Update Linux to v5.4.2
Change-Id: Idf6911045d9d382da2cfe01b1edff026404ac8fd
diff --git a/net/tls/Kconfig b/net/tls/Kconfig
index 73f05ec..e4328b3 100644
--- a/net/tls/Kconfig
+++ b/net/tls/Kconfig
@@ -1,3 +1,4 @@
+# SPDX-License-Identifier: GPL-2.0-only
#
# TLS configuration
#
@@ -8,6 +9,7 @@
select CRYPTO_AES
select CRYPTO_GCM
select STREAM_PARSER
+ select NET_SOCK_MSG
default n
---help---
Enable kernel support for TLS protocol. This allows symmetric
diff --git a/net/tls/Makefile b/net/tls/Makefile
index 4d6b728..ef0dc74 100644
--- a/net/tls/Makefile
+++ b/net/tls/Makefile
@@ -1,3 +1,4 @@
+# SPDX-License-Identifier: GPL-2.0-only
#
# Makefile for the TLS subsystem.
#
diff --git a/net/tls/tls_device.c b/net/tls/tls_device.c
index 961b07d..683d008 100644
--- a/net/tls/tls_device.c
+++ b/net/tls/tls_device.c
@@ -52,13 +52,16 @@
static void tls_device_free_ctx(struct tls_context *ctx)
{
- if (ctx->tx_conf == TLS_HW)
+ if (ctx->tx_conf == TLS_HW) {
kfree(tls_offload_ctx_tx(ctx));
+ kfree(ctx->tx.rec_seq);
+ kfree(ctx->tx.iv);
+ }
if (ctx->rx_conf == TLS_HW)
kfree(tls_offload_ctx_rx(ctx));
- kfree(ctx);
+ tls_ctx_free(NULL, ctx);
}
static void tls_device_gc_task(struct work_struct *work)
@@ -86,22 +89,6 @@
}
}
-static void tls_device_attach(struct tls_context *ctx, struct sock *sk,
- struct net_device *netdev)
-{
- if (sk->sk_destruct != tls_device_sk_destruct) {
- refcount_set(&ctx->refcount, 1);
- dev_hold(netdev);
- ctx->netdev = netdev;
- spin_lock_irq(&tls_device_lock);
- list_add_tail(&ctx->list, &tls_device_list);
- spin_unlock_irq(&tls_device_lock);
-
- ctx->sk_destruct = sk->sk_destruct;
- sk->sk_destruct = tls_device_sk_destruct;
- }
-}
-
static void tls_device_queue_ctx_destruction(struct tls_context *ctx)
{
unsigned long flags;
@@ -135,13 +122,10 @@
static void destroy_record(struct tls_record_info *record)
{
- int nr_frags = record->num_frags;
- skb_frag_t *frag;
+ int i;
- while (nr_frags-- > 0) {
- frag = &record->frags[nr_frags];
- __skb_frag_unref(frag);
- }
+ for (i = 0; i < record->num_frags; i++)
+ __skb_frag_unref(&record->frags[i]);
kfree(record);
}
@@ -172,12 +156,8 @@
spin_lock_irqsave(&ctx->lock, flags);
info = ctx->retransmit_hint;
- if (info && !before(acked_seq, info->end_seq)) {
+ if (info && !before(acked_seq, info->end_seq))
ctx->retransmit_hint = NULL;
- list_del(&info->list);
- destroy_record(info);
- deleted_records++;
- }
list_for_each_entry_safe(info, temp, &ctx->records_list, list) {
if (before(acked_seq, info->end_seq))
@@ -196,7 +176,7 @@
* socket and no in-flight SKBs associated with this
* socket, so it is safe to free all the resources.
*/
-void tls_device_sk_destruct(struct sock *sk)
+static void tls_device_sk_destruct(struct sock *sk)
{
struct tls_context *tls_ctx = tls_get_ctx(sk);
struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
@@ -214,7 +194,40 @@
if (refcount_dec_and_test(&tls_ctx->refcount))
tls_device_queue_ctx_destruction(tls_ctx);
}
-EXPORT_SYMBOL(tls_device_sk_destruct);
+
+void tls_device_free_resources_tx(struct sock *sk)
+{
+ struct tls_context *tls_ctx = tls_get_ctx(sk);
+
+ tls_free_partial_record(sk, tls_ctx);
+}
+
+static void tls_device_resync_tx(struct sock *sk, struct tls_context *tls_ctx,
+ u32 seq)
+{
+ struct net_device *netdev;
+ struct sk_buff *skb;
+ int err = 0;
+ u8 *rcd_sn;
+
+ skb = tcp_write_queue_tail(sk);
+ if (skb)
+ TCP_SKB_CB(skb)->eor = 1;
+
+ rcd_sn = tls_ctx->tx.rec_seq;
+
+ down_read(&device_offload_lock);
+ netdev = tls_ctx->netdev;
+ if (netdev)
+ err = netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq,
+ rcd_sn,
+ TLS_OFFLOAD_CTX_DIR_TX);
+ up_read(&device_offload_lock);
+ if (err)
+ return;
+
+ clear_bit_unlock(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
+}
static void tls_append_frag(struct tls_record_info *record,
struct page_frag *pfrag,
@@ -223,14 +236,14 @@
skb_frag_t *frag;
frag = &record->frags[record->num_frags - 1];
- if (frag->page.p == pfrag->page &&
- frag->page_offset + frag->size == pfrag->offset) {
- frag->size += size;
+ if (skb_frag_page(frag) == pfrag->page &&
+ skb_frag_off(frag) + skb_frag_size(frag) == pfrag->offset) {
+ skb_frag_size_add(frag, size);
} else {
++frag;
- frag->page.p = pfrag->page;
- frag->page_offset = pfrag->offset;
- frag->size = size;
+ __skb_frag_set_page(frag, pfrag->page);
+ skb_frag_off_set(frag, pfrag->offset);
+ skb_frag_size_set(frag, size);
++record->num_frags;
get_page(pfrag->page);
}
@@ -243,41 +256,28 @@
struct tls_context *ctx,
struct tls_offload_context_tx *offload_ctx,
struct tls_record_info *record,
- struct page_frag *pfrag,
- int flags,
- unsigned char record_type)
+ int flags)
{
+ struct tls_prot_info *prot = &ctx->prot_info;
struct tcp_sock *tp = tcp_sk(sk);
- struct page_frag dummy_tag_frag;
skb_frag_t *frag;
int i;
- /* fill prepend */
- frag = &record->frags[0];
- tls_fill_prepend(ctx,
- skb_frag_address(frag),
- record->len - ctx->tx.prepend_size,
- record_type);
-
- /* HW doesn't care about the data in the tag, because it fills it. */
- dummy_tag_frag.page = skb_frag_page(frag);
- dummy_tag_frag.offset = 0;
-
- tls_append_frag(record, &dummy_tag_frag, ctx->tx.tag_size);
record->end_seq = tp->write_seq + record->len;
- spin_lock_irq(&offload_ctx->lock);
- list_add_tail(&record->list, &offload_ctx->records_list);
- spin_unlock_irq(&offload_ctx->lock);
+ list_add_tail_rcu(&record->list, &offload_ctx->records_list);
offload_ctx->open_record = NULL;
- set_bit(TLS_PENDING_CLOSED_RECORD, &ctx->flags);
- tls_advance_record_sn(sk, &ctx->tx);
+
+ if (test_bit(TLS_TX_SYNC_SCHED, &ctx->flags))
+ tls_device_resync_tx(sk, ctx, tp->write_seq);
+
+ tls_advance_record_sn(sk, prot, &ctx->tx);
for (i = 0; i < record->num_frags; i++) {
frag = &record->frags[i];
sg_unmark_end(&offload_ctx->sg_tx_data[i]);
sg_set_page(&offload_ctx->sg_tx_data[i], skb_frag_page(frag),
- frag->size, frag->page_offset);
- sk_mem_charge(sk, frag->size);
+ skb_frag_size(frag), skb_frag_off(frag));
+ sk_mem_charge(sk, skb_frag_size(frag));
get_page(skb_frag_page(frag));
}
sg_mark_end(&offload_ctx->sg_tx_data[record->num_frags - 1]);
@@ -286,6 +286,38 @@
return tls_push_sg(sk, ctx, offload_ctx->sg_tx_data, 0, flags);
}
+static int tls_device_record_close(struct sock *sk,
+ struct tls_context *ctx,
+ struct tls_record_info *record,
+ struct page_frag *pfrag,
+ unsigned char record_type)
+{
+ struct tls_prot_info *prot = &ctx->prot_info;
+ int ret;
+
+ /* append tag
+ * device will fill in the tag, we just need to append a placeholder
+ * use socket memory to improve coalescing (re-using a single buffer
+ * increases frag count)
+ * if we can't allocate memory now, steal some back from data
+ */
+ if (likely(skb_page_frag_refill(prot->tag_size, pfrag,
+ sk->sk_allocation))) {
+ ret = 0;
+ tls_append_frag(record, pfrag, prot->tag_size);
+ } else {
+ ret = prot->tag_size;
+ if (record->len <= prot->overhead_size)
+ return -ENOMEM;
+ }
+
+ /* fill prepend */
+ tls_fill_prepend(ctx, skb_frag_address(&record->frags[0]),
+ record->len - prot->overhead_size,
+ record_type, prot->version);
+ return ret;
+}
+
static int tls_create_new_record(struct tls_offload_context_tx *offload_ctx,
struct page_frag *pfrag,
size_t prepend_size)
@@ -299,7 +331,7 @@
frag = &record->frags[0];
__skb_frag_set_page(frag, pfrag->page);
- frag->page_offset = pfrag->offset;
+ skb_frag_off_set(frag, pfrag->offset);
skb_frag_size_set(frag, prepend_size);
get_page(pfrag->page);
@@ -340,16 +372,42 @@
return 0;
}
+static int tls_device_copy_data(void *addr, size_t bytes, struct iov_iter *i)
+{
+ size_t pre_copy, nocache;
+
+ pre_copy = ~((unsigned long)addr - 1) & (SMP_CACHE_BYTES - 1);
+ if (pre_copy) {
+ pre_copy = min(pre_copy, bytes);
+ if (copy_from_iter(addr, pre_copy, i) != pre_copy)
+ return -EFAULT;
+ bytes -= pre_copy;
+ addr += pre_copy;
+ }
+
+ nocache = round_down(bytes, SMP_CACHE_BYTES);
+ if (copy_from_iter_nocache(addr, nocache, i) != nocache)
+ return -EFAULT;
+ bytes -= nocache;
+ addr += nocache;
+
+ if (bytes && copy_from_iter(addr, bytes, i) != bytes)
+ return -EFAULT;
+
+ return 0;
+}
+
static int tls_push_data(struct sock *sk,
struct iov_iter *msg_iter,
size_t size, int flags,
unsigned char record_type)
{
struct tls_context *tls_ctx = tls_get_ctx(sk);
+ struct tls_prot_info *prot = &tls_ctx->prot_info;
struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
- int tls_push_record_flags = flags | MSG_SENDPAGE_NOTLAST;
int more = flags & (MSG_SENDPAGE_NOTLAST | MSG_MORE);
struct tls_record_info *record = ctx->open_record;
+ int tls_push_record_flags;
struct page_frag *pfrag;
size_t orig_size = size;
u32 max_open_record_len;
@@ -364,10 +422,15 @@
if (sk->sk_err)
return -sk->sk_err;
+ flags |= MSG_SENDPAGE_DECRYPTED;
+ tls_push_record_flags = flags | MSG_SENDPAGE_NOTLAST;
+
timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
- rc = tls_complete_pending_work(sk, tls_ctx, flags, &timeo);
- if (rc < 0)
- return rc;
+ if (tls_is_partially_sent_record(tls_ctx)) {
+ rc = tls_push_partial_record(sk, tls_ctx, flags);
+ if (rc < 0)
+ return rc;
+ }
pfrag = sk_page_frag(sk);
@@ -375,10 +438,10 @@
* we need to leave room for an authentication tag.
*/
max_open_record_len = TLS_MAX_PAYLOAD_SIZE +
- tls_ctx->tx.prepend_size;
+ prot->prepend_size;
do {
rc = tls_do_allocation(sk, ctx, pfrag,
- tls_ctx->tx.prepend_size);
+ prot->prepend_size);
if (rc) {
rc = sk_stream_wait_memory(sk, &timeo);
if (!rc)
@@ -396,7 +459,7 @@
size = orig_size;
destroy_record(record);
ctx->open_record = NULL;
- } else if (record->len > tls_ctx->tx.prepend_size) {
+ } else if (record->len > prot->prepend_size) {
goto last_record;
}
@@ -407,12 +470,10 @@
copy = min_t(size_t, size, (pfrag->size - pfrag->offset));
copy = min_t(size_t, copy, (max_open_record_len - record->len));
- if (copy_from_iter_nocache(page_address(pfrag->page) +
- pfrag->offset,
- copy, msg_iter) != copy) {
- rc = -EFAULT;
+ rc = tls_device_copy_data(page_address(pfrag->page) +
+ pfrag->offset, copy, msg_iter);
+ if (rc)
goto handle_error;
- }
tls_append_frag(record, pfrag, copy);
size -= copy;
@@ -421,7 +482,7 @@
tls_push_record_flags = flags;
if (more) {
tls_ctx->pending_open_record_frags =
- record->num_frags;
+ !!record->num_frags;
break;
}
@@ -430,13 +491,24 @@
if (done || record->len >= max_open_record_len ||
(record->num_frags >= MAX_SKB_FRAGS - 1)) {
+ rc = tls_device_record_close(sk, tls_ctx, record,
+ pfrag, record_type);
+ if (rc) {
+ if (rc > 0) {
+ size += rc;
+ } else {
+ size = orig_size;
+ destroy_record(record);
+ ctx->open_record = NULL;
+ break;
+ }
+ }
+
rc = tls_push_record(sk,
tls_ctx,
ctx,
record,
- pfrag,
- tls_push_record_flags,
- record_type);
+ tls_push_record_flags);
if (rc < 0)
break;
}
@@ -451,8 +523,10 @@
int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
{
unsigned char record_type = TLS_RECORD_TYPE_DATA;
+ struct tls_context *tls_ctx = tls_get_ctx(sk);
int rc;
+ mutex_lock(&tls_ctx->tx_lock);
lock_sock(sk);
if (unlikely(msg->msg_controllen)) {
@@ -466,12 +540,14 @@
out:
release_sock(sk);
+ mutex_unlock(&tls_ctx->tx_lock);
return rc;
}
int tls_device_sendpage(struct sock *sk, struct page *page,
int offset, size_t size, int flags)
{
+ struct tls_context *tls_ctx = tls_get_ctx(sk);
struct iov_iter msg_iter;
char *kaddr = kmap(page);
struct kvec iov;
@@ -480,6 +556,7 @@
if (flags & MSG_SENDPAGE_NOTLAST)
flags |= MSG_MORE;
+ mutex_lock(&tls_ctx->tx_lock);
lock_sock(sk);
if (flags & MSG_OOB) {
@@ -489,13 +566,14 @@
iov.iov_base = kaddr + offset;
iov.iov_len = size;
- iov_iter_kvec(&msg_iter, WRITE | ITER_KVEC, &iov, 1, size);
+ iov_iter_kvec(&msg_iter, WRITE, &iov, 1, size);
rc = tls_push_data(sk, &msg_iter, size,
flags, TLS_RECORD_TYPE_DATA);
kunmap(page);
out:
release_sock(sk);
+ mutex_unlock(&tls_ctx->tx_lock);
return rc;
}
@@ -511,12 +589,16 @@
/* if retransmit_hint is irrelevant start
* from the beggining of the list
*/
- info = list_first_entry(&context->records_list,
- struct tls_record_info, list);
+ info = list_first_entry_or_null(&context->records_list,
+ struct tls_record_info, list);
+ if (!info)
+ return NULL;
record_sn = context->unacked_record_sn;
}
- list_for_each_entry_from(info, &context->records_list, list) {
+ /* We just need the _rcu for the READ_ONCE() */
+ rcu_read_lock();
+ list_for_each_entry_from_rcu(info, &context->records_list, list) {
if (before(seq, info->end_seq)) {
if (!context->retransmit_hint ||
after(info->end_seq,
@@ -525,12 +607,15 @@
context->retransmit_hint = info;
}
*p_record_sn = record_sn;
- return info;
+ goto exit_rcu_unlock;
}
record_sn++;
}
+ info = NULL;
- return NULL;
+exit_rcu_unlock:
+ rcu_read_unlock();
+ return info;
}
EXPORT_SYMBOL(tls_get_record);
@@ -538,15 +623,45 @@
{
struct iov_iter msg_iter;
- iov_iter_kvec(&msg_iter, WRITE | ITER_KVEC, NULL, 0, 0);
+ iov_iter_kvec(&msg_iter, WRITE, NULL, 0, 0);
return tls_push_data(sk, &msg_iter, 0, flags, TLS_RECORD_TYPE_DATA);
}
-void handle_device_resync(struct sock *sk, u32 seq, u64 rcd_sn)
+void tls_device_write_space(struct sock *sk, struct tls_context *ctx)
+{
+ if (tls_is_partially_sent_record(ctx)) {
+ gfp_t sk_allocation = sk->sk_allocation;
+
+ WARN_ON_ONCE(sk->sk_write_pending);
+
+ sk->sk_allocation = GFP_ATOMIC;
+ tls_push_partial_record(sk, ctx,
+ MSG_DONTWAIT | MSG_NOSIGNAL |
+ MSG_SENDPAGE_DECRYPTED);
+ sk->sk_allocation = sk_allocation;
+ }
+}
+
+static void tls_device_resync_rx(struct tls_context *tls_ctx,
+ struct sock *sk, u32 seq, u8 *rcd_sn)
+{
+ struct net_device *netdev;
+
+ if (WARN_ON(test_and_set_bit(TLS_RX_SYNC_RUNNING, &tls_ctx->flags)))
+ return;
+ netdev = READ_ONCE(tls_ctx->netdev);
+ if (netdev)
+ netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, rcd_sn,
+ TLS_OFFLOAD_CTX_DIR_RX);
+ clear_bit_unlock(TLS_RX_SYNC_RUNNING, &tls_ctx->flags);
+}
+
+void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq)
{
struct tls_context *tls_ctx = tls_get_ctx(sk);
- struct net_device *netdev = tls_ctx->netdev;
struct tls_offload_context_rx *rx_ctx;
+ u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
+ struct tls_prot_info *prot;
u32 is_req_pending;
s64 resync_req;
u32 req_seq;
@@ -554,22 +669,90 @@
if (tls_ctx->rx_conf != TLS_HW)
return;
+ prot = &tls_ctx->prot_info;
rx_ctx = tls_offload_ctx_rx(tls_ctx);
- resync_req = atomic64_read(&rx_ctx->resync_req);
- req_seq = ntohl(resync_req >> 32) - ((u32)TLS_HEADER_SIZE - 1);
- is_req_pending = resync_req;
+ memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
- if (unlikely(is_req_pending) && req_seq == seq &&
- atomic64_try_cmpxchg(&rx_ctx->resync_req, &resync_req, 0))
- netdev->tlsdev_ops->tls_dev_resync_rx(netdev, sk,
- seq + TLS_HEADER_SIZE - 1,
- rcd_sn);
+ switch (rx_ctx->resync_type) {
+ case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ:
+ resync_req = atomic64_read(&rx_ctx->resync_req);
+ req_seq = resync_req >> 32;
+ seq += TLS_HEADER_SIZE - 1;
+ is_req_pending = resync_req;
+
+ if (likely(!is_req_pending) || req_seq != seq ||
+ !atomic64_try_cmpxchg(&rx_ctx->resync_req, &resync_req, 0))
+ return;
+ break;
+ case TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT:
+ if (likely(!rx_ctx->resync_nh_do_now))
+ return;
+
+ /* head of next rec is already in, note that the sock_inq will
+ * include the currently parsed message when called from parser
+ */
+ if (tcp_inq(sk) > rcd_len)
+ return;
+
+ rx_ctx->resync_nh_do_now = 0;
+ seq += rcd_len;
+ tls_bigint_increment(rcd_sn, prot->rec_seq_size);
+ break;
+ }
+
+ tls_device_resync_rx(tls_ctx, sk, seq, rcd_sn);
+}
+
+static void tls_device_core_ctrl_rx_resync(struct tls_context *tls_ctx,
+ struct tls_offload_context_rx *ctx,
+ struct sock *sk, struct sk_buff *skb)
+{
+ struct strp_msg *rxm;
+
+ /* device will request resyncs by itself based on stream scan */
+ if (ctx->resync_type != TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT)
+ return;
+ /* already scheduled */
+ if (ctx->resync_nh_do_now)
+ return;
+ /* seen decrypted fragments since last fully-failed record */
+ if (ctx->resync_nh_reset) {
+ ctx->resync_nh_reset = 0;
+ ctx->resync_nh.decrypted_failed = 1;
+ ctx->resync_nh.decrypted_tgt = TLS_DEVICE_RESYNC_NH_START_IVAL;
+ return;
+ }
+
+ if (++ctx->resync_nh.decrypted_failed <= ctx->resync_nh.decrypted_tgt)
+ return;
+
+ /* doing resync, bump the next target in case it fails */
+ if (ctx->resync_nh.decrypted_tgt < TLS_DEVICE_RESYNC_NH_MAX_IVAL)
+ ctx->resync_nh.decrypted_tgt *= 2;
+ else
+ ctx->resync_nh.decrypted_tgt += TLS_DEVICE_RESYNC_NH_MAX_IVAL;
+
+ rxm = strp_msg(skb);
+
+ /* head of next rec is already in, parser will sync for us */
+ if (tcp_inq(sk) > rxm->full_len) {
+ ctx->resync_nh_do_now = 1;
+ } else {
+ struct tls_prot_info *prot = &tls_ctx->prot_info;
+ u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
+
+ memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
+ tls_bigint_increment(rcd_sn, prot->rec_seq_size);
+
+ tls_device_resync_rx(tls_ctx, sk, tcp_sk(sk)->copied_seq,
+ rcd_sn);
+ }
}
static int tls_device_reencrypt(struct sock *sk, struct sk_buff *skb)
{
struct strp_msg *rxm = strp_msg(skb);
- int err = 0, offset = rxm->offset, copy, nsg;
+ int err = 0, offset = rxm->offset, copy, nsg, data_len, pos;
struct sk_buff *skb_iter, *unused;
struct scatterlist sg[1];
char *orig_buf, *buf;
@@ -590,8 +773,10 @@
sg_set_buf(&sg[0], buf,
rxm->full_len + TLS_HEADER_SIZE +
TLS_CIPHER_AES_GCM_128_IV_SIZE);
- skb_copy_bits(skb, offset, buf,
- TLS_HEADER_SIZE + TLS_CIPHER_AES_GCM_128_IV_SIZE);
+ err = skb_copy_bits(skb, offset, buf,
+ TLS_HEADER_SIZE + TLS_CIPHER_AES_GCM_128_IV_SIZE);
+ if (err)
+ goto free_buf;
/* We are interested only in the decrypted data not the auth */
err = decrypt_skb(sk, skb, sg);
@@ -600,27 +785,50 @@
else
err = 0;
- copy = min_t(int, skb_pagelen(skb) - offset,
- rxm->full_len - TLS_CIPHER_AES_GCM_128_TAG_SIZE);
+ data_len = rxm->full_len - TLS_CIPHER_AES_GCM_128_TAG_SIZE;
- if (skb->decrypted)
- skb_store_bits(skb, offset, buf, copy);
+ if (skb_pagelen(skb) > offset) {
+ copy = min_t(int, skb_pagelen(skb) - offset, data_len);
- offset += copy;
- buf += copy;
-
- skb_walk_frags(skb, skb_iter) {
- copy = min_t(int, skb_iter->len,
- rxm->full_len - offset + rxm->offset -
- TLS_CIPHER_AES_GCM_128_TAG_SIZE);
-
- if (skb_iter->decrypted)
- skb_store_bits(skb_iter, offset, buf, copy);
+ if (skb->decrypted) {
+ err = skb_store_bits(skb, offset, buf, copy);
+ if (err)
+ goto free_buf;
+ }
offset += copy;
buf += copy;
}
+ pos = skb_pagelen(skb);
+ skb_walk_frags(skb, skb_iter) {
+ int frag_pos;
+
+ /* Practically all frags must belong to msg if reencrypt
+ * is needed with current strparser and coalescing logic,
+ * but strparser may "get optimized", so let's be safe.
+ */
+ if (pos + skb_iter->len <= offset)
+ goto done_with_frag;
+ if (pos >= data_len + rxm->offset)
+ break;
+
+ frag_pos = offset - pos;
+ copy = min_t(int, skb_iter->len - frag_pos,
+ data_len + rxm->offset - offset);
+
+ if (skb_iter->decrypted) {
+ err = skb_store_bits(skb_iter, frag_pos, buf, copy);
+ if (err)
+ goto free_buf;
+ }
+
+ offset += copy;
+ buf += copy;
+done_with_frag:
+ pos += skb_iter->len;
+ }
+
free_buf:
kfree(orig_buf);
return err;
@@ -634,10 +842,6 @@
int is_encrypted = !is_decrypted;
struct sk_buff *skb_iter;
- /* Skip if it is already decrypted */
- if (ctx->sw.decrypted)
- return 0;
-
/* Check if all the data is decrypted already */
skb_walk_frags(skb, skb_iter) {
is_decrypted &= skb_iter->decrypted;
@@ -646,39 +850,62 @@
ctx->sw.decrypted |= is_decrypted;
- /* Return immedeatly if the record is either entirely plaintext or
+ /* Return immediately if the record is either entirely plaintext or
* entirely ciphertext. Otherwise handle reencrypt partially decrypted
* record.
*/
- return (is_encrypted || is_decrypted) ? 0 :
- tls_device_reencrypt(sk, skb);
+ if (is_decrypted) {
+ ctx->resync_nh_reset = 1;
+ return 0;
+ }
+ if (is_encrypted) {
+ tls_device_core_ctrl_rx_resync(tls_ctx, ctx, sk, skb);
+ return 0;
+ }
+
+ ctx->resync_nh_reset = 1;
+ return tls_device_reencrypt(sk, skb);
+}
+
+static void tls_device_attach(struct tls_context *ctx, struct sock *sk,
+ struct net_device *netdev)
+{
+ if (sk->sk_destruct != tls_device_sk_destruct) {
+ refcount_set(&ctx->refcount, 1);
+ dev_hold(netdev);
+ ctx->netdev = netdev;
+ spin_lock_irq(&tls_device_lock);
+ list_add_tail(&ctx->list, &tls_device_list);
+ spin_unlock_irq(&tls_device_lock);
+
+ ctx->sk_destruct = sk->sk_destruct;
+ sk->sk_destruct = tls_device_sk_destruct;
+ }
}
int tls_set_device_offload(struct sock *sk, struct tls_context *ctx)
{
u16 nonce_size, tag_size, iv_size, rec_seq_size;
+ struct tls_context *tls_ctx = tls_get_ctx(sk);
+ struct tls_prot_info *prot = &tls_ctx->prot_info;
struct tls_record_info *start_marker_record;
struct tls_offload_context_tx *offload_ctx;
struct tls_crypto_info *crypto_info;
struct net_device *netdev;
char *iv, *rec_seq;
struct sk_buff *skb;
- int rc = -EINVAL;
__be64 rcd_sn;
+ int rc;
if (!ctx)
- goto out;
+ return -EINVAL;
- if (ctx->priv_ctx_tx) {
- rc = -EEXIST;
- goto out;
- }
+ if (ctx->priv_ctx_tx)
+ return -EEXIST;
start_marker_record = kmalloc(sizeof(*start_marker_record), GFP_KERNEL);
- if (!start_marker_record) {
- rc = -ENOMEM;
- goto out;
- }
+ if (!start_marker_record)
+ return -ENOMEM;
offload_ctx = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_TX, GFP_KERNEL);
if (!offload_ctx) {
@@ -687,6 +914,11 @@
}
crypto_info = &ctx->crypto_send.info;
+ if (crypto_info->version != TLS_1_2_VERSION) {
+ rc = -EOPNOTSUPP;
+ goto free_offload_ctx;
+ }
+
switch (crypto_info->cipher_type) {
case TLS_CIPHER_AES_GCM_128:
nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
@@ -702,10 +934,18 @@
goto free_offload_ctx;
}
- ctx->tx.prepend_size = TLS_HEADER_SIZE + nonce_size;
- ctx->tx.tag_size = tag_size;
- ctx->tx.overhead_size = ctx->tx.prepend_size + ctx->tx.tag_size;
- ctx->tx.iv_size = iv_size;
+ /* Sanity-check the rec_seq_size for stack allocations */
+ if (rec_seq_size > TLS_MAX_REC_SEQ_SIZE) {
+ rc = -EINVAL;
+ goto free_offload_ctx;
+ }
+
+ prot->version = crypto_info->version;
+ prot->cipher_type = crypto_info->cipher_type;
+ prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
+ prot->tag_size = tag_size;
+ prot->overhead_size = prot->prepend_size + prot->tag_size;
+ prot->iv_size = iv_size;
ctx->tx.iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
GFP_KERNEL);
if (!ctx->tx.iv) {
@@ -715,7 +955,7 @@
memcpy(ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size);
- ctx->tx.rec_seq_size = rec_seq_size;
+ prot->rec_seq_size = rec_seq_size;
ctx->tx.rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
if (!ctx->tx.rec_seq) {
rc = -ENOMEM;
@@ -751,17 +991,11 @@
if (skb)
TCP_SKB_CB(skb)->eor = 1;
- /* We support starting offload on multiple sockets
- * concurrently, so we only need a read lock here.
- * This lock must precede get_netdev_for_sock to prevent races between
- * NETDEV_DOWN and setsockopt.
- */
- down_read(&device_offload_lock);
netdev = get_netdev_for_sock(sk);
if (!netdev) {
pr_err_ratelimited("%s: netdev not found\n", __func__);
rc = -EINVAL;
- goto release_lock;
+ goto disable_cad;
}
if (!(netdev->features & NETIF_F_HW_TLS_TX)) {
@@ -772,10 +1006,15 @@
/* Avoid offloading if the device is down
* We don't want to offload new flows after
* the NETDEV_DOWN event
+ *
+ * device_offload_lock is taken in tls_devices's NETDEV_DOWN
+ * handler thus protecting from the device going down before
+ * ctx was added to tls_device_list.
*/
+ down_read(&device_offload_lock);
if (!(netdev->flags & IFF_UP)) {
rc = -EINVAL;
- goto release_netdev;
+ goto release_lock;
}
ctx->priv_ctx_tx = offload_ctx;
@@ -783,9 +1022,10 @@
&ctx->crypto_send.info,
tcp_sk(sk)->write_seq);
if (rc)
- goto release_netdev;
+ goto release_lock;
tls_device_attach(ctx, sk, netdev);
+ up_read(&device_offload_lock);
/* following this assignment tls_is_sk_tx_device_offloaded
* will return true and the context might be accessed
@@ -793,13 +1033,14 @@
*/
smp_store_release(&sk->sk_validate_xmit_skb, tls_validate_xmit_skb);
dev_put(netdev);
- up_read(&device_offload_lock);
- goto out;
-release_netdev:
- dev_put(netdev);
+ return 0;
+
release_lock:
up_read(&device_offload_lock);
+release_netdev:
+ dev_put(netdev);
+disable_cad:
clean_acked_data_disable(inet_csk(sk));
crypto_free_aead(offload_ctx->aead_send);
free_rec_seq:
@@ -811,7 +1052,6 @@
ctx->priv_ctx_tx = NULL;
free_marker_record:
kfree(start_marker_record);
-out:
return rc;
}
@@ -821,22 +1061,16 @@
struct net_device *netdev;
int rc = 0;
- /* We support starting offload on multiple sockets
- * concurrently, so we only need a read lock here.
- * This lock must precede get_netdev_for_sock to prevent races between
- * NETDEV_DOWN and setsockopt.
- */
- down_read(&device_offload_lock);
+ if (ctx->crypto_recv.info.version != TLS_1_2_VERSION)
+ return -EOPNOTSUPP;
+
netdev = get_netdev_for_sock(sk);
if (!netdev) {
pr_err_ratelimited("%s: netdev not found\n", __func__);
- rc = -EINVAL;
- goto release_lock;
+ return -EINVAL;
}
if (!(netdev->features & NETIF_F_HW_TLS_RX)) {
- pr_err_ratelimited("%s: netdev %s with no TLS offload\n",
- __func__, netdev->name);
rc = -ENOTSUPP;
goto release_netdev;
}
@@ -844,17 +1078,23 @@
/* Avoid offloading if the device is down
* We don't want to offload new flows after
* the NETDEV_DOWN event
+ *
+ * device_offload_lock is taken in tls_devices's NETDEV_DOWN
+ * handler thus protecting from the device going down before
+ * ctx was added to tls_device_list.
*/
+ down_read(&device_offload_lock);
if (!(netdev->flags & IFF_UP)) {
rc = -EINVAL;
- goto release_netdev;
+ goto release_lock;
}
context = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_RX, GFP_KERNEL);
if (!context) {
rc = -ENOMEM;
- goto release_netdev;
+ goto release_lock;
}
+ context->resync_nh_reset = 1;
ctx->priv_ctx_rx = context;
rc = tls_set_sw_offload(sk, ctx, 0);
@@ -864,23 +1104,26 @@
rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_RX,
&ctx->crypto_recv.info,
tcp_sk(sk)->copied_seq);
- if (rc) {
- pr_err_ratelimited("%s: The netdev has refused to offload this socket\n",
- __func__);
+ if (rc)
goto free_sw_resources;
- }
tls_device_attach(ctx, sk, netdev);
- goto release_netdev;
+ up_read(&device_offload_lock);
+
+ dev_put(netdev);
+
+ return 0;
free_sw_resources:
+ up_read(&device_offload_lock);
tls_sw_free_resources_rx(sk);
+ down_read(&device_offload_lock);
release_ctx:
ctx->priv_ctx_rx = NULL;
-release_netdev:
- dev_put(netdev);
release_lock:
up_read(&device_offload_lock);
+release_netdev:
+ dev_put(netdev);
return rc;
}
@@ -894,12 +1137,6 @@
if (!netdev)
goto out;
- if (!(netdev->features & NETIF_F_HW_TLS_RX)) {
- pr_err_ratelimited("%s: device is missing NETIF_F_HW_TLS_RX cap\n",
- __func__);
- goto out;
- }
-
netdev->tlsdev_ops->tls_dev_del(netdev, tls_ctx,
TLS_OFFLOAD_CTX_DIR_RX);
@@ -909,8 +1146,6 @@
}
out:
up_read(&device_offload_lock);
- kfree(tls_ctx->rx.rec_seq);
- kfree(tls_ctx->rx.iv);
tls_sw_release_resources_rx(sk);
}
@@ -940,7 +1175,10 @@
if (ctx->rx_conf == TLS_HW)
netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
TLS_OFFLOAD_CTX_DIR_RX);
- ctx->netdev = NULL;
+ WRITE_ONCE(ctx->netdev, NULL);
+ smp_mb__before_atomic(); /* pairs with test_and_set_bit() */
+ while (test_bit(TLS_RX_SYNC_RUNNING, &ctx->flags))
+ usleep_range(10, 200);
dev_put(netdev);
list_del_init(&ctx->list);
@@ -960,14 +1198,15 @@
{
struct net_device *dev = netdev_notifier_info_to_dev(ptr);
- if (!(dev->features & (NETIF_F_HW_TLS_RX | NETIF_F_HW_TLS_TX)))
+ if (!dev->tlsdev_ops &&
+ !(dev->features & (NETIF_F_HW_TLS_RX | NETIF_F_HW_TLS_TX)))
return NOTIFY_DONE;
switch (event) {
case NETDEV_REGISTER:
case NETDEV_FEAT_CHANGE:
if ((dev->features & NETIF_F_HW_TLS_RX) &&
- !dev->tlsdev_ops->tls_dev_resync_rx)
+ !dev->tlsdev_ops->tls_dev_resync)
return NOTIFY_BAD;
if (dev->tlsdev_ops &&
@@ -995,4 +1234,5 @@
{
unregister_netdevice_notifier(&tls_dev_notifier);
flush_work(&tls_device_gc_work);
+ clean_acked_data_flush();
}
diff --git a/net/tls/tls_device_fallback.c b/net/tls/tls_device_fallback.c
index 450a6db..2889533 100644
--- a/net/tls/tls_device_fallback.c
+++ b/net/tls/tls_device_fallback.c
@@ -73,7 +73,8 @@
len -= TLS_CIPHER_AES_GCM_128_IV_SIZE;
tls_make_aad(aad, len - TLS_CIPHER_AES_GCM_128_TAG_SIZE,
- (char *)&rcd_sn, sizeof(rcd_sn), buf[0]);
+ (char *)&rcd_sn, sizeof(rcd_sn), buf[0],
+ TLS_1_2_VERSION);
memcpy(iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, buf + TLS_HEADER_SIZE,
TLS_CIPHER_AES_GCM_128_IV_SIZE);
@@ -193,18 +194,30 @@
static void complete_skb(struct sk_buff *nskb, struct sk_buff *skb, int headln)
{
+ struct sock *sk = skb->sk;
+ int delta;
+
skb_copy_header(nskb, skb);
skb_put(nskb, skb->len);
memcpy(nskb->data, skb->data, headln);
- update_chksum(nskb, headln);
nskb->destructor = skb->destructor;
- nskb->sk = skb->sk;
+ nskb->sk = sk;
skb->destructor = NULL;
skb->sk = NULL;
- refcount_add(nskb->truesize - skb->truesize,
- &nskb->sk->sk_wmem_alloc);
+
+ update_chksum(nskb, headln);
+
+ /* sock_efree means skb must gone through skb_orphan_partial() */
+ if (nskb->destructor == sock_efree)
+ return;
+
+ delta = nskb->truesize - skb->truesize;
+ if (likely(delta < 0))
+ WARN_ON_ONCE(refcount_sub_and_test(-delta, &sk->sk_wmem_alloc));
+ else if (delta)
+ refcount_add(delta, &sk->sk_wmem_alloc);
}
/* This function may be called after the user socket is already
@@ -231,7 +244,6 @@
record = tls_get_record(ctx, tcp_seq, rcd_sn);
if (!record) {
spin_unlock_irqrestore(&ctx->lock, flags);
- WARN(1, "Record not found for seq %u\n", tcp_seq);
return -EINVAL;
}
@@ -261,7 +273,7 @@
__skb_frag_ref(frag);
sg_set_page(sg_in + i, skb_frag_page(frag),
- skb_frag_size(frag), frag->page_offset);
+ skb_frag_size(frag), skb_frag_off(frag));
remaining -= skb_frag_size(frag);
@@ -400,7 +412,10 @@
put_page(sg_page(&sg_in[--resync_sgs]));
kfree(sg_in);
free_orig:
- kfree_skb(skb);
+ if (nskb)
+ consume_skb(skb);
+ else
+ kfree_skb(skb);
return nskb;
}
@@ -415,6 +430,12 @@
}
EXPORT_SYMBOL_GPL(tls_validate_xmit_skb);
+struct sk_buff *tls_encrypt_skb(struct sk_buff *skb)
+{
+ return tls_sw_fallback(skb->sk, skb);
+}
+EXPORT_SYMBOL_GPL(tls_encrypt_skb);
+
int tls_sw_fallback_init(struct sock *sk,
struct tls_offload_context_tx *offload_ctx,
struct tls_crypto_info *crypto_info)
diff --git a/net/tls/tls_main.c b/net/tls/tls_main.c
index 523622d..eff4442 100644
--- a/net/tls/tls_main.c
+++ b/net/tls/tls_main.c
@@ -39,6 +39,7 @@
#include <linux/netdevice.h>
#include <linux/sched/signal.h>
#include <linux/inetdevice.h>
+#include <linux/inet_diag.h>
#include <net/tls.h>
@@ -55,10 +56,14 @@
static struct proto *saved_tcpv6_prot;
static DEFINE_MUTEX(tcpv6_prot_mutex);
+static struct proto *saved_tcpv4_prot;
+static DEFINE_MUTEX(tcpv4_prot_mutex);
static LIST_HEAD(device_list);
-static DEFINE_MUTEX(device_mutex);
+static DEFINE_SPINLOCK(device_spinlock);
static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
static struct proto_ops tls_sw_proto_ops;
+static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
+ struct proto *base);
static void update_sk_prot(struct sock *sk, struct tls_context *ctx)
{
@@ -141,9 +146,7 @@
size = sg->length;
}
- clear_bit(TLS_PENDING_CLOSED_RECORD, &ctx->flags);
ctx->in_tcp_sendpages = false;
- ctx->sk_write_space(sk);
return 0;
}
@@ -193,15 +196,12 @@
return rc;
}
-int tls_push_pending_closed_record(struct sock *sk, struct tls_context *ctx,
- int flags, long *timeo)
+int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
+ int flags)
{
struct scatterlist *sg;
u16 offset;
- if (!tls_is_partially_sent_record(ctx))
- return ctx->push_pending_record(sk, flags);
-
sg = ctx->partially_sent_record;
offset = ctx->partially_sent_offset;
@@ -209,6 +209,17 @@
return tls_push_sg(sk, ctx, sg, offset, flags);
}
+void tls_free_partial_record(struct sock *sk, struct tls_context *ctx)
+{
+ struct scatterlist *sg;
+
+ for (sg = ctx->partially_sent_record; sg; sg = sg_next(sg)) {
+ put_page(sg_page(sg));
+ sk_mem_uncharge(sk, sg->length);
+ }
+ ctx->partially_sent_record = NULL;
+}
+
static void tls_write_space(struct sock *sk)
{
struct tls_context *ctx = tls_get_ctx(sk);
@@ -222,100 +233,95 @@
return;
}
- if (!sk->sk_write_pending && tls_is_pending_closed_record(ctx)) {
- gfp_t sk_allocation = sk->sk_allocation;
- int rc;
- long timeo = 0;
-
- sk->sk_allocation = GFP_ATOMIC;
- rc = tls_push_pending_closed_record(sk, ctx,
- MSG_DONTWAIT |
- MSG_NOSIGNAL,
- &timeo);
- sk->sk_allocation = sk_allocation;
-
- if (rc < 0)
- return;
- }
+#ifdef CONFIG_TLS_DEVICE
+ if (ctx->tx_conf == TLS_HW)
+ tls_device_write_space(sk, ctx);
+ else
+#endif
+ tls_sw_write_space(sk, ctx);
ctx->sk_write_space(sk);
}
-static void tls_ctx_free(struct tls_context *ctx)
+/**
+ * tls_ctx_free() - free TLS ULP context
+ * @sk: socket to with @ctx is attached
+ * @ctx: TLS context structure
+ *
+ * Free TLS context. If @sk is %NULL caller guarantees that the socket
+ * to which @ctx was attached has no outstanding references.
+ */
+void tls_ctx_free(struct sock *sk, struct tls_context *ctx)
{
if (!ctx)
return;
memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
- kfree(ctx);
+ mutex_destroy(&ctx->tx_lock);
+
+ if (sk)
+ kfree_rcu(ctx, rcu);
+ else
+ kfree(ctx);
}
-static void tls_sk_proto_close(struct sock *sk, long timeout)
+static void tls_sk_proto_cleanup(struct sock *sk,
+ struct tls_context *ctx, long timeo)
{
- struct tls_context *ctx = tls_get_ctx(sk);
- long timeo = sock_sndtimeo(sk, 0);
- void (*sk_proto_close)(struct sock *sk, long timeout);
- bool free_ctx = false;
-
- lock_sock(sk);
- sk_proto_close = ctx->sk_proto_close;
-
- if ((ctx->tx_conf == TLS_HW_RECORD && ctx->rx_conf == TLS_HW_RECORD) ||
- (ctx->tx_conf == TLS_BASE && ctx->rx_conf == TLS_BASE)) {
- free_ctx = true;
- goto skip_tx_cleanup;
- }
-
- if (!tls_complete_pending_work(sk, ctx, 0, &timeo))
+ if (unlikely(sk->sk_write_pending) &&
+ !wait_on_pending_writer(sk, &timeo))
tls_handle_open_record(sk, 0);
- if (ctx->partially_sent_record) {
- struct scatterlist *sg = ctx->partially_sent_record;
-
- while (1) {
- put_page(sg_page(sg));
- sk_mem_uncharge(sk, sg->length);
-
- if (sg_is_last(sg))
- break;
- sg++;
- }
- }
-
/* We need these for tls_sw_fallback handling of other packets */
if (ctx->tx_conf == TLS_SW) {
kfree(ctx->tx.rec_seq);
kfree(ctx->tx.iv);
- tls_sw_free_resources_tx(sk);
+ tls_sw_release_resources_tx(sk);
+ } else if (ctx->tx_conf == TLS_HW) {
+ tls_device_free_resources_tx(sk);
}
- if (ctx->rx_conf == TLS_SW) {
- kfree(ctx->rx.rec_seq);
- kfree(ctx->rx.iv);
- tls_sw_free_resources_rx(sk);
- }
-
-#ifdef CONFIG_TLS_DEVICE
- if (ctx->rx_conf == TLS_HW)
+ if (ctx->rx_conf == TLS_SW)
+ tls_sw_release_resources_rx(sk);
+ else if (ctx->rx_conf == TLS_HW)
tls_device_offload_cleanup_rx(sk);
+}
- if (ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW) {
-#else
- {
-#endif
- tls_ctx_free(ctx);
- ctx = NULL;
- }
+static void tls_sk_proto_close(struct sock *sk, long timeout)
+{
+ struct inet_connection_sock *icsk = inet_csk(sk);
+ struct tls_context *ctx = tls_get_ctx(sk);
+ long timeo = sock_sndtimeo(sk, 0);
+ bool free_ctx;
-skip_tx_cleanup:
- release_sock(sk);
- sk_proto_close(sk, timeout);
- /* free ctx for TLS_HW_RECORD, used by tcp_set_state
- * for sk->sk_prot->unhash [tls_hw_unhash]
- */
+ if (ctx->tx_conf == TLS_SW)
+ tls_sw_cancel_work_tx(ctx);
+
+ lock_sock(sk);
+ free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW;
+
+ if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE)
+ tls_sk_proto_cleanup(sk, ctx, timeo);
+
+ write_lock_bh(&sk->sk_callback_lock);
if (free_ctx)
- tls_ctx_free(ctx);
+ rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
+ sk->sk_prot = ctx->sk_proto;
+ if (sk->sk_write_space == tls_write_space)
+ sk->sk_write_space = ctx->sk_write_space;
+ write_unlock_bh(&sk->sk_callback_lock);
+ release_sock(sk);
+ if (ctx->tx_conf == TLS_SW)
+ tls_sw_free_ctx_tx(ctx);
+ if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
+ tls_sw_strparser_done(ctx);
+ if (ctx->rx_conf == TLS_SW)
+ tls_sw_free_ctx_rx(ctx);
+ ctx->sk_proto->close(sk, timeout);
+
+ if (free_ctx)
+ tls_ctx_free(sk, ctx);
}
static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval,
@@ -378,6 +384,30 @@
rc = -EFAULT;
break;
}
+ case TLS_CIPHER_AES_GCM_256: {
+ struct tls12_crypto_info_aes_gcm_256 *
+ crypto_info_aes_gcm_256 =
+ container_of(crypto_info,
+ struct tls12_crypto_info_aes_gcm_256,
+ info);
+
+ if (len != sizeof(*crypto_info_aes_gcm_256)) {
+ rc = -EINVAL;
+ goto out;
+ }
+ lock_sock(sk);
+ memcpy(crypto_info_aes_gcm_256->iv,
+ ctx->tx.iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE,
+ TLS_CIPHER_AES_GCM_256_IV_SIZE);
+ memcpy(crypto_info_aes_gcm_256->rec_seq, ctx->tx.rec_seq,
+ TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE);
+ release_sock(sk);
+ if (copy_to_user(optval,
+ crypto_info_aes_gcm_256,
+ sizeof(*crypto_info_aes_gcm_256)))
+ rc = -EFAULT;
+ break;
+ }
default:
rc = -EINVAL;
}
@@ -408,7 +438,8 @@
struct tls_context *ctx = tls_get_ctx(sk);
if (level != SOL_TLS)
- return ctx->getsockopt(sk, level, optname, optval, optlen);
+ return ctx->sk_proto->getsockopt(sk, level,
+ optname, optval, optlen);
return do_tls_getsockopt(sk, optname, optval, optlen);
}
@@ -417,7 +448,9 @@
unsigned int optlen, int tx)
{
struct tls_crypto_info *crypto_info;
+ struct tls_crypto_info *alt_crypto_info;
struct tls_context *ctx = tls_get_ctx(sk);
+ size_t optsize;
int rc = 0;
int conf;
@@ -426,10 +459,13 @@
goto out;
}
- if (tx)
+ if (tx) {
crypto_info = &ctx->crypto_send.info;
- else
+ alt_crypto_info = &ctx->crypto_recv.info;
+ } else {
crypto_info = &ctx->crypto_recv.info;
+ alt_crypto_info = &ctx->crypto_send.info;
+ }
/* Currently we don't support set crypto info more than one time */
if (TLS_CRYPTO_INFO_READY(crypto_info)) {
@@ -444,57 +480,70 @@
}
/* check version */
- if (crypto_info->version != TLS_1_2_VERSION) {
+ if (crypto_info->version != TLS_1_2_VERSION &&
+ crypto_info->version != TLS_1_3_VERSION) {
rc = -ENOTSUPP;
goto err_crypto_info;
}
- switch (crypto_info->cipher_type) {
- case TLS_CIPHER_AES_GCM_128: {
- if (optlen != sizeof(struct tls12_crypto_info_aes_gcm_128)) {
+ /* Ensure that TLS version and ciphers are same in both directions */
+ if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
+ if (alt_crypto_info->version != crypto_info->version ||
+ alt_crypto_info->cipher_type != crypto_info->cipher_type) {
rc = -EINVAL;
goto err_crypto_info;
}
- rc = copy_from_user(crypto_info + 1, optval + sizeof(*crypto_info),
- optlen - sizeof(*crypto_info));
- if (rc) {
- rc = -EFAULT;
- goto err_crypto_info;
- }
+ }
+
+ switch (crypto_info->cipher_type) {
+ case TLS_CIPHER_AES_GCM_128:
+ optsize = sizeof(struct tls12_crypto_info_aes_gcm_128);
+ break;
+ case TLS_CIPHER_AES_GCM_256: {
+ optsize = sizeof(struct tls12_crypto_info_aes_gcm_256);
break;
}
+ case TLS_CIPHER_AES_CCM_128:
+ optsize = sizeof(struct tls12_crypto_info_aes_ccm_128);
+ break;
default:
rc = -EINVAL;
goto err_crypto_info;
}
+ if (optlen != optsize) {
+ rc = -EINVAL;
+ goto err_crypto_info;
+ }
+
+ rc = copy_from_user(crypto_info + 1, optval + sizeof(*crypto_info),
+ optlen - sizeof(*crypto_info));
+ if (rc) {
+ rc = -EFAULT;
+ goto err_crypto_info;
+ }
+
if (tx) {
-#ifdef CONFIG_TLS_DEVICE
rc = tls_set_device_offload(sk, ctx);
conf = TLS_HW;
if (rc) {
-#else
- {
-#endif
rc = tls_set_sw_offload(sk, ctx, 1);
+ if (rc)
+ goto err_crypto_info;
conf = TLS_SW;
}
} else {
-#ifdef CONFIG_TLS_DEVICE
rc = tls_set_device_offload_rx(sk, ctx);
conf = TLS_HW;
if (rc) {
-#else
- {
-#endif
rc = tls_set_sw_offload(sk, ctx, 0);
+ if (rc)
+ goto err_crypto_info;
conf = TLS_SW;
}
+ tls_sw_strparser_arm(sk, ctx);
}
- if (rc)
- goto err_crypto_info;
-
if (tx)
ctx->tx_conf = conf;
else
@@ -540,7 +589,8 @@
struct tls_context *ctx = tls_get_ctx(sk);
if (level != SOL_TLS)
- return ctx->setsockopt(sk, level, optname, optval, optlen);
+ return ctx->sk_proto->setsockopt(sk, level, optname, optval,
+ optlen);
return do_tls_setsockopt(sk, optname, optval, optlen);
}
@@ -550,39 +600,80 @@
struct inet_connection_sock *icsk = inet_csk(sk);
struct tls_context *ctx;
- ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
+ ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
if (!ctx)
return NULL;
- icsk->icsk_ulp_data = ctx;
+ mutex_init(&ctx->tx_lock);
+ rcu_assign_pointer(icsk->icsk_ulp_data, ctx);
+ ctx->sk_proto = sk->sk_prot;
return ctx;
}
+static void tls_build_proto(struct sock *sk)
+{
+ int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
+
+ /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
+ if (ip_ver == TLSV6 &&
+ unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) {
+ mutex_lock(&tcpv6_prot_mutex);
+ if (likely(sk->sk_prot != saved_tcpv6_prot)) {
+ build_protos(tls_prots[TLSV6], sk->sk_prot);
+ smp_store_release(&saved_tcpv6_prot, sk->sk_prot);
+ }
+ mutex_unlock(&tcpv6_prot_mutex);
+ }
+
+ if (ip_ver == TLSV4 &&
+ unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv4_prot))) {
+ mutex_lock(&tcpv4_prot_mutex);
+ if (likely(sk->sk_prot != saved_tcpv4_prot)) {
+ build_protos(tls_prots[TLSV4], sk->sk_prot);
+ smp_store_release(&saved_tcpv4_prot, sk->sk_prot);
+ }
+ mutex_unlock(&tcpv4_prot_mutex);
+ }
+}
+
+static void tls_hw_sk_destruct(struct sock *sk)
+{
+ struct tls_context *ctx = tls_get_ctx(sk);
+ struct inet_connection_sock *icsk = inet_csk(sk);
+
+ ctx->sk_destruct(sk);
+ /* Free ctx */
+ rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
+ tls_ctx_free(sk, ctx);
+}
+
static int tls_hw_prot(struct sock *sk)
{
struct tls_context *ctx;
struct tls_device *dev;
int rc = 0;
- mutex_lock(&device_mutex);
+ spin_lock_bh(&device_spinlock);
list_for_each_entry(dev, &device_list, dev_list) {
if (dev->feature && dev->feature(dev)) {
ctx = create_ctx(sk);
if (!ctx)
goto out;
- ctx->hash = sk->sk_prot->hash;
- ctx->unhash = sk->sk_prot->unhash;
- ctx->sk_proto_close = sk->sk_prot->close;
+ spin_unlock_bh(&device_spinlock);
+ tls_build_proto(sk);
+ ctx->sk_destruct = sk->sk_destruct;
+ sk->sk_destruct = tls_hw_sk_destruct;
ctx->rx_conf = TLS_HW_RECORD;
ctx->tx_conf = TLS_HW_RECORD;
update_sk_prot(sk, ctx);
+ spin_lock_bh(&device_spinlock);
rc = 1;
break;
}
}
out:
- mutex_unlock(&device_mutex);
+ spin_unlock_bh(&device_spinlock);
return rc;
}
@@ -591,13 +682,18 @@
struct tls_context *ctx = tls_get_ctx(sk);
struct tls_device *dev;
- mutex_lock(&device_mutex);
+ spin_lock_bh(&device_spinlock);
list_for_each_entry(dev, &device_list, dev_list) {
- if (dev->unhash)
+ if (dev->unhash) {
+ kref_get(&dev->kref);
+ spin_unlock_bh(&device_spinlock);
dev->unhash(dev, sk);
+ kref_put(&dev->kref, dev->release);
+ spin_lock_bh(&device_spinlock);
+ }
}
- mutex_unlock(&device_mutex);
- ctx->unhash(sk);
+ spin_unlock_bh(&device_spinlock);
+ ctx->sk_proto->unhash(sk);
}
static int tls_hw_hash(struct sock *sk)
@@ -606,13 +702,18 @@
struct tls_device *dev;
int err;
- err = ctx->hash(sk);
- mutex_lock(&device_mutex);
+ err = ctx->sk_proto->hash(sk);
+ spin_lock_bh(&device_spinlock);
list_for_each_entry(dev, &device_list, dev_list) {
- if (dev->hash)
+ if (dev->hash) {
+ kref_get(&dev->kref);
+ spin_unlock_bh(&device_spinlock);
err |= dev->hash(dev, sk);
+ kref_put(&dev->kref, dev->release);
+ spin_lock_bh(&device_spinlock);
+ }
}
- mutex_unlock(&device_mutex);
+ spin_unlock_bh(&device_spinlock);
if (err)
tls_hw_unhash(sk);
@@ -632,12 +733,14 @@
prot[TLS_SW][TLS_BASE].sendpage = tls_sw_sendpage;
prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
- prot[TLS_BASE][TLS_SW].recvmsg = tls_sw_recvmsg;
- prot[TLS_BASE][TLS_SW].close = tls_sk_proto_close;
+ prot[TLS_BASE][TLS_SW].recvmsg = tls_sw_recvmsg;
+ prot[TLS_BASE][TLS_SW].stream_memory_read = tls_sw_stream_read;
+ prot[TLS_BASE][TLS_SW].close = tls_sk_proto_close;
prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
- prot[TLS_SW][TLS_SW].recvmsg = tls_sw_recvmsg;
- prot[TLS_SW][TLS_SW].close = tls_sk_proto_close;
+ prot[TLS_SW][TLS_SW].recvmsg = tls_sw_recvmsg;
+ prot[TLS_SW][TLS_SW].stream_memory_read = tls_sw_stream_read;
+ prot[TLS_SW][TLS_SW].close = tls_sk_proto_close;
#ifdef CONFIG_TLS_DEVICE
prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
@@ -658,17 +761,15 @@
prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
prot[TLS_HW_RECORD][TLS_HW_RECORD].hash = tls_hw_hash;
prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash = tls_hw_unhash;
- prot[TLS_HW_RECORD][TLS_HW_RECORD].close = tls_sk_proto_close;
}
static int tls_init(struct sock *sk)
{
- int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
struct tls_context *ctx;
int rc = 0;
if (tls_hw_prot(sk))
- goto out;
+ return 0;
/* The TLS ulp is currently supported only for TCP sockets
* in ESTABLISHED state.
@@ -679,69 +780,128 @@
if (sk->sk_state != TCP_ESTABLISHED)
return -ENOTSUPP;
+ tls_build_proto(sk);
+
/* allocate tls context */
+ write_lock_bh(&sk->sk_callback_lock);
ctx = create_ctx(sk);
if (!ctx) {
rc = -ENOMEM;
goto out;
}
- ctx->setsockopt = sk->sk_prot->setsockopt;
- ctx->getsockopt = sk->sk_prot->getsockopt;
- ctx->sk_proto_close = sk->sk_prot->close;
-
- /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
- if (ip_ver == TLSV6 &&
- unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) {
- mutex_lock(&tcpv6_prot_mutex);
- if (likely(sk->sk_prot != saved_tcpv6_prot)) {
- build_protos(tls_prots[TLSV6], sk->sk_prot);
- smp_store_release(&saved_tcpv6_prot, sk->sk_prot);
- }
- mutex_unlock(&tcpv6_prot_mutex);
- }
ctx->tx_conf = TLS_BASE;
ctx->rx_conf = TLS_BASE;
update_sk_prot(sk, ctx);
out:
+ write_unlock_bh(&sk->sk_callback_lock);
return rc;
}
+static void tls_update(struct sock *sk, struct proto *p)
+{
+ struct tls_context *ctx;
+
+ ctx = tls_get_ctx(sk);
+ if (likely(ctx))
+ ctx->sk_proto = p;
+ else
+ sk->sk_prot = p;
+}
+
+static int tls_get_info(const struct sock *sk, struct sk_buff *skb)
+{
+ u16 version, cipher_type;
+ struct tls_context *ctx;
+ struct nlattr *start;
+ int err;
+
+ start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS);
+ if (!start)
+ return -EMSGSIZE;
+
+ rcu_read_lock();
+ ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data);
+ if (!ctx) {
+ err = 0;
+ goto nla_failure;
+ }
+ version = ctx->prot_info.version;
+ if (version) {
+ err = nla_put_u16(skb, TLS_INFO_VERSION, version);
+ if (err)
+ goto nla_failure;
+ }
+ cipher_type = ctx->prot_info.cipher_type;
+ if (cipher_type) {
+ err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type);
+ if (err)
+ goto nla_failure;
+ }
+ err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true));
+ if (err)
+ goto nla_failure;
+
+ err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false));
+ if (err)
+ goto nla_failure;
+
+ rcu_read_unlock();
+ nla_nest_end(skb, start);
+ return 0;
+
+nla_failure:
+ rcu_read_unlock();
+ nla_nest_cancel(skb, start);
+ return err;
+}
+
+static size_t tls_get_info_size(const struct sock *sk)
+{
+ size_t size = 0;
+
+ size += nla_total_size(0) + /* INET_ULP_INFO_TLS */
+ nla_total_size(sizeof(u16)) + /* TLS_INFO_VERSION */
+ nla_total_size(sizeof(u16)) + /* TLS_INFO_CIPHER */
+ nla_total_size(sizeof(u16)) + /* TLS_INFO_RXCONF */
+ nla_total_size(sizeof(u16)) + /* TLS_INFO_TXCONF */
+ 0;
+
+ return size;
+}
+
void tls_register_device(struct tls_device *device)
{
- mutex_lock(&device_mutex);
+ spin_lock_bh(&device_spinlock);
list_add_tail(&device->dev_list, &device_list);
- mutex_unlock(&device_mutex);
+ spin_unlock_bh(&device_spinlock);
}
EXPORT_SYMBOL(tls_register_device);
void tls_unregister_device(struct tls_device *device)
{
- mutex_lock(&device_mutex);
+ spin_lock_bh(&device_spinlock);
list_del(&device->dev_list);
- mutex_unlock(&device_mutex);
+ spin_unlock_bh(&device_spinlock);
}
EXPORT_SYMBOL(tls_unregister_device);
static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
.name = "tls",
- .uid = TCP_ULP_TLS,
- .user_visible = true,
.owner = THIS_MODULE,
.init = tls_init,
+ .update = tls_update,
+ .get_info = tls_get_info,
+ .get_info_size = tls_get_info_size,
};
static int __init tls_register(void)
{
- build_protos(tls_prots[TLSV4], &tcp_prot);
-
tls_sw_proto_ops = inet_stream_ops;
- tls_sw_proto_ops.poll = tls_sw_poll;
tls_sw_proto_ops.splice_read = tls_sw_splice_read;
+ tls_sw_proto_ops.sendpage_locked = tls_sw_sendpage_locked,
-#ifdef CONFIG_TLS_DEVICE
tls_device_init();
-#endif
tcp_register_ulp(&tcp_tls_ulp_ops);
return 0;
@@ -750,9 +910,7 @@
static void __exit tls_unregister(void)
{
tcp_unregister_ulp(&tcp_tls_ulp_ops);
-#ifdef CONFIG_TLS_DEVICE
tls_device_cleanup();
-#endif
}
module_init(tls_register);
diff --git a/net/tls/tls_sw.c b/net/tls/tls_sw.c
index b9c6ecf..5dd0f01 100644
--- a/net/tls/tls_sw.c
+++ b/net/tls/tls_sw.c
@@ -4,6 +4,7 @@
* Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
* Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
* Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
+ * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
@@ -41,237 +42,1257 @@
#include <net/strparser.h>
#include <net/tls.h>
-#define MAX_IV_SIZE TLS_CIPHER_AES_GCM_128_IV_SIZE
+static int __skb_nsg(struct sk_buff *skb, int offset, int len,
+ unsigned int recursion_level)
+{
+ int start = skb_headlen(skb);
+ int i, chunk = start - offset;
+ struct sk_buff *frag_iter;
+ int elt = 0;
+
+ if (unlikely(recursion_level >= 24))
+ return -EMSGSIZE;
+
+ if (chunk > 0) {
+ if (chunk > len)
+ chunk = len;
+ elt++;
+ len -= chunk;
+ if (len == 0)
+ return elt;
+ offset += chunk;
+ }
+
+ for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
+ int end;
+
+ WARN_ON(start > offset + len);
+
+ end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
+ chunk = end - offset;
+ if (chunk > 0) {
+ if (chunk > len)
+ chunk = len;
+ elt++;
+ len -= chunk;
+ if (len == 0)
+ return elt;
+ offset += chunk;
+ }
+ start = end;
+ }
+
+ if (unlikely(skb_has_frag_list(skb))) {
+ skb_walk_frags(skb, frag_iter) {
+ int end, ret;
+
+ WARN_ON(start > offset + len);
+
+ end = start + frag_iter->len;
+ chunk = end - offset;
+ if (chunk > 0) {
+ if (chunk > len)
+ chunk = len;
+ ret = __skb_nsg(frag_iter, offset - start, chunk,
+ recursion_level + 1);
+ if (unlikely(ret < 0))
+ return ret;
+ elt += ret;
+ len -= chunk;
+ if (len == 0)
+ return elt;
+ offset += chunk;
+ }
+ start = end;
+ }
+ }
+ BUG_ON(len);
+ return elt;
+}
+
+/* Return the number of scatterlist elements required to completely map the
+ * skb, or -EMSGSIZE if the recursion depth is exceeded.
+ */
+static int skb_nsg(struct sk_buff *skb, int offset, int len)
+{
+ return __skb_nsg(skb, offset, len, 0);
+}
+
+static int padding_length(struct tls_sw_context_rx *ctx,
+ struct tls_prot_info *prot, struct sk_buff *skb)
+{
+ struct strp_msg *rxm = strp_msg(skb);
+ int sub = 0;
+
+ /* Determine zero-padding length */
+ if (prot->version == TLS_1_3_VERSION) {
+ char content_type = 0;
+ int err;
+ int back = 17;
+
+ while (content_type == 0) {
+ if (back > rxm->full_len - prot->prepend_size)
+ return -EBADMSG;
+ err = skb_copy_bits(skb,
+ rxm->offset + rxm->full_len - back,
+ &content_type, 1);
+ if (err)
+ return err;
+ if (content_type)
+ break;
+ sub++;
+ back++;
+ }
+ ctx->control = content_type;
+ }
+ return sub;
+}
+
+static void tls_decrypt_done(struct crypto_async_request *req, int err)
+{
+ struct aead_request *aead_req = (struct aead_request *)req;
+ struct scatterlist *sgout = aead_req->dst;
+ struct scatterlist *sgin = aead_req->src;
+ struct tls_sw_context_rx *ctx;
+ struct tls_context *tls_ctx;
+ struct tls_prot_info *prot;
+ struct scatterlist *sg;
+ struct sk_buff *skb;
+ unsigned int pages;
+ int pending;
+
+ skb = (struct sk_buff *)req->data;
+ tls_ctx = tls_get_ctx(skb->sk);
+ ctx = tls_sw_ctx_rx(tls_ctx);
+ prot = &tls_ctx->prot_info;
+
+ /* Propagate if there was an err */
+ if (err) {
+ ctx->async_wait.err = err;
+ tls_err_abort(skb->sk, err);
+ } else {
+ struct strp_msg *rxm = strp_msg(skb);
+ int pad;
+
+ pad = padding_length(ctx, prot, skb);
+ if (pad < 0) {
+ ctx->async_wait.err = pad;
+ tls_err_abort(skb->sk, pad);
+ } else {
+ rxm->full_len -= pad;
+ rxm->offset += prot->prepend_size;
+ rxm->full_len -= prot->overhead_size;
+ }
+ }
+
+ /* After using skb->sk to propagate sk through crypto async callback
+ * we need to NULL it again.
+ */
+ skb->sk = NULL;
+
+
+ /* Free the destination pages if skb was not decrypted inplace */
+ if (sgout != sgin) {
+ /* Skip the first S/G entry as it points to AAD */
+ for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
+ if (!sg)
+ break;
+ put_page(sg_page(sg));
+ }
+ }
+
+ kfree(aead_req);
+
+ pending = atomic_dec_return(&ctx->decrypt_pending);
+
+ if (!pending && READ_ONCE(ctx->async_notify))
+ complete(&ctx->async_wait.completion);
+}
static int tls_do_decryption(struct sock *sk,
+ struct sk_buff *skb,
struct scatterlist *sgin,
struct scatterlist *sgout,
char *iv_recv,
size_t data_len,
- struct aead_request *aead_req)
+ struct aead_request *aead_req,
+ bool async)
{
struct tls_context *tls_ctx = tls_get_ctx(sk);
+ struct tls_prot_info *prot = &tls_ctx->prot_info;
struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
int ret;
aead_request_set_tfm(aead_req, ctx->aead_recv);
- aead_request_set_ad(aead_req, TLS_AAD_SPACE_SIZE);
+ aead_request_set_ad(aead_req, prot->aad_size);
aead_request_set_crypt(aead_req, sgin, sgout,
- data_len + tls_ctx->rx.tag_size,
+ data_len + prot->tag_size,
(u8 *)iv_recv);
- aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
- crypto_req_done, &ctx->async_wait);
- ret = crypto_wait_req(crypto_aead_decrypt(aead_req), &ctx->async_wait);
+ if (async) {
+ /* Using skb->sk to push sk through to crypto async callback
+ * handler. This allows propagating errors up to the socket
+ * if needed. It _must_ be cleared in the async handler
+ * before consume_skb is called. We _know_ skb->sk is NULL
+ * because it is a clone from strparser.
+ */
+ skb->sk = sk;
+ aead_request_set_callback(aead_req,
+ CRYPTO_TFM_REQ_MAY_BACKLOG,
+ tls_decrypt_done, skb);
+ atomic_inc(&ctx->decrypt_pending);
+ } else {
+ aead_request_set_callback(aead_req,
+ CRYPTO_TFM_REQ_MAY_BACKLOG,
+ crypto_req_done, &ctx->async_wait);
+ }
+
+ ret = crypto_aead_decrypt(aead_req);
+ if (ret == -EINPROGRESS) {
+ if (async)
+ return ret;
+
+ ret = crypto_wait_req(ret, &ctx->async_wait);
+ }
+
+ if (async)
+ atomic_dec(&ctx->decrypt_pending);
+
return ret;
}
-static void trim_sg(struct sock *sk, struct scatterlist *sg,
- int *sg_num_elem, unsigned int *sg_size, int target_size)
-{
- int i = *sg_num_elem - 1;
- int trim = *sg_size - target_size;
-
- if (trim <= 0) {
- WARN_ON(trim < 0);
- return;
- }
-
- *sg_size = target_size;
- while (trim >= sg[i].length) {
- trim -= sg[i].length;
- sk_mem_uncharge(sk, sg[i].length);
- put_page(sg_page(&sg[i]));
- i--;
-
- if (i < 0)
- goto out;
- }
-
- sg[i].length -= trim;
- sk_mem_uncharge(sk, trim);
-
-out:
- *sg_num_elem = i + 1;
-}
-
-static void trim_both_sgl(struct sock *sk, int target_size)
+static void tls_trim_both_msgs(struct sock *sk, int target_size)
{
struct tls_context *tls_ctx = tls_get_ctx(sk);
+ struct tls_prot_info *prot = &tls_ctx->prot_info;
struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
+ struct tls_rec *rec = ctx->open_rec;
- trim_sg(sk, ctx->sg_plaintext_data,
- &ctx->sg_plaintext_num_elem,
- &ctx->sg_plaintext_size,
- target_size);
-
+ sk_msg_trim(sk, &rec->msg_plaintext, target_size);
if (target_size > 0)
- target_size += tls_ctx->tx.overhead_size;
-
- trim_sg(sk, ctx->sg_encrypted_data,
- &ctx->sg_encrypted_num_elem,
- &ctx->sg_encrypted_size,
- target_size);
+ target_size += prot->overhead_size;
+ sk_msg_trim(sk, &rec->msg_encrypted, target_size);
}
-static int alloc_encrypted_sg(struct sock *sk, int len)
+static int tls_alloc_encrypted_msg(struct sock *sk, int len)
{
struct tls_context *tls_ctx = tls_get_ctx(sk);
struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
- int rc = 0;
+ struct tls_rec *rec = ctx->open_rec;
+ struct sk_msg *msg_en = &rec->msg_encrypted;
- rc = sk_alloc_sg(sk, len,
- ctx->sg_encrypted_data, 0,
- &ctx->sg_encrypted_num_elem,
- &ctx->sg_encrypted_size, 0);
-
- if (rc == -ENOSPC)
- ctx->sg_encrypted_num_elem = ARRAY_SIZE(ctx->sg_encrypted_data);
-
- return rc;
+ return sk_msg_alloc(sk, msg_en, len, 0);
}
-static int alloc_plaintext_sg(struct sock *sk, int len)
+static int tls_clone_plaintext_msg(struct sock *sk, int required)
+{
+ struct tls_context *tls_ctx = tls_get_ctx(sk);
+ struct tls_prot_info *prot = &tls_ctx->prot_info;
+ struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
+ struct tls_rec *rec = ctx->open_rec;
+ struct sk_msg *msg_pl = &rec->msg_plaintext;
+ struct sk_msg *msg_en = &rec->msg_encrypted;
+ int skip, len;
+
+ /* We add page references worth len bytes from encrypted sg
+ * at the end of plaintext sg. It is guaranteed that msg_en
+ * has enough required room (ensured by caller).
+ */
+ len = required - msg_pl->sg.size;
+
+ /* Skip initial bytes in msg_en's data to be able to use
+ * same offset of both plain and encrypted data.
+ */
+ skip = prot->prepend_size + msg_pl->sg.size;
+
+ return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
+}
+
+static struct tls_rec *tls_get_rec(struct sock *sk)
+{
+ struct tls_context *tls_ctx = tls_get_ctx(sk);
+ struct tls_prot_info *prot = &tls_ctx->prot_info;
+ struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
+ struct sk_msg *msg_pl, *msg_en;
+ struct tls_rec *rec;
+ int mem_size;
+
+ mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
+
+ rec = kzalloc(mem_size, sk->sk_allocation);
+ if (!rec)
+ return NULL;
+
+ msg_pl = &rec->msg_plaintext;
+ msg_en = &rec->msg_encrypted;
+
+ sk_msg_init(msg_pl);
+ sk_msg_init(msg_en);
+
+ sg_init_table(rec->sg_aead_in, 2);
+ sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
+ sg_unmark_end(&rec->sg_aead_in[1]);
+
+ sg_init_table(rec->sg_aead_out, 2);
+ sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
+ sg_unmark_end(&rec->sg_aead_out[1]);
+
+ return rec;
+}
+
+static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
+{
+ sk_msg_free(sk, &rec->msg_encrypted);
+ sk_msg_free(sk, &rec->msg_plaintext);
+ kfree(rec);
+}
+
+static void tls_free_open_rec(struct sock *sk)
{
struct tls_context *tls_ctx = tls_get_ctx(sk);
struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
- int rc = 0;
+ struct tls_rec *rec = ctx->open_rec;
- rc = sk_alloc_sg(sk, len, ctx->sg_plaintext_data, 0,
- &ctx->sg_plaintext_num_elem, &ctx->sg_plaintext_size,
- tls_ctx->pending_open_record_frags);
-
- if (rc == -ENOSPC)
- ctx->sg_plaintext_num_elem = ARRAY_SIZE(ctx->sg_plaintext_data);
-
- return rc;
-}
-
-static void free_sg(struct sock *sk, struct scatterlist *sg,
- int *sg_num_elem, unsigned int *sg_size)
-{
- int i, n = *sg_num_elem;
-
- for (i = 0; i < n; ++i) {
- sk_mem_uncharge(sk, sg[i].length);
- put_page(sg_page(&sg[i]));
+ if (rec) {
+ tls_free_rec(sk, rec);
+ ctx->open_rec = NULL;
}
- *sg_num_elem = 0;
- *sg_size = 0;
}
-static void tls_free_both_sg(struct sock *sk)
+int tls_tx_records(struct sock *sk, int flags)
{
struct tls_context *tls_ctx = tls_get_ctx(sk);
struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
+ struct tls_rec *rec, *tmp;
+ struct sk_msg *msg_en;
+ int tx_flags, rc = 0;
- free_sg(sk, ctx->sg_encrypted_data, &ctx->sg_encrypted_num_elem,
- &ctx->sg_encrypted_size);
+ if (tls_is_partially_sent_record(tls_ctx)) {
+ rec = list_first_entry(&ctx->tx_list,
+ struct tls_rec, list);
- free_sg(sk, ctx->sg_plaintext_data, &ctx->sg_plaintext_num_elem,
- &ctx->sg_plaintext_size);
+ if (flags == -1)
+ tx_flags = rec->tx_flags;
+ else
+ tx_flags = flags;
+
+ rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
+ if (rc)
+ goto tx_err;
+
+ /* Full record has been transmitted.
+ * Remove the head of tx_list
+ */
+ list_del(&rec->list);
+ sk_msg_free(sk, &rec->msg_plaintext);
+ kfree(rec);
+ }
+
+ /* Tx all ready records */
+ list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
+ if (READ_ONCE(rec->tx_ready)) {
+ if (flags == -1)
+ tx_flags = rec->tx_flags;
+ else
+ tx_flags = flags;
+
+ msg_en = &rec->msg_encrypted;
+ rc = tls_push_sg(sk, tls_ctx,
+ &msg_en->sg.data[msg_en->sg.curr],
+ 0, tx_flags);
+ if (rc)
+ goto tx_err;
+
+ list_del(&rec->list);
+ sk_msg_free(sk, &rec->msg_plaintext);
+ kfree(rec);
+ } else {
+ break;
+ }
+ }
+
+tx_err:
+ if (rc < 0 && rc != -EAGAIN)
+ tls_err_abort(sk, EBADMSG);
+
+ return rc;
}
-static int tls_do_encryption(struct tls_context *tls_ctx,
+static void tls_encrypt_done(struct crypto_async_request *req, int err)
+{
+ struct aead_request *aead_req = (struct aead_request *)req;
+ struct sock *sk = req->data;
+ struct tls_context *tls_ctx = tls_get_ctx(sk);
+ struct tls_prot_info *prot = &tls_ctx->prot_info;
+ struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
+ struct scatterlist *sge;
+ struct sk_msg *msg_en;
+ struct tls_rec *rec;
+ bool ready = false;
+ int pending;
+
+ rec = container_of(aead_req, struct tls_rec, aead_req);
+ msg_en = &rec->msg_encrypted;
+
+ sge = sk_msg_elem(msg_en, msg_en->sg.curr);
+ sge->offset -= prot->prepend_size;
+ sge->length += prot->prepend_size;
+
+ /* Check if error is previously set on socket */
+ if (err || sk->sk_err) {
+ rec = NULL;
+
+ /* If err is already set on socket, return the same code */
+ if (sk->sk_err) {
+ ctx->async_wait.err = sk->sk_err;
+ } else {
+ ctx->async_wait.err = err;
+ tls_err_abort(sk, err);
+ }
+ }
+
+ if (rec) {
+ struct tls_rec *first_rec;
+
+ /* Mark the record as ready for transmission */
+ smp_store_mb(rec->tx_ready, true);
+
+ /* If received record is at head of tx_list, schedule tx */
+ first_rec = list_first_entry(&ctx->tx_list,
+ struct tls_rec, list);
+ if (rec == first_rec)
+ ready = true;
+ }
+
+ pending = atomic_dec_return(&ctx->encrypt_pending);
+
+ if (!pending && READ_ONCE(ctx->async_notify))
+ complete(&ctx->async_wait.completion);
+
+ if (!ready)
+ return;
+
+ /* Schedule the transmission */
+ if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
+ schedule_delayed_work(&ctx->tx_work.work, 1);
+}
+
+static int tls_do_encryption(struct sock *sk,
+ struct tls_context *tls_ctx,
struct tls_sw_context_tx *ctx,
struct aead_request *aead_req,
- size_t data_len)
+ size_t data_len, u32 start)
{
- int rc;
+ struct tls_prot_info *prot = &tls_ctx->prot_info;
+ struct tls_rec *rec = ctx->open_rec;
+ struct sk_msg *msg_en = &rec->msg_encrypted;
+ struct scatterlist *sge = sk_msg_elem(msg_en, start);
+ int rc, iv_offset = 0;
- ctx->sg_encrypted_data[0].offset += tls_ctx->tx.prepend_size;
- ctx->sg_encrypted_data[0].length -= tls_ctx->tx.prepend_size;
+ /* For CCM based ciphers, first byte of IV is a constant */
+ if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) {
+ rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE;
+ iv_offset = 1;
+ }
+
+ memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv,
+ prot->iv_size + prot->salt_size);
+
+ xor_iv_with_seq(prot->version, rec->iv_data, tls_ctx->tx.rec_seq);
+
+ sge->offset += prot->prepend_size;
+ sge->length -= prot->prepend_size;
+
+ msg_en->sg.curr = start;
aead_request_set_tfm(aead_req, ctx->aead_send);
- aead_request_set_ad(aead_req, TLS_AAD_SPACE_SIZE);
- aead_request_set_crypt(aead_req, ctx->sg_aead_in, ctx->sg_aead_out,
- data_len, tls_ctx->tx.iv);
+ aead_request_set_ad(aead_req, prot->aad_size);
+ aead_request_set_crypt(aead_req, rec->sg_aead_in,
+ rec->sg_aead_out,
+ data_len, rec->iv_data);
aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
- crypto_req_done, &ctx->async_wait);
+ tls_encrypt_done, sk);
- rc = crypto_wait_req(crypto_aead_encrypt(aead_req), &ctx->async_wait);
+ /* Add the record in tx_list */
+ list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
+ atomic_inc(&ctx->encrypt_pending);
- ctx->sg_encrypted_data[0].offset -= tls_ctx->tx.prepend_size;
- ctx->sg_encrypted_data[0].length += tls_ctx->tx.prepend_size;
+ rc = crypto_aead_encrypt(aead_req);
+ if (!rc || rc != -EINPROGRESS) {
+ atomic_dec(&ctx->encrypt_pending);
+ sge->offset -= prot->prepend_size;
+ sge->length += prot->prepend_size;
+ }
+ if (!rc) {
+ WRITE_ONCE(rec->tx_ready, true);
+ } else if (rc != -EINPROGRESS) {
+ list_del(&rec->list);
+ return rc;
+ }
+
+ /* Unhook the record from context if encryption is not failure */
+ ctx->open_rec = NULL;
+ tls_advance_record_sn(sk, prot, &tls_ctx->tx);
return rc;
}
+static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
+ struct tls_rec **to, struct sk_msg *msg_opl,
+ struct sk_msg *msg_oen, u32 split_point,
+ u32 tx_overhead_size, u32 *orig_end)
+{
+ u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
+ struct scatterlist *sge, *osge, *nsge;
+ u32 orig_size = msg_opl->sg.size;
+ struct scatterlist tmp = { };
+ struct sk_msg *msg_npl;
+ struct tls_rec *new;
+ int ret;
+
+ new = tls_get_rec(sk);
+ if (!new)
+ return -ENOMEM;
+ ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
+ tx_overhead_size, 0);
+ if (ret < 0) {
+ tls_free_rec(sk, new);
+ return ret;
+ }
+
+ *orig_end = msg_opl->sg.end;
+ i = msg_opl->sg.start;
+ sge = sk_msg_elem(msg_opl, i);
+ while (apply && sge->length) {
+ if (sge->length > apply) {
+ u32 len = sge->length - apply;
+
+ get_page(sg_page(sge));
+ sg_set_page(&tmp, sg_page(sge), len,
+ sge->offset + apply);
+ sge->length = apply;
+ bytes += apply;
+ apply = 0;
+ } else {
+ apply -= sge->length;
+ bytes += sge->length;
+ }
+
+ sk_msg_iter_var_next(i);
+ if (i == msg_opl->sg.end)
+ break;
+ sge = sk_msg_elem(msg_opl, i);
+ }
+
+ msg_opl->sg.end = i;
+ msg_opl->sg.curr = i;
+ msg_opl->sg.copybreak = 0;
+ msg_opl->apply_bytes = 0;
+ msg_opl->sg.size = bytes;
+
+ msg_npl = &new->msg_plaintext;
+ msg_npl->apply_bytes = apply;
+ msg_npl->sg.size = orig_size - bytes;
+
+ j = msg_npl->sg.start;
+ nsge = sk_msg_elem(msg_npl, j);
+ if (tmp.length) {
+ memcpy(nsge, &tmp, sizeof(*nsge));
+ sk_msg_iter_var_next(j);
+ nsge = sk_msg_elem(msg_npl, j);
+ }
+
+ osge = sk_msg_elem(msg_opl, i);
+ while (osge->length) {
+ memcpy(nsge, osge, sizeof(*nsge));
+ sg_unmark_end(nsge);
+ sk_msg_iter_var_next(i);
+ sk_msg_iter_var_next(j);
+ if (i == *orig_end)
+ break;
+ osge = sk_msg_elem(msg_opl, i);
+ nsge = sk_msg_elem(msg_npl, j);
+ }
+
+ msg_npl->sg.end = j;
+ msg_npl->sg.curr = j;
+ msg_npl->sg.copybreak = 0;
+
+ *to = new;
+ return 0;
+}
+
+static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
+ struct tls_rec *from, u32 orig_end)
+{
+ struct sk_msg *msg_npl = &from->msg_plaintext;
+ struct sk_msg *msg_opl = &to->msg_plaintext;
+ struct scatterlist *osge, *nsge;
+ u32 i, j;
+
+ i = msg_opl->sg.end;
+ sk_msg_iter_var_prev(i);
+ j = msg_npl->sg.start;
+
+ osge = sk_msg_elem(msg_opl, i);
+ nsge = sk_msg_elem(msg_npl, j);
+
+ if (sg_page(osge) == sg_page(nsge) &&
+ osge->offset + osge->length == nsge->offset) {
+ osge->length += nsge->length;
+ put_page(sg_page(nsge));
+ }
+
+ msg_opl->sg.end = orig_end;
+ msg_opl->sg.curr = orig_end;
+ msg_opl->sg.copybreak = 0;
+ msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
+ msg_opl->sg.size += msg_npl->sg.size;
+
+ sk_msg_free(sk, &to->msg_encrypted);
+ sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
+
+ kfree(from);
+}
+
static int tls_push_record(struct sock *sk, int flags,
unsigned char record_type)
{
struct tls_context *tls_ctx = tls_get_ctx(sk);
+ struct tls_prot_info *prot = &tls_ctx->prot_info;
struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
+ struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
+ u32 i, split_point, uninitialized_var(orig_end);
+ struct sk_msg *msg_pl, *msg_en;
struct aead_request *req;
+ bool split;
int rc;
- req = aead_request_alloc(ctx->aead_send, sk->sk_allocation);
- if (!req)
- return -ENOMEM;
+ if (!rec)
+ return 0;
- sg_mark_end(ctx->sg_plaintext_data + ctx->sg_plaintext_num_elem - 1);
- sg_mark_end(ctx->sg_encrypted_data + ctx->sg_encrypted_num_elem - 1);
+ msg_pl = &rec->msg_plaintext;
+ msg_en = &rec->msg_encrypted;
- tls_make_aad(ctx->aad_space, ctx->sg_plaintext_size,
- tls_ctx->tx.rec_seq, tls_ctx->tx.rec_seq_size,
- record_type);
-
- tls_fill_prepend(tls_ctx,
- page_address(sg_page(&ctx->sg_encrypted_data[0])) +
- ctx->sg_encrypted_data[0].offset,
- ctx->sg_plaintext_size, record_type);
-
- tls_ctx->pending_open_record_frags = 0;
- set_bit(TLS_PENDING_CLOSED_RECORD, &tls_ctx->flags);
-
- rc = tls_do_encryption(tls_ctx, ctx, req, ctx->sg_plaintext_size);
- if (rc < 0) {
- /* If we are called from write_space and
- * we fail, we need to set this SOCK_NOSPACE
- * to trigger another write_space in the future.
- */
- set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
- goto out_req;
+ split_point = msg_pl->apply_bytes;
+ split = split_point && split_point < msg_pl->sg.size;
+ if (split) {
+ rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
+ split_point, prot->overhead_size,
+ &orig_end);
+ if (rc < 0)
+ return rc;
+ sk_msg_trim(sk, msg_en, msg_pl->sg.size +
+ prot->overhead_size);
}
- free_sg(sk, ctx->sg_plaintext_data, &ctx->sg_plaintext_num_elem,
- &ctx->sg_plaintext_size);
+ rec->tx_flags = flags;
+ req = &rec->aead_req;
- ctx->sg_encrypted_num_elem = 0;
- ctx->sg_encrypted_size = 0;
+ i = msg_pl->sg.end;
+ sk_msg_iter_var_prev(i);
- /* Only pass through MSG_DONTWAIT and MSG_NOSIGNAL flags */
- rc = tls_push_sg(sk, tls_ctx, ctx->sg_encrypted_data, 0, flags);
- if (rc < 0 && rc != -EAGAIN)
- tls_err_abort(sk, EBADMSG);
+ rec->content_type = record_type;
+ if (prot->version == TLS_1_3_VERSION) {
+ /* Add content type to end of message. No padding added */
+ sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
+ sg_mark_end(&rec->sg_content_type);
+ sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
+ &rec->sg_content_type);
+ } else {
+ sg_mark_end(sk_msg_elem(msg_pl, i));
+ }
- tls_advance_record_sn(sk, &tls_ctx->tx);
-out_req:
- aead_request_free(req);
- return rc;
+ i = msg_pl->sg.start;
+ sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]);
+
+ i = msg_en->sg.end;
+ sk_msg_iter_var_prev(i);
+ sg_mark_end(sk_msg_elem(msg_en, i));
+
+ i = msg_en->sg.start;
+ sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
+
+ tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
+ tls_ctx->tx.rec_seq, prot->rec_seq_size,
+ record_type, prot->version);
+
+ tls_fill_prepend(tls_ctx,
+ page_address(sg_page(&msg_en->sg.data[i])) +
+ msg_en->sg.data[i].offset,
+ msg_pl->sg.size + prot->tail_size,
+ record_type, prot->version);
+
+ tls_ctx->pending_open_record_frags = false;
+
+ rc = tls_do_encryption(sk, tls_ctx, ctx, req,
+ msg_pl->sg.size + prot->tail_size, i);
+ if (rc < 0) {
+ if (rc != -EINPROGRESS) {
+ tls_err_abort(sk, EBADMSG);
+ if (split) {
+ tls_ctx->pending_open_record_frags = true;
+ tls_merge_open_record(sk, rec, tmp, orig_end);
+ }
+ }
+ ctx->async_capable = 1;
+ return rc;
+ } else if (split) {
+ msg_pl = &tmp->msg_plaintext;
+ msg_en = &tmp->msg_encrypted;
+ sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
+ tls_ctx->pending_open_record_frags = true;
+ ctx->open_rec = tmp;
+ }
+
+ return tls_tx_records(sk, flags);
+}
+
+static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
+ bool full_record, u8 record_type,
+ size_t *copied, int flags)
+{
+ struct tls_context *tls_ctx = tls_get_ctx(sk);
+ struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
+ struct sk_msg msg_redir = { };
+ struct sk_psock *psock;
+ struct sock *sk_redir;
+ struct tls_rec *rec;
+ bool enospc, policy;
+ int err = 0, send;
+ u32 delta = 0;
+
+ policy = !(flags & MSG_SENDPAGE_NOPOLICY);
+ psock = sk_psock_get(sk);
+ if (!psock || !policy) {
+ err = tls_push_record(sk, flags, record_type);
+ if (err) {
+ *copied -= sk_msg_free(sk, msg);
+ tls_free_open_rec(sk);
+ }
+ return err;
+ }
+more_data:
+ enospc = sk_msg_full(msg);
+ if (psock->eval == __SK_NONE) {
+ delta = msg->sg.size;
+ psock->eval = sk_psock_msg_verdict(sk, psock, msg);
+ if (delta < msg->sg.size)
+ delta -= msg->sg.size;
+ else
+ delta = 0;
+ }
+ if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
+ !enospc && !full_record) {
+ err = -ENOSPC;
+ goto out_err;
+ }
+ msg->cork_bytes = 0;
+ send = msg->sg.size;
+ if (msg->apply_bytes && msg->apply_bytes < send)
+ send = msg->apply_bytes;
+
+ switch (psock->eval) {
+ case __SK_PASS:
+ err = tls_push_record(sk, flags, record_type);
+ if (err < 0) {
+ *copied -= sk_msg_free(sk, msg);
+ tls_free_open_rec(sk);
+ goto out_err;
+ }
+ break;
+ case __SK_REDIRECT:
+ sk_redir = psock->sk_redir;
+ memcpy(&msg_redir, msg, sizeof(*msg));
+ if (msg->apply_bytes < send)
+ msg->apply_bytes = 0;
+ else
+ msg->apply_bytes -= send;
+ sk_msg_return_zero(sk, msg, send);
+ msg->sg.size -= send;
+ release_sock(sk);
+ err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags);
+ lock_sock(sk);
+ if (err < 0) {
+ *copied -= sk_msg_free_nocharge(sk, &msg_redir);
+ msg->sg.size = 0;
+ }
+ if (msg->sg.size == 0)
+ tls_free_open_rec(sk);
+ break;
+ case __SK_DROP:
+ default:
+ sk_msg_free_partial(sk, msg, send);
+ if (msg->apply_bytes < send)
+ msg->apply_bytes = 0;
+ else
+ msg->apply_bytes -= send;
+ if (msg->sg.size == 0)
+ tls_free_open_rec(sk);
+ *copied -= (send + delta);
+ err = -EACCES;
+ }
+
+ if (likely(!err)) {
+ bool reset_eval = !ctx->open_rec;
+
+ rec = ctx->open_rec;
+ if (rec) {
+ msg = &rec->msg_plaintext;
+ if (!msg->apply_bytes)
+ reset_eval = true;
+ }
+ if (reset_eval) {
+ psock->eval = __SK_NONE;
+ if (psock->sk_redir) {
+ sock_put(psock->sk_redir);
+ psock->sk_redir = NULL;
+ }
+ }
+ if (rec)
+ goto more_data;
+ }
+ out_err:
+ sk_psock_put(sk, psock);
+ return err;
}
static int tls_sw_push_pending_record(struct sock *sk, int flags)
{
- return tls_push_record(sk, flags, TLS_RECORD_TYPE_DATA);
+ struct tls_context *tls_ctx = tls_get_ctx(sk);
+ struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
+ struct tls_rec *rec = ctx->open_rec;
+ struct sk_msg *msg_pl;
+ size_t copied;
+
+ if (!rec)
+ return 0;
+
+ msg_pl = &rec->msg_plaintext;
+ copied = msg_pl->sg.size;
+ if (!copied)
+ return 0;
+
+ return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
+ &copied, flags);
}
-static int zerocopy_from_iter(struct sock *sk, struct iov_iter *from,
- int length, int *pages_used,
- unsigned int *size_used,
- struct scatterlist *to, int to_max_pages,
- bool charge)
+int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
{
- struct page *pages[MAX_SKB_FRAGS];
+ long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
+ struct tls_context *tls_ctx = tls_get_ctx(sk);
+ struct tls_prot_info *prot = &tls_ctx->prot_info;
+ struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
+ bool async_capable = ctx->async_capable;
+ unsigned char record_type = TLS_RECORD_TYPE_DATA;
+ bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
+ bool eor = !(msg->msg_flags & MSG_MORE);
+ size_t try_to_copy, copied = 0;
+ struct sk_msg *msg_pl, *msg_en;
+ struct tls_rec *rec;
+ int required_size;
+ int num_async = 0;
+ bool full_record;
+ int record_room;
+ int num_zc = 0;
+ int orig_size;
+ int ret = 0;
- size_t offset;
- ssize_t copied, use;
- int i = 0;
+ if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL))
+ return -ENOTSUPP;
+
+ mutex_lock(&tls_ctx->tx_lock);
+ lock_sock(sk);
+
+ if (unlikely(msg->msg_controllen)) {
+ ret = tls_proccess_cmsg(sk, msg, &record_type);
+ if (ret) {
+ if (ret == -EINPROGRESS)
+ num_async++;
+ else if (ret != -EAGAIN)
+ goto send_end;
+ }
+ }
+
+ while (msg_data_left(msg)) {
+ if (sk->sk_err) {
+ ret = -sk->sk_err;
+ goto send_end;
+ }
+
+ if (ctx->open_rec)
+ rec = ctx->open_rec;
+ else
+ rec = ctx->open_rec = tls_get_rec(sk);
+ if (!rec) {
+ ret = -ENOMEM;
+ goto send_end;
+ }
+
+ msg_pl = &rec->msg_plaintext;
+ msg_en = &rec->msg_encrypted;
+
+ orig_size = msg_pl->sg.size;
+ full_record = false;
+ try_to_copy = msg_data_left(msg);
+ record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
+ if (try_to_copy >= record_room) {
+ try_to_copy = record_room;
+ full_record = true;
+ }
+
+ required_size = msg_pl->sg.size + try_to_copy +
+ prot->overhead_size;
+
+ if (!sk_stream_memory_free(sk))
+ goto wait_for_sndbuf;
+
+alloc_encrypted:
+ ret = tls_alloc_encrypted_msg(sk, required_size);
+ if (ret) {
+ if (ret != -ENOSPC)
+ goto wait_for_memory;
+
+ /* Adjust try_to_copy according to the amount that was
+ * actually allocated. The difference is due
+ * to max sg elements limit
+ */
+ try_to_copy -= required_size - msg_en->sg.size;
+ full_record = true;
+ }
+
+ if (!is_kvec && (full_record || eor) && !async_capable) {
+ u32 first = msg_pl->sg.end;
+
+ ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
+ msg_pl, try_to_copy);
+ if (ret)
+ goto fallback_to_reg_send;
+
+ num_zc++;
+ copied += try_to_copy;
+
+ sk_msg_sg_copy_set(msg_pl, first);
+ ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
+ record_type, &copied,
+ msg->msg_flags);
+ if (ret) {
+ if (ret == -EINPROGRESS)
+ num_async++;
+ else if (ret == -ENOMEM)
+ goto wait_for_memory;
+ else if (ctx->open_rec && ret == -ENOSPC)
+ goto rollback_iter;
+ else if (ret != -EAGAIN)
+ goto send_end;
+ }
+ continue;
+rollback_iter:
+ copied -= try_to_copy;
+ sk_msg_sg_copy_clear(msg_pl, first);
+ iov_iter_revert(&msg->msg_iter,
+ msg_pl->sg.size - orig_size);
+fallback_to_reg_send:
+ sk_msg_trim(sk, msg_pl, orig_size);
+ }
+
+ required_size = msg_pl->sg.size + try_to_copy;
+
+ ret = tls_clone_plaintext_msg(sk, required_size);
+ if (ret) {
+ if (ret != -ENOSPC)
+ goto send_end;
+
+ /* Adjust try_to_copy according to the amount that was
+ * actually allocated. The difference is due
+ * to max sg elements limit
+ */
+ try_to_copy -= required_size - msg_pl->sg.size;
+ full_record = true;
+ sk_msg_trim(sk, msg_en,
+ msg_pl->sg.size + prot->overhead_size);
+ }
+
+ if (try_to_copy) {
+ ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
+ msg_pl, try_to_copy);
+ if (ret < 0)
+ goto trim_sgl;
+ }
+
+ /* Open records defined only if successfully copied, otherwise
+ * we would trim the sg but not reset the open record frags.
+ */
+ tls_ctx->pending_open_record_frags = true;
+ copied += try_to_copy;
+ if (full_record || eor) {
+ ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
+ record_type, &copied,
+ msg->msg_flags);
+ if (ret) {
+ if (ret == -EINPROGRESS)
+ num_async++;
+ else if (ret == -ENOMEM)
+ goto wait_for_memory;
+ else if (ret != -EAGAIN) {
+ if (ret == -ENOSPC)
+ ret = 0;
+ goto send_end;
+ }
+ }
+ }
+
+ continue;
+
+wait_for_sndbuf:
+ set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
+wait_for_memory:
+ ret = sk_stream_wait_memory(sk, &timeo);
+ if (ret) {
+trim_sgl:
+ if (ctx->open_rec)
+ tls_trim_both_msgs(sk, orig_size);
+ goto send_end;
+ }
+
+ if (ctx->open_rec && msg_en->sg.size < required_size)
+ goto alloc_encrypted;
+ }
+
+ if (!num_async) {
+ goto send_end;
+ } else if (num_zc) {
+ /* Wait for pending encryptions to get completed */
+ smp_store_mb(ctx->async_notify, true);
+
+ if (atomic_read(&ctx->encrypt_pending))
+ crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
+ else
+ reinit_completion(&ctx->async_wait.completion);
+
+ WRITE_ONCE(ctx->async_notify, false);
+
+ if (ctx->async_wait.err) {
+ ret = ctx->async_wait.err;
+ copied = 0;
+ }
+ }
+
+ /* Transmit if any encryptions have completed */
+ if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
+ cancel_delayed_work(&ctx->tx_work.work);
+ tls_tx_records(sk, msg->msg_flags);
+ }
+
+send_end:
+ ret = sk_stream_error(sk, msg->msg_flags, ret);
+
+ release_sock(sk);
+ mutex_unlock(&tls_ctx->tx_lock);
+ return copied ? copied : ret;
+}
+
+static int tls_sw_do_sendpage(struct sock *sk, struct page *page,
+ int offset, size_t size, int flags)
+{
+ long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
+ struct tls_context *tls_ctx = tls_get_ctx(sk);
+ struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
+ struct tls_prot_info *prot = &tls_ctx->prot_info;
+ unsigned char record_type = TLS_RECORD_TYPE_DATA;
+ struct sk_msg *msg_pl;
+ struct tls_rec *rec;
+ int num_async = 0;
+ size_t copied = 0;
+ bool full_record;
+ int record_room;
+ int ret = 0;
+ bool eor;
+
+ eor = !(flags & (MSG_MORE | MSG_SENDPAGE_NOTLAST));
+ sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
+
+ /* Call the sk_stream functions to manage the sndbuf mem. */
+ while (size > 0) {
+ size_t copy, required_size;
+
+ if (sk->sk_err) {
+ ret = -sk->sk_err;
+ goto sendpage_end;
+ }
+
+ if (ctx->open_rec)
+ rec = ctx->open_rec;
+ else
+ rec = ctx->open_rec = tls_get_rec(sk);
+ if (!rec) {
+ ret = -ENOMEM;
+ goto sendpage_end;
+ }
+
+ msg_pl = &rec->msg_plaintext;
+
+ full_record = false;
+ record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
+ copy = size;
+ if (copy >= record_room) {
+ copy = record_room;
+ full_record = true;
+ }
+
+ required_size = msg_pl->sg.size + copy + prot->overhead_size;
+
+ if (!sk_stream_memory_free(sk))
+ goto wait_for_sndbuf;
+alloc_payload:
+ ret = tls_alloc_encrypted_msg(sk, required_size);
+ if (ret) {
+ if (ret != -ENOSPC)
+ goto wait_for_memory;
+
+ /* Adjust copy according to the amount that was
+ * actually allocated. The difference is due
+ * to max sg elements limit
+ */
+ copy -= required_size - msg_pl->sg.size;
+ full_record = true;
+ }
+
+ sk_msg_page_add(msg_pl, page, copy, offset);
+ sk_mem_charge(sk, copy);
+
+ offset += copy;
+ size -= copy;
+ copied += copy;
+
+ tls_ctx->pending_open_record_frags = true;
+ if (full_record || eor || sk_msg_full(msg_pl)) {
+ ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
+ record_type, &copied, flags);
+ if (ret) {
+ if (ret == -EINPROGRESS)
+ num_async++;
+ else if (ret == -ENOMEM)
+ goto wait_for_memory;
+ else if (ret != -EAGAIN) {
+ if (ret == -ENOSPC)
+ ret = 0;
+ goto sendpage_end;
+ }
+ }
+ }
+ continue;
+wait_for_sndbuf:
+ set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
+wait_for_memory:
+ ret = sk_stream_wait_memory(sk, &timeo);
+ if (ret) {
+ if (ctx->open_rec)
+ tls_trim_both_msgs(sk, msg_pl->sg.size);
+ goto sendpage_end;
+ }
+
+ if (ctx->open_rec)
+ goto alloc_payload;
+ }
+
+ if (num_async) {
+ /* Transmit if any encryptions have completed */
+ if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
+ cancel_delayed_work(&ctx->tx_work.work);
+ tls_tx_records(sk, flags);
+ }
+ }
+sendpage_end:
+ ret = sk_stream_error(sk, flags, ret);
+ return copied ? copied : ret;
+}
+
+int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
+ int offset, size_t size, int flags)
+{
+ if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
+ MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY |
+ MSG_NO_SHARED_FRAGS))
+ return -ENOTSUPP;
+
+ return tls_sw_do_sendpage(sk, page, offset, size, flags);
+}
+
+int tls_sw_sendpage(struct sock *sk, struct page *page,
+ int offset, size_t size, int flags)
+{
+ struct tls_context *tls_ctx = tls_get_ctx(sk);
+ int ret;
+
+ if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
+ MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY))
+ return -ENOTSUPP;
+
+ mutex_lock(&tls_ctx->tx_lock);
+ lock_sock(sk);
+ ret = tls_sw_do_sendpage(sk, page, offset, size, flags);
+ release_sock(sk);
+ mutex_unlock(&tls_ctx->tx_lock);
+ return ret;
+}
+
+static struct sk_buff *tls_wait_data(struct sock *sk, struct sk_psock *psock,
+ int flags, long timeo, int *err)
+{
+ struct tls_context *tls_ctx = tls_get_ctx(sk);
+ struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
+ struct sk_buff *skb;
+ DEFINE_WAIT_FUNC(wait, woken_wake_function);
+
+ while (!(skb = ctx->recv_pkt) && sk_psock_queue_empty(psock)) {
+ if (sk->sk_err) {
+ *err = sock_error(sk);
+ return NULL;
+ }
+
+ if (sk->sk_shutdown & RCV_SHUTDOWN)
+ return NULL;
+
+ if (sock_flag(sk, SOCK_DONE))
+ return NULL;
+
+ if ((flags & MSG_DONTWAIT) || !timeo) {
+ *err = -EAGAIN;
+ return NULL;
+ }
+
+ add_wait_queue(sk_sleep(sk), &wait);
+ sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
+ sk_wait_event(sk, &timeo,
+ ctx->recv_pkt != skb ||
+ !sk_psock_queue_empty(psock),
+ &wait);
+ sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
+ remove_wait_queue(sk_sleep(sk), &wait);
+
+ /* Handle signals */
+ if (signal_pending(current)) {
+ *err = sock_intr_errno(timeo);
+ return NULL;
+ }
+ }
+
+ return skb;
+}
+
+static int tls_setup_from_iter(struct sock *sk, struct iov_iter *from,
+ int length, int *pages_used,
+ unsigned int *size_used,
+ struct scatterlist *to,
+ int to_max_pages)
+{
+ int rc = 0, i = 0, num_elem = *pages_used, maxpages;
+ struct page *pages[MAX_SKB_FRAGS];
unsigned int size = *size_used;
- int num_elem = *pages_used;
- int rc = 0;
- int maxpages;
+ ssize_t copied, use;
+ size_t offset;
while (length > 0) {
i = 0;
@@ -298,17 +1319,15 @@
sg_set_page(&to[num_elem],
pages[i], use, offset);
sg_unmark_end(&to[num_elem]);
- if (charge)
- sk_mem_charge(sk, use);
+ /* We do not uncharge memory from this API */
offset = 0;
copied -= use;
- ++i;
- ++num_elem;
+ i++;
+ num_elem++;
}
}
-
/* Mark the end in the last sg entry if newly added */
if (num_elem > *pages_used)
sg_mark_end(&to[num_elem - 1]);
@@ -321,340 +1340,6 @@
return rc;
}
-static int memcopy_from_iter(struct sock *sk, struct iov_iter *from,
- int bytes)
-{
- struct tls_context *tls_ctx = tls_get_ctx(sk);
- struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
- struct scatterlist *sg = ctx->sg_plaintext_data;
- int copy, i, rc = 0;
-
- for (i = tls_ctx->pending_open_record_frags;
- i < ctx->sg_plaintext_num_elem; ++i) {
- copy = sg[i].length;
- if (copy_from_iter(
- page_address(sg_page(&sg[i])) + sg[i].offset,
- copy, from) != copy) {
- rc = -EFAULT;
- goto out;
- }
- bytes -= copy;
-
- ++tls_ctx->pending_open_record_frags;
-
- if (!bytes)
- break;
- }
-
-out:
- return rc;
-}
-
-int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
-{
- struct tls_context *tls_ctx = tls_get_ctx(sk);
- struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
- int ret = 0;
- int required_size;
- long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
- bool eor = !(msg->msg_flags & MSG_MORE);
- size_t try_to_copy, copied = 0;
- unsigned char record_type = TLS_RECORD_TYPE_DATA;
- int record_room;
- bool full_record;
- int orig_size;
- bool is_kvec = msg->msg_iter.type & ITER_KVEC;
-
- if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL))
- return -ENOTSUPP;
-
- lock_sock(sk);
-
- if (tls_complete_pending_work(sk, tls_ctx, msg->msg_flags, &timeo))
- goto send_end;
-
- if (unlikely(msg->msg_controllen)) {
- ret = tls_proccess_cmsg(sk, msg, &record_type);
- if (ret)
- goto send_end;
- }
-
- while (msg_data_left(msg)) {
- if (sk->sk_err) {
- ret = -sk->sk_err;
- goto send_end;
- }
-
- orig_size = ctx->sg_plaintext_size;
- full_record = false;
- try_to_copy = msg_data_left(msg);
- record_room = TLS_MAX_PAYLOAD_SIZE - ctx->sg_plaintext_size;
- if (try_to_copy >= record_room) {
- try_to_copy = record_room;
- full_record = true;
- }
-
- required_size = ctx->sg_plaintext_size + try_to_copy +
- tls_ctx->tx.overhead_size;
-
- if (!sk_stream_memory_free(sk))
- goto wait_for_sndbuf;
-alloc_encrypted:
- ret = alloc_encrypted_sg(sk, required_size);
- if (ret) {
- if (ret != -ENOSPC)
- goto wait_for_memory;
-
- /* Adjust try_to_copy according to the amount that was
- * actually allocated. The difference is due
- * to max sg elements limit
- */
- try_to_copy -= required_size - ctx->sg_encrypted_size;
- full_record = true;
- }
- if (!is_kvec && (full_record || eor)) {
- ret = zerocopy_from_iter(sk, &msg->msg_iter,
- try_to_copy, &ctx->sg_plaintext_num_elem,
- &ctx->sg_plaintext_size,
- ctx->sg_plaintext_data,
- ARRAY_SIZE(ctx->sg_plaintext_data),
- true);
- if (ret)
- goto fallback_to_reg_send;
-
- copied += try_to_copy;
- ret = tls_push_record(sk, msg->msg_flags, record_type);
- if (ret)
- goto send_end;
- continue;
-
-fallback_to_reg_send:
- trim_sg(sk, ctx->sg_plaintext_data,
- &ctx->sg_plaintext_num_elem,
- &ctx->sg_plaintext_size,
- orig_size);
- }
-
- required_size = ctx->sg_plaintext_size + try_to_copy;
-alloc_plaintext:
- ret = alloc_plaintext_sg(sk, required_size);
- if (ret) {
- if (ret != -ENOSPC)
- goto wait_for_memory;
-
- /* Adjust try_to_copy according to the amount that was
- * actually allocated. The difference is due
- * to max sg elements limit
- */
- try_to_copy -= required_size - ctx->sg_plaintext_size;
- full_record = true;
-
- trim_sg(sk, ctx->sg_encrypted_data,
- &ctx->sg_encrypted_num_elem,
- &ctx->sg_encrypted_size,
- ctx->sg_plaintext_size +
- tls_ctx->tx.overhead_size);
- }
-
- ret = memcopy_from_iter(sk, &msg->msg_iter, try_to_copy);
- if (ret)
- goto trim_sgl;
-
- copied += try_to_copy;
- if (full_record || eor) {
-push_record:
- ret = tls_push_record(sk, msg->msg_flags, record_type);
- if (ret) {
- if (ret == -ENOMEM)
- goto wait_for_memory;
-
- goto send_end;
- }
- }
-
- continue;
-
-wait_for_sndbuf:
- set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
-wait_for_memory:
- ret = sk_stream_wait_memory(sk, &timeo);
- if (ret) {
-trim_sgl:
- trim_both_sgl(sk, orig_size);
- goto send_end;
- }
-
- if (tls_is_pending_closed_record(tls_ctx))
- goto push_record;
-
- if (ctx->sg_encrypted_size < required_size)
- goto alloc_encrypted;
-
- goto alloc_plaintext;
- }
-
-send_end:
- ret = sk_stream_error(sk, msg->msg_flags, ret);
-
- release_sock(sk);
- return copied ? copied : ret;
-}
-
-int tls_sw_sendpage(struct sock *sk, struct page *page,
- int offset, size_t size, int flags)
-{
- struct tls_context *tls_ctx = tls_get_ctx(sk);
- struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
- int ret = 0;
- long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
- bool eor;
- size_t orig_size = size;
- unsigned char record_type = TLS_RECORD_TYPE_DATA;
- struct scatterlist *sg;
- bool full_record;
- int record_room;
-
- if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
- MSG_SENDPAGE_NOTLAST))
- return -ENOTSUPP;
-
- /* No MSG_EOR from splice, only look at MSG_MORE */
- eor = !(flags & (MSG_MORE | MSG_SENDPAGE_NOTLAST));
-
- lock_sock(sk);
-
- sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
-
- if (tls_complete_pending_work(sk, tls_ctx, flags, &timeo))
- goto sendpage_end;
-
- /* Call the sk_stream functions to manage the sndbuf mem. */
- while (size > 0) {
- size_t copy, required_size;
-
- if (sk->sk_err) {
- ret = -sk->sk_err;
- goto sendpage_end;
- }
-
- full_record = false;
- record_room = TLS_MAX_PAYLOAD_SIZE - ctx->sg_plaintext_size;
- copy = size;
- if (copy >= record_room) {
- copy = record_room;
- full_record = true;
- }
- required_size = ctx->sg_plaintext_size + copy +
- tls_ctx->tx.overhead_size;
-
- if (!sk_stream_memory_free(sk))
- goto wait_for_sndbuf;
-alloc_payload:
- ret = alloc_encrypted_sg(sk, required_size);
- if (ret) {
- if (ret != -ENOSPC)
- goto wait_for_memory;
-
- /* Adjust copy according to the amount that was
- * actually allocated. The difference is due
- * to max sg elements limit
- */
- copy -= required_size - ctx->sg_plaintext_size;
- full_record = true;
- }
-
- get_page(page);
- sg = ctx->sg_plaintext_data + ctx->sg_plaintext_num_elem;
- sg_set_page(sg, page, copy, offset);
- sg_unmark_end(sg);
-
- ctx->sg_plaintext_num_elem++;
-
- sk_mem_charge(sk, copy);
- offset += copy;
- size -= copy;
- ctx->sg_plaintext_size += copy;
- tls_ctx->pending_open_record_frags = ctx->sg_plaintext_num_elem;
-
- if (full_record || eor ||
- ctx->sg_plaintext_num_elem ==
- ARRAY_SIZE(ctx->sg_plaintext_data)) {
-push_record:
- ret = tls_push_record(sk, flags, record_type);
- if (ret) {
- if (ret == -ENOMEM)
- goto wait_for_memory;
-
- goto sendpage_end;
- }
- }
- continue;
-wait_for_sndbuf:
- set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
-wait_for_memory:
- ret = sk_stream_wait_memory(sk, &timeo);
- if (ret) {
- trim_both_sgl(sk, ctx->sg_plaintext_size);
- goto sendpage_end;
- }
-
- if (tls_is_pending_closed_record(tls_ctx))
- goto push_record;
-
- goto alloc_payload;
- }
-
-sendpage_end:
- if (orig_size > size)
- ret = orig_size - size;
- else
- ret = sk_stream_error(sk, flags, ret);
-
- release_sock(sk);
- return ret;
-}
-
-static struct sk_buff *tls_wait_data(struct sock *sk, int flags,
- long timeo, int *err)
-{
- struct tls_context *tls_ctx = tls_get_ctx(sk);
- struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
- struct sk_buff *skb;
- DEFINE_WAIT_FUNC(wait, woken_wake_function);
-
- while (!(skb = ctx->recv_pkt)) {
- if (sk->sk_err) {
- *err = sock_error(sk);
- return NULL;
- }
-
- if (sk->sk_shutdown & RCV_SHUTDOWN)
- return NULL;
-
- if (sock_flag(sk, SOCK_DONE))
- return NULL;
-
- if ((flags & MSG_DONTWAIT) || !timeo) {
- *err = -EAGAIN;
- return NULL;
- }
-
- add_wait_queue(sk_sleep(sk), &wait);
- sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
- sk_wait_event(sk, &timeo, ctx->recv_pkt != skb, &wait);
- sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
- remove_wait_queue(sk_sleep(sk), &wait);
-
- /* Handle signals */
- if (signal_pending(current)) {
- *err = sock_intr_errno(timeo);
- return NULL;
- }
- }
-
- return skb;
-}
-
/* This function decrypts the input skb into either out_iov or in out_sg
* or in skb buffers itself. The input parameter 'zc' indicates if
* zero-copy mode needs to be tried or not. With zero-copy mode, either
@@ -666,10 +1351,11 @@
static int decrypt_internal(struct sock *sk, struct sk_buff *skb,
struct iov_iter *out_iov,
struct scatterlist *out_sg,
- int *chunk, bool *zc)
+ int *chunk, bool *zc, bool async)
{
struct tls_context *tls_ctx = tls_get_ctx(sk);
struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
+ struct tls_prot_info *prot = &tls_ctx->prot_info;
struct strp_msg *rxm = strp_msg(skb);
int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0;
struct aead_request *aead_req;
@@ -677,19 +1363,23 @@
u8 *aad, *iv, *mem = NULL;
struct scatterlist *sgin = NULL;
struct scatterlist *sgout = NULL;
- const int data_len = rxm->full_len - tls_ctx->rx.overhead_size;
+ const int data_len = rxm->full_len - prot->overhead_size +
+ prot->tail_size;
+ int iv_offset = 0;
if (*zc && (out_iov || out_sg)) {
if (out_iov)
n_sgout = iov_iter_npages(out_iov, INT_MAX) + 1;
else
n_sgout = sg_nents(out_sg);
+ n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
+ rxm->full_len - prot->prepend_size);
} else {
n_sgout = 0;
*zc = false;
+ n_sgin = skb_cow_data(skb, 0, &unused);
}
- n_sgin = skb_cow_data(skb, 0, &unused);
if (n_sgin < 1)
return -EBADMSG;
@@ -700,7 +1390,7 @@
aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
mem_size = aead_size + (nsg * sizeof(struct scatterlist));
- mem_size = mem_size + TLS_AAD_SPACE_SIZE;
+ mem_size = mem_size + prot->aad_size;
mem_size = mem_size + crypto_aead_ivsize(ctx->aead_recv);
/* Allocate a single block of memory which contains
@@ -716,29 +1406,42 @@
sgin = (struct scatterlist *)(mem + aead_size);
sgout = sgin + n_sgin;
aad = (u8 *)(sgout + n_sgout);
- iv = aad + TLS_AAD_SPACE_SIZE;
+ iv = aad + prot->aad_size;
+
+ /* For CCM based ciphers, first byte of nonce+iv is always '2' */
+ if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) {
+ iv[0] = 2;
+ iv_offset = 1;
+ }
/* Prepare IV */
err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
- iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
- tls_ctx->rx.iv_size);
+ iv + iv_offset + prot->salt_size,
+ prot->iv_size);
if (err < 0) {
kfree(mem);
return err;
}
- memcpy(iv, tls_ctx->rx.iv, TLS_CIPHER_AES_GCM_128_SALT_SIZE);
+ if (prot->version == TLS_1_3_VERSION)
+ memcpy(iv + iv_offset, tls_ctx->rx.iv,
+ crypto_aead_ivsize(ctx->aead_recv));
+ else
+ memcpy(iv + iv_offset, tls_ctx->rx.iv, prot->salt_size);
+
+ xor_iv_with_seq(prot->version, iv, tls_ctx->rx.rec_seq);
/* Prepare AAD */
- tls_make_aad(aad, rxm->full_len - tls_ctx->rx.overhead_size,
- tls_ctx->rx.rec_seq, tls_ctx->rx.rec_seq_size,
- ctx->control);
+ tls_make_aad(aad, rxm->full_len - prot->overhead_size +
+ prot->tail_size,
+ tls_ctx->rx.rec_seq, prot->rec_seq_size,
+ ctx->control, prot->version);
/* Prepare sgin */
sg_init_table(sgin, n_sgin);
- sg_set_buf(&sgin[0], aad, TLS_AAD_SPACE_SIZE);
+ sg_set_buf(&sgin[0], aad, prot->aad_size);
err = skb_to_sgvec(skb, &sgin[1],
- rxm->offset + tls_ctx->rx.prepend_size,
- rxm->full_len - tls_ctx->rx.prepend_size);
+ rxm->offset + prot->prepend_size,
+ rxm->full_len - prot->prepend_size);
if (err < 0) {
kfree(mem);
return err;
@@ -747,12 +1450,12 @@
if (n_sgout) {
if (out_iov) {
sg_init_table(sgout, n_sgout);
- sg_set_buf(&sgout[0], aad, TLS_AAD_SPACE_SIZE);
+ sg_set_buf(&sgout[0], aad, prot->aad_size);
*chunk = 0;
- err = zerocopy_from_iter(sk, out_iov, data_len, &pages,
- chunk, &sgout[1],
- (n_sgout - 1), false);
+ err = tls_setup_from_iter(sk, out_iov, data_len,
+ &pages, chunk, &sgout[1],
+ (n_sgout - 1));
if (err < 0)
goto fallback_to_reg_recv;
} else if (out_sg) {
@@ -764,12 +1467,15 @@
fallback_to_reg_recv:
sgout = sgin;
pages = 0;
- *chunk = 0;
+ *chunk = data_len;
*zc = false;
}
/* Prepare and submit AEAD request */
- err = tls_do_decryption(sk, sgin, sgout, iv, data_len, aead_req);
+ err = tls_do_decryption(sk, skb, sgin, sgout, iv,
+ data_len, aead_req, async);
+ if (err == -EINPROGRESS)
+ return err;
/* Release the pages in case iov was mapped to pages */
for (; pages > 0; pages--)
@@ -780,32 +1486,51 @@
}
static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb,
- struct iov_iter *dest, int *chunk, bool *zc)
+ struct iov_iter *dest, int *chunk, bool *zc,
+ bool async)
{
struct tls_context *tls_ctx = tls_get_ctx(sk);
struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
+ struct tls_prot_info *prot = &tls_ctx->prot_info;
struct strp_msg *rxm = strp_msg(skb);
- int err = 0;
+ int pad, err = 0;
-#ifdef CONFIG_TLS_DEVICE
- err = tls_device_decrypted(sk, skb);
- if (err < 0)
- return err;
-#endif
if (!ctx->decrypted) {
- err = decrypt_internal(sk, skb, dest, NULL, chunk, zc);
- if (err < 0)
- return err;
+ if (tls_ctx->rx_conf == TLS_HW) {
+ err = tls_device_decrypted(sk, skb);
+ if (err < 0)
+ return err;
+ }
+
+ /* Still not decrypted after tls_device */
+ if (!ctx->decrypted) {
+ err = decrypt_internal(sk, skb, dest, NULL, chunk, zc,
+ async);
+ if (err < 0) {
+ if (err == -EINPROGRESS)
+ tls_advance_record_sn(sk, prot,
+ &tls_ctx->rx);
+
+ return err;
+ }
+ } else {
+ *zc = false;
+ }
+
+ pad = padding_length(ctx, prot, skb);
+ if (pad < 0)
+ return pad;
+
+ rxm->full_len -= pad;
+ rxm->offset += prot->prepend_size;
+ rxm->full_len -= prot->overhead_size;
+ tls_advance_record_sn(sk, prot, &tls_ctx->rx);
+ ctx->decrypted = true;
+ ctx->saved_data_ready(sk);
} else {
*zc = false;
}
- rxm->offset += tls_ctx->rx.prepend_size;
- rxm->full_len -= tls_ctx->rx.overhead_size;
- tls_advance_record_sn(sk, &tls_ctx->rx);
- ctx->decrypted = true;
- ctx->saved_data_ready(sk);
-
return err;
}
@@ -815,7 +1540,7 @@
bool zc = true;
int chunk;
- return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc);
+ return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc, false);
}
static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb,
@@ -823,23 +1548,134 @@
{
struct tls_context *tls_ctx = tls_get_ctx(sk);
struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
- struct strp_msg *rxm = strp_msg(skb);
- if (len < rxm->full_len) {
- rxm->offset += len;
- rxm->full_len -= len;
+ if (skb) {
+ struct strp_msg *rxm = strp_msg(skb);
- return false;
+ if (len < rxm->full_len) {
+ rxm->offset += len;
+ rxm->full_len -= len;
+ return false;
+ }
+ consume_skb(skb);
}
/* Finished with message */
ctx->recv_pkt = NULL;
- kfree_skb(skb);
__strp_unpause(&ctx->strp);
return true;
}
+/* This function traverses the rx_list in tls receive context to copies the
+ * decrypted records into the buffer provided by caller zero copy is not
+ * true. Further, the records are removed from the rx_list if it is not a peek
+ * case and the record has been consumed completely.
+ */
+static int process_rx_list(struct tls_sw_context_rx *ctx,
+ struct msghdr *msg,
+ u8 *control,
+ bool *cmsg,
+ size_t skip,
+ size_t len,
+ bool zc,
+ bool is_peek)
+{
+ struct sk_buff *skb = skb_peek(&ctx->rx_list);
+ u8 ctrl = *control;
+ u8 msgc = *cmsg;
+ struct tls_msg *tlm;
+ ssize_t copied = 0;
+
+ /* Set the record type in 'control' if caller didn't pass it */
+ if (!ctrl && skb) {
+ tlm = tls_msg(skb);
+ ctrl = tlm->control;
+ }
+
+ while (skip && skb) {
+ struct strp_msg *rxm = strp_msg(skb);
+ tlm = tls_msg(skb);
+
+ /* Cannot process a record of different type */
+ if (ctrl != tlm->control)
+ return 0;
+
+ if (skip < rxm->full_len)
+ break;
+
+ skip = skip - rxm->full_len;
+ skb = skb_peek_next(skb, &ctx->rx_list);
+ }
+
+ while (len && skb) {
+ struct sk_buff *next_skb;
+ struct strp_msg *rxm = strp_msg(skb);
+ int chunk = min_t(unsigned int, rxm->full_len - skip, len);
+
+ tlm = tls_msg(skb);
+
+ /* Cannot process a record of different type */
+ if (ctrl != tlm->control)
+ return 0;
+
+ /* Set record type if not already done. For a non-data record,
+ * do not proceed if record type could not be copied.
+ */
+ if (!msgc) {
+ int cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
+ sizeof(ctrl), &ctrl);
+ msgc = true;
+ if (ctrl != TLS_RECORD_TYPE_DATA) {
+ if (cerr || msg->msg_flags & MSG_CTRUNC)
+ return -EIO;
+
+ *cmsg = msgc;
+ }
+ }
+
+ if (!zc || (rxm->full_len - skip) > len) {
+ int err = skb_copy_datagram_msg(skb, rxm->offset + skip,
+ msg, chunk);
+ if (err < 0)
+ return err;
+ }
+
+ len = len - chunk;
+ copied = copied + chunk;
+
+ /* Consume the data from record if it is non-peek case*/
+ if (!is_peek) {
+ rxm->offset = rxm->offset + chunk;
+ rxm->full_len = rxm->full_len - chunk;
+
+ /* Return if there is unconsumed data in the record */
+ if (rxm->full_len - skip)
+ break;
+ }
+
+ /* The remaining skip-bytes must lie in 1st record in rx_list.
+ * So from the 2nd record, 'skip' should be 0.
+ */
+ skip = 0;
+
+ if (msg)
+ msg->msg_flags |= MSG_EOR;
+
+ next_skb = skb_peek_next(skb, &ctx->rx_list);
+
+ if (!is_peek) {
+ skb_unlink(skb, &ctx->rx_list);
+ consume_skb(skb);
+ }
+
+ skb = next_skb;
+ }
+
+ *control = ctrl;
+ return copied;
+}
+
int tls_sw_recvmsg(struct sock *sk,
struct msghdr *msg,
size_t len,
@@ -849,104 +1685,217 @@
{
struct tls_context *tls_ctx = tls_get_ctx(sk);
struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
- unsigned char control;
+ struct tls_prot_info *prot = &tls_ctx->prot_info;
+ struct sk_psock *psock;
+ unsigned char control = 0;
+ ssize_t decrypted = 0;
struct strp_msg *rxm;
+ struct tls_msg *tlm;
struct sk_buff *skb;
ssize_t copied = 0;
bool cmsg = false;
int target, err = 0;
long timeo;
- bool is_kvec = msg->msg_iter.type & ITER_KVEC;
+ bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
+ bool is_peek = flags & MSG_PEEK;
+ int num_async = 0;
flags |= nonblock;
if (unlikely(flags & MSG_ERRQUEUE))
return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
+ psock = sk_psock_get(sk);
lock_sock(sk);
- target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
- timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
- do {
- bool zc = false;
- int chunk = 0;
+ /* Process pending decrypted records. It must be non-zero-copy */
+ err = process_rx_list(ctx, msg, &control, &cmsg, 0, len, false,
+ is_peek);
+ if (err < 0) {
+ tls_err_abort(sk, err);
+ goto end;
+ } else {
+ copied = err;
+ }
- skb = tls_wait_data(sk, flags, timeo, &err);
- if (!skb)
+ if (len <= copied)
+ goto recv_end;
+
+ target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
+ len = len - copied;
+ timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
+
+ while (len && (decrypted + copied < target || ctx->recv_pkt)) {
+ bool retain_skb = false;
+ bool zc = false;
+ int to_decrypt;
+ int chunk = 0;
+ bool async_capable;
+ bool async = false;
+
+ skb = tls_wait_data(sk, psock, flags, timeo, &err);
+ if (!skb) {
+ if (psock) {
+ int ret = __tcp_bpf_recvmsg(sk, psock,
+ msg, len, flags);
+
+ if (ret > 0) {
+ decrypted += ret;
+ len -= ret;
+ continue;
+ }
+ }
goto recv_end;
+ } else {
+ tlm = tls_msg(skb);
+ if (prot->version == TLS_1_3_VERSION)
+ tlm->control = 0;
+ else
+ tlm->control = ctx->control;
+ }
rxm = strp_msg(skb);
+
+ to_decrypt = rxm->full_len - prot->overhead_size;
+
+ if (to_decrypt <= len && !is_kvec && !is_peek &&
+ ctx->control == TLS_RECORD_TYPE_DATA &&
+ prot->version != TLS_1_3_VERSION)
+ zc = true;
+
+ /* Do not use async mode if record is non-data */
+ if (ctx->control == TLS_RECORD_TYPE_DATA)
+ async_capable = ctx->async_capable;
+ else
+ async_capable = false;
+
+ err = decrypt_skb_update(sk, skb, &msg->msg_iter,
+ &chunk, &zc, async_capable);
+ if (err < 0 && err != -EINPROGRESS) {
+ tls_err_abort(sk, EBADMSG);
+ goto recv_end;
+ }
+
+ if (err == -EINPROGRESS) {
+ async = true;
+ num_async++;
+ } else if (prot->version == TLS_1_3_VERSION) {
+ tlm->control = ctx->control;
+ }
+
+ /* If the type of records being processed is not known yet,
+ * set it to record type just dequeued. If it is already known,
+ * but does not match the record type just dequeued, go to end.
+ * We always get record type here since for tls1.2, record type
+ * is known just after record is dequeued from stream parser.
+ * For tls1.3, we disable async.
+ */
+
+ if (!control)
+ control = tlm->control;
+ else if (control != tlm->control)
+ goto recv_end;
+
if (!cmsg) {
int cerr;
cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
- sizeof(ctx->control), &ctx->control);
+ sizeof(control), &control);
cmsg = true;
- control = ctx->control;
- if (ctx->control != TLS_RECORD_TYPE_DATA) {
+ if (control != TLS_RECORD_TYPE_DATA) {
if (cerr || msg->msg_flags & MSG_CTRUNC) {
err = -EIO;
goto recv_end;
}
}
- } else if (control != ctx->control) {
- goto recv_end;
}
- if (!ctx->decrypted) {
- int to_copy = rxm->full_len - tls_ctx->rx.overhead_size;
-
- if (!is_kvec && to_copy <= len &&
- likely(!(flags & MSG_PEEK)))
- zc = true;
-
- err = decrypt_skb_update(sk, skb, &msg->msg_iter,
- &chunk, &zc);
- if (err < 0) {
- tls_err_abort(sk, EBADMSG);
- goto recv_end;
- }
- ctx->decrypted = true;
- }
+ if (async)
+ goto pick_next_record;
if (!zc) {
- chunk = min_t(unsigned int, rxm->full_len, len);
- err = skb_copy_datagram_msg(skb, rxm->offset, msg,
- chunk);
+ if (rxm->full_len > len) {
+ retain_skb = true;
+ chunk = len;
+ } else {
+ chunk = rxm->full_len;
+ }
+
+ err = skb_copy_datagram_msg(skb, rxm->offset,
+ msg, chunk);
if (err < 0)
goto recv_end;
- }
- copied += chunk;
- len -= chunk;
- if (likely(!(flags & MSG_PEEK))) {
- u8 control = ctx->control;
-
- if (tls_sw_advance_skb(sk, skb, chunk)) {
- /* Return full control message to
- * userspace before trying to parse
- * another message type
- */
- msg->msg_flags |= MSG_EOR;
- if (control != TLS_RECORD_TYPE_DATA)
- goto recv_end;
+ if (!is_peek) {
+ rxm->offset = rxm->offset + chunk;
+ rxm->full_len = rxm->full_len - chunk;
}
- } else {
- /* MSG_PEEK right now cannot look beyond current skb
- * from strparser, meaning we cannot advance skb here
- * and thus unpause strparser since we'd loose original
- * one.
- */
- break;
}
- /* If we have a new message from strparser, continue now. */
- if (copied >= target && !ctx->recv_pkt)
+pick_next_record:
+ if (chunk > len)
+ chunk = len;
+
+ decrypted += chunk;
+ len -= chunk;
+
+ /* For async or peek case, queue the current skb */
+ if (async || is_peek || retain_skb) {
+ skb_queue_tail(&ctx->rx_list, skb);
+ skb = NULL;
+ }
+
+ if (tls_sw_advance_skb(sk, skb, chunk)) {
+ /* Return full control message to
+ * userspace before trying to parse
+ * another message type
+ */
+ msg->msg_flags |= MSG_EOR;
+ if (ctx->control != TLS_RECORD_TYPE_DATA)
+ goto recv_end;
+ } else {
break;
- } while (len);
+ }
+ }
recv_end:
+ if (num_async) {
+ /* Wait for all previously submitted records to be decrypted */
+ smp_store_mb(ctx->async_notify, true);
+ if (atomic_read(&ctx->decrypt_pending)) {
+ err = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
+ if (err) {
+ /* one of async decrypt failed */
+ tls_err_abort(sk, err);
+ copied = 0;
+ decrypted = 0;
+ goto end;
+ }
+ } else {
+ reinit_completion(&ctx->async_wait.completion);
+ }
+ WRITE_ONCE(ctx->async_notify, false);
+
+ /* Drain records from the rx_list & copy if required */
+ if (is_peek || is_kvec)
+ err = process_rx_list(ctx, msg, &control, &cmsg, copied,
+ decrypted, false, is_peek);
+ else
+ err = process_rx_list(ctx, msg, &control, &cmsg, 0,
+ decrypted, true, is_peek);
+ if (err < 0) {
+ tls_err_abort(sk, err);
+ copied = 0;
+ goto end;
+ }
+ }
+
+ copied += decrypted;
+
+end:
release_sock(sk);
+ if (psock)
+ sk_psock_put(sk, psock);
return copied ? : err;
}
@@ -969,18 +1918,18 @@
timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
- skb = tls_wait_data(sk, flags, timeo, &err);
+ skb = tls_wait_data(sk, NULL, flags, timeo, &err);
if (!skb)
goto splice_read_end;
- /* splice does not support reading control messages */
- if (ctx->control != TLS_RECORD_TYPE_DATA) {
- err = -ENOTSUPP;
- goto splice_read_end;
- }
-
if (!ctx->decrypted) {
- err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc);
+ err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc, false);
+
+ /* splice does not support reading control messages */
+ if (ctx->control != TLS_RECORD_TYPE_DATA) {
+ err = -ENOTSUPP;
+ goto splice_read_end;
+ }
if (err < 0) {
tls_err_abort(sk, EBADMSG);
@@ -1003,29 +1952,28 @@
return copied ? : err;
}
-unsigned int tls_sw_poll(struct file *file, struct socket *sock,
- struct poll_table_struct *wait)
+bool tls_sw_stream_read(const struct sock *sk)
{
- unsigned int ret;
- struct sock *sk = sock->sk;
struct tls_context *tls_ctx = tls_get_ctx(sk);
struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
+ bool ingress_empty = true;
+ struct sk_psock *psock;
- /* Grab POLLOUT and POLLHUP from the underlying socket */
- ret = ctx->sk_poll(file, sock, wait);
+ rcu_read_lock();
+ psock = sk_psock(sk);
+ if (psock)
+ ingress_empty = list_empty(&psock->ingress_msg);
+ rcu_read_unlock();
- /* Clear POLLIN bits, and set based on recv_pkt */
- ret &= ~(POLLIN | POLLRDNORM);
- if (ctx->recv_pkt)
- ret |= POLLIN | POLLRDNORM;
-
- return ret;
+ return !ingress_empty || ctx->recv_pkt ||
+ !skb_queue_empty(&ctx->rx_list);
}
static int tls_read_size(struct strparser *strp, struct sk_buff *skb)
{
struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
+ struct tls_prot_info *prot = &tls_ctx->prot_info;
char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
struct strp_msg *rxm = strp_msg(skb);
size_t cipher_overhead;
@@ -1033,17 +1981,17 @@
int ret;
/* Verify that we have a full TLS header, or wait for more data */
- if (rxm->offset + tls_ctx->rx.prepend_size > skb->len)
+ if (rxm->offset + prot->prepend_size > skb->len)
return 0;
/* Sanity-check size of on-stack buffer. */
- if (WARN_ON(tls_ctx->rx.prepend_size > sizeof(header))) {
+ if (WARN_ON(prot->prepend_size > sizeof(header))) {
ret = -EINVAL;
goto read_failure;
}
/* Linearize header to local buffer */
- ret = skb_copy_bits(skb, rxm->offset, header, tls_ctx->rx.prepend_size);
+ ret = skb_copy_bits(skb, rxm->offset, header, prot->prepend_size);
if (ret < 0)
goto read_failure;
@@ -1052,9 +2000,12 @@
data_len = ((header[4] & 0xFF) | (header[3] << 8));
- cipher_overhead = tls_ctx->rx.tag_size + tls_ctx->rx.iv_size;
+ cipher_overhead = prot->tag_size;
+ if (prot->version != TLS_1_3_VERSION)
+ cipher_overhead += prot->iv_size;
- if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead) {
+ if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
+ prot->tail_size) {
ret = -EMSGSIZE;
goto read_failure;
}
@@ -1063,16 +2014,15 @@
goto read_failure;
}
- if (header[1] != TLS_VERSION_MINOR(tls_ctx->crypto_recv.info.version) ||
- header[2] != TLS_VERSION_MAJOR(tls_ctx->crypto_recv.info.version)) {
+ /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
+ if (header[1] != TLS_1_2_VERSION_MINOR ||
+ header[2] != TLS_1_2_VERSION_MAJOR) {
ret = -EINVAL;
goto read_failure;
}
-#ifdef CONFIG_TLS_DEVICE
- handle_device_resync(strp->sk, TCP_SKB_CB(skb)->seq + rxm->offset,
- *(u64*)tls_ctx->rx.rec_seq);
-#endif
+ tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE,
+ TCP_SKB_CB(skb)->seq + rxm->offset);
return data_len + TLS_HEADER_SIZE;
read_failure:
@@ -1098,17 +2048,65 @@
{
struct tls_context *tls_ctx = tls_get_ctx(sk);
struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
+ struct sk_psock *psock;
strp_data_ready(&ctx->strp);
+
+ psock = sk_psock_get(sk);
+ if (psock && !list_empty(&psock->ingress_msg)) {
+ ctx->saved_data_ready(sk);
+ sk_psock_put(sk, psock);
+ }
}
-void tls_sw_free_resources_tx(struct sock *sk)
+void tls_sw_cancel_work_tx(struct tls_context *tls_ctx)
+{
+ struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
+
+ set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask);
+ set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask);
+ cancel_delayed_work_sync(&ctx->tx_work.work);
+}
+
+void tls_sw_release_resources_tx(struct sock *sk)
{
struct tls_context *tls_ctx = tls_get_ctx(sk);
struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
+ struct tls_rec *rec, *tmp;
+
+ /* Wait for any pending async encryptions to complete */
+ smp_store_mb(ctx->async_notify, true);
+ if (atomic_read(&ctx->encrypt_pending))
+ crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
+
+ tls_tx_records(sk, -1);
+
+ /* Free up un-sent records in tx_list. First, free
+ * the partially sent record if any at head of tx_list.
+ */
+ if (tls_ctx->partially_sent_record) {
+ tls_free_partial_record(sk, tls_ctx);
+ rec = list_first_entry(&ctx->tx_list,
+ struct tls_rec, list);
+ list_del(&rec->list);
+ sk_msg_free(sk, &rec->msg_plaintext);
+ kfree(rec);
+ }
+
+ list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
+ list_del(&rec->list);
+ sk_msg_free(sk, &rec->msg_encrypted);
+ sk_msg_free(sk, &rec->msg_plaintext);
+ kfree(rec);
+ }
crypto_free_aead(ctx->aead_send);
- tls_free_both_sg(sk);
+ tls_free_open_rec(sk);
+}
+
+void tls_sw_free_ctx_tx(struct tls_context *tls_ctx)
+{
+ struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
kfree(ctx);
}
@@ -1118,41 +2116,114 @@
struct tls_context *tls_ctx = tls_get_ctx(sk);
struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
+ kfree(tls_ctx->rx.rec_seq);
+ kfree(tls_ctx->rx.iv);
+
if (ctx->aead_recv) {
kfree_skb(ctx->recv_pkt);
ctx->recv_pkt = NULL;
+ skb_queue_purge(&ctx->rx_list);
crypto_free_aead(ctx->aead_recv);
strp_stop(&ctx->strp);
- write_lock_bh(&sk->sk_callback_lock);
- sk->sk_data_ready = ctx->saved_data_ready;
- write_unlock_bh(&sk->sk_callback_lock);
- release_sock(sk);
- strp_done(&ctx->strp);
- lock_sock(sk);
+ /* If tls_sw_strparser_arm() was not called (cleanup paths)
+ * we still want to strp_stop(), but sk->sk_data_ready was
+ * never swapped.
+ */
+ if (ctx->saved_data_ready) {
+ write_lock_bh(&sk->sk_callback_lock);
+ sk->sk_data_ready = ctx->saved_data_ready;
+ write_unlock_bh(&sk->sk_callback_lock);
+ }
}
}
+void tls_sw_strparser_done(struct tls_context *tls_ctx)
+{
+ struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
+
+ strp_done(&ctx->strp);
+}
+
+void tls_sw_free_ctx_rx(struct tls_context *tls_ctx)
+{
+ struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
+
+ kfree(ctx);
+}
+
void tls_sw_free_resources_rx(struct sock *sk)
{
struct tls_context *tls_ctx = tls_get_ctx(sk);
- struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
tls_sw_release_resources_rx(sk);
+ tls_sw_free_ctx_rx(tls_ctx);
+}
- kfree(ctx);
+/* The work handler to transmitt the encrypted records in tx_list */
+static void tx_work_handler(struct work_struct *work)
+{
+ struct delayed_work *delayed_work = to_delayed_work(work);
+ struct tx_work *tx_work = container_of(delayed_work,
+ struct tx_work, work);
+ struct sock *sk = tx_work->sk;
+ struct tls_context *tls_ctx = tls_get_ctx(sk);
+ struct tls_sw_context_tx *ctx;
+
+ if (unlikely(!tls_ctx))
+ return;
+
+ ctx = tls_sw_ctx_tx(tls_ctx);
+ if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask))
+ return;
+
+ if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
+ return;
+ mutex_lock(&tls_ctx->tx_lock);
+ lock_sock(sk);
+ tls_tx_records(sk, -1);
+ release_sock(sk);
+ mutex_unlock(&tls_ctx->tx_lock);
+}
+
+void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
+{
+ struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
+
+ /* Schedule the transmission if tx list is ready */
+ if (is_tx_ready(tx_ctx) &&
+ !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask))
+ schedule_delayed_work(&tx_ctx->tx_work.work, 0);
+}
+
+void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx)
+{
+ struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
+
+ write_lock_bh(&sk->sk_callback_lock);
+ rx_ctx->saved_data_ready = sk->sk_data_ready;
+ sk->sk_data_ready = tls_data_ready;
+ write_unlock_bh(&sk->sk_callback_lock);
+
+ strp_check_rcv(&rx_ctx->strp);
}
int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
{
+ struct tls_context *tls_ctx = tls_get_ctx(sk);
+ struct tls_prot_info *prot = &tls_ctx->prot_info;
struct tls_crypto_info *crypto_info;
struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
+ struct tls12_crypto_info_aes_gcm_256 *gcm_256_info;
+ struct tls12_crypto_info_aes_ccm_128 *ccm_128_info;
struct tls_sw_context_tx *sw_ctx_tx = NULL;
struct tls_sw_context_rx *sw_ctx_rx = NULL;
struct cipher_context *cctx;
struct crypto_aead **aead;
struct strp_callbacks cb;
- u16 nonce_size, tag_size, iv_size, rec_seq_size;
- char *iv, *rec_seq;
+ u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size;
+ struct crypto_tfm *tfm;
+ char *iv, *rec_seq, *key, *salt, *cipher_name;
+ size_t keysize;
int rc = 0;
if (!ctx) {
@@ -1191,10 +2262,14 @@
crypto_info = &ctx->crypto_send.info;
cctx = &ctx->tx;
aead = &sw_ctx_tx->aead_send;
+ INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
+ INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
+ sw_ctx_tx->tx_work.sk = sk;
} else {
crypto_init_wait(&sw_ctx_rx->async_wait);
crypto_info = &ctx->crypto_recv.info;
cctx = &ctx->rx;
+ skb_queue_head_init(&sw_ctx_rx->rx_list);
aead = &sw_ctx_rx->aead_recv;
}
@@ -1209,6 +2284,45 @@
((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
gcm_128_info =
(struct tls12_crypto_info_aes_gcm_128 *)crypto_info;
+ keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE;
+ key = gcm_128_info->key;
+ salt = gcm_128_info->salt;
+ salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE;
+ cipher_name = "gcm(aes)";
+ break;
+ }
+ case TLS_CIPHER_AES_GCM_256: {
+ nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
+ tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE;
+ iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
+ iv = ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->iv;
+ rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE;
+ rec_seq =
+ ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->rec_seq;
+ gcm_256_info =
+ (struct tls12_crypto_info_aes_gcm_256 *)crypto_info;
+ keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE;
+ key = gcm_256_info->key;
+ salt = gcm_256_info->salt;
+ salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE;
+ cipher_name = "gcm(aes)";
+ break;
+ }
+ case TLS_CIPHER_AES_CCM_128: {
+ nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
+ tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE;
+ iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
+ iv = ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->iv;
+ rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE;
+ rec_seq =
+ ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->rec_seq;
+ ccm_128_info =
+ (struct tls12_crypto_info_aes_ccm_128 *)crypto_info;
+ keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE;
+ key = ccm_128_info->key;
+ salt = ccm_128_info->salt;
+ salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE;
+ cipher_name = "ccm(aes)";
break;
}
default:
@@ -1216,53 +2330,47 @@
goto free_priv;
}
- /* Sanity-check the IV size for stack allocations. */
- if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE) {
+ /* Sanity-check the sizes for stack allocations. */
+ if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE ||
+ rec_seq_size > TLS_MAX_REC_SEQ_SIZE) {
rc = -EINVAL;
goto free_priv;
}
- cctx->prepend_size = TLS_HEADER_SIZE + nonce_size;
- cctx->tag_size = tag_size;
- cctx->overhead_size = cctx->prepend_size + cctx->tag_size;
- cctx->iv_size = iv_size;
- cctx->iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
- GFP_KERNEL);
+ if (crypto_info->version == TLS_1_3_VERSION) {
+ nonce_size = 0;
+ prot->aad_size = TLS_HEADER_SIZE;
+ prot->tail_size = 1;
+ } else {
+ prot->aad_size = TLS_AAD_SPACE_SIZE;
+ prot->tail_size = 0;
+ }
+
+ prot->version = crypto_info->version;
+ prot->cipher_type = crypto_info->cipher_type;
+ prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
+ prot->tag_size = tag_size;
+ prot->overhead_size = prot->prepend_size +
+ prot->tag_size + prot->tail_size;
+ prot->iv_size = iv_size;
+ prot->salt_size = salt_size;
+ cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL);
if (!cctx->iv) {
rc = -ENOMEM;
goto free_priv;
}
- memcpy(cctx->iv, gcm_128_info->salt, TLS_CIPHER_AES_GCM_128_SALT_SIZE);
- memcpy(cctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size);
- cctx->rec_seq_size = rec_seq_size;
+ /* Note: 128 & 256 bit salt are the same size */
+ prot->rec_seq_size = rec_seq_size;
+ memcpy(cctx->iv, salt, salt_size);
+ memcpy(cctx->iv + salt_size, iv, iv_size);
cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
if (!cctx->rec_seq) {
rc = -ENOMEM;
goto free_iv;
}
- if (sw_ctx_tx) {
- sg_init_table(sw_ctx_tx->sg_encrypted_data,
- ARRAY_SIZE(sw_ctx_tx->sg_encrypted_data));
- sg_init_table(sw_ctx_tx->sg_plaintext_data,
- ARRAY_SIZE(sw_ctx_tx->sg_plaintext_data));
-
- sg_init_table(sw_ctx_tx->sg_aead_in, 2);
- sg_set_buf(&sw_ctx_tx->sg_aead_in[0], sw_ctx_tx->aad_space,
- sizeof(sw_ctx_tx->aad_space));
- sg_unmark_end(&sw_ctx_tx->sg_aead_in[1]);
- sg_chain(sw_ctx_tx->sg_aead_in, 2,
- sw_ctx_tx->sg_plaintext_data);
- sg_init_table(sw_ctx_tx->sg_aead_out, 2);
- sg_set_buf(&sw_ctx_tx->sg_aead_out[0], sw_ctx_tx->aad_space,
- sizeof(sw_ctx_tx->aad_space));
- sg_unmark_end(&sw_ctx_tx->sg_aead_out[1]);
- sg_chain(sw_ctx_tx->sg_aead_out, 2,
- sw_ctx_tx->sg_encrypted_data);
- }
-
if (!*aead) {
- *aead = crypto_alloc_aead("gcm(aes)", 0, 0);
+ *aead = crypto_alloc_aead(cipher_name, 0, 0);
if (IS_ERR(*aead)) {
rc = PTR_ERR(*aead);
*aead = NULL;
@@ -1272,31 +2380,30 @@
ctx->push_pending_record = tls_sw_push_pending_record;
- rc = crypto_aead_setkey(*aead, gcm_128_info->key,
- TLS_CIPHER_AES_GCM_128_KEY_SIZE);
+ rc = crypto_aead_setkey(*aead, key, keysize);
+
if (rc)
goto free_aead;
- rc = crypto_aead_setauthsize(*aead, cctx->tag_size);
+ rc = crypto_aead_setauthsize(*aead, prot->tag_size);
if (rc)
goto free_aead;
if (sw_ctx_rx) {
+ tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
+
+ if (crypto_info->version == TLS_1_3_VERSION)
+ sw_ctx_rx->async_capable = false;
+ else
+ sw_ctx_rx->async_capable =
+ tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC;
+
/* Set up strparser */
memset(&cb, 0, sizeof(cb));
cb.rcv_msg = tls_queue;
cb.parse_msg = tls_read_size;
strp_init(&sw_ctx_rx->strp, sk, &cb);
-
- write_lock_bh(&sk->sk_callback_lock);
- sw_ctx_rx->saved_data_ready = sk->sk_data_ready;
- sk->sk_data_ready = tls_data_ready;
- write_unlock_bh(&sk->sk_callback_lock);
-
- sw_ctx_rx->sk_poll = sk->sk_socket->ops->poll;
-
- strp_check_rcv(&sw_ctx_rx->strp);
}
goto out;