Update Linux to v5.10.109

Sourced from [1]

[1] https://cdn.kernel.org/pub/linux/kernel/v5.x/linux-5.10.109.tar.xz

Change-Id: I19bca9fc6762d4e63bcf3e4cba88bbe560d9c76c
Signed-off-by: Olivier Deprez <olivier.deprez@arm.com>
diff --git a/Documentation/dev-tools/coccinelle.rst b/Documentation/dev-tools/coccinelle.rst
index 00a3409..74c5e6a 100644
--- a/Documentation/dev-tools/coccinelle.rst
+++ b/Documentation/dev-tools/coccinelle.rst
@@ -14,7 +14,7 @@
 tree-wide patches and detection of problematic programming patterns.
 
 Getting Coccinelle
--------------------
+------------------
 
 The semantic patches included in the kernel use features and options
 which are provided by Coccinelle version 1.0.0-rc11 and above.
@@ -56,7 +56,7 @@
 https://github.com/coccinelle/coccinelle/blob/master/install.txt
 
 Supplemental documentation
----------------------------
+--------------------------
 
 For supplemental documentation refer to the wiki:
 
@@ -85,7 +85,7 @@
   file:line:column-column: message
 
 - ``context`` highlights lines of interest and their context in a
-  diff-like style.Lines of interest are indicated with ``-``.
+  diff-like style. Lines of interest are indicated with ``-``.
 
 - ``org`` generates a report in the Org mode format of Emacs.
 
@@ -119,7 +119,7 @@
 description of the problem being checked by the semantic patch, and
 includes a reference to Coccinelle.
 
-As any static code analyzer, Coccinelle produces false
+As with any static code analyzer, Coccinelle produces false
 positives. Thus, reports must be carefully checked, and patches
 reviewed.
 
@@ -128,25 +128,25 @@
    make coccicheck MODE=report V=1
 
 Coccinelle parallelization
----------------------------
+--------------------------
 
 By default, coccicheck tries to run as parallel as possible. To change
 the parallelism, set the J= variable. For example, to run across 4 CPUs::
 
    make coccicheck MODE=report J=4
 
-As of Coccinelle 1.0.2 Coccinelle uses Ocaml parmap for parallelization,
+As of Coccinelle 1.0.2 Coccinelle uses Ocaml parmap for parallelization;
 if support for this is detected you will benefit from parmap parallelization.
 
 When parmap is enabled coccicheck will enable dynamic load balancing by using
-``--chunksize 1`` argument, this ensures we keep feeding threads with work
+``--chunksize 1`` argument. This ensures we keep feeding threads with work
 one by one, so that we avoid the situation where most work gets done by only
 a few threads. With dynamic load balancing, if a thread finishes early we keep
 feeding it more work.
 
 When parmap is enabled, if an error occurs in Coccinelle, this error
-value is propagated back, the return value of the ``make coccicheck``
-captures this return value.
+value is propagated back, and the return value of the ``make coccicheck``
+command captures this return value.
 
 Using Coccinelle with a single semantic patch
 ---------------------------------------------
@@ -175,15 +175,22 @@
     make coccicheck M=drivers/net/wireless/
 
 To apply Coccinelle on a file basis, instead of a directory basis, the
-following command may be used::
+C variable is used by the makefile to select which files to work with.
+This variable can be used to run scripts for the entire kernel, a
+specific directory, or for a single file.
 
-    make C=1 CHECK="scripts/coccicheck"
+For example, to check drivers/bluetooth/bfusb.c, the value 1 is
+passed to the C variable to check files that make considers
+need to be compiled.::
 
-To check only newly edited code, use the value 2 for the C flag, i.e.::
+    make C=1 CHECK=scripts/coccicheck drivers/bluetooth/bfusb.o
 
-    make C=2 CHECK="scripts/coccicheck"
+The value 2 is passed to the C variable to check files regardless of
+whether they need to be compiled or not.::
 
-In these modes, which works on a file basis, there is no information
+    make C=2 CHECK=scripts/coccicheck drivers/bluetooth/bfusb.o
+
+In these modes, which work on a file basis, there is no information
 about semantic patches displayed, and no commit message proposed.
 
 This runs every semantic patch in scripts/coccinelle by default. The
@@ -198,12 +205,12 @@
 
 Using coccicheck is best as it provides in the spatch command line
 include options matching the options used when we compile the kernel.
-You can learn what these options are by using V=1, you could then
+You can learn what these options are by using V=1; you could then
 manually run Coccinelle with debug options added.
 
 Alternatively you can debug running Coccinelle against SmPL patches
-by asking for stderr to be redirected to stderr, by default stderr
-is redirected to /dev/null, if you'd like to capture stderr you
+by asking for stderr to be redirected to stderr. By default stderr
+is redirected to /dev/null; if you'd like to capture stderr you
 can specify the ``DEBUG_FILE="file.txt"`` option to coccicheck. For
 instance::
 
@@ -211,8 +218,8 @@
     make coccicheck COCCI=scripts/coccinelle/free/kfree.cocci MODE=report DEBUG_FILE=cocci.err
     cat cocci.err
 
-You can use SPFLAGS to add debugging flags, for instance you may want to
-add both --profile --show-trying to SPFLAGS when debugging. For instance
+You can use SPFLAGS to add debugging flags; for instance you may want to
+add both --profile --show-trying to SPFLAGS when debugging. For example
 you may want to use::
 
     rm -f err.log
@@ -229,7 +236,7 @@
 --------------------
 
 Coccinelle supports reading .cocciconfig for default Coccinelle options that
-should be used every time spatch is spawned, the order of precedence for
+should be used every time spatch is spawned. The order of precedence for
 variables for .cocciconfig is as follows:
 
 - Your current user's home directory is processed first
@@ -237,7 +244,7 @@
 - The directory provided with the --dir option is processed last, if used
 
 Since coccicheck runs through make, it naturally runs from the kernel
-proper dir, as such the second rule above would be implied for picking up a
+proper dir; as such the second rule above would be implied for picking up a
 .cocciconfig when using ``make coccicheck``.
 
 ``make coccicheck`` also supports using M= targets. If you do not supply
@@ -260,13 +267,13 @@
 order logic of .cocciconfig reading. If using the kernel's coccicheck target,
 override any of the kernel's .coccicheck's settings using SPFLAGS.
 
-We help Coccinelle when used against Linux with a set of sensible defaults
+We help Coccinelle when used against Linux with a set of sensible default
 options for Linux with our own Linux .cocciconfig. This hints to coccinelle
-git can be used for ``git grep`` queries over coccigrep. A timeout of 200
+that git can be used for ``git grep`` queries over coccigrep. A timeout of 200
 seconds should suffice for now.
 
 The options picked up by coccinelle when reading a .cocciconfig do not appear
-as arguments to spatch processes running on your system, to confirm what
+as arguments to spatch processes running on your system. To confirm what
 options will be used by Coccinelle run::
 
       spatch --print-options-only
@@ -290,7 +297,7 @@
 
 Coccinelle supports idutils as well but requires coccinelle >= 1.0.6.
 When no ID file is specified coccinelle assumes your ID database file
-is in the file .id-utils.index on the top level of the kernel, coccinelle
+is in the file .id-utils.index on the top level of the kernel. Coccinelle
 carries a script scripts/idutils_index.sh which creates the database with::
 
     mkid -i C --output .id-utils.index
@@ -317,7 +324,7 @@
 ---------------------------
 
 SmPL patches can have their own requirements for options passed
-to Coccinelle. SmPL patch specific options can be provided by
+to Coccinelle. SmPL patch-specific options can be provided by
 providing them at the top of the SmPL patch, for instance::
 
 	// Options: --no-includes --include-headers
@@ -327,13 +334,13 @@
 
 As Coccinelle features get added some more advanced SmPL patches
 may require newer versions of Coccinelle. If an SmPL patch requires
-at least a version of Coccinelle, this can be specified as follows,
+a minimum version of Coccinelle, this can be specified as follows,
 as an example if requiring at least Coccinelle >= 1.0.5::
 
 	// Requires: 1.0.5
 
 Proposing new semantic patches
--------------------------------
+------------------------------
 
 New semantic patches can be proposed and submitted by kernel
 developers. For sake of clarity, they should be organized in the
diff --git a/Documentation/dev-tools/gcov.rst b/Documentation/dev-tools/gcov.rst
index 46aae52..9e989ba 100644
--- a/Documentation/dev-tools/gcov.rst
+++ b/Documentation/dev-tools/gcov.rst
@@ -22,7 +22,7 @@
 * minimizing kernel configurations (do I need this option if the
   associated code is never run?)
 
-.. _gcov: http://gcc.gnu.org/onlinedocs/gcc/Gcov.html
+.. _gcov: https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
 .. _lcov: http://ltp.sourceforge.net/coverage/lcov.php
 
 
@@ -171,7 +171,7 @@
 GCC and LLVM gcov tools are not necessarily compatible. Use gcov_ to work with
 GCC-generated .gcno and .gcda files, and use llvm-cov_ for Clang.
 
-.. _gcov: http://gcc.gnu.org/onlinedocs/gcc/Gcov.html
+.. _gcov: https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
 .. _llvm-cov: https://llvm.org/docs/CommandGuide/llvm-cov.html
 
 Build differences between GCC and Clang gcov are handled by Kconfig. It
@@ -203,7 +203,7 @@
     may not correctly copy files from sysfs.
 
 Solution
-    Use ``cat``' to read ``.gcda`` files and ``cp -d`` to copy links.
+    Use ``cat`` to read ``.gcda`` files and ``cp -d`` to copy links.
     Alternatively use the mechanism shown in Appendix B.
 
 
diff --git a/Documentation/dev-tools/gdb-kernel-debugging.rst b/Documentation/dev-tools/gdb-kernel-debugging.rst
index 19df792..4756f6b 100644
--- a/Documentation/dev-tools/gdb-kernel-debugging.rst
+++ b/Documentation/dev-tools/gdb-kernel-debugging.rst
@@ -24,7 +24,7 @@
 
 - Create a virtual Linux machine for QEMU/KVM (see www.linux-kvm.org and
   www.qemu.org for more details). For cross-development,
-  http://landley.net/aboriginal/bin keeps a pool of machine images and
+  https://landley.net/aboriginal/bin keeps a pool of machine images and
   toolchains that can be helpful to start from.
 
 - Build the kernel with CONFIG_GDB_SCRIPTS enabled, but leave
diff --git a/Documentation/dev-tools/index.rst b/Documentation/dev-tools/index.rst
index b0522a4..f7809c7 100644
--- a/Documentation/dev-tools/index.rst
+++ b/Documentation/dev-tools/index.rst
@@ -21,9 +21,11 @@
    kasan
    ubsan
    kmemleak
+   kcsan
    gdb-kernel-debugging
    kgdb
    kselftest
+   kunit/index
 
 
 .. only::  subproject and html
diff --git a/Documentation/dev-tools/kasan.rst b/Documentation/dev-tools/kasan.rst
index 5252961..2b68add 100644
--- a/Documentation/dev-tools/kasan.rst
+++ b/Documentation/dev-tools/kasan.rst
@@ -13,16 +13,13 @@
 memory access, and therefore requires a compiler version that supports that.
 
 Generic KASAN is supported in both GCC and Clang. With GCC it requires version
-4.9.2 or later for basic support and version 5.0 or later for detection of
-out-of-bounds accesses for stack and global variables and for inline
-instrumentation mode (see the Usage section). With Clang it requires version
-7.0.0 or later and it doesn't support detection of out-of-bounds accesses for
-global variables yet.
+8.3.0 or later. Any supported Clang version is compatible, but detection of
+out-of-bounds accesses for global variables is only supported since Clang 11.
 
-Tag-based KASAN is only supported in Clang and requires version 7.0.0 or later.
+Tag-based KASAN is only supported in Clang.
 
-Currently generic KASAN is supported for the x86_64, arm64, xtensa and s390
-architectures, and tag-based KASAN is supported only for arm64.
+Currently generic KASAN is supported for the x86_64, arm64, xtensa, s390 and
+riscv architectures, and tag-based KASAN is supported only for arm64.
 
 Usage
 -----
@@ -193,6 +190,9 @@
 This option significantly enlarges kernel but it gives x1.1-x2 performance
 boost over outline instrumented kernel.
 
+Generic KASAN prints up to 2 call_rcu() call stacks in reports, the last one
+and the second to last.
+
 Software tag-based KASAN
 ~~~~~~~~~~~~~~~~~~~~~~~~
 
@@ -218,3 +218,138 @@
 A potential expansion of this mode is a hardware tag-based mode, which would
 use hardware memory tagging support instead of compiler instrumentation and
 manual shadow memory manipulation.
+
+What memory accesses are sanitised by KASAN?
+--------------------------------------------
+
+The kernel maps memory in a number of different parts of the address
+space. This poses something of a problem for KASAN, which requires
+that all addresses accessed by instrumented code have a valid shadow
+region.
+
+The range of kernel virtual addresses is large: there is not enough
+real memory to support a real shadow region for every address that
+could be accessed by the kernel.
+
+By default
+~~~~~~~~~~
+
+By default, architectures only map real memory over the shadow region
+for the linear mapping (and potentially other small areas). For all
+other areas - such as vmalloc and vmemmap space - a single read-only
+page is mapped over the shadow area. This read-only shadow page
+declares all memory accesses as permitted.
+
+This presents a problem for modules: they do not live in the linear
+mapping, but in a dedicated module space. By hooking in to the module
+allocator, KASAN can temporarily map real shadow memory to cover
+them. This allows detection of invalid accesses to module globals, for
+example.
+
+This also creates an incompatibility with ``VMAP_STACK``: if the stack
+lives in vmalloc space, it will be shadowed by the read-only page, and
+the kernel will fault when trying to set up the shadow data for stack
+variables.
+
+CONFIG_KASAN_VMALLOC
+~~~~~~~~~~~~~~~~~~~~
+
+With ``CONFIG_KASAN_VMALLOC``, KASAN can cover vmalloc space at the
+cost of greater memory usage. Currently this is only supported on x86.
+
+This works by hooking into vmalloc and vmap, and dynamically
+allocating real shadow memory to back the mappings.
+
+Most mappings in vmalloc space are small, requiring less than a full
+page of shadow space. Allocating a full shadow page per mapping would
+therefore be wasteful. Furthermore, to ensure that different mappings
+use different shadow pages, mappings would have to be aligned to
+``KASAN_SHADOW_SCALE_SIZE * PAGE_SIZE``.
+
+Instead, we share backing space across multiple mappings. We allocate
+a backing page when a mapping in vmalloc space uses a particular page
+of the shadow region. This page can be shared by other vmalloc
+mappings later on.
+
+We hook in to the vmap infrastructure to lazily clean up unused shadow
+memory.
+
+To avoid the difficulties around swapping mappings around, we expect
+that the part of the shadow region that covers the vmalloc space will
+not be covered by the early shadow page, but will be left
+unmapped. This will require changes in arch-specific code.
+
+This allows ``VMAP_STACK`` support on x86, and can simplify support of
+architectures that do not have a fixed module region.
+
+CONFIG_KASAN_KUNIT_TEST & CONFIG_TEST_KASAN_MODULE
+--------------------------------------------------
+
+``CONFIG_KASAN_KUNIT_TEST`` utilizes the KUnit Test Framework for testing.
+This means each test focuses on a small unit of functionality and
+there are a few ways these tests can be run.
+
+Each test will print the KASAN report if an error is detected and then
+print the number of the test and the status of the test:
+
+pass::
+
+        ok 28 - kmalloc_double_kzfree
+
+or, if kmalloc failed::
+
+        # kmalloc_large_oob_right: ASSERTION FAILED at lib/test_kasan.c:163
+        Expected ptr is not null, but is
+        not ok 4 - kmalloc_large_oob_right
+
+or, if a KASAN report was expected, but not found::
+
+        # kmalloc_double_kzfree: EXPECTATION FAILED at lib/test_kasan.c:629
+        Expected kasan_data->report_expected == kasan_data->report_found, but
+        kasan_data->report_expected == 1
+        kasan_data->report_found == 0
+        not ok 28 - kmalloc_double_kzfree
+
+All test statuses are tracked as they run and an overall status will
+be printed at the end::
+
+        ok 1 - kasan
+
+or::
+
+        not ok 1 - kasan
+
+(1) Loadable Module
+~~~~~~~~~~~~~~~~~~~~
+
+With ``CONFIG_KUNIT`` enabled, ``CONFIG_KASAN_KUNIT_TEST`` can be built as
+a loadable module and run on any architecture that supports KASAN
+using something like insmod or modprobe. The module is called ``test_kasan``.
+
+(2) Built-In
+~~~~~~~~~~~~~
+
+With ``CONFIG_KUNIT`` built-in, ``CONFIG_KASAN_KUNIT_TEST`` can be built-in
+on any architecure that supports KASAN. These and any other KUnit
+tests enabled will run and print the results at boot as a late-init
+call.
+
+(3) Using kunit_tool
+~~~~~~~~~~~~~~~~~~~~~
+
+With ``CONFIG_KUNIT`` and ``CONFIG_KASAN_KUNIT_TEST`` built-in, we can also
+use kunit_tool to see the results of these along with other KUnit
+tests in a more readable way. This will not print the KASAN reports
+of tests that passed. Use `KUnit documentation <https://www.kernel.org/doc/html/latest/dev-tools/kunit/index.html>`_ for more up-to-date
+information on kunit_tool.
+
+.. _KUnit: https://www.kernel.org/doc/html/latest/dev-tools/kunit/index.html
+
+``CONFIG_TEST_KASAN_MODULE`` is a set of KASAN tests that could not be
+converted to KUnit. These tests can be run only as a module with
+``CONFIG_TEST_KASAN_MODULE`` built as a loadable module and
+``CONFIG_KASAN`` built-in. The type of error expected and the
+function being run is printed before the expression expected to give
+an error. Then the error is printed, if found, and that test
+should be interpretted to pass only if the error was the one expected
+by the test.
diff --git a/Documentation/dev-tools/kcov.rst b/Documentation/dev-tools/kcov.rst
index 42b6126..8548b0b 100644
--- a/Documentation/dev-tools/kcov.rst
+++ b/Documentation/dev-tools/kcov.rst
@@ -34,6 +34,7 @@
 
 Coverage collection
 -------------------
+
 The following program demonstrates coverage collection from within a test
 program using kcov:
 
@@ -128,6 +129,7 @@
 
 Comparison operands collection
 ------------------------------
+
 Comparison operands collection is similar to coverage collection:
 
 .. code-block:: c
@@ -202,3 +204,131 @@
 
 Note that the kcov modes (coverage collection or comparison operands) are
 mutually exclusive.
+
+Remote coverage collection
+--------------------------
+
+With KCOV_ENABLE coverage is collected only for syscalls that are issued
+from the current process. With KCOV_REMOTE_ENABLE it's possible to collect
+coverage for arbitrary parts of the kernel code, provided that those parts
+are annotated with kcov_remote_start()/kcov_remote_stop().
+
+This allows to collect coverage from two types of kernel background
+threads: the global ones, that are spawned during kernel boot in a limited
+number of instances (e.g. one USB hub_event() worker thread is spawned per
+USB HCD); and the local ones, that are spawned when a user interacts with
+some kernel interface (e.g. vhost workers); as well as from soft
+interrupts.
+
+To enable collecting coverage from a global background thread or from a
+softirq, a unique global handle must be assigned and passed to the
+corresponding kcov_remote_start() call. Then a userspace process can pass
+a list of such handles to the KCOV_REMOTE_ENABLE ioctl in the handles
+array field of the kcov_remote_arg struct. This will attach the used kcov
+device to the code sections, that are referenced by those handles.
+
+Since there might be many local background threads spawned from different
+userspace processes, we can't use a single global handle per annotation.
+Instead, the userspace process passes a non-zero handle through the
+common_handle field of the kcov_remote_arg struct. This common handle gets
+saved to the kcov_handle field in the current task_struct and needs to be
+passed to the newly spawned threads via custom annotations. Those threads
+should in turn be annotated with kcov_remote_start()/kcov_remote_stop().
+
+Internally kcov stores handles as u64 integers. The top byte of a handle
+is used to denote the id of a subsystem that this handle belongs to, and
+the lower 4 bytes are used to denote the id of a thread instance within
+that subsystem. A reserved value 0 is used as a subsystem id for common
+handles as they don't belong to a particular subsystem. The bytes 4-7 are
+currently reserved and must be zero. In the future the number of bytes
+used for the subsystem or handle ids might be increased.
+
+When a particular userspace proccess collects coverage via a common
+handle, kcov will collect coverage for each code section that is annotated
+to use the common handle obtained as kcov_handle from the current
+task_struct. However non common handles allow to collect coverage
+selectively from different subsystems.
+
+.. code-block:: c
+
+    struct kcov_remote_arg {
+	__u32		trace_mode;
+	__u32		area_size;
+	__u32		num_handles;
+	__aligned_u64	common_handle;
+	__aligned_u64	handles[0];
+    };
+
+    #define KCOV_INIT_TRACE			_IOR('c', 1, unsigned long)
+    #define KCOV_DISABLE			_IO('c', 101)
+    #define KCOV_REMOTE_ENABLE		_IOW('c', 102, struct kcov_remote_arg)
+
+    #define COVER_SIZE	(64 << 10)
+
+    #define KCOV_TRACE_PC	0
+
+    #define KCOV_SUBSYSTEM_COMMON	(0x00ull << 56)
+    #define KCOV_SUBSYSTEM_USB	(0x01ull << 56)
+
+    #define KCOV_SUBSYSTEM_MASK	(0xffull << 56)
+    #define KCOV_INSTANCE_MASK	(0xffffffffull)
+
+    static inline __u64 kcov_remote_handle(__u64 subsys, __u64 inst)
+    {
+	if (subsys & ~KCOV_SUBSYSTEM_MASK || inst & ~KCOV_INSTANCE_MASK)
+		return 0;
+	return subsys | inst;
+    }
+
+    #define KCOV_COMMON_ID	0x42
+    #define KCOV_USB_BUS_NUM	1
+
+    int main(int argc, char **argv)
+    {
+	int fd;
+	unsigned long *cover, n, i;
+	struct kcov_remote_arg *arg;
+
+	fd = open("/sys/kernel/debug/kcov", O_RDWR);
+	if (fd == -1)
+		perror("open"), exit(1);
+	if (ioctl(fd, KCOV_INIT_TRACE, COVER_SIZE))
+		perror("ioctl"), exit(1);
+	cover = (unsigned long*)mmap(NULL, COVER_SIZE * sizeof(unsigned long),
+				     PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
+	if ((void*)cover == MAP_FAILED)
+		perror("mmap"), exit(1);
+
+	/* Enable coverage collection via common handle and from USB bus #1. */
+	arg = calloc(1, sizeof(*arg) + sizeof(uint64_t));
+	if (!arg)
+		perror("calloc"), exit(1);
+	arg->trace_mode = KCOV_TRACE_PC;
+	arg->area_size = COVER_SIZE;
+	arg->num_handles = 1;
+	arg->common_handle = kcov_remote_handle(KCOV_SUBSYSTEM_COMMON,
+							KCOV_COMMON_ID);
+	arg->handles[0] = kcov_remote_handle(KCOV_SUBSYSTEM_USB,
+						KCOV_USB_BUS_NUM);
+	if (ioctl(fd, KCOV_REMOTE_ENABLE, arg))
+		perror("ioctl"), free(arg), exit(1);
+	free(arg);
+
+	/*
+	 * Here the user needs to trigger execution of a kernel code section
+	 * that is either annotated with the common handle, or to trigger some
+	 * activity on USB bus #1.
+	 */
+	sleep(2);
+
+	n = __atomic_load_n(&cover[0], __ATOMIC_RELAXED);
+	for (i = 0; i < n; i++)
+		printf("0x%lx\n", cover[i + 1]);
+	if (ioctl(fd, KCOV_DISABLE, 0))
+		perror("ioctl"), exit(1);
+	if (munmap(cover, COVER_SIZE * sizeof(unsigned long)))
+		perror("munmap"), exit(1);
+	if (close(fd))
+		perror("close"), exit(1);
+	return 0;
+    }
diff --git a/Documentation/dev-tools/kcsan.rst b/Documentation/dev-tools/kcsan.rst
new file mode 100644
index 0000000..be7a0b0
--- /dev/null
+++ b/Documentation/dev-tools/kcsan.rst
@@ -0,0 +1,316 @@
+The Kernel Concurrency Sanitizer (KCSAN)
+========================================
+
+The Kernel Concurrency Sanitizer (KCSAN) is a dynamic race detector, which
+relies on compile-time instrumentation, and uses a watchpoint-based sampling
+approach to detect races. KCSAN's primary purpose is to detect `data races`_.
+
+Usage
+-----
+
+KCSAN is supported by both GCC and Clang. With GCC we require version 11 or
+later, and with Clang also require version 11 or later.
+
+To enable KCSAN configure the kernel with::
+
+    CONFIG_KCSAN = y
+
+KCSAN provides several other configuration options to customize behaviour (see
+the respective help text in ``lib/Kconfig.kcsan`` for more info).
+
+Error reports
+~~~~~~~~~~~~~
+
+A typical data race report looks like this::
+
+    ==================================================================
+    BUG: KCSAN: data-race in generic_permission / kernfs_refresh_inode
+
+    write to 0xffff8fee4c40700c of 4 bytes by task 175 on cpu 4:
+     kernfs_refresh_inode+0x70/0x170
+     kernfs_iop_permission+0x4f/0x90
+     inode_permission+0x190/0x200
+     link_path_walk.part.0+0x503/0x8e0
+     path_lookupat.isra.0+0x69/0x4d0
+     filename_lookup+0x136/0x280
+     user_path_at_empty+0x47/0x60
+     vfs_statx+0x9b/0x130
+     __do_sys_newlstat+0x50/0xb0
+     __x64_sys_newlstat+0x37/0x50
+     do_syscall_64+0x85/0x260
+     entry_SYSCALL_64_after_hwframe+0x44/0xa9
+
+    read to 0xffff8fee4c40700c of 4 bytes by task 166 on cpu 6:
+     generic_permission+0x5b/0x2a0
+     kernfs_iop_permission+0x66/0x90
+     inode_permission+0x190/0x200
+     link_path_walk.part.0+0x503/0x8e0
+     path_lookupat.isra.0+0x69/0x4d0
+     filename_lookup+0x136/0x280
+     user_path_at_empty+0x47/0x60
+     do_faccessat+0x11a/0x390
+     __x64_sys_access+0x3c/0x50
+     do_syscall_64+0x85/0x260
+     entry_SYSCALL_64_after_hwframe+0x44/0xa9
+
+    Reported by Kernel Concurrency Sanitizer on:
+    CPU: 6 PID: 166 Comm: systemd-journal Not tainted 5.3.0-rc7+ #1
+    Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.12.0-1 04/01/2014
+    ==================================================================
+
+The header of the report provides a short summary of the functions involved in
+the race. It is followed by the access types and stack traces of the 2 threads
+involved in the data race.
+
+The other less common type of data race report looks like this::
+
+    ==================================================================
+    BUG: KCSAN: data-race in e1000_clean_rx_irq+0x551/0xb10
+
+    race at unknown origin, with read to 0xffff933db8a2ae6c of 1 bytes by interrupt on cpu 0:
+     e1000_clean_rx_irq+0x551/0xb10
+     e1000_clean+0x533/0xda0
+     net_rx_action+0x329/0x900
+     __do_softirq+0xdb/0x2db
+     irq_exit+0x9b/0xa0
+     do_IRQ+0x9c/0xf0
+     ret_from_intr+0x0/0x18
+     default_idle+0x3f/0x220
+     arch_cpu_idle+0x21/0x30
+     do_idle+0x1df/0x230
+     cpu_startup_entry+0x14/0x20
+     rest_init+0xc5/0xcb
+     arch_call_rest_init+0x13/0x2b
+     start_kernel+0x6db/0x700
+
+    Reported by Kernel Concurrency Sanitizer on:
+    CPU: 0 PID: 0 Comm: swapper/0 Not tainted 5.3.0-rc7+ #2
+    Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.12.0-1 04/01/2014
+    ==================================================================
+
+This report is generated where it was not possible to determine the other
+racing thread, but a race was inferred due to the data value of the watched
+memory location having changed. These can occur either due to missing
+instrumentation or e.g. DMA accesses. These reports will only be generated if
+``CONFIG_KCSAN_REPORT_RACE_UNKNOWN_ORIGIN=y`` (selected by default).
+
+Selective analysis
+~~~~~~~~~~~~~~~~~~
+
+It may be desirable to disable data race detection for specific accesses,
+functions, compilation units, or entire subsystems.  For static blacklisting,
+the below options are available:
+
+* KCSAN understands the ``data_race(expr)`` annotation, which tells KCSAN that
+  any data races due to accesses in ``expr`` should be ignored and resulting
+  behaviour when encountering a data race is deemed safe.
+
+* Disabling data race detection for entire functions can be accomplished by
+  using the function attribute ``__no_kcsan``::
+
+    __no_kcsan
+    void foo(void) {
+        ...
+
+  To dynamically limit for which functions to generate reports, see the
+  `DebugFS interface`_ blacklist/whitelist feature.
+
+* To disable data race detection for a particular compilation unit, add to the
+  ``Makefile``::
+
+    KCSAN_SANITIZE_file.o := n
+
+* To disable data race detection for all compilation units listed in a
+  ``Makefile``, add to the respective ``Makefile``::
+
+    KCSAN_SANITIZE := n
+
+Furthermore, it is possible to tell KCSAN to show or hide entire classes of
+data races, depending on preferences. These can be changed via the following
+Kconfig options:
+
+* ``CONFIG_KCSAN_REPORT_VALUE_CHANGE_ONLY``: If enabled and a conflicting write
+  is observed via a watchpoint, but the data value of the memory location was
+  observed to remain unchanged, do not report the data race.
+
+* ``CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC``: Assume that plain aligned writes
+  up to word size are atomic by default. Assumes that such writes are not
+  subject to unsafe compiler optimizations resulting in data races. The option
+  causes KCSAN to not report data races due to conflicts where the only plain
+  accesses are aligned writes up to word size.
+
+DebugFS interface
+~~~~~~~~~~~~~~~~~
+
+The file ``/sys/kernel/debug/kcsan`` provides the following interface:
+
+* Reading ``/sys/kernel/debug/kcsan`` returns various runtime statistics.
+
+* Writing ``on`` or ``off`` to ``/sys/kernel/debug/kcsan`` allows turning KCSAN
+  on or off, respectively.
+
+* Writing ``!some_func_name`` to ``/sys/kernel/debug/kcsan`` adds
+  ``some_func_name`` to the report filter list, which (by default) blacklists
+  reporting data races where either one of the top stackframes are a function
+  in the list.
+
+* Writing either ``blacklist`` or ``whitelist`` to ``/sys/kernel/debug/kcsan``
+  changes the report filtering behaviour. For example, the blacklist feature
+  can be used to silence frequently occurring data races; the whitelist feature
+  can help with reproduction and testing of fixes.
+
+Tuning performance
+~~~~~~~~~~~~~~~~~~
+
+Core parameters that affect KCSAN's overall performance and bug detection
+ability are exposed as kernel command-line arguments whose defaults can also be
+changed via the corresponding Kconfig options.
+
+* ``kcsan.skip_watch`` (``CONFIG_KCSAN_SKIP_WATCH``): Number of per-CPU memory
+  operations to skip, before another watchpoint is set up. Setting up
+  watchpoints more frequently will result in the likelihood of races to be
+  observed to increase. This parameter has the most significant impact on
+  overall system performance and race detection ability.
+
+* ``kcsan.udelay_task`` (``CONFIG_KCSAN_UDELAY_TASK``): For tasks, the
+  microsecond delay to stall execution after a watchpoint has been set up.
+  Larger values result in the window in which we may observe a race to
+  increase.
+
+* ``kcsan.udelay_interrupt`` (``CONFIG_KCSAN_UDELAY_INTERRUPT``): For
+  interrupts, the microsecond delay to stall execution after a watchpoint has
+  been set up. Interrupts have tighter latency requirements, and their delay
+  should generally be smaller than the one chosen for tasks.
+
+They may be tweaked at runtime via ``/sys/module/kcsan/parameters/``.
+
+Data Races
+----------
+
+In an execution, two memory accesses form a *data race* if they *conflict*,
+they happen concurrently in different threads, and at least one of them is a
+*plain access*; they *conflict* if both access the same memory location, and at
+least one is a write. For a more thorough discussion and definition, see `"Plain
+Accesses and Data Races" in the LKMM`_.
+
+.. _"Plain Accesses and Data Races" in the LKMM: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/memory-model/Documentation/explanation.txt#n1922
+
+Relationship with the Linux-Kernel Memory Consistency Model (LKMM)
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+The LKMM defines the propagation and ordering rules of various memory
+operations, which gives developers the ability to reason about concurrent code.
+Ultimately this allows to determine the possible executions of concurrent code,
+and if that code is free from data races.
+
+KCSAN is aware of *marked atomic operations* (``READ_ONCE``, ``WRITE_ONCE``,
+``atomic_*``, etc.), but is oblivious of any ordering guarantees and simply
+assumes that memory barriers are placed correctly. In other words, KCSAN
+assumes that as long as a plain access is not observed to race with another
+conflicting access, memory operations are correctly ordered.
+
+This means that KCSAN will not report *potential* data races due to missing
+memory ordering. Developers should therefore carefully consider the required
+memory ordering requirements that remain unchecked. If, however, missing
+memory ordering (that is observable with a particular compiler and
+architecture) leads to an observable data race (e.g. entering a critical
+section erroneously), KCSAN would report the resulting data race.
+
+Race Detection Beyond Data Races
+--------------------------------
+
+For code with complex concurrency design, race-condition bugs may not always
+manifest as data races. Race conditions occur if concurrently executing
+operations result in unexpected system behaviour. On the other hand, data races
+are defined at the C-language level. The following macros can be used to check
+properties of concurrent code where bugs would not manifest as data races.
+
+.. kernel-doc:: include/linux/kcsan-checks.h
+    :functions: ASSERT_EXCLUSIVE_WRITER ASSERT_EXCLUSIVE_WRITER_SCOPED
+                ASSERT_EXCLUSIVE_ACCESS ASSERT_EXCLUSIVE_ACCESS_SCOPED
+                ASSERT_EXCLUSIVE_BITS
+
+Implementation Details
+----------------------
+
+KCSAN relies on observing that two accesses happen concurrently. Crucially, we
+want to (a) increase the chances of observing races (especially for races that
+manifest rarely), and (b) be able to actually observe them. We can accomplish
+(a) by injecting various delays, and (b) by using address watchpoints (or
+breakpoints).
+
+If we deliberately stall a memory access, while we have a watchpoint for its
+address set up, and then observe the watchpoint to fire, two accesses to the
+same address just raced. Using hardware watchpoints, this is the approach taken
+in `DataCollider
+<http://usenix.org/legacy/events/osdi10/tech/full_papers/Erickson.pdf>`_.
+Unlike DataCollider, KCSAN does not use hardware watchpoints, but instead
+relies on compiler instrumentation and "soft watchpoints".
+
+In KCSAN, watchpoints are implemented using an efficient encoding that stores
+access type, size, and address in a long; the benefits of using "soft
+watchpoints" are portability and greater flexibility. KCSAN then relies on the
+compiler instrumenting plain accesses. For each instrumented plain access:
+
+1. Check if a matching watchpoint exists; if yes, and at least one access is a
+   write, then we encountered a racing access.
+
+2. Periodically, if no matching watchpoint exists, set up a watchpoint and
+   stall for a small randomized delay.
+
+3. Also check the data value before the delay, and re-check the data value
+   after delay; if the values mismatch, we infer a race of unknown origin.
+
+To detect data races between plain and marked accesses, KCSAN also annotates
+marked accesses, but only to check if a watchpoint exists; i.e. KCSAN never
+sets up a watchpoint on marked accesses. By never setting up watchpoints for
+marked operations, if all accesses to a variable that is accessed concurrently
+are properly marked, KCSAN will never trigger a watchpoint and therefore never
+report the accesses.
+
+Key Properties
+~~~~~~~~~~~~~~
+
+1. **Memory Overhead:**  The overall memory overhead is only a few MiB
+   depending on configuration. The current implementation uses a small array of
+   longs to encode watchpoint information, which is negligible.
+
+2. **Performance Overhead:** KCSAN's runtime aims to be minimal, using an
+   efficient watchpoint encoding that does not require acquiring any shared
+   locks in the fast-path. For kernel boot on a system with 8 CPUs:
+
+   - 5.0x slow-down with the default KCSAN config;
+   - 2.8x slow-down from runtime fast-path overhead only (set very large
+     ``KCSAN_SKIP_WATCH`` and unset ``KCSAN_SKIP_WATCH_RANDOMIZE``).
+
+3. **Annotation Overheads:** Minimal annotations are required outside the KCSAN
+   runtime. As a result, maintenance overheads are minimal as the kernel
+   evolves.
+
+4. **Detects Racy Writes from Devices:** Due to checking data values upon
+   setting up watchpoints, racy writes from devices can also be detected.
+
+5. **Memory Ordering:** KCSAN is *not* explicitly aware of the LKMM's ordering
+   rules; this may result in missed data races (false negatives).
+
+6. **Analysis Accuracy:** For observed executions, due to using a sampling
+   strategy, the analysis is *unsound* (false negatives possible), but aims to
+   be complete (no false positives).
+
+Alternatives Considered
+-----------------------
+
+An alternative data race detection approach for the kernel can be found in the
+`Kernel Thread Sanitizer (KTSAN) <https://github.com/google/ktsan/wiki>`_.
+KTSAN is a happens-before data race detector, which explicitly establishes the
+happens-before order between memory operations, which can then be used to
+determine data races as defined in `Data Races`_.
+
+To build a correct happens-before relation, KTSAN must be aware of all ordering
+rules of the LKMM and synchronization primitives. Unfortunately, any omission
+leads to large numbers of false positives, which is especially detrimental in
+the context of the kernel which includes numerous custom synchronization
+mechanisms. To track the happens-before relation, KTSAN's implementation
+requires metadata for each memory location (shadow memory), which for each page
+corresponds to 4 pages of shadow memory, and can translate into overhead of
+tens of GiB on a large system.
diff --git a/Documentation/dev-tools/kgdb.rst b/Documentation/dev-tools/kgdb.rst
index d38be58..77b688e 100644
--- a/Documentation/dev-tools/kgdb.rst
+++ b/Documentation/dev-tools/kgdb.rst
@@ -274,6 +274,30 @@
 on the initial connect, or to use a debugger proxy that allows an
 unmodified gdb to do the debugging.
 
+Kernel parameter: ``kgdboc_earlycon``
+-------------------------------------
+
+If you specify the kernel parameter ``kgdboc_earlycon`` and your serial
+driver registers a boot console that supports polling (doesn't need
+interrupts and implements a nonblocking read() function) kgdb will attempt
+to work using the boot console until it can transition to the regular
+tty driver specified by the ``kgdboc`` parameter.
+
+Normally there is only one boot console (especially that implements the
+read() function) so just adding ``kgdboc_earlycon`` on its own is
+sufficient to make this work. If you have more than one boot console you
+can add the boot console's name to differentiate. Note that names that
+are registered through the boot console layer and the tty layer are not
+the same for the same port.
+
+For instance, on one board to be explicit you might do::
+
+   kgdboc_earlycon=qcom_geni kgdboc=ttyMSM0
+
+If the only boot console on the device was "qcom_geni", you could simplify::
+
+   kgdboc_earlycon kgdboc=ttyMSM0
+
 Kernel parameter: ``kgdbwait``
 ------------------------------
 
@@ -292,7 +316,7 @@
 Kernel parameter: ``kgdbcon``
 -----------------------------
 
-The ``kgdbcon`` feature allows you to see :c:func:`printk` messages inside gdb
+The ``kgdbcon`` feature allows you to see printk() messages inside gdb
 while gdb is connected to the kernel. Kdb does not make use of the kgdbcon
 feature.
 
@@ -408,7 +432,7 @@
    ``ps``      Displays only the active processes
    ``ps A``    Shows all the processes
    ``summary`` Shows kernel version info and memory usage
-   ``bt``      Get a backtrace of the current process using :c:func:`dump_stack`
+   ``bt``      Get a backtrace of the current process using dump_stack()
    ``dmesg``   View the kernel syslog buffer
    ``go``      Continue the system
    =========== =================================================================
@@ -700,9 +724,9 @@
    The arch-specific portion implements:
 
    -  contains an arch-specific trap catcher which invokes
-      :c:func:`kgdb_handle_exception` to start kgdb about doing its work
+      kgdb_handle_exception() to start kgdb about doing its work
 
-   -  translation to and from gdb specific packet format to :c:type:`pt_regs`
+   -  translation to and from gdb specific packet format to struct pt_regs
 
    -  Registration and unregistration of architecture specific trap
       hooks
@@ -745,7 +769,7 @@
          config. Later run ``modprobe kdb_hello`` and the next time you
          enter the kdb shell, you can run the ``hello`` command.
 
-   -  The implementation for :c:func:`kdb_printf` which emits messages directly
+   -  The implementation for kdb_printf() which emits messages directly
       to I/O drivers, bypassing the kernel log.
 
    -  SW / HW breakpoint management for the kdb shell
@@ -822,7 +846,7 @@
 the UART driver.
 
 When using kgdboc with a UART, the UART driver must implement two
-callbacks in the :c:type:`struct uart_ops <uart_ops>`.
+callbacks in the struct uart_ops.
 Example from ``drivers/8250.c``::
 
 
@@ -848,10 +872,10 @@
 attached keyboard. The keyboard infrastructure is only compiled into the
 kernel when ``CONFIG_KDB_KEYBOARD=y`` is set in the kernel configuration.
 
-The core polled keyboard driver driver for PS/2 type keyboards is in
+The core polled keyboard driver for PS/2 type keyboards is in
 ``drivers/char/kdb_keyboard.c``. This driver is hooked into the debug core
 when kgdboc populates the callback in the array called
-:c:type:`kdb_poll_funcs[]`. The :c:func:`kdb_get_kbd_char` is the top-level
+:c:expr:`kdb_poll_funcs[]`. The kdb_get_kbd_char() is the top-level
 function which polls hardware for single character input.
 
 kgdboc and kms
@@ -863,10 +887,10 @@
 kernel mode setting support.
 
 Every time the kernel debugger is entered it calls
-:c:func:`kgdboc_pre_exp_handler` which in turn calls :c:func:`con_debug_enter`
+kgdboc_pre_exp_handler() which in turn calls con_debug_enter()
 in the virtual console layer. On resuming kernel execution, the kernel
-debugger calls :c:func:`kgdboc_post_exp_handler` which in turn calls
-:c:func:`con_debug_leave`.
+debugger calls kgdboc_post_exp_handler() which in turn calls
+con_debug_leave().
 
 Any video driver that wants to be compatible with the kernel debugger
 and the atomic kms callbacks must implement the ``mode_set_base_atomic``,
diff --git a/Documentation/dev-tools/kmemleak.rst b/Documentation/dev-tools/kmemleak.rst
index 3621cd5..1c935f4 100644
--- a/Documentation/dev-tools/kmemleak.rst
+++ b/Documentation/dev-tools/kmemleak.rst
@@ -8,7 +8,6 @@
 reported via /sys/kernel/debug/kmemleak. A similar method is used by the
 Valgrind tool (``memcheck --leak-check``) to detect the memory leaks in
 user-space applications.
-Kmemleak is supported on x86, arm, powerpc, sparc, sh, microblaze, ppc, mips, s390 and tile.
 
 Usage
 -----
@@ -69,7 +68,7 @@
 
 Memory may be allocated or freed before kmemleak is initialised and
 these actions are stored in an early log buffer. The size of this buffer
-is configured via the CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE option.
+is configured via the CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE option.
 
 If CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF are enabled, the kmemleak is
 disabled by default. Passing ``kmemleak=on`` on the kernel command
@@ -230,7 +229,7 @@
 
 To check if you have all set up to use kmemleak, you can use the kmemleak-test
 module, a module that deliberately leaks memory. Set CONFIG_DEBUG_KMEMLEAK_TEST
-as module (it can't be used as bult-in) and boot the kernel with kmemleak
+as module (it can't be used as built-in) and boot the kernel with kmemleak
 enabled. Load the module and perform a scan with::
 
         # modprobe kmemleak-test
diff --git a/Documentation/dev-tools/kselftest.rst b/Documentation/dev-tools/kselftest.rst
index ecdfdc9..a901def 100644
--- a/Documentation/dev-tools/kselftest.rst
+++ b/Documentation/dev-tools/kselftest.rst
@@ -125,32 +125,64 @@
 Install selftests
 =================
 
-You can use the kselftest_install.sh tool to install selftests in the
-default location, which is tools/testing/selftests/kselftest, or in a
-user specified location.
+You can use the "install" target of "make" (which calls the `kselftest_install.sh`
+tool) to install selftests in the default location (`tools/testing/selftests/kselftest_install`),
+or in a user specified location via the `INSTALL_PATH` "make" variable.
 
 To install selftests in default location::
 
-   $ cd tools/testing/selftests
-   $ ./kselftest_install.sh
+   $ make -C tools/testing/selftests install
 
 To install selftests in a user specified location::
 
-   $ cd tools/testing/selftests
-   $ ./kselftest_install.sh install_dir
+   $ make -C tools/testing/selftests install INSTALL_PATH=/some/other/path
 
 Running installed selftests
 ===========================
 
-Kselftest install as well as the Kselftest tarball provide a script
-named "run_kselftest.sh" to run the tests.
+Found in the install directory, as well as in the Kselftest tarball,
+is a script named `run_kselftest.sh` to run the tests.
 
 You can simply do the following to run the installed Kselftests. Please
 note some tests will require root privileges::
 
-   $ cd kselftest
+   $ cd kselftest_install
    $ ./run_kselftest.sh
 
+To see the list of available tests, the `-l` option can be used::
+
+   $ ./run_kselftest.sh -l
+
+The `-c` option can be used to run all the tests from a test collection, or
+the `-t` option for specific single tests. Either can be used multiple times::
+
+   $ ./run_kselftest.sh -c bpf -c seccomp -t timers:posix_timers -t timer:nanosleep
+
+For other features see the script usage output, seen with the `-h` option.
+
+Packaging selftests
+===================
+
+In some cases packaging is desired, such as when tests need to run on a
+different system. To package selftests, run::
+
+   $ make -C tools/testing/selftests gen_tar
+
+This generates a tarball in the `INSTALL_PATH/kselftest-packages` directory. By
+default, `.gz` format is used. The tar compression format can be overridden by
+specifying a `FORMAT` make variable. Any value recognized by `tar's auto-compress`_
+option is supported, such as::
+
+    $ make -C tools/testing/selftests gen_tar FORMAT=.xz
+
+`make gen_tar` invokes `make install` so you can use it to package a subset of
+tests by using variables specified in `Running a subset of selftests`_
+section::
+
+    $ make -C tools/testing/selftests gen_tar TARGETS="bpf" FORMAT=.xz
+
+.. _tar's auto-compress: https://www.gnu.org/software/tar/manual/html_node/gzip.html#auto_002dcompress
+
 Contributing new tests
 ======================
 
@@ -203,12 +235,12 @@
 Kselftest tests the kernel from userspace.  Sometimes things need
 testing from within the kernel, one method of doing this is to create a
 test module.  We can tie the module into the kselftest framework by
-using a shell script test runner.  ``kselftest_module.sh`` is designed
+using a shell script test runner.  ``kselftest/module.sh`` is designed
 to facilitate this process.  There is also a header file provided to
 assist writing kernel modules that are for use with kselftest:
 
 - ``tools/testing/kselftest/kselftest_module.h``
-- ``tools/testing/kselftest/kselftest_module.sh``
+- ``tools/testing/kselftest/kselftest/module.sh``
 
 How to use
 ----------
@@ -247,7 +279,7 @@
 
    #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 
-   #include "../tools/testing/selftests/kselftest_module.h"
+   #include "../tools/testing/selftests/kselftest/module.h"
 
    KSTM_MODULE_GLOBALS();
 
@@ -276,7 +308,7 @@
 
     #!/bin/bash
     # SPDX-License-Identifier: GPL-2.0+
-    $(dirname $0)/../kselftest_module.sh "foo" test_foo
+    $(dirname $0)/../kselftest/module.sh "foo" test_foo
 
 
 Test Harness
@@ -301,7 +333,8 @@
 
 .. kernel-doc:: tools/testing/selftests/kselftest_harness.h
     :functions: TH_LOG TEST TEST_SIGNAL FIXTURE FIXTURE_DATA FIXTURE_SETUP
-                FIXTURE_TEARDOWN TEST_F TEST_HARNESS_MAIN
+                FIXTURE_TEARDOWN TEST_F TEST_HARNESS_MAIN FIXTURE_VARIANT
+                FIXTURE_VARIANT_ADD
 
 Operators
 ---------
diff --git a/Documentation/dev-tools/kunit/api/index.rst b/Documentation/dev-tools/kunit/api/index.rst
new file mode 100644
index 0000000..9b9bffe
--- /dev/null
+++ b/Documentation/dev-tools/kunit/api/index.rst
@@ -0,0 +1,16 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+=============
+API Reference
+=============
+.. toctree::
+
+	test
+
+This section documents the KUnit kernel testing API. It is divided into the
+following sections:
+
+================================= ==============================================
+:doc:`test`                       documents all of the standard testing API
+                                  excluding mocking or mocking related features.
+================================= ==============================================
diff --git a/Documentation/dev-tools/kunit/api/test.rst b/Documentation/dev-tools/kunit/api/test.rst
new file mode 100644
index 0000000..aaa97f1
--- /dev/null
+++ b/Documentation/dev-tools/kunit/api/test.rst
@@ -0,0 +1,11 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+========
+Test API
+========
+
+This file documents all of the standard testing API excluding mocking or mocking
+related features.
+
+.. kernel-doc:: include/kunit/test.h
+   :internal:
diff --git a/Documentation/dev-tools/kunit/faq.rst b/Documentation/dev-tools/kunit/faq.rst
new file mode 100644
index 0000000..8d5029a
--- /dev/null
+++ b/Documentation/dev-tools/kunit/faq.rst
@@ -0,0 +1,103 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+==========================
+Frequently Asked Questions
+==========================
+
+How is this different from Autotest, kselftest, etc?
+====================================================
+KUnit is a unit testing framework. Autotest, kselftest (and some others) are
+not.
+
+A `unit test <https://martinfowler.com/bliki/UnitTest.html>`_ is supposed to
+test a single unit of code in isolation, hence the name. A unit test should be
+the finest granularity of testing and as such should allow all possible code
+paths to be tested in the code under test; this is only possible if the code
+under test is very small and does not have any external dependencies outside of
+the test's control like hardware.
+
+There are no testing frameworks currently available for the kernel that do not
+require installing the kernel on a test machine or in a VM and all require
+tests to be written in userspace and run on the kernel under test; this is true
+for Autotest, kselftest, and some others, disqualifying any of them from being
+considered unit testing frameworks.
+
+Does KUnit support running on architectures other than UML?
+===========================================================
+
+Yes, well, mostly.
+
+For the most part, the KUnit core framework (what you use to write the tests)
+can compile to any architecture; it compiles like just another part of the
+kernel and runs when the kernel boots, or when built as a module, when the
+module is loaded.  However, there is some infrastructure,
+like the KUnit Wrapper (``tools/testing/kunit/kunit.py``) that does not support
+other architectures.
+
+In short, this means that, yes, you can run KUnit on other architectures, but
+it might require more work than using KUnit on UML.
+
+For more information, see :ref:`kunit-on-non-uml`.
+
+What is the difference between a unit test and these other kinds of tests?
+==========================================================================
+Most existing tests for the Linux kernel would be categorized as an integration
+test, or an end-to-end test.
+
+- A unit test is supposed to test a single unit of code in isolation, hence the
+  name. A unit test should be the finest granularity of testing and as such
+  should allow all possible code paths to be tested in the code under test; this
+  is only possible if the code under test is very small and does not have any
+  external dependencies outside of the test's control like hardware.
+- An integration test tests the interaction between a minimal set of components,
+  usually just two or three. For example, someone might write an integration
+  test to test the interaction between a driver and a piece of hardware, or to
+  test the interaction between the userspace libraries the kernel provides and
+  the kernel itself; however, one of these tests would probably not test the
+  entire kernel along with hardware interactions and interactions with the
+  userspace.
+- An end-to-end test usually tests the entire system from the perspective of the
+  code under test. For example, someone might write an end-to-end test for the
+  kernel by installing a production configuration of the kernel on production
+  hardware with a production userspace and then trying to exercise some behavior
+  that depends on interactions between the hardware, the kernel, and userspace.
+
+KUnit isn't working, what should I do?
+======================================
+
+Unfortunately, there are a number of things which can break, but here are some
+things to try.
+
+1. Try running ``./tools/testing/kunit/kunit.py run`` with the ``--raw_output``
+   parameter. This might show details or error messages hidden by the kunit_tool
+   parser.
+2. Instead of running ``kunit.py run``, try running ``kunit.py config``,
+   ``kunit.py build``, and ``kunit.py exec`` independently. This can help track
+   down where an issue is occurring. (If you think the parser is at fault, you
+   can run it manually against stdin or a file with ``kunit.py parse``.)
+3. Running the UML kernel directly can often reveal issues or error messages
+   kunit_tool ignores. This should be as simple as running ``./vmlinux`` after
+   building the UML kernel (e.g., by using ``kunit.py build``). Note that UML
+   has some unusual requirements (such as the host having a tmpfs filesystem
+   mounted), and has had issues in the past when built statically and the host
+   has KASLR enabled. (On older host kernels, you may need to run ``setarch
+   `uname -m` -R ./vmlinux`` to disable KASLR.)
+4. Make sure the kernel .config has ``CONFIG_KUNIT=y`` and at least one test
+   (e.g. ``CONFIG_KUNIT_EXAMPLE_TEST=y``). kunit_tool will keep its .config
+   around, so you can see what config was used after running ``kunit.py run``.
+   It also preserves any config changes you might make, so you can
+   enable/disable things with ``make ARCH=um menuconfig`` or similar, and then
+   re-run kunit_tool.
+5. Try to run ``make ARCH=um defconfig`` before running ``kunit.py run``. This
+   may help clean up any residual config items which could be causing problems.
+6. Finally, try running KUnit outside UML. KUnit and KUnit tests can be
+   built into any kernel, or can be built as a module and loaded at runtime.
+   Doing so should allow you to determine if UML is causing the issue you're
+   seeing. When tests are built-in, they will execute when the kernel boots, and
+   modules will automatically execute associated tests when loaded. Test results
+   can be collected from ``/sys/kernel/debug/kunit/<test suite>/results``, and
+   can be parsed with ``kunit.py parse``. For more details, see "KUnit on
+   non-UML architectures" in :doc:`usage`.
+
+If none of the above tricks help, you are always welcome to email any issues to
+kunit-dev@googlegroups.com.
diff --git a/Documentation/dev-tools/kunit/index.rst b/Documentation/dev-tools/kunit/index.rst
new file mode 100644
index 0000000..c234a3a
--- /dev/null
+++ b/Documentation/dev-tools/kunit/index.rst
@@ -0,0 +1,94 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+=========================================
+KUnit - Unit Testing for the Linux Kernel
+=========================================
+
+.. toctree::
+	:maxdepth: 2
+
+	start
+	usage
+	kunit-tool
+	api/index
+	style
+	faq
+
+What is KUnit?
+==============
+
+KUnit is a lightweight unit testing and mocking framework for the Linux kernel.
+
+KUnit is heavily inspired by JUnit, Python's unittest.mock, and
+Googletest/Googlemock for C++. KUnit provides facilities for defining unit test
+cases, grouping related test cases into test suites, providing common
+infrastructure for running tests, and much more.
+
+KUnit consists of a kernel component, which provides a set of macros for easily
+writing unit tests. Tests written against KUnit will run on kernel boot if
+built-in, or when loaded if built as a module. These tests write out results to
+the kernel log in `TAP <https://testanything.org/>`_ format.
+
+To make running these tests (and reading the results) easier, KUnit offers
+:doc:`kunit_tool <kunit-tool>`, which builds a `User Mode Linux
+<http://user-mode-linux.sourceforge.net>`_ kernel, runs it, and parses the test
+results. This provides a quick way of running KUnit tests during development,
+without requiring a virtual machine or separate hardware.
+
+Get started now: :doc:`start`
+
+Why KUnit?
+==========
+
+A unit test is supposed to test a single unit of code in isolation, hence the
+name. A unit test should be the finest granularity of testing and as such should
+allow all possible code paths to be tested in the code under test; this is only
+possible if the code under test is very small and does not have any external
+dependencies outside of the test's control like hardware.
+
+KUnit provides a common framework for unit tests within the kernel.
+
+KUnit tests can be run on most architectures, and most tests are architecture
+independent. All built-in KUnit tests run on kernel startup.  Alternatively,
+KUnit and KUnit tests can be built as modules and tests will run when the test
+module is loaded.
+
+.. note::
+
+        KUnit can also run tests without needing a virtual machine or actual
+        hardware under User Mode Linux. User Mode Linux is a Linux architecture,
+        like ARM or x86, which compiles the kernel as a Linux executable. KUnit
+        can be used with UML either by building with ``ARCH=um`` (like any other
+        architecture), or by using :doc:`kunit_tool <kunit-tool>`.
+
+KUnit is fast. Excluding build time, from invocation to completion KUnit can run
+several dozen tests in only 10 to 20 seconds; this might not sound like a big
+deal to some people, but having such fast and easy to run tests fundamentally
+changes the way you go about testing and even writing code in the first place.
+Linus himself said in his `git talk at Google
+<https://gist.github.com/lorn/1272686/revisions#diff-53c65572127855f1b003db4064a94573R874>`_:
+
+	"... a lot of people seem to think that performance is about doing the
+	same thing, just doing it faster, and that is not true. That is not what
+	performance is all about. If you can do something really fast, really
+	well, people will start using it differently."
+
+In this context Linus was talking about branching and merging,
+but this point also applies to testing. If your tests are slow, unreliable, are
+difficult to write, and require a special setup or special hardware to run,
+then you wait a lot longer to write tests, and you wait a lot longer to run
+tests; this means that tests are likely to break, unlikely to test a lot of
+things, and are unlikely to be rerun once they pass. If your tests are really
+fast, you run them all the time, every time you make a change, and every time
+someone sends you some code. Why trust that someone ran all their tests
+correctly on every change when you can just run them yourself in less time than
+it takes to read their test log?
+
+How do I use it?
+================
+
+*   :doc:`start` - for new users of KUnit
+*   :doc:`usage` - for a more detailed explanation of KUnit features
+*   :doc:`api/index` - for the list of KUnit APIs used for testing
+*   :doc:`kunit-tool` - for more information on the kunit_tool helper script
+*   :doc:`faq` - for answers to some common questions about KUnit
diff --git a/Documentation/dev-tools/kunit/kunit-tool.rst b/Documentation/dev-tools/kunit/kunit-tool.rst
new file mode 100644
index 0000000..29ae2fe
--- /dev/null
+++ b/Documentation/dev-tools/kunit/kunit-tool.rst
@@ -0,0 +1,57 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+=================
+kunit_tool How-To
+=================
+
+What is kunit_tool?
+===================
+
+kunit_tool is a script (``tools/testing/kunit/kunit.py``) that aids in building
+the Linux kernel as UML (`User Mode Linux
+<http://user-mode-linux.sourceforge.net/>`_), running KUnit tests, parsing
+the test results and displaying them in a user friendly manner.
+
+kunit_tool addresses the problem of being able to run tests without needing a
+virtual machine or actual hardware with User Mode Linux. User Mode Linux is a
+Linux architecture, like ARM or x86; however, unlike other architectures it
+compiles the kernel as a standalone Linux executable that can be run like any
+other program directly inside of a host operating system. To be clear, it does
+not require any virtualization support: it is just a regular program.
+
+What is a .kunitconfig?
+=======================
+
+It's just a defconfig that kunit_tool looks for in the base directory.
+kunit_tool uses it to generate a .config as you might expect. In addition, it
+verifies that the generated .config contains the CONFIG options in the
+.kunitconfig; the reason it does this is so that it is easy to be sure that a
+CONFIG that enables a test actually ends up in the .config.
+
+How do I use kunit_tool?
+========================
+
+If a kunitconfig is present at the root directory, all you have to do is:
+
+.. code-block:: bash
+
+	./tools/testing/kunit/kunit.py run
+
+However, you most likely want to use it with the following options:
+
+.. code-block:: bash
+
+	./tools/testing/kunit/kunit.py run --timeout=30 --jobs=`nproc --all`
+
+- ``--timeout`` sets a maximum amount of time to allow tests to run.
+- ``--jobs`` sets the number of threads to use to build the kernel.
+
+.. note::
+	This command will work even without a .kunitconfig file: if no
+        .kunitconfig is present, a default one will be used instead.
+
+For a list of all the flags supported by kunit_tool, you can run:
+
+.. code-block:: bash
+
+	./tools/testing/kunit/kunit.py run --help
diff --git a/Documentation/dev-tools/kunit/start.rst b/Documentation/dev-tools/kunit/start.rst
new file mode 100644
index 0000000..454f307
--- /dev/null
+++ b/Documentation/dev-tools/kunit/start.rst
@@ -0,0 +1,237 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+===============
+Getting Started
+===============
+
+Installing dependencies
+=======================
+KUnit has the same dependencies as the Linux kernel. As long as you can build
+the kernel, you can run KUnit.
+
+Running tests with the KUnit Wrapper
+====================================
+Included with KUnit is a simple Python wrapper which runs tests under User Mode
+Linux, and formats the test results.
+
+The wrapper can be run with:
+
+.. code-block:: bash
+
+	./tools/testing/kunit/kunit.py run
+
+For more information on this wrapper (also called kunit_tool) check out the
+:doc:`kunit-tool` page.
+
+Creating a .kunitconfig
+-----------------------
+If you want to run a specific set of tests (rather than those listed in the
+KUnit defconfig), you can provide Kconfig options in the ``.kunitconfig`` file.
+This file essentially contains the regular Kernel config, with the specific
+test targets as well. The ``.kunitconfig`` should also contain any other config
+options required by the tests.
+
+A good starting point for a ``.kunitconfig`` is the KUnit defconfig:
+
+.. code-block:: bash
+
+	cd $PATH_TO_LINUX_REPO
+	cp arch/um/configs/kunit_defconfig .kunitconfig
+
+You can then add any other Kconfig options you wish, e.g.:
+
+.. code-block:: none
+
+	CONFIG_LIST_KUNIT_TEST=y
+
+:doc:`kunit_tool <kunit-tool>` will ensure that all config options set in
+``.kunitconfig`` are set in the kernel ``.config`` before running the tests.
+It'll warn you if you haven't included the dependencies of the options you're
+using.
+
+.. note::
+   Note that removing something from the ``.kunitconfig`` will not trigger a
+   rebuild of the ``.config`` file: the configuration is only updated if the
+   ``.kunitconfig`` is not a subset of ``.config``. This means that you can use
+   other tools (such as make menuconfig) to adjust other config options.
+
+
+Running the tests (KUnit Wrapper)
+---------------------------------
+
+To make sure that everything is set up correctly, simply invoke the Python
+wrapper from your kernel repo:
+
+.. code-block:: bash
+
+	./tools/testing/kunit/kunit.py run
+
+.. note::
+   You may want to run ``make mrproper`` first.
+
+If everything worked correctly, you should see the following:
+
+.. code-block:: bash
+
+	Generating .config ...
+	Building KUnit Kernel ...
+	Starting KUnit Kernel ...
+
+followed by a list of tests that are run. All of them should be passing.
+
+.. note::
+	Because it is building a lot of sources for the first time, the
+	``Building KUnit kernel`` step may take a while.
+
+Running tests without the KUnit Wrapper
+=======================================
+
+If you'd rather not use the KUnit Wrapper (if, for example, you need to
+integrate with other systems, or use an architecture other than UML), KUnit can
+be included in any kernel, and the results read out and parsed manually.
+
+.. note::
+   KUnit is not designed for use in a production system, and it's possible that
+   tests may reduce the stability or security of the system.
+
+
+
+Configuring the kernel
+----------------------
+
+In order to enable KUnit itself, you simply need to enable the ``CONFIG_KUNIT``
+Kconfig option (it's under Kernel Hacking/Kernel Testing and Coverage in
+menuconfig). From there, you can enable any KUnit tests you want: they usually
+have config options ending in ``_KUNIT_TEST``.
+
+KUnit and KUnit tests can be compiled as modules: in this case the tests in a
+module will be run when the module is loaded.
+
+
+Running the tests (w/o KUnit Wrapper)
+-------------------------------------
+
+Build and run your kernel as usual. Test output will be written to the kernel
+log in `TAP <https://testanything.org/>`_ format.
+
+.. note::
+   It's possible that there will be other lines and/or data interspersed in the
+   TAP output.
+
+
+Writing your first test
+=======================
+
+In your kernel repo let's add some code that we can test. Create a file
+``drivers/misc/example.h`` with the contents:
+
+.. code-block:: c
+
+	int misc_example_add(int left, int right);
+
+create a file ``drivers/misc/example.c``:
+
+.. code-block:: c
+
+	#include <linux/errno.h>
+
+	#include "example.h"
+
+	int misc_example_add(int left, int right)
+	{
+		return left + right;
+	}
+
+Now add the following lines to ``drivers/misc/Kconfig``:
+
+.. code-block:: kconfig
+
+	config MISC_EXAMPLE
+		bool "My example"
+
+and the following lines to ``drivers/misc/Makefile``:
+
+.. code-block:: make
+
+	obj-$(CONFIG_MISC_EXAMPLE) += example.o
+
+Now we are ready to write the test. The test will be in
+``drivers/misc/example-test.c``:
+
+.. code-block:: c
+
+	#include <kunit/test.h>
+	#include "example.h"
+
+	/* Define the test cases. */
+
+	static void misc_example_add_test_basic(struct kunit *test)
+	{
+		KUNIT_EXPECT_EQ(test, 1, misc_example_add(1, 0));
+		KUNIT_EXPECT_EQ(test, 2, misc_example_add(1, 1));
+		KUNIT_EXPECT_EQ(test, 0, misc_example_add(-1, 1));
+		KUNIT_EXPECT_EQ(test, INT_MAX, misc_example_add(0, INT_MAX));
+		KUNIT_EXPECT_EQ(test, -1, misc_example_add(INT_MAX, INT_MIN));
+	}
+
+	static void misc_example_test_failure(struct kunit *test)
+	{
+		KUNIT_FAIL(test, "This test never passes.");
+	}
+
+	static struct kunit_case misc_example_test_cases[] = {
+		KUNIT_CASE(misc_example_add_test_basic),
+		KUNIT_CASE(misc_example_test_failure),
+		{}
+	};
+
+	static struct kunit_suite misc_example_test_suite = {
+		.name = "misc-example",
+		.test_cases = misc_example_test_cases,
+	};
+	kunit_test_suite(misc_example_test_suite);
+
+Now add the following to ``drivers/misc/Kconfig``:
+
+.. code-block:: kconfig
+
+	config MISC_EXAMPLE_TEST
+		bool "Test for my example"
+		depends on MISC_EXAMPLE && KUNIT=y
+
+and the following to ``drivers/misc/Makefile``:
+
+.. code-block:: make
+
+	obj-$(CONFIG_MISC_EXAMPLE_TEST) += example-test.o
+
+Now add it to your ``.kunitconfig``:
+
+.. code-block:: none
+
+	CONFIG_MISC_EXAMPLE=y
+	CONFIG_MISC_EXAMPLE_TEST=y
+
+Now you can run the test:
+
+.. code-block:: bash
+
+	./tools/testing/kunit/kunit.py run
+
+You should see the following failure:
+
+.. code-block:: none
+
+	...
+	[16:08:57] [PASSED] misc-example:misc_example_add_test_basic
+	[16:08:57] [FAILED] misc-example:misc_example_test_failure
+	[16:08:57] EXPECTATION FAILED at drivers/misc/example-test.c:17
+	[16:08:57] 	This test never passes.
+	...
+
+Congrats! You just wrote your first KUnit test!
+
+Next Steps
+==========
+*   Check out the :doc:`usage` page for a more
+    in-depth explanation of KUnit.
diff --git a/Documentation/dev-tools/kunit/style.rst b/Documentation/dev-tools/kunit/style.rst
new file mode 100644
index 0000000..8dbcdc5
--- /dev/null
+++ b/Documentation/dev-tools/kunit/style.rst
@@ -0,0 +1,205 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+===========================
+Test Style and Nomenclature
+===========================
+
+To make finding, writing, and using KUnit tests as simple as possible, it's
+strongly encouraged that they are named and written according to the guidelines
+below. While it's possible to write KUnit tests which do not follow these rules,
+they may break some tooling, may conflict with other tests, and may not be run
+automatically by testing systems.
+
+It's recommended that you only deviate from these guidelines when:
+
+1. Porting tests to KUnit which are already known with an existing name, or
+2. Writing tests which would cause serious problems if automatically run (e.g.,
+   non-deterministically producing false positives or negatives, or taking an
+   extremely long time to run).
+
+Subsystems, Suites, and Tests
+=============================
+
+In order to make tests as easy to find as possible, they're grouped into suites
+and subsystems. A test suite is a group of tests which test a related area of
+the kernel, and a subsystem is a set of test suites which test different parts
+of the same kernel subsystem or driver.
+
+Subsystems
+----------
+
+Every test suite must belong to a subsystem. A subsystem is a collection of one
+or more KUnit test suites which test the same driver or part of the kernel. A
+rule of thumb is that a test subsystem should match a single kernel module. If
+the code being tested can't be compiled as a module, in many cases the subsystem
+should correspond to a directory in the source tree or an entry in the
+MAINTAINERS file. If unsure, follow the conventions set by tests in similar
+areas.
+
+Test subsystems should be named after the code being tested, either after the
+module (wherever possible), or after the directory or files being tested. Test
+subsystems should be named to avoid ambiguity where necessary.
+
+If a test subsystem name has multiple components, they should be separated by
+underscores. *Do not* include "test" or "kunit" directly in the subsystem name
+unless you are actually testing other tests or the kunit framework itself.
+
+Example subsystems could be:
+
+``ext4``
+  Matches the module and filesystem name.
+``apparmor``
+  Matches the module name and LSM name.
+``kasan``
+  Common name for the tool, prominent part of the path ``mm/kasan``
+``snd_hda_codec_hdmi``
+  Has several components (``snd``, ``hda``, ``codec``, ``hdmi``) separated by
+  underscores. Matches the module name.
+
+Avoid names like these:
+
+``linear-ranges``
+  Names should use underscores, not dashes, to separate words. Prefer
+  ``linear_ranges``.
+``qos-kunit-test``
+  As well as using underscores, this name should not have "kunit-test" as a
+  suffix, and ``qos`` is ambiguous as a subsystem name. ``power_qos`` would be a
+  better name.
+``pc_parallel_port``
+  The corresponding module name is ``parport_pc``, so this subsystem should also
+  be named ``parport_pc``.
+
+.. note::
+        The KUnit API and tools do not explicitly know about subsystems. They're
+        simply a way of categorising test suites and naming modules which
+        provides a simple, consistent way for humans to find and run tests. This
+        may change in the future, though.
+
+Suites
+------
+
+KUnit tests are grouped into test suites, which cover a specific area of
+functionality being tested. Test suites can have shared initialisation and
+shutdown code which is run for all tests in the suite.
+Not all subsystems will need to be split into multiple test suites (e.g. simple drivers).
+
+Test suites are named after the subsystem they are part of. If a subsystem
+contains several suites, the specific area under test should be appended to the
+subsystem name, separated by an underscore.
+
+In the event that there are multiple types of test using KUnit within a
+subsystem (e.g., both unit tests and integration tests), they should be put into
+separate suites, with the type of test as the last element in the suite name.
+Unless these tests are actually present, avoid using ``_test``, ``_unittest`` or
+similar in the suite name.
+
+The full test suite name (including the subsystem name) should be specified as
+the ``.name`` member of the ``kunit_suite`` struct, and forms the base for the
+module name (see below).
+
+Example test suites could include:
+
+``ext4_inode``
+  Part of the ``ext4`` subsystem, testing the ``inode`` area.
+``kunit_try_catch``
+  Part of the ``kunit`` implementation itself, testing the ``try_catch`` area.
+``apparmor_property_entry``
+  Part of the ``apparmor`` subsystem, testing the ``property_entry`` area.
+``kasan``
+  The ``kasan`` subsystem has only one suite, so the suite name is the same as
+  the subsystem name.
+
+Avoid names like:
+
+``ext4_ext4_inode``
+  There's no reason to state the subsystem twice.
+``property_entry``
+  The suite name is ambiguous without the subsystem name.
+``kasan_integration_test``
+  Because there is only one suite in the ``kasan`` subsystem, the suite should
+  just be called ``kasan``. There's no need to redundantly add
+  ``integration_test``. Should a separate test suite with, for example, unit
+  tests be added, then that suite could be named ``kasan_unittest`` or similar.
+
+Test Cases
+----------
+
+Individual tests consist of a single function which tests a constrained
+codepath, property, or function. In the test output, individual tests' results
+will show up as subtests of the suite's results.
+
+Tests should be named after what they're testing. This is often the name of the
+function being tested, with a description of the input or codepath being tested.
+As tests are C functions, they should be named and written in accordance with
+the kernel coding style.
+
+.. note::
+        As tests are themselves functions, their names cannot conflict with
+        other C identifiers in the kernel. This may require some creative
+        naming. It's a good idea to make your test functions `static` to avoid
+        polluting the global namespace.
+
+Example test names include:
+
+``unpack_u32_with_null_name``
+  Tests the ``unpack_u32`` function when a NULL name is passed in.
+``test_list_splice``
+  Tests the ``list_splice`` macro. It has the prefix ``test_`` to avoid a
+  name conflict with the macro itself.
+
+
+Should it be necessary to refer to a test outside the context of its test suite,
+the *fully-qualified* name of a test should be the suite name followed by the
+test name, separated by a colon (i.e. ``suite:test``).
+
+Test Kconfig Entries
+====================
+
+Every test suite should be tied to a Kconfig entry.
+
+This Kconfig entry must:
+
+* be named ``CONFIG_<name>_KUNIT_TEST``: where <name> is the name of the test
+  suite.
+* be listed either alongside the config entries for the driver/subsystem being
+  tested, or be under [Kernel Hacking]→[Kernel Testing and Coverage]
+* depend on ``CONFIG_KUNIT``
+* be visible only if ``CONFIG_KUNIT_ALL_TESTS`` is not enabled.
+* have a default value of ``CONFIG_KUNIT_ALL_TESTS``.
+* have a brief description of KUnit in the help text
+
+Unless there's a specific reason not to (e.g. the test is unable to be built as
+a module), Kconfig entries for tests should be tristate.
+
+An example Kconfig entry:
+
+.. code-block:: none
+
+	config FOO_KUNIT_TEST
+		tristate "KUnit test for foo" if !KUNIT_ALL_TESTS
+		depends on KUNIT
+		default KUNIT_ALL_TESTS
+		help
+		  This builds unit tests for foo.
+
+		  For more information on KUnit and unit tests in general, please refer
+		  to the KUnit documentation in Documentation/dev-tools/kunit/.
+
+		  If unsure, say N.
+
+
+Test File and Module Names
+==========================
+
+KUnit tests can often be compiled as a module. These modules should be named
+after the test suite, followed by ``_test``. If this is likely to conflict with
+non-KUnit tests, the suffix ``_kunit`` can also be used.
+
+The easiest way of achieving this is to name the file containing the test suite
+``<suite>_test.c`` (or, as above, ``<suite>_kunit.c``). This file should be
+placed next to the code under test.
+
+If the suite name contains some or all of the name of the test's parent
+directory, it may make sense to modify the source filename to reduce redundancy.
+For example, a ``foo_firmware`` suite could be in the ``foo/firmware_test.c``
+file.
diff --git a/Documentation/dev-tools/kunit/usage.rst b/Documentation/dev-tools/kunit/usage.rst
new file mode 100644
index 0000000..9c28c51
--- /dev/null
+++ b/Documentation/dev-tools/kunit/usage.rst
@@ -0,0 +1,617 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+===========
+Using KUnit
+===========
+
+The purpose of this document is to describe what KUnit is, how it works, how it
+is intended to be used, and all the concepts and terminology that are needed to
+understand it. This guide assumes a working knowledge of the Linux kernel and
+some basic knowledge of testing.
+
+For a high level introduction to KUnit, including setting up KUnit for your
+project, see :doc:`start`.
+
+Organization of this document
+=============================
+
+This document is organized into two main sections: Testing and Isolating
+Behavior. The first covers what unit tests are and how to use KUnit to write
+them. The second covers how to use KUnit to isolate code and make it possible
+to unit test code that was otherwise un-unit-testable.
+
+Testing
+=======
+
+What is KUnit?
+--------------
+
+"K" is short for "kernel" so "KUnit" is the "(Linux) Kernel Unit Testing
+Framework." KUnit is intended first and foremost for writing unit tests; it is
+general enough that it can be used to write integration tests; however, this is
+a secondary goal. KUnit has no ambition of being the only testing framework for
+the kernel; for example, it does not intend to be an end-to-end testing
+framework.
+
+What is Unit Testing?
+---------------------
+
+A `unit test <https://martinfowler.com/bliki/UnitTest.html>`_ is a test that
+tests code at the smallest possible scope, a *unit* of code. In the C
+programming language that's a function.
+
+Unit tests should be written for all the publicly exposed functions in a
+compilation unit; so that is all the functions that are exported in either a
+*class* (defined below) or all functions which are **not** static.
+
+Writing Tests
+-------------
+
+Test Cases
+~~~~~~~~~~
+
+The fundamental unit in KUnit is the test case. A test case is a function with
+the signature ``void (*)(struct kunit *test)``. It calls a function to be tested
+and then sets *expectations* for what should happen. For example:
+
+.. code-block:: c
+
+	void example_test_success(struct kunit *test)
+	{
+	}
+
+	void example_test_failure(struct kunit *test)
+	{
+		KUNIT_FAIL(test, "This test never passes.");
+	}
+
+In the above example ``example_test_success`` always passes because it does
+nothing; no expectations are set, so all expectations pass. On the other hand
+``example_test_failure`` always fails because it calls ``KUNIT_FAIL``, which is
+a special expectation that logs a message and causes the test case to fail.
+
+Expectations
+~~~~~~~~~~~~
+An *expectation* is a way to specify that you expect a piece of code to do
+something in a test. An expectation is called like a function. A test is made
+by setting expectations about the behavior of a piece of code under test; when
+one or more of the expectations fail, the test case fails and information about
+the failure is logged. For example:
+
+.. code-block:: c
+
+	void add_test_basic(struct kunit *test)
+	{
+		KUNIT_EXPECT_EQ(test, 1, add(1, 0));
+		KUNIT_EXPECT_EQ(test, 2, add(1, 1));
+	}
+
+In the above example ``add_test_basic`` makes a number of assertions about the
+behavior of a function called ``add``; the first parameter is always of type
+``struct kunit *``, which contains information about the current test context;
+the second parameter, in this case, is what the value is expected to be; the
+last value is what the value actually is. If ``add`` passes all of these
+expectations, the test case, ``add_test_basic`` will pass; if any one of these
+expectations fails, the test case will fail.
+
+It is important to understand that a test case *fails* when any expectation is
+violated; however, the test will continue running, potentially trying other
+expectations until the test case ends or is otherwise terminated. This is as
+opposed to *assertions* which are discussed later.
+
+To learn about more expectations supported by KUnit, see :doc:`api/test`.
+
+.. note::
+   A single test case should be pretty short, pretty easy to understand,
+   focused on a single behavior.
+
+For example, if we wanted to properly test the add function above, we would
+create additional tests cases which would each test a different property that an
+add function should have like this:
+
+.. code-block:: c
+
+	void add_test_basic(struct kunit *test)
+	{
+		KUNIT_EXPECT_EQ(test, 1, add(1, 0));
+		KUNIT_EXPECT_EQ(test, 2, add(1, 1));
+	}
+
+	void add_test_negative(struct kunit *test)
+	{
+		KUNIT_EXPECT_EQ(test, 0, add(-1, 1));
+	}
+
+	void add_test_max(struct kunit *test)
+	{
+		KUNIT_EXPECT_EQ(test, INT_MAX, add(0, INT_MAX));
+		KUNIT_EXPECT_EQ(test, -1, add(INT_MAX, INT_MIN));
+	}
+
+	void add_test_overflow(struct kunit *test)
+	{
+		KUNIT_EXPECT_EQ(test, INT_MIN, add(INT_MAX, 1));
+	}
+
+Notice how it is immediately obvious what all the properties that we are testing
+for are.
+
+Assertions
+~~~~~~~~~~
+
+KUnit also has the concept of an *assertion*. An assertion is just like an
+expectation except the assertion immediately terminates the test case if it is
+not satisfied.
+
+For example:
+
+.. code-block:: c
+
+	static void mock_test_do_expect_default_return(struct kunit *test)
+	{
+		struct mock_test_context *ctx = test->priv;
+		struct mock *mock = ctx->mock;
+		int param0 = 5, param1 = -5;
+		const char *two_param_types[] = {"int", "int"};
+		const void *two_params[] = {&param0, &param1};
+		const void *ret;
+
+		ret = mock->do_expect(mock,
+				      "test_printk", test_printk,
+				      two_param_types, two_params,
+				      ARRAY_SIZE(two_params));
+		KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ret);
+		KUNIT_EXPECT_EQ(test, -4, *((int *) ret));
+	}
+
+In this example, the method under test should return a pointer to a value, so
+if the pointer returned by the method is null or an errno, we don't want to
+bother continuing the test since the following expectation could crash the test
+case. `ASSERT_NOT_ERR_OR_NULL(...)` allows us to bail out of the test case if
+the appropriate conditions have not been satisfied to complete the test.
+
+Test Suites
+~~~~~~~~~~~
+
+Now obviously one unit test isn't very helpful; the power comes from having
+many test cases covering all of a unit's behaviors. Consequently it is common
+to have many *similar* tests; in order to reduce duplication in these closely
+related tests most unit testing frameworks - including KUnit - provide the
+concept of a *test suite*. A *test suite* is just a collection of test cases
+for a unit of code with a set up function that gets invoked before every test
+case and then a tear down function that gets invoked after every test case
+completes.
+
+Example:
+
+.. code-block:: c
+
+	static struct kunit_case example_test_cases[] = {
+		KUNIT_CASE(example_test_foo),
+		KUNIT_CASE(example_test_bar),
+		KUNIT_CASE(example_test_baz),
+		{}
+	};
+
+	static struct kunit_suite example_test_suite = {
+		.name = "example",
+		.init = example_test_init,
+		.exit = example_test_exit,
+		.test_cases = example_test_cases,
+	};
+	kunit_test_suite(example_test_suite);
+
+In the above example the test suite, ``example_test_suite``, would run the test
+cases ``example_test_foo``, ``example_test_bar``, and ``example_test_baz``;
+each would have ``example_test_init`` called immediately before it and would
+have ``example_test_exit`` called immediately after it.
+``kunit_test_suite(example_test_suite)`` registers the test suite with the
+KUnit test framework.
+
+.. note::
+   A test case will only be run if it is associated with a test suite.
+
+``kunit_test_suite(...)`` is a macro which tells the linker to put the specified
+test suite in a special linker section so that it can be run by KUnit either
+after late_init, or when the test module is loaded (depending on whether the
+test was built in or not).
+
+For more information on these types of things see the :doc:`api/test`.
+
+Isolating Behavior
+==================
+
+The most important aspect of unit testing that other forms of testing do not
+provide is the ability to limit the amount of code under test to a single unit.
+In practice, this is only possible by being able to control what code gets run
+when the unit under test calls a function and this is usually accomplished
+through some sort of indirection where a function is exposed as part of an API
+such that the definition of that function can be changed without affecting the
+rest of the code base. In the kernel this primarily comes from two constructs,
+classes, structs that contain function pointers that are provided by the
+implementer, and architecture-specific functions which have definitions selected
+at compile time.
+
+Classes
+-------
+
+Classes are not a construct that is built into the C programming language;
+however, it is an easily derived concept. Accordingly, pretty much every project
+that does not use a standardized object oriented library (like GNOME's GObject)
+has their own slightly different way of doing object oriented programming; the
+Linux kernel is no exception.
+
+The central concept in kernel object oriented programming is the class. In the
+kernel, a *class* is a struct that contains function pointers. This creates a
+contract between *implementers* and *users* since it forces them to use the
+same function signature without having to call the function directly. In order
+for it to truly be a class, the function pointers must specify that a pointer
+to the class, known as a *class handle*, be one of the parameters; this makes
+it possible for the member functions (also known as *methods*) to have access
+to member variables (more commonly known as *fields*) allowing the same
+implementation to have multiple *instances*.
+
+Typically a class can be *overridden* by *child classes* by embedding the
+*parent class* in the child class. Then when a method provided by the child
+class is called, the child implementation knows that the pointer passed to it is
+of a parent contained within the child; because of this, the child can compute
+the pointer to itself because the pointer to the parent is always a fixed offset
+from the pointer to the child; this offset is the offset of the parent contained
+in the child struct. For example:
+
+.. code-block:: c
+
+	struct shape {
+		int (*area)(struct shape *this);
+	};
+
+	struct rectangle {
+		struct shape parent;
+		int length;
+		int width;
+	};
+
+	int rectangle_area(struct shape *this)
+	{
+		struct rectangle *self = container_of(this, struct shape, parent);
+
+		return self->length * self->width;
+	};
+
+	void rectangle_new(struct rectangle *self, int length, int width)
+	{
+		self->parent.area = rectangle_area;
+		self->length = length;
+		self->width = width;
+	}
+
+In this example (as in most kernel code) the operation of computing the pointer
+to the child from the pointer to the parent is done by ``container_of``.
+
+Faking Classes
+~~~~~~~~~~~~~~
+
+In order to unit test a piece of code that calls a method in a class, the
+behavior of the method must be controllable, otherwise the test ceases to be a
+unit test and becomes an integration test.
+
+A fake just provides an implementation of a piece of code that is different than
+what runs in a production instance, but behaves identically from the standpoint
+of the callers; this is usually done to replace a dependency that is hard to
+deal with, or is slow.
+
+A good example for this might be implementing a fake EEPROM that just stores the
+"contents" in an internal buffer. For example, let's assume we have a class that
+represents an EEPROM:
+
+.. code-block:: c
+
+	struct eeprom {
+		ssize_t (*read)(struct eeprom *this, size_t offset, char *buffer, size_t count);
+		ssize_t (*write)(struct eeprom *this, size_t offset, const char *buffer, size_t count);
+	};
+
+And we want to test some code that buffers writes to the EEPROM:
+
+.. code-block:: c
+
+	struct eeprom_buffer {
+		ssize_t (*write)(struct eeprom_buffer *this, const char *buffer, size_t count);
+		int flush(struct eeprom_buffer *this);
+		size_t flush_count; /* Flushes when buffer exceeds flush_count. */
+	};
+
+	struct eeprom_buffer *new_eeprom_buffer(struct eeprom *eeprom);
+	void destroy_eeprom_buffer(struct eeprom *eeprom);
+
+We can easily test this code by *faking out* the underlying EEPROM:
+
+.. code-block:: c
+
+	struct fake_eeprom {
+		struct eeprom parent;
+		char contents[FAKE_EEPROM_CONTENTS_SIZE];
+	};
+
+	ssize_t fake_eeprom_read(struct eeprom *parent, size_t offset, char *buffer, size_t count)
+	{
+		struct fake_eeprom *this = container_of(parent, struct fake_eeprom, parent);
+
+		count = min(count, FAKE_EEPROM_CONTENTS_SIZE - offset);
+		memcpy(buffer, this->contents + offset, count);
+
+		return count;
+	}
+
+	ssize_t fake_eeprom_write(struct eeprom *parent, size_t offset, const char *buffer, size_t count)
+	{
+		struct fake_eeprom *this = container_of(parent, struct fake_eeprom, parent);
+
+		count = min(count, FAKE_EEPROM_CONTENTS_SIZE - offset);
+		memcpy(this->contents + offset, buffer, count);
+
+		return count;
+	}
+
+	void fake_eeprom_init(struct fake_eeprom *this)
+	{
+		this->parent.read = fake_eeprom_read;
+		this->parent.write = fake_eeprom_write;
+		memset(this->contents, 0, FAKE_EEPROM_CONTENTS_SIZE);
+	}
+
+We can now use it to test ``struct eeprom_buffer``:
+
+.. code-block:: c
+
+	struct eeprom_buffer_test {
+		struct fake_eeprom *fake_eeprom;
+		struct eeprom_buffer *eeprom_buffer;
+	};
+
+	static void eeprom_buffer_test_does_not_write_until_flush(struct kunit *test)
+	{
+		struct eeprom_buffer_test *ctx = test->priv;
+		struct eeprom_buffer *eeprom_buffer = ctx->eeprom_buffer;
+		struct fake_eeprom *fake_eeprom = ctx->fake_eeprom;
+		char buffer[] = {0xff};
+
+		eeprom_buffer->flush_count = SIZE_MAX;
+
+		eeprom_buffer->write(eeprom_buffer, buffer, 1);
+		KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0);
+
+		eeprom_buffer->write(eeprom_buffer, buffer, 1);
+		KUNIT_EXPECT_EQ(test, fake_eeprom->contents[1], 0);
+
+		eeprom_buffer->flush(eeprom_buffer);
+		KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0xff);
+		KUNIT_EXPECT_EQ(test, fake_eeprom->contents[1], 0xff);
+	}
+
+	static void eeprom_buffer_test_flushes_after_flush_count_met(struct kunit *test)
+	{
+		struct eeprom_buffer_test *ctx = test->priv;
+		struct eeprom_buffer *eeprom_buffer = ctx->eeprom_buffer;
+		struct fake_eeprom *fake_eeprom = ctx->fake_eeprom;
+		char buffer[] = {0xff};
+
+		eeprom_buffer->flush_count = 2;
+
+		eeprom_buffer->write(eeprom_buffer, buffer, 1);
+		KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0);
+
+		eeprom_buffer->write(eeprom_buffer, buffer, 1);
+		KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0xff);
+		KUNIT_EXPECT_EQ(test, fake_eeprom->contents[1], 0xff);
+	}
+
+	static void eeprom_buffer_test_flushes_increments_of_flush_count(struct kunit *test)
+	{
+		struct eeprom_buffer_test *ctx = test->priv;
+		struct eeprom_buffer *eeprom_buffer = ctx->eeprom_buffer;
+		struct fake_eeprom *fake_eeprom = ctx->fake_eeprom;
+		char buffer[] = {0xff, 0xff};
+
+		eeprom_buffer->flush_count = 2;
+
+		eeprom_buffer->write(eeprom_buffer, buffer, 1);
+		KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0);
+
+		eeprom_buffer->write(eeprom_buffer, buffer, 2);
+		KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0xff);
+		KUNIT_EXPECT_EQ(test, fake_eeprom->contents[1], 0xff);
+		/* Should have only flushed the first two bytes. */
+		KUNIT_EXPECT_EQ(test, fake_eeprom->contents[2], 0);
+	}
+
+	static int eeprom_buffer_test_init(struct kunit *test)
+	{
+		struct eeprom_buffer_test *ctx;
+
+		ctx = kunit_kzalloc(test, sizeof(*ctx), GFP_KERNEL);
+		KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ctx);
+
+		ctx->fake_eeprom = kunit_kzalloc(test, sizeof(*ctx->fake_eeprom), GFP_KERNEL);
+		KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ctx->fake_eeprom);
+		fake_eeprom_init(ctx->fake_eeprom);
+
+		ctx->eeprom_buffer = new_eeprom_buffer(&ctx->fake_eeprom->parent);
+		KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ctx->eeprom_buffer);
+
+		test->priv = ctx;
+
+		return 0;
+	}
+
+	static void eeprom_buffer_test_exit(struct kunit *test)
+	{
+		struct eeprom_buffer_test *ctx = test->priv;
+
+		destroy_eeprom_buffer(ctx->eeprom_buffer);
+	}
+
+.. _kunit-on-non-uml:
+
+KUnit on non-UML architectures
+==============================
+
+By default KUnit uses UML as a way to provide dependencies for code under test.
+Under most circumstances KUnit's usage of UML should be treated as an
+implementation detail of how KUnit works under the hood. Nevertheless, there
+are instances where being able to run architecture-specific code or test
+against real hardware is desirable. For these reasons KUnit supports running on
+other architectures.
+
+Running existing KUnit tests on non-UML architectures
+-----------------------------------------------------
+
+There are some special considerations when running existing KUnit tests on
+non-UML architectures:
+
+*   Hardware may not be deterministic, so a test that always passes or fails
+    when run under UML may not always do so on real hardware.
+*   Hardware and VM environments may not be hermetic. KUnit tries its best to
+    provide a hermetic environment to run tests; however, it cannot manage state
+    that it doesn't know about outside of the kernel. Consequently, tests that
+    may be hermetic on UML may not be hermetic on other architectures.
+*   Some features and tooling may not be supported outside of UML.
+*   Hardware and VMs are slower than UML.
+
+None of these are reasons not to run your KUnit tests on real hardware; they are
+only things to be aware of when doing so.
+
+The biggest impediment will likely be that certain KUnit features and
+infrastructure may not support your target environment. For example, at this
+time the KUnit Wrapper (``tools/testing/kunit/kunit.py``) does not work outside
+of UML. Unfortunately, there is no way around this. Using UML (or even just a
+particular architecture) allows us to make a lot of assumptions that make it
+possible to do things which might otherwise be impossible.
+
+Nevertheless, all core KUnit framework features are fully supported on all
+architectures, and using them is straightforward: all you need to do is to take
+your kunitconfig, your Kconfig options for the tests you would like to run, and
+merge them into whatever config your are using for your platform. That's it!
+
+For example, let's say you have the following kunitconfig:
+
+.. code-block:: none
+
+	CONFIG_KUNIT=y
+	CONFIG_KUNIT_EXAMPLE_TEST=y
+
+If you wanted to run this test on an x86 VM, you might add the following config
+options to your ``.config``:
+
+.. code-block:: none
+
+	CONFIG_KUNIT=y
+	CONFIG_KUNIT_EXAMPLE_TEST=y
+	CONFIG_SERIAL_8250=y
+	CONFIG_SERIAL_8250_CONSOLE=y
+
+All these new options do is enable support for a common serial console needed
+for logging.
+
+Next, you could build a kernel with these tests as follows:
+
+
+.. code-block:: bash
+
+	make ARCH=x86 olddefconfig
+	make ARCH=x86
+
+Once you have built a kernel, you could run it on QEMU as follows:
+
+.. code-block:: bash
+
+	qemu-system-x86_64 -enable-kvm \
+			   -m 1024 \
+			   -kernel arch/x86_64/boot/bzImage \
+			   -append 'console=ttyS0' \
+			   --nographic
+
+Interspersed in the kernel logs you might see the following:
+
+.. code-block:: none
+
+	TAP version 14
+		# Subtest: example
+		1..1
+		# example_simple_test: initializing
+		ok 1 - example_simple_test
+	ok 1 - example
+
+Congratulations, you just ran a KUnit test on the x86 architecture!
+
+In a similar manner, kunit and kunit tests can also be built as modules,
+so if you wanted to run tests in this way you might add the following config
+options to your ``.config``:
+
+.. code-block:: none
+
+	CONFIG_KUNIT=m
+	CONFIG_KUNIT_EXAMPLE_TEST=m
+
+Once the kernel is built and installed, a simple
+
+.. code-block:: bash
+
+	modprobe example-test
+
+...will run the tests.
+
+.. note::
+   Note that you should make sure your test depends on ``KUNIT=y`` in Kconfig
+   if the test does not support module build.  Otherwise, it will trigger
+   compile errors if ``CONFIG_KUNIT`` is ``m``.
+
+Writing new tests for other architectures
+-----------------------------------------
+
+The first thing you must do is ask yourself whether it is necessary to write a
+KUnit test for a specific architecture, and then whether it is necessary to
+write that test for a particular piece of hardware. In general, writing a test
+that depends on having access to a particular piece of hardware or software (not
+included in the Linux source repo) should be avoided at all costs.
+
+Even if you only ever plan on running your KUnit test on your hardware
+configuration, other people may want to run your tests and may not have access
+to your hardware. If you write your test to run on UML, then anyone can run your
+tests without knowing anything about your particular setup, and you can still
+run your tests on your hardware setup just by compiling for your architecture.
+
+.. important::
+   Always prefer tests that run on UML to tests that only run under a particular
+   architecture, and always prefer tests that run under QEMU or another easy
+   (and monetarily free) to obtain software environment to a specific piece of
+   hardware.
+
+Nevertheless, there are still valid reasons to write an architecture or hardware
+specific test: for example, you might want to test some code that really belongs
+in ``arch/some-arch/*``. Even so, try your best to write the test so that it
+does not depend on physical hardware: if some of your test cases don't need the
+hardware, only require the hardware for tests that actually need it.
+
+Now that you have narrowed down exactly what bits are hardware specific, the
+actual procedure for writing and running the tests is pretty much the same as
+writing normal KUnit tests. One special caveat is that you have to reset
+hardware state in between test cases; if this is not possible, you may only be
+able to run one test case per invocation.
+
+.. TODO(brendanhiggins@google.com): Add an actual example of an architecture-
+   dependent KUnit test.
+
+KUnit debugfs representation
+============================
+When kunit test suites are initialized, they create an associated directory
+in ``/sys/kernel/debug/kunit/<test-suite>``.  The directory contains one file
+
+- results: "cat results" displays results of each test case and the results
+  of the entire suite for the last test run.
+
+The debugfs representation is primarily of use when kunit test suites are
+run in a native environment, either as modules or builtin.  Having a way
+to display results like this is valuable as otherwise results can be
+intermixed with other events in dmesg output.  The maximum size of each
+results file is KUNIT_LOG_SIZE bytes (defined in ``include/kunit/test.h``).
diff --git a/Documentation/dev-tools/sparse.rst b/Documentation/dev-tools/sparse.rst
index 6f48705..02102be 100644
--- a/Documentation/dev-tools/sparse.rst
+++ b/Documentation/dev-tools/sparse.rst
@@ -9,6 +9,8 @@
 number of potential problems with kernel code.  See
 https://lwn.net/Articles/689907/ for an overview of sparse; this document
 contains some kernel-specific sparse information.
+More information on sparse, mainly about its internals, can be found in
+its official pages at https://sparse.docs.kernel.org.
 
 
 Using sparse for typechecking
@@ -73,8 +75,8 @@
 Getting sparse
 --------------
 
-You can get latest released versions from the Sparse homepage at
-https://sparse.wiki.kernel.org/index.php/Main_Page
+You can get tarballs of the latest released versions from:
+https://www.kernel.org/pub/software/devel/sparse/dist/
 
 Alternatively, you can get snapshots of the latest development version
 of sparse using git to clone::