Update Linux to v5.4.2

Change-Id: Idf6911045d9d382da2cfe01b1edff026404ac8fd
diff --git a/fs/crypto/crypto.c b/fs/crypto/crypto.c
index 0f46cf5..32a7ad0 100644
--- a/fs/crypto/crypto.c
+++ b/fs/crypto/crypto.c
@@ -1,3 +1,4 @@
+// SPDX-License-Identifier: GPL-2.0-only
 /*
  * This contains encryption functions for per-file encryption.
  *
@@ -58,23 +59,16 @@
 EXPORT_SYMBOL(fscrypt_enqueue_decrypt_work);
 
 /**
- * fscrypt_release_ctx() - Releases an encryption context
- * @ctx: The encryption context to release.
+ * fscrypt_release_ctx() - Release a decryption context
+ * @ctx: The decryption context to release.
  *
- * If the encryption context was allocated from the pre-allocated pool, returns
- * it to that pool. Else, frees it.
- *
- * If there's a bounce page in the context, this frees that.
+ * If the decryption context was allocated from the pre-allocated pool, return
+ * it to that pool.  Else, free it.
  */
 void fscrypt_release_ctx(struct fscrypt_ctx *ctx)
 {
 	unsigned long flags;
 
-	if (ctx->flags & FS_CTX_HAS_BOUNCE_BUFFER_FL && ctx->w.bounce_page) {
-		mempool_free(ctx->w.bounce_page, fscrypt_bounce_page_pool);
-		ctx->w.bounce_page = NULL;
-	}
-	ctx->w.control_page = NULL;
 	if (ctx->flags & FS_CTX_REQUIRES_FREE_ENCRYPT_FL) {
 		kmem_cache_free(fscrypt_ctx_cachep, ctx);
 	} else {
@@ -86,33 +80,21 @@
 EXPORT_SYMBOL(fscrypt_release_ctx);
 
 /**
- * fscrypt_get_ctx() - Gets an encryption context
- * @inode:       The inode for which we are doing the crypto
+ * fscrypt_get_ctx() - Get a decryption context
  * @gfp_flags:   The gfp flag for memory allocation
  *
- * Allocates and initializes an encryption context.
+ * Allocate and initialize a decryption context.
  *
- * Return: An allocated and initialized encryption context on success; error
- * value or NULL otherwise.
+ * Return: A new decryption context on success; an ERR_PTR() otherwise.
  */
-struct fscrypt_ctx *fscrypt_get_ctx(const struct inode *inode, gfp_t gfp_flags)
+struct fscrypt_ctx *fscrypt_get_ctx(gfp_t gfp_flags)
 {
-	struct fscrypt_ctx *ctx = NULL;
-	struct fscrypt_info *ci = inode->i_crypt_info;
+	struct fscrypt_ctx *ctx;
 	unsigned long flags;
 
-	if (ci == NULL)
-		return ERR_PTR(-ENOKEY);
-
 	/*
-	 * We first try getting the ctx from a free list because in
-	 * the common case the ctx will have an allocated and
-	 * initialized crypto tfm, so it's probably a worthwhile
-	 * optimization. For the bounce page, we first try getting it
-	 * from the kernel allocator because that's just about as fast
-	 * as getting it from a list and because a cache of free pages
-	 * should generally be a "last resort" option for a filesystem
-	 * to be able to do its job.
+	 * First try getting a ctx from the free list so that we don't have to
+	 * call into the slab allocator.
 	 */
 	spin_lock_irqsave(&fscrypt_ctx_lock, flags);
 	ctx = list_first_entry_or_null(&fscrypt_free_ctxs,
@@ -128,20 +110,51 @@
 	} else {
 		ctx->flags &= ~FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
 	}
-	ctx->flags &= ~FS_CTX_HAS_BOUNCE_BUFFER_FL;
 	return ctx;
 }
 EXPORT_SYMBOL(fscrypt_get_ctx);
 
-int fscrypt_do_page_crypto(const struct inode *inode, fscrypt_direction_t rw,
-			   u64 lblk_num, struct page *src_page,
-			   struct page *dest_page, unsigned int len,
-			   unsigned int offs, gfp_t gfp_flags)
+struct page *fscrypt_alloc_bounce_page(gfp_t gfp_flags)
 {
-	struct {
-		__le64 index;
-		u8 padding[FS_IV_SIZE - sizeof(__le64)];
-	} iv;
+	return mempool_alloc(fscrypt_bounce_page_pool, gfp_flags);
+}
+
+/**
+ * fscrypt_free_bounce_page() - free a ciphertext bounce page
+ *
+ * Free a bounce page that was allocated by fscrypt_encrypt_pagecache_blocks(),
+ * or by fscrypt_alloc_bounce_page() directly.
+ */
+void fscrypt_free_bounce_page(struct page *bounce_page)
+{
+	if (!bounce_page)
+		return;
+	set_page_private(bounce_page, (unsigned long)NULL);
+	ClearPagePrivate(bounce_page);
+	mempool_free(bounce_page, fscrypt_bounce_page_pool);
+}
+EXPORT_SYMBOL(fscrypt_free_bounce_page);
+
+void fscrypt_generate_iv(union fscrypt_iv *iv, u64 lblk_num,
+			 const struct fscrypt_info *ci)
+{
+	memset(iv, 0, ci->ci_mode->ivsize);
+	iv->lblk_num = cpu_to_le64(lblk_num);
+
+	if (fscrypt_is_direct_key_policy(&ci->ci_policy))
+		memcpy(iv->nonce, ci->ci_nonce, FS_KEY_DERIVATION_NONCE_SIZE);
+
+	if (ci->ci_essiv_tfm != NULL)
+		crypto_cipher_encrypt_one(ci->ci_essiv_tfm, iv->raw, iv->raw);
+}
+
+/* Encrypt or decrypt a single filesystem block of file contents */
+int fscrypt_crypt_block(const struct inode *inode, fscrypt_direction_t rw,
+			u64 lblk_num, struct page *src_page,
+			struct page *dest_page, unsigned int len,
+			unsigned int offs, gfp_t gfp_flags)
+{
+	union fscrypt_iv iv;
 	struct skcipher_request *req = NULL;
 	DECLARE_CRYPTO_WAIT(wait);
 	struct scatterlist dst, src;
@@ -149,17 +162,12 @@
 	struct crypto_skcipher *tfm = ci->ci_ctfm;
 	int res = 0;
 
-	BUG_ON(len == 0);
+	if (WARN_ON_ONCE(len <= 0))
+		return -EINVAL;
+	if (WARN_ON_ONCE(len % FS_CRYPTO_BLOCK_SIZE != 0))
+		return -EINVAL;
 
-	BUILD_BUG_ON(sizeof(iv) != FS_IV_SIZE);
-	BUILD_BUG_ON(AES_BLOCK_SIZE != FS_IV_SIZE);
-	iv.index = cpu_to_le64(lblk_num);
-	memset(iv.padding, 0, sizeof(iv.padding));
-
-	if (ci->ci_essiv_tfm != NULL) {
-		crypto_cipher_encrypt_one(ci->ci_essiv_tfm, (u8 *)&iv,
-					  (u8 *)&iv);
-	}
+	fscrypt_generate_iv(&iv, lblk_num, ci);
 
 	req = skcipher_request_alloc(tfm, gfp_flags);
 	if (!req)
@@ -180,194 +188,214 @@
 		res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
 	skcipher_request_free(req);
 	if (res) {
-		fscrypt_err(inode->i_sb,
-			    "%scryption failed for inode %lu, block %llu: %d",
-			    (rw == FS_DECRYPT ? "de" : "en"),
-			    inode->i_ino, lblk_num, res);
+		fscrypt_err(inode, "%scryption failed for block %llu: %d",
+			    (rw == FS_DECRYPT ? "De" : "En"), lblk_num, res);
 		return res;
 	}
 	return 0;
 }
 
-struct page *fscrypt_alloc_bounce_page(struct fscrypt_ctx *ctx,
-				       gfp_t gfp_flags)
-{
-	ctx->w.bounce_page = mempool_alloc(fscrypt_bounce_page_pool, gfp_flags);
-	if (ctx->w.bounce_page == NULL)
-		return ERR_PTR(-ENOMEM);
-	ctx->flags |= FS_CTX_HAS_BOUNCE_BUFFER_FL;
-	return ctx->w.bounce_page;
-}
-
 /**
- * fscypt_encrypt_page() - Encrypts a page
- * @inode:     The inode for which the encryption should take place
- * @page:      The page to encrypt. Must be locked for bounce-page
- *             encryption.
- * @len:       Length of data to encrypt in @page and encrypted
- *             data in returned page.
- * @offs:      Offset of data within @page and returned
- *             page holding encrypted data.
- * @lblk_num:  Logical block number. This must be unique for multiple
- *             calls with same inode, except when overwriting
- *             previously written data.
- * @gfp_flags: The gfp flag for memory allocation
+ * fscrypt_encrypt_pagecache_blocks() - Encrypt filesystem blocks from a pagecache page
+ * @page:      The locked pagecache page containing the block(s) to encrypt
+ * @len:       Total size of the block(s) to encrypt.  Must be a nonzero
+ *		multiple of the filesystem's block size.
+ * @offs:      Byte offset within @page of the first block to encrypt.  Must be
+ *		a multiple of the filesystem's block size.
+ * @gfp_flags: Memory allocation flags
  *
- * Encrypts @page using the ctx encryption context. Performs encryption
- * either in-place or into a newly allocated bounce page.
- * Called on the page write path.
+ * A new bounce page is allocated, and the specified block(s) are encrypted into
+ * it.  In the bounce page, the ciphertext block(s) will be located at the same
+ * offsets at which the plaintext block(s) were located in the source page; any
+ * other parts of the bounce page will be left uninitialized.  However, normally
+ * blocksize == PAGE_SIZE and the whole page is encrypted at once.
  *
- * Bounce page allocation is the default.
- * In this case, the contents of @page are encrypted and stored in an
- * allocated bounce page. @page has to be locked and the caller must call
- * fscrypt_restore_control_page() on the returned ciphertext page to
- * release the bounce buffer and the encryption context.
+ * This is for use by the filesystem's ->writepages() method.
  *
- * In-place encryption is used by setting the FS_CFLG_OWN_PAGES flag in
- * fscrypt_operations. Here, the input-page is returned with its content
- * encrypted.
- *
- * Return: A page with the encrypted content on success. Else, an
- * error value or NULL.
+ * Return: the new encrypted bounce page on success; an ERR_PTR() on failure
  */
-struct page *fscrypt_encrypt_page(const struct inode *inode,
-				struct page *page,
-				unsigned int len,
-				unsigned int offs,
-				u64 lblk_num, gfp_t gfp_flags)
+struct page *fscrypt_encrypt_pagecache_blocks(struct page *page,
+					      unsigned int len,
+					      unsigned int offs,
+					      gfp_t gfp_flags)
 
 {
-	struct fscrypt_ctx *ctx;
-	struct page *ciphertext_page = page;
+	const struct inode *inode = page->mapping->host;
+	const unsigned int blockbits = inode->i_blkbits;
+	const unsigned int blocksize = 1 << blockbits;
+	struct page *ciphertext_page;
+	u64 lblk_num = ((u64)page->index << (PAGE_SHIFT - blockbits)) +
+		       (offs >> blockbits);
+	unsigned int i;
 	int err;
 
-	BUG_ON(len % FS_CRYPTO_BLOCK_SIZE != 0);
+	if (WARN_ON_ONCE(!PageLocked(page)))
+		return ERR_PTR(-EINVAL);
 
-	if (inode->i_sb->s_cop->flags & FS_CFLG_OWN_PAGES) {
-		/* with inplace-encryption we just encrypt the page */
-		err = fscrypt_do_page_crypto(inode, FS_ENCRYPT, lblk_num, page,
-					     ciphertext_page, len, offs,
-					     gfp_flags);
-		if (err)
+	if (WARN_ON_ONCE(len <= 0 || !IS_ALIGNED(len | offs, blocksize)))
+		return ERR_PTR(-EINVAL);
+
+	ciphertext_page = fscrypt_alloc_bounce_page(gfp_flags);
+	if (!ciphertext_page)
+		return ERR_PTR(-ENOMEM);
+
+	for (i = offs; i < offs + len; i += blocksize, lblk_num++) {
+		err = fscrypt_crypt_block(inode, FS_ENCRYPT, lblk_num,
+					  page, ciphertext_page,
+					  blocksize, i, gfp_flags);
+		if (err) {
+			fscrypt_free_bounce_page(ciphertext_page);
 			return ERR_PTR(err);
-
-		return ciphertext_page;
-	}
-
-	BUG_ON(!PageLocked(page));
-
-	ctx = fscrypt_get_ctx(inode, gfp_flags);
-	if (IS_ERR(ctx))
-		return (struct page *)ctx;
-
-	/* The encryption operation will require a bounce page. */
-	ciphertext_page = fscrypt_alloc_bounce_page(ctx, gfp_flags);
-	if (IS_ERR(ciphertext_page))
-		goto errout;
-
-	ctx->w.control_page = page;
-	err = fscrypt_do_page_crypto(inode, FS_ENCRYPT, lblk_num,
-				     page, ciphertext_page, len, offs,
-				     gfp_flags);
-	if (err) {
-		ciphertext_page = ERR_PTR(err);
-		goto errout;
+		}
 	}
 	SetPagePrivate(ciphertext_page);
-	set_page_private(ciphertext_page, (unsigned long)ctx);
-	lock_page(ciphertext_page);
-	return ciphertext_page;
-
-errout:
-	fscrypt_release_ctx(ctx);
+	set_page_private(ciphertext_page, (unsigned long)page);
 	return ciphertext_page;
 }
-EXPORT_SYMBOL(fscrypt_encrypt_page);
+EXPORT_SYMBOL(fscrypt_encrypt_pagecache_blocks);
 
 /**
- * fscrypt_decrypt_page() - Decrypts a page in-place
- * @inode:     The corresponding inode for the page to decrypt.
- * @page:      The page to decrypt. Must be locked in case
- *             it is a writeback page (FS_CFLG_OWN_PAGES unset).
- * @len:       Number of bytes in @page to be decrypted.
- * @offs:      Start of data in @page.
- * @lblk_num:  Logical block number.
+ * fscrypt_encrypt_block_inplace() - Encrypt a filesystem block in-place
+ * @inode:     The inode to which this block belongs
+ * @page:      The page containing the block to encrypt
+ * @len:       Size of block to encrypt.  Doesn't need to be a multiple of the
+ *		fs block size, but must be a multiple of FS_CRYPTO_BLOCK_SIZE.
+ * @offs:      Byte offset within @page at which the block to encrypt begins
+ * @lblk_num:  Filesystem logical block number of the block, i.e. the 0-based
+ *		number of the block within the file
+ * @gfp_flags: Memory allocation flags
  *
- * Decrypts page in-place using the ctx encryption context.
+ * Encrypt a possibly-compressed filesystem block that is located in an
+ * arbitrary page, not necessarily in the original pagecache page.  The @inode
+ * and @lblk_num must be specified, as they can't be determined from @page.
  *
- * Called from the read completion callback.
- *
- * Return: Zero on success, non-zero otherwise.
+ * Return: 0 on success; -errno on failure
  */
-int fscrypt_decrypt_page(const struct inode *inode, struct page *page,
-			unsigned int len, unsigned int offs, u64 lblk_num)
+int fscrypt_encrypt_block_inplace(const struct inode *inode, struct page *page,
+				  unsigned int len, unsigned int offs,
+				  u64 lblk_num, gfp_t gfp_flags)
 {
-	if (!(inode->i_sb->s_cop->flags & FS_CFLG_OWN_PAGES))
-		BUG_ON(!PageLocked(page));
-
-	return fscrypt_do_page_crypto(inode, FS_DECRYPT, lblk_num, page, page,
-				      len, offs, GFP_NOFS);
+	return fscrypt_crypt_block(inode, FS_ENCRYPT, lblk_num, page, page,
+				   len, offs, gfp_flags);
 }
-EXPORT_SYMBOL(fscrypt_decrypt_page);
+EXPORT_SYMBOL(fscrypt_encrypt_block_inplace);
+
+/**
+ * fscrypt_decrypt_pagecache_blocks() - Decrypt filesystem blocks in a pagecache page
+ * @page:      The locked pagecache page containing the block(s) to decrypt
+ * @len:       Total size of the block(s) to decrypt.  Must be a nonzero
+ *		multiple of the filesystem's block size.
+ * @offs:      Byte offset within @page of the first block to decrypt.  Must be
+ *		a multiple of the filesystem's block size.
+ *
+ * The specified block(s) are decrypted in-place within the pagecache page,
+ * which must still be locked and not uptodate.  Normally, blocksize ==
+ * PAGE_SIZE and the whole page is decrypted at once.
+ *
+ * This is for use by the filesystem's ->readpages() method.
+ *
+ * Return: 0 on success; -errno on failure
+ */
+int fscrypt_decrypt_pagecache_blocks(struct page *page, unsigned int len,
+				     unsigned int offs)
+{
+	const struct inode *inode = page->mapping->host;
+	const unsigned int blockbits = inode->i_blkbits;
+	const unsigned int blocksize = 1 << blockbits;
+	u64 lblk_num = ((u64)page->index << (PAGE_SHIFT - blockbits)) +
+		       (offs >> blockbits);
+	unsigned int i;
+	int err;
+
+	if (WARN_ON_ONCE(!PageLocked(page)))
+		return -EINVAL;
+
+	if (WARN_ON_ONCE(len <= 0 || !IS_ALIGNED(len | offs, blocksize)))
+		return -EINVAL;
+
+	for (i = offs; i < offs + len; i += blocksize, lblk_num++) {
+		err = fscrypt_crypt_block(inode, FS_DECRYPT, lblk_num, page,
+					  page, blocksize, i, GFP_NOFS);
+		if (err)
+			return err;
+	}
+	return 0;
+}
+EXPORT_SYMBOL(fscrypt_decrypt_pagecache_blocks);
+
+/**
+ * fscrypt_decrypt_block_inplace() - Decrypt a filesystem block in-place
+ * @inode:     The inode to which this block belongs
+ * @page:      The page containing the block to decrypt
+ * @len:       Size of block to decrypt.  Doesn't need to be a multiple of the
+ *		fs block size, but must be a multiple of FS_CRYPTO_BLOCK_SIZE.
+ * @offs:      Byte offset within @page at which the block to decrypt begins
+ * @lblk_num:  Filesystem logical block number of the block, i.e. the 0-based
+ *		number of the block within the file
+ *
+ * Decrypt a possibly-compressed filesystem block that is located in an
+ * arbitrary page, not necessarily in the original pagecache page.  The @inode
+ * and @lblk_num must be specified, as they can't be determined from @page.
+ *
+ * Return: 0 on success; -errno on failure
+ */
+int fscrypt_decrypt_block_inplace(const struct inode *inode, struct page *page,
+				  unsigned int len, unsigned int offs,
+				  u64 lblk_num)
+{
+	return fscrypt_crypt_block(inode, FS_DECRYPT, lblk_num, page, page,
+				   len, offs, GFP_NOFS);
+}
+EXPORT_SYMBOL(fscrypt_decrypt_block_inplace);
 
 /*
- * Validate dentries for encrypted directories to make sure we aren't
- * potentially caching stale data after a key has been added or
- * removed.
+ * Validate dentries in encrypted directories to make sure we aren't potentially
+ * caching stale dentries after a key has been added.
  */
 static int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags)
 {
 	struct dentry *dir;
-	int dir_has_key, cached_with_key;
+	int err;
+	int valid;
+
+	/*
+	 * Plaintext names are always valid, since fscrypt doesn't support
+	 * reverting to ciphertext names without evicting the directory's inode
+	 * -- which implies eviction of the dentries in the directory.
+	 */
+	if (!(dentry->d_flags & DCACHE_ENCRYPTED_NAME))
+		return 1;
+
+	/*
+	 * Ciphertext name; valid if the directory's key is still unavailable.
+	 *
+	 * Although fscrypt forbids rename() on ciphertext names, we still must
+	 * use dget_parent() here rather than use ->d_parent directly.  That's
+	 * because a corrupted fs image may contain directory hard links, which
+	 * the VFS handles by moving the directory's dentry tree in the dcache
+	 * each time ->lookup() finds the directory and it already has a dentry
+	 * elsewhere.  Thus ->d_parent can be changing, and we must safely grab
+	 * a reference to some ->d_parent to prevent it from being freed.
+	 */
 
 	if (flags & LOOKUP_RCU)
 		return -ECHILD;
 
 	dir = dget_parent(dentry);
-	if (!IS_ENCRYPTED(d_inode(dir))) {
-		dput(dir);
-		return 0;
-	}
-
-	spin_lock(&dentry->d_lock);
-	cached_with_key = dentry->d_flags & DCACHE_ENCRYPTED_WITH_KEY;
-	spin_unlock(&dentry->d_lock);
-	dir_has_key = (d_inode(dir)->i_crypt_info != NULL);
+	err = fscrypt_get_encryption_info(d_inode(dir));
+	valid = !fscrypt_has_encryption_key(d_inode(dir));
 	dput(dir);
 
-	/*
-	 * If the dentry was cached without the key, and it is a
-	 * negative dentry, it might be a valid name.  We can't check
-	 * if the key has since been made available due to locking
-	 * reasons, so we fail the validation so ext4_lookup() can do
-	 * this check.
-	 *
-	 * We also fail the validation if the dentry was created with
-	 * the key present, but we no longer have the key, or vice versa.
-	 */
-	if ((!cached_with_key && d_is_negative(dentry)) ||
-			(!cached_with_key && dir_has_key) ||
-			(cached_with_key && !dir_has_key))
-		return 0;
-	return 1;
+	if (err < 0)
+		return err;
+
+	return valid;
 }
 
 const struct dentry_operations fscrypt_d_ops = {
 	.d_revalidate = fscrypt_d_revalidate,
 };
 
-void fscrypt_restore_control_page(struct page *page)
-{
-	struct fscrypt_ctx *ctx;
-
-	ctx = (struct fscrypt_ctx *)page_private(page);
-	set_page_private(page, (unsigned long)NULL);
-	ClearPagePrivate(page);
-	unlock_page(page);
-	fscrypt_release_ctx(ctx);
-}
-EXPORT_SYMBOL(fscrypt_restore_control_page);
-
 static void fscrypt_destroy(void)
 {
 	struct fscrypt_ctx *pos, *n;
@@ -423,7 +451,7 @@
 	return res;
 }
 
-void fscrypt_msg(struct super_block *sb, const char *level,
+void fscrypt_msg(const struct inode *inode, const char *level,
 		 const char *fmt, ...)
 {
 	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
@@ -437,8 +465,9 @@
 	va_start(args, fmt);
 	vaf.fmt = fmt;
 	vaf.va = &args;
-	if (sb)
-		printk("%sfscrypt (%s): %pV\n", level, sb->s_id, &vaf);
+	if (inode)
+		printk("%sfscrypt (%s, inode %lu): %pV\n",
+		       level, inode->i_sb->s_id, inode->i_ino, &vaf);
 	else
 		printk("%sfscrypt: %pV\n", level, &vaf);
 	va_end(args);
@@ -449,6 +478,8 @@
  */
 static int __init fscrypt_init(void)
 {
+	int err = -ENOMEM;
+
 	/*
 	 * Use an unbound workqueue to allow bios to be decrypted in parallel
 	 * even when they happen to complete on the same CPU.  This sacrifices
@@ -471,31 +502,19 @@
 	if (!fscrypt_info_cachep)
 		goto fail_free_ctx;
 
+	err = fscrypt_init_keyring();
+	if (err)
+		goto fail_free_info;
+
 	return 0;
 
+fail_free_info:
+	kmem_cache_destroy(fscrypt_info_cachep);
 fail_free_ctx:
 	kmem_cache_destroy(fscrypt_ctx_cachep);
 fail_free_queue:
 	destroy_workqueue(fscrypt_read_workqueue);
 fail:
-	return -ENOMEM;
+	return err;
 }
-module_init(fscrypt_init)
-
-/**
- * fscrypt_exit() - Shutdown the fs encryption system
- */
-static void __exit fscrypt_exit(void)
-{
-	fscrypt_destroy();
-
-	if (fscrypt_read_workqueue)
-		destroy_workqueue(fscrypt_read_workqueue);
-	kmem_cache_destroy(fscrypt_ctx_cachep);
-	kmem_cache_destroy(fscrypt_info_cachep);
-
-	fscrypt_essiv_cleanup();
-}
-module_exit(fscrypt_exit);
-
-MODULE_LICENSE("GPL");
+late_initcall(fscrypt_init)