+gets clipped beyond the limits mentioned above.
+
+
+CONTROLLING THE CARD WITH IOPORT
+--------------------------------
+
+The RadioTrack (base) ioport is configurable for 0x30c or 0x20c.  Only one
+ioport seems to be involved.  The ioport decoding circuitry must be pretty
+simple, as individual ioport bits are directly matched to specific functions
+(or blocks) of the radio card.  This way, many functions can be changed in
+parallel with one write to the ioport.  The only feedback available through
+the ioports appears to be the "Stereo Detect" bit.
+
+The bits of the ioport are arranged as follows:
+
+.. code-block:: none
+
+	MSb                                                         LSb
+	+------+------+------+--------+--------+-------+---------+--------+
+	| VolA | VolB | ???? | Stereo | Radio  | TuneA | TuneB   | Tune   |
+	|  (+) |  (-) |      | Detect | Audio  | (bit) | (latch) | Update |
+	|      |      |      | Enable | Enable |       |         | Enable |
+	+------+------+------+--------+--------+-------+---------+--------+
+
+
+====  ====  =================================
+VolA  VolB  Description
+====  ====  =================================
+0	 0  audio mute
+0	 1  volume +    (some delay required)
+1	 0  volume -    (some delay required)
+1	 1  stay at present volume
+====  ====  =================================
+
+====================	===========
+Stereo Detect Enable	Description
+====================	===========
+0			No Detect
+1			Detect
+====================	===========
+
+Results available by reading ioport >60 msec after last port write.
+
+  0xff ==> no stereo detected,  0xfd ==> stereo detected.
+
+=============================	=============================
+Radio to Audio (path) Enable	Description
+=============================	=============================
+0				Disable path (silence)
+1				Enable path  (audio produced)
+=============================	=============================
+
+=====  =====  ==================
+TuneA  TuneB  Description
+=====  =====  ==================
+0	0     "zero" bit phase 1
+0	1     "zero" bit phase 2
+1	0     "one" bit phase 1
+1	1     "one" bit phase 2
+=====  =====  ==================
+
+
+24-bit code, where bits = (freq*40) + 10486188.
+The Most Significant 11 bits must be 1010 xxxx 0x0 to be valid.
+The bits are shifted in LSb first.
+
+==================	===========================
+Tune Update Enable	Description
+==================	===========================
+0			Tuner held constant
+1			Tuner updating in progress
+==================	===========================
+
+
+PROGRAMMING EXAMPLES
+--------------------
+
+.. code-block:: none
+
+	Default:        BASE <-- 0xc8  (current volume, no stereo detect,
+					radio enable, tuner adjust disable)
+
+	Card Off:	BASE <-- 0x00  (audio mute, no stereo detect,
+					radio disable, tuner adjust disable)
+
+	Card On:	BASE <-- 0x00  (see "Card Off", clears any unfinished business)
+			BASE <-- 0xc8  (see "Default")
+
+	Volume Down:    BASE <-- 0x48  (volume down, no stereo detect,
+					radio enable, tuner adjust disable)
+			wait 10 msec
+			BASE <-- 0xc8  (see "Default")
+
+	Volume Up:      BASE <-- 0x88  (volume up, no stereo detect,
+					radio enable, tuner adjust disable)
+			wait 10 msec
+			BASE <-- 0xc8  (see "Default")
+
+	Check Stereo:   BASE <-- 0xd8  (current volume, stereo detect,
+					radio enable, tuner adjust disable)
+			wait 100 msec
+			x <-- BASE     (read ioport)
+			BASE <-- 0xc8  (see "Default")
+
+			x=0xff ==> "not stereo", x=0xfd ==> "stereo detected"
+
+	Set Frequency:  code = (freq*40) + 10486188
+			foreach of the 24 bits in code,
+			(from Least to Most Significant):
+			to write a "zero" bit,
+			BASE <-- 0x01  (audio mute, no stereo detect, radio
+					disable, "zero" bit phase 1, tuner adjust)
+			BASE <-- 0x03  (audio mute, no stereo detect, radio
+					disable, "zero" bit phase 2, tuner adjust)
+			to write a "one" bit,
+			BASE <-- 0x05  (audio mute, no stereo detect, radio
+					disable, "one" bit phase 1, tuner adjust)
+			BASE <-- 0x07  (audio mute, no stereo detect, radio
+					disable, "one" bit phase 2, tuner adjust)
diff --git a/Documentation/driver-api/media/drivers/saa7134-devel.rst b/Documentation/driver-api/media/drivers/saa7134-devel.rst
new file mode 100644
index 0000000..167fd72
--- /dev/null
+++ b/Documentation/driver-api/media/drivers/saa7134-devel.rst
@@ -0,0 +1,67 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+The saa7134 driver
+==================
+
+Author Gerd Hoffmann
+
+
+Card Variations:
+----------------
+
+Cards can use either of these two crystals (xtal):
+
+- 32.11 MHz -> .audio_clock=0x187de7
+- 24.576MHz -> .audio_clock=0x200000 (xtal * .audio_clock = 51539600)
+
+Some details about 30/34/35:
+
+- saa7130 - low-price chip, doesn't have mute, that is why all those
+  cards should have .mute field defined in their tuner structure.
+
+- saa7134 - usual chip
+
+- saa7133/35 - saa7135 is probably a marketing decision, since all those
+  chips identifies itself as 33 on pci.
+
+LifeView GPIOs
+--------------
+
+This section was authored by: Peter Missel <peter.missel@onlinehome.de>
+
+- LifeView FlyTV Platinum FM (LR214WF)
+
+    - GP27    MDT2005 PB4 pin 10
+    - GP26    MDT2005 PB3 pin 9
+    - GP25    MDT2005 PB2 pin 8
+    - GP23    MDT2005 PB1 pin 7
+    - GP22    MDT2005 PB0 pin 6
+    - GP21    MDT2005 PB5 pin 11
+    - GP20    MDT2005 PB6 pin 12
+    - GP19    MDT2005 PB7 pin 13
+    - nc      MDT2005 PA3 pin 2
+    - Remote  MDT2005 PA2 pin 1
+    - GP18    MDT2005 PA1 pin 18
+    - nc      MDT2005 PA0 pin 17 strap low
+    - GP17    Strap "GP7"=High
+    - GP16    Strap "GP6"=High
+
+	- 0=Radio 1=TV
+	- Drives SA630D ENCH1 and HEF4052 A1 pinsto do FM radio through
+	  SIF input
+
+    - GP15    nc
+    - GP14    nc
+    - GP13    nc
+    - GP12    Strap "GP5" = High
+    - GP11    Strap "GP4" = High
+    - GP10    Strap "GP3" = High
+    - GP09    Strap "GP2" = Low
+    - GP08    Strap "GP1" = Low
+    - GP07.00 nc
+
+Credits
+-------
+
+andrew.stevens@philips.com + werner.leeb@philips.com for providing
+saa7134 hardware specs and sample board.
diff --git a/Documentation/driver-api/media/drivers/sh_mobile_ceu_camera.rst b/Documentation/driver-api/media/drivers/sh_mobile_ceu_camera.rst
new file mode 100644
index 0000000..822fcb8
--- /dev/null
+++ b/Documentation/driver-api/media/drivers/sh_mobile_ceu_camera.rst
@@ -0,0 +1,142 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+Cropping and Scaling algorithm, used in the sh_mobile_ceu_camera driver
+=======================================================================
+
+Author: Guennadi Liakhovetski <g.liakhovetski@gmx.de>
+
+Terminology
+-----------
+
+sensor scales: horizontal and vertical scales, configured by the sensor driver
+host scales: -"- host driver
+combined scales: sensor_scale * host_scale
+
+
+Generic scaling / cropping scheme
+---------------------------------
+
+.. code-block:: none
+
+	-1--
+	|
+	-2-- -\
+	|      --\
+	|         --\
+	+-5-- .      -- -3-- -\
+	|      `...            -\
+	|          `... -4-- .   - -7..
+	|                     `.
+	|                       `. .6--
+	|
+	|                        . .6'-
+	|                      .´
+	|           ... -4'- .´
+	|       ...´             - -7'.
+	+-5'- .´               -/
+	|            -- -3'- -/
+	|         --/
+	|      --/
+	-2'- -/
+	|
+	|
+	-1'-
+
+In the above chart minuses and slashes represent "real" data amounts, points and
+accents represent "useful" data, basically, CEU scaled and cropped output,
+mapped back onto the client's source plane.
+
+Such a configuration can be produced by user requests:
+
+S_CROP(left / top = (5) - (1), width / height = (5') - (5))
+S_FMT(width / height = (6') - (6))
+
+Here:
+
+(1) to (1') - whole max width or height
+(1) to (2)  - sensor cropped left or top
+(2) to (2') - sensor cropped width or height
+(3) to (3') - sensor scale
+(3) to (4)  - CEU cropped left or top
+(4) to (4') - CEU cropped width or height
+(5) to (5') - reverse sensor scale applied to CEU cropped width or height
+(2) to (5)  - reverse sensor scale applied to CEU cropped left or top
+(6) to (6') - CEU scale - user window
+
+
+S_FMT
+-----
+
+Do not touch input rectangle - it is already optimal.
+
+1. Calculate current sensor scales:
+
+	scale_s = ((2') - (2)) / ((3') - (3))
+
+2. Calculate "effective" input crop (sensor subwindow) - CEU crop scaled back at
+current sensor scales onto input window - this is user S_CROP:
+
+	width_u = (5') - (5) = ((4') - (4)) * scale_s
+
+3. Calculate new combined scales from "effective" input window to requested user
+window:
+
+	scale_comb = width_u / ((6') - (6))
+
+4. Calculate sensor output window by applying combined scales to real input
+window:
+
+	width_s_out = ((7') - (7)) = ((2') - (2)) / scale_comb
+
+5. Apply iterative sensor S_FMT for sensor output window.
+
+	subdev->video_ops->s_fmt(.width = width_s_out)
+
+6. Retrieve sensor output window (g_fmt)
+
+7. Calculate new sensor scales:
+
+	scale_s_new = ((3')_new - (3)_new) / ((2') - (2))
+
+8. Calculate new CEU crop - apply sensor scales to previously calculated
+"effective" crop:
+
+	width_ceu = (4')_new - (4)_new = width_u / scale_s_new
+	left_ceu = (4)_new - (3)_new = ((5) - (2)) / scale_s_new
+
+9. Use CEU cropping to crop to the new window:
+
+	ceu_crop(.width = width_ceu, .left = left_ceu)
+
+10. Use CEU scaling to scale to the requested user window:
+
+	scale_ceu = width_ceu / width
+
+
+S_CROP
+------
+
+The :ref:`V4L2 crop API <crop-scale>` says:
+
+"...specification does not define an origin or units. However by convention
+drivers should horizontally count unscaled samples relative to 0H."
+
+We choose to follow the advise and interpret cropping units as client input
+pixels.
+
+Cropping is performed in the following 6 steps:
+
+1. Request exactly user rectangle from the sensor.
+
+2. If smaller - iterate until a larger one is obtained. Result: sensor cropped
+   to 2 : 2', target crop 5 : 5', current output format 6' - 6.
+
+3. In the previous step the sensor has tried to preserve its output frame as
+   good as possible, but it could have changed. Retrieve it again.
+
+4. Sensor scaled to 3 : 3'. Sensor's scale is (2' - 2) / (3' - 3). Calculate
+   intermediate window: 4' - 4 = (5' - 5) * (3' - 3) / (2' - 2)
+
+5. Calculate and apply host scale = (6' - 6) / (4' - 4)
+
+6. Calculate and apply host crop: 6 - 7 = (5 - 2) * (6' - 6) / (5' - 5)
diff --git a/Documentation/driver-api/media/drivers/tuners.rst b/Documentation/driver-api/media/drivers/tuners.rst
new file mode 100644
index 0000000..d792414
--- /dev/null
+++ b/Documentation/driver-api/media/drivers/tuners.rst
@@ -0,0 +1,133 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+Tuner drivers
+=============
+
+Simple tuner Programming
+------------------------
+
+There are some flavors of Tuner programming APIs.
+These differ mainly by the bandswitch byte.
+
+- L= LG_API       (VHF_LO=0x01, VHF_HI=0x02, UHF=0x08, radio=0x04)
+- P= PHILIPS_API  (VHF_LO=0xA0, VHF_HI=0x90, UHF=0x30, radio=0x04)
+- T= TEMIC_API    (VHF_LO=0x02, VHF_HI=0x04, UHF=0x01)
+- A= ALPS_API     (VHF_LO=0x14, VHF_HI=0x12, UHF=0x11)
+- M= PHILIPS_MK3  (VHF_LO=0x01, VHF_HI=0x02, UHF=0x04, radio=0x19)
+
+Tuner Manufacturers
+-------------------
+
+- Samsung Tuner identification: (e.g. TCPM9091PD27)
+
+.. code-block:: none
+
+ TCP [ABCJLMNQ] 90[89][125] [DP] [ACD] 27 [ABCD]
+ [ABCJLMNQ]:
+   A= BG+DK
+   B= BG
+   C= I+DK
+   J= NTSC-Japan
+   L= Secam LL
+   M= BG+I+DK
+   N= NTSC
+   Q= BG+I+DK+LL
+ [89]: ?
+ [125]:
+   2: No FM
+   5: With FM
+ [DP]:
+   D= NTSC
+   P= PAL
+ [ACD]:
+   A= F-connector
+   C= Phono connector
+   D= Din Jack
+ [ABCD]:
+   3-wire/I2C tuning, 2-band/3-band
+
+These Tuners are PHILIPS_API compatible.
+
+Philips Tuner identification: (e.g. FM1216MF)
+
+.. code-block:: none
+
+  F[IRMQ]12[1345]6{MF|ME|MP}
+  F[IRMQ]:
+   FI12x6: Tuner Series
+   FR12x6: Tuner + Radio IF
+   FM12x6: Tuner + FM
+   FQ12x6: special
+   FMR12x6: special
+   TD15xx: Digital Tuner ATSC
+  12[1345]6:
+   1216: PAL BG
+   1236: NTSC
+   1246: PAL I
+   1256: Pal DK
+  {MF|ME|MP}
+   MF: BG LL w/ Secam (Multi France)
+   ME: BG DK I LL   (Multi Europe)
+   MP: BG DK I      (Multi PAL)
+   MR: BG DK M (?)
+   MG: BG DKI M (?)
+  MK2 series PHILIPS_API, most tuners are compatible to this one !
+  MK3 series introduced in 2002 w/ PHILIPS_MK3_API
+
+Temic Tuner identification: (.e.g 4006FH5)
+
+.. code-block:: none
+
+   4[01][0136][269]F[HYNR]5
+    40x2: Tuner (5V/33V), TEMIC_API.
+    40x6: Tuner 5V
+    41xx: Tuner compact
+    40x9: Tuner+FM compact
+   [0136]
+    xx0x: PAL BG
+    xx1x: Pal DK, Secam LL
+    xx3x: NTSC
+    xx6x: PAL I
+   F[HYNR]5
+    FH5: Pal BG
+    FY5: others
+    FN5: multistandard
+    FR5: w/ FM radio
+   3X xxxx: order number with specific connector
+  Note: Only 40x2 series has TEMIC_API, all newer tuners have PHILIPS_API.
+
+LG Innotek Tuner:
+
+- TPI8NSR11 : NTSC J/M    (TPI8NSR01 w/FM)  (P,210/497)
+- TPI8PSB11 : PAL B/G     (TPI8PSB01 w/FM)  (P,170/450)
+- TAPC-I701 : PAL I       (TAPC-I001 w/FM)  (P,170/450)
+- TPI8PSB12 : PAL D/K+B/G (TPI8PSB02 w/FM)  (P,170/450)
+- TAPC-H701P: NTSC_JP     (TAPC-H001P w/FM) (L,170/450)
+- TAPC-G701P: PAL B/G     (TAPC-G001P w/FM) (L,170/450)
+- TAPC-W701P: PAL I       (TAPC-W001P w/FM) (L,170/450)
+- TAPC-Q703P: PAL D/K     (TAPC-Q001P w/FM) (L,170/450)
+- TAPC-Q704P: PAL D/K+I   (L,170/450)
+- TAPC-G702P: PAL D/K+B/G (L,170/450)
+
+- TADC-H002F: NTSC (L,175/410?; 2-B, C-W+11, W+12-69)
+- TADC-M201D: PAL D/K+B/G+I (L,143/425)  (sound control at I2C address 0xc8)
+- TADC-T003F: NTSC Taiwan  (L,175/410?; 2-B, C-W+11, W+12-69)
+
+Suffix:
+  - P= Standard phono female socket
+  - D= IEC female socket
+  - F= F-connector
+
+Other Tuners:
+
+- TCL2002MB-1 : PAL BG + DK       =TUNER_LG_PAL_NEW_TAPC
+- TCL2002MB-1F: PAL BG + DK w/FM  =PHILIPS_PAL
+- TCL2002MI-2 : PAL I		= ??
+
+ALPS Tuners:
+
+- Most are LG_API compatible
+- TSCH6 has ALPS_API (TSCH5 ?)
+- TSBE1 has extra API 05,02,08 Control_byte=0xCB Source:[#f1]_
+
+.. [#f1] conexant100029b-PCI-Decoder-ApplicationNote.pdf
diff --git a/Documentation/driver-api/media/drivers/vidtv.rst b/Documentation/driver-api/media/drivers/vidtv.rst
new file mode 100644
index 0000000..673bdff
--- /dev/null
+++ b/Documentation/driver-api/media/drivers/vidtv.rst
@@ -0,0 +1,513 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+================================
+vidtv: Virtual Digital TV driver
+================================
+
+Author: Daniel W. S. Almeida <dwlsalmeida@gmail.com>, June 2020.
+
+Background
+----------
+
+Vidtv is a virtual DVB driver that aims to serve as a reference for driver
+writers by serving as a template. It also validates the existing media DVB
+APIs, thus helping userspace application writers.
+
+Currently, it consists of:
+
+- A fake tuner driver, which will report a bad signal quality if the chosen
+  frequency is too far away from a table of valid frequencies for a
+  particular delivery system.
+
+- A fake demod driver, which will constantly poll the fake signal quality
+  returned by the tuner, simulating a device that can lose/reacquire a lock
+  on the signal depending on the CNR levels.
+
+- A fake bridge driver, which is the module responsible for modprobing the
+  fake tuner and demod modules and implementing the demux logic. This module
+  takes parameters at initialization that will dictate how the simulation
+  behaves.
+
+- Code reponsible for encoding a valid MPEG Transport Stream, which is then
+  passed to the bridge driver. This fake stream contains some hardcoded content.
+  For now, we have a single, audio-only channel containing a single MPEG
+  Elementary Stream, which in turn contains a SMPTE 302m encoded sine-wave.
+  Note that this particular encoder was chosen because it is the easiest
+  way to encode PCM audio data in a MPEG Transport Stream.
+
+Building vidtv
+--------------
+vidtv is a test driver and thus is **not** enabled by default when
+compiling the kernel.
+
+In order to enable compilation of vidtv:
+
+- Enable **DVB_TEST_DRIVERS**, then
+- Enable **DVB_VIDTV**
+
+When compiled as a module, expect the following .ko files:
+
+- dvb_vidtv_tuner.ko
+
+- dvb_vidtv_demod.ko
+
+- dvb_vidtv_bridge.ko
+
+Running vidtv
+-------------
+When compiled as a module, run::
+
+	modprobe vidtv
+
+That's it! The bridge driver will initialize the tuner and demod drivers as
+part of its own initialization.
+
+By default, it will accept the following frequencies:
+
+	- 474 MHz for DVB-T/T2/C;
+	- 11,362 GHz for DVB-S/S2.
+
+For satellite systems, the driver simulates an universal extended
+LNBf, with frequencies at Ku-Band, ranging from 10.7 GHz to 12.75 GHz.
+
+You can optionally define some command-line arguments to vidtv.
+
+Command-line arguments to vidtv
+-------------------------------
+Below is a list of all arguments that can be supplied to vidtv:
+
+drop_tslock_prob_on_low_snr
+	Probability of losing the TS lock if the signal quality is bad.
+	This probability be used by the fake demodulator driver to
+	eventually return a status of 0 when the signal quality is not
+	good.
+
+recover_tslock_prob_on_good_snr:
+	Probability recovering the TS lock when the signal improves. This
+	probability be used by the fake demodulator driver to eventually
+	return a status of 0x1f when/if the signal quality improves.
+
+mock_power_up_delay_msec
+	Simulate a power up delay.  Default: 0.
+
+mock_tune_delay_msec
+	Simulate a tune delay.  Default 0.
+
+vidtv_valid_dvb_t_freqs
+	Valid DVB-T frequencies to simulate, in Hz.
+
+vidtv_valid_dvb_c_freqs
+	Valid DVB-C frequencies to simulate, in Hz.
+
+vidtv_valid_dvb_s_freqs
+	Valid DVB-S/S2 frequencies to simulate at Ku-Band, in kHz.
+
+max_frequency_shift_hz,
+	Maximum shift in HZ allowed when tuning in a channel.
+
+si_period_msec
+	How often to send SI packets.  Default: 40ms.
+
+pcr_period_msec
+	How often to send PCR packets.  Default: 40ms.
+
+mux_rate_kbytes_sec
+	Attempt to maintain this bit rate by inserting TS null packets, if
+	necessary.  Default: 4096.
+
+pcr_pid,
+	PCR PID for all channels.  Default: 0x200.
+
+mux_buf_sz_pkts,
+	Size for the mux buffer in multiples of 188 bytes.
+
+vidtv internal structure
+------------------------
+The kernel modules are split in the following way:
+
+vidtv_tuner.[ch]
+	Implements a fake tuner DVB driver.
+
+vidtv_demod.[ch]
+	Implements a fake demodulator DVB driver.
+
+vidtv_bridge.[ch]
+	Implements a bridge driver.
+
+The MPEG related code is split in the following way:
+
+vidtv_ts.[ch]
+	Code to work with MPEG TS packets, such as TS headers, adaptation
+	fields, PCR packets and NULL packets.
+
+vidtv_psi.[ch]
+	This is the PSI generator.  PSI packets contain general information
+	about a MPEG Transport Stream.  A PSI generator is needed so
+	userspace apps can retrieve information about the Transport Stream
+	and eventually tune into a (dummy) channel.
+
+	Because the generator is implemented in a separate file, it can be
+	reused elsewhere in the media subsystem.
+
+	Currently vidtv supports working with 5 PSI tables: PAT, PMT,
+	SDT, NIT and EIT.
+
+	The specification for PAT and PMT can be found in *ISO 13818-1:
+	Systems*, while the specification for the SDT, NIT, EIT can be found in *ETSI
+	EN 300 468: Specification for Service Information (SI) in DVB
+	systems*.
+
+	It isn't strictly necessary, but using a real TS file helps when
+	debugging PSI tables. Vidtv currently tries to replicate the PSI
+	structure found in this file: `TS1Globo.ts
+	<https://tsduck.io/streams/brazil-isdb-tb/TS1globo.ts>`_.
+
+	A good way to visualize the structure of streams is by using
+	`DVBInspector <https://sourceforge.net/projects/dvbinspector/>`_.
+
+vidtv_pes.[ch]
+	Implements the PES logic to convert encoder data into MPEG TS
+	packets. These can then be fed into a TS multiplexer and eventually
+	into userspace.
+
+vidtv_encoder.h
+	An interface for vidtv encoders. New encoders can be added to this
+	driver by implementing the calls in this file.
+
+vidtv_s302m.[ch]
+	Implements a S302M encoder to make it possible to insert PCM audio
+	data in the generated MPEG Transport Stream. The relevant
+	specification is available online as *SMPTE 302M-2007: Television -
+	Mapping of AES3 Data into MPEG-2 Transport Stream*.
+
+
+	The resulting MPEG Elementary Stream is conveyed in a private
+	stream with a S302M registration descriptor attached.
+
+	This shall enable passing an audio signal into userspace so it can
+	be decoded and played by media software. The corresponding decoder
+	in ffmpeg is located in 'libavcodec/s302m.c' and is experimental.
+
+vidtv_channel.[ch]
+	Implements a 'channel' abstraction.
+
+	When vidtv boots, it will create some hardcoded channels:
+
+	#. Their services will be concatenated to populate the SDT.
+
+	#. Their programs will be concatenated to populate the PAT
+
+	#. Their events will be concatenated to populate the EIT
+
+	#. For each program in the PAT, a PMT section will be created
+
+	#. The PMT section for a channel will be assigned its streams.
+
+	#. Every stream will have its corresponding encoder polled in a
+	   loop to produce TS packets.
+	   These packets may be interleaved by the muxer and then delivered
+	   to the bridge.
+
+vidtv_mux.[ch]
+	Implements a MPEG TS mux, loosely based on the ffmpeg
+	implementation in "libavcodec/mpegtsenc.c"
+
+	The muxer runs a loop which is responsible for:
+
+	#. Keeping track of the amount of time elapsed since the last
+	   iteration.
+
+	#. Polling encoders in order to fetch 'elapsed_time' worth of data.
+
+	#. Inserting PSI and/or PCR packets, if needed.
+
+	#. Padding the resulting stream with NULL packets if
+	   necessary in order to maintain the chosen bit rate.
+
+	#. Delivering the resulting TS packets to the bridge
+	   driver so it can pass them to the demux.
+
+Testing vidtv with v4l-utils
+----------------------------
+
+Using the tools in v4l-utils is a great way to test and inspect the output of
+vidtv. It is hosted here: `v4l-utils Documentation
+<https://linuxtv.org/wiki/index.php/V4l-utils>`_.
+
+From its webpage::
+
+	The v4l-utils are a series of packages for handling media devices.
+
+	It is hosted at http://git.linuxtv.org/v4l-utils.git, and packaged
+	on most distributions.
+
+	It provides a series of libraries and utilities to be used to
+	control several aspect of the media boards.
+
+
+Start by installing v4l-utils and then modprobing vidtv::
+
+	modprobe dvb_vidtv_bridge
+
+If the driver is OK, it should load and its probing code will run. This will
+pull in the tuner and demod drivers.
+
+Using dvb-fe-tool
+~~~~~~~~~~~~~~~~~
+
+The first step to check whether the demod loaded successfully is to run::
+
+	$ dvb-fe-tool
+	Device Dummy demod for DVB-T/T2/C/S/S2 (/dev/dvb/adapter0/frontend0) capabilities:
+	    CAN_FEC_1_2
+	    CAN_FEC_2_3
+	    CAN_FEC_3_4
+	    CAN_FEC_4_5
+	    CAN_FEC_5_6
+	    CAN_FEC_6_7
+	    CAN_FEC_7_8
+	    CAN_FEC_8_9
+	    CAN_FEC_AUTO
+	    CAN_GUARD_INTERVAL_AUTO
+	    CAN_HIERARCHY_AUTO
+	    CAN_INVERSION_AUTO
+	    CAN_QAM_16
+	    CAN_QAM_32
+	    CAN_QAM_64
+	    CAN_QAM_128
+	    CAN_QAM_256
+	    CAN_QAM_AUTO
+	    CAN_QPSK
+	    CAN_TRANSMISSION_MODE_AUTO
+	DVB API Version 5.11, Current v5 delivery system: DVBC/ANNEX_A
+	Supported delivery systems:
+	    DVBT
+	    DVBT2
+	    [DVBC/ANNEX_A]
+	    DVBS
+	    DVBS2
+	Frequency range for the current standard:
+	From:            51.0 MHz
+	To:              2.15 GHz
+	Step:            62.5 kHz
+	Tolerance:       29.5 MHz
+	Symbol rate ranges for the current standard:
+	From:            1.00 MBauds
+	To:              45.0 MBauds
+
+This should return what is currently set up at the demod struct, i.e.::
+
+	static const struct dvb_frontend_ops vidtv_demod_ops = {
+		.delsys = {
+			SYS_DVBT,
+			SYS_DVBT2,
+			SYS_DVBC_ANNEX_A,
+			SYS_DVBS,
+			SYS_DVBS2,
+		},
+
+		.info = {
+			.name                   = "Dummy demod for DVB-T/T2/C/S/S2",
+			.frequency_min_hz       = 51 * MHz,
+			.frequency_max_hz       = 2150 * MHz,
+			.frequency_stepsize_hz  = 62500,
+			.frequency_tolerance_hz = 29500 * kHz,
+			.symbol_rate_min        = 1000000,
+			.symbol_rate_max        = 45000000,
+
+			.caps = FE_CAN_FEC_1_2 |
+				FE_CAN_FEC_2_3 |
+				FE_CAN_FEC_3_4 |
+				FE_CAN_FEC_4_5 |
+				FE_CAN_FEC_5_6 |
+				FE_CAN_FEC_6_7 |
+				FE_CAN_FEC_7_8 |
+				FE_CAN_FEC_8_9 |
+				FE_CAN_QAM_16 |
+				FE_CAN_QAM_64 |
+				FE_CAN_QAM_32 |
+				FE_CAN_QAM_128 |
+				FE_CAN_QAM_256 |
+				FE_CAN_QAM_AUTO |
+				FE_CAN_QPSK |
+				FE_CAN_FEC_AUTO |
+				FE_CAN_INVERSION_AUTO |
+				FE_CAN_TRANSMISSION_MODE_AUTO |
+				FE_CAN_GUARD_INTERVAL_AUTO |
+				FE_CAN_HIERARCHY_AUTO,
+		}
+
+		....
+
+For more information on dvb-fe-tools check its online documentation here:
+`dvb-fe-tool Documentation
+<https://www.linuxtv.org/wiki/index.php/Dvb-fe-tool>`_.
+
+Using dvb-scan
+~~~~~~~~~~~~~~
+
+In order to tune into a channel and read the PSI tables, we can use dvb-scan.
+
+For this, one should provide a configuration file known as a 'scan file',
+here's an example::
+
+	[Channel]
+	FREQUENCY = 474000000
+	MODULATION = QAM/AUTO
+	SYMBOL_RATE = 6940000
+	INNER_FEC = AUTO
+	DELIVERY_SYSTEM = DVBC/ANNEX_A
+
+.. note::
+	The parameters depend on the video standard you're testing.
+
+.. note::
+	Vidtv is a fake driver and does not validate much of the information
+	in the scan file. Just specifying 'FREQUENCY' and 'DELIVERY_SYSTEM'
+	should be enough for DVB-T/DVB-T2. For DVB-S/DVB-C however, you
+	should also provide 'SYMBOL_RATE'.
+
+You can browse scan tables online here: `dvb-scan-tables
+<https://git.linuxtv.org/dtv-scan-tables.git>`_.
+
+Assuming this channel is named 'channel.conf', you can then run::
+
+	$ dvbv5-scan channel.conf
+	dvbv5-scan ~/vidtv.conf
+	ERROR    command BANDWIDTH_HZ (5) not found during retrieve
+	Cannot calc frequency shift. Either bandwidth/symbol-rate is unavailable (yet).
+	Scanning frequency #1 330000000
+	    (0x00) Signal= -68.00dBm
+	Scanning frequency #2 474000000
+	Lock   (0x1f) Signal= -34.45dBm C/N= 33.74dB UCB= 0
+	Service Beethoven, provider LinuxTV.org: digital television
+
+For more information on dvb-scan, check its documentation online here:
+`dvb-scan Documentation <https://www.linuxtv.org/wiki/index.php/Dvbscan>`_.
+
+Using dvb-zap
+~~~~~~~~~~~~~
+
+dvbv5-zap is a command line tool that can be used to record MPEG-TS to disk. The
+typical use is to tune into a channel and put it into record mode. The example
+below - which is taken from the documentation - illustrates that\ [1]_::
+
+	$ dvbv5-zap -c dvb_channel.conf "beethoven" -o music.ts -P -t 10
+	using demux 'dvb0.demux0'
+	reading channels from file 'dvb_channel.conf'
+	tuning to 474000000 Hz
+	pass all PID's to TS
+	dvb_set_pesfilter 8192
+	dvb_dev_set_bufsize: buffer set to 6160384
+	Lock   (0x1f) Quality= Good Signal= -34.66dBm C/N= 33.41dB UCB= 0 postBER= 0 preBER= 1.05x10^-3 PER= 0
+	Lock   (0x1f) Quality= Good Signal= -34.57dBm C/N= 33.46dB UCB= 0 postBER= 0 preBER= 1.05x10^-3 PER= 0
+	Record to file 'music.ts' started
+	received 24587768 bytes (2401 Kbytes/sec)
+	Lock   (0x1f) Quality= Good Signal= -34.42dBm C/N= 33.89dB UCB= 0 postBER= 0 preBER= 2.44x10^-3 PER= 0
+
+.. [1] In this example, it records 10 seconds with all program ID's stored
+       at the music.ts file.
+
+
+The channel can be watched by playing the contents of the stream with some
+player that  recognizes the MPEG-TS format, such as ``mplayer`` or ``vlc``.
+
+By playing the contents of the stream one can visually inspect the workings of
+vidtv, e.g., to play a recorded TS file with::
+
+	$ mplayer music.ts
+
+or, alternatively, running this command on one terminal::
+
+	$ dvbv5-zap -c dvb_channel.conf "beethoven" -P -r &
+
+And, on a second terminal, playing the contents from DVR interface with::
+
+	$ mplayer /dev/dvb/adapter0/dvr0
+
+For more information on dvb-zap check its online documentation here:
+`dvb-zap Documentation
+<https://www.linuxtv.org/wiki/index.php/Dvbv5-zap>`_.
+See also: `zap <https://www.linuxtv.org/wiki/index.php/Zap>`_.
+
+
+What can still be improved in vidtv
+-----------------------------------
+
+Add *debugfs* integration
+~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Although frontend drivers provide DVBv5 statistics via the .read_status
+call, a nice addition would be to make additional statistics available to
+userspace via debugfs, which is a simple-to-use, RAM-based filesystem
+specifically designed for debug purposes.
+
+The logic for this would be implemented on a separate file so as not to
+pollute the frontend driver.  These statistics are driver-specific and can
+be useful during tests.
+
+The Siano driver is one example of a driver using
+debugfs to convey driver-specific statistics to userspace and it can be
+used as a reference.
+
+This should be further enabled and disabled via a Kconfig
+option for convenience.
+
+Add a way to test video
+~~~~~~~~~~~~~~~~~~~~~~~
+
+Currently, vidtv can only encode PCM audio. It would be great to implement
+a barebones version of MPEG-2 video encoding so we can also test video. The
+first place to look into is *ISO 13818-2: Information technology — Generic
+coding of moving pictures and associated audio information — Part 2: Video*,
+which covers the encoding of compressed video in MPEG Transport Streams.
+
+This might optionally use the Video4Linux2 Test Pattern Generator, v4l2-tpg,
+which resides at::
+
+	drivers/media/common/v4l2-tpg/
+
+
+Add white noise simulation
+~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+The vidtv tuner already has code to identify whether the chosen frequency
+is too far away from a table of valid frequencies. For now, this means that
+the demodulator can eventually lose the lock on the signal, since the tuner will
+report a bad signal quality.
+
+A nice addition is to simulate some noise when the signal quality is bad by:
+
+- Randomly dropping some TS packets. This will trigger a continuity error if the
+  continuity counter is updated but the packet is not passed on to the demux.
+
+- Updating the error statistics accordingly (e.g. BER, etc).
+
+- Simulating some noise in the encoded data.
+
+Functions and structs used within vidtv
+---------------------------------------
+
+.. kernel-doc:: drivers/media/test-drivers/vidtv/vidtv_bridge.h
+
+.. kernel-doc:: drivers/media/test-drivers/vidtv/vidtv_channel.h
+
+.. kernel-doc:: drivers/media/test-drivers/vidtv/vidtv_demod.h
+
+.. kernel-doc:: drivers/media/test-drivers/vidtv/vidtv_encoder.h
+
+.. kernel-doc:: drivers/media/test-drivers/vidtv/vidtv_mux.h
+
+.. kernel-doc:: drivers/media/test-drivers/vidtv/vidtv_pes.h
+
+.. kernel-doc:: drivers/media/test-drivers/vidtv/vidtv_psi.h
+
+.. kernel-doc:: drivers/media/test-drivers/vidtv/vidtv_s302m.h
+
+.. kernel-doc:: drivers/media/test-drivers/vidtv/vidtv_ts.h
+
+.. kernel-doc:: drivers/media/test-drivers/vidtv/vidtv_tuner.h
+
+.. kernel-doc:: drivers/media/test-drivers/vidtv/vidtv_common.c
+
+.. kernel-doc:: drivers/media/test-drivers/vidtv/vidtv_tuner.c
diff --git a/Documentation/driver-api/media/drivers/vimc-devel.rst b/Documentation/driver-api/media/drivers/vimc-devel.rst
new file mode 100644
index 0000000..9e984f9
--- /dev/null
+++ b/Documentation/driver-api/media/drivers/vimc-devel.rst
@@ -0,0 +1,15 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+The Virtual Media Controller Driver (vimc)
+==========================================
+
+Source code documentation
+-------------------------
+
+vimc-streamer
+~~~~~~~~~~~~~
+
+.. kernel-doc:: drivers/media/test-drivers/vimc/vimc-streamer.h
+   :internal:
+
+.. kernel-doc:: drivers/media/test-drivers/vimc/vimc-streamer.c
diff --git a/Documentation/driver-api/media/drivers/zoran.rst b/Documentation/driver-api/media/drivers/zoran.rst
new file mode 100644
index 0000000..83cbae9
--- /dev/null
+++ b/Documentation/driver-api/media/drivers/zoran.rst
@@ -0,0 +1,575 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+The Zoran driver
+================
+
+unified zoran driver (zr360x7, zoran, buz, dc10(+), dc30(+), lml33)
+
+website: http://mjpeg.sourceforge.net/driver-zoran/
+
+
+Frequently Asked Questions
+--------------------------
+
+What cards are supported
+------------------------
+
+Iomega Buz, Linux Media Labs LML33/LML33R10, Pinnacle/Miro
+DC10/DC10+/DC30/DC30+ and related boards (available under various names).
+
+Iomega Buz
+~~~~~~~~~~
+
+* Zoran zr36067 PCI controller
+* Zoran zr36060 MJPEG codec
+* Philips saa7111 TV decoder
+* Philips saa7185 TV encoder
+
+Drivers to use: videodev, i2c-core, i2c-algo-bit,
+videocodec, saa7111, saa7185, zr36060, zr36067
+
+Inputs/outputs: Composite and S-video
+
+Norms: PAL, SECAM (720x576 @ 25 fps), NTSC (720x480 @ 29.97 fps)
+
+Card number: 7
+
+AverMedia 6 Eyes AVS6EYES
+~~~~~~~~~~~~~~~~~~~~~~~~~
+
+* Zoran zr36067 PCI controller
+* Zoran zr36060 MJPEG codec
+* Samsung ks0127 TV decoder
+* Conexant bt866  TV encoder
+
+Drivers to use: videodev, i2c-core, i2c-algo-bit,
+videocodec, ks0127, bt866, zr36060, zr36067
+
+Inputs/outputs:
+	Six physical inputs. 1-6 are composite,
+	1-2, 3-4, 5-6 doubles as S-video,
+	1-3 triples as component.
+	One composite output.
+
+Norms: PAL, SECAM (720x576 @ 25 fps), NTSC (720x480 @ 29.97 fps)
+
+Card number: 8
+
+.. note::
+
+   Not autodetected, card=8 is necessary.
+
+Linux Media Labs LML33
+~~~~~~~~~~~~~~~~~~~~~~
+
+* Zoran zr36067 PCI controller
+* Zoran zr36060 MJPEG codec
+* Brooktree bt819 TV decoder
+* Brooktree bt856 TV encoder
+
+Drivers to use: videodev, i2c-core, i2c-algo-bit,
+videocodec, bt819, bt856, zr36060, zr36067
+
+Inputs/outputs: Composite and S-video
+
+Norms: PAL (720x576 @ 25 fps), NTSC (720x480 @ 29.97 fps)
+
+Card number: 5
+
+Linux Media Labs LML33R10
+~~~~~~~~~~~~~~~~~~~~~~~~~
+
+* Zoran zr36067 PCI controller
+* Zoran zr36060 MJPEG codec
+* Philips saa7114 TV decoder
+* Analog Devices adv7170 TV encoder
+
+Drivers to use: videodev, i2c-core, i2c-algo-bit,
+videocodec, saa7114, adv7170, zr36060, zr36067
+
+Inputs/outputs: Composite and S-video
+
+Norms: PAL (720x576 @ 25 fps), NTSC (720x480 @ 29.97 fps)
+
+Card number: 6
+
+Pinnacle/Miro DC10(new)
+~~~~~~~~~~~~~~~~~~~~~~~
+
+* Zoran zr36057 PCI controller
+* Zoran zr36060 MJPEG codec
+* Philips saa7110a TV decoder
+* Analog Devices adv7176 TV encoder
+
+Drivers to use: videodev, i2c-core, i2c-algo-bit,
+videocodec, saa7110, adv7175, zr36060, zr36067
+
+Inputs/outputs: Composite, S-video and Internal
+
+Norms: PAL, SECAM (768x576 @ 25 fps), NTSC (640x480 @ 29.97 fps)
+
+Card number: 1
+
+Pinnacle/Miro DC10+
+~~~~~~~~~~~~~~~~~~~
+
+* Zoran zr36067 PCI controller
+* Zoran zr36060 MJPEG codec
+* Philips saa7110a TV decoder
+* Analog Devices adv7176 TV encoder
+
+Drivers to use: videodev, i2c-core, i2c-algo-bit,
+videocodec, saa7110, adv7175, zr36060, zr36067
+
+Inputs/outputs: Composite, S-video and Internal
+
+Norms: PAL, SECAM (768x576 @ 25 fps), NTSC (640x480 @ 29.97 fps)
+
+Card number: 2
+
+Pinnacle/Miro DC10(old)
+~~~~~~~~~~~~~~~~~~~~~~~
+
+* Zoran zr36057 PCI controller
+* Zoran zr36050 MJPEG codec
+* Zoran zr36016 Video Front End or Fuji md0211 Video Front End (clone?)
+* Micronas vpx3220a TV decoder
+* mse3000 TV encoder or Analog Devices adv7176 TV encoder
+
+Drivers to use: videodev, i2c-core, i2c-algo-bit,
+videocodec, vpx3220, mse3000/adv7175, zr36050, zr36016, zr36067
+
+Inputs/outputs: Composite, S-video and Internal
+
+Norms: PAL, SECAM (768x576 @ 25 fps), NTSC (640x480 @ 29.97 fps)
+
+Card number: 0
+
+Pinnacle/Miro DC30
+~~~~~~~~~~~~~~~~~~
+
+* Zoran zr36057 PCI controller
+* Zoran zr36050 MJPEG codec
+* Zoran zr36016 Video Front End
+* Micronas vpx3225d/vpx3220a/vpx3216b TV decoder
+* Analog Devices adv7176 TV encoder
+
+Drivers to use: videodev, i2c-core, i2c-algo-bit,
+videocodec, vpx3220/vpx3224, adv7175, zr36050, zr36016, zr36067
+
+Inputs/outputs: Composite, S-video and Internal
+
+Norms: PAL, SECAM (768x576 @ 25 fps), NTSC (640x480 @ 29.97 fps)
+
+Card number: 3
+
+Pinnacle/Miro DC30+
+~~~~~~~~~~~~~~~~~~~
+
+* Zoran zr36067 PCI controller
+* Zoran zr36050 MJPEG codec
+* Zoran zr36016 Video Front End
+* Micronas vpx3225d/vpx3220a/vpx3216b TV decoder
+* Analog Devices adv7176 TV encoder
+
+Drivers to use: videodev, i2c-core, i2c-algo-bit,
+videocodec, vpx3220/vpx3224, adv7175, zr36050, zr36015, zr36067
+
+Inputs/outputs: Composite, S-video and Internal
+
+Norms: PAL, SECAM (768x576 @ 25 fps), NTSC (640x480 @ 29.97 fps)
+
+Card number: 4
+
+.. note::
+
+   #) No module for the mse3000 is available yet
+   #) No module for the vpx3224 is available yet
+
+1.1 What the TV decoder can do an what not
+------------------------------------------
+
+The best know TV standards are NTSC/PAL/SECAM. but for decoding a frame that
+information is not enough. There are several formats of the TV standards.
+And not every TV decoder is able to handle every format. Also the every
+combination is supported by the driver. There are currently 11 different
+tv broadcast formats all aver the world.
+
+The CCIR defines parameters needed for broadcasting the signal.
+The CCIR has defined different standards: A,B,D,E,F,G,D,H,I,K,K1,L,M,N,...
+The CCIR says not much about the colorsystem used !!!
+And talking about a colorsystem says not to much about how it is broadcast.
+
+The CCIR standards A,E,F are not used any more.
+
+When you speak about NTSC, you usually mean the standard: CCIR - M using
+the NTSC colorsystem which is used in the USA, Japan, Mexico, Canada
+and a few others.
+
+When you talk about PAL, you usually mean: CCIR - B/G using the PAL
+colorsystem which is used in many Countries.
+
+When you talk about SECAM, you mean: CCIR - L using the SECAM Colorsystem
+which is used in France, and a few others.
+
+There the other version of SECAM, CCIR - D/K is used in Bulgaria, China,
+Slovakai, Hungary, Korea (Rep.), Poland, Rumania and a others.
+
+The CCIR - H uses the PAL colorsystem (sometimes SECAM) and is used in
+Egypt, Libya, Sri Lanka, Syrain Arab. Rep.
+
+The CCIR - I uses the PAL colorsystem, and is used in Great Britain, Hong Kong,
+Ireland, Nigeria, South Africa.
+
+The CCIR - N uses the PAL colorsystem and PAL frame size but the NTSC framerate,
+and is used in Argentinia, Uruguay, an a few others
+
+We do not talk about how the audio is broadcast !
+
+A rather good sites about the TV standards are:
+http://www.sony.jp/support/
+http://info.electronicwerkstatt.de/bereiche/fernsehtechnik/frequenzen_und_normen/Fernsehnormen/
+and http://www.cabl.com/restaurant/channel.html
+
+Other weird things around: NTSC 4.43 is a modificated NTSC, which is mainly
+used in PAL VCR's that are able to play back NTSC. PAL 60 seems to be the same
+as NTSC 4.43 . The Datasheets also talk about NTSC 44, It seems as if it would
+be the same as NTSC 4.43.
+NTSC Combs seems to be a decoder mode where the decoder uses a comb filter
+to split coma and luma instead of a Delay line.
+
+But I did not defiantly find out what NTSC Comb is.
+
+Philips saa7111 TV decoder
+~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+- was introduced in 1997, is used in the BUZ and
+- can handle: PAL B/G/H/I, PAL N, PAL M, NTSC M, NTSC N, NTSC 4.43 and SECAM
+
+Philips saa7110a TV decoder
+~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+- was introduced in 1995, is used in the Pinnacle/Miro DC10(new), DC10+ and
+- can handle: PAL B/G, NTSC M and SECAM
+
+Philips saa7114 TV decoder
+~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+- was introduced in 2000, is used in the LML33R10 and
+- can handle: PAL B/G/D/H/I/N, PAL N, PAL M, NTSC M, NTSC 4.43 and SECAM
+
+Brooktree bt819 TV decoder
+~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+- was introduced in 1996, and is used in the LML33 and
+- can handle: PAL B/D/G/H/I, NTSC M
+
+Micronas vpx3220a TV decoder
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+- was introduced in 1996, is used in the DC30 and DC30+ and
+- can handle: PAL B/G/H/I, PAL N, PAL M, NTSC M, NTSC 44, PAL 60, SECAM,NTSC Comb
+
+Samsung ks0127 TV decoder
+~~~~~~~~~~~~~~~~~~~~~~~~~
+
+- is used in the AVS6EYES card and
+- can handle: NTSC-M/N/44, PAL-M/N/B/G/H/I/D/K/L and SECAM
+
+
+What the TV encoder can do an what not
+--------------------------------------
+
+The TV encoder is doing the "same" as the decoder, but in the other direction.
+You feed them digital data and the generate a Composite or SVHS signal.
+For information about the colorsystems and TV norm take a look in the
+TV decoder section.
+
+Philips saa7185 TV Encoder
+~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+- was introduced in 1996, is used in the BUZ
+- can generate: PAL B/G, NTSC M
+
+Brooktree bt856 TV Encoder
+~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+- was introduced in 1994, is used in the LML33
+- can generate: PAL B/D/G/H/I/N, PAL M, NTSC M, PAL-N (Argentina)
+
+Analog Devices adv7170 TV Encoder
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+- was introduced in 2000, is used in the LML300R10
+- can generate: PAL B/D/G/H/I/N, PAL M, NTSC M, PAL 60
+
+Analog Devices adv7175 TV Encoder
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+- was introduced in 1996, is used in the DC10, DC10+, DC10 old, DC30, DC30+
+- can generate: PAL B/D/G/H/I/N, PAL M, NTSC M
+
+ITT mse3000 TV encoder
+~~~~~~~~~~~~~~~~~~~~~~
+
+- was introduced in 1991, is used in the DC10 old
+- can generate: PAL , NTSC , SECAM
+
+Conexant bt866 TV encoder
+~~~~~~~~~~~~~~~~~~~~~~~~~
+
+- is used in AVS6EYES, and
+- can generate: NTSC/PAL, PAL­M, PAL­N
+
+The adv717x, should be able to produce PAL N. But you find nothing PAL N
+specific in the registers. Seem that you have to reuse a other standard
+to generate PAL N, maybe it would work if you use the PAL M settings.
+
+How do I get this damn thing to work
+------------------------------------
+
+Load zr36067.o. If it can't autodetect your card, use the card=X insmod
+option with X being the card number as given in the previous section.
+To have more than one card, use card=X1[,X2[,X3,[X4[..]]]]
+
+To automate this, add the following to your /etc/modprobe.d/zoran.conf:
+
+options zr36067 card=X1[,X2[,X3[,X4[..]]]]
+alias char-major-81-0 zr36067
+
+One thing to keep in mind is that this doesn't load zr36067.o itself yet. It
+just automates loading. If you start using xawtv, the device won't load on
+some systems, since you're trying to load modules as a user, which is not
+allowed ("permission denied"). A quick workaround is to add 'Load "v4l"' to
+XF86Config-4 when you use X by default, or to run 'v4l-conf -c <device>' in
+one of your startup scripts (normally rc.local) if you don't use X. Both
+make sure that the modules are loaded on startup, under the root account.
+
+What mainboard should I use (or why doesn't my card work)
+---------------------------------------------------------
+
+
+<insert lousy disclaimer here>. In short: good=SiS/Intel, bad=VIA.
+
+Experience tells us that people with a Buz, on average, have more problems
+than users with a DC10+/LML33. Also, it tells us that people owning a VIA-
+based mainboard (ktXXX, MVP3) have more problems than users with a mainboard
+based on a different chipset. Here's some notes from Andrew Stevens:
+
+Here's my experience of using LML33 and Buz on various motherboards:
+
+- VIA MVP3
+	- Forget it. Pointless. Doesn't work.
+- Intel 430FX (Pentium 200)
+	- LML33 perfect, Buz tolerable (3 or 4 frames dropped per movie)
+- Intel 440BX (early stepping)
+	- LML33 tolerable. Buz starting to get annoying (6-10 frames/hour)
+- Intel 440BX (late stepping)
+	- Buz tolerable, LML3 almost perfect (occasional single frame drops)
+- SiS735
+	- LML33 perfect, Buz tolerable.
+- VIA KT133(*)
+	- LML33 starting to get annoying, Buz poor enough that I have up.
+
+- Both 440BX boards were dual CPU versions.
+
+Bernhard Praschinger later added:
+
+- AMD 751
+	- Buz perfect-tolerable
+- AMD 760
+	- Buz perfect-tolerable
+
+In general, people on the user mailinglist won't give you much of a chance
+if you have a VIA-based motherboard. They may be cheap, but sometimes, you'd
+rather want to spend some more money on better boards. In general, VIA
+mainboard's IDE/PCI performance will also suck badly compared to others.
+You'll noticed the DC10+/DC30+ aren't mentioned anywhere in the overview.
+Basically, you can assume that if the Buz works, the LML33 will work too. If
+the LML33 works, the DC10+/DC30+ will work too. They're most tolerant to
+different mainboard chipsets from all of the supported cards.
+
+If you experience timeouts during capture, buy a better mainboard or lower
+the quality/buffersize during capture (see 'Concerning buffer sizes, quality,
+output size etc.'). If it hangs, there's little we can do as of now. Check
+your IRQs and make sure the card has its own interrupts.
+
+Programming interface
+---------------------
+
+This driver conforms to video4linux2. Support for V4L1 and for the custom
+zoran ioctls has been removed in kernel 2.6.38.
+
+For programming example, please, look at lavrec.c and lavplay.c code in
+the MJPEG-tools (http://mjpeg.sf.net/).
+
+Additional notes for software developers:
+
+   The driver returns maxwidth and maxheight parameters according to
+   the current TV standard (norm). Therefore, the software which
+   communicates with the driver and "asks" for these parameters should
+   first set the correct norm. Well, it seems logically correct: TV
+   standard is "more constant" for current country than geometry
+   settings of a variety of TV capture cards which may work in ITU or
+   square pixel format.
+
+Applications
+------------
+
+Applications known to work with this driver:
+
+TV viewing:
+
+* xawtv
+* kwintv
+* probably any TV application that supports video4linux or video4linux2.
+
+MJPEG capture/playback:
+
+* mjpegtools/lavtools (or Linux Video Studio)
+* gstreamer
+* mplayer
+
+General raw capture:
+
+* xawtv
+* gstreamer
+* probably any application that supports video4linux or video4linux2
+
+Video editing:
+
+* Cinelerra
+* MainActor
+* mjpegtools (or Linux Video Studio)
+
+
+Concerning buffer sizes, quality, output size etc.
+--------------------------------------------------
+
+
+The zr36060 can do 1:2 JPEG compression. This is really the theoretical
+maximum that the chipset can reach. The driver can, however, limit compression
+to a maximum (size) of 1:4. The reason for this is that some cards (e.g. Buz)
+can't handle 1:2 compression without stopping capture after only a few minutes.
+With 1:4, it'll mostly work. If you have a Buz, use 'low_bitrate=1' to go into
+1:4 max. compression mode.
+
+100% JPEG quality is thus 1:2 compression in practice. So for a full PAL frame
+(size 720x576). The JPEG fields are stored in YUY2 format, so the size of the
+fields are 720x288x16/2 bits/field (2 fields/frame) = 207360 bytes/field x 2 =
+414720 bytes/frame (add some more bytes for headers and DHT (huffman)/DQT
+(quantization) tables, and you'll get to something like 512kB per frame for
+1:2 compression. For 1:4 compression, you'd have frames of half this size.
+
+Some additional explanation by Martin Samuelsson, which also explains the
+importance of buffer sizes:
+--
+> Hmm, I do not think it is really that way. With the current (downloaded
+> at 18:00 Monday) driver I get that output sizes for 10 sec:
+> -q 50 -b 128 : 24.283.332 Bytes
+> -q 50 -b 256 : 48.442.368
+> -q 25 -b 128 : 24.655.992
+> -q 25 -b 256 : 25.859.820
+
+I woke up, and can't go to sleep again. I'll kill some time explaining why
+this doesn't look strange to me.
+
+Let's do some math using a width of 704 pixels. I'm not sure whether the Buz
+actually use that number or not, but that's not too important right now.
+
+704x288 pixels, one field, is 202752 pixels. Divided by 64 pixels per block;
+3168 blocks per field. Each pixel consist of two bytes; 128 bytes per block;
+1024 bits per block. 100% in the new driver mean 1:2 compression; the maximum
+output becomes 512 bits per block. Actually 510, but 512 is simpler to use
+for calculations.
+
+Let's say that we specify d1q50. We thus want 256 bits per block; times 3168
+becomes 811008 bits; 101376 bytes per field. We're talking raw bits and bytes
+here, so we don't need to do any fancy corrections for bits-per-pixel or such
+things. 101376 bytes per field.
+
+d1 video contains two fields per frame. Those sum up to 202752 bytes per
+frame, and one of those frames goes into each buffer.
+
+But wait a second! -b128 gives 128kB buffers! It's not possible to cram
+202752 bytes of JPEG data into 128kB!
+
+This is what the driver notice and automatically compensate for in your
+examples. Let's do some math using this information:
+
+128kB is 131072 bytes. In this buffer, we want to store two fields, which
+leaves 65536 bytes for each field. Using 3168 blocks per field, we get
+20.68686868... available bytes per block; 165 bits. We can't allow the
+request for 256 bits per block when there's only 165 bits available! The -q50
+option is silently overridden, and the -b128 option takes precedence, leaving
+us with the equivalence of -q32.
+
+This gives us a data rate of 165 bits per block, which, times 3168, sums up
+to 65340 bytes per field, out of the allowed 65536. The current driver has
+another level of rate limiting; it won't accept -q values that fill more than
+6/8 of the specified buffers. (I'm not sure why. "Playing it safe" seem to be
+a safe bet. Personally, I think I would have lowered requested-bits-per-block
+by one, or something like that.) We can't use 165 bits per block, but have to
+lower it again, to 6/8 of the available buffer space: We end up with 124 bits
+per block, the equivalence of -q24. With 128kB buffers, you can't use greater
+than -q24 at -d1. (And PAL, and 704 pixels width...)
+
+The third example is limited to -q24 through the same process. The second
+example, using very similar calculations, is limited to -q48. The only
+example that actually grab at the specified -q value is the last one, which
+is clearly visible, looking at the file size.
+--
+
+Conclusion: the quality of the resulting movie depends on buffer size, quality,
+whether or not you use 'low_bitrate=1' as insmod option for the zr36060.c
+module to do 1:4 instead of 1:2 compression, etc.
+
+If you experience timeouts, lowering the quality/buffersize or using
+'low_bitrate=1 as insmod option for zr36060.o might actually help, as is
+proven by the Buz.
+
+It hangs/crashes/fails/whatevers! Help!
+---------------------------------------
+
+Make sure that the card has its own interrupts (see /proc/interrupts), check
+the output of dmesg at high verbosity (load zr36067.o with debug=2,
+load all other modules with debug=1). Check that your mainboard is favorable
+(see question 2) and if not, test the card in another computer. Also see the
+notes given in question 3 and try lowering quality/buffersize/capturesize
+if recording fails after a period of time.
+
+If all this doesn't help, give a clear description of the problem including
+detailed hardware information (memory+brand, mainboard+chipset+brand, which
+MJPEG card, processor, other PCI cards that might be of interest), give the
+system PnP information (/proc/interrupts, /proc/dma, /proc/devices), and give
+the kernel version, driver version, glibc version, gcc version and any other
+information that might possibly be of interest. Also provide the dmesg output
+at high verbosity. See 'Contacting' on how to contact the developers.
+
+Maintainers/Contacting
+----------------------
+
+Previous maintainers/developers of this driver are
+- Laurent Pinchart <laurent.pinchart@skynet.be>
+- Ronald Bultje rbultje@ronald.bitfreak.net
+- Serguei Miridonov <mirsev@cicese.mx>
+- Wolfgang Scherr <scherr@net4you.net>
+- Dave Perks <dperks@ibm.net>
+- Rainer Johanni <Rainer@Johanni.de>
+
+Driver's License
+----------------
+
+    This driver is distributed under the terms of the General Public License.
+
+    This program is free software; you can redistribute it and/or modify
+    it under the terms of the GNU General Public License as published by
+    the Free Software Foundation; either version 2 of the License, or
+    (at your option) any later version.
+
+    This program is distributed in the hope that it will be useful,
+    but WITHOUT ANY WARRANTY; without even the implied warranty of
+    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+    GNU General Public License for more details.
+
+See http://www.gnu.org/ for more information.