Update Linux to v5.4.2

Change-Id: Idf6911045d9d382da2cfe01b1edff026404ac8fd
diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig
index 9033215..a5d8a21 100644
--- a/drivers/mtd/nand/Kconfig
+++ b/drivers/mtd/nand/Kconfig
@@ -1,7 +1,7 @@
+# SPDX-License-Identifier: GPL-2.0-only
 config MTD_NAND_CORE
 	tristate
 
 source "drivers/mtd/nand/onenand/Kconfig"
-
 source "drivers/mtd/nand/raw/Kconfig"
 source "drivers/mtd/nand/spi/Kconfig"
diff --git a/drivers/mtd/nand/core.c b/drivers/mtd/nand/core.c
index 9c9f893..b6de955 100644
--- a/drivers/mtd/nand/core.c
+++ b/drivers/mtd/nand/core.c
@@ -174,6 +174,40 @@
 EXPORT_SYMBOL_GPL(nanddev_mtd_erase);
 
 /**
+ * nanddev_mtd_max_bad_blocks() - Get the maximum number of bad eraseblock on
+ *				  a specific region of the NAND device
+ * @mtd: MTD device
+ * @offs: offset of the NAND region
+ * @len: length of the NAND region
+ *
+ * Default implementation for mtd->_max_bad_blocks(). Only works if
+ * nand->memorg.max_bad_eraseblocks_per_lun is > 0.
+ *
+ * Return: a positive number encoding the maximum number of eraseblocks on a
+ * portion of memory, a negative error code otherwise.
+ */
+int nanddev_mtd_max_bad_blocks(struct mtd_info *mtd, loff_t offs, size_t len)
+{
+	struct nand_device *nand = mtd_to_nanddev(mtd);
+	struct nand_pos pos, end;
+	unsigned int max_bb = 0;
+
+	if (!nand->memorg.max_bad_eraseblocks_per_lun)
+		return -ENOTSUPP;
+
+	nanddev_offs_to_pos(nand, offs, &pos);
+	nanddev_offs_to_pos(nand, offs + len, &end);
+
+	for (nanddev_offs_to_pos(nand, offs, &pos);
+	     nanddev_pos_cmp(&pos, &end) < 0;
+	     nanddev_pos_next_lun(nand, &pos))
+		max_bb += nand->memorg.max_bad_eraseblocks_per_lun;
+
+	return max_bb;
+}
+EXPORT_SYMBOL_GPL(nanddev_mtd_max_bad_blocks);
+
+/**
  * nanddev_init() - Initialize a NAND device
  * @nand: NAND device
  * @ops: NAND device operations
diff --git a/drivers/mtd/nand/onenand/Kconfig b/drivers/mtd/nand/onenand/Kconfig
index 9dc1574..ae0b8fe 100644
--- a/drivers/mtd/nand/onenand/Kconfig
+++ b/drivers/mtd/nand/onenand/Kconfig
@@ -1,3 +1,4 @@
+# SPDX-License-Identifier: GPL-2.0-only
 menuconfig MTD_ONENAND
 	tristate "OneNAND Device Support"
 	depends on MTD
diff --git a/drivers/mtd/nand/onenand/generic.c b/drivers/mtd/nand/onenand/generic.c
index acad17e..8b6f4da 100644
--- a/drivers/mtd/nand/onenand/generic.c
+++ b/drivers/mtd/nand/onenand/generic.c
@@ -1,11 +1,8 @@
+// SPDX-License-Identifier: GPL-2.0-only
 /*
  *  Copyright (c) 2005 Samsung Electronics
  *  Kyungmin Park <kyungmin.park@samsung.com>
  *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
- *
  *  Overview:
  *   This is a device driver for the OneNAND flash for generic boards.
  */
diff --git a/drivers/mtd/nand/onenand/omap2.c b/drivers/mtd/nand/onenand/omap2.c
index 3211371..edf94ee 100644
--- a/drivers/mtd/nand/onenand/omap2.c
+++ b/drivers/mtd/nand/onenand/omap2.c
@@ -1,3 +1,4 @@
+// SPDX-License-Identifier: GPL-2.0-only
 /*
  *  OneNAND driver for OMAP2 / OMAP3
  *
@@ -5,20 +6,6 @@
  *
  *  Author: Jarkko Lavinen <jarkko.lavinen@nokia.com> and Juha Yrjölä
  *  IRQ and DMA support written by Timo Teras
- *
- * This program is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 as published by
- * the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- * more details.
- *
- * You should have received a copy of the GNU General Public License along with
- * this program; see the file COPYING. If not, write to the Free Software
- * Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
- *
  */
 
 #include <linux/device.h>
diff --git a/drivers/mtd/nand/onenand/onenand_base.c b/drivers/mtd/nand/onenand/onenand_base.c
index 4ca4b19..77bd32a 100644
--- a/drivers/mtd/nand/onenand/onenand_base.c
+++ b/drivers/mtd/nand/onenand/onenand_base.c
@@ -1,3 +1,4 @@
+// SPDX-License-Identifier: GPL-2.0-only
 /*
  *  Copyright © 2005-2009 Samsung Electronics
  *  Copyright © 2007 Nokia Corporation
@@ -12,10 +13,6 @@
  *	Flex-OneNAND support
  *	Amul Kumar Saha <amul.saha at samsung.com>
  *	OTP support
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
  */
 
 #include <linux/kernel.h>
@@ -2458,7 +2455,7 @@
                 bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
 
         /* We write two bytes, so we don't have to mess with 16-bit access */
-        ofs += mtd->oobsize + (bbm->badblockpos & ~0x01);
+        ofs += mtd->oobsize + (this->badblockpos & ~0x01);
 	/* FIXME : What to do when marking SLC block in partition
 	 * 	   with MLC erasesize? For now, it is not advisable to
 	 *	   create partitions containing both SLC and MLC regions.
@@ -3260,6 +3257,9 @@
 
 	/* Lock scheme */
 	switch (density) {
+	case ONENAND_DEVICE_DENSITY_8Gb:
+		this->options |= ONENAND_HAS_NOP_1;
+		/* fall through */
 	case ONENAND_DEVICE_DENSITY_4Gb:
 		if (ONENAND_IS_DDP(this))
 			this->options |= ONENAND_HAS_2PLANE;
@@ -3280,12 +3280,15 @@
 			if ((this->version_id & 0xf) == 0xe)
 				this->options |= ONENAND_HAS_NOP_1;
 		}
+		this->options |= ONENAND_HAS_UNLOCK_ALL;
+		break;
 
 	case ONENAND_DEVICE_DENSITY_2Gb:
 		/* 2Gb DDP does not have 2 plane */
 		if (!ONENAND_IS_DDP(this))
 			this->options |= ONENAND_HAS_2PLANE;
 		this->options |= ONENAND_HAS_UNLOCK_ALL;
+		break;
 
 	case ONENAND_DEVICE_DENSITY_1Gb:
 		/* A-Die has all block unlock */
@@ -3877,6 +3880,9 @@
 		if (!this->oob_buf) {
 			if (this->options & ONENAND_PAGEBUF_ALLOC) {
 				this->options &= ~ONENAND_PAGEBUF_ALLOC;
+#ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
+				kfree(this->verify_buf);
+#endif
 				kfree(this->page_buf);
 			}
 			return -ENOMEM;
@@ -3967,6 +3973,9 @@
 	if (!(this->options & ONENAND_SKIP_INITIAL_UNLOCKING))
 		this->unlock_all(mtd);
 
+	/* Set the bad block marker position */
+	this->badblockpos = ONENAND_BADBLOCK_POS;
+
 	ret = this->scan_bbt(mtd);
 	if ((!FLEXONENAND(this)) || ret)
 		return ret;
diff --git a/drivers/mtd/nand/onenand/onenand_bbt.c b/drivers/mtd/nand/onenand/onenand_bbt.c
index dde2048..57c31c8 100644
--- a/drivers/mtd/nand/onenand/onenand_bbt.c
+++ b/drivers/mtd/nand/onenand/onenand_bbt.c
@@ -190,9 +190,6 @@
 	if (!bbm->bbt)
 		return -ENOMEM;
 
-	/* Set the bad block position */
-	bbm->badblockpos = ONENAND_BADBLOCK_POS;
-
 	/* Set erase shift */
 	bbm->bbt_erase_shift = this->erase_shift;
 
diff --git a/drivers/mtd/nand/onenand/samsung.c b/drivers/mtd/nand/onenand/samsung.c
index e64d0fd..55e5536 100644
--- a/drivers/mtd/nand/onenand/samsung.c
+++ b/drivers/mtd/nand/onenand/samsung.c
@@ -1,3 +1,4 @@
+// SPDX-License-Identifier: GPL-2.0-only
 /*
  * Samsung S3C64XX/S5PC1XX OneNAND driver
  *
@@ -5,10 +6,6 @@
  *  Kyungmin Park <kyungmin.park@samsung.com>
  *  Marek Szyprowski <m.szyprowski@samsung.com>
  *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
- *
  * Implementation:
  *	S3C64XX: emulate the pseudo BufferRAM
  *	S5PC110: use DMA
diff --git a/drivers/mtd/nand/onenand/samsung.h b/drivers/mtd/nand/onenand/samsung.h
index 9016dc0..892bbb6 100644
--- a/drivers/mtd/nand/onenand/samsung.h
+++ b/drivers/mtd/nand/onenand/samsung.h
@@ -1,10 +1,7 @@
+/* SPDX-License-Identifier: GPL-2.0-only */
 /*
  *  Copyright (C) 2008-2010 Samsung Electronics
  *  Kyungmin Park <kyungmin.park@samsung.com>
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
  */
 #ifndef __SAMSUNG_ONENAND_H__
 #define __SAMSUNG_ONENAND_H__
diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig
index 5fc9a1b..e59de3f 100644
--- a/drivers/mtd/nand/raw/Kconfig
+++ b/drivers/mtd/nand/raw/Kconfig
@@ -1,34 +1,30 @@
-config MTD_NAND_ECC
+# SPDX-License-Identifier: GPL-2.0-only
+config MTD_NAND_ECC_SW_HAMMING
 	tristate
 
-config MTD_NAND_ECC_SMC
+config MTD_NAND_ECC_SW_HAMMING_SMC
 	bool "NAND ECC Smart Media byte order"
-	depends on MTD_NAND_ECC
+	depends on MTD_NAND_ECC_SW_HAMMING
 	default n
 	help
 	  Software ECC according to the Smart Media Specification.
 	  The original Linux implementation had byte 0 and 1 swapped.
 
-
-menuconfig MTD_NAND
+menuconfig MTD_RAW_NAND
 	tristate "Raw/Parallel NAND Device Support"
 	depends on MTD
-	select MTD_NAND_ECC
+	select MTD_NAND_CORE
+	select MTD_NAND_ECC_SW_HAMMING
 	help
 	  This enables support for accessing all type of raw/parallel
 	  NAND flash devices. For further information see
 	  <http://www.linux-mtd.infradead.org/doc/nand.html>.
 
-if MTD_NAND
+if MTD_RAW_NAND
 
-config MTD_NAND_BCH
-	tristate
-	select BCH
-	depends on MTD_NAND_ECC_BCH
-	default MTD_NAND
-
-config MTD_NAND_ECC_BCH
+config MTD_NAND_ECC_SW_BCH
 	bool "Support software BCH ECC"
+	select BCH
 	default n
 	help
 	  This enables support for software BCH error correction. Binary BCH
@@ -36,15 +32,13 @@
 	  ECC codes. They are used with NAND devices requiring more than 1 bit
 	  of error correction.
 
-config MTD_SM_COMMON
-	tristate
-	default n
+comment "Raw/parallel NAND flash controllers"
 
 config MTD_NAND_DENALI
 	tristate
 
 config MTD_NAND_DENALI_PCI
-	tristate "Support Denali NAND controller on Intel Moorestown"
+	tristate "Denali NAND controller on Intel Moorestown"
 	select MTD_NAND_DENALI
 	depends on PCI
 	help
@@ -52,31 +46,22 @@
 	  Denali NAND controller core.
 
 config MTD_NAND_DENALI_DT
-	tristate "Support Denali NAND controller as a DT device"
+	tristate "Denali NAND controller as a DT device"
 	select MTD_NAND_DENALI
 	depends on HAS_DMA && HAVE_CLK && OF
 	help
 	  Enable the driver for NAND flash on platforms using a Denali NAND
 	  controller as a DT device.
 
-config MTD_NAND_GPIO
-	tristate "GPIO assisted NAND Flash driver"
-	depends on GPIOLIB || COMPILE_TEST
-	depends on HAS_IOMEM
-	help
-	  This enables a NAND flash driver where control signals are
-	  connected to GPIO pins, and commands and data are communicated
-	  via a memory mapped interface.
-
 config MTD_NAND_AMS_DELTA
-	tristate "NAND Flash device on Amstrad E3"
-	depends on MACH_AMS_DELTA
+	tristate "Amstrad E3 NAND controller"
+	depends on MACH_AMS_DELTA || COMPILE_TEST
 	default y
 	help
 	  Support for NAND flash on Amstrad E3 (Delta).
 
 config MTD_NAND_OMAP2
-	tristate "NAND Flash device on OMAP2, OMAP3, OMAP4 and Keystone"
+	tristate "OMAP2, OMAP3, OMAP4 and Keystone NAND controller"
 	depends on ARCH_OMAP2PLUS || ARCH_KEYSTONE || COMPILE_TEST
 	depends on HAS_IOMEM
 	help
@@ -98,18 +83,6 @@
 config MTD_NAND_OMAP_BCH_BUILD
 	def_tristate MTD_NAND_OMAP2 && MTD_NAND_OMAP_BCH
 
-config MTD_NAND_RICOH
-	tristate "Ricoh xD card reader"
-	default n
-	depends on PCI
-	select MTD_SM_COMMON
-	help
-	  Enable support for Ricoh R5C852 xD card reader
-	  You also need to enable ether
-	  NAND SSFDC (SmartMedia) read only translation layer' or new
-	  expermental, readwrite
-	  'SmartMedia/xD new translation layer'
-
 config MTD_NAND_AU1550
 	tristate "Au1550/1200 NAND support"
 	depends on MIPS_ALCHEMY
@@ -117,8 +90,15 @@
 	  This enables the driver for the NAND flash controller on the
 	  AMD/Alchemy 1550 SOC.
 
+config MTD_NAND_NDFC
+	tristate "IBM/MCC 4xx NAND controller"
+	depends on 4xx
+	select MTD_NAND_ECC_SW_HAMMING_SMC
+	help
+	  NDFC Nand Flash Controllers are integrated in IBM/AMCC's 4xx SoCs
+
 config MTD_NAND_S3C2410
-	tristate "NAND Flash support for Samsung S3C SoCs"
+	tristate "Samsung S3C NAND controller"
 	depends on ARCH_S3C24XX || ARCH_S3C64XX
 	help
 	  This enables the NAND flash controller on the S3C24xx and S3C64xx
@@ -128,18 +108,11 @@
 	  must advertise a platform_device for the driver to attach.
 
 config MTD_NAND_S3C2410_DEBUG
-	bool "Samsung S3C NAND driver debug"
+	bool "Samsung S3C NAND controller debug"
 	depends on MTD_NAND_S3C2410
 	help
 	  Enable debugging of the S3C NAND driver
 
-config MTD_NAND_NDFC
-	tristate "NDFC NanD Flash Controller"
-	depends on 4xx
-	select MTD_NAND_ECC_SMC
-	help
-	  NDFC Nand Flash Controllers are integrated in IBM/AMCC's 4xx SoCs
-
 config MTD_NAND_S3C2410_CLKSTOP
 	bool "Samsung S3C NAND IDLE clock stop"
 	depends on MTD_NAND_S3C2410
@@ -151,12 +124,356 @@
 	  approximately 5mA of power when there is nothing happening.
 
 config MTD_NAND_TANGO
-	tristate "NAND Flash support for Tango chips"
+	tristate "Tango NAND controller"
 	depends on ARCH_TANGO || COMPILE_TEST
 	depends on HAS_IOMEM
 	help
 	  Enables the NAND Flash controller on Tango chips.
 
+config MTD_NAND_SHARPSL
+	tristate "Sharp SL Series (C7xx + others) NAND controller"
+	depends on ARCH_PXA || COMPILE_TEST
+	depends on HAS_IOMEM
+
+config MTD_NAND_CAFE
+	tristate "OLPC CAFÉ NAND controller"
+	depends on PCI
+	select REED_SOLOMON
+	select REED_SOLOMON_DEC16
+	help
+	  Use NAND flash attached to the CAFÉ chip designed for the OLPC
+	  laptop.
+
+config MTD_NAND_CS553X
+	tristate "CS5535/CS5536 (AMD Geode companion) NAND controller"
+	depends on X86_32
+	depends on !UML && HAS_IOMEM
+	help
+	  The CS553x companion chips for the AMD Geode processor
+	  include NAND flash controllers with built-in hardware ECC
+	  capabilities; enabling this option will allow you to use
+	  these. The driver will check the MSRs to verify that the
+	  controller is enabled for NAND, and currently requires that
+	  the controller be in MMIO mode.
+
+	  If you say "m", the module will be called cs553x_nand.
+
+config MTD_NAND_ATMEL
+	tristate "Atmel AT91 NAND Flash/SmartMedia NAND controller"
+	depends on ARCH_AT91 || COMPILE_TEST
+	depends on HAS_IOMEM
+	select GENERIC_ALLOCATOR
+	select MFD_ATMEL_SMC
+	help
+	  Enables support for NAND Flash / Smart Media Card interface
+	  on Atmel AT91 processors.
+
+config MTD_NAND_ORION
+	tristate "Marvell Orion NAND controller"
+	depends on PLAT_ORION
+	help
+	  This enables the NAND flash controller on Orion machines.
+
+	  No board specific support is done by this driver, each board
+	  must advertise a platform_device for the driver to attach.
+
+config MTD_NAND_MARVELL
+	tristate "Marvell EBU NAND controller"
+	depends on PXA3xx || ARCH_MMP || PLAT_ORION || ARCH_MVEBU || \
+		   COMPILE_TEST
+	depends on HAS_IOMEM
+	help
+	  This enables the NAND flash controller driver for Marvell boards,
+	  including:
+	  - PXA3xx processors (NFCv1)
+	  - 32-bit Armada platforms (XP, 37x, 38x, 39x) (NFCv2)
+	  - 64-bit Aramda platforms (7k, 8k) (NFCv2)
+
+config MTD_NAND_SLC_LPC32XX
+	tristate "NXP LPC32xx SLC NAND controller"
+	depends on ARCH_LPC32XX || COMPILE_TEST
+	depends on HAS_IOMEM
+	help
+	  Enables support for NXP's LPC32XX SLC (i.e. for Single Level Cell
+	  chips) NAND controller. This is the default for the PHYTEC 3250
+	  reference board which contains a NAND256R3A2CZA6 chip.
+
+	  Please check the actual NAND chip connected and its support
+	  by the SLC NAND controller.
+
+config MTD_NAND_MLC_LPC32XX
+	tristate "NXP LPC32xx MLC NAND controller"
+	depends on ARCH_LPC32XX || COMPILE_TEST
+	depends on HAS_IOMEM
+	help
+	  Uses the LPC32XX MLC (i.e. for Multi Level Cell chips) NAND
+	  controller. This is the default for the WORK92105 controller
+	  board.
+
+	  Please check the actual NAND chip connected and its support
+	  by the MLC NAND controller.
+
+config MTD_NAND_CM_X270
+	tristate "CM-X270 modules NAND controller"
+	depends on MACH_ARMCORE
+
+config MTD_NAND_PASEMI
+	tristate "PA Semi PWRficient NAND controller"
+	depends on PPC_PASEMI
+	help
+	  Enables support for NAND Flash interface on PA Semi PWRficient
+	  based boards
+
+config MTD_NAND_TMIO
+	tristate "Toshiba Mobile IO NAND controller"
+	depends on MFD_TMIO
+	help
+	  Support for NAND flash connected to a Toshiba Mobile IO
+	  Controller in some PDAs, including the Sharp SL6000x.
+
+config MTD_NAND_BRCMNAND
+	tristate "Broadcom STB NAND controller"
+	depends on ARM || ARM64 || MIPS || COMPILE_TEST
+	depends on HAS_IOMEM
+	help
+	  Enables the Broadcom NAND controller driver. The controller was
+	  originally designed for Set-Top Box but is used on various BCM7xxx,
+	  BCM3xxx, BCM63xxx, iProc/Cygnus and more.
+
+config MTD_NAND_BCM47XXNFLASH
+	tristate "BCM4706 BCMA NAND controller"
+	depends on BCMA_NFLASH
+	depends on BCMA
+	help
+	  BCMA bus can have various flash memories attached, they are
+	  registered by bcma as platform devices. This enables driver for
+	  NAND flash memories. For now only BCM4706 is supported.
+
+config MTD_NAND_OXNAS
+	tristate "Oxford Semiconductor NAND controller"
+	depends on ARCH_OXNAS || COMPILE_TEST
+	depends on HAS_IOMEM
+	help
+	  This enables the NAND flash controller on Oxford Semiconductor SoCs.
+
+config MTD_NAND_MPC5121_NFC
+	tristate "MPC5121 NAND controller"
+	depends on PPC_MPC512x
+	help
+	  This enables the driver for the NAND flash controller on the
+	  MPC5121 SoC.
+
+config MTD_NAND_GPMI_NAND
+	tristate "Freescale GPMI NAND controller"
+	depends on MXS_DMA
+	help
+	  Enables NAND Flash support for IMX23, IMX28 or IMX6.
+	  The GPMI controller is very powerful, with the help of BCH
+	  module, it can do the hardware ECC. The GPMI supports several
+	  NAND flashs at the same time.
+
+config MTD_NAND_FSL_ELBC
+	tristate "Freescale eLBC NAND controller"
+	depends on FSL_SOC
+	select FSL_LBC
+	help
+	  Various Freescale chips, including the 8313, include a NAND Flash
+	  Controller Module with built-in hardware ECC capabilities.
+	  Enabling this option will enable you to use this to control
+	  external NAND devices.
+
+config MTD_NAND_FSL_IFC
+	tristate "Freescale IFC NAND controller"
+	depends on FSL_SOC || ARCH_LAYERSCAPE || SOC_LS1021A || COMPILE_TEST
+	depends on HAS_IOMEM
+	select FSL_IFC
+	select MEMORY
+	help
+	  Various Freescale chips e.g P1010, include a NAND Flash machine
+	  with built-in hardware ECC capabilities.
+	  Enabling this option will enable you to use this to control
+	  external NAND devices.
+
+config MTD_NAND_FSL_UPM
+	tristate "Freescale UPM NAND controller"
+	depends on PPC_83xx || PPC_85xx
+	select FSL_LBC
+	help
+	  Enables support for NAND Flash chips wired onto Freescale PowerPC
+	  processor localbus with User-Programmable Machine support.
+
+config MTD_NAND_VF610_NFC
+	tristate "Freescale VF610/MPC5125 NAND controller"
+	depends on (SOC_VF610 || COMPILE_TEST)
+	depends on HAS_IOMEM
+	help
+	  Enables support for NAND Flash Controller on some Freescale
+	  processors like the VF610, MPC5125, MCF54418 or Kinetis K70.
+	  The driver supports a maximum 2k page size. With 2k pages and
+	  64 bytes or more of OOB, hardware ECC with up to 32-bit error
+	  correction is supported. Hardware ECC is only enabled through
+	  device tree.
+
+config MTD_NAND_MXC
+	tristate "Freescale MXC NAND controller"
+	depends on ARCH_MXC || COMPILE_TEST
+	depends on HAS_IOMEM
+	help
+	  This enables the driver for the NAND flash controller on the
+	  MXC processors.
+
+config MTD_NAND_SH_FLCTL
+	tristate "Renesas SuperH FLCTL NAND controller"
+	depends on SUPERH || COMPILE_TEST
+	depends on HAS_IOMEM
+	help
+	  Several Renesas SuperH CPU has FLCTL. This option enables support
+	  for NAND Flash using FLCTL.
+
+config MTD_NAND_DAVINCI
+	tristate "DaVinci/Keystone NAND controller"
+	depends on ARCH_DAVINCI || (ARCH_KEYSTONE && TI_AEMIF) || COMPILE_TEST
+	depends on HAS_IOMEM
+	help
+	  Enable the driver for NAND flash chips on Texas Instruments
+	  DaVinci/Keystone processors.
+
+config MTD_NAND_TXX9NDFMC
+	tristate "TXx9 NAND controller"
+	depends on SOC_TX4938 || SOC_TX4939 || COMPILE_TEST
+	depends on HAS_IOMEM
+	help
+	  This enables the NAND flash controller on the TXx9 SoCs.
+
+config MTD_NAND_SOCRATES
+	tristate "Socrates NAND controller"
+	depends on SOCRATES
+	help
+	  Enables support for NAND Flash chips wired onto Socrates board.
+
+source "drivers/mtd/nand/raw/ingenic/Kconfig"
+
+config MTD_NAND_FSMC
+	tristate "ST Micros FSMC NAND controller"
+	depends on OF && HAS_IOMEM
+	depends on PLAT_SPEAR || ARCH_NOMADIK || ARCH_U8500 || MACH_U300 || \
+		   COMPILE_TEST
+	help
+	  Enables support for NAND Flash chips on the ST Microelectronics
+	  Flexible Static Memory Controller (FSMC)
+
+config MTD_NAND_XWAY
+	bool "Lantiq XWAY NAND controller"
+	depends on LANTIQ && SOC_TYPE_XWAY
+	help
+	  Enables support for NAND Flash chips on Lantiq XWAY SoCs. NAND is attached
+	  to the External Bus Unit (EBU).
+
+config MTD_NAND_SUNXI
+	tristate "Allwinner NAND controller"
+	depends on ARCH_SUNXI || COMPILE_TEST
+	depends on HAS_IOMEM
+	help
+	  Enables support for NAND Flash chips on Allwinner SoCs.
+
+config MTD_NAND_HISI504
+	tristate "Hisilicon Hip04 NAND controller"
+	depends on ARCH_HISI || COMPILE_TEST
+	depends on HAS_IOMEM
+	help
+	  Enables support for NAND controller on Hisilicon SoC Hip04.
+
+config MTD_NAND_QCOM
+	tristate "QCOM NAND controller"
+	depends on ARCH_QCOM || COMPILE_TEST
+	depends on HAS_IOMEM
+	help
+	  Enables support for NAND flash chips on SoCs containing the EBI2 NAND
+	  controller. This controller is found on IPQ806x SoC.
+
+config MTD_NAND_MTK
+	tristate "MTK NAND controller"
+	depends on ARCH_MEDIATEK || COMPILE_TEST
+	depends on HAS_IOMEM
+	help
+	  Enables support for NAND controller on MTK SoCs.
+	  This controller is found on mt27xx, mt81xx, mt65xx SoCs.
+
+config MTD_NAND_MXIC
+	tristate "Macronix raw NAND controller"
+	depends on HAS_IOMEM || COMPILE_TEST
+	help
+	  This selects the Macronix raw NAND controller driver.
+
+config MTD_NAND_TEGRA
+	tristate "NVIDIA Tegra NAND controller"
+	depends on ARCH_TEGRA || COMPILE_TEST
+	depends on HAS_IOMEM
+	help
+	  Enables support for NAND flash controller on NVIDIA Tegra SoC.
+	  The driver has been developed and tested on a Tegra 2 SoC. DMA
+	  support, raw read/write page as well as HW ECC read/write page
+	  is supported. Extra OOB bytes when using HW ECC are currently
+	  not supported.
+
+config MTD_NAND_STM32_FMC2
+	tristate "Support for NAND controller on STM32MP SoCs"
+	depends on MACH_STM32MP157 || COMPILE_TEST
+	help
+	  Enables support for NAND Flash chips on SoCs containing the FMC2
+	  NAND controller. This controller is found on STM32MP SoCs.
+	  The controller supports a maximum 8k page size and supports
+	  a maximum 8-bit correction error per sector of 512 bytes.
+
+config MTD_NAND_MESON
+	tristate "Support for NAND controller on Amlogic's Meson SoCs"
+	depends on ARCH_MESON || COMPILE_TEST
+	select MFD_SYSCON
+	help
+	  Enables support for NAND controller on Amlogic's Meson SoCs.
+	  This controller is found on Meson SoCs.
+
+config MTD_NAND_GPIO
+	tristate "GPIO assisted NAND controller"
+	depends on GPIOLIB || COMPILE_TEST
+	depends on HAS_IOMEM
+	help
+	  This enables a NAND flash driver where control signals are
+	  connected to GPIO pins, and commands and data are communicated
+	  via a memory mapped interface.
+
+config MTD_NAND_PLATFORM
+	tristate "Generic NAND controller"
+	depends on HAS_IOMEM
+	help
+	  This implements a generic NAND driver for on-SOC platform
+	  devices. You will need to provide platform-specific functions
+	  via platform_data.
+
+comment "Misc"
+
+config MTD_SM_COMMON
+	tristate
+	default n
+
+config MTD_NAND_NANDSIM
+	tristate "Support for NAND Flash Simulator"
+	help
+	  The simulator may simulate various NAND flash chips for the
+	  MTD nand layer.
+
+config MTD_NAND_RICOH
+	tristate "Ricoh xD card reader"
+	default n
+	depends on PCI
+	select MTD_SM_COMMON
+	help
+	  Enable support for Ricoh R5C852 xD card reader
+	  You also need to enable ether
+	  NAND SSFDC (SmartMedia) read only translation layer' or new
+	  expermental, readwrite
+	  'SmartMedia/xD new translation layer'
+
 config MTD_NAND_DISKONCHIP
 	tristate "DiskOnChip 2000, Millennium and Millennium Plus (NAND reimplementation)"
 	depends on HAS_IOMEM
@@ -227,338 +544,4 @@
 	  load time (assuming you build diskonchip as a module) with the module
 	  parameter "inftl_bbt_write=1".
 
-config MTD_NAND_DOCG4
-	tristate "Support for DiskOnChip G4"
-	depends on HAS_IOMEM
-	select BCH
-	select BITREVERSE
-	help
-	  Support for diskonchip G4 nand flash, found in various smartphones and
-	  PDAs, among them the Palm Treo680, HTC Prophet and Wizard, Toshiba
-	  Portege G900, Asus P526, and O2 XDA Zinc.
-
-	  With this driver you will be able to use UBI and create a ubifs on the
-	  device, so you may wish to consider enabling UBI and UBIFS as well.
-
-	  These devices ship with the Mys/Sandisk SAFTL formatting, for which
-	  there is currently no mtd parser, so you may want to use command line
-	  partitioning to segregate write-protected blocks. On the Treo680, the
-	  first five erase blocks (256KiB each) are write-protected, followed
-	  by the block containing the saftl partition table.  This is probably
-	  typical.
-
-config MTD_NAND_SHARPSL
-	tristate "Support for NAND Flash on Sharp SL Series (C7xx + others)"
-	depends on ARCH_PXA || COMPILE_TEST
-	depends on HAS_IOMEM
-
-config MTD_NAND_CAFE
-	tristate "NAND support for OLPC CAFÉ chip"
-	depends on PCI
-	select REED_SOLOMON
-	select REED_SOLOMON_DEC16
-	help
-	  Use NAND flash attached to the CAFÉ chip designed for the OLPC
-	  laptop.
-
-config MTD_NAND_CS553X
-	tristate "NAND support for CS5535/CS5536 (AMD Geode companion chip)"
-	depends on X86_32
-	depends on !UML && HAS_IOMEM
-	help
-	  The CS553x companion chips for the AMD Geode processor
-	  include NAND flash controllers with built-in hardware ECC
-	  capabilities; enabling this option will allow you to use
-	  these. The driver will check the MSRs to verify that the
-	  controller is enabled for NAND, and currently requires that
-	  the controller be in MMIO mode.
-
-	  If you say "m", the module will be called cs553x_nand.
-
-config MTD_NAND_ATMEL
-	tristate "Support for NAND Flash / SmartMedia on AT91"
-	depends on ARCH_AT91 || COMPILE_TEST
-	depends on HAS_IOMEM
-	select GENERIC_ALLOCATOR
-	select MFD_ATMEL_SMC
-	help
-	  Enables support for NAND Flash / Smart Media Card interface
-	  on Atmel AT91 processors.
-
-config MTD_NAND_MARVELL
-	tristate "NAND controller support on Marvell boards"
-	depends on PXA3xx || ARCH_MMP || PLAT_ORION || ARCH_MVEBU || \
-		   COMPILE_TEST
-	depends on HAS_IOMEM
-	help
-	  This enables the NAND flash controller driver for Marvell boards,
-	  including:
-	  - PXA3xx processors (NFCv1)
-	  - 32-bit Armada platforms (XP, 37x, 38x, 39x) (NFCv2)
-	  - 64-bit Aramda platforms (7k, 8k) (NFCv2)
-
-config MTD_NAND_SLC_LPC32XX
-	tristate "NXP LPC32xx SLC Controller"
-	depends on ARCH_LPC32XX || COMPILE_TEST
-	depends on HAS_IOMEM
-	help
-	  Enables support for NXP's LPC32XX SLC (i.e. for Single Level Cell
-	  chips) NAND controller. This is the default for the PHYTEC 3250
-	  reference board which contains a NAND256R3A2CZA6 chip.
-
-	  Please check the actual NAND chip connected and its support
-	  by the SLC NAND controller.
-
-config MTD_NAND_MLC_LPC32XX
-	tristate "NXP LPC32xx MLC Controller"
-	depends on ARCH_LPC32XX || COMPILE_TEST
-	depends on HAS_IOMEM
-	help
-	  Uses the LPC32XX MLC (i.e. for Multi Level Cell chips) NAND
-	  controller. This is the default for the WORK92105 controller
-	  board.
-
-	  Please check the actual NAND chip connected and its support
-	  by the MLC NAND controller.
-
-config MTD_NAND_CM_X270
-	tristate "Support for NAND Flash on CM-X270 modules"
-	depends on MACH_ARMCORE
-
-config MTD_NAND_PASEMI
-	tristate "NAND support for PA Semi PWRficient"
-	depends on PPC_PASEMI
-	help
-	  Enables support for NAND Flash interface on PA Semi PWRficient
-	  based boards
-
-config MTD_NAND_TMIO
-	tristate "NAND Flash device on Toshiba Mobile IO Controller"
-	depends on MFD_TMIO
-	help
-	  Support for NAND flash connected to a Toshiba Mobile IO
-	  Controller in some PDAs, including the Sharp SL6000x.
-
-config MTD_NAND_NANDSIM
-	tristate "Support for NAND Flash Simulator"
-	help
-	  The simulator may simulate various NAND flash chips for the
-	  MTD nand layer.
-
-config MTD_NAND_GPMI_NAND
-	tristate "GPMI NAND Flash Controller driver"
-	depends on MXS_DMA
-	help
-	  Enables NAND Flash support for IMX23, IMX28 or IMX6.
-	  The GPMI controller is very powerful, with the help of BCH
-	  module, it can do the hardware ECC. The GPMI supports several
-	  NAND flashs at the same time.
-
-config MTD_NAND_BRCMNAND
-	tristate "Broadcom STB NAND controller"
-	depends on ARM || ARM64 || MIPS || COMPILE_TEST
-	depends on HAS_IOMEM
-	help
-	  Enables the Broadcom NAND controller driver. The controller was
-	  originally designed for Set-Top Box but is used on various BCM7xxx,
-	  BCM3xxx, BCM63xxx, iProc/Cygnus and more.
-
-config MTD_NAND_BCM47XXNFLASH
-	tristate "Support for NAND flash on BCM4706 BCMA bus"
-	depends on BCMA_NFLASH
-	depends on BCMA
-	help
-	  BCMA bus can have various flash memories attached, they are
-	  registered by bcma as platform devices. This enables driver for
-	  NAND flash memories. For now only BCM4706 is supported.
-
-config MTD_NAND_PLATFORM
-	tristate "Support for generic platform NAND driver"
-	depends on HAS_IOMEM
-	help
-	  This implements a generic NAND driver for on-SOC platform
-	  devices. You will need to provide platform-specific functions
-	  via platform_data.
-
-config MTD_NAND_ORION
-	tristate "NAND Flash support for Marvell Orion SoC"
-	depends on PLAT_ORION
-	help
-	  This enables the NAND flash controller on Orion machines.
-
-	  No board specific support is done by this driver, each board
-	  must advertise a platform_device for the driver to attach.
-
-config MTD_NAND_OXNAS
-	tristate "NAND Flash support for Oxford Semiconductor SoC"
-	depends on ARCH_OXNAS || COMPILE_TEST
-	depends on HAS_IOMEM
-	help
-	  This enables the NAND flash controller on Oxford Semiconductor SoCs.
-
-config MTD_NAND_FSL_ELBC
-	tristate "NAND support for Freescale eLBC controllers"
-	depends on FSL_SOC
-	select FSL_LBC
-	help
-	  Various Freescale chips, including the 8313, include a NAND Flash
-	  Controller Module with built-in hardware ECC capabilities.
-	  Enabling this option will enable you to use this to control
-	  external NAND devices.
-
-config MTD_NAND_FSL_IFC
-	tristate "NAND support for Freescale IFC controller"
-	depends on FSL_SOC || ARCH_LAYERSCAPE || SOC_LS1021A || COMPILE_TEST
-	depends on HAS_IOMEM
-	select FSL_IFC
-	select MEMORY
-	help
-	  Various Freescale chips e.g P1010, include a NAND Flash machine
-	  with built-in hardware ECC capabilities.
-	  Enabling this option will enable you to use this to control
-	  external NAND devices.
-
-config MTD_NAND_FSL_UPM
-	tristate "Support for NAND on Freescale UPM"
-	depends on PPC_83xx || PPC_85xx
-	select FSL_LBC
-	help
-	  Enables support for NAND Flash chips wired onto Freescale PowerPC
-	  processor localbus with User-Programmable Machine support.
-
-config MTD_NAND_MPC5121_NFC
-	tristate "MPC5121 built-in NAND Flash Controller support"
-	depends on PPC_MPC512x
-	help
-	  This enables the driver for the NAND flash controller on the
-	  MPC5121 SoC.
-
-config MTD_NAND_VF610_NFC
-	tristate "Support for Freescale NFC for VF610/MPC5125"
-	depends on (SOC_VF610 || COMPILE_TEST)
-	depends on HAS_IOMEM
-	help
-	  Enables support for NAND Flash Controller on some Freescale
-	  processors like the VF610, MPC5125, MCF54418 or Kinetis K70.
-	  The driver supports a maximum 2k page size. With 2k pages and
-	  64 bytes or more of OOB, hardware ECC with up to 32-bit error
-	  correction is supported. Hardware ECC is only enabled through
-	  device tree.
-
-config MTD_NAND_MXC
-	tristate "MXC NAND support"
-	depends on ARCH_MXC || COMPILE_TEST
-	depends on HAS_IOMEM
-	help
-	  This enables the driver for the NAND flash controller on the
-	  MXC processors.
-
-config MTD_NAND_SH_FLCTL
-	tristate "Support for NAND on Renesas SuperH FLCTL"
-	depends on SUPERH || COMPILE_TEST
-	depends on HAS_IOMEM
-	help
-	  Several Renesas SuperH CPU has FLCTL. This option enables support
-	  for NAND Flash using FLCTL.
-
-config MTD_NAND_DAVINCI
-	tristate "Support NAND on DaVinci/Keystone SoC"
-	depends on ARCH_DAVINCI || (ARCH_KEYSTONE && TI_AEMIF) || COMPILE_TEST
-	depends on HAS_IOMEM
-	help
-	  Enable the driver for NAND flash chips on Texas Instruments
-	  DaVinci/Keystone processors.
-
-config MTD_NAND_TXX9NDFMC
-	tristate "NAND Flash support for TXx9 SoC"
-	depends on SOC_TX4938 || SOC_TX4939 || COMPILE_TEST
-	depends on HAS_IOMEM
-	help
-	  This enables the NAND flash controller on the TXx9 SoCs.
-
-config MTD_NAND_SOCRATES
-	tristate "Support for NAND on Socrates board"
-	depends on SOCRATES
-	help
-	  Enables support for NAND Flash chips wired onto Socrates board.
-
-config MTD_NAND_NUC900
-	tristate "Support for NAND on Nuvoton NUC9xx/w90p910 evaluation boards."
-	depends on ARCH_W90X900 || COMPILE_TEST
-	depends on HAS_IOMEM
-	help
-	  This enables the driver for the NAND Flash on evaluation board based
-	  on w90p910 / NUC9xx.
-
-config MTD_NAND_JZ4740
-	tristate "Support for JZ4740 SoC NAND controller"
-	depends on MACH_JZ4740 || COMPILE_TEST
-	depends on HAS_IOMEM
-	help
-	  Enables support for NAND Flash on JZ4740 SoC based boards.
-
-config MTD_NAND_JZ4780
-	tristate "Support for NAND on JZ4780 SoC"
-	depends on JZ4780_NEMC
-	help
-	  Enables support for NAND Flash connected to the NEMC on JZ4780 SoC
-	  based boards, using the BCH controller for hardware error correction.
-
-config MTD_NAND_FSMC
-	tristate "Support for NAND on ST Micros FSMC"
-	depends on OF && HAS_IOMEM
-	depends on PLAT_SPEAR || ARCH_NOMADIK || ARCH_U8500 || MACH_U300 || \
-		   COMPILE_TEST
-	help
-	  Enables support for NAND Flash chips on the ST Microelectronics
-	  Flexible Static Memory Controller (FSMC)
-
-config MTD_NAND_XWAY
-	bool "Support for NAND on Lantiq XWAY SoC"
-	depends on LANTIQ && SOC_TYPE_XWAY
-	help
-	  Enables support for NAND Flash chips on Lantiq XWAY SoCs. NAND is attached
-	  to the External Bus Unit (EBU).
-
-config MTD_NAND_SUNXI
-	tristate "Support for NAND on Allwinner SoCs"
-	depends on ARCH_SUNXI || COMPILE_TEST
-	depends on HAS_IOMEM
-	help
-	  Enables support for NAND Flash chips on Allwinner SoCs.
-
-config MTD_NAND_HISI504
-	tristate "Support for NAND controller on Hisilicon SoC Hip04"
-	depends on ARCH_HISI || COMPILE_TEST
-	depends on HAS_IOMEM
-	help
-	  Enables support for NAND controller on Hisilicon SoC Hip04.
-
-config MTD_NAND_QCOM
-	tristate "Support for NAND on QCOM SoCs"
-	depends on ARCH_QCOM || COMPILE_TEST
-	depends on HAS_IOMEM
-	help
-	  Enables support for NAND flash chips on SoCs containing the EBI2 NAND
-	  controller. This controller is found on IPQ806x SoC.
-
-config MTD_NAND_MTK
-	tristate "Support for NAND controller on MTK SoCs"
-	depends on ARCH_MEDIATEK || COMPILE_TEST
-	depends on HAS_IOMEM
-	help
-	  Enables support for NAND controller on MTK SoCs.
-	  This controller is found on mt27xx, mt81xx, mt65xx SoCs.
-
-config MTD_NAND_TEGRA
-	tristate "Support for NAND controller on NVIDIA Tegra"
-	depends on ARCH_TEGRA || COMPILE_TEST
-	depends on HAS_IOMEM
-	help
-	  Enables support for NAND flash controller on NVIDIA Tegra SoC.
-	  The driver has been developed and tested on a Tegra 2 SoC. DMA
-	  support, raw read/write page as well as HW ECC read/write page
-	  is supported. Extra OOB bytes when using HW ECC are currently
-	  not supported.
-
-endif # MTD_NAND
+endif # MTD_RAW_NAND
diff --git a/drivers/mtd/nand/raw/Makefile b/drivers/mtd/nand/raw/Makefile
index d5a5f98..a987219 100644
--- a/drivers/mtd/nand/raw/Makefile
+++ b/drivers/mtd/nand/raw/Makefile
@@ -1,8 +1,8 @@
 # SPDX-License-Identifier: GPL-2.0
 
-obj-$(CONFIG_MTD_NAND)			+= nand.o
-obj-$(CONFIG_MTD_NAND_ECC)		+= nand_ecc.o
-obj-$(CONFIG_MTD_NAND_BCH)		+= nand_bch.o
+obj-$(CONFIG_MTD_RAW_NAND)		+= nand.o
+obj-$(CONFIG_MTD_NAND_ECC_SW_HAMMING)	+= nand_ecc.o
+nand-$(CONFIG_MTD_NAND_ECC_SW_BCH)	+= nand_bch.o
 obj-$(CONFIG_MTD_SM_COMMON) 		+= sm_common.o
 
 obj-$(CONFIG_MTD_NAND_CAFE)		+= cafe_nand.o
@@ -15,7 +15,6 @@
 obj-$(CONFIG_MTD_NAND_TANGO)		+= tango_nand.o
 obj-$(CONFIG_MTD_NAND_DAVINCI)		+= davinci_nand.o
 obj-$(CONFIG_MTD_NAND_DISKONCHIP)	+= diskonchip.o
-obj-$(CONFIG_MTD_NAND_DOCG4)		+= docg4.o
 obj-$(CONFIG_MTD_NAND_FSMC)		+= fsmc_nand.o
 obj-$(CONFIG_MTD_NAND_SHARPSL)		+= sharpsl.o
 obj-$(CONFIG_MTD_NAND_NANDSIM)		+= nandsim.o
@@ -42,12 +41,10 @@
 obj-$(CONFIG_MTD_NAND_MXC)		+= mxc_nand.o
 obj-$(CONFIG_MTD_NAND_SOCRATES)		+= socrates_nand.o
 obj-$(CONFIG_MTD_NAND_TXX9NDFMC)	+= txx9ndfmc.o
-obj-$(CONFIG_MTD_NAND_NUC900)		+= nuc900_nand.o
 obj-$(CONFIG_MTD_NAND_MPC5121_NFC)	+= mpc5121_nfc.o
 obj-$(CONFIG_MTD_NAND_VF610_NFC)	+= vf610_nfc.o
 obj-$(CONFIG_MTD_NAND_RICOH)		+= r852.o
-obj-$(CONFIG_MTD_NAND_JZ4740)		+= jz4740_nand.o
-obj-$(CONFIG_MTD_NAND_JZ4780)		+= jz4780_nand.o jz4780_bch.o
+obj-y					+= ingenic/
 obj-$(CONFIG_MTD_NAND_GPMI_NAND)	+= gpmi-nand/
 obj-$(CONFIG_MTD_NAND_XWAY)		+= xway_nand.o
 obj-$(CONFIG_MTD_NAND_BCM47XXNFLASH)	+= bcm47xxnflash/
@@ -56,10 +53,16 @@
 obj-$(CONFIG_MTD_NAND_BRCMNAND)		+= brcmnand/
 obj-$(CONFIG_MTD_NAND_QCOM)		+= qcom_nandc.o
 obj-$(CONFIG_MTD_NAND_MTK)		+= mtk_ecc.o mtk_nand.o
+obj-$(CONFIG_MTD_NAND_MXIC)		+= mxic_nand.o
 obj-$(CONFIG_MTD_NAND_TEGRA)		+= tegra_nand.o
+obj-$(CONFIG_MTD_NAND_STM32_FMC2)	+= stm32_fmc2_nand.o
+obj-$(CONFIG_MTD_NAND_MESON)		+= meson_nand.o
 
-nand-objs := nand_base.o nand_bbt.o nand_timings.o nand_ids.o
+nand-objs := nand_base.o nand_legacy.o nand_bbt.o nand_timings.o nand_ids.o
+nand-objs += nand_onfi.o
+nand-objs += nand_jedec.o
 nand-objs += nand_amd.o
+nand-objs += nand_esmt.o
 nand-objs += nand_hynix.o
 nand-objs += nand_macronix.o
 nand-objs += nand_micron.o
diff --git a/drivers/mtd/nand/raw/ams-delta.c b/drivers/mtd/nand/raw/ams-delta.c
index 37a3cc2..8312182 100644
--- a/drivers/mtd/nand/raw/ams-delta.c
+++ b/drivers/mtd/nand/raw/ams-delta.c
@@ -1,3 +1,4 @@
+// SPDX-License-Identifier: GPL-2.0
 /*
  *  Copyright (C) 2006 Jonathan McDowell <noodles@earth.li>
  *
@@ -8,10 +9,6 @@
  *  Converted to platform driver by Janusz Krzysztofik <jkrzyszt@tis.icnet.pl>
  *  Partially stolen from plat_nand.c
  *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
- *
  *  Overview:
  *   This is a device driver for the NAND flash device found on the
  *   Amstrad E3 (Delta).
@@ -20,23 +17,29 @@
 #include <linux/slab.h>
 #include <linux/module.h>
 #include <linux/delay.h>
+#include <linux/gpio/consumer.h>
 #include <linux/mtd/mtd.h>
 #include <linux/mtd/rawnand.h>
 #include <linux/mtd/partitions.h>
-#include <linux/gpio.h>
-#include <linux/platform_data/gpio-omap.h>
-
-#include <asm/io.h>
-#include <asm/sizes.h>
-
-#include <mach/board-ams-delta.h>
-
-#include <mach/hardware.h>
+#include <linux/platform_device.h>
+#include <linux/sizes.h>
 
 /*
  * MTD structure for E3 (Delta)
  */
-static struct mtd_info *ams_delta_mtd = NULL;
+struct ams_delta_nand {
+	struct nand_controller	base;
+	struct nand_chip	nand_chip;
+	struct gpio_desc	*gpiod_rdy;
+	struct gpio_desc	*gpiod_nce;
+	struct gpio_desc	*gpiod_nre;
+	struct gpio_desc	*gpiod_nwp;
+	struct gpio_desc	*gpiod_nwe;
+	struct gpio_desc	*gpiod_ale;
+	struct gpio_desc	*gpiod_cle;
+	struct gpio_descs	*data_gpiods;
+	bool			data_in;
+};
 
 /*
  * Define partitions for flash devices
@@ -63,111 +66,153 @@
 	  .size		=  3 * SZ_256K },
 };
 
-static void ams_delta_write_byte(struct mtd_info *mtd, u_char byte)
+static void ams_delta_write_commit(struct ams_delta_nand *priv)
 {
-	struct nand_chip *this = mtd_to_nand(mtd);
-	void __iomem *io_base = (void __iomem *)nand_get_controller_data(this);
-
-	writew(0, io_base + OMAP_MPUIO_IO_CNTL);
-	writew(byte, this->IO_ADDR_W);
-	gpio_set_value(AMS_DELTA_GPIO_PIN_NAND_NWE, 0);
+	gpiod_set_value(priv->gpiod_nwe, 0);
 	ndelay(40);
-	gpio_set_value(AMS_DELTA_GPIO_PIN_NAND_NWE, 1);
+	gpiod_set_value(priv->gpiod_nwe, 1);
 }
 
-static u_char ams_delta_read_byte(struct mtd_info *mtd)
+static void ams_delta_io_write(struct ams_delta_nand *priv, u8 byte)
 {
-	u_char res;
-	struct nand_chip *this = mtd_to_nand(mtd);
-	void __iomem *io_base = (void __iomem *)nand_get_controller_data(this);
+	struct gpio_descs *data_gpiods = priv->data_gpiods;
+	DECLARE_BITMAP(values, BITS_PER_TYPE(byte)) = { byte, };
 
-	gpio_set_value(AMS_DELTA_GPIO_PIN_NAND_NRE, 0);
+	gpiod_set_raw_array_value(data_gpiods->ndescs, data_gpiods->desc,
+				  data_gpiods->info, values);
+
+	ams_delta_write_commit(priv);
+}
+
+static void ams_delta_dir_output(struct ams_delta_nand *priv, u8 byte)
+{
+	struct gpio_descs *data_gpiods = priv->data_gpiods;
+	DECLARE_BITMAP(values, BITS_PER_TYPE(byte)) = { byte, };
+	int i;
+
+	for (i = 0; i < data_gpiods->ndescs; i++)
+		gpiod_direction_output_raw(data_gpiods->desc[i],
+					   test_bit(i, values));
+
+	ams_delta_write_commit(priv);
+
+	priv->data_in = false;
+}
+
+static u8 ams_delta_io_read(struct ams_delta_nand *priv)
+{
+	u8 res;
+	struct gpio_descs *data_gpiods = priv->data_gpiods;
+	DECLARE_BITMAP(values, BITS_PER_TYPE(res)) = { 0, };
+
+	gpiod_set_value(priv->gpiod_nre, 0);
 	ndelay(40);
-	writew(~0, io_base + OMAP_MPUIO_IO_CNTL);
-	res = readw(this->IO_ADDR_R);
-	gpio_set_value(AMS_DELTA_GPIO_PIN_NAND_NRE, 1);
 
+	gpiod_get_raw_array_value(data_gpiods->ndescs, data_gpiods->desc,
+				  data_gpiods->info, values);
+
+	gpiod_set_value(priv->gpiod_nre, 1);
+
+	res = values[0];
 	return res;
 }
 
-static void ams_delta_write_buf(struct mtd_info *mtd, const u_char *buf,
+static void ams_delta_dir_input(struct ams_delta_nand *priv)
+{
+	struct gpio_descs *data_gpiods = priv->data_gpiods;
+	int i;
+
+	for (i = 0; i < data_gpiods->ndescs; i++)
+		gpiod_direction_input(data_gpiods->desc[i]);
+
+	priv->data_in = true;
+}
+
+static void ams_delta_write_buf(struct ams_delta_nand *priv, const u8 *buf,
 				int len)
 {
-	int i;
+	int i = 0;
 
-	for (i=0; i<len; i++)
-		ams_delta_write_byte(mtd, buf[i]);
+	if (len > 0 && priv->data_in)
+		ams_delta_dir_output(priv, buf[i++]);
+
+	while (i < len)
+		ams_delta_io_write(priv, buf[i++]);
 }
 
-static void ams_delta_read_buf(struct mtd_info *mtd, u_char *buf, int len)
+static void ams_delta_read_buf(struct ams_delta_nand *priv, u8 *buf, int len)
 {
 	int i;
 
-	for (i=0; i<len; i++)
-		buf[i] = ams_delta_read_byte(mtd);
+	if (!priv->data_in)
+		ams_delta_dir_input(priv);
+
+	for (i = 0; i < len; i++)
+		buf[i] = ams_delta_io_read(priv);
 }
 
-/*
- * Command control function
- *
- * ctrl:
- * NAND_NCE: bit 0 -> bit 2
- * NAND_CLE: bit 1 -> bit 7
- * NAND_ALE: bit 2 -> bit 6
- */
-static void ams_delta_hwcontrol(struct mtd_info *mtd, int cmd,
-				unsigned int ctrl)
+static void ams_delta_ctrl_cs(struct ams_delta_nand *priv, bool assert)
 {
+	gpiod_set_value(priv->gpiod_nce, assert ? 0 : 1);
+}
 
-	if (ctrl & NAND_CTRL_CHANGE) {
-		gpio_set_value(AMS_DELTA_GPIO_PIN_NAND_NCE,
-				(ctrl & NAND_NCE) == 0);
-		gpio_set_value(AMS_DELTA_GPIO_PIN_NAND_CLE,
-				(ctrl & NAND_CLE) != 0);
-		gpio_set_value(AMS_DELTA_GPIO_PIN_NAND_ALE,
-				(ctrl & NAND_ALE) != 0);
+static int ams_delta_exec_op(struct nand_chip *this,
+			     const struct nand_operation *op, bool check_only)
+{
+	struct ams_delta_nand *priv = nand_get_controller_data(this);
+	const struct nand_op_instr *instr;
+	int ret = 0;
+
+	if (check_only)
+		return 0;
+
+	ams_delta_ctrl_cs(priv, 1);
+
+	for (instr = op->instrs; instr < op->instrs + op->ninstrs; instr++) {
+		switch (instr->type) {
+		case NAND_OP_CMD_INSTR:
+			gpiod_set_value(priv->gpiod_cle, 1);
+			ams_delta_write_buf(priv, &instr->ctx.cmd.opcode, 1);
+			gpiod_set_value(priv->gpiod_cle, 0);
+			break;
+
+		case NAND_OP_ADDR_INSTR:
+			gpiod_set_value(priv->gpiod_ale, 1);
+			ams_delta_write_buf(priv, instr->ctx.addr.addrs,
+					    instr->ctx.addr.naddrs);
+			gpiod_set_value(priv->gpiod_ale, 0);
+			break;
+
+		case NAND_OP_DATA_IN_INSTR:
+			ams_delta_read_buf(priv, instr->ctx.data.buf.in,
+					   instr->ctx.data.len);
+			break;
+
+		case NAND_OP_DATA_OUT_INSTR:
+			ams_delta_write_buf(priv, instr->ctx.data.buf.out,
+					    instr->ctx.data.len);
+			break;
+
+		case NAND_OP_WAITRDY_INSTR:
+			ret = priv->gpiod_rdy ?
+			      nand_gpio_waitrdy(this, priv->gpiod_rdy,
+						instr->ctx.waitrdy.timeout_ms) :
+			      nand_soft_waitrdy(this,
+						instr->ctx.waitrdy.timeout_ms);
+			break;
+		}
+
+		if (ret)
+			break;
 	}
 
-	if (cmd != NAND_CMD_NONE)
-		ams_delta_write_byte(mtd, cmd);
+	ams_delta_ctrl_cs(priv, 0);
+
+	return ret;
 }
 
-static int ams_delta_nand_ready(struct mtd_info *mtd)
-{
-	return gpio_get_value(AMS_DELTA_GPIO_PIN_NAND_RB);
-}
-
-static const struct gpio _mandatory_gpio[] = {
-	{
-		.gpio	= AMS_DELTA_GPIO_PIN_NAND_NCE,
-		.flags	= GPIOF_OUT_INIT_HIGH,
-		.label	= "nand_nce",
-	},
-	{
-		.gpio	= AMS_DELTA_GPIO_PIN_NAND_NRE,
-		.flags	= GPIOF_OUT_INIT_HIGH,
-		.label	= "nand_nre",
-	},
-	{
-		.gpio	= AMS_DELTA_GPIO_PIN_NAND_NWP,
-		.flags	= GPIOF_OUT_INIT_HIGH,
-		.label	= "nand_nwp",
-	},
-	{
-		.gpio	= AMS_DELTA_GPIO_PIN_NAND_NWE,
-		.flags	= GPIOF_OUT_INIT_HIGH,
-		.label	= "nand_nwe",
-	},
-	{
-		.gpio	= AMS_DELTA_GPIO_PIN_NAND_ALE,
-		.flags	= GPIOF_OUT_INIT_LOW,
-		.label	= "nand_ale",
-	},
-	{
-		.gpio	= AMS_DELTA_GPIO_PIN_NAND_CLE,
-		.flags	= GPIOF_OUT_INIT_LOW,
-		.label	= "nand_cle",
-	},
+static const struct nand_controller_ops ams_delta_ops = {
+	.exec_op = ams_delta_exec_op,
 };
 
 /*
@@ -175,84 +220,111 @@
  */
 static int ams_delta_init(struct platform_device *pdev)
 {
+	struct ams_delta_nand *priv;
 	struct nand_chip *this;
-	struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
-	void __iomem *io_base;
+	struct mtd_info *mtd;
+	struct gpio_descs *data_gpiods;
 	int err = 0;
 
-	if (!res)
-		return -ENXIO;
-
 	/* Allocate memory for MTD device structure and private data */
-	this = kzalloc(sizeof(struct nand_chip), GFP_KERNEL);
-	if (!this) {
-		pr_warn("Unable to allocate E3 NAND MTD device structure.\n");
-		err = -ENOMEM;
-		goto out;
+	priv = devm_kzalloc(&pdev->dev, sizeof(struct ams_delta_nand),
+			    GFP_KERNEL);
+	if (!priv)
+		return -ENOMEM;
+
+	this = &priv->nand_chip;
+
+	mtd = nand_to_mtd(this);
+	mtd->dev.parent = &pdev->dev;
+
+	nand_set_controller_data(this, priv);
+
+	priv->gpiod_rdy = devm_gpiod_get_optional(&pdev->dev, "rdy", GPIOD_IN);
+	if (IS_ERR(priv->gpiod_rdy)) {
+		err = PTR_ERR(priv->gpiod_rdy);
+		dev_warn(&pdev->dev, "RDY GPIO request failed (%d)\n", err);
+		return err;
 	}
 
-	ams_delta_mtd = nand_to_mtd(this);
-	ams_delta_mtd->owner = THIS_MODULE;
-
-	/*
-	 * Don't try to request the memory region from here,
-	 * it should have been already requested from the
-	 * gpio-omap driver and requesting it again would fail.
-	 */
-
-	io_base = ioremap(res->start, resource_size(res));
-	if (io_base == NULL) {
-		dev_err(&pdev->dev, "ioremap failed\n");
-		err = -EIO;
-		goto out_free;
-	}
-
-	nand_set_controller_data(this, (void *)io_base);
-
-	/* Set address of NAND IO lines */
-	this->IO_ADDR_R = io_base + OMAP_MPUIO_INPUT_LATCH;
-	this->IO_ADDR_W = io_base + OMAP_MPUIO_OUTPUT;
-	this->read_byte = ams_delta_read_byte;
-	this->write_buf = ams_delta_write_buf;
-	this->read_buf = ams_delta_read_buf;
-	this->cmd_ctrl = ams_delta_hwcontrol;
-	if (gpio_request(AMS_DELTA_GPIO_PIN_NAND_RB, "nand_rdy") == 0) {
-		this->dev_ready = ams_delta_nand_ready;
-	} else {
-		this->dev_ready = NULL;
-		pr_notice("Couldn't request gpio for Delta NAND ready.\n");
-	}
-	/* 25 us command delay time */
-	this->chip_delay = 30;
 	this->ecc.mode = NAND_ECC_SOFT;
 	this->ecc.algo = NAND_ECC_HAMMING;
 
-	platform_set_drvdata(pdev, io_base);
+	platform_set_drvdata(pdev, priv);
 
 	/* Set chip enabled, but  */
-	err = gpio_request_array(_mandatory_gpio, ARRAY_SIZE(_mandatory_gpio));
-	if (err)
-		goto out_gpio;
+	priv->gpiod_nwp = devm_gpiod_get(&pdev->dev, "nwp", GPIOD_OUT_HIGH);
+	if (IS_ERR(priv->gpiod_nwp)) {
+		err = PTR_ERR(priv->gpiod_nwp);
+		dev_err(&pdev->dev, "NWP GPIO request failed (%d)\n", err);
+		return err;
+	}
+
+	priv->gpiod_nce = devm_gpiod_get(&pdev->dev, "nce", GPIOD_OUT_HIGH);
+	if (IS_ERR(priv->gpiod_nce)) {
+		err = PTR_ERR(priv->gpiod_nce);
+		dev_err(&pdev->dev, "NCE GPIO request failed (%d)\n", err);
+		return err;
+	}
+
+	priv->gpiod_nre = devm_gpiod_get(&pdev->dev, "nre", GPIOD_OUT_HIGH);
+	if (IS_ERR(priv->gpiod_nre)) {
+		err = PTR_ERR(priv->gpiod_nre);
+		dev_err(&pdev->dev, "NRE GPIO request failed (%d)\n", err);
+		return err;
+	}
+
+	priv->gpiod_nwe = devm_gpiod_get(&pdev->dev, "nwe", GPIOD_OUT_HIGH);
+	if (IS_ERR(priv->gpiod_nwe)) {
+		err = PTR_ERR(priv->gpiod_nwe);
+		dev_err(&pdev->dev, "NWE GPIO request failed (%d)\n", err);
+		return err;
+	}
+
+	priv->gpiod_ale = devm_gpiod_get(&pdev->dev, "ale", GPIOD_OUT_LOW);
+	if (IS_ERR(priv->gpiod_ale)) {
+		err = PTR_ERR(priv->gpiod_ale);
+		dev_err(&pdev->dev, "ALE GPIO request failed (%d)\n", err);
+		return err;
+	}
+
+	priv->gpiod_cle = devm_gpiod_get(&pdev->dev, "cle", GPIOD_OUT_LOW);
+	if (IS_ERR(priv->gpiod_cle)) {
+		err = PTR_ERR(priv->gpiod_cle);
+		dev_err(&pdev->dev, "CLE GPIO request failed (%d)\n", err);
+		return err;
+	}
+
+	/* Request array of data pins, initialize them as input */
+	data_gpiods = devm_gpiod_get_array(&pdev->dev, "data", GPIOD_IN);
+	if (IS_ERR(data_gpiods)) {
+		err = PTR_ERR(data_gpiods);
+		dev_err(&pdev->dev, "data GPIO request failed: %d\n", err);
+		return err;
+	}
+	priv->data_gpiods = data_gpiods;
+	priv->data_in = true;
+
+	/* Initialize the NAND controller object embedded in ams_delta_nand. */
+	priv->base.ops = &ams_delta_ops;
+	nand_controller_init(&priv->base);
+	this->controller = &priv->base;
 
 	/* Scan to find existence of the device */
-	err = nand_scan(ams_delta_mtd, 1);
+	err = nand_scan(this, 1);
 	if (err)
-		goto out_mtd;
+		return err;
 
 	/* Register the partitions */
-	mtd_device_register(ams_delta_mtd, partition_info,
-			    ARRAY_SIZE(partition_info));
+	err = mtd_device_register(mtd, partition_info,
+				  ARRAY_SIZE(partition_info));
+	if (err)
+		goto err_nand_cleanup;
 
-	goto out;
+	return 0;
 
- out_mtd:
-	gpio_free_array(_mandatory_gpio, ARRAY_SIZE(_mandatory_gpio));
-out_gpio:
-	gpio_free(AMS_DELTA_GPIO_PIN_NAND_RB);
-	iounmap(io_base);
-out_free:
-	kfree(this);
- out:
+err_nand_cleanup:
+	nand_cleanup(this);
+
 	return err;
 }
 
@@ -261,17 +333,11 @@
  */
 static int ams_delta_cleanup(struct platform_device *pdev)
 {
-	void __iomem *io_base = platform_get_drvdata(pdev);
+	struct ams_delta_nand *priv = platform_get_drvdata(pdev);
+	struct mtd_info *mtd = nand_to_mtd(&priv->nand_chip);
 
-	/* Release resources, unregister device */
-	nand_release(ams_delta_mtd);
-
-	gpio_free_array(_mandatory_gpio, ARRAY_SIZE(_mandatory_gpio));
-	gpio_free(AMS_DELTA_GPIO_PIN_NAND_RB);
-	iounmap(io_base);
-
-	/* Free the MTD device structure */
-	kfree(mtd_to_nand(ams_delta_mtd));
+	/* Unregister device */
+	nand_release(mtd_to_nand(mtd));
 
 	return 0;
 }
@@ -286,6 +352,6 @@
 
 module_platform_driver(ams_delta_nand_driver);
 
-MODULE_LICENSE("GPL");
+MODULE_LICENSE("GPL v2");
 MODULE_AUTHOR("Jonathan McDowell <noodles@earth.li>");
 MODULE_DESCRIPTION("Glue layer for NAND flash on Amstrad E3 (Delta)");
diff --git a/drivers/mtd/nand/raw/atmel/Makefile b/drivers/mtd/nand/raw/atmel/Makefile
index 288db4f..27c2dd5 100644
--- a/drivers/mtd/nand/raw/atmel/Makefile
+++ b/drivers/mtd/nand/raw/atmel/Makefile
@@ -1,3 +1,4 @@
+# SPDX-License-Identifier: GPL-2.0-only
 obj-$(CONFIG_MTD_NAND_ATMEL)	+= atmel-nand-controller.o atmel-pmecc.o
 
 atmel-nand-controller-objs	:= nand-controller.o
diff --git a/drivers/mtd/nand/raw/atmel/nand-controller.c b/drivers/mtd/nand/raw/atmel/nand-controller.c
index 32e95af..8d6be90 100644
--- a/drivers/mtd/nand/raw/atmel/nand-controller.c
+++ b/drivers/mtd/nand/raw/atmel/nand-controller.c
@@ -1,3 +1,4 @@
+// SPDX-License-Identifier: GPL-2.0
 /*
  * Copyright 2017 ATMEL
  * Copyright 2017 Free Electrons
@@ -29,10 +30,6 @@
  *   Add Nand Flash Controller support for SAMA5 SoC
  *	Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com)
  *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
- *
  * A few words about the naming convention in this file. This convention
  * applies to structure and function names.
  *
@@ -65,6 +62,7 @@
 #include <linux/iopoll.h>
 #include <linux/platform_device.h>
 #include <linux/regmap.h>
+#include <soc/at91/atmel-sfr.h>
 
 #include "pmecc.h"
 
@@ -211,6 +209,7 @@
 	bool legacy_of_bindings;
 	u32 ale_offs;
 	u32 cle_offs;
+	const char *ebi_csa_regmap_name;
 	const struct atmel_nand_controller_ops *ops;
 };
 
@@ -231,10 +230,15 @@
 	return container_of(ctl, struct atmel_nand_controller, base);
 }
 
+struct atmel_smc_nand_ebi_csa_cfg {
+	u32 offs;
+	u32 nfd0_on_d16;
+};
+
 struct atmel_smc_nand_controller {
 	struct atmel_nand_controller base;
-	struct regmap *matrix;
-	unsigned int ebi_csa_offs;
+	struct regmap *ebi_csa_regmap;
+	struct atmel_smc_nand_ebi_csa_cfg *ebi_csa;
 };
 
 static inline struct atmel_smc_nand_controller *
@@ -410,25 +414,15 @@
 	return -EIO;
 }
 
-static u8 atmel_nand_read_byte(struct mtd_info *mtd)
+static u8 atmel_nand_read_byte(struct nand_chip *chip)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
 	struct atmel_nand *nand = to_atmel_nand(chip);
 
 	return ioread8(nand->activecs->io.virt);
 }
 
-static u16 atmel_nand_read_word(struct mtd_info *mtd)
+static void atmel_nand_write_byte(struct nand_chip *chip, u8 byte)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
-	struct atmel_nand *nand = to_atmel_nand(chip);
-
-	return ioread16(nand->activecs->io.virt);
-}
-
-static void atmel_nand_write_byte(struct mtd_info *mtd, u8 byte)
-{
-	struct nand_chip *chip = mtd_to_nand(mtd);
 	struct atmel_nand *nand = to_atmel_nand(chip);
 
 	if (chip->options & NAND_BUSWIDTH_16)
@@ -437,9 +431,8 @@
 		iowrite8(byte, nand->activecs->io.virt);
 }
 
-static void atmel_nand_read_buf(struct mtd_info *mtd, u8 *buf, int len)
+static void atmel_nand_read_buf(struct nand_chip *chip, u8 *buf, int len)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
 	struct atmel_nand *nand = to_atmel_nand(chip);
 	struct atmel_nand_controller *nc;
 
@@ -462,9 +455,8 @@
 		ioread8_rep(nand->activecs->io.virt, buf, len);
 }
 
-static void atmel_nand_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
+static void atmel_nand_write_buf(struct nand_chip *chip, const u8 *buf, int len)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
 	struct atmel_nand *nand = to_atmel_nand(chip);
 	struct atmel_nand_controller *nc;
 
@@ -487,34 +479,31 @@
 		iowrite8_rep(nand->activecs->io.virt, buf, len);
 }
 
-static int atmel_nand_dev_ready(struct mtd_info *mtd)
+static int atmel_nand_dev_ready(struct nand_chip *chip)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
 	struct atmel_nand *nand = to_atmel_nand(chip);
 
 	return gpiod_get_value(nand->activecs->rb.gpio);
 }
 
-static void atmel_nand_select_chip(struct mtd_info *mtd, int cs)
+static void atmel_nand_select_chip(struct nand_chip *chip, int cs)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
 	struct atmel_nand *nand = to_atmel_nand(chip);
 
 	if (cs < 0 || cs >= nand->numcs) {
 		nand->activecs = NULL;
-		chip->dev_ready = NULL;
+		chip->legacy.dev_ready = NULL;
 		return;
 	}
 
 	nand->activecs = &nand->cs[cs];
 
 	if (nand->activecs->rb.type == ATMEL_NAND_GPIO_RB)
-		chip->dev_ready = atmel_nand_dev_ready;
+		chip->legacy.dev_ready = atmel_nand_dev_ready;
 }
 
-static int atmel_hsmc_nand_dev_ready(struct mtd_info *mtd)
+static int atmel_hsmc_nand_dev_ready(struct nand_chip *chip)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
 	struct atmel_nand *nand = to_atmel_nand(chip);
 	struct atmel_hsmc_nand_controller *nc;
 	u32 status;
@@ -526,15 +515,15 @@
 	return status & ATMEL_HSMC_NFC_SR_RBEDGE(nand->activecs->rb.id);
 }
 
-static void atmel_hsmc_nand_select_chip(struct mtd_info *mtd, int cs)
+static void atmel_hsmc_nand_select_chip(struct nand_chip *chip, int cs)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	struct atmel_nand *nand = to_atmel_nand(chip);
 	struct atmel_hsmc_nand_controller *nc;
 
 	nc = to_hsmc_nand_controller(chip->controller);
 
-	atmel_nand_select_chip(mtd, cs);
+	atmel_nand_select_chip(chip, cs);
 
 	if (!nand->activecs) {
 		regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CTRL,
@@ -543,7 +532,7 @@
 	}
 
 	if (nand->activecs->rb.type == ATMEL_NAND_NATIVE_RB)
-		chip->dev_ready = atmel_hsmc_nand_dev_ready;
+		chip->legacy.dev_ready = atmel_hsmc_nand_dev_ready;
 
 	regmap_update_bits(nc->base.smc, ATMEL_HSMC_NFC_CFG,
 			   ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK |
@@ -607,10 +596,9 @@
 	return ret;
 }
 
-static void atmel_hsmc_nand_cmd_ctrl(struct mtd_info *mtd, int dat,
+static void atmel_hsmc_nand_cmd_ctrl(struct nand_chip *chip, int dat,
 				     unsigned int ctrl)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
 	struct atmel_nand *nand = to_atmel_nand(chip);
 	struct atmel_hsmc_nand_controller *nc;
 
@@ -634,10 +622,9 @@
 	}
 }
 
-static void atmel_nand_cmd_ctrl(struct mtd_info *mtd, int cmd,
+static void atmel_nand_cmd_ctrl(struct nand_chip *chip, int cmd,
 				unsigned int ctrl)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
 	struct atmel_nand *nand = to_atmel_nand(chip);
 	struct atmel_nand_controller *nc;
 
@@ -851,7 +838,7 @@
 	if (ret)
 		return ret;
 
-	atmel_nand_write_buf(mtd, buf, mtd->writesize);
+	atmel_nand_write_buf(chip, buf, mtd->writesize);
 
 	ret = atmel_nand_pmecc_generate_eccbytes(chip, raw);
 	if (ret) {
@@ -861,20 +848,18 @@
 
 	atmel_nand_pmecc_disable(chip, raw);
 
-	atmel_nand_write_buf(mtd, chip->oob_poi, mtd->oobsize);
+	atmel_nand_write_buf(chip, chip->oob_poi, mtd->oobsize);
 
 	return nand_prog_page_end_op(chip);
 }
 
-static int atmel_nand_pmecc_write_page(struct mtd_info *mtd,
-				       struct nand_chip *chip, const u8 *buf,
+static int atmel_nand_pmecc_write_page(struct nand_chip *chip, const u8 *buf,
 				       int oob_required, int page)
 {
 	return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, false);
 }
 
-static int atmel_nand_pmecc_write_page_raw(struct mtd_info *mtd,
-					   struct nand_chip *chip,
+static int atmel_nand_pmecc_write_page_raw(struct nand_chip *chip,
 					   const u8 *buf, int oob_required,
 					   int page)
 {
@@ -893,8 +878,8 @@
 	if (ret)
 		return ret;
 
-	atmel_nand_read_buf(mtd, buf, mtd->writesize);
-	atmel_nand_read_buf(mtd, chip->oob_poi, mtd->oobsize);
+	atmel_nand_read_buf(chip, buf, mtd->writesize);
+	atmel_nand_read_buf(chip, chip->oob_poi, mtd->oobsize);
 
 	ret = atmel_nand_pmecc_correct_data(chip, buf, raw);
 
@@ -903,15 +888,13 @@
 	return ret;
 }
 
-static int atmel_nand_pmecc_read_page(struct mtd_info *mtd,
-				      struct nand_chip *chip, u8 *buf,
+static int atmel_nand_pmecc_read_page(struct nand_chip *chip, u8 *buf,
 				      int oob_required, int page)
 {
 	return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, false);
 }
 
-static int atmel_nand_pmecc_read_page_raw(struct mtd_info *mtd,
-					  struct nand_chip *chip, u8 *buf,
+static int atmel_nand_pmecc_read_page_raw(struct nand_chip *chip, u8 *buf,
 					  int oob_required, int page)
 {
 	return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, true);
@@ -956,7 +939,7 @@
 	if (ret)
 		return ret;
 
-	atmel_nand_write_buf(mtd, chip->oob_poi, mtd->oobsize);
+	atmel_nand_write_buf(chip, chip->oob_poi, mtd->oobsize);
 
 	nc->op.cmds[0] = NAND_CMD_PAGEPROG;
 	nc->op.ncmds = 1;
@@ -966,15 +949,14 @@
 		dev_err(nc->base.dev, "Failed to program NAND page (err = %d)\n",
 			ret);
 
-	status = chip->waitfunc(mtd, chip);
+	status = chip->legacy.waitfunc(chip);
 	if (status & NAND_STATUS_FAIL)
 		return -EIO;
 
 	return ret;
 }
 
-static int atmel_hsmc_nand_pmecc_write_page(struct mtd_info *mtd,
-					    struct nand_chip *chip,
+static int atmel_hsmc_nand_pmecc_write_page(struct nand_chip *chip,
 					    const u8 *buf, int oob_required,
 					    int page)
 {
@@ -982,8 +964,7 @@
 					      false);
 }
 
-static int atmel_hsmc_nand_pmecc_write_page_raw(struct mtd_info *mtd,
-						struct nand_chip *chip,
+static int atmel_hsmc_nand_pmecc_write_page_raw(struct nand_chip *chip,
 						const u8 *buf,
 						int oob_required, int page)
 {
@@ -1045,16 +1026,14 @@
 	return ret;
 }
 
-static int atmel_hsmc_nand_pmecc_read_page(struct mtd_info *mtd,
-					   struct nand_chip *chip, u8 *buf,
+static int atmel_hsmc_nand_pmecc_read_page(struct nand_chip *chip, u8 *buf,
 					   int oob_required, int page)
 {
 	return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page,
 					     false);
 }
 
-static int atmel_hsmc_nand_pmecc_read_page_raw(struct mtd_info *mtd,
-					       struct nand_chip *chip,
+static int atmel_hsmc_nand_pmecc_read_page_raw(struct nand_chip *chip,
 					       u8 *buf, int oob_required,
 					       int page)
 {
@@ -1093,15 +1072,15 @@
 		req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH;
 	else if (chip->ecc.strength)
 		req.ecc.strength = chip->ecc.strength;
-	else if (chip->ecc_strength_ds)
-		req.ecc.strength = chip->ecc_strength_ds;
+	else if (chip->base.eccreq.strength)
+		req.ecc.strength = chip->base.eccreq.strength;
 	else
 		req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH;
 
 	if (chip->ecc.size)
 		req.ecc.sectorsize = chip->ecc.size;
-	else if (chip->ecc_step_ds)
-		req.ecc.sectorsize = chip->ecc_step_ds;
+	else if (chip->base.eccreq.step_size)
+		req.ecc.sectorsize = chip->base.eccreq.step_size;
 	else
 		req.ecc.sectorsize = ATMEL_PMECC_SECTOR_SIZE_AUTO;
 
@@ -1473,10 +1452,9 @@
 	return 0;
 }
 
-static int atmel_nand_setup_data_interface(struct mtd_info *mtd, int csline,
+static int atmel_nand_setup_data_interface(struct nand_chip *chip, int csline,
 					const struct nand_data_interface *conf)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
 	struct atmel_nand *nand = to_atmel_nand(chip);
 	struct atmel_nand_controller *nc;
 
@@ -1498,19 +1476,18 @@
 	mtd->dev.parent = nc->dev;
 	nand->base.controller = &nc->base;
 
-	chip->cmd_ctrl = atmel_nand_cmd_ctrl;
-	chip->read_byte = atmel_nand_read_byte;
-	chip->read_word = atmel_nand_read_word;
-	chip->write_byte = atmel_nand_write_byte;
-	chip->read_buf = atmel_nand_read_buf;
-	chip->write_buf = atmel_nand_write_buf;
-	chip->select_chip = atmel_nand_select_chip;
+	chip->legacy.cmd_ctrl = atmel_nand_cmd_ctrl;
+	chip->legacy.read_byte = atmel_nand_read_byte;
+	chip->legacy.write_byte = atmel_nand_write_byte;
+	chip->legacy.read_buf = atmel_nand_read_buf;
+	chip->legacy.write_buf = atmel_nand_write_buf;
+	chip->legacy.select_chip = atmel_nand_select_chip;
 
-	if (nc->mck && nc->caps->ops->setup_data_interface)
-		chip->setup_data_interface = atmel_nand_setup_data_interface;
+	if (!nc->mck || !nc->caps->ops->setup_data_interface)
+		chip->options |= NAND_KEEP_TIMINGS;
 
 	/* Some NANDs require a longer delay than the default one (20us). */
-	chip->chip_delay = 40;
+	chip->legacy.chip_delay = 40;
 
 	/*
 	 * Use a bounce buffer when the buffer passed by the MTD user is not
@@ -1534,13 +1511,20 @@
 	atmel_nand_init(nc, nand);
 
 	smc_nc = to_smc_nand_controller(chip->controller);
-	if (!smc_nc->matrix)
+	if (!smc_nc->ebi_csa_regmap)
 		return;
 
 	/* Attach the CS to the NAND Flash logic. */
 	for (i = 0; i < nand->numcs; i++)
-		regmap_update_bits(smc_nc->matrix, smc_nc->ebi_csa_offs,
+		regmap_update_bits(smc_nc->ebi_csa_regmap,
+				   smc_nc->ebi_csa->offs,
 				   BIT(nand->cs[i].id), BIT(nand->cs[i].id));
+
+	if (smc_nc->ebi_csa->nfd0_on_d16)
+		regmap_update_bits(smc_nc->ebi_csa_regmap,
+				   smc_nc->ebi_csa->offs,
+				   smc_nc->ebi_csa->nfd0_on_d16,
+				   smc_nc->ebi_csa->nfd0_on_d16);
 }
 
 static void atmel_hsmc_nand_init(struct atmel_nand_controller *nc,
@@ -1551,8 +1535,8 @@
 	atmel_nand_init(nc, nand);
 
 	/* Overload some methods for the HSMC controller. */
-	chip->cmd_ctrl = atmel_hsmc_nand_cmd_ctrl;
-	chip->select_chip = atmel_hsmc_nand_select_chip;
+	chip->legacy.cmd_ctrl = atmel_hsmc_nand_cmd_ctrl;
+	chip->legacy.select_chip = atmel_hsmc_nand_select_chip;
 }
 
 static int atmel_nand_controller_remove_nand(struct atmel_nand *nand)
@@ -1586,9 +1570,7 @@
 		return ERR_PTR(-EINVAL);
 	}
 
-	nand = devm_kzalloc(nc->dev,
-			    sizeof(*nand) + (numcs * sizeof(*nand->cs)),
-			    GFP_KERNEL);
+	nand = devm_kzalloc(nc->dev, struct_size(nand, cs, numcs), GFP_KERNEL);
 	if (!nand) {
 		dev_err(nc->dev, "Failed to allocate NAND object\n");
 		return ERR_PTR(-ENOMEM);
@@ -1694,7 +1676,7 @@
 
 	nc->caps->ops->nand_init(nc, nand);
 
-	ret = nand_scan(mtd, nand->numcs);
+	ret = nand_scan(chip, nand->numcs);
 	if (ret) {
 		dev_err(nc->dev, "NAND scan failed: %d\n", ret);
 		return ret;
@@ -1826,7 +1808,7 @@
 
 	ret = of_property_read_u32(np, "#size-cells", &val);
 	if (ret) {
-		dev_err(dev, "missing #address-cells property\n");
+		dev_err(dev, "missing #size-cells property\n");
 		return ret;
 	}
 
@@ -1862,34 +1844,71 @@
 	clk_put(nc->mck);
 }
 
-static const struct of_device_id atmel_matrix_of_ids[] = {
+static const struct atmel_smc_nand_ebi_csa_cfg at91sam9260_ebi_csa = {
+	.offs = AT91SAM9260_MATRIX_EBICSA,
+};
+
+static const struct atmel_smc_nand_ebi_csa_cfg at91sam9261_ebi_csa = {
+	.offs = AT91SAM9261_MATRIX_EBICSA,
+};
+
+static const struct atmel_smc_nand_ebi_csa_cfg at91sam9263_ebi_csa = {
+	.offs = AT91SAM9263_MATRIX_EBI0CSA,
+};
+
+static const struct atmel_smc_nand_ebi_csa_cfg at91sam9rl_ebi_csa = {
+	.offs = AT91SAM9RL_MATRIX_EBICSA,
+};
+
+static const struct atmel_smc_nand_ebi_csa_cfg at91sam9g45_ebi_csa = {
+	.offs = AT91SAM9G45_MATRIX_EBICSA,
+};
+
+static const struct atmel_smc_nand_ebi_csa_cfg at91sam9n12_ebi_csa = {
+	.offs = AT91SAM9N12_MATRIX_EBICSA,
+};
+
+static const struct atmel_smc_nand_ebi_csa_cfg at91sam9x5_ebi_csa = {
+	.offs = AT91SAM9X5_MATRIX_EBICSA,
+};
+
+static const struct atmel_smc_nand_ebi_csa_cfg sam9x60_ebi_csa = {
+	.offs = AT91_SFR_CCFG_EBICSA,
+	.nfd0_on_d16 = AT91_SFR_CCFG_NFD0_ON_D16,
+};
+
+static const struct of_device_id atmel_ebi_csa_regmap_of_ids[] = {
 	{
 		.compatible = "atmel,at91sam9260-matrix",
-		.data = (void *)AT91SAM9260_MATRIX_EBICSA,
+		.data = &at91sam9260_ebi_csa,
 	},
 	{
 		.compatible = "atmel,at91sam9261-matrix",
-		.data = (void *)AT91SAM9261_MATRIX_EBICSA,
+		.data = &at91sam9261_ebi_csa,
 	},
 	{
 		.compatible = "atmel,at91sam9263-matrix",
-		.data = (void *)AT91SAM9263_MATRIX_EBI0CSA,
+		.data = &at91sam9263_ebi_csa,
 	},
 	{
 		.compatible = "atmel,at91sam9rl-matrix",
-		.data = (void *)AT91SAM9RL_MATRIX_EBICSA,
+		.data = &at91sam9rl_ebi_csa,
 	},
 	{
 		.compatible = "atmel,at91sam9g45-matrix",
-		.data = (void *)AT91SAM9G45_MATRIX_EBICSA,
+		.data = &at91sam9g45_ebi_csa,
 	},
 	{
 		.compatible = "atmel,at91sam9n12-matrix",
-		.data = (void *)AT91SAM9N12_MATRIX_EBICSA,
+		.data = &at91sam9n12_ebi_csa,
 	},
 	{
 		.compatible = "atmel,at91sam9x5-matrix",
-		.data = (void *)AT91SAM9X5_MATRIX_EBICSA,
+		.data = &at91sam9x5_ebi_csa,
+	},
+	{
+		.compatible = "microchip,sam9x60-sfr",
+		.data = &sam9x60_ebi_csa,
 	},
 	{ /* sentinel */ },
 };
@@ -1937,6 +1956,7 @@
 
 static const struct nand_controller_ops atmel_nand_controller_ops = {
 	.attach_chip = atmel_nand_attach_chip,
+	.setup_data_interface = atmel_nand_setup_data_interface,
 };
 
 static int atmel_nand_controller_init(struct atmel_nand_controller *nc,
@@ -2010,37 +2030,38 @@
 	struct device_node *np;
 	int ret;
 
-	/* We do not retrieve the matrix syscon when parsing old DTs. */
+	/* We do not retrieve the EBICSA regmap when parsing old DTs. */
 	if (nc->base.caps->legacy_of_bindings)
 		return 0;
 
-	np = of_parse_phandle(dev->parent->of_node, "atmel,matrix", 0);
+	np = of_parse_phandle(dev->parent->of_node,
+			      nc->base.caps->ebi_csa_regmap_name, 0);
 	if (!np)
 		return 0;
 
-	match = of_match_node(atmel_matrix_of_ids, np);
+	match = of_match_node(atmel_ebi_csa_regmap_of_ids, np);
 	if (!match) {
 		of_node_put(np);
 		return 0;
 	}
 
-	nc->matrix = syscon_node_to_regmap(np);
+	nc->ebi_csa_regmap = syscon_node_to_regmap(np);
 	of_node_put(np);
-	if (IS_ERR(nc->matrix)) {
-		ret = PTR_ERR(nc->matrix);
-		dev_err(dev, "Could not get Matrix regmap (err = %d)\n", ret);
+	if (IS_ERR(nc->ebi_csa_regmap)) {
+		ret = PTR_ERR(nc->ebi_csa_regmap);
+		dev_err(dev, "Could not get EBICSA regmap (err = %d)\n", ret);
 		return ret;
 	}
 
-	nc->ebi_csa_offs = (uintptr_t)match->data;
+	nc->ebi_csa = (struct atmel_smc_nand_ebi_csa_cfg *)match->data;
 
 	/*
 	 * The at91sam9263 has 2 EBIs, if the NAND controller is under EBI1
-	 * add 4 to ->ebi_csa_offs.
+	 * add 4 to ->ebi_csa->offs.
 	 */
 	if (of_device_is_compatible(dev->parent->of_node,
 				    "atmel,at91sam9263-ebi1"))
-		nc->ebi_csa_offs += 4;
+		nc->ebi_csa->offs += 4;
 
 	return 0;
 }
@@ -2369,6 +2390,7 @@
 static const struct atmel_nand_controller_caps atmel_rm9200_nc_caps = {
 	.ale_offs = BIT(21),
 	.cle_offs = BIT(22),
+	.ebi_csa_regmap_name = "atmel,matrix",
 	.ops = &at91rm9200_nc_ops,
 };
 
@@ -2383,12 +2405,14 @@
 static const struct atmel_nand_controller_caps atmel_sam9260_nc_caps = {
 	.ale_offs = BIT(21),
 	.cle_offs = BIT(22),
+	.ebi_csa_regmap_name = "atmel,matrix",
 	.ops = &atmel_smc_nc_ops,
 };
 
 static const struct atmel_nand_controller_caps atmel_sam9261_nc_caps = {
 	.ale_offs = BIT(22),
 	.cle_offs = BIT(21),
+	.ebi_csa_regmap_name = "atmel,matrix",
 	.ops = &atmel_smc_nc_ops,
 };
 
@@ -2396,6 +2420,15 @@
 	.has_dma = true,
 	.ale_offs = BIT(21),
 	.cle_offs = BIT(22),
+	.ebi_csa_regmap_name = "atmel,matrix",
+	.ops = &atmel_smc_nc_ops,
+};
+
+static const struct atmel_nand_controller_caps microchip_sam9x60_nc_caps = {
+	.has_dma = true,
+	.ale_offs = BIT(21),
+	.cle_offs = BIT(22),
+	.ebi_csa_regmap_name = "microchip,sfr",
 	.ops = &atmel_smc_nc_ops,
 };
 
@@ -2443,6 +2476,10 @@
 		.compatible = "atmel,sama5d3-nand-controller",
 		.data = &atmel_sama5_nc_caps,
 	},
+	{
+		.compatible = "microchip,sam9x60-nand-controller",
+		.data = &microchip_sam9x60_nc_caps,
+	},
 	/* Support for old/deprecated bindings: */
 	{
 		.compatible = "atmel,at91rm9200-nand",
diff --git a/drivers/mtd/nand/raw/atmel/pmecc.c b/drivers/mtd/nand/raw/atmel/pmecc.c
index 555a74e..cbb023b 100644
--- a/drivers/mtd/nand/raw/atmel/pmecc.c
+++ b/drivers/mtd/nand/raw/atmel/pmecc.c
@@ -1,3 +1,4 @@
+// SPDX-License-Identifier: GPL-2.0
 /*
  * Copyright 2017 ATMEL
  * Copyright 2017 Free Electrons
@@ -28,10 +29,6 @@
  *   Add Nand Flash Controller support for SAMA5 SoC
  *	Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com)
  *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
- *
  * The PMECC is an hardware assisted BCH engine, which means part of the
  * ECC algorithm is left to the software. The hardware/software repartition
  * is explained in the "PMECC Controller Functional Description" chapter in
@@ -876,23 +873,32 @@
 {
 	struct platform_device *pdev;
 	struct atmel_pmecc *pmecc, **ptr;
+	int ret;
 
 	pdev = of_find_device_by_node(np);
-	if (!pdev || !platform_get_drvdata(pdev))
+	if (!pdev)
 		return ERR_PTR(-EPROBE_DEFER);
+	pmecc = platform_get_drvdata(pdev);
+	if (!pmecc) {
+		ret = -EPROBE_DEFER;
+		goto err_put_device;
+	}
 
 	ptr = devres_alloc(devm_atmel_pmecc_put, sizeof(*ptr), GFP_KERNEL);
-	if (!ptr)
-		return ERR_PTR(-ENOMEM);
-
-	get_device(&pdev->dev);
-	pmecc = platform_get_drvdata(pdev);
+	if (!ptr) {
+		ret = -ENOMEM;
+		goto err_put_device;
+	}
 
 	*ptr = pmecc;
 
 	devres_add(userdev, ptr);
 
 	return pmecc;
+
+err_put_device:
+	put_device(&pdev->dev);
+	return ERR_PTR(ret);
 }
 
 static const int atmel_pmecc_strengths[] = { 2, 4, 8, 12, 24, 32 };
diff --git a/drivers/mtd/nand/raw/atmel/pmecc.h b/drivers/mtd/nand/raw/atmel/pmecc.h
index 808f1be..7851c05 100644
--- a/drivers/mtd/nand/raw/atmel/pmecc.h
+++ b/drivers/mtd/nand/raw/atmel/pmecc.h
@@ -1,3 +1,4 @@
+/* SPDX-License-Identifier: GPL-2.0 */
 /*
  * © Copyright 2016 ATMEL
  * © Copyright 2016 Free Electrons
@@ -28,11 +29,6 @@
  *
  *    Add Nand Flash Controller support for SAMA5 SoC
  *        © Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com)
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
- *
  */
 
 #ifndef ATMEL_PMECC_H
diff --git a/drivers/mtd/nand/raw/au1550nd.c b/drivers/mtd/nand/raw/au1550nd.c
index 35f5c84..e10b760 100644
--- a/drivers/mtd/nand/raw/au1550nd.c
+++ b/drivers/mtd/nand/raw/au1550nd.c
@@ -1,10 +1,6 @@
+// SPDX-License-Identifier: GPL-2.0-only
 /*
  *  Copyright (C) 2004 Embedded Edge, LLC
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
- *
  */
 
 #include <linux/slab.h>
@@ -24,134 +20,113 @@
 
 	int cs;
 	void __iomem *base;
-	void (*write_byte)(struct mtd_info *, u_char);
+	void (*write_byte)(struct nand_chip *, u_char);
 };
 
 /**
  * au_read_byte -  read one byte from the chip
- * @mtd:	MTD device structure
+ * @this:	NAND chip object
  *
  * read function for 8bit buswidth
  */
-static u_char au_read_byte(struct mtd_info *mtd)
+static u_char au_read_byte(struct nand_chip *this)
 {
-	struct nand_chip *this = mtd_to_nand(mtd);
-	u_char ret = readb(this->IO_ADDR_R);
+	u_char ret = readb(this->legacy.IO_ADDR_R);
 	wmb(); /* drain writebuffer */
 	return ret;
 }
 
 /**
  * au_write_byte -  write one byte to the chip
- * @mtd:	MTD device structure
+ * @this:	NAND chip object
  * @byte:	pointer to data byte to write
  *
  * write function for 8it buswidth
  */
-static void au_write_byte(struct mtd_info *mtd, u_char byte)
+static void au_write_byte(struct nand_chip *this, u_char byte)
 {
-	struct nand_chip *this = mtd_to_nand(mtd);
-	writeb(byte, this->IO_ADDR_W);
+	writeb(byte, this->legacy.IO_ADDR_W);
 	wmb(); /* drain writebuffer */
 }
 
 /**
  * au_read_byte16 -  read one byte endianness aware from the chip
- * @mtd:	MTD device structure
+ * @this:	NAND chip object
  *
  * read function for 16bit buswidth with endianness conversion
  */
-static u_char au_read_byte16(struct mtd_info *mtd)
+static u_char au_read_byte16(struct nand_chip *this)
 {
-	struct nand_chip *this = mtd_to_nand(mtd);
-	u_char ret = (u_char) cpu_to_le16(readw(this->IO_ADDR_R));
+	u_char ret = (u_char) cpu_to_le16(readw(this->legacy.IO_ADDR_R));
 	wmb(); /* drain writebuffer */
 	return ret;
 }
 
 /**
  * au_write_byte16 -  write one byte endianness aware to the chip
- * @mtd:	MTD device structure
+ * @this:	NAND chip object
  * @byte:	pointer to data byte to write
  *
  * write function for 16bit buswidth with endianness conversion
  */
-static void au_write_byte16(struct mtd_info *mtd, u_char byte)
+static void au_write_byte16(struct nand_chip *this, u_char byte)
 {
-	struct nand_chip *this = mtd_to_nand(mtd);
-	writew(le16_to_cpu((u16) byte), this->IO_ADDR_W);
+	writew(le16_to_cpu((u16) byte), this->legacy.IO_ADDR_W);
 	wmb(); /* drain writebuffer */
 }
 
 /**
- * au_read_word -  read one word from the chip
- * @mtd:	MTD device structure
- *
- * read function for 16bit buswidth without endianness conversion
- */
-static u16 au_read_word(struct mtd_info *mtd)
-{
-	struct nand_chip *this = mtd_to_nand(mtd);
-	u16 ret = readw(this->IO_ADDR_R);
-	wmb(); /* drain writebuffer */
-	return ret;
-}
-
-/**
  * au_write_buf -  write buffer to chip
- * @mtd:	MTD device structure
+ * @this:	NAND chip object
  * @buf:	data buffer
  * @len:	number of bytes to write
  *
  * write function for 8bit buswidth
  */
-static void au_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
+static void au_write_buf(struct nand_chip *this, const u_char *buf, int len)
 {
 	int i;
-	struct nand_chip *this = mtd_to_nand(mtd);
 
 	for (i = 0; i < len; i++) {
-		writeb(buf[i], this->IO_ADDR_W);
+		writeb(buf[i], this->legacy.IO_ADDR_W);
 		wmb(); /* drain writebuffer */
 	}
 }
 
 /**
  * au_read_buf -  read chip data into buffer
- * @mtd:	MTD device structure
+ * @this:	NAND chip object
  * @buf:	buffer to store date
  * @len:	number of bytes to read
  *
  * read function for 8bit buswidth
  */
-static void au_read_buf(struct mtd_info *mtd, u_char *buf, int len)
+static void au_read_buf(struct nand_chip *this, u_char *buf, int len)
 {
 	int i;
-	struct nand_chip *this = mtd_to_nand(mtd);
 
 	for (i = 0; i < len; i++) {
-		buf[i] = readb(this->IO_ADDR_R);
+		buf[i] = readb(this->legacy.IO_ADDR_R);
 		wmb(); /* drain writebuffer */
 	}
 }
 
 /**
  * au_write_buf16 -  write buffer to chip
- * @mtd:	MTD device structure
+ * @this:	NAND chip object
  * @buf:	data buffer
  * @len:	number of bytes to write
  *
  * write function for 16bit buswidth
  */
-static void au_write_buf16(struct mtd_info *mtd, const u_char *buf, int len)
+static void au_write_buf16(struct nand_chip *this, const u_char *buf, int len)
 {
 	int i;
-	struct nand_chip *this = mtd_to_nand(mtd);
 	u16 *p = (u16 *) buf;
 	len >>= 1;
 
 	for (i = 0; i < len; i++) {
-		writew(p[i], this->IO_ADDR_W);
+		writew(p[i], this->legacy.IO_ADDR_W);
 		wmb(); /* drain writebuffer */
 	}
 
@@ -159,21 +134,20 @@
 
 /**
  * au_read_buf16 -  read chip data into buffer
- * @mtd:	MTD device structure
+ * @this:	NAND chip object
  * @buf:	buffer to store date
  * @len:	number of bytes to read
  *
  * read function for 16bit buswidth
  */
-static void au_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
+static void au_read_buf16(struct nand_chip *this, u_char *buf, int len)
 {
 	int i;
-	struct nand_chip *this = mtd_to_nand(mtd);
 	u16 *p = (u16 *) buf;
 	len >>= 1;
 
 	for (i = 0; i < len; i++) {
-		p[i] = readw(this->IO_ADDR_R);
+		p[i] = readw(this->legacy.IO_ADDR_R);
 		wmb(); /* drain writebuffer */
 	}
 }
@@ -200,19 +174,19 @@
 	switch (cmd) {
 
 	case NAND_CTL_SETCLE:
-		this->IO_ADDR_W = ctx->base + MEM_STNAND_CMD;
+		this->legacy.IO_ADDR_W = ctx->base + MEM_STNAND_CMD;
 		break;
 
 	case NAND_CTL_CLRCLE:
-		this->IO_ADDR_W = ctx->base + MEM_STNAND_DATA;
+		this->legacy.IO_ADDR_W = ctx->base + MEM_STNAND_DATA;
 		break;
 
 	case NAND_CTL_SETALE:
-		this->IO_ADDR_W = ctx->base + MEM_STNAND_ADDR;
+		this->legacy.IO_ADDR_W = ctx->base + MEM_STNAND_ADDR;
 		break;
 
 	case NAND_CTL_CLRALE:
-		this->IO_ADDR_W = ctx->base + MEM_STNAND_DATA;
+		this->legacy.IO_ADDR_W = ctx->base + MEM_STNAND_DATA;
 		/* FIXME: Nobody knows why this is necessary,
 		 * but it works only that way */
 		udelay(1);
@@ -229,12 +203,12 @@
 		break;
 	}
 
-	this->IO_ADDR_R = this->IO_ADDR_W;
+	this->legacy.IO_ADDR_R = this->legacy.IO_ADDR_W;
 
 	wmb(); /* Drain the writebuffer */
 }
 
-int au1550_device_ready(struct mtd_info *mtd)
+int au1550_device_ready(struct nand_chip *this)
 {
 	return (alchemy_rdsmem(AU1000_MEM_STSTAT) & 0x1) ? 1 : 0;
 }
@@ -248,23 +222,24 @@
  *	chip needs it to be asserted during chip not ready time but the NAND
  *	controller keeps it released.
  *
- * @mtd:	MTD device structure
+ * @this:	NAND chip object
  * @chip:	chipnumber to select, -1 for deselect
  */
-static void au1550_select_chip(struct mtd_info *mtd, int chip)
+static void au1550_select_chip(struct nand_chip *this, int chip)
 {
 }
 
 /**
  * au1550_command - Send command to NAND device
- * @mtd:	MTD device structure
+ * @this:	NAND chip object
  * @command:	the command to be sent
  * @column:	the column address for this command, -1 if none
  * @page_addr:	the page address for this command, -1 if none
  */
-static void au1550_command(struct mtd_info *mtd, unsigned command, int column, int page_addr)
+static void au1550_command(struct nand_chip *this, unsigned command,
+			   int column, int page_addr)
 {
-	struct nand_chip *this = mtd_to_nand(mtd);
+	struct mtd_info *mtd = nand_to_mtd(this);
 	struct au1550nd_ctx *ctx = container_of(this, struct au1550nd_ctx,
 						chip);
 	int ce_override = 0, i;
@@ -289,9 +264,9 @@
 			column -= 256;
 			readcmd = NAND_CMD_READ1;
 		}
-		ctx->write_byte(mtd, readcmd);
+		ctx->write_byte(this, readcmd);
 	}
-	ctx->write_byte(mtd, command);
+	ctx->write_byte(this, command);
 
 	/* Set ALE and clear CLE to start address cycle */
 	au1550_hwcontrol(mtd, NAND_CTL_CLRCLE);
@@ -305,10 +280,10 @@
 			if (this->options & NAND_BUSWIDTH_16 &&
 					!nand_opcode_8bits(command))
 				column >>= 1;
-			ctx->write_byte(mtd, column);
+			ctx->write_byte(this, column);
 		}
 		if (page_addr != -1) {
-			ctx->write_byte(mtd, (u8)(page_addr & 0xff));
+			ctx->write_byte(this, (u8)(page_addr & 0xff));
 
 			if (command == NAND_CMD_READ0 ||
 			    command == NAND_CMD_READ1 ||
@@ -326,10 +301,10 @@
 				au1550_hwcontrol(mtd, NAND_CTL_SETNCE);
 			}
 
-			ctx->write_byte(mtd, (u8)(page_addr >> 8));
+			ctx->write_byte(this, (u8)(page_addr >> 8));
 
 			if (this->options & NAND_ROW_ADDR_3)
-				ctx->write_byte(mtd,
+				ctx->write_byte(this,
 						((page_addr >> 16) & 0x0f));
 		}
 		/* Latch in address */
@@ -362,7 +337,8 @@
 		/* Apply a short delay always to ensure that we do wait tWB. */
 		ndelay(100);
 		/* Wait for a chip to become ready... */
-		for (i = this->chip_delay; !this->dev_ready(mtd) && i > 0; --i)
+		for (i = this->legacy.chip_delay;
+		     !this->legacy.dev_ready(this) && i > 0; --i)
 			udelay(1);
 
 		/* Release -CE and re-enable interrupts. */
@@ -373,7 +349,7 @@
 	/* Apply this short delay always to ensure that we do wait tWB. */
 	ndelay(100);
 
-	while(!this->dev_ready(mtd));
+	while(!this->legacy.dev_ready(this));
 }
 
 static int find_nand_cs(unsigned long nand_base)
@@ -448,25 +424,24 @@
 	}
 	ctx->cs = cs;
 
-	this->dev_ready = au1550_device_ready;
-	this->select_chip = au1550_select_chip;
-	this->cmdfunc = au1550_command;
+	this->legacy.dev_ready = au1550_device_ready;
+	this->legacy.select_chip = au1550_select_chip;
+	this->legacy.cmdfunc = au1550_command;
 
 	/* 30 us command delay time */
-	this->chip_delay = 30;
+	this->legacy.chip_delay = 30;
 	this->ecc.mode = NAND_ECC_SOFT;
 	this->ecc.algo = NAND_ECC_HAMMING;
 
 	if (pd->devwidth)
 		this->options |= NAND_BUSWIDTH_16;
 
-	this->read_byte = (pd->devwidth) ? au_read_byte16 : au_read_byte;
+	this->legacy.read_byte = (pd->devwidth) ? au_read_byte16 : au_read_byte;
 	ctx->write_byte = (pd->devwidth) ? au_write_byte16 : au_write_byte;
-	this->read_word = au_read_word;
-	this->write_buf = (pd->devwidth) ? au_write_buf16 : au_write_buf;
-	this->read_buf = (pd->devwidth) ? au_read_buf16 : au_read_buf;
+	this->legacy.write_buf = (pd->devwidth) ? au_write_buf16 : au_write_buf;
+	this->legacy.read_buf = (pd->devwidth) ? au_read_buf16 : au_read_buf;
 
-	ret = nand_scan(mtd, 1);
+	ret = nand_scan(this, 1);
 	if (ret) {
 		dev_err(&pdev->dev, "NAND scan failed with %d\n", ret);
 		goto out3;
@@ -492,7 +467,7 @@
 	struct au1550nd_ctx *ctx = platform_get_drvdata(pdev);
 	struct resource *r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 
-	nand_release(nand_to_mtd(&ctx->chip));
+	nand_release(&ctx->chip);
 	iounmap(ctx->base);
 	release_mem_region(r->start, 0x1000);
 	kfree(ctx);
diff --git a/drivers/mtd/nand/raw/bcm47xxnflash/Makefile b/drivers/mtd/nand/raw/bcm47xxnflash/Makefile
index f05b119..b531a63 100644
--- a/drivers/mtd/nand/raw/bcm47xxnflash/Makefile
+++ b/drivers/mtd/nand/raw/bcm47xxnflash/Makefile
@@ -1,3 +1,4 @@
+# SPDX-License-Identifier: GPL-2.0-only
 bcm47xxnflash-y				+= main.o
 bcm47xxnflash-y				+= ops_bcm4706.o
 
diff --git a/drivers/mtd/nand/raw/bcm47xxnflash/main.c b/drivers/mtd/nand/raw/bcm47xxnflash/main.c
index fb31429..8dae97c 100644
--- a/drivers/mtd/nand/raw/bcm47xxnflash/main.c
+++ b/drivers/mtd/nand/raw/bcm47xxnflash/main.c
@@ -1,12 +1,8 @@
+// SPDX-License-Identifier: GPL-2.0-only
 /*
  * BCM47XX NAND flash driver
  *
  * Copyright (C) 2012 Rafał Miłecki <zajec5@gmail.com>
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
- *
  */
 
 #include "bcm47xxnflash.h"
@@ -65,7 +61,7 @@
 {
 	struct bcm47xxnflash *nflash = platform_get_drvdata(pdev);
 
-	nand_release(nand_to_mtd(&nflash->nand_chip));
+	nand_release(&nflash->nand_chip);
 
 	return 0;
 }
diff --git a/drivers/mtd/nand/raw/bcm47xxnflash/ops_bcm4706.c b/drivers/mtd/nand/raw/bcm47xxnflash/ops_bcm4706.c
index 60874de..5917751 100644
--- a/drivers/mtd/nand/raw/bcm47xxnflash/ops_bcm4706.c
+++ b/drivers/mtd/nand/raw/bcm47xxnflash/ops_bcm4706.c
@@ -1,12 +1,8 @@
+// SPDX-License-Identifier: GPL-2.0-only
 /*
  * BCM47XX NAND flash driver
  *
  * Copyright (C) 2012 Rafał Miłecki <zajec5@gmail.com>
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
- *
  */
 
 #include "bcm47xxnflash.h"
@@ -170,10 +166,9 @@
  * NAND chip ops
  **************************************************/
 
-static void bcm47xxnflash_ops_bcm4706_cmd_ctrl(struct mtd_info *mtd, int cmd,
-					       unsigned int ctrl)
+static void bcm47xxnflash_ops_bcm4706_cmd_ctrl(struct nand_chip *nand_chip,
+					       int cmd, unsigned int ctrl)
 {
-	struct nand_chip *nand_chip = mtd_to_nand(mtd);
 	struct bcm47xxnflash *b47n = nand_get_controller_data(nand_chip);
 	u32 code = 0;
 
@@ -191,15 +186,14 @@
 }
 
 /* Default nand_select_chip calls cmd_ctrl, which is not used in BCM4706 */
-static void bcm47xxnflash_ops_bcm4706_select_chip(struct mtd_info *mtd,
-						  int chip)
+static void bcm47xxnflash_ops_bcm4706_select_chip(struct nand_chip *chip,
+						  int cs)
 {
 	return;
 }
 
-static int bcm47xxnflash_ops_bcm4706_dev_ready(struct mtd_info *mtd)
+static int bcm47xxnflash_ops_bcm4706_dev_ready(struct nand_chip *nand_chip)
 {
-	struct nand_chip *nand_chip = mtd_to_nand(mtd);
 	struct bcm47xxnflash *b47n = nand_get_controller_data(nand_chip);
 
 	return !!(bcma_cc_read32(b47n->cc, BCMA_CC_NFLASH_CTL) & NCTL_READY);
@@ -212,11 +206,11 @@
  * registers of ChipCommon core. Hacking cmd_ctrl to understand and convert
  * standard commands would be much more complicated.
  */
-static void bcm47xxnflash_ops_bcm4706_cmdfunc(struct mtd_info *mtd,
+static void bcm47xxnflash_ops_bcm4706_cmdfunc(struct nand_chip *nand_chip,
 					      unsigned command, int column,
 					      int page_addr)
 {
-	struct nand_chip *nand_chip = mtd_to_nand(mtd);
+	struct mtd_info *mtd = nand_to_mtd(nand_chip);
 	struct bcm47xxnflash *b47n = nand_get_controller_data(nand_chip);
 	struct bcma_drv_cc *cc = b47n->cc;
 	u32 ctlcode;
@@ -229,10 +223,10 @@
 
 	switch (command) {
 	case NAND_CMD_RESET:
-		nand_chip->cmd_ctrl(mtd, command, NAND_CTRL_CLE);
+		nand_chip->legacy.cmd_ctrl(nand_chip, command, NAND_CTRL_CLE);
 
 		ndelay(100);
-		nand_wait_ready(mtd);
+		nand_wait_ready(nand_chip);
 		break;
 	case NAND_CMD_READID:
 		ctlcode = NCTL_CSA | 0x01000000 | NCTL_CMD1W | NCTL_CMD0;
@@ -310,9 +304,9 @@
 	b47n->curr_command = command;
 }
 
-static u8 bcm47xxnflash_ops_bcm4706_read_byte(struct mtd_info *mtd)
+static u8 bcm47xxnflash_ops_bcm4706_read_byte(struct nand_chip *nand_chip)
 {
-	struct nand_chip *nand_chip = mtd_to_nand(mtd);
+	struct mtd_info *mtd = nand_to_mtd(nand_chip);
 	struct bcm47xxnflash *b47n = nand_get_controller_data(nand_chip);
 	struct bcma_drv_cc *cc = b47n->cc;
 	u32 tmp = 0;
@@ -338,31 +332,31 @@
 	return 0;
 }
 
-static void bcm47xxnflash_ops_bcm4706_read_buf(struct mtd_info *mtd,
+static void bcm47xxnflash_ops_bcm4706_read_buf(struct nand_chip *nand_chip,
 					       uint8_t *buf, int len)
 {
-	struct nand_chip *nand_chip = mtd_to_nand(mtd);
 	struct bcm47xxnflash *b47n = nand_get_controller_data(nand_chip);
 
 	switch (b47n->curr_command) {
 	case NAND_CMD_READ0:
 	case NAND_CMD_READOOB:
-		bcm47xxnflash_ops_bcm4706_read(mtd, buf, len);
+		bcm47xxnflash_ops_bcm4706_read(nand_to_mtd(nand_chip), buf,
+					       len);
 		return;
 	}
 
 	pr_err("Invalid command for buf read: 0x%X\n", b47n->curr_command);
 }
 
-static void bcm47xxnflash_ops_bcm4706_write_buf(struct mtd_info *mtd,
+static void bcm47xxnflash_ops_bcm4706_write_buf(struct nand_chip *nand_chip,
 						const uint8_t *buf, int len)
 {
-	struct nand_chip *nand_chip = mtd_to_nand(mtd);
 	struct bcm47xxnflash *b47n = nand_get_controller_data(nand_chip);
 
 	switch (b47n->curr_command) {
 	case NAND_CMD_SEQIN:
-		bcm47xxnflash_ops_bcm4706_write(mtd, buf, len);
+		bcm47xxnflash_ops_bcm4706_write(nand_to_mtd(nand_chip), buf,
+						len);
 		return;
 	}
 
@@ -385,17 +379,17 @@
 	u8 tbits, col_bits, col_size, row_bits, row_bsize;
 	u32 val;
 
-	b47n->nand_chip.select_chip = bcm47xxnflash_ops_bcm4706_select_chip;
-	nand_chip->cmd_ctrl = bcm47xxnflash_ops_bcm4706_cmd_ctrl;
-	nand_chip->dev_ready = bcm47xxnflash_ops_bcm4706_dev_ready;
-	b47n->nand_chip.cmdfunc = bcm47xxnflash_ops_bcm4706_cmdfunc;
-	b47n->nand_chip.read_byte = bcm47xxnflash_ops_bcm4706_read_byte;
-	b47n->nand_chip.read_buf = bcm47xxnflash_ops_bcm4706_read_buf;
-	b47n->nand_chip.write_buf = bcm47xxnflash_ops_bcm4706_write_buf;
-	b47n->nand_chip.set_features = nand_get_set_features_notsupp;
-	b47n->nand_chip.get_features = nand_get_set_features_notsupp;
+	nand_chip->legacy.select_chip = bcm47xxnflash_ops_bcm4706_select_chip;
+	nand_chip->legacy.cmd_ctrl = bcm47xxnflash_ops_bcm4706_cmd_ctrl;
+	nand_chip->legacy.dev_ready = bcm47xxnflash_ops_bcm4706_dev_ready;
+	b47n->nand_chip.legacy.cmdfunc = bcm47xxnflash_ops_bcm4706_cmdfunc;
+	b47n->nand_chip.legacy.read_byte = bcm47xxnflash_ops_bcm4706_read_byte;
+	b47n->nand_chip.legacy.read_buf = bcm47xxnflash_ops_bcm4706_read_buf;
+	b47n->nand_chip.legacy.write_buf = bcm47xxnflash_ops_bcm4706_write_buf;
+	b47n->nand_chip.legacy.set_features = nand_get_set_features_notsupp;
+	b47n->nand_chip.legacy.get_features = nand_get_set_features_notsupp;
 
-	nand_chip->chip_delay = 50;
+	nand_chip->legacy.chip_delay = 50;
 	b47n->nand_chip.bbt_options = NAND_BBT_USE_FLASH;
 	b47n->nand_chip.ecc.mode = NAND_ECC_NONE; /* TODO: implement ECC */
 
@@ -423,14 +417,14 @@
 			(w4 << 24 | w3 << 18 | w2 << 12 | w1 << 6 | w0));
 
 	/* Scan NAND */
-	err = nand_scan(nand_to_mtd(&b47n->nand_chip), 1);
+	err = nand_scan(&b47n->nand_chip, 1);
 	if (err) {
 		pr_err("Could not scan NAND flash: %d\n", err);
 		goto exit;
 	}
 
 	/* Configure FLASH */
-	chipsize = b47n->nand_chip.chipsize >> 20;
+	chipsize = nanddev_target_size(&b47n->nand_chip.base) >> 20;
 	tbits = ffs(chipsize); /* find first bit set */
 	if (!tbits || tbits != fls(chipsize)) {
 		pr_err("Invalid flash size: 0x%lX\n", chipsize);
diff --git a/drivers/mtd/nand/raw/brcmnand/bcm63138_nand.c b/drivers/mtd/nand/raw/brcmnand/bcm63138_nand.c
index 59444b3..71ddcc6 100644
--- a/drivers/mtd/nand/raw/brcmnand/bcm63138_nand.c
+++ b/drivers/mtd/nand/raw/brcmnand/bcm63138_nand.c
@@ -1,14 +1,6 @@
+// SPDX-License-Identifier: GPL-2.0-only
 /*
  * Copyright © 2015 Broadcom Corporation
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
  */
 
 #include <linux/device.h>
diff --git a/drivers/mtd/nand/raw/brcmnand/bcm6368_nand.c b/drivers/mtd/nand/raw/brcmnand/bcm6368_nand.c
index 34c91b0..7c17ec4 100644
--- a/drivers/mtd/nand/raw/brcmnand/bcm6368_nand.c
+++ b/drivers/mtd/nand/raw/brcmnand/bcm6368_nand.c
@@ -1,15 +1,7 @@
+// SPDX-License-Identifier: GPL-2.0-only
 /*
  * Copyright 2015 Simon Arlott
  *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
  * Derived from bcm63138_nand.c:
  * Copyright © 2015 Broadcom Corporation
  *
diff --git a/drivers/mtd/nand/raw/brcmnand/brcmnand.c b/drivers/mtd/nand/raw/brcmnand/brcmnand.c
index 4b90d5b..15ef30b 100644
--- a/drivers/mtd/nand/raw/brcmnand/brcmnand.c
+++ b/drivers/mtd/nand/raw/brcmnand/brcmnand.c
@@ -1,14 +1,6 @@
+// SPDX-License-Identifier: GPL-2.0-only
 /*
  * Copyright © 2010-2015 Broadcom Corporation
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
  */
 
 #include <linux/clk.h>
@@ -92,6 +84,12 @@
 #define FLASH_DMA_ECC_ERROR	(1 << 8)
 #define FLASH_DMA_CORR_ERROR	(1 << 9)
 
+/* Bitfields for DMA_MODE */
+#define FLASH_DMA_MODE_STOP_ON_ERROR	BIT(1) /* stop in Uncorr ECC error */
+#define FLASH_DMA_MODE_MODE		BIT(0) /* link list */
+#define FLASH_DMA_MODE_MASK		(FLASH_DMA_MODE_STOP_ON_ERROR |	\
+						FLASH_DMA_MODE_MODE)
+
 /* 512B flash cache in the NAND controller HW */
 #define FC_SHIFT		9U
 #define FC_BYTES		512U
@@ -104,6 +102,51 @@
 #define NAND_CTRL_RDY			(INTFC_CTLR_READY | INTFC_FLASH_READY)
 #define NAND_POLL_STATUS_TIMEOUT_MS	100
 
+/* flash_dma registers */
+enum flash_dma_reg {
+	FLASH_DMA_REVISION = 0,
+	FLASH_DMA_FIRST_DESC,
+	FLASH_DMA_FIRST_DESC_EXT,
+	FLASH_DMA_CTRL,
+	FLASH_DMA_MODE,
+	FLASH_DMA_STATUS,
+	FLASH_DMA_INTERRUPT_DESC,
+	FLASH_DMA_INTERRUPT_DESC_EXT,
+	FLASH_DMA_ERROR_STATUS,
+	FLASH_DMA_CURRENT_DESC,
+	FLASH_DMA_CURRENT_DESC_EXT,
+};
+
+/* flash_dma registers v1*/
+static const u16 flash_dma_regs_v1[] = {
+	[FLASH_DMA_REVISION]		= 0x00,
+	[FLASH_DMA_FIRST_DESC]		= 0x04,
+	[FLASH_DMA_FIRST_DESC_EXT]	= 0x08,
+	[FLASH_DMA_CTRL]		= 0x0c,
+	[FLASH_DMA_MODE]		= 0x10,
+	[FLASH_DMA_STATUS]		= 0x14,
+	[FLASH_DMA_INTERRUPT_DESC]	= 0x18,
+	[FLASH_DMA_INTERRUPT_DESC_EXT]	= 0x1c,
+	[FLASH_DMA_ERROR_STATUS]	= 0x20,
+	[FLASH_DMA_CURRENT_DESC]	= 0x24,
+	[FLASH_DMA_CURRENT_DESC_EXT]	= 0x28,
+};
+
+/* flash_dma registers v4 */
+static const u16 flash_dma_regs_v4[] = {
+	[FLASH_DMA_REVISION]		= 0x00,
+	[FLASH_DMA_FIRST_DESC]		= 0x08,
+	[FLASH_DMA_FIRST_DESC_EXT]	= 0x0c,
+	[FLASH_DMA_CTRL]		= 0x10,
+	[FLASH_DMA_MODE]		= 0x14,
+	[FLASH_DMA_STATUS]		= 0x18,
+	[FLASH_DMA_INTERRUPT_DESC]	= 0x20,
+	[FLASH_DMA_INTERRUPT_DESC_EXT]	= 0x24,
+	[FLASH_DMA_ERROR_STATUS]	= 0x28,
+	[FLASH_DMA_CURRENT_DESC]	= 0x30,
+	[FLASH_DMA_CURRENT_DESC_EXT]	= 0x34,
+};
+
 /* Controller feature flags */
 enum {
 	BRCMNAND_HAS_1K_SECTORS			= BIT(0),
@@ -136,6 +179,8 @@
 	/* List of NAND hosts (one for each chip-select) */
 	struct list_head host_list;
 
+	/* flash_dma reg */
+	const u16		*flash_dma_offsets;
 	struct brcm_nand_dma_desc *dma_desc;
 	dma_addr_t		dma_pa;
 
@@ -159,6 +204,7 @@
 	u32			nand_cs_nand_xor;
 	u32			corr_stat_threshold;
 	u32			flash_dma_mode;
+	bool			pio_poll_mode;
 };
 
 struct brcmnand_cfg {
@@ -470,7 +516,7 @@
 	/* Register offsets */
 	if (ctrl->nand_version >= 0x0702)
 		ctrl->reg_offsets = brcmnand_regs_v72;
-	else if (ctrl->nand_version >= 0x0701)
+	else if (ctrl->nand_version == 0x0701)
 		ctrl->reg_offsets = brcmnand_regs_v71;
 	else if (ctrl->nand_version >= 0x0600)
 		ctrl->reg_offsets = brcmnand_regs_v60;
@@ -515,7 +561,7 @@
 	}
 
 	/* Maximum spare area sector size (per 512B) */
-	if (ctrl->nand_version >= 0x0702)
+	if (ctrl->nand_version == 0x0702)
 		ctrl->max_oob = 128;
 	else if (ctrl->nand_version >= 0x0600)
 		ctrl->max_oob = 64;
@@ -546,6 +592,15 @@
 	return 0;
 }
 
+static void brcmnand_flash_dma_revision_init(struct brcmnand_controller *ctrl)
+{
+	/* flash_dma register offsets */
+	if (ctrl->nand_version >= 0x0703)
+		ctrl->flash_dma_offsets = flash_dma_regs_v4;
+	else
+		ctrl->flash_dma_offsets = flash_dma_regs_v1;
+}
+
 static inline u32 brcmnand_read_reg(struct brcmnand_controller *ctrl,
 		enum brcmnand_reg reg)
 {
@@ -588,6 +643,54 @@
 	__raw_writel(val, ctrl->nand_fc + word * 4);
 }
 
+static void brcmnand_clear_ecc_addr(struct brcmnand_controller *ctrl)
+{
+
+	/* Clear error addresses */
+	brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_ADDR, 0);
+	brcmnand_write_reg(ctrl, BRCMNAND_CORR_ADDR, 0);
+	brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_EXT_ADDR, 0);
+	brcmnand_write_reg(ctrl, BRCMNAND_CORR_EXT_ADDR, 0);
+}
+
+static u64 brcmnand_get_uncorrecc_addr(struct brcmnand_controller *ctrl)
+{
+	u64 err_addr;
+
+	err_addr = brcmnand_read_reg(ctrl, BRCMNAND_UNCORR_ADDR);
+	err_addr |= ((u64)(brcmnand_read_reg(ctrl,
+					     BRCMNAND_UNCORR_EXT_ADDR)
+					     & 0xffff) << 32);
+
+	return err_addr;
+}
+
+static u64 brcmnand_get_correcc_addr(struct brcmnand_controller *ctrl)
+{
+	u64 err_addr;
+
+	err_addr = brcmnand_read_reg(ctrl, BRCMNAND_CORR_ADDR);
+	err_addr |= ((u64)(brcmnand_read_reg(ctrl,
+					     BRCMNAND_CORR_EXT_ADDR)
+					     & 0xffff) << 32);
+
+	return err_addr;
+}
+
+static void brcmnand_set_cmd_addr(struct mtd_info *mtd, u64 addr)
+{
+	struct nand_chip *chip =  mtd_to_nand(mtd);
+	struct brcmnand_host *host = nand_get_controller_data(chip);
+	struct brcmnand_controller *ctrl = host->ctrl;
+
+	brcmnand_write_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS,
+			   (host->cs << 16) | ((addr >> 32) & 0xffff));
+	(void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS);
+	brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS,
+			   lower_32_bits(addr));
+	(void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
+}
+
 static inline u16 brcmnand_cs_offset(struct brcmnand_controller *ctrl, int cs,
 				     enum brcmnand_cs_reg reg)
 {
@@ -620,7 +723,7 @@
 	enum brcmnand_reg reg = BRCMNAND_CORR_THRESHOLD;
 	int cs = host->cs;
 
-	if (ctrl->nand_version >= 0x0702)
+	if (ctrl->nand_version == 0x0702)
 		bits = 7;
 	else if (ctrl->nand_version >= 0x0600)
 		bits = 6;
@@ -674,7 +777,7 @@
 
 static inline u32 brcmnand_spare_area_mask(struct brcmnand_controller *ctrl)
 {
-	if (ctrl->nand_version >= 0x0702)
+	if (ctrl->nand_version == 0x0702)
 		return GENMASK(7, 0);
 	else if (ctrl->nand_version >= 0x0600)
 		return GENMASK(6, 0);
@@ -804,39 +907,44 @@
  * Flash DMA
  ***********************************************************************/
 
-enum flash_dma_reg {
-	FLASH_DMA_REVISION		= 0x00,
-	FLASH_DMA_FIRST_DESC		= 0x04,
-	FLASH_DMA_FIRST_DESC_EXT	= 0x08,
-	FLASH_DMA_CTRL			= 0x0c,
-	FLASH_DMA_MODE			= 0x10,
-	FLASH_DMA_STATUS		= 0x14,
-	FLASH_DMA_INTERRUPT_DESC	= 0x18,
-	FLASH_DMA_INTERRUPT_DESC_EXT	= 0x1c,
-	FLASH_DMA_ERROR_STATUS		= 0x20,
-	FLASH_DMA_CURRENT_DESC		= 0x24,
-	FLASH_DMA_CURRENT_DESC_EXT	= 0x28,
-};
-
 static inline bool has_flash_dma(struct brcmnand_controller *ctrl)
 {
 	return ctrl->flash_dma_base;
 }
 
+static inline void disable_ctrl_irqs(struct brcmnand_controller *ctrl)
+{
+	if (ctrl->pio_poll_mode)
+		return;
+
+	if (has_flash_dma(ctrl)) {
+		ctrl->flash_dma_base = 0;
+		disable_irq(ctrl->dma_irq);
+	}
+
+	disable_irq(ctrl->irq);
+	ctrl->pio_poll_mode = true;
+}
+
 static inline bool flash_dma_buf_ok(const void *buf)
 {
 	return buf && !is_vmalloc_addr(buf) &&
 		likely(IS_ALIGNED((uintptr_t)buf, 4));
 }
 
-static inline void flash_dma_writel(struct brcmnand_controller *ctrl, u8 offs,
-				    u32 val)
+static inline void flash_dma_writel(struct brcmnand_controller *ctrl,
+				    enum flash_dma_reg dma_reg, u32 val)
 {
+	u16 offs = ctrl->flash_dma_offsets[dma_reg];
+
 	brcmnand_writel(val, ctrl->flash_dma_base + offs);
 }
 
-static inline u32 flash_dma_readl(struct brcmnand_controller *ctrl, u8 offs)
+static inline u32 flash_dma_readl(struct brcmnand_controller *ctrl,
+				  enum flash_dma_reg dma_reg)
 {
+	u16 offs = ctrl->flash_dma_offsets[dma_reg];
+
 	return brcmnand_readl(ctrl->flash_dma_base + offs);
 }
 
@@ -939,7 +1047,7 @@
 	if (section >= sectors)
 		return -ERANGE;
 
-	oobregion->offset = (section * (sas + 1)) - chip->ecc.bytes;
+	oobregion->offset = ((section + 1) * sas) - chip->ecc.bytes;
 	oobregion->length = chip->ecc.bytes;
 
 	return 0;
@@ -1213,9 +1321,12 @@
 {
 	struct brcmnand_controller *ctrl = host->ctrl;
 	int ret;
+	u64 cmd_addr;
 
-	dev_dbg(ctrl->dev, "send native cmd %d addr_lo 0x%x\n", cmd,
-		brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS));
+	cmd_addr = brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
+
+	dev_dbg(ctrl->dev, "send native cmd %d addr 0x%llx\n", cmd, cmd_addr);
+
 	BUG_ON(ctrl->cmd_pending != 0);
 	ctrl->cmd_pending = cmd;
 
@@ -1231,22 +1342,48 @@
  * NAND MTD API: read/program/erase
  ***********************************************************************/
 
-static void brcmnand_cmd_ctrl(struct mtd_info *mtd, int dat,
-	unsigned int ctrl)
+static void brcmnand_cmd_ctrl(struct nand_chip *chip, int dat,
+			      unsigned int ctrl)
 {
 	/* intentionally left blank */
 }
 
-static int brcmnand_waitfunc(struct mtd_info *mtd, struct nand_chip *this)
+static bool brcmstb_nand_wait_for_completion(struct nand_chip *chip)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
 	struct brcmnand_host *host = nand_get_controller_data(chip);
 	struct brcmnand_controller *ctrl = host->ctrl;
-	unsigned long timeo = msecs_to_jiffies(100);
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	bool err = false;
+	int sts;
+
+	if (mtd->oops_panic_write) {
+		/* switch to interrupt polling and PIO mode */
+		disable_ctrl_irqs(ctrl);
+		sts = bcmnand_ctrl_poll_status(ctrl, NAND_CTRL_RDY,
+					       NAND_CTRL_RDY, 0);
+		err = (sts < 0) ? true : false;
+	} else {
+		unsigned long timeo = msecs_to_jiffies(
+						NAND_POLL_STATUS_TIMEOUT_MS);
+		/* wait for completion interrupt */
+		sts = wait_for_completion_timeout(&ctrl->done, timeo);
+		err = (sts <= 0) ? true : false;
+	}
+
+	return err;
+}
+
+static int brcmnand_waitfunc(struct nand_chip *chip)
+{
+	struct brcmnand_host *host = nand_get_controller_data(chip);
+	struct brcmnand_controller *ctrl = host->ctrl;
+	bool err = false;
 
 	dev_dbg(ctrl->dev, "wait on native cmd %d\n", ctrl->cmd_pending);
-	if (ctrl->cmd_pending &&
-			wait_for_completion_timeout(&ctrl->done, timeo) <= 0) {
+	if (ctrl->cmd_pending)
+		err = brcmstb_nand_wait_for_completion(chip);
+
+	if (err) {
 		u32 cmd = brcmnand_read_reg(ctrl, BRCMNAND_CMD_START)
 					>> brcmnand_cmd_shift(ctrl);
 
@@ -1274,7 +1411,6 @@
 				 enum brcmnand_llop_type type, u32 data,
 				 bool last_op)
 {
-	struct mtd_info *mtd = nand_to_mtd(&host->chip);
 	struct nand_chip *chip = &host->chip;
 	struct brcmnand_controller *ctrl = host->ctrl;
 	u32 tmp;
@@ -1307,13 +1443,13 @@
 	(void)brcmnand_read_reg(ctrl, BRCMNAND_LL_OP);
 
 	brcmnand_send_cmd(host, CMD_LOW_LEVEL_OP);
-	return brcmnand_waitfunc(mtd, chip);
+	return brcmnand_waitfunc(chip);
 }
 
-static void brcmnand_cmdfunc(struct mtd_info *mtd, unsigned command,
+static void brcmnand_cmdfunc(struct nand_chip *chip, unsigned command,
 			     int column, int page_addr)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	struct brcmnand_host *host = nand_get_controller_data(chip);
 	struct brcmnand_controller *ctrl = host->ctrl;
 	u64 addr = (u64)page_addr << chip->page_shift;
@@ -1376,14 +1512,9 @@
 	if (!native_cmd)
 		return;
 
-	brcmnand_write_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS,
-		(host->cs << 16) | ((addr >> 32) & 0xffff));
-	(void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS);
-	brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS, lower_32_bits(addr));
-	(void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
-
+	brcmnand_set_cmd_addr(mtd, addr);
 	brcmnand_send_cmd(host, native_cmd);
-	brcmnand_waitfunc(mtd, chip);
+	brcmnand_waitfunc(chip);
 
 	if (native_cmd == CMD_PARAMETER_READ ||
 			native_cmd == CMD_PARAMETER_CHANGE_COL) {
@@ -1417,9 +1548,8 @@
 		brcmnand_wp(mtd, 1);
 }
 
-static uint8_t brcmnand_read_byte(struct mtd_info *mtd)
+static uint8_t brcmnand_read_byte(struct nand_chip *chip)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
 	struct brcmnand_host *host = nand_get_controller_data(chip);
 	struct brcmnand_controller *ctrl = host->ctrl;
 	uint8_t ret = 0;
@@ -1474,19 +1604,18 @@
 	return ret;
 }
 
-static void brcmnand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
+static void brcmnand_read_buf(struct nand_chip *chip, uint8_t *buf, int len)
 {
 	int i;
 
 	for (i = 0; i < len; i++, buf++)
-		*buf = brcmnand_read_byte(mtd);
+		*buf = brcmnand_read_byte(chip);
 }
 
-static void brcmnand_write_buf(struct mtd_info *mtd, const uint8_t *buf,
-				   int len)
+static void brcmnand_write_buf(struct nand_chip *chip, const uint8_t *buf,
+			       int len)
 {
 	int i;
-	struct nand_chip *chip = mtd_to_nand(mtd);
 	struct brcmnand_host *host = nand_get_controller_data(chip);
 
 	switch (host->last_cmd) {
@@ -1601,23 +1730,13 @@
 	struct brcmnand_controller *ctrl = host->ctrl;
 	int i, j, ret = 0;
 
-	/* Clear error addresses */
-	brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_ADDR, 0);
-	brcmnand_write_reg(ctrl, BRCMNAND_CORR_ADDR, 0);
-	brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_EXT_ADDR, 0);
-	brcmnand_write_reg(ctrl, BRCMNAND_CORR_EXT_ADDR, 0);
-
-	brcmnand_write_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS,
-			(host->cs << 16) | ((addr >> 32) & 0xffff));
-	(void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS);
+	brcmnand_clear_ecc_addr(ctrl);
 
 	for (i = 0; i < trans; i++, addr += FC_BYTES) {
-		brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS,
-				   lower_32_bits(addr));
-		(void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
+		brcmnand_set_cmd_addr(mtd, addr);
 		/* SPARE_AREA_READ does not use ECC, so just use PAGE_READ */
 		brcmnand_send_cmd(host, CMD_PAGE_READ);
-		brcmnand_waitfunc(mtd, chip);
+		brcmnand_waitfunc(chip);
 
 		if (likely(buf)) {
 			brcmnand_soc_data_bus_prepare(ctrl->soc, false);
@@ -1634,21 +1753,15 @@
 					host->hwcfg.sector_size_1k);
 
 		if (!ret) {
-			*err_addr = brcmnand_read_reg(ctrl,
-					BRCMNAND_UNCORR_ADDR) |
-				((u64)(brcmnand_read_reg(ctrl,
-						BRCMNAND_UNCORR_EXT_ADDR)
-					& 0xffff) << 32);
+			*err_addr = brcmnand_get_uncorrecc_addr(ctrl);
+
 			if (*err_addr)
 				ret = -EBADMSG;
 		}
 
 		if (!ret) {
-			*err_addr = brcmnand_read_reg(ctrl,
-					BRCMNAND_CORR_ADDR) |
-				((u64)(brcmnand_read_reg(ctrl,
-						BRCMNAND_CORR_EXT_ADDR)
-					& 0xffff) << 32);
+			*err_addr = brcmnand_get_correcc_addr(ctrl);
+
 			if (*err_addr)
 				ret = -EUCLEAN;
 		}
@@ -1679,22 +1792,22 @@
 	int bitflips = 0;
 	int page = addr >> chip->page_shift;
 	int ret;
+	void *ecc_chunk;
 
-	if (!buf) {
-		buf = chip->data_buf;
-		/* Invalidate page cache */
-		chip->pagebuf = -1;
-	}
+	if (!buf)
+		buf = nand_get_data_buf(chip);
 
 	sas = mtd->oobsize / chip->ecc.steps;
 
 	/* read without ecc for verification */
-	ret = chip->ecc.read_page_raw(mtd, chip, buf, true, page);
+	ret = chip->ecc.read_page_raw(chip, buf, true, page);
 	if (ret)
 		return ret;
 
 	for (i = 0; i < chip->ecc.steps; i++, oob += sas) {
-		ret = nand_check_erased_ecc_chunk(buf, chip->ecc.size,
+		ecc_chunk = buf + chip->ecc.size * i;
+		ret = nand_check_erased_ecc_chunk(ecc_chunk,
+						  chip->ecc.size,
 						  oob, sas, NULL, 0,
 						  chip->ecc.strength);
 		if (ret < 0)
@@ -1718,7 +1831,7 @@
 	dev_dbg(ctrl->dev, "read %llx -> %p\n", (unsigned long long)addr, buf);
 
 try_dmaread:
-	brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_COUNT, 0);
+	brcmnand_clear_ecc_addr(ctrl);
 
 	if (has_flash_dma(ctrl) && !oob && flash_dma_buf_ok(buf)) {
 		err = brcmnand_dma_trans(host, addr, buf, trans * FC_BYTES,
@@ -1786,9 +1899,10 @@
 	return 0;
 }
 
-static int brcmnand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
-			      uint8_t *buf, int oob_required, int page)
+static int brcmnand_read_page(struct nand_chip *chip, uint8_t *buf,
+			      int oob_required, int page)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	struct brcmnand_host *host = nand_get_controller_data(chip);
 	u8 *oob = oob_required ? (u8 *)chip->oob_poi : NULL;
 
@@ -1798,10 +1912,11 @@
 			mtd->writesize >> FC_SHIFT, (u32 *)buf, oob);
 }
 
-static int brcmnand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
-				  uint8_t *buf, int oob_required, int page)
+static int brcmnand_read_page_raw(struct nand_chip *chip, uint8_t *buf,
+				  int oob_required, int page)
 {
 	struct brcmnand_host *host = nand_get_controller_data(chip);
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	u8 *oob = oob_required ? (u8 *)chip->oob_poi : NULL;
 	int ret;
 
@@ -1814,17 +1929,18 @@
 	return ret;
 }
 
-static int brcmnand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
-			     int page)
+static int brcmnand_read_oob(struct nand_chip *chip, int page)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
+
 	return brcmnand_read(mtd, chip, (u64)page << chip->page_shift,
 			mtd->writesize >> FC_SHIFT,
 			NULL, (u8 *)chip->oob_poi);
 }
 
-static int brcmnand_read_oob_raw(struct mtd_info *mtd, struct nand_chip *chip,
-				 int page)
+static int brcmnand_read_oob_raw(struct nand_chip *chip, int page)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	struct brcmnand_host *host = nand_get_controller_data(chip);
 
 	brcmnand_set_ecc_enabled(host, 0);
@@ -1862,15 +1978,9 @@
 		goto out;
 	}
 
-	brcmnand_write_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS,
-			(host->cs << 16) | ((addr >> 32) & 0xffff));
-	(void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS);
-
 	for (i = 0; i < trans; i++, addr += FC_BYTES) {
 		/* full address MUST be set before populating FC */
-		brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS,
-				   lower_32_bits(addr));
-		(void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
+		brcmnand_set_cmd_addr(mtd, addr);
 
 		if (buf) {
 			brcmnand_soc_data_bus_prepare(ctrl->soc, false);
@@ -1892,7 +2002,7 @@
 
 		/* we cannot use SPARE_AREA_PROGRAM when PARTIAL_PAGE_EN=0 */
 		brcmnand_send_cmd(host, CMD_PROGRAM_PAGE);
-		status = brcmnand_waitfunc(mtd, chip);
+		status = brcmnand_waitfunc(chip);
 
 		if (status & NAND_STATUS_FAIL) {
 			dev_info(ctrl->dev, "program failed at %llx\n",
@@ -1906,9 +2016,10 @@
 	return ret;
 }
 
-static int brcmnand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
-			       const uint8_t *buf, int oob_required, int page)
+static int brcmnand_write_page(struct nand_chip *chip, const uint8_t *buf,
+			       int oob_required, int page)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	struct brcmnand_host *host = nand_get_controller_data(chip);
 	void *oob = oob_required ? chip->oob_poi : NULL;
 
@@ -1918,10 +2029,10 @@
 	return nand_prog_page_end_op(chip);
 }
 
-static int brcmnand_write_page_raw(struct mtd_info *mtd,
-				   struct nand_chip *chip, const uint8_t *buf,
+static int brcmnand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
 				   int oob_required, int page)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	struct brcmnand_host *host = nand_get_controller_data(chip);
 	void *oob = oob_required ? chip->oob_poi : NULL;
 
@@ -1933,16 +2044,16 @@
 	return nand_prog_page_end_op(chip);
 }
 
-static int brcmnand_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
-				  int page)
+static int brcmnand_write_oob(struct nand_chip *chip, int page)
 {
-	return brcmnand_write(mtd, chip, (u64)page << chip->page_shift,
-				  NULL, chip->oob_poi);
+	return brcmnand_write(nand_to_mtd(chip), chip,
+			      (u64)page << chip->page_shift, NULL,
+			      chip->oob_poi);
 }
 
-static int brcmnand_write_oob_raw(struct mtd_info *mtd, struct nand_chip *chip,
-				  int page)
+static int brcmnand_write_oob_raw(struct nand_chip *chip, int page)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	struct brcmnand_host *host = nand_get_controller_data(chip);
 	int ret;
 
@@ -2147,6 +2258,17 @@
 		return -EINVAL;
 	}
 
+	if (chip->ecc.mode != NAND_ECC_NONE &&
+	    (!chip->ecc.size || !chip->ecc.strength)) {
+		if (chip->base.eccreq.step_size && chip->base.eccreq.strength) {
+			/* use detected ECC parameters */
+			chip->ecc.size = chip->base.eccreq.step_size;
+			chip->ecc.strength = chip->base.eccreq.strength;
+			dev_info(ctrl->dev, "Using ECC step-size %d, strength %d\n",
+				chip->ecc.size, chip->ecc.strength);
+		}
+	}
+
 	switch (chip->ecc.size) {
 	case 512:
 		if (chip->ecc.algo == NAND_ECC_HAMMING)
@@ -2270,15 +2392,12 @@
 	mtd->owner = THIS_MODULE;
 	mtd->dev.parent = &pdev->dev;
 
-	chip->IO_ADDR_R = (void __iomem *)0xdeadbeef;
-	chip->IO_ADDR_W = (void __iomem *)0xdeadbeef;
-
-	chip->cmd_ctrl = brcmnand_cmd_ctrl;
-	chip->cmdfunc = brcmnand_cmdfunc;
-	chip->waitfunc = brcmnand_waitfunc;
-	chip->read_byte = brcmnand_read_byte;
-	chip->read_buf = brcmnand_read_buf;
-	chip->write_buf = brcmnand_write_buf;
+	chip->legacy.cmd_ctrl = brcmnand_cmd_ctrl;
+	chip->legacy.cmdfunc = brcmnand_cmdfunc;
+	chip->legacy.waitfunc = brcmnand_waitfunc;
+	chip->legacy.read_byte = brcmnand_read_byte;
+	chip->legacy.read_buf = brcmnand_read_buf;
+	chip->legacy.write_buf = brcmnand_write_buf;
 
 	chip->ecc.mode = NAND_ECC_HW;
 	chip->ecc.read_page = brcmnand_read_page;
@@ -2301,7 +2420,7 @@
 	nand_writereg(ctrl, cfg_offs,
 		      nand_readreg(ctrl, cfg_offs) & ~CFG_BUS_WIDTH);
 
-	ret = nand_scan(mtd, 1);
+	ret = nand_scan(chip, 1);
 	if (ret)
 		return ret;
 
@@ -2409,6 +2528,7 @@
 	{ .compatible = "brcm,brcmnand-v7.0" },
 	{ .compatible = "brcm,brcmnand-v7.1" },
 	{ .compatible = "brcm,brcmnand-v7.2" },
+	{ .compatible = "brcm,brcmnand-v7.3" },
 	{},
 };
 MODULE_DEVICE_TABLE(of, brcmnand_of_match);
@@ -2495,7 +2615,11 @@
 			goto err;
 		}
 
-		flash_dma_writel(ctrl, FLASH_DMA_MODE, 1); /* linked-list */
+		/* initialize the dma version */
+		brcmnand_flash_dma_revision_init(ctrl);
+
+		/* linked-list and stop on error */
+		flash_dma_writel(ctrl, FLASH_DMA_MODE, FLASH_DMA_MODE_MASK);
 		flash_dma_writel(ctrl, FLASH_DMA_ERROR_STATUS, 0);
 
 		/* Allocate descriptor(s) */
@@ -2616,7 +2740,7 @@
 	struct brcmnand_host *host;
 
 	list_for_each_entry(host, &ctrl->host_list, node)
-		nand_release(nand_to_mtd(&host->chip));
+		nand_release(&host->chip);
 
 	clk_disable_unprepare(ctrl->clk);
 
diff --git a/drivers/mtd/nand/raw/brcmnand/brcmnand.h b/drivers/mtd/nand/raw/brcmnand/brcmnand.h
index 5c44cd4..eb498fb 100644
--- a/drivers/mtd/nand/raw/brcmnand/brcmnand.h
+++ b/drivers/mtd/nand/raw/brcmnand/brcmnand.h
@@ -1,14 +1,6 @@
+/* SPDX-License-Identifier: GPL-2.0-only */
 /*
  * Copyright © 2015 Broadcom Corporation
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
  */
 
 #ifndef __BRCMNAND_H__
diff --git a/drivers/mtd/nand/raw/brcmnand/brcmstb_nand.c b/drivers/mtd/nand/raw/brcmnand/brcmstb_nand.c
index 489af7b..950923d 100644
--- a/drivers/mtd/nand/raw/brcmnand/brcmstb_nand.c
+++ b/drivers/mtd/nand/raw/brcmnand/brcmstb_nand.c
@@ -1,14 +1,6 @@
+// SPDX-License-Identifier: GPL-2.0-only
 /*
  * Copyright © 2015 Broadcom Corporation
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
  */
 
 #include <linux/device.h>
diff --git a/drivers/mtd/nand/raw/brcmnand/iproc_nand.c b/drivers/mtd/nand/raw/brcmnand/iproc_nand.c
index 4c6ae11..d329508 100644
--- a/drivers/mtd/nand/raw/brcmnand/iproc_nand.c
+++ b/drivers/mtd/nand/raw/brcmnand/iproc_nand.c
@@ -1,14 +1,6 @@
+// SPDX-License-Identifier: GPL-2.0-only
 /*
  * Copyright © 2015 Broadcom Corporation
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
  */
 
 #include <linux/device.h>
diff --git a/drivers/mtd/nand/raw/cafe_nand.c b/drivers/mtd/nand/raw/cafe_nand.c
index 1dbe43a..2d1c22d 100644
--- a/drivers/mtd/nand/raw/cafe_nand.c
+++ b/drivers/mtd/nand/raw/cafe_nand.c
@@ -1,3 +1,4 @@
+// SPDX-License-Identifier: GPL-2.0-only
 /*
  * Driver for One Laptop Per Child ‘CAFÉ’ controller, aka Marvell 88ALP01
  *
@@ -100,9 +101,8 @@
 #define cafe_readl(cafe, addr)			readl((cafe)->mmio + CAFE_##addr)
 #define cafe_writel(cafe, datum, addr)		writel(datum, (cafe)->mmio + CAFE_##addr)
 
-static int cafe_device_ready(struct mtd_info *mtd)
+static int cafe_device_ready(struct nand_chip *chip)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
 	struct cafe_priv *cafe = nand_get_controller_data(chip);
 	int result = !!(cafe_readl(cafe, NAND_STATUS) & 0x40000000);
 	uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
@@ -117,9 +117,8 @@
 }
 
 
-static void cafe_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
+static void cafe_write_buf(struct nand_chip *chip, const uint8_t *buf, int len)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
 	struct cafe_priv *cafe = nand_get_controller_data(chip);
 
 	if (cafe->usedma)
@@ -133,9 +132,8 @@
 		len, cafe->datalen);
 }
 
-static void cafe_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
+static void cafe_read_buf(struct nand_chip *chip, uint8_t *buf, int len)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
 	struct cafe_priv *cafe = nand_get_controller_data(chip);
 
 	if (cafe->usedma)
@@ -148,22 +146,21 @@
 	cafe->datalen += len;
 }
 
-static uint8_t cafe_read_byte(struct mtd_info *mtd)
+static uint8_t cafe_read_byte(struct nand_chip *chip)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
 	struct cafe_priv *cafe = nand_get_controller_data(chip);
 	uint8_t d;
 
-	cafe_read_buf(mtd, &d, 1);
+	cafe_read_buf(chip, &d, 1);
 	cafe_dev_dbg(&cafe->pdev->dev, "Read %02x\n", d);
 
 	return d;
 }
 
-static void cafe_nand_cmdfunc(struct mtd_info *mtd, unsigned command,
+static void cafe_nand_cmdfunc(struct nand_chip *chip, unsigned command,
 			      int column, int page_addr)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	struct cafe_priv *cafe = nand_get_controller_data(chip);
 	int adrbytes = 0;
 	uint32_t ctl1;
@@ -313,13 +310,12 @@
 		cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
 		return;
 	}
-	nand_wait_ready(mtd);
+	nand_wait_ready(chip);
 	cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
 }
 
-static void cafe_select_chip(struct mtd_info *mtd, int chipnr)
+static void cafe_select_chip(struct nand_chip *chip, int chipnr)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
 	struct cafe_priv *cafe = nand_get_controller_data(chip);
 
 	cafe_dev_dbg(&cafe->pdev->dev, "select_chip %d\n", chipnr);
@@ -346,17 +342,19 @@
 	return IRQ_HANDLED;
 }
 
-static int cafe_nand_write_oob(struct mtd_info *mtd,
-			       struct nand_chip *chip, int page)
+static int cafe_nand_write_oob(struct nand_chip *chip, int page)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
+
 	return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi,
 				 mtd->oobsize);
 }
 
 /* Don't use -- use nand_read_oob_std for now */
-static int cafe_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
-			      int page)
+static int cafe_nand_read_oob(struct nand_chip *chip, int page)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
+
 	return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
 }
 /**
@@ -369,9 +367,10 @@
  * The hw generator calculates the error syndrome automatically. Therefore
  * we need a special oob layout and handling.
  */
-static int cafe_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
-			       uint8_t *buf, int oob_required, int page)
+static int cafe_nand_read_page(struct nand_chip *chip, uint8_t *buf,
+			       int oob_required, int page)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	struct cafe_priv *cafe = nand_get_controller_data(chip);
 	unsigned int max_bitflips = 0;
 
@@ -380,7 +379,7 @@
 		     cafe_readl(cafe, NAND_ECC_SYN01));
 
 	nand_read_page_op(chip, page, 0, buf, mtd->writesize);
-	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
+	chip->legacy.read_buf(chip, chip->oob_poi, mtd->oobsize);
 
 	if (checkecc && cafe_readl(cafe, NAND_ECC_RESULT) & (1<<18)) {
 		unsigned short syn[8], pat[4];
@@ -531,15 +530,15 @@
 };
 
 
-static int cafe_nand_write_page_lowlevel(struct mtd_info *mtd,
-					  struct nand_chip *chip,
-					  const uint8_t *buf, int oob_required,
-					  int page)
+static int cafe_nand_write_page_lowlevel(struct nand_chip *chip,
+					 const uint8_t *buf, int oob_required,
+					 int page)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	struct cafe_priv *cafe = nand_get_controller_data(chip);
 
 	nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
-	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
+	chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize);
 
 	/* Set up ECC autogeneration */
 	cafe->ctl2 |= (1<<30);
@@ -547,7 +546,7 @@
 	return nand_prog_page_end_op(chip);
 }
 
-static int cafe_nand_block_bad(struct mtd_info *mtd, loff_t ofs)
+static int cafe_nand_block_bad(struct nand_chip *chip, loff_t ofs)
 {
 	return 0;
 }
@@ -705,23 +704,23 @@
 		goto out_ior;
 	}
 
-	cafe->nand.cmdfunc = cafe_nand_cmdfunc;
-	cafe->nand.dev_ready = cafe_device_ready;
-	cafe->nand.read_byte = cafe_read_byte;
-	cafe->nand.read_buf = cafe_read_buf;
-	cafe->nand.write_buf = cafe_write_buf;
-	cafe->nand.select_chip = cafe_select_chip;
-	cafe->nand.set_features = nand_get_set_features_notsupp;
-	cafe->nand.get_features = nand_get_set_features_notsupp;
+	cafe->nand.legacy.cmdfunc = cafe_nand_cmdfunc;
+	cafe->nand.legacy.dev_ready = cafe_device_ready;
+	cafe->nand.legacy.read_byte = cafe_read_byte;
+	cafe->nand.legacy.read_buf = cafe_read_buf;
+	cafe->nand.legacy.write_buf = cafe_write_buf;
+	cafe->nand.legacy.select_chip = cafe_select_chip;
+	cafe->nand.legacy.set_features = nand_get_set_features_notsupp;
+	cafe->nand.legacy.get_features = nand_get_set_features_notsupp;
 
-	cafe->nand.chip_delay = 0;
+	cafe->nand.legacy.chip_delay = 0;
 
 	/* Enable the following for a flash based bad block table */
 	cafe->nand.bbt_options = NAND_BBT_USE_FLASH;
 
 	if (skipbbt) {
 		cafe->nand.options |= NAND_SKIP_BBTSCAN;
-		cafe->nand.block_bad = cafe_nand_block_bad;
+		cafe->nand.legacy.block_bad = cafe_nand_block_bad;
 	}
 
 	if (numtimings && numtimings != 3) {
@@ -782,8 +781,8 @@
 	cafe->usedma = 0;
 
 	/* Scan to find existence of the device */
-	cafe->nand.dummy_controller.ops = &cafe_nand_controller_ops;
-	err = nand_scan(mtd, 2);
+	cafe->nand.legacy.dummy_controller.ops = &cafe_nand_controller_ops;
+	err = nand_scan(&cafe->nand, 2);
 	if (err)
 		goto out_irq;
 
@@ -819,7 +818,7 @@
 	/* Disable NAND IRQ in global IRQ mask register */
 	cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
 	free_irq(pdev->irq, mtd);
-	nand_release(mtd);
+	nand_release(chip);
 	free_rs(cafe->rs);
 	pci_iounmap(pdev, cafe->mmio);
 	dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
diff --git a/drivers/mtd/nand/raw/cmx270_nand.c b/drivers/mtd/nand/raw/cmx270_nand.c
index b66e254..045b617 100644
--- a/drivers/mtd/nand/raw/cmx270_nand.c
+++ b/drivers/mtd/nand/raw/cmx270_nand.c
@@ -1,3 +1,4 @@
+// SPDX-License-Identifier: GPL-2.0-only
 /*
  *  Copyright (C) 2006 Compulab, Ltd.
  *  Mike Rapoport <mike@compulab.co.il>
@@ -6,11 +7,6 @@
  *       Copyright (C) 2002 Marius Gröger (mag@sysgo.de)
  *       Copyright (c) 2001 Thomas Gleixner (gleixner@autronix.de)
  *
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
- *
  *  Overview:
  *   This is a device driver for the NAND flash device found on the
  *   CM-X270 board.
@@ -49,29 +45,26 @@
 };
 #define NUM_PARTITIONS (ARRAY_SIZE(partition_info))
 
-static u_char cmx270_read_byte(struct mtd_info *mtd)
+static u_char cmx270_read_byte(struct nand_chip *this)
 {
-	struct nand_chip *this = mtd_to_nand(mtd);
-
-	return (readl(this->IO_ADDR_R) >> 16);
+	return (readl(this->legacy.IO_ADDR_R) >> 16);
 }
 
-static void cmx270_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
+static void cmx270_write_buf(struct nand_chip *this, const u_char *buf,
+			     int len)
 {
 	int i;
-	struct nand_chip *this = mtd_to_nand(mtd);
 
 	for (i=0; i<len; i++)
-		writel((*buf++ << 16), this->IO_ADDR_W);
+		writel((*buf++ << 16), this->legacy.IO_ADDR_W);
 }
 
-static void cmx270_read_buf(struct mtd_info *mtd, u_char *buf, int len)
+static void cmx270_read_buf(struct nand_chip *this, u_char *buf, int len)
 {
 	int i;
-	struct nand_chip *this = mtd_to_nand(mtd);
 
 	for (i=0; i<len; i++)
-		*buf++ = readl(this->IO_ADDR_R) >> 16;
+		*buf++ = readl(this->legacy.IO_ADDR_R) >> 16;
 }
 
 static inline void nand_cs_on(void)
@@ -89,11 +82,10 @@
 /*
  *	hardware specific access to control-lines
  */
-static void cmx270_hwcontrol(struct mtd_info *mtd, int dat,
+static void cmx270_hwcontrol(struct nand_chip *this, int dat,
 			     unsigned int ctrl)
 {
-	struct nand_chip *this = mtd_to_nand(mtd);
-	unsigned int nandaddr = (unsigned int)this->IO_ADDR_W;
+	unsigned int nandaddr = (unsigned int)this->legacy.IO_ADDR_W;
 
 	dsb();
 
@@ -113,9 +105,9 @@
 	}
 
 	dsb();
-	this->IO_ADDR_W = (void __iomem*)nandaddr;
+	this->legacy.IO_ADDR_W = (void __iomem*)nandaddr;
 	if (dat != NAND_CMD_NONE)
-		writel((dat << 16), this->IO_ADDR_W);
+		writel((dat << 16), this->legacy.IO_ADDR_W);
 
 	dsb();
 }
@@ -123,7 +115,7 @@
 /*
  *	read device ready pin
  */
-static int cmx270_device_ready(struct mtd_info *mtd)
+static int cmx270_device_ready(struct nand_chip *this)
 {
 	dsb();
 
@@ -177,23 +169,23 @@
 	cmx270_nand_mtd->owner = THIS_MODULE;
 
 	/* insert callbacks */
-	this->IO_ADDR_R = cmx270_nand_io;
-	this->IO_ADDR_W = cmx270_nand_io;
-	this->cmd_ctrl = cmx270_hwcontrol;
-	this->dev_ready = cmx270_device_ready;
+	this->legacy.IO_ADDR_R = cmx270_nand_io;
+	this->legacy.IO_ADDR_W = cmx270_nand_io;
+	this->legacy.cmd_ctrl = cmx270_hwcontrol;
+	this->legacy.dev_ready = cmx270_device_ready;
 
 	/* 15 us command delay time */
-	this->chip_delay = 20;
+	this->legacy.chip_delay = 20;
 	this->ecc.mode = NAND_ECC_SOFT;
 	this->ecc.algo = NAND_ECC_HAMMING;
 
 	/* read/write functions */
-	this->read_byte = cmx270_read_byte;
-	this->read_buf = cmx270_read_buf;
-	this->write_buf = cmx270_write_buf;
+	this->legacy.read_byte = cmx270_read_byte;
+	this->legacy.read_buf = cmx270_read_buf;
+	this->legacy.write_buf = cmx270_write_buf;
 
 	/* Scan to find existence of the device */
-	ret = nand_scan(cmx270_nand_mtd, 1);
+	ret = nand_scan(this, 1);
 	if (ret) {
 		pr_notice("No NAND device\n");
 		goto err_scan;
@@ -228,7 +220,7 @@
 static void __exit cmx270_cleanup(void)
 {
 	/* Release resources, unregister device */
-	nand_release(cmx270_nand_mtd);
+	nand_release(mtd_to_nand(cmx270_nand_mtd));
 
 	gpio_free(GPIO_NAND_RB);
 	gpio_free(GPIO_NAND_CS);
diff --git a/drivers/mtd/nand/raw/cs553x_nand.c b/drivers/mtd/nand/raw/cs553x_nand.c
index beafad6..e2322ce 100644
--- a/drivers/mtd/nand/raw/cs553x_nand.c
+++ b/drivers/mtd/nand/raw/cs553x_nand.c
@@ -1,19 +1,15 @@
+// SPDX-License-Identifier: GPL-2.0-only
 /*
  * (C) 2005, 2006 Red Hat Inc.
  *
  * Author: David Woodhouse <dwmw2@infradead.org>
  *	   Tom Sylla <tom.sylla@amd.com>
  *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
- *
  *  Overview:
  *   This is a device driver for the NAND flash controller found on
  *   the AMD CS5535/CS5536 companion chipsets for the Geode processor.
  *   mtd-id for command line partitioning is cs553x_nand_cs[0-3]
  *   where 0-3 reflects the chip select for NAND.
- *
  */
 
 #include <linux/kernel.h>
@@ -93,83 +89,74 @@
 #define CS_NAND_ECC_CLRECC	(1<<1)
 #define CS_NAND_ECC_ENECC	(1<<0)
 
-static void cs553x_read_buf(struct mtd_info *mtd, u_char *buf, int len)
+static void cs553x_read_buf(struct nand_chip *this, u_char *buf, int len)
 {
-	struct nand_chip *this = mtd_to_nand(mtd);
-
 	while (unlikely(len > 0x800)) {
-		memcpy_fromio(buf, this->IO_ADDR_R, 0x800);
+		memcpy_fromio(buf, this->legacy.IO_ADDR_R, 0x800);
 		buf += 0x800;
 		len -= 0x800;
 	}
-	memcpy_fromio(buf, this->IO_ADDR_R, len);
+	memcpy_fromio(buf, this->legacy.IO_ADDR_R, len);
 }
 
-static void cs553x_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
+static void cs553x_write_buf(struct nand_chip *this, const u_char *buf, int len)
 {
-	struct nand_chip *this = mtd_to_nand(mtd);
-
 	while (unlikely(len > 0x800)) {
-		memcpy_toio(this->IO_ADDR_R, buf, 0x800);
+		memcpy_toio(this->legacy.IO_ADDR_R, buf, 0x800);
 		buf += 0x800;
 		len -= 0x800;
 	}
-	memcpy_toio(this->IO_ADDR_R, buf, len);
+	memcpy_toio(this->legacy.IO_ADDR_R, buf, len);
 }
 
-static unsigned char cs553x_read_byte(struct mtd_info *mtd)
+static unsigned char cs553x_read_byte(struct nand_chip *this)
 {
-	struct nand_chip *this = mtd_to_nand(mtd);
-	return readb(this->IO_ADDR_R);
+	return readb(this->legacy.IO_ADDR_R);
 }
 
-static void cs553x_write_byte(struct mtd_info *mtd, u_char byte)
+static void cs553x_write_byte(struct nand_chip *this, u_char byte)
 {
-	struct nand_chip *this = mtd_to_nand(mtd);
 	int i = 100000;
 
-	while (i && readb(this->IO_ADDR_R + MM_NAND_STS) & CS_NAND_CTLR_BUSY) {
+	while (i && readb(this->legacy.IO_ADDR_R + MM_NAND_STS) & CS_NAND_CTLR_BUSY) {
 		udelay(1);
 		i--;
 	}
-	writeb(byte, this->IO_ADDR_W + 0x801);
+	writeb(byte, this->legacy.IO_ADDR_W + 0x801);
 }
 
-static void cs553x_hwcontrol(struct mtd_info *mtd, int cmd,
+static void cs553x_hwcontrol(struct nand_chip *this, int cmd,
 			     unsigned int ctrl)
 {
-	struct nand_chip *this = mtd_to_nand(mtd);
-	void __iomem *mmio_base = this->IO_ADDR_R;
+	void __iomem *mmio_base = this->legacy.IO_ADDR_R;
 	if (ctrl & NAND_CTRL_CHANGE) {
 		unsigned char ctl = (ctrl & ~NAND_CTRL_CHANGE ) ^ 0x01;
 		writeb(ctl, mmio_base + MM_NAND_CTL);
 	}
 	if (cmd != NAND_CMD_NONE)
-		cs553x_write_byte(mtd, cmd);
+		cs553x_write_byte(this, cmd);
 }
 
-static int cs553x_device_ready(struct mtd_info *mtd)
+static int cs553x_device_ready(struct nand_chip *this)
 {
-	struct nand_chip *this = mtd_to_nand(mtd);
-	void __iomem *mmio_base = this->IO_ADDR_R;
+	void __iomem *mmio_base = this->legacy.IO_ADDR_R;
 	unsigned char foo = readb(mmio_base + MM_NAND_STS);
 
 	return (foo & CS_NAND_STS_FLASH_RDY) && !(foo & CS_NAND_CTLR_BUSY);
 }
 
-static void cs_enable_hwecc(struct mtd_info *mtd, int mode)
+static void cs_enable_hwecc(struct nand_chip *this, int mode)
 {
-	struct nand_chip *this = mtd_to_nand(mtd);
-	void __iomem *mmio_base = this->IO_ADDR_R;
+	void __iomem *mmio_base = this->legacy.IO_ADDR_R;
 
 	writeb(0x07, mmio_base + MM_NAND_ECC_CTL);
 }
 
-static int cs_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
+static int cs_calculate_ecc(struct nand_chip *this, const u_char *dat,
+			    u_char *ecc_code)
 {
 	uint32_t ecc;
-	struct nand_chip *this = mtd_to_nand(mtd);
-	void __iomem *mmio_base = this->IO_ADDR_R;
+	void __iomem *mmio_base = this->legacy.IO_ADDR_R;
 
 	ecc = readl(mmio_base + MM_NAND_STS);
 
@@ -208,20 +195,20 @@
 	new_mtd->owner = THIS_MODULE;
 
 	/* map physical address */
-	this->IO_ADDR_R = this->IO_ADDR_W = ioremap(adr, 4096);
-	if (!this->IO_ADDR_R) {
+	this->legacy.IO_ADDR_R = this->legacy.IO_ADDR_W = ioremap(adr, 4096);
+	if (!this->legacy.IO_ADDR_R) {
 		pr_warn("ioremap cs553x NAND @0x%08lx failed\n", adr);
 		err = -EIO;
 		goto out_mtd;
 	}
 
-	this->cmd_ctrl = cs553x_hwcontrol;
-	this->dev_ready = cs553x_device_ready;
-	this->read_byte = cs553x_read_byte;
-	this->read_buf = cs553x_read_buf;
-	this->write_buf = cs553x_write_buf;
+	this->legacy.cmd_ctrl = cs553x_hwcontrol;
+	this->legacy.dev_ready = cs553x_device_ready;
+	this->legacy.read_byte = cs553x_read_byte;
+	this->legacy.read_buf = cs553x_read_buf;
+	this->legacy.write_buf = cs553x_write_buf;
 
-	this->chip_delay = 0;
+	this->legacy.chip_delay = 0;
 
 	this->ecc.mode = NAND_ECC_HW;
 	this->ecc.size = 256;
@@ -241,7 +228,7 @@
 	}
 
 	/* Scan to find existence of the device */
-	err = nand_scan(new_mtd, 1);
+	err = nand_scan(this, 1);
 	if (err)
 		goto out_free;
 
@@ -251,7 +238,7 @@
 out_free:
 	kfree(new_mtd->name);
 out_ior:
-	iounmap(this->IO_ADDR_R);
+	iounmap(this->legacy.IO_ADDR_R);
 out_mtd:
 	kfree(this);
 out:
@@ -333,10 +320,10 @@
 			continue;
 
 		this = mtd_to_nand(mtd);
-		mmio_base = this->IO_ADDR_R;
+		mmio_base = this->legacy.IO_ADDR_R;
 
 		/* Release resources, unregister device */
-		nand_release(mtd);
+		nand_release(this);
 		kfree(mtd->name);
 		cs553x_mtd[i] = NULL;
 
diff --git a/drivers/mtd/nand/raw/davinci_nand.c b/drivers/mtd/nand/raw/davinci_nand.c
index 40145e2..25c185b 100644
--- a/drivers/mtd/nand/raw/davinci_nand.c
+++ b/drivers/mtd/nand/raw/davinci_nand.c
@@ -1,3 +1,4 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
 /*
  * davinci_nand.c - NAND Flash Driver for DaVinci family chips
  *
@@ -7,20 +8,6 @@
  *   Sander Huijsen <Shuijsen@optelecom-nkf.com>
  *   Troy Kisky <troy.kisky@boundarydevices.com>
  *   Dirk Behme <Dirk.Behme@gmail.com>
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  */
 
 #include <linux/kernel.h>
@@ -97,12 +84,11 @@
  * Access to hardware control lines:  ALE, CLE, secondary chipselect.
  */
 
-static void nand_davinci_hwcontrol(struct mtd_info *mtd, int cmd,
+static void nand_davinci_hwcontrol(struct nand_chip *nand, int cmd,
 				   unsigned int ctrl)
 {
-	struct davinci_nand_info	*info = to_davinci_nand(mtd);
+	struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(nand));
 	void __iomem			*addr = info->current_cs;
-	struct nand_chip		*nand = mtd_to_nand(mtd);
 
 	/* Did the control lines change? */
 	if (ctrl & NAND_CTRL_CHANGE) {
@@ -111,16 +97,16 @@
 		else if ((ctrl & NAND_CTRL_ALE) == NAND_CTRL_ALE)
 			addr += info->mask_ale;
 
-		nand->IO_ADDR_W = addr;
+		nand->legacy.IO_ADDR_W = addr;
 	}
 
 	if (cmd != NAND_CMD_NONE)
-		iowrite8(cmd, nand->IO_ADDR_W);
+		iowrite8(cmd, nand->legacy.IO_ADDR_W);
 }
 
-static void nand_davinci_select_chip(struct mtd_info *mtd, int chip)
+static void nand_davinci_select_chip(struct nand_chip *nand, int chip)
 {
-	struct davinci_nand_info	*info = to_davinci_nand(mtd);
+	struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(nand));
 
 	info->current_cs = info->vaddr;
 
@@ -128,8 +114,8 @@
 	if (chip > 0)
 		info->current_cs += info->mask_chipsel;
 
-	info->chip.IO_ADDR_W = info->current_cs;
-	info->chip.IO_ADDR_R = info->chip.IO_ADDR_W;
+	info->chip.legacy.IO_ADDR_W = info->current_cs;
+	info->chip.legacy.IO_ADDR_R = info->chip.legacy.IO_ADDR_W;
 }
 
 /*----------------------------------------------------------------------*/
@@ -146,16 +132,16 @@
 			+ 4 * info->core_chipsel);
 }
 
-static void nand_davinci_hwctl_1bit(struct mtd_info *mtd, int mode)
+static void nand_davinci_hwctl_1bit(struct nand_chip *chip, int mode)
 {
 	struct davinci_nand_info *info;
 	uint32_t nandcfr;
 	unsigned long flags;
 
-	info = to_davinci_nand(mtd);
+	info = to_davinci_nand(nand_to_mtd(chip));
 
 	/* Reset ECC hardware */
-	nand_davinci_readecc_1bit(mtd);
+	nand_davinci_readecc_1bit(nand_to_mtd(chip));
 
 	spin_lock_irqsave(&davinci_nand_lock, flags);
 
@@ -170,10 +156,10 @@
 /*
  * Read hardware ECC value and pack into three bytes
  */
-static int nand_davinci_calculate_1bit(struct mtd_info *mtd,
-				      const u_char *dat, u_char *ecc_code)
+static int nand_davinci_calculate_1bit(struct nand_chip *chip,
+				       const u_char *dat, u_char *ecc_code)
 {
-	unsigned int ecc_val = nand_davinci_readecc_1bit(mtd);
+	unsigned int ecc_val = nand_davinci_readecc_1bit(nand_to_mtd(chip));
 	unsigned int ecc24 = (ecc_val & 0x0fff) | ((ecc_val & 0x0fff0000) >> 4);
 
 	/* invert so that erased block ecc is correct */
@@ -185,10 +171,9 @@
 	return 0;
 }
 
-static int nand_davinci_correct_1bit(struct mtd_info *mtd, u_char *dat,
+static int nand_davinci_correct_1bit(struct nand_chip *chip, u_char *dat,
 				     u_char *read_ecc, u_char *calc_ecc)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
 	uint32_t eccNand = read_ecc[0] | (read_ecc[1] << 8) |
 					  (read_ecc[2] << 16);
 	uint32_t eccCalc = calc_ecc[0] | (calc_ecc[1] << 8) |
@@ -231,9 +216,9 @@
  * OOB without recomputing ECC.
  */
 
-static void nand_davinci_hwctl_4bit(struct mtd_info *mtd, int mode)
+static void nand_davinci_hwctl_4bit(struct nand_chip *chip, int mode)
 {
-	struct davinci_nand_info *info = to_davinci_nand(mtd);
+	struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip));
 	unsigned long flags;
 	u32 val;
 
@@ -266,10 +251,10 @@
 }
 
 /* Terminate read ECC; or return ECC (as bytes) of data written to NAND. */
-static int nand_davinci_calculate_4bit(struct mtd_info *mtd,
-		const u_char *dat, u_char *ecc_code)
+static int nand_davinci_calculate_4bit(struct nand_chip *chip,
+				       const u_char *dat, u_char *ecc_code)
 {
-	struct davinci_nand_info *info = to_davinci_nand(mtd);
+	struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip));
 	u32 raw_ecc[4], *p;
 	unsigned i;
 
@@ -303,11 +288,11 @@
 /* Correct up to 4 bits in data we just read, using state left in the
  * hardware plus the ecc_code computed when it was first written.
  */
-static int nand_davinci_correct_4bit(struct mtd_info *mtd,
-		u_char *data, u_char *ecc_code, u_char *null)
+static int nand_davinci_correct_4bit(struct nand_chip *chip, u_char *data,
+				     u_char *ecc_code, u_char *null)
 {
 	int i;
-	struct davinci_nand_info *info = to_davinci_nand(mtd);
+	struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip));
 	unsigned short ecc10[8];
 	unsigned short *ecc16;
 	u32 syndrome[4];
@@ -436,38 +421,35 @@
  * the two LSBs for NAND access ... so we can issue 32-bit reads/writes
  * and have that transparently morphed into multiple NAND operations.
  */
-static void nand_davinci_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
+static void nand_davinci_read_buf(struct nand_chip *chip, uint8_t *buf,
+				  int len)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
-
 	if ((0x03 & ((uintptr_t)buf)) == 0 && (0x03 & len) == 0)
-		ioread32_rep(chip->IO_ADDR_R, buf, len >> 2);
+		ioread32_rep(chip->legacy.IO_ADDR_R, buf, len >> 2);
 	else if ((0x01 & ((uintptr_t)buf)) == 0 && (0x01 & len) == 0)
-		ioread16_rep(chip->IO_ADDR_R, buf, len >> 1);
+		ioread16_rep(chip->legacy.IO_ADDR_R, buf, len >> 1);
 	else
-		ioread8_rep(chip->IO_ADDR_R, buf, len);
+		ioread8_rep(chip->legacy.IO_ADDR_R, buf, len);
 }
 
-static void nand_davinci_write_buf(struct mtd_info *mtd,
-		const uint8_t *buf, int len)
+static void nand_davinci_write_buf(struct nand_chip *chip, const uint8_t *buf,
+				   int len)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
-
 	if ((0x03 & ((uintptr_t)buf)) == 0 && (0x03 & len) == 0)
-		iowrite32_rep(chip->IO_ADDR_R, buf, len >> 2);
+		iowrite32_rep(chip->legacy.IO_ADDR_R, buf, len >> 2);
 	else if ((0x01 & ((uintptr_t)buf)) == 0 && (0x01 & len) == 0)
-		iowrite16_rep(chip->IO_ADDR_R, buf, len >> 1);
+		iowrite16_rep(chip->legacy.IO_ADDR_R, buf, len >> 1);
 	else
-		iowrite8_rep(chip->IO_ADDR_R, buf, len);
+		iowrite8_rep(chip->legacy.IO_ADDR_R, buf, len);
 }
 
 /*
  * Check hardware register for wait status. Returns 1 if device is ready,
  * 0 if it is still busy.
  */
-static int nand_davinci_dev_ready(struct mtd_info *mtd)
+static int nand_davinci_dev_ready(struct nand_chip *chip)
 {
-	struct davinci_nand_info *info = to_davinci_nand(mtd);
+	struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip));
 
 	return davinci_nand_readl(info, NANDFSR_OFFSET) & BIT(0);
 }
@@ -764,10 +746,10 @@
 	mtd->dev.parent		= &pdev->dev;
 	nand_set_flash_node(&info->chip, pdev->dev.of_node);
 
-	info->chip.IO_ADDR_R	= vaddr;
-	info->chip.IO_ADDR_W	= vaddr;
-	info->chip.chip_delay	= 0;
-	info->chip.select_chip	= nand_davinci_select_chip;
+	info->chip.legacy.IO_ADDR_R	= vaddr;
+	info->chip.legacy.IO_ADDR_W	= vaddr;
+	info->chip.legacy.chip_delay	= 0;
+	info->chip.legacy.select_chip	= nand_davinci_select_chip;
 
 	/* options such as NAND_BBT_USE_FLASH */
 	info->chip.bbt_options	= pdata->bbt_options;
@@ -786,12 +768,12 @@
 	info->mask_cle		= pdata->mask_cle ? : MASK_CLE;
 
 	/* Set address of hardware control function */
-	info->chip.cmd_ctrl	= nand_davinci_hwcontrol;
-	info->chip.dev_ready	= nand_davinci_dev_ready;
+	info->chip.legacy.cmd_ctrl	= nand_davinci_hwcontrol;
+	info->chip.legacy.dev_ready	= nand_davinci_dev_ready;
 
 	/* Speed up buffer I/O */
-	info->chip.read_buf     = nand_davinci_read_buf;
-	info->chip.write_buf    = nand_davinci_write_buf;
+	info->chip.legacy.read_buf     = nand_davinci_read_buf;
+	info->chip.legacy.write_buf    = nand_davinci_write_buf;
 
 	/* Use board-specific ECC config */
 	info->chip.ecc.mode	= pdata->ecc_mode;
@@ -806,8 +788,8 @@
 	spin_unlock_irq(&davinci_nand_lock);
 
 	/* Scan to find existence of the device(s) */
-	info->chip.dummy_controller.ops = &davinci_nand_controller_ops;
-	ret = nand_scan(mtd, pdata->mask_chipsel ? 2 : 1);
+	info->chip.legacy.dummy_controller.ops = &davinci_nand_controller_ops;
+	ret = nand_scan(&info->chip, pdata->mask_chipsel ? 2 : 1);
 	if (ret < 0) {
 		dev_dbg(&pdev->dev, "no NAND chip(s) found\n");
 		return ret;
@@ -841,7 +823,7 @@
 		ecc4_busy = false;
 	spin_unlock_irq(&davinci_nand_lock);
 
-	nand_release(nand_to_mtd(&info->chip));
+	nand_release(&info->chip);
 
 	return 0;
 }
diff --git a/drivers/mtd/nand/raw/denali.c b/drivers/mtd/nand/raw/denali.c
index 2242e99..3102ddb 100644
--- a/drivers/mtd/nand/raw/denali.c
+++ b/drivers/mtd/nand/raw/denali.c
@@ -1,15 +1,10 @@
+// SPDX-License-Identifier: GPL-2.0
 /*
  * NAND Flash Controller Device Driver
  * Copyright © 2009-2010, Intel Corporation and its suppliers.
  *
- * This program is free software; you can redistribute it and/or modify it
- * under the terms and conditions of the GNU General Public License,
- * version 2, as published by the Free Software Foundation.
- *
- * This program is distributed in the hope it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
- * more details.
+ * Copyright (c) 2017-2019 Socionext Inc.
+ *   Reworked by Masahiro Yamada <yamada.masahiro@socionext.com>
  */
 
 #include <linux/bitfield.h>
@@ -25,8 +20,6 @@
 
 #include "denali.h"
 
-MODULE_LICENSE("GPL");
-
 #define DENALI_NAND_NAME    "denali-nand"
 #define DENALI_DEFAULT_OOB_SKIP_BYTES	8
 
@@ -44,17 +37,19 @@
 #define DENALI_MAP11_ADDR	((DENALI_MAP11) | 1)	/* address cycle */
 #define DENALI_MAP11_DATA	((DENALI_MAP11) | 2)	/* data cycle */
 
-/* MAP10 commands */
-#define DENALI_ERASE		0x01
-
 #define DENALI_BANK(denali)	((denali)->active_bank << 24)
 
 #define DENALI_INVALID_BANK	-1
-#define DENALI_NR_BANKS		4
 
-static inline struct denali_nand_info *mtd_to_denali(struct mtd_info *mtd)
+static struct denali_chip *to_denali_chip(struct nand_chip *chip)
 {
-	return container_of(mtd_to_nand(mtd), struct denali_nand_info, nand);
+	return container_of(chip, struct denali_chip, chip);
+}
+
+static struct denali_controller *to_denali_controller(struct nand_chip *chip)
+{
+	return container_of(chip->controller, struct denali_controller,
+			    controller);
 }
 
 /*
@@ -62,12 +57,12 @@
  * type, bank, block, and page address).  The slave data is the actual data to
  * be transferred.  This mode requires 28 bits of address region allocated.
  */
-static u32 denali_direct_read(struct denali_nand_info *denali, u32 addr)
+static u32 denali_direct_read(struct denali_controller *denali, u32 addr)
 {
 	return ioread32(denali->host + addr);
 }
 
-static void denali_direct_write(struct denali_nand_info *denali, u32 addr,
+static void denali_direct_write(struct denali_controller *denali, u32 addr,
 				u32 data)
 {
 	iowrite32(data, denali->host + addr);
@@ -79,77 +74,62 @@
  * control information and transferred data are latched by the registers in
  * the translation module.
  */
-static u32 denali_indexed_read(struct denali_nand_info *denali, u32 addr)
+static u32 denali_indexed_read(struct denali_controller *denali, u32 addr)
 {
 	iowrite32(addr, denali->host + DENALI_INDEXED_CTRL);
 	return ioread32(denali->host + DENALI_INDEXED_DATA);
 }
 
-static void denali_indexed_write(struct denali_nand_info *denali, u32 addr,
+static void denali_indexed_write(struct denali_controller *denali, u32 addr,
 				 u32 data)
 {
 	iowrite32(addr, denali->host + DENALI_INDEXED_CTRL);
 	iowrite32(data, denali->host + DENALI_INDEXED_DATA);
 }
 
-/*
- * Use the configuration feature register to determine the maximum number of
- * banks that the hardware supports.
- */
-static void denali_detect_max_banks(struct denali_nand_info *denali)
-{
-	uint32_t features = ioread32(denali->reg + FEATURES);
-
-	denali->max_banks = 1 << FIELD_GET(FEATURES__N_BANKS, features);
-
-	/* the encoding changed from rev 5.0 to 5.1 */
-	if (denali->revision < 0x0501)
-		denali->max_banks <<= 1;
-}
-
-static void denali_enable_irq(struct denali_nand_info *denali)
+static void denali_enable_irq(struct denali_controller *denali)
 {
 	int i;
 
-	for (i = 0; i < DENALI_NR_BANKS; i++)
+	for (i = 0; i < denali->nbanks; i++)
 		iowrite32(U32_MAX, denali->reg + INTR_EN(i));
 	iowrite32(GLOBAL_INT_EN_FLAG, denali->reg + GLOBAL_INT_ENABLE);
 }
 
-static void denali_disable_irq(struct denali_nand_info *denali)
+static void denali_disable_irq(struct denali_controller *denali)
 {
 	int i;
 
-	for (i = 0; i < DENALI_NR_BANKS; i++)
+	for (i = 0; i < denali->nbanks; i++)
 		iowrite32(0, denali->reg + INTR_EN(i));
 	iowrite32(0, denali->reg + GLOBAL_INT_ENABLE);
 }
 
-static void denali_clear_irq(struct denali_nand_info *denali,
-			     int bank, uint32_t irq_status)
+static void denali_clear_irq(struct denali_controller *denali,
+			     int bank, u32 irq_status)
 {
 	/* write one to clear bits */
 	iowrite32(irq_status, denali->reg + INTR_STATUS(bank));
 }
 
-static void denali_clear_irq_all(struct denali_nand_info *denali)
+static void denali_clear_irq_all(struct denali_controller *denali)
 {
 	int i;
 
-	for (i = 0; i < DENALI_NR_BANKS; i++)
+	for (i = 0; i < denali->nbanks; i++)
 		denali_clear_irq(denali, i, U32_MAX);
 }
 
 static irqreturn_t denali_isr(int irq, void *dev_id)
 {
-	struct denali_nand_info *denali = dev_id;
+	struct denali_controller *denali = dev_id;
 	irqreturn_t ret = IRQ_NONE;
-	uint32_t irq_status;
+	u32 irq_status;
 	int i;
 
 	spin_lock(&denali->irq_lock);
 
-	for (i = 0; i < DENALI_NR_BANKS; i++) {
+	for (i = 0; i < denali->nbanks; i++) {
 		irq_status = ioread32(denali->reg + INTR_STATUS(i));
 		if (irq_status)
 			ret = IRQ_HANDLED;
@@ -170,7 +150,7 @@
 	return ret;
 }
 
-static void denali_reset_irq(struct denali_nand_info *denali)
+static void denali_reset_irq(struct denali_controller *denali)
 {
 	unsigned long flags;
 
@@ -180,11 +160,10 @@
 	spin_unlock_irqrestore(&denali->irq_lock, flags);
 }
 
-static uint32_t denali_wait_for_irq(struct denali_nand_info *denali,
-				    uint32_t irq_mask)
+static u32 denali_wait_for_irq(struct denali_controller *denali, u32 irq_mask)
 {
 	unsigned long time_left, flags;
-	uint32_t irq_status;
+	u32 irq_status;
 
 	spin_lock_irqsave(&denali->irq_lock, flags);
 
@@ -211,154 +190,259 @@
 	return denali->irq_status;
 }
 
-static uint32_t denali_check_irq(struct denali_nand_info *denali)
+static void denali_select_target(struct nand_chip *chip, int cs)
 {
-	unsigned long flags;
-	uint32_t irq_status;
+	struct denali_controller *denali = to_denali_controller(chip);
+	struct denali_chip_sel *sel = &to_denali_chip(chip)->sels[cs];
+	struct mtd_info *mtd = nand_to_mtd(chip);
 
-	spin_lock_irqsave(&denali->irq_lock, flags);
-	irq_status = denali->irq_status;
-	spin_unlock_irqrestore(&denali->irq_lock, flags);
+	denali->active_bank = sel->bank;
 
-	return irq_status;
-}
+	iowrite32(1 << (chip->phys_erase_shift - chip->page_shift),
+		  denali->reg + PAGES_PER_BLOCK);
+	iowrite32(chip->options & NAND_BUSWIDTH_16 ? 1 : 0,
+		  denali->reg + DEVICE_WIDTH);
+	iowrite32(mtd->writesize, denali->reg + DEVICE_MAIN_AREA_SIZE);
+	iowrite32(mtd->oobsize, denali->reg + DEVICE_SPARE_AREA_SIZE);
+	iowrite32(chip->options & NAND_ROW_ADDR_3 ?
+		  0 : TWO_ROW_ADDR_CYCLES__FLAG,
+		  denali->reg + TWO_ROW_ADDR_CYCLES);
+	iowrite32(FIELD_PREP(ECC_CORRECTION__ERASE_THRESHOLD, 1) |
+		  FIELD_PREP(ECC_CORRECTION__VALUE, chip->ecc.strength),
+		  denali->reg + ECC_CORRECTION);
+	iowrite32(chip->ecc.size, denali->reg + CFG_DATA_BLOCK_SIZE);
+	iowrite32(chip->ecc.size, denali->reg + CFG_LAST_DATA_BLOCK_SIZE);
+	iowrite32(chip->ecc.steps, denali->reg + CFG_NUM_DATA_BLOCKS);
 
-static void denali_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
-{
-	struct denali_nand_info *denali = mtd_to_denali(mtd);
-	u32 addr = DENALI_MAP11_DATA | DENALI_BANK(denali);
-	int i;
-
-	for (i = 0; i < len; i++)
-		buf[i] = denali->host_read(denali, addr);
-}
-
-static void denali_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
-{
-	struct denali_nand_info *denali = mtd_to_denali(mtd);
-	u32 addr = DENALI_MAP11_DATA | DENALI_BANK(denali);
-	int i;
-
-	for (i = 0; i < len; i++)
-		denali->host_write(denali, addr, buf[i]);
-}
-
-static void denali_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
-{
-	struct denali_nand_info *denali = mtd_to_denali(mtd);
-	u32 addr = DENALI_MAP11_DATA | DENALI_BANK(denali);
-	uint16_t *buf16 = (uint16_t *)buf;
-	int i;
-
-	for (i = 0; i < len / 2; i++)
-		buf16[i] = denali->host_read(denali, addr);
-}
-
-static void denali_write_buf16(struct mtd_info *mtd, const uint8_t *buf,
-			       int len)
-{
-	struct denali_nand_info *denali = mtd_to_denali(mtd);
-	u32 addr = DENALI_MAP11_DATA | DENALI_BANK(denali);
-	const uint16_t *buf16 = (const uint16_t *)buf;
-	int i;
-
-	for (i = 0; i < len / 2; i++)
-		denali->host_write(denali, addr, buf16[i]);
-}
-
-static uint8_t denali_read_byte(struct mtd_info *mtd)
-{
-	uint8_t byte;
-
-	denali_read_buf(mtd, &byte, 1);
-
-	return byte;
-}
-
-static void denali_write_byte(struct mtd_info *mtd, uint8_t byte)
-{
-	denali_write_buf(mtd, &byte, 1);
-}
-
-static uint16_t denali_read_word(struct mtd_info *mtd)
-{
-	uint16_t word;
-
-	denali_read_buf16(mtd, (uint8_t *)&word, 2);
-
-	return word;
-}
-
-static void denali_cmd_ctrl(struct mtd_info *mtd, int dat, unsigned int ctrl)
-{
-	struct denali_nand_info *denali = mtd_to_denali(mtd);
-	uint32_t type;
-
-	if (ctrl & NAND_CLE)
-		type = DENALI_MAP11_CMD;
-	else if (ctrl & NAND_ALE)
-		type = DENALI_MAP11_ADDR;
-	else
+	if (chip->options & NAND_KEEP_TIMINGS)
 		return;
 
-	/*
-	 * Some commands are followed by chip->dev_ready or chip->waitfunc.
-	 * irq_status must be cleared here to catch the R/B# interrupt later.
-	 */
-	if (ctrl & NAND_CTRL_CHANGE)
-		denali_reset_irq(denali);
-
-	denali->host_write(denali, DENALI_BANK(denali) | type, dat);
+	/* update timing registers unless NAND_KEEP_TIMINGS is set */
+	iowrite32(sel->hwhr2_and_we_2_re, denali->reg + TWHR2_AND_WE_2_RE);
+	iowrite32(sel->tcwaw_and_addr_2_data,
+		  denali->reg + TCWAW_AND_ADDR_2_DATA);
+	iowrite32(sel->re_2_we, denali->reg + RE_2_WE);
+	iowrite32(sel->acc_clks, denali->reg + ACC_CLKS);
+	iowrite32(sel->rdwr_en_lo_cnt, denali->reg + RDWR_EN_LO_CNT);
+	iowrite32(sel->rdwr_en_hi_cnt, denali->reg + RDWR_EN_HI_CNT);
+	iowrite32(sel->cs_setup_cnt, denali->reg + CS_SETUP_CNT);
+	iowrite32(sel->re_2_re, denali->reg + RE_2_RE);
 }
 
-static int denali_dev_ready(struct mtd_info *mtd)
+static int denali_change_column(struct nand_chip *chip, unsigned int offset,
+				void *buf, unsigned int len, bool write)
 {
-	struct denali_nand_info *denali = mtd_to_denali(mtd);
-
-	return !!(denali_check_irq(denali) & INTR__INT_ACT);
+	if (write)
+		return nand_change_write_column_op(chip, offset, buf, len,
+						   false);
+	else
+		return nand_change_read_column_op(chip, offset, buf, len,
+						  false);
 }
 
-static int denali_check_erased_page(struct mtd_info *mtd,
-				    struct nand_chip *chip, uint8_t *buf,
+static int denali_payload_xfer(struct nand_chip *chip, void *buf, bool write)
+{
+	struct denali_controller *denali = to_denali_controller(chip);
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	struct nand_ecc_ctrl *ecc = &chip->ecc;
+	int writesize = mtd->writesize;
+	int oob_skip = denali->oob_skip_bytes;
+	int ret, i, pos, len;
+
+	for (i = 0; i < ecc->steps; i++) {
+		pos = i * (ecc->size + ecc->bytes);
+		len = ecc->size;
+
+		if (pos >= writesize) {
+			pos += oob_skip;
+		} else if (pos + len > writesize) {
+			/* This chunk overwraps the BBM area. Must be split */
+			ret = denali_change_column(chip, pos, buf,
+						   writesize - pos, write);
+			if (ret)
+				return ret;
+
+			buf += writesize - pos;
+			len -= writesize - pos;
+			pos = writesize + oob_skip;
+		}
+
+		ret = denali_change_column(chip, pos, buf, len, write);
+		if (ret)
+			return ret;
+
+		buf += len;
+	}
+
+	return 0;
+}
+
+static int denali_oob_xfer(struct nand_chip *chip, void *buf, bool write)
+{
+	struct denali_controller *denali = to_denali_controller(chip);
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	struct nand_ecc_ctrl *ecc = &chip->ecc;
+	int writesize = mtd->writesize;
+	int oobsize = mtd->oobsize;
+	int oob_skip = denali->oob_skip_bytes;
+	int ret, i, pos, len;
+
+	/* BBM at the beginning of the OOB area */
+	ret = denali_change_column(chip, writesize, buf, oob_skip, write);
+	if (ret)
+		return ret;
+
+	buf += oob_skip;
+
+	for (i = 0; i < ecc->steps; i++) {
+		pos = ecc->size + i * (ecc->size + ecc->bytes);
+
+		if (i == ecc->steps - 1)
+			/* The last chunk includes OOB free */
+			len = writesize + oobsize - pos - oob_skip;
+		else
+			len = ecc->bytes;
+
+		if (pos >= writesize) {
+			pos += oob_skip;
+		} else if (pos + len > writesize) {
+			/* This chunk overwraps the BBM area. Must be split */
+			ret = denali_change_column(chip, pos, buf,
+						   writesize - pos, write);
+			if (ret)
+				return ret;
+
+			buf += writesize - pos;
+			len -= writesize - pos;
+			pos = writesize + oob_skip;
+		}
+
+		ret = denali_change_column(chip, pos, buf, len, write);
+		if (ret)
+			return ret;
+
+		buf += len;
+	}
+
+	return 0;
+}
+
+static int denali_read_raw(struct nand_chip *chip, void *buf, void *oob_buf,
+			   int page)
+{
+	int ret;
+
+	if (!buf && !oob_buf)
+		return -EINVAL;
+
+	ret = nand_read_page_op(chip, page, 0, NULL, 0);
+	if (ret)
+		return ret;
+
+	if (buf) {
+		ret = denali_payload_xfer(chip, buf, false);
+		if (ret)
+			return ret;
+	}
+
+	if (oob_buf) {
+		ret = denali_oob_xfer(chip, oob_buf, false);
+		if (ret)
+			return ret;
+	}
+
+	return 0;
+}
+
+static int denali_write_raw(struct nand_chip *chip, const void *buf,
+			    const void *oob_buf, int page)
+{
+	int ret;
+
+	if (!buf && !oob_buf)
+		return -EINVAL;
+
+	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
+	if (ret)
+		return ret;
+
+	if (buf) {
+		ret = denali_payload_xfer(chip, (void *)buf, true);
+		if (ret)
+			return ret;
+	}
+
+	if (oob_buf) {
+		ret = denali_oob_xfer(chip, (void *)oob_buf, true);
+		if (ret)
+			return ret;
+	}
+
+	return nand_prog_page_end_op(chip);
+}
+
+static int denali_read_page_raw(struct nand_chip *chip, u8 *buf,
+				int oob_required, int page)
+{
+	return denali_read_raw(chip, buf, oob_required ? chip->oob_poi : NULL,
+			       page);
+}
+
+static int denali_write_page_raw(struct nand_chip *chip, const u8 *buf,
+				 int oob_required, int page)
+{
+	return denali_write_raw(chip, buf, oob_required ? chip->oob_poi : NULL,
+				page);
+}
+
+static int denali_read_oob(struct nand_chip *chip, int page)
+{
+	return denali_read_raw(chip, NULL, chip->oob_poi, page);
+}
+
+static int denali_write_oob(struct nand_chip *chip, int page)
+{
+	return denali_write_raw(chip, NULL, chip->oob_poi, page);
+}
+
+static int denali_check_erased_page(struct nand_chip *chip, u8 *buf,
 				    unsigned long uncor_ecc_flags,
 				    unsigned int max_bitflips)
 {
-	struct denali_nand_info *denali = mtd_to_denali(mtd);
-	uint8_t *ecc_code = chip->oob_poi + denali->oob_skip_bytes;
-	int ecc_steps = chip->ecc.steps;
-	int ecc_size = chip->ecc.size;
-	int ecc_bytes = chip->ecc.bytes;
+	struct denali_controller *denali = to_denali_controller(chip);
+	struct mtd_ecc_stats *ecc_stats = &nand_to_mtd(chip)->ecc_stats;
+	struct nand_ecc_ctrl *ecc = &chip->ecc;
+	u8 *ecc_code = chip->oob_poi + denali->oob_skip_bytes;
 	int i, stat;
 
-	for (i = 0; i < ecc_steps; i++) {
+	for (i = 0; i < ecc->steps; i++) {
 		if (!(uncor_ecc_flags & BIT(i)))
 			continue;
 
-		stat = nand_check_erased_ecc_chunk(buf, ecc_size,
-						  ecc_code, ecc_bytes,
-						  NULL, 0,
-						  chip->ecc.strength);
+		stat = nand_check_erased_ecc_chunk(buf, ecc->size, ecc_code,
+						   ecc->bytes, NULL, 0,
+						   ecc->strength);
 		if (stat < 0) {
-			mtd->ecc_stats.failed++;
+			ecc_stats->failed++;
 		} else {
-			mtd->ecc_stats.corrected += stat;
+			ecc_stats->corrected += stat;
 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
 		}
 
-		buf += ecc_size;
-		ecc_code += ecc_bytes;
+		buf += ecc->size;
+		ecc_code += ecc->bytes;
 	}
 
 	return max_bitflips;
 }
 
-static int denali_hw_ecc_fixup(struct mtd_info *mtd,
-			       struct denali_nand_info *denali,
+static int denali_hw_ecc_fixup(struct nand_chip *chip,
 			       unsigned long *uncor_ecc_flags)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct denali_controller *denali = to_denali_controller(chip);
+	struct mtd_ecc_stats *ecc_stats = &nand_to_mtd(chip)->ecc_stats;
 	int bank = denali->active_bank;
-	uint32_t ecc_cor;
+	u32 ecc_cor;
 	unsigned int max_bitflips;
 
 	ecc_cor = ioread32(denali->reg + ECC_COR_INFO(bank));
@@ -382,23 +466,24 @@
 	 * Unfortunately, we can not know the total number of corrected bits in
 	 * the page.  Increase the stats by max_bitflips. (compromised solution)
 	 */
-	mtd->ecc_stats.corrected += max_bitflips;
+	ecc_stats->corrected += max_bitflips;
 
 	return max_bitflips;
 }
 
-static int denali_sw_ecc_fixup(struct mtd_info *mtd,
-			       struct denali_nand_info *denali,
-			       unsigned long *uncor_ecc_flags, uint8_t *buf)
+static int denali_sw_ecc_fixup(struct nand_chip *chip,
+			       unsigned long *uncor_ecc_flags, u8 *buf)
 {
-	unsigned int ecc_size = denali->nand.ecc.size;
+	struct denali_controller *denali = to_denali_controller(chip);
+	struct mtd_ecc_stats *ecc_stats = &nand_to_mtd(chip)->ecc_stats;
+	unsigned int ecc_size = chip->ecc.size;
 	unsigned int bitflips = 0;
 	unsigned int max_bitflips = 0;
-	uint32_t err_addr, err_cor_info;
+	u32 err_addr, err_cor_info;
 	unsigned int err_byte, err_sector, err_device;
-	uint8_t err_cor_value;
+	u8 err_cor_value;
 	unsigned int prev_sector = 0;
-	uint32_t irq_status;
+	u32 irq_status;
 
 	denali_reset_irq(denali);
 
@@ -440,7 +525,7 @@
 			/* correct the ECC error */
 			flips_in_byte = hweight8(buf[offset] ^ err_cor_value);
 			buf[offset] ^= err_cor_value;
-			mtd->ecc_stats.corrected += flips_in_byte;
+			ecc_stats->corrected += flips_in_byte;
 			bitflips += flips_in_byte;
 
 			max_bitflips = max(max_bitflips, bitflips);
@@ -460,10 +545,10 @@
 	return max_bitflips;
 }
 
-static void denali_setup_dma64(struct denali_nand_info *denali,
-			       dma_addr_t dma_addr, int page, int write)
+static void denali_setup_dma64(struct denali_controller *denali,
+			       dma_addr_t dma_addr, int page, bool write)
 {
-	uint32_t mode;
+	u32 mode;
 	const int page_count = 1;
 
 	mode = DENALI_MAP10 | DENALI_BANK(denali) | page;
@@ -475,7 +560,8 @@
 	 *    burst len = 64 bytes, the number of pages
 	 */
 	denali->host_write(denali, mode,
-			   0x01002000 | (64 << 16) | (write << 8) | page_count);
+			   0x01002000 | (64 << 16) |
+			   (write ? BIT(8) : 0) | page_count);
 
 	/* 2. set memory low address */
 	denali->host_write(denali, mode, lower_32_bits(dma_addr));
@@ -484,10 +570,10 @@
 	denali->host_write(denali, mode, upper_32_bits(dma_addr));
 }
 
-static void denali_setup_dma32(struct denali_nand_info *denali,
-			       dma_addr_t dma_addr, int page, int write)
+static void denali_setup_dma32(struct denali_controller *denali,
+			       dma_addr_t dma_addr, int page, bool write)
 {
-	uint32_t mode;
+	u32 mode;
 	const int page_count = 1;
 
 	mode = DENALI_MAP10 | DENALI_BANK(denali);
@@ -496,7 +582,7 @@
 
 	/* 1. setup transfer type and # of pages */
 	denali->host_write(denali, mode | page,
-			   0x2000 | (write << 8) | page_count);
+			   0x2000 | (write ? BIT(8) : 0) | page_count);
 
 	/* 2. set memory high address bits 23:8 */
 	denali->host_write(denali, mode | ((dma_addr >> 16) << 8), 0x2200);
@@ -508,12 +594,11 @@
 	denali->host_write(denali, mode | 0x14000, 0x2400);
 }
 
-static int denali_pio_read(struct denali_nand_info *denali, void *buf,
-			   size_t size, int page, int raw)
+static int denali_pio_read(struct denali_controller *denali, u32 *buf,
+			   size_t size, int page)
 {
 	u32 addr = DENALI_MAP01 | DENALI_BANK(denali) | page;
-	uint32_t *buf32 = (uint32_t *)buf;
-	uint32_t irq_status, ecc_err_mask;
+	u32 irq_status, ecc_err_mask;
 	int i;
 
 	if (denali->caps & DENALI_CAP_HW_ECC_FIXUP)
@@ -524,7 +609,7 @@
 	denali_reset_irq(denali);
 
 	for (i = 0; i < size / 4; i++)
-		*buf32++ = denali->host_read(denali, addr);
+		buf[i] = denali->host_read(denali, addr);
 
 	irq_status = denali_wait_for_irq(denali, INTR__PAGE_XFER_INC);
 	if (!(irq_status & INTR__PAGE_XFER_INC))
@@ -536,48 +621,48 @@
 	return irq_status & ecc_err_mask ? -EBADMSG : 0;
 }
 
-static int denali_pio_write(struct denali_nand_info *denali,
-			    const void *buf, size_t size, int page, int raw)
+static int denali_pio_write(struct denali_controller *denali, const u32 *buf,
+			    size_t size, int page)
 {
 	u32 addr = DENALI_MAP01 | DENALI_BANK(denali) | page;
-	const uint32_t *buf32 = (uint32_t *)buf;
-	uint32_t irq_status;
+	u32 irq_status;
 	int i;
 
 	denali_reset_irq(denali);
 
 	for (i = 0; i < size / 4; i++)
-		denali->host_write(denali, addr, *buf32++);
+		denali->host_write(denali, addr, buf[i]);
 
 	irq_status = denali_wait_for_irq(denali,
-				INTR__PROGRAM_COMP | INTR__PROGRAM_FAIL);
+					 INTR__PROGRAM_COMP |
+					 INTR__PROGRAM_FAIL);
 	if (!(irq_status & INTR__PROGRAM_COMP))
 		return -EIO;
 
 	return 0;
 }
 
-static int denali_pio_xfer(struct denali_nand_info *denali, void *buf,
-			   size_t size, int page, int raw, int write)
+static int denali_pio_xfer(struct denali_controller *denali, void *buf,
+			   size_t size, int page, bool write)
 {
 	if (write)
-		return denali_pio_write(denali, buf, size, page, raw);
+		return denali_pio_write(denali, buf, size, page);
 	else
-		return denali_pio_read(denali, buf, size, page, raw);
+		return denali_pio_read(denali, buf, size, page);
 }
 
-static int denali_dma_xfer(struct denali_nand_info *denali, void *buf,
-			   size_t size, int page, int raw, int write)
+static int denali_dma_xfer(struct denali_controller *denali, void *buf,
+			   size_t size, int page, bool write)
 {
 	dma_addr_t dma_addr;
-	uint32_t irq_mask, irq_status, ecc_err_mask;
+	u32 irq_mask, irq_status, ecc_err_mask;
 	enum dma_data_direction dir = write ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
 	int ret = 0;
 
 	dma_addr = dma_map_single(denali->dev, buf, size, dir);
 	if (dma_mapping_error(denali->dev, dma_addr)) {
 		dev_dbg(denali->dev, "Failed to DMA-map buffer. Trying PIO.\n");
-		return denali_pio_xfer(denali, buf, size, page, raw, write);
+		return denali_pio_xfer(denali, buf, size, page, write);
 	}
 
 	if (write) {
@@ -623,341 +708,71 @@
 	return ret;
 }
 
-static int denali_data_xfer(struct denali_nand_info *denali, void *buf,
-			    size_t size, int page, int raw, int write)
+static int denali_page_xfer(struct nand_chip *chip, void *buf, size_t size,
+			    int page, bool write)
 {
-	iowrite32(raw ? 0 : ECC_ENABLE__FLAG, denali->reg + ECC_ENABLE);
-	iowrite32(raw ? TRANSFER_SPARE_REG__FLAG : 0,
-		  denali->reg + TRANSFER_SPARE_REG);
+	struct denali_controller *denali = to_denali_controller(chip);
+
+	denali_select_target(chip, chip->cur_cs);
 
 	if (denali->dma_avail)
-		return denali_dma_xfer(denali, buf, size, page, raw, write);
+		return denali_dma_xfer(denali, buf, size, page, write);
 	else
-		return denali_pio_xfer(denali, buf, size, page, raw, write);
+		return denali_pio_xfer(denali, buf, size, page, write);
 }
 
-static void denali_oob_xfer(struct mtd_info *mtd, struct nand_chip *chip,
-			    int page, int write)
+static int denali_read_page(struct nand_chip *chip, u8 *buf,
+			    int oob_required, int page)
 {
-	struct denali_nand_info *denali = mtd_to_denali(mtd);
-	int writesize = mtd->writesize;
-	int oobsize = mtd->oobsize;
-	uint8_t *bufpoi = chip->oob_poi;
-	int ecc_steps = chip->ecc.steps;
-	int ecc_size = chip->ecc.size;
-	int ecc_bytes = chip->ecc.bytes;
-	int oob_skip = denali->oob_skip_bytes;
-	size_t size = writesize + oobsize;
-	int i, pos, len;
-
-	/* BBM at the beginning of the OOB area */
-	if (write)
-		nand_prog_page_begin_op(chip, page, writesize, bufpoi,
-					oob_skip);
-	else
-		nand_read_page_op(chip, page, writesize, bufpoi, oob_skip);
-	bufpoi += oob_skip;
-
-	/* OOB ECC */
-	for (i = 0; i < ecc_steps; i++) {
-		pos = ecc_size + i * (ecc_size + ecc_bytes);
-		len = ecc_bytes;
-
-		if (pos >= writesize)
-			pos += oob_skip;
-		else if (pos + len > writesize)
-			len = writesize - pos;
-
-		if (write)
-			nand_change_write_column_op(chip, pos, bufpoi, len,
-						    false);
-		else
-			nand_change_read_column_op(chip, pos, bufpoi, len,
-						   false);
-		bufpoi += len;
-		if (len < ecc_bytes) {
-			len = ecc_bytes - len;
-			if (write)
-				nand_change_write_column_op(chip, writesize +
-							    oob_skip, bufpoi,
-							    len, false);
-			else
-				nand_change_read_column_op(chip, writesize +
-							   oob_skip, bufpoi,
-							   len, false);
-			bufpoi += len;
-		}
-	}
-
-	/* OOB free */
-	len = oobsize - (bufpoi - chip->oob_poi);
-	if (write)
-		nand_change_write_column_op(chip, size - len, bufpoi, len,
-					    false);
-	else
-		nand_change_read_column_op(chip, size - len, bufpoi, len,
-					   false);
-}
-
-static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
-				uint8_t *buf, int oob_required, int page)
-{
-	struct denali_nand_info *denali = mtd_to_denali(mtd);
-	int writesize = mtd->writesize;
-	int oobsize = mtd->oobsize;
-	int ecc_steps = chip->ecc.steps;
-	int ecc_size = chip->ecc.size;
-	int ecc_bytes = chip->ecc.bytes;
-	void *tmp_buf = denali->buf;
-	int oob_skip = denali->oob_skip_bytes;
-	size_t size = writesize + oobsize;
-	int ret, i, pos, len;
-
-	ret = denali_data_xfer(denali, tmp_buf, size, page, 1, 0);
-	if (ret)
-		return ret;
-
-	/* Arrange the buffer for syndrome payload/ecc layout */
-	if (buf) {
-		for (i = 0; i < ecc_steps; i++) {
-			pos = i * (ecc_size + ecc_bytes);
-			len = ecc_size;
-
-			if (pos >= writesize)
-				pos += oob_skip;
-			else if (pos + len > writesize)
-				len = writesize - pos;
-
-			memcpy(buf, tmp_buf + pos, len);
-			buf += len;
-			if (len < ecc_size) {
-				len = ecc_size - len;
-				memcpy(buf, tmp_buf + writesize + oob_skip,
-				       len);
-				buf += len;
-			}
-		}
-	}
-
-	if (oob_required) {
-		uint8_t *oob = chip->oob_poi;
-
-		/* BBM at the beginning of the OOB area */
-		memcpy(oob, tmp_buf + writesize, oob_skip);
-		oob += oob_skip;
-
-		/* OOB ECC */
-		for (i = 0; i < ecc_steps; i++) {
-			pos = ecc_size + i * (ecc_size + ecc_bytes);
-			len = ecc_bytes;
-
-			if (pos >= writesize)
-				pos += oob_skip;
-			else if (pos + len > writesize)
-				len = writesize - pos;
-
-			memcpy(oob, tmp_buf + pos, len);
-			oob += len;
-			if (len < ecc_bytes) {
-				len = ecc_bytes - len;
-				memcpy(oob, tmp_buf + writesize + oob_skip,
-				       len);
-				oob += len;
-			}
-		}
-
-		/* OOB free */
-		len = oobsize - (oob - chip->oob_poi);
-		memcpy(oob, tmp_buf + size - len, len);
-	}
-
-	return 0;
-}
-
-static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
-			   int page)
-{
-	denali_oob_xfer(mtd, chip, page, 0);
-
-	return 0;
-}
-
-static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
-			    int page)
-{
-	struct denali_nand_info *denali = mtd_to_denali(mtd);
-
-	denali_reset_irq(denali);
-
-	denali_oob_xfer(mtd, chip, page, 1);
-
-	return nand_prog_page_end_op(chip);
-}
-
-static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
-			    uint8_t *buf, int oob_required, int page)
-{
-	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	struct denali_controller *denali = to_denali_controller(chip);
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	unsigned long uncor_ecc_flags = 0;
 	int stat = 0;
 	int ret;
 
-	ret = denali_data_xfer(denali, buf, mtd->writesize, page, 0, 0);
+	ret = denali_page_xfer(chip, buf, mtd->writesize, page, false);
 	if (ret && ret != -EBADMSG)
 		return ret;
 
 	if (denali->caps & DENALI_CAP_HW_ECC_FIXUP)
-		stat = denali_hw_ecc_fixup(mtd, denali, &uncor_ecc_flags);
+		stat = denali_hw_ecc_fixup(chip, &uncor_ecc_flags);
 	else if (ret == -EBADMSG)
-		stat = denali_sw_ecc_fixup(mtd, denali, &uncor_ecc_flags, buf);
+		stat = denali_sw_ecc_fixup(chip, &uncor_ecc_flags, buf);
 
 	if (stat < 0)
 		return stat;
 
 	if (uncor_ecc_flags) {
-		ret = denali_read_oob(mtd, chip, page);
+		ret = denali_read_oob(chip, page);
 		if (ret)
 			return ret;
 
-		stat = denali_check_erased_page(mtd, chip, buf,
+		stat = denali_check_erased_page(chip, buf,
 						uncor_ecc_flags, stat);
 	}
 
 	return stat;
 }
 
-static int denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
-				 const uint8_t *buf, int oob_required, int page)
+static int denali_write_page(struct nand_chip *chip, const u8 *buf,
+			     int oob_required, int page)
 {
-	struct denali_nand_info *denali = mtd_to_denali(mtd);
-	int writesize = mtd->writesize;
-	int oobsize = mtd->oobsize;
-	int ecc_steps = chip->ecc.steps;
-	int ecc_size = chip->ecc.size;
-	int ecc_bytes = chip->ecc.bytes;
-	void *tmp_buf = denali->buf;
-	int oob_skip = denali->oob_skip_bytes;
-	size_t size = writesize + oobsize;
-	int i, pos, len;
+	struct mtd_info *mtd = nand_to_mtd(chip);
 
-	/*
-	 * Fill the buffer with 0xff first except the full page transfer.
-	 * This simplifies the logic.
-	 */
-	if (!buf || !oob_required)
-		memset(tmp_buf, 0xff, size);
-
-	/* Arrange the buffer for syndrome payload/ecc layout */
-	if (buf) {
-		for (i = 0; i < ecc_steps; i++) {
-			pos = i * (ecc_size + ecc_bytes);
-			len = ecc_size;
-
-			if (pos >= writesize)
-				pos += oob_skip;
-			else if (pos + len > writesize)
-				len = writesize - pos;
-
-			memcpy(tmp_buf + pos, buf, len);
-			buf += len;
-			if (len < ecc_size) {
-				len = ecc_size - len;
-				memcpy(tmp_buf + writesize + oob_skip, buf,
-				       len);
-				buf += len;
-			}
-		}
-	}
-
-	if (oob_required) {
-		const uint8_t *oob = chip->oob_poi;
-
-		/* BBM at the beginning of the OOB area */
-		memcpy(tmp_buf + writesize, oob, oob_skip);
-		oob += oob_skip;
-
-		/* OOB ECC */
-		for (i = 0; i < ecc_steps; i++) {
-			pos = ecc_size + i * (ecc_size + ecc_bytes);
-			len = ecc_bytes;
-
-			if (pos >= writesize)
-				pos += oob_skip;
-			else if (pos + len > writesize)
-				len = writesize - pos;
-
-			memcpy(tmp_buf + pos, oob, len);
-			oob += len;
-			if (len < ecc_bytes) {
-				len = ecc_bytes - len;
-				memcpy(tmp_buf + writesize + oob_skip, oob,
-				       len);
-				oob += len;
-			}
-		}
-
-		/* OOB free */
-		len = oobsize - (oob - chip->oob_poi);
-		memcpy(tmp_buf + size - len, oob, len);
-	}
-
-	return denali_data_xfer(denali, tmp_buf, size, page, 1, 1);
+	return denali_page_xfer(chip, (void *)buf, mtd->writesize, page, true);
 }
 
-static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
-			     const uint8_t *buf, int oob_required, int page)
-{
-	struct denali_nand_info *denali = mtd_to_denali(mtd);
-
-	return denali_data_xfer(denali, (void *)buf, mtd->writesize,
-				page, 0, 1);
-}
-
-static void denali_select_chip(struct mtd_info *mtd, int chip)
-{
-	struct denali_nand_info *denali = mtd_to_denali(mtd);
-
-	denali->active_bank = chip;
-}
-
-static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
-{
-	struct denali_nand_info *denali = mtd_to_denali(mtd);
-	uint32_t irq_status;
-
-	/* R/B# pin transitioned from low to high? */
-	irq_status = denali_wait_for_irq(denali, INTR__INT_ACT);
-
-	return irq_status & INTR__INT_ACT ? 0 : NAND_STATUS_FAIL;
-}
-
-static int denali_erase(struct mtd_info *mtd, int page)
-{
-	struct denali_nand_info *denali = mtd_to_denali(mtd);
-	uint32_t irq_status;
-
-	denali_reset_irq(denali);
-
-	denali->host_write(denali, DENALI_MAP10 | DENALI_BANK(denali) | page,
-			   DENALI_ERASE);
-
-	/* wait for erase to complete or failure to occur */
-	irq_status = denali_wait_for_irq(denali,
-					 INTR__ERASE_COMP | INTR__ERASE_FAIL);
-
-	return irq_status & INTR__ERASE_COMP ? 0 : -EIO;
-}
-
-static int denali_setup_data_interface(struct mtd_info *mtd, int chipnr,
+static int denali_setup_data_interface(struct nand_chip *chip, int chipnr,
 				       const struct nand_data_interface *conf)
 {
-	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	struct denali_controller *denali = to_denali_controller(chip);
+	struct denali_chip_sel *sel;
 	const struct nand_sdr_timings *timings;
 	unsigned long t_x, mult_x;
 	int acc_clks, re_2_we, re_2_re, we_2_re, addr_2_data;
 	int rdwr_en_lo, rdwr_en_hi, rdwr_en_lo_hi, cs_setup;
 	int addr_2_data_mask;
-	uint32_t tmp;
+	u32 tmp;
 
 	timings = nand_get_sdr_timings(conf);
 	if (IS_ERR(timings))
@@ -980,6 +795,8 @@
 	if (chipnr == NAND_DATA_IFACE_CHECK_ONLY)
 		return 0;
 
+	sel = &to_denali_chip(chip)->sels[chipnr];
+
 	/* tREA -> ACC_CLKS */
 	acc_clks = DIV_ROUND_UP(timings->tREA_max, t_x);
 	acc_clks = min_t(int, acc_clks, ACC_CLKS__VALUE);
@@ -987,7 +804,7 @@
 	tmp = ioread32(denali->reg + ACC_CLKS);
 	tmp &= ~ACC_CLKS__VALUE;
 	tmp |= FIELD_PREP(ACC_CLKS__VALUE, acc_clks);
-	iowrite32(tmp, denali->reg + ACC_CLKS);
+	sel->acc_clks = tmp;
 
 	/* tRWH -> RE_2_WE */
 	re_2_we = DIV_ROUND_UP(timings->tRHW_min, t_x);
@@ -996,7 +813,7 @@
 	tmp = ioread32(denali->reg + RE_2_WE);
 	tmp &= ~RE_2_WE__VALUE;
 	tmp |= FIELD_PREP(RE_2_WE__VALUE, re_2_we);
-	iowrite32(tmp, denali->reg + RE_2_WE);
+	sel->re_2_we = tmp;
 
 	/* tRHZ -> RE_2_RE */
 	re_2_re = DIV_ROUND_UP(timings->tRHZ_max, t_x);
@@ -1005,7 +822,7 @@
 	tmp = ioread32(denali->reg + RE_2_RE);
 	tmp &= ~RE_2_RE__VALUE;
 	tmp |= FIELD_PREP(RE_2_RE__VALUE, re_2_re);
-	iowrite32(tmp, denali->reg + RE_2_RE);
+	sel->re_2_re = tmp;
 
 	/*
 	 * tCCS, tWHR -> WE_2_RE
@@ -1019,7 +836,7 @@
 	tmp = ioread32(denali->reg + TWHR2_AND_WE_2_RE);
 	tmp &= ~TWHR2_AND_WE_2_RE__WE_2_RE;
 	tmp |= FIELD_PREP(TWHR2_AND_WE_2_RE__WE_2_RE, we_2_re);
-	iowrite32(tmp, denali->reg + TWHR2_AND_WE_2_RE);
+	sel->hwhr2_and_we_2_re = tmp;
 
 	/* tADL -> ADDR_2_DATA */
 
@@ -1034,7 +851,7 @@
 	tmp = ioread32(denali->reg + TCWAW_AND_ADDR_2_DATA);
 	tmp &= ~TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA;
 	tmp |= FIELD_PREP(TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA, addr_2_data);
-	iowrite32(tmp, denali->reg + TCWAW_AND_ADDR_2_DATA);
+	sel->tcwaw_and_addr_2_data = tmp;
 
 	/* tREH, tWH -> RDWR_EN_HI_CNT */
 	rdwr_en_hi = DIV_ROUND_UP(max(timings->tREH_min, timings->tWH_min),
@@ -1044,7 +861,7 @@
 	tmp = ioread32(denali->reg + RDWR_EN_HI_CNT);
 	tmp &= ~RDWR_EN_HI_CNT__VALUE;
 	tmp |= FIELD_PREP(RDWR_EN_HI_CNT__VALUE, rdwr_en_hi);
-	iowrite32(tmp, denali->reg + RDWR_EN_HI_CNT);
+	sel->rdwr_en_hi_cnt = tmp;
 
 	/* tRP, tWP -> RDWR_EN_LO_CNT */
 	rdwr_en_lo = DIV_ROUND_UP(max(timings->tRP_min, timings->tWP_min), t_x);
@@ -1057,7 +874,7 @@
 	tmp = ioread32(denali->reg + RDWR_EN_LO_CNT);
 	tmp &= ~RDWR_EN_LO_CNT__VALUE;
 	tmp |= FIELD_PREP(RDWR_EN_LO_CNT__VALUE, rdwr_en_lo);
-	iowrite32(tmp, denali->reg + RDWR_EN_LO_CNT);
+	sel->rdwr_en_lo_cnt = tmp;
 
 	/* tCS, tCEA -> CS_SETUP_CNT */
 	cs_setup = max3((int)DIV_ROUND_UP(timings->tCS_min, t_x) - rdwr_en_lo,
@@ -1068,62 +885,11 @@
 	tmp = ioread32(denali->reg + CS_SETUP_CNT);
 	tmp &= ~CS_SETUP_CNT__VALUE;
 	tmp |= FIELD_PREP(CS_SETUP_CNT__VALUE, cs_setup);
-	iowrite32(tmp, denali->reg + CS_SETUP_CNT);
+	sel->cs_setup_cnt = tmp;
 
 	return 0;
 }
 
-static void denali_reset_banks(struct denali_nand_info *denali)
-{
-	u32 irq_status;
-	int i;
-
-	for (i = 0; i < denali->max_banks; i++) {
-		denali->active_bank = i;
-
-		denali_reset_irq(denali);
-
-		iowrite32(DEVICE_RESET__BANK(i),
-			  denali->reg + DEVICE_RESET);
-
-		irq_status = denali_wait_for_irq(denali,
-			INTR__RST_COMP | INTR__INT_ACT | INTR__TIME_OUT);
-		if (!(irq_status & INTR__INT_ACT))
-			break;
-	}
-
-	dev_dbg(denali->dev, "%d chips connected\n", i);
-	denali->max_banks = i;
-}
-
-static void denali_hw_init(struct denali_nand_info *denali)
-{
-	/*
-	 * The REVISION register may not be reliable.  Platforms are allowed to
-	 * override it.
-	 */
-	if (!denali->revision)
-		denali->revision = swab16(ioread32(denali->reg + REVISION));
-
-	/*
-	 * Set how many bytes should be skipped before writing data in OOB.
-	 * If a non-zero value has already been set (by firmware or something),
-	 * just use it.  Otherwise, set the driver default.
-	 */
-	denali->oob_skip_bytes = ioread32(denali->reg + SPARE_AREA_SKIP_BYTES);
-	if (!denali->oob_skip_bytes) {
-		denali->oob_skip_bytes = DENALI_DEFAULT_OOB_SKIP_BYTES;
-		iowrite32(denali->oob_skip_bytes,
-			  denali->reg + SPARE_AREA_SKIP_BYTES);
-	}
-
-	denali_detect_max_banks(denali);
-	iowrite32(0x0F, denali->reg + RB_PIN_ENABLED);
-	iowrite32(CHIP_EN_DONT_CARE__FLAG, denali->reg + CHIP_ENABLE_DONT_CARE);
-
-	iowrite32(0xffff, denali->reg + SPARE_AREA_MARKER);
-}
-
 int denali_calc_ecc_bytes(int step_size, int strength)
 {
 	/* BCH code.  Denali requires ecc.bytes to be multiple of 2 */
@@ -1134,10 +900,10 @@
 static int denali_ooblayout_ecc(struct mtd_info *mtd, int section,
 				struct mtd_oob_region *oobregion)
 {
-	struct denali_nand_info *denali = mtd_to_denali(mtd);
 	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct denali_controller *denali = to_denali_controller(chip);
 
-	if (section)
+	if (section > 0)
 		return -ERANGE;
 
 	oobregion->offset = denali->oob_skip_bytes;
@@ -1149,10 +915,10 @@
 static int denali_ooblayout_free(struct mtd_info *mtd, int section,
 				 struct mtd_oob_region *oobregion)
 {
-	struct denali_nand_info *denali = mtd_to_denali(mtd);
 	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct denali_controller *denali = to_denali_controller(chip);
 
-	if (section)
+	if (section > 0)
 		return -ERANGE;
 
 	oobregion->offset = chip->ecc.total + denali->oob_skip_bytes;
@@ -1166,10 +932,13 @@
 	.free = denali_ooblayout_free,
 };
 
-static int denali_multidev_fixup(struct denali_nand_info *denali)
+static int denali_multidev_fixup(struct nand_chip *chip)
 {
-	struct nand_chip *chip = &denali->nand;
+	struct denali_controller *denali = to_denali_controller(chip);
 	struct mtd_info *mtd = nand_to_mtd(chip);
+	struct nand_memory_organization *memorg;
+
+	memorg = nanddev_get_memorg(&chip->base);
 
 	/*
 	 * Support for multi device:
@@ -1199,11 +968,12 @@
 	}
 
 	/* 2 chips in parallel */
+	memorg->pagesize <<= 1;
+	memorg->oobsize <<= 1;
 	mtd->size <<= 1;
 	mtd->erasesize <<= 1;
 	mtd->writesize <<= 1;
 	mtd->oobsize <<= 1;
-	chip->chipsize <<= 1;
 	chip->page_shift += 1;
 	chip->phys_erase_shift += 1;
 	chip->bbt_erase_shift += 1;
@@ -1219,38 +989,10 @@
 
 static int denali_attach_chip(struct nand_chip *chip)
 {
+	struct denali_controller *denali = to_denali_controller(chip);
 	struct mtd_info *mtd = nand_to_mtd(chip);
-	struct denali_nand_info *denali = mtd_to_denali(mtd);
 	int ret;
 
-	if (ioread32(denali->reg + FEATURES) & FEATURES__DMA)
-		denali->dma_avail = 1;
-
-	if (denali->dma_avail) {
-		int dma_bit = denali->caps & DENALI_CAP_DMA_64BIT ? 64 : 32;
-
-		ret = dma_set_mask(denali->dev, DMA_BIT_MASK(dma_bit));
-		if (ret) {
-			dev_info(denali->dev,
-				 "Failed to set DMA mask. Disabling DMA.\n");
-			denali->dma_avail = 0;
-		}
-	}
-
-	if (denali->dma_avail) {
-		chip->options |= NAND_USE_BOUNCE_BUFFER;
-		chip->buf_align = 16;
-		if (denali->caps & DENALI_CAP_DMA_64BIT)
-			denali->setup_dma = denali_setup_dma64;
-		else
-			denali->setup_dma = denali_setup_dma32;
-	}
-
-	chip->bbt_options |= NAND_BBT_USE_FLASH;
-	chip->bbt_options |= NAND_BBT_NO_OOB;
-	chip->ecc.mode = NAND_ECC_HW_SYNDROME;
-	chip->options |= NAND_NO_SUBPAGE_WRITE;
-
 	ret = nand_ecc_choose_conf(chip, denali->ecc_caps,
 				   mtd->oobsize - denali->oob_skip_bytes);
 	if (ret) {
@@ -1262,82 +1004,319 @@
 		"chosen ECC settings: step=%d, strength=%d, bytes=%d\n",
 		chip->ecc.size, chip->ecc.strength, chip->ecc.bytes);
 
-	iowrite32(FIELD_PREP(ECC_CORRECTION__ERASE_THRESHOLD, 1) |
-		  FIELD_PREP(ECC_CORRECTION__VALUE, chip->ecc.strength),
-		  denali->reg + ECC_CORRECTION);
-	iowrite32(mtd->erasesize / mtd->writesize,
-		  denali->reg + PAGES_PER_BLOCK);
-	iowrite32(chip->options & NAND_BUSWIDTH_16 ? 1 : 0,
-		  denali->reg + DEVICE_WIDTH);
-	iowrite32(chip->options & NAND_ROW_ADDR_3 ? 0 : TWO_ROW_ADDR_CYCLES__FLAG,
-		  denali->reg + TWO_ROW_ADDR_CYCLES);
-	iowrite32(mtd->writesize, denali->reg + DEVICE_MAIN_AREA_SIZE);
-	iowrite32(mtd->oobsize, denali->reg + DEVICE_SPARE_AREA_SIZE);
-
-	iowrite32(chip->ecc.size, denali->reg + CFG_DATA_BLOCK_SIZE);
-	iowrite32(chip->ecc.size, denali->reg + CFG_LAST_DATA_BLOCK_SIZE);
-	/* chip->ecc.steps is set by nand_scan_tail(); not available here */
-	iowrite32(mtd->writesize / chip->ecc.size,
-		  denali->reg + CFG_NUM_DATA_BLOCKS);
-
-	mtd_set_ooblayout(mtd, &denali_ooblayout_ops);
-
-	if (chip->options & NAND_BUSWIDTH_16) {
-		chip->read_buf = denali_read_buf16;
-		chip->write_buf = denali_write_buf16;
-	} else {
-		chip->read_buf = denali_read_buf;
-		chip->write_buf = denali_write_buf;
-	}
-	chip->ecc.read_page = denali_read_page;
-	chip->ecc.read_page_raw = denali_read_page_raw;
-	chip->ecc.write_page = denali_write_page;
-	chip->ecc.write_page_raw = denali_write_page_raw;
-	chip->ecc.read_oob = denali_read_oob;
-	chip->ecc.write_oob = denali_write_oob;
-	chip->erase = denali_erase;
-
-	ret = denali_multidev_fixup(denali);
+	ret = denali_multidev_fixup(chip);
 	if (ret)
 		return ret;
 
-	/*
-	 * This buffer is DMA-mapped by denali_{read,write}_page_raw.  Do not
-	 * use devm_kmalloc() because the memory allocated by devm_ does not
-	 * guarantee DMA-safe alignment.
-	 */
-	denali->buf = kmalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL);
-	if (!denali->buf)
-		return -ENOMEM;
-
 	return 0;
 }
 
-static void denali_detach_chip(struct nand_chip *chip)
+static void denali_exec_in8(struct denali_controller *denali, u32 type,
+			    u8 *buf, unsigned int len)
 {
-	struct mtd_info *mtd = nand_to_mtd(chip);
-	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	int i;
 
-	kfree(denali->buf);
+	for (i = 0; i < len; i++)
+		buf[i] = denali->host_read(denali, type | DENALI_BANK(denali));
+}
+
+static void denali_exec_in16(struct denali_controller *denali, u32 type,
+			     u8 *buf, unsigned int len)
+{
+	u32 data;
+	int i;
+
+	for (i = 0; i < len; i += 2) {
+		data = denali->host_read(denali, type | DENALI_BANK(denali));
+		/* bit 31:24 and 15:8 are used for DDR */
+		buf[i] = data;
+		buf[i + 1] = data >> 16;
+	}
+}
+
+static void denali_exec_in(struct denali_controller *denali, u32 type,
+			   u8 *buf, unsigned int len, bool width16)
+{
+	if (width16)
+		denali_exec_in16(denali, type, buf, len);
+	else
+		denali_exec_in8(denali, type, buf, len);
+}
+
+static void denali_exec_out8(struct denali_controller *denali, u32 type,
+			     const u8 *buf, unsigned int len)
+{
+	int i;
+
+	for (i = 0; i < len; i++)
+		denali->host_write(denali, type | DENALI_BANK(denali), buf[i]);
+}
+
+static void denali_exec_out16(struct denali_controller *denali, u32 type,
+			      const u8 *buf, unsigned int len)
+{
+	int i;
+
+	for (i = 0; i < len; i += 2)
+		denali->host_write(denali, type | DENALI_BANK(denali),
+				   buf[i + 1] << 16 | buf[i]);
+}
+
+static void denali_exec_out(struct denali_controller *denali, u32 type,
+			    const u8 *buf, unsigned int len, bool width16)
+{
+	if (width16)
+		denali_exec_out16(denali, type, buf, len);
+	else
+		denali_exec_out8(denali, type, buf, len);
+}
+
+static int denali_exec_waitrdy(struct denali_controller *denali)
+{
+	u32 irq_stat;
+
+	/* R/B# pin transitioned from low to high? */
+	irq_stat = denali_wait_for_irq(denali, INTR__INT_ACT);
+
+	/* Just in case nand_operation has multiple NAND_OP_WAITRDY_INSTR. */
+	denali_reset_irq(denali);
+
+	return irq_stat & INTR__INT_ACT ? 0 : -EIO;
+}
+
+static int denali_exec_instr(struct nand_chip *chip,
+			     const struct nand_op_instr *instr)
+{
+	struct denali_controller *denali = to_denali_controller(chip);
+
+	switch (instr->type) {
+	case NAND_OP_CMD_INSTR:
+		denali_exec_out8(denali, DENALI_MAP11_CMD,
+				 &instr->ctx.cmd.opcode, 1);
+		return 0;
+	case NAND_OP_ADDR_INSTR:
+		denali_exec_out8(denali, DENALI_MAP11_ADDR,
+				 instr->ctx.addr.addrs,
+				 instr->ctx.addr.naddrs);
+		return 0;
+	case NAND_OP_DATA_IN_INSTR:
+		denali_exec_in(denali, DENALI_MAP11_DATA,
+			       instr->ctx.data.buf.in,
+			       instr->ctx.data.len,
+			       !instr->ctx.data.force_8bit &&
+			       chip->options & NAND_BUSWIDTH_16);
+		return 0;
+	case NAND_OP_DATA_OUT_INSTR:
+		denali_exec_out(denali, DENALI_MAP11_DATA,
+				instr->ctx.data.buf.out,
+				instr->ctx.data.len,
+				!instr->ctx.data.force_8bit &&
+				chip->options & NAND_BUSWIDTH_16);
+		return 0;
+	case NAND_OP_WAITRDY_INSTR:
+		return denali_exec_waitrdy(denali);
+	default:
+		WARN_ONCE(1, "unsupported NAND instruction type: %d\n",
+			  instr->type);
+
+		return -EINVAL;
+	}
+}
+
+static int denali_exec_op(struct nand_chip *chip,
+			  const struct nand_operation *op, bool check_only)
+{
+	int i, ret;
+
+	if (check_only)
+		return 0;
+
+	denali_select_target(chip, op->cs);
+
+	/*
+	 * Some commands contain NAND_OP_WAITRDY_INSTR.
+	 * irq must be cleared here to catch the R/B# interrupt there.
+	 */
+	denali_reset_irq(to_denali_controller(chip));
+
+	for (i = 0; i < op->ninstrs; i++) {
+		ret = denali_exec_instr(chip, &op->instrs[i]);
+		if (ret)
+			return ret;
+	}
+
+	return 0;
 }
 
 static const struct nand_controller_ops denali_controller_ops = {
 	.attach_chip = denali_attach_chip,
-	.detach_chip = denali_detach_chip,
+	.exec_op = denali_exec_op,
+	.setup_data_interface = denali_setup_data_interface,
 };
 
-int denali_init(struct denali_nand_info *denali)
+int denali_chip_init(struct denali_controller *denali,
+		     struct denali_chip *dchip)
 {
-	struct nand_chip *chip = &denali->nand;
+	struct nand_chip *chip = &dchip->chip;
 	struct mtd_info *mtd = nand_to_mtd(chip);
+	struct denali_chip *dchip2;
+	int i, j, ret;
+
+	chip->controller = &denali->controller;
+
+	/* sanity checks for bank numbers */
+	for (i = 0; i < dchip->nsels; i++) {
+		unsigned int bank = dchip->sels[i].bank;
+
+		if (bank >= denali->nbanks) {
+			dev_err(denali->dev, "unsupported bank %d\n", bank);
+			return -EINVAL;
+		}
+
+		for (j = 0; j < i; j++) {
+			if (bank == dchip->sels[j].bank) {
+				dev_err(denali->dev,
+					"bank %d is assigned twice in the same chip\n",
+					bank);
+				return -EINVAL;
+			}
+		}
+
+		list_for_each_entry(dchip2, &denali->chips, node) {
+			for (j = 0; j < dchip2->nsels; j++) {
+				if (bank == dchip2->sels[j].bank) {
+					dev_err(denali->dev,
+						"bank %d is already used\n",
+						bank);
+					return -EINVAL;
+				}
+			}
+		}
+	}
+
+	mtd->dev.parent = denali->dev;
+
+	/*
+	 * Fallback to the default name if DT did not give "label" property.
+	 * Use "label" property if multiple chips are connected.
+	 */
+	if (!mtd->name && list_empty(&denali->chips))
+		mtd->name = "denali-nand";
+
+	if (denali->dma_avail) {
+		chip->options |= NAND_USE_BOUNCE_BUFFER;
+		chip->buf_align = 16;
+	}
+
+	/* clk rate info is needed for setup_data_interface */
+	if (!denali->clk_rate || !denali->clk_x_rate)
+		chip->options |= NAND_KEEP_TIMINGS;
+
+	chip->bbt_options |= NAND_BBT_USE_FLASH;
+	chip->bbt_options |= NAND_BBT_NO_OOB;
+	chip->options |= NAND_NO_SUBPAGE_WRITE;
+	chip->ecc.mode = NAND_ECC_HW_SYNDROME;
+	chip->ecc.read_page = denali_read_page;
+	chip->ecc.write_page = denali_write_page;
+	chip->ecc.read_page_raw = denali_read_page_raw;
+	chip->ecc.write_page_raw = denali_write_page_raw;
+	chip->ecc.read_oob = denali_read_oob;
+	chip->ecc.write_oob = denali_write_oob;
+
+	mtd_set_ooblayout(mtd, &denali_ooblayout_ops);
+
+	ret = nand_scan(chip, dchip->nsels);
+	if (ret)
+		return ret;
+
+	ret = mtd_device_register(mtd, NULL, 0);
+	if (ret) {
+		dev_err(denali->dev, "Failed to register MTD: %d\n", ret);
+		goto cleanup_nand;
+	}
+
+	list_add_tail(&dchip->node, &denali->chips);
+
+	return 0;
+
+cleanup_nand:
+	nand_cleanup(chip);
+
+	return ret;
+}
+EXPORT_SYMBOL_GPL(denali_chip_init);
+
+int denali_init(struct denali_controller *denali)
+{
 	u32 features = ioread32(denali->reg + FEATURES);
 	int ret;
 
-	mtd->dev.parent = denali->dev;
-	denali_hw_init(denali);
-
+	nand_controller_init(&denali->controller);
+	denali->controller.ops = &denali_controller_ops;
 	init_completion(&denali->complete);
 	spin_lock_init(&denali->irq_lock);
+	INIT_LIST_HEAD(&denali->chips);
+	denali->active_bank = DENALI_INVALID_BANK;
+
+	/*
+	 * The REVISION register may not be reliable. Platforms are allowed to
+	 * override it.
+	 */
+	if (!denali->revision)
+		denali->revision = swab16(ioread32(denali->reg + REVISION));
+
+	denali->nbanks = 1 << FIELD_GET(FEATURES__N_BANKS, features);
+
+	/* the encoding changed from rev 5.0 to 5.1 */
+	if (denali->revision < 0x0501)
+		denali->nbanks <<= 1;
+
+	if (features & FEATURES__DMA)
+		denali->dma_avail = true;
+
+	if (denali->dma_avail) {
+		int dma_bit = denali->caps & DENALI_CAP_DMA_64BIT ? 64 : 32;
+
+		ret = dma_set_mask(denali->dev, DMA_BIT_MASK(dma_bit));
+		if (ret) {
+			dev_info(denali->dev,
+				 "Failed to set DMA mask. Disabling DMA.\n");
+			denali->dma_avail = false;
+		}
+	}
+
+	if (denali->dma_avail) {
+		if (denali->caps & DENALI_CAP_DMA_64BIT)
+			denali->setup_dma = denali_setup_dma64;
+		else
+			denali->setup_dma = denali_setup_dma32;
+	}
+
+	if (features & FEATURES__INDEX_ADDR) {
+		denali->host_read = denali_indexed_read;
+		denali->host_write = denali_indexed_write;
+	} else {
+		denali->host_read = denali_direct_read;
+		denali->host_write = denali_direct_write;
+	}
+
+	/*
+	 * Set how many bytes should be skipped before writing data in OOB.
+	 * If a non-zero value has already been set (by firmware or something),
+	 * just use it. Otherwise, set the driver's default.
+	 */
+	denali->oob_skip_bytes = ioread32(denali->reg + SPARE_AREA_SKIP_BYTES);
+	if (!denali->oob_skip_bytes) {
+		denali->oob_skip_bytes = DENALI_DEFAULT_OOB_SKIP_BYTES;
+		iowrite32(denali->oob_skip_bytes,
+			  denali->reg + SPARE_AREA_SKIP_BYTES);
+	}
+
+	iowrite32(0, denali->reg + TRANSFER_SPARE_REG);
+	iowrite32(GENMASK(denali->nbanks - 1, 0), denali->reg + RB_PIN_ENABLED);
+	iowrite32(CHIP_EN_DONT_CARE__FLAG, denali->reg + CHIP_ENABLE_DONT_CARE);
+	iowrite32(ECC_ENABLE__FLAG, denali->reg + ECC_ENABLE);
+	iowrite32(0xffff, denali->reg + SPARE_AREA_MARKER);
 
 	denali_clear_irq_all(denali);
 
@@ -1349,67 +1328,22 @@
 	}
 
 	denali_enable_irq(denali);
-	denali_reset_banks(denali);
-	if (!denali->max_banks) {
-		/* Error out earlier if no chip is found for some reasons. */
-		ret = -ENODEV;
-		goto disable_irq;
-	}
-
-	denali->active_bank = DENALI_INVALID_BANK;
-
-	nand_set_flash_node(chip, denali->dev->of_node);
-	/* Fallback to the default name if DT did not give "label" property */
-	if (!mtd->name)
-		mtd->name = "denali-nand";
-
-	chip->select_chip = denali_select_chip;
-	chip->read_byte = denali_read_byte;
-	chip->write_byte = denali_write_byte;
-	chip->read_word = denali_read_word;
-	chip->cmd_ctrl = denali_cmd_ctrl;
-	chip->dev_ready = denali_dev_ready;
-	chip->waitfunc = denali_waitfunc;
-
-	if (features & FEATURES__INDEX_ADDR) {
-		denali->host_read = denali_indexed_read;
-		denali->host_write = denali_indexed_write;
-	} else {
-		denali->host_read = denali_direct_read;
-		denali->host_write = denali_direct_write;
-	}
-
-	/* clk rate info is needed for setup_data_interface */
-	if (denali->clk_rate && denali->clk_x_rate)
-		chip->setup_data_interface = denali_setup_data_interface;
-
-	chip->dummy_controller.ops = &denali_controller_ops;
-	ret = nand_scan(mtd, denali->max_banks);
-	if (ret)
-		goto disable_irq;
-
-	ret = mtd_device_register(mtd, NULL, 0);
-	if (ret) {
-		dev_err(denali->dev, "Failed to register MTD: %d\n", ret);
-		goto cleanup_nand;
-	}
 
 	return 0;
-
-cleanup_nand:
-	nand_cleanup(chip);
-disable_irq:
-	denali_disable_irq(denali);
-
-	return ret;
 }
 EXPORT_SYMBOL(denali_init);
 
-void denali_remove(struct denali_nand_info *denali)
+void denali_remove(struct denali_controller *denali)
 {
-	struct mtd_info *mtd = nand_to_mtd(&denali->nand);
+	struct denali_chip *dchip;
 
-	nand_release(mtd);
+	list_for_each_entry(dchip, &denali->chips, node)
+		nand_release(&dchip->chip);
+
 	denali_disable_irq(denali);
 }
 EXPORT_SYMBOL(denali_remove);
+
+MODULE_DESCRIPTION("Driver core for Denali NAND controller");
+MODULE_AUTHOR("Intel Corporation and its suppliers");
+MODULE_LICENSE("GPL v2");
diff --git a/drivers/mtd/nand/raw/denali.h b/drivers/mtd/nand/raw/denali.h
index 1f8feaf..e5cdcda 100644
--- a/drivers/mtd/nand/raw/denali.h
+++ b/drivers/mtd/nand/raw/denali.h
@@ -1,22 +1,15 @@
+/* SPDX-License-Identifier: GPL-2.0 */
 /*
  * NAND Flash Controller Device Driver
  * Copyright (c) 2009 - 2010, Intel Corporation and its suppliers.
- *
- * This program is free software; you can redistribute it and/or modify it
- * under the terms and conditions of the GNU General Public License,
- * version 2, as published by the Free Software Foundation.
- *
- * This program is distributed in the hope it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
- * more details.
  */
 
 #ifndef __DENALI_H__
 #define __DENALI_H__
 
-#include <linux/bitops.h>
+#include <linux/bits.h>
 #include <linux/completion.h>
+#include <linux/list.h>
 #include <linux/mtd/rawnand.h>
 #include <linux/spinlock_types.h>
 #include <linux/types.h>
@@ -298,39 +291,108 @@
 #define     CHNL_ACTIVE__CHANNEL2			BIT(2)
 #define     CHNL_ACTIVE__CHANNEL3			BIT(3)
 
-struct denali_nand_info {
-	struct nand_chip nand;
-	unsigned long clk_rate;		/* core clock rate */
-	unsigned long clk_x_rate;	/* bus interface clock rate */
-	int active_bank;		/* currently selected bank */
+/**
+ * struct denali_chip_sel - per-CS data of Denali NAND
+ *
+ * @bank:                  bank id of the controller this CS is connected to
+ * @hwhr2_and_we_2_re:     value of timing register HWHR2_AND_WE_2_RE
+ * @tcwaw_and_addr_2_data: value of timing register TCWAW_AND_ADDR_2_DATA
+ * @re_2_we:               value of timing register RE_2_WE
+ * @acc_clks:              value of timing register ACC_CLKS
+ * @rdwr_en_lo_cnt:        value of timing register RDWR_EN_LO_CNT
+ * @rdwr_en_hi_cnt:        value of timing register RDWR_EN_HI_CNT
+ * @cs_setup_cnt:          value of timing register CS_SETUP_CNT
+ * @re_2_re:               value of timing register RE_2_RE
+ */
+struct denali_chip_sel {
+	int bank;
+	u32 hwhr2_and_we_2_re;
+	u32 tcwaw_and_addr_2_data;
+	u32 re_2_we;
+	u32 acc_clks;
+	u32 rdwr_en_lo_cnt;
+	u32 rdwr_en_hi_cnt;
+	u32 cs_setup_cnt;
+	u32 re_2_re;
+};
+
+/**
+ * struct denali_chip - per-chip data of Denali NAND
+ *
+ * @chip:  base NAND chip structure
+ * @node:  node to be used to associate this chip with the controller
+ * @nsels: the number of CS lines of this chip
+ * @sels:  the array of per-cs data
+ */
+struct denali_chip {
+	struct nand_chip chip;
+	struct list_head node;
+	unsigned int nsels;
+	struct denali_chip_sel sels[0];
+};
+
+/**
+ * struct denali_controller - Denali NAND controller data
+ *
+ * @controller:     base NAND controller structure
+ * @dev:            device
+ * @chips:          the list of chips attached to this controller
+ * @clk_rate:       frequency of core clock
+ * @clk_x_rate:     frequency of bus interface clock
+ * @reg:            base of Register Interface
+ * @host:           base of Host Data/Command interface
+ * @complete:       completion used to wait for interrupts
+ * @irq:            interrupt number
+ * @irq_mask:       interrupt bits the controller is waiting for
+ * @irq_status:     interrupt bits of events that have happened
+ * @irq_lock:       lock to protect @irq_mask and @irq_status
+ * @dma_avail:      set if DMA engine is available
+ * @devs_per_cs:    number of devices connected in parallel
+ * @oob_skip_bytes: number of bytes in OOB skipped by the ECC engine
+ * @active_bank:    active bank id
+ * @nbanks:         the number of banks supported by this controller
+ * @revision:       IP revision
+ * @caps:           controller capabilities that cannot be detected run-time
+ * @ecc_caps:       ECC engine capabilities
+ * @host_read:      callback for read access of Host Data/Command Interface
+ * @host_write:     callback for write access of Host Data/Command Interface
+ * @setup_dma:      callback for setup of the Data DMA
+ */
+struct denali_controller {
+	struct nand_controller controller;
 	struct device *dev;
-	void __iomem *reg;		/* Register Interface */
-	void __iomem *host;		/* Host Data/Command Interface */
+	struct list_head chips;
+	unsigned long clk_rate;
+	unsigned long clk_x_rate;
+	void __iomem *reg;
+	void __iomem *host;
 	struct completion complete;
-	spinlock_t irq_lock;		/* protect irq_mask and irq_status */
-	u32 irq_mask;			/* interrupts we are waiting for */
-	u32 irq_status;			/* interrupts that have happened */
 	int irq;
-	void *buf;			/* for syndrome layout conversion */
-	dma_addr_t dma_addr;
-	int dma_avail;			/* can support DMA? */
-	int devs_per_cs;		/* devices connected in parallel */
-	int oob_skip_bytes;		/* number of bytes reserved for BBM */
-	int max_banks;
-	unsigned int revision;		/* IP revision */
-	unsigned int caps;		/* IP capability (or quirk) */
+	u32 irq_mask;
+	u32 irq_status;
+	spinlock_t irq_lock;
+	bool dma_avail;
+	int devs_per_cs;
+	int oob_skip_bytes;
+	int active_bank;
+	int nbanks;
+	unsigned int revision;
+	unsigned int caps;
 	const struct nand_ecc_caps *ecc_caps;
-	u32 (*host_read)(struct denali_nand_info *denali, u32 addr);
-	void (*host_write)(struct denali_nand_info *denali, u32 addr, u32 data);
-	void (*setup_dma)(struct denali_nand_info *denali, dma_addr_t dma_addr,
-			  int page, int write);
+	u32 (*host_read)(struct denali_controller *denali, u32 addr);
+	void (*host_write)(struct denali_controller *denali, u32 addr,
+			   u32 data);
+	void (*setup_dma)(struct denali_controller *denali, dma_addr_t dma_addr,
+			  int page, bool write);
 };
 
 #define DENALI_CAP_HW_ECC_FIXUP			BIT(0)
 #define DENALI_CAP_DMA_64BIT			BIT(1)
 
 int denali_calc_ecc_bytes(int step_size, int strength);
-int denali_init(struct denali_nand_info *denali);
-void denali_remove(struct denali_nand_info *denali);
+int denali_chip_init(struct denali_controller *denali,
+		     struct denali_chip *dchip);
+int denali_init(struct denali_controller *denali);
+void denali_remove(struct denali_controller *denali);
 
 #endif /* __DENALI_H__ */
diff --git a/drivers/mtd/nand/raw/denali_dt.c b/drivers/mtd/nand/raw/denali_dt.c
index 0faaad0..5e14836 100644
--- a/drivers/mtd/nand/raw/denali_dt.c
+++ b/drivers/mtd/nand/raw/denali_dt.c
@@ -1,16 +1,8 @@
+// SPDX-License-Identifier: GPL-2.0
 /*
  * NAND Flash Controller Device Driver for DT
  *
  * Copyright © 2011, Picochip.
- *
- * This program is free software; you can redistribute it and/or modify it
- * under the terms and conditions of the GNU General Public License,
- * version 2, as published by the Free Software Foundation.
- *
- * This program is distributed in the hope it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
- * more details.
  */
 
 #include <linux/clk.h>
@@ -26,7 +18,7 @@
 #include "denali.h"
 
 struct denali_dt {
-	struct denali_nand_info	denali;
+	struct denali_controller controller;
 	struct clk *clk;	/* core clock */
 	struct clk *clk_x;	/* bus interface clock */
 	struct clk *clk_ecc;	/* ECC circuit clock */
@@ -79,19 +71,92 @@
 };
 MODULE_DEVICE_TABLE(of, denali_nand_dt_ids);
 
+static int denali_dt_chip_init(struct denali_controller *denali,
+			       struct device_node *chip_np)
+{
+	struct denali_chip *dchip;
+	u32 bank;
+	int nsels, i, ret;
+
+	nsels = of_property_count_u32_elems(chip_np, "reg");
+	if (nsels < 0)
+		return nsels;
+
+	dchip = devm_kzalloc(denali->dev, struct_size(dchip, sels, nsels),
+			     GFP_KERNEL);
+	if (!dchip)
+		return -ENOMEM;
+
+	dchip->nsels = nsels;
+
+	for (i = 0; i < nsels; i++) {
+		ret = of_property_read_u32_index(chip_np, "reg", i, &bank);
+		if (ret)
+			return ret;
+
+		dchip->sels[i].bank = bank;
+
+		nand_set_flash_node(&dchip->chip, chip_np);
+	}
+
+	return denali_chip_init(denali, dchip);
+}
+
+/* Backward compatibility for old platforms */
+static int denali_dt_legacy_chip_init(struct denali_controller *denali)
+{
+	struct denali_chip *dchip;
+	int nsels, i;
+
+	nsels = denali->nbanks;
+
+	dchip = devm_kzalloc(denali->dev, struct_size(dchip, sels, nsels),
+			     GFP_KERNEL);
+	if (!dchip)
+		return -ENOMEM;
+
+	dchip->nsels = nsels;
+
+	for (i = 0; i < nsels; i++)
+		dchip->sels[i].bank = i;
+
+	nand_set_flash_node(&dchip->chip, denali->dev->of_node);
+
+	return denali_chip_init(denali, dchip);
+}
+
+/*
+ * Check the DT binding.
+ * The new binding expects chip subnodes in the controller node.
+ * So, #address-cells = <1>; #size-cells = <0>; are required.
+ * Check the #size-cells to distinguish the binding.
+ */
+static bool denali_dt_is_legacy_binding(struct device_node *np)
+{
+	u32 cells;
+	int ret;
+
+	ret = of_property_read_u32(np, "#size-cells", &cells);
+	if (ret)
+		return true;
+
+	return cells != 0;
+}
+
 static int denali_dt_probe(struct platform_device *pdev)
 {
 	struct device *dev = &pdev->dev;
 	struct resource *res;
 	struct denali_dt *dt;
 	const struct denali_dt_data *data;
-	struct denali_nand_info *denali;
+	struct denali_controller *denali;
+	struct device_node *np;
 	int ret;
 
 	dt = devm_kzalloc(dev, sizeof(*dt), GFP_KERNEL);
 	if (!dt)
 		return -ENOMEM;
-	denali = &dt->denali;
+	denali = &dt->controller;
 
 	data = of_device_get_match_data(dev);
 	if (data) {
@@ -117,25 +182,17 @@
 	if (IS_ERR(denali->host))
 		return PTR_ERR(denali->host);
 
-	/*
-	 * A single anonymous clock is supported for the backward compatibility.
-	 * New platforms should support all the named clocks.
-	 */
 	dt->clk = devm_clk_get(dev, "nand");
 	if (IS_ERR(dt->clk))
-		dt->clk = devm_clk_get(dev, NULL);
-	if (IS_ERR(dt->clk)) {
-		dev_err(dev, "no clk available\n");
 		return PTR_ERR(dt->clk);
-	}
 
 	dt->clk_x = devm_clk_get(dev, "nand_x");
 	if (IS_ERR(dt->clk_x))
-		dt->clk_x = NULL;
+		return PTR_ERR(dt->clk_x);
 
 	dt->clk_ecc = devm_clk_get(dev, "ecc");
 	if (IS_ERR(dt->clk_ecc))
-		dt->clk_ecc = NULL;
+		return PTR_ERR(dt->clk_ecc);
 
 	ret = clk_prepare_enable(dt->clk);
 	if (ret)
@@ -149,27 +206,33 @@
 	if (ret)
 		goto out_disable_clk_x;
 
-	if (dt->clk_x) {
-		denali->clk_rate = clk_get_rate(dt->clk);
-		denali->clk_x_rate = clk_get_rate(dt->clk_x);
-	} else {
-		/*
-		 * Hardcode the clock rates for the backward compatibility.
-		 * This works for both SOCFPGA and UniPhier.
-		 */
-		dev_notice(dev,
-			   "necessary clock is missing. default clock rates are used.\n");
-		denali->clk_rate = 50000000;
-		denali->clk_x_rate = 200000000;
-	}
+	denali->clk_rate = clk_get_rate(dt->clk);
+	denali->clk_x_rate = clk_get_rate(dt->clk_x);
 
 	ret = denali_init(denali);
 	if (ret)
 		goto out_disable_clk_ecc;
 
+	if (denali_dt_is_legacy_binding(dev->of_node)) {
+		ret = denali_dt_legacy_chip_init(denali);
+		if (ret)
+			goto out_remove_denali;
+	} else {
+		for_each_child_of_node(dev->of_node, np) {
+			ret = denali_dt_chip_init(denali, np);
+			if (ret) {
+				of_node_put(np);
+				goto out_remove_denali;
+			}
+		}
+	}
+
 	platform_set_drvdata(pdev, dt);
+
 	return 0;
 
+out_remove_denali:
+	denali_remove(denali);
 out_disable_clk_ecc:
 	clk_disable_unprepare(dt->clk_ecc);
 out_disable_clk_x:
@@ -184,7 +247,7 @@
 {
 	struct denali_dt *dt = platform_get_drvdata(pdev);
 
-	denali_remove(&dt->denali);
+	denali_remove(&dt->controller);
 	clk_disable_unprepare(dt->clk_ecc);
 	clk_disable_unprepare(dt->clk_x);
 	clk_disable_unprepare(dt->clk);
@@ -202,6 +265,6 @@
 };
 module_platform_driver(denali_dt_driver);
 
-MODULE_LICENSE("GPL");
+MODULE_LICENSE("GPL v2");
 MODULE_AUTHOR("Jamie Iles");
 MODULE_DESCRIPTION("DT driver for Denali NAND controller");
diff --git a/drivers/mtd/nand/raw/denali_pci.c b/drivers/mtd/nand/raw/denali_pci.c
index 7c8efc4..d62aa52 100644
--- a/drivers/mtd/nand/raw/denali_pci.c
+++ b/drivers/mtd/nand/raw/denali_pci.c
@@ -1,15 +1,7 @@
+// SPDX-License-Identifier: GPL-2.0
 /*
  * NAND Flash Controller Device Driver
  * Copyright © 2009-2010, Intel Corporation and its suppliers.
- *
- * This program is free software; you can redistribute it and/or modify it
- * under the terms and conditions of the GNU General Public License,
- * version 2, as published by the Free Software Foundation.
- *
- * This program is distributed in the hope it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
- * more details.
  */
 
 #include <linux/errno.h>
@@ -37,10 +29,11 @@
 
 static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
 {
-	int ret;
 	resource_size_t csr_base, mem_base;
 	unsigned long csr_len, mem_len;
-	struct denali_nand_info *denali;
+	struct denali_controller *denali;
+	struct denali_chip *dchip;
+	int nsels, ret, i;
 
 	denali = devm_kzalloc(&dev->dev, sizeof(*denali), GFP_KERNEL);
 	if (!denali)
@@ -72,7 +65,6 @@
 	denali->dev = &dev->dev;
 	denali->irq = dev->irq;
 	denali->ecc_caps = &denali_pci_ecc_caps;
-	denali->nand.ecc.options |= NAND_ECC_MAXIMIZE;
 	denali->clk_rate = 50000000;		/* 50 MHz */
 	denali->clk_x_rate = 200000000;		/* 200 MHz */
 
@@ -92,27 +84,49 @@
 	if (!denali->host) {
 		dev_err(&dev->dev, "Spectra: ioremap_nocache failed!");
 		ret = -ENOMEM;
-		goto failed_remap_reg;
+		goto out_unmap_reg;
 	}
 
 	ret = denali_init(denali);
 	if (ret)
-		goto failed_remap_mem;
+		goto out_unmap_host;
+
+	nsels = denali->nbanks;
+
+	dchip = devm_kzalloc(denali->dev, struct_size(dchip, sels, nsels),
+			     GFP_KERNEL);
+	if (!dchip) {
+		ret = -ENOMEM;
+		goto out_remove_denali;
+	}
+
+	dchip->chip.ecc.options |= NAND_ECC_MAXIMIZE;
+
+	dchip->nsels = nsels;
+
+	for (i = 0; i < nsels; i++)
+		dchip->sels[i].bank = i;
+
+	ret = denali_chip_init(denali, dchip);
+	if (ret)
+		goto out_remove_denali;
 
 	pci_set_drvdata(dev, denali);
 
 	return 0;
 
-failed_remap_mem:
+out_remove_denali:
+	denali_remove(denali);
+out_unmap_host:
 	iounmap(denali->host);
-failed_remap_reg:
+out_unmap_reg:
 	iounmap(denali->reg);
 	return ret;
 }
 
 static void denali_pci_remove(struct pci_dev *dev)
 {
-	struct denali_nand_info *denali = pci_get_drvdata(dev);
+	struct denali_controller *denali = pci_get_drvdata(dev);
 
 	denali_remove(denali);
 	iounmap(denali->reg);
diff --git a/drivers/mtd/nand/raw/diskonchip.c b/drivers/mtd/nand/raw/diskonchip.c
index 3c46188..c0e1a8e 100644
--- a/drivers/mtd/nand/raw/diskonchip.c
+++ b/drivers/mtd/nand/raw/diskonchip.c
@@ -1,3 +1,4 @@
+// SPDX-License-Identifier: GPL-2.0-only
 /*
  * (C) 2003 Red Hat, Inc.
  * (C) 2004 Dan Brown <dan_brown@ieee.org>
@@ -83,9 +84,9 @@
 #define DoC_is_Millennium(doc) ((doc)->ChipID == DOC_ChipID_DocMil)
 #define DoC_is_2000(doc) ((doc)->ChipID == DOC_ChipID_Doc2k)
 
-static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd,
+static void doc200x_hwcontrol(struct nand_chip *this, int cmd,
 			      unsigned int bitmask);
-static void doc200x_select_chip(struct mtd_info *mtd, int chip);
+static void doc200x_select_chip(struct nand_chip *this, int chip);
 
 static int debug = 0;
 module_param(debug, int, 0);
@@ -290,9 +291,8 @@
 	return ret;
 }
 
-static void doc2000_write_byte(struct mtd_info *mtd, u_char datum)
+static void doc2000_write_byte(struct nand_chip *this, u_char datum)
 {
-	struct nand_chip *this = mtd_to_nand(mtd);
 	struct doc_priv *doc = nand_get_controller_data(this);
 	void __iomem *docptr = doc->virtadr;
 
@@ -302,9 +302,8 @@
 	WriteDOC(datum, docptr, 2k_CDSN_IO);
 }
 
-static u_char doc2000_read_byte(struct mtd_info *mtd)
+static u_char doc2000_read_byte(struct nand_chip *this)
 {
-	struct nand_chip *this = mtd_to_nand(mtd);
 	struct doc_priv *doc = nand_get_controller_data(this);
 	void __iomem *docptr = doc->virtadr;
 	u_char ret;
@@ -317,9 +316,9 @@
 	return ret;
 }
 
-static void doc2000_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
+static void doc2000_writebuf(struct nand_chip *this, const u_char *buf,
+			     int len)
 {
-	struct nand_chip *this = mtd_to_nand(mtd);
 	struct doc_priv *doc = nand_get_controller_data(this);
 	void __iomem *docptr = doc->virtadr;
 	int i;
@@ -334,9 +333,8 @@
 		printk("\n");
 }
 
-static void doc2000_readbuf(struct mtd_info *mtd, u_char *buf, int len)
+static void doc2000_readbuf(struct nand_chip *this, u_char *buf, int len)
 {
-	struct nand_chip *this = mtd_to_nand(mtd);
 	struct doc_priv *doc = nand_get_controller_data(this);
 	void __iomem *docptr = doc->virtadr;
 	int i;
@@ -344,14 +342,12 @@
 	if (debug)
 		printk("readbuf of %d bytes: ", len);
 
-	for (i = 0; i < len; i++) {
+	for (i = 0; i < len; i++)
 		buf[i] = ReadDOC(docptr, 2k_CDSN_IO + i);
-	}
 }
 
-static void doc2000_readbuf_dword(struct mtd_info *mtd, u_char *buf, int len)
+static void doc2000_readbuf_dword(struct nand_chip *this, u_char *buf, int len)
 {
-	struct nand_chip *this = mtd_to_nand(mtd);
 	struct doc_priv *doc = nand_get_controller_data(this);
 	void __iomem *docptr = doc->virtadr;
 	int i;
@@ -376,19 +372,19 @@
 	struct doc_priv *doc = nand_get_controller_data(this);
 	uint16_t ret;
 
-	doc200x_select_chip(mtd, nr);
-	doc200x_hwcontrol(mtd, NAND_CMD_READID,
+	doc200x_select_chip(this, nr);
+	doc200x_hwcontrol(this, NAND_CMD_READID,
 			  NAND_CTRL_CLE | NAND_CTRL_CHANGE);
-	doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
-	doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
+	doc200x_hwcontrol(this, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
+	doc200x_hwcontrol(this, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
 
 	/* We can't use dev_ready here, but at least we wait for the
 	 * command to complete
 	 */
 	udelay(50);
 
-	ret = this->read_byte(mtd) << 8;
-	ret |= this->read_byte(mtd);
+	ret = this->legacy.read_byte(this) << 8;
+	ret |= this->legacy.read_byte(this);
 
 	if (doc->ChipID == DOC_ChipID_Doc2k && try_dword && !nr) {
 		/* First chip probe. See if we get same results by 32-bit access */
@@ -398,10 +394,10 @@
 		} ident;
 		void __iomem *docptr = doc->virtadr;
 
-		doc200x_hwcontrol(mtd, NAND_CMD_READID,
+		doc200x_hwcontrol(this, NAND_CMD_READID,
 				  NAND_CTRL_CLE | NAND_CTRL_CHANGE);
-		doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
-		doc200x_hwcontrol(mtd, NAND_CMD_NONE,
+		doc200x_hwcontrol(this, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
+		doc200x_hwcontrol(this, NAND_CMD_NONE,
 				  NAND_NCE | NAND_CTRL_CHANGE);
 
 		udelay(50);
@@ -409,7 +405,7 @@
 		ident.dword = readl(docptr + DoC_2k_CDSN_IO);
 		if (((ident.byte[0] << 8) | ident.byte[1]) == ret) {
 			pr_info("DiskOnChip 2000 responds to DWORD access\n");
-			this->read_buf = &doc2000_readbuf_dword;
+			this->legacy.read_buf = &doc2000_readbuf_dword;
 		}
 	}
 
@@ -438,7 +434,7 @@
 	pr_debug("Detected %d chips per floor.\n", i);
 }
 
-static int doc200x_wait(struct mtd_info *mtd, struct nand_chip *this)
+static int doc200x_wait(struct nand_chip *this)
 {
 	struct doc_priv *doc = nand_get_controller_data(this);
 
@@ -447,14 +443,13 @@
 	DoC_WaitReady(doc);
 	nand_status_op(this, NULL);
 	DoC_WaitReady(doc);
-	status = (int)this->read_byte(mtd);
+	status = (int)this->legacy.read_byte(this);
 
 	return status;
 }
 
-static void doc2001_write_byte(struct mtd_info *mtd, u_char datum)
+static void doc2001_write_byte(struct nand_chip *this, u_char datum)
 {
-	struct nand_chip *this = mtd_to_nand(mtd);
 	struct doc_priv *doc = nand_get_controller_data(this);
 	void __iomem *docptr = doc->virtadr;
 
@@ -463,9 +458,8 @@
 	WriteDOC(datum, docptr, WritePipeTerm);
 }
 
-static u_char doc2001_read_byte(struct mtd_info *mtd)
+static u_char doc2001_read_byte(struct nand_chip *this)
 {
-	struct nand_chip *this = mtd_to_nand(mtd);
 	struct doc_priv *doc = nand_get_controller_data(this);
 	void __iomem *docptr = doc->virtadr;
 
@@ -477,9 +471,8 @@
 	return ReadDOC(docptr, LastDataRead);
 }
 
-static void doc2001_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
+static void doc2001_writebuf(struct nand_chip *this, const u_char *buf, int len)
 {
-	struct nand_chip *this = mtd_to_nand(mtd);
 	struct doc_priv *doc = nand_get_controller_data(this);
 	void __iomem *docptr = doc->virtadr;
 	int i;
@@ -490,9 +483,8 @@
 	WriteDOC(0x00, docptr, WritePipeTerm);
 }
 
-static void doc2001_readbuf(struct mtd_info *mtd, u_char *buf, int len)
+static void doc2001_readbuf(struct nand_chip *this, u_char *buf, int len)
 {
-	struct nand_chip *this = mtd_to_nand(mtd);
 	struct doc_priv *doc = nand_get_controller_data(this);
 	void __iomem *docptr = doc->virtadr;
 	int i;
@@ -507,9 +499,8 @@
 	buf[i] = ReadDOC(docptr, LastDataRead);
 }
 
-static u_char doc2001plus_read_byte(struct mtd_info *mtd)
+static u_char doc2001plus_read_byte(struct nand_chip *this)
 {
-	struct nand_chip *this = mtd_to_nand(mtd);
 	struct doc_priv *doc = nand_get_controller_data(this);
 	void __iomem *docptr = doc->virtadr;
 	u_char ret;
@@ -522,9 +513,8 @@
 	return ret;
 }
 
-static void doc2001plus_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
+static void doc2001plus_writebuf(struct nand_chip *this, const u_char *buf, int len)
 {
-	struct nand_chip *this = mtd_to_nand(mtd);
 	struct doc_priv *doc = nand_get_controller_data(this);
 	void __iomem *docptr = doc->virtadr;
 	int i;
@@ -540,9 +530,8 @@
 		printk("\n");
 }
 
-static void doc2001plus_readbuf(struct mtd_info *mtd, u_char *buf, int len)
+static void doc2001plus_readbuf(struct nand_chip *this, u_char *buf, int len)
 {
-	struct nand_chip *this = mtd_to_nand(mtd);
 	struct doc_priv *doc = nand_get_controller_data(this);
 	void __iomem *docptr = doc->virtadr;
 	int i;
@@ -571,9 +560,8 @@
 		printk("\n");
 }
 
-static void doc2001plus_select_chip(struct mtd_info *mtd, int chip)
+static void doc2001plus_select_chip(struct nand_chip *this, int chip)
 {
-	struct nand_chip *this = mtd_to_nand(mtd);
 	struct doc_priv *doc = nand_get_controller_data(this);
 	void __iomem *docptr = doc->virtadr;
 	int floor = 0;
@@ -598,9 +586,8 @@
 	doc->curfloor = floor;
 }
 
-static void doc200x_select_chip(struct mtd_info *mtd, int chip)
+static void doc200x_select_chip(struct nand_chip *this, int chip)
 {
-	struct nand_chip *this = mtd_to_nand(mtd);
 	struct doc_priv *doc = nand_get_controller_data(this);
 	void __iomem *docptr = doc->virtadr;
 	int floor = 0;
@@ -615,12 +602,12 @@
 	chip -= (floor * doc->chips_per_floor);
 
 	/* 11.4.4 -- deassert CE before changing chip */
-	doc200x_hwcontrol(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
+	doc200x_hwcontrol(this, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
 
 	WriteDOC(floor, docptr, FloorSelect);
 	WriteDOC(chip, docptr, CDSNDeviceSelect);
 
-	doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
+	doc200x_hwcontrol(this, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
 
 	doc->curchip = chip;
 	doc->curfloor = floor;
@@ -628,10 +615,9 @@
 
 #define CDSN_CTRL_MSK (CDSN_CTRL_CE | CDSN_CTRL_CLE | CDSN_CTRL_ALE)
 
-static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd,
+static void doc200x_hwcontrol(struct nand_chip *this, int cmd,
 			      unsigned int ctrl)
 {
-	struct nand_chip *this = mtd_to_nand(mtd);
 	struct doc_priv *doc = nand_get_controller_data(this);
 	void __iomem *docptr = doc->virtadr;
 
@@ -646,15 +632,16 @@
 	}
 	if (cmd != NAND_CMD_NONE) {
 		if (DoC_is_2000(doc))
-			doc2000_write_byte(mtd, cmd);
+			doc2000_write_byte(this, cmd);
 		else
-			doc2001_write_byte(mtd, cmd);
+			doc2001_write_byte(this, cmd);
 	}
 }
 
-static void doc2001plus_command(struct mtd_info *mtd, unsigned command, int column, int page_addr)
+static void doc2001plus_command(struct nand_chip *this, unsigned command,
+				int column, int page_addr)
 {
-	struct nand_chip *this = mtd_to_nand(mtd);
+	struct mtd_info *mtd = nand_to_mtd(this);
 	struct doc_priv *doc = nand_get_controller_data(this);
 	void __iomem *docptr = doc->virtadr;
 
@@ -729,13 +716,13 @@
 		return;
 
 	case NAND_CMD_RESET:
-		if (this->dev_ready)
+		if (this->legacy.dev_ready)
 			break;
-		udelay(this->chip_delay);
+		udelay(this->legacy.chip_delay);
 		WriteDOC(NAND_CMD_STATUS, docptr, Mplus_FlashCmd);
 		WriteDOC(0, docptr, Mplus_WritePipeTerm);
 		WriteDOC(0, docptr, Mplus_WritePipeTerm);
-		while (!(this->read_byte(mtd) & 0x40)) ;
+		while (!(this->legacy.read_byte(this) & 0x40)) ;
 		return;
 
 		/* This applies to read commands */
@@ -744,8 +731,8 @@
 		 * If we don't have access to the busy pin, we apply the given
 		 * command delay
 		 */
-		if (!this->dev_ready) {
-			udelay(this->chip_delay);
+		if (!this->legacy.dev_ready) {
+			udelay(this->legacy.chip_delay);
 			return;
 		}
 	}
@@ -754,12 +741,11 @@
 	 * any case on any machine. */
 	ndelay(100);
 	/* wait until command is processed */
-	while (!this->dev_ready(mtd)) ;
+	while (!this->legacy.dev_ready(this)) ;
 }
 
-static int doc200x_dev_ready(struct mtd_info *mtd)
+static int doc200x_dev_ready(struct nand_chip *this)
 {
-	struct nand_chip *this = mtd_to_nand(mtd);
 	struct doc_priv *doc = nand_get_controller_data(this);
 	void __iomem *docptr = doc->virtadr;
 
@@ -790,16 +776,15 @@
 	}
 }
 
-static int doc200x_block_bad(struct mtd_info *mtd, loff_t ofs)
+static int doc200x_block_bad(struct nand_chip *this, loff_t ofs)
 {
 	/* This is our last resort if we couldn't find or create a BBT.  Just
 	   pretend all blocks are good. */
 	return 0;
 }
 
-static void doc200x_enable_hwecc(struct mtd_info *mtd, int mode)
+static void doc200x_enable_hwecc(struct nand_chip *this, int mode)
 {
-	struct nand_chip *this = mtd_to_nand(mtd);
 	struct doc_priv *doc = nand_get_controller_data(this);
 	void __iomem *docptr = doc->virtadr;
 
@@ -816,9 +801,8 @@
 	}
 }
 
-static void doc2001plus_enable_hwecc(struct mtd_info *mtd, int mode)
+static void doc2001plus_enable_hwecc(struct nand_chip *this, int mode)
 {
-	struct nand_chip *this = mtd_to_nand(mtd);
 	struct doc_priv *doc = nand_get_controller_data(this);
 	void __iomem *docptr = doc->virtadr;
 
@@ -836,9 +820,9 @@
 }
 
 /* This code is only called on write */
-static int doc200x_calculate_ecc(struct mtd_info *mtd, const u_char *dat, unsigned char *ecc_code)
+static int doc200x_calculate_ecc(struct nand_chip *this, const u_char *dat,
+				 unsigned char *ecc_code)
 {
-	struct nand_chip *this = mtd_to_nand(mtd);
 	struct doc_priv *doc = nand_get_controller_data(this);
 	void __iomem *docptr = doc->virtadr;
 	int i;
@@ -895,11 +879,10 @@
 	return 0;
 }
 
-static int doc200x_correct_data(struct mtd_info *mtd, u_char *dat,
+static int doc200x_correct_data(struct nand_chip *this, u_char *dat,
 				u_char *read_ecc, u_char *isnull)
 {
 	int i, ret = 0;
-	struct nand_chip *this = mtd_to_nand(mtd);
 	struct doc_priv *doc = nand_get_controller_data(this);
 	void __iomem *docptr = doc->virtadr;
 	uint8_t calc_ecc[6];
@@ -1046,6 +1029,7 @@
 {
 	struct nand_chip *this = mtd_to_nand(mtd);
 	struct doc_priv *doc = nand_get_controller_data(this);
+	struct nand_memory_organization *memorg;
 	int ret = 0;
 	u_char *buf;
 	struct NFTLMediaHeader *mh;
@@ -1054,6 +1038,8 @@
 	unsigned blocks, maxblocks;
 	int offs, numheaders;
 
+	memorg = nanddev_get_memorg(&this->base);
+
 	buf = kmalloc(mtd->writesize, GFP_KERNEL);
 	if (!buf) {
 		return 0;
@@ -1100,6 +1086,7 @@
 	   implementation of the NAND layer.  */
 	if (mh->UnitSizeFactor != 0xff) {
 		this->bbt_erase_shift += (0xff - mh->UnitSizeFactor);
+		memorg->pages_per_eraseblock <<= (0xff - mh->UnitSizeFactor);
 		mtd->erasesize <<= (0xff - mh->UnitSizeFactor);
 		pr_info("Setting virtual erase size to %d\n", mtd->erasesize);
 		blocks = mtd->size >> this->bbt_erase_shift;
@@ -1305,7 +1292,7 @@
 	struct doc_priv *doc = nand_get_controller_data(this);
 	struct mtd_partition parts[5];
 
-	if (this->numchips > doc->chips_per_floor) {
+	if (nanddev_ntargets(&this->base) > doc->chips_per_floor) {
 		pr_err("Multi-floor INFTL devices not yet supported.\n");
 		return -EIO;
 	}
@@ -1357,9 +1344,9 @@
 	struct nand_chip *this = mtd_to_nand(mtd);
 	struct doc_priv *doc = nand_get_controller_data(this);
 
-	this->read_byte = doc2000_read_byte;
-	this->write_buf = doc2000_writebuf;
-	this->read_buf = doc2000_readbuf;
+	this->legacy.read_byte = doc2000_read_byte;
+	this->legacy.write_buf = doc2000_writebuf;
+	this->legacy.read_buf = doc2000_readbuf;
 	doc->late_init = nftl_scan_bbt;
 
 	doc->CDSNControl = CDSN_CTRL_FLASH_IO | CDSN_CTRL_ECC_IO;
@@ -1373,9 +1360,9 @@
 	struct nand_chip *this = mtd_to_nand(mtd);
 	struct doc_priv *doc = nand_get_controller_data(this);
 
-	this->read_byte = doc2001_read_byte;
-	this->write_buf = doc2001_writebuf;
-	this->read_buf = doc2001_readbuf;
+	this->legacy.read_byte = doc2001_read_byte;
+	this->legacy.write_buf = doc2001_writebuf;
+	this->legacy.read_buf = doc2001_readbuf;
 
 	ReadDOC(doc->virtadr, ChipID);
 	ReadDOC(doc->virtadr, ChipID);
@@ -1403,13 +1390,13 @@
 	struct nand_chip *this = mtd_to_nand(mtd);
 	struct doc_priv *doc = nand_get_controller_data(this);
 
-	this->read_byte = doc2001plus_read_byte;
-	this->write_buf = doc2001plus_writebuf;
-	this->read_buf = doc2001plus_readbuf;
+	this->legacy.read_byte = doc2001plus_read_byte;
+	this->legacy.write_buf = doc2001plus_writebuf;
+	this->legacy.read_buf = doc2001plus_readbuf;
 	doc->late_init = inftl_scan_bbt;
-	this->cmd_ctrl = NULL;
-	this->select_chip = doc2001plus_select_chip;
-	this->cmdfunc = doc2001plus_command;
+	this->legacy.cmd_ctrl = NULL;
+	this->legacy.select_chip = doc2001plus_select_chip;
+	this->legacy.cmdfunc = doc2001plus_command;
 	this->ecc.hwctl = doc2001plus_enable_hwecc;
 
 	doc->chips_per_floor = 1;
@@ -1495,6 +1482,7 @@
 			break;
 		case DOC_ChipID_DocMilPlus32:
 			pr_err("DiskOnChip Millennium Plus 32MB is not supported, ignoring.\n");
+			/* fall through */
 		default:
 			ret = -ENODEV;
 			goto notfound;
@@ -1586,11 +1574,11 @@
 	mtd_set_ooblayout(mtd, &doc200x_ooblayout_ops);
 
 	nand_set_controller_data(nand, doc);
-	nand->select_chip	= doc200x_select_chip;
-	nand->cmd_ctrl		= doc200x_hwcontrol;
-	nand->dev_ready		= doc200x_dev_ready;
-	nand->waitfunc		= doc200x_wait;
-	nand->block_bad		= doc200x_block_bad;
+	nand->legacy.select_chip	= doc200x_select_chip;
+	nand->legacy.cmd_ctrl		= doc200x_hwcontrol;
+	nand->legacy.dev_ready	= doc200x_dev_ready;
+	nand->legacy.waitfunc	= doc200x_wait;
+	nand->legacy.block_bad	= doc200x_block_bad;
 	nand->ecc.hwctl		= doc200x_enable_hwecc;
 	nand->ecc.calculate	= doc200x_calculate_ecc;
 	nand->ecc.correct	= doc200x_correct_data;
@@ -1620,14 +1608,14 @@
 	else
 		numchips = doc2001_init(mtd);
 
-	if ((ret = nand_scan(mtd, numchips)) || (ret = doc->late_init(mtd))) {
+	if ((ret = nand_scan(nand, numchips)) || (ret = doc->late_init(mtd))) {
 		/* DBB note: i believe nand_release is necessary here, as
 		   buffers may have been allocated in nand_base.  Check with
 		   Thomas. FIX ME! */
 		/* nand_release will call mtd_device_unregister, but we
 		   haven't yet added it.  This is handled without incident by
 		   mtd_device_unregister, as far as I can tell. */
-		nand_release(mtd);
+		nand_release(nand);
 		goto fail;
 	}
 
@@ -1662,7 +1650,7 @@
 		doc = nand_get_controller_data(nand);
 
 		nextmtd = doc->nextdoc;
-		nand_release(mtd);
+		nand_release(nand);
 		iounmap(doc->virtadr);
 		release_mem_region(doc->physadr, DOC_IOREMAP_LEN);
 		free_rs(doc->rs_decoder);
diff --git a/drivers/mtd/nand/raw/docg4.c b/drivers/mtd/nand/raw/docg4.c
deleted file mode 100644
index 427fcbc..0000000
--- a/drivers/mtd/nand/raw/docg4.c
+++ /dev/null
@@ -1,1442 +0,0 @@
-/*
- *  Copyright © 2012 Mike Dunn <mikedunn@newsguy.com>
- *
- * mtd nand driver for M-Systems DiskOnChip G4
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * Tested on the Palm Treo 680.  The G4 is also present on Toshiba Portege, Asus
- * P526, some HTC smartphones (Wizard, Prophet, ...), O2 XDA Zinc, maybe others.
- * Should work on these as well.  Let me know!
- *
- * TODO:
- *
- *  Mechanism for management of password-protected areas
- *
- *  Hamming ecc when reading oob only
- *
- *  According to the M-Sys documentation, this device is also available in a
- *  "dual-die" configuration having a 256MB capacity, but no mechanism for
- *  detecting this variant is documented.  Currently this driver assumes 128MB
- *  capacity.
- *
- *  Support for multiple cascaded devices ("floors").  Not sure which gadgets
- *  contain multiple G4s in a cascaded configuration, if any.
- *
- */
-
-#include <linux/kernel.h>
-#include <linux/slab.h>
-#include <linux/init.h>
-#include <linux/string.h>
-#include <linux/sched.h>
-#include <linux/delay.h>
-#include <linux/module.h>
-#include <linux/export.h>
-#include <linux/platform_device.h>
-#include <linux/io.h>
-#include <linux/bitops.h>
-#include <linux/mtd/partitions.h>
-#include <linux/mtd/mtd.h>
-#include <linux/mtd/rawnand.h>
-#include <linux/bch.h>
-#include <linux/bitrev.h>
-#include <linux/jiffies.h>
-
-/*
- * In "reliable mode" consecutive 2k pages are used in parallel (in some
- * fashion) to store the same data.  The data can be read back from the
- * even-numbered pages in the normal manner; odd-numbered pages will appear to
- * contain junk.  Systems that boot from the docg4 typically write the secondary
- * program loader (SPL) code in this mode.  The SPL is loaded by the initial
- * program loader (IPL, stored in the docg4's 2k NOR-like region that is mapped
- * to the reset vector address).  This module parameter enables you to use this
- * driver to write the SPL.  When in this mode, no more than 2k of data can be
- * written at a time, because the addresses do not increment in the normal
- * manner, and the starting offset must be within an even-numbered 2k region;
- * i.e., invalid starting offsets are 0x800, 0xa00, 0xc00, 0xe00, 0x1800,
- * 0x1a00, ...  Reliable mode is a special case and should not be used unless
- * you know what you're doing.
- */
-static bool reliable_mode;
-module_param(reliable_mode, bool, 0);
-MODULE_PARM_DESC(reliable_mode, "pages are programmed in reliable mode");
-
-/*
- * You'll want to ignore badblocks if you're reading a partition that contains
- * data written by the TrueFFS library (i.e., by PalmOS, Windows, etc), since
- * it does not use mtd nand's method for marking bad blocks (using oob area).
- * This will also skip the check of the "page written" flag.
- */
-static bool ignore_badblocks;
-module_param(ignore_badblocks, bool, 0);
-MODULE_PARM_DESC(ignore_badblocks, "no badblock checking performed");
-
-struct docg4_priv {
-	struct mtd_info	*mtd;
-	struct device *dev;
-	void __iomem *virtadr;
-	int status;
-	struct {
-		unsigned int command;
-		int column;
-		int page;
-	} last_command;
-	uint8_t oob_buf[16];
-	uint8_t ecc_buf[7];
-	int oob_page;
-	struct bch_control *bch;
-};
-
-/*
- * Defines prefixed with DOCG4 are unique to the diskonchip G4.  All others are
- * shared with other diskonchip devices (P3, G3 at least).
- *
- * Functions with names prefixed with docg4_ are mtd / nand interface functions
- * (though they may also be called internally).  All others are internal.
- */
-
-#define DOC_IOSPACE_DATA		0x0800
-
-/* register offsets */
-#define DOC_CHIPID			0x1000
-#define DOC_DEVICESELECT		0x100a
-#define DOC_ASICMODE			0x100c
-#define DOC_DATAEND			0x101e
-#define DOC_NOP				0x103e
-
-#define DOC_FLASHSEQUENCE		0x1032
-#define DOC_FLASHCOMMAND		0x1034
-#define DOC_FLASHADDRESS		0x1036
-#define DOC_FLASHCONTROL		0x1038
-#define DOC_ECCCONF0			0x1040
-#define DOC_ECCCONF1			0x1042
-#define DOC_HAMMINGPARITY		0x1046
-#define DOC_BCH_SYNDROM(idx)		(0x1048 + idx)
-
-#define DOC_ASICMODECONFIRM		0x1072
-#define DOC_CHIPID_INV			0x1074
-#define DOC_POWERMODE			0x107c
-
-#define DOCG4_MYSTERY_REG		0x1050
-
-/* apparently used only to write oob bytes 6 and 7 */
-#define DOCG4_OOB_6_7			0x1052
-
-/* DOC_FLASHSEQUENCE register commands */
-#define DOC_SEQ_RESET			0x00
-#define DOCG4_SEQ_PAGE_READ		0x03
-#define DOCG4_SEQ_FLUSH			0x29
-#define DOCG4_SEQ_PAGEWRITE		0x16
-#define DOCG4_SEQ_PAGEPROG		0x1e
-#define DOCG4_SEQ_BLOCKERASE		0x24
-#define DOCG4_SEQ_SETMODE		0x45
-
-/* DOC_FLASHCOMMAND register commands */
-#define DOCG4_CMD_PAGE_READ             0x00
-#define DOC_CMD_ERASECYCLE2		0xd0
-#define DOCG4_CMD_FLUSH                 0x70
-#define DOCG4_CMD_READ2                 0x30
-#define DOC_CMD_PROG_BLOCK_ADDR		0x60
-#define DOCG4_CMD_PAGEWRITE		0x80
-#define DOC_CMD_PROG_CYCLE2		0x10
-#define DOCG4_CMD_FAST_MODE		0xa3 /* functionality guessed */
-#define DOC_CMD_RELIABLE_MODE		0x22
-#define DOC_CMD_RESET			0xff
-
-/* DOC_POWERMODE register bits */
-#define DOC_POWERDOWN_READY		0x80
-
-/* DOC_FLASHCONTROL register bits */
-#define DOC_CTRL_CE			0x10
-#define DOC_CTRL_UNKNOWN		0x40
-#define DOC_CTRL_FLASHREADY		0x01
-
-/* DOC_ECCCONF0 register bits */
-#define DOC_ECCCONF0_READ_MODE		0x8000
-#define DOC_ECCCONF0_UNKNOWN		0x2000
-#define DOC_ECCCONF0_ECC_ENABLE	        0x1000
-#define DOC_ECCCONF0_DATA_BYTES_MASK	0x07ff
-
-/* DOC_ECCCONF1 register bits */
-#define DOC_ECCCONF1_BCH_SYNDROM_ERR	0x80
-#define DOC_ECCCONF1_ECC_ENABLE         0x07
-#define DOC_ECCCONF1_PAGE_IS_WRITTEN	0x20
-
-/* DOC_ASICMODE register bits */
-#define DOC_ASICMODE_RESET		0x00
-#define DOC_ASICMODE_NORMAL		0x01
-#define DOC_ASICMODE_POWERDOWN		0x02
-#define DOC_ASICMODE_MDWREN		0x04
-#define DOC_ASICMODE_BDETCT_RESET	0x08
-#define DOC_ASICMODE_RSTIN_RESET	0x10
-#define DOC_ASICMODE_RAM_WE		0x20
-
-/* good status values read after read/write/erase operations */
-#define DOCG4_PROGSTATUS_GOOD          0x51
-#define DOCG4_PROGSTATUS_GOOD_2        0xe0
-
-/*
- * On read operations (page and oob-only), the first byte read from I/O reg is a
- * status.  On error, it reads 0x73; otherwise, it reads either 0x71 (first read
- * after reset only) or 0x51, so bit 1 is presumed to be an error indicator.
- */
-#define DOCG4_READ_ERROR           0x02 /* bit 1 indicates read error */
-
-/* anatomy of the device */
-#define DOCG4_CHIP_SIZE        0x8000000
-#define DOCG4_PAGE_SIZE        0x200
-#define DOCG4_PAGES_PER_BLOCK  0x200
-#define DOCG4_BLOCK_SIZE       (DOCG4_PAGES_PER_BLOCK * DOCG4_PAGE_SIZE)
-#define DOCG4_NUMBLOCKS        (DOCG4_CHIP_SIZE / DOCG4_BLOCK_SIZE)
-#define DOCG4_OOB_SIZE         0x10
-#define DOCG4_CHIP_SHIFT       27    /* log_2(DOCG4_CHIP_SIZE) */
-#define DOCG4_PAGE_SHIFT       9     /* log_2(DOCG4_PAGE_SIZE) */
-#define DOCG4_ERASE_SHIFT      18    /* log_2(DOCG4_BLOCK_SIZE) */
-
-/* all but the last byte is included in ecc calculation */
-#define DOCG4_BCH_SIZE         (DOCG4_PAGE_SIZE + DOCG4_OOB_SIZE - 1)
-
-#define DOCG4_USERDATA_LEN     520 /* 512 byte page plus 8 oob avail to user */
-
-/* expected values from the ID registers */
-#define DOCG4_IDREG1_VALUE     0x0400
-#define DOCG4_IDREG2_VALUE     0xfbff
-
-/* primitive polynomial used to build the Galois field used by hw ecc gen */
-#define DOCG4_PRIMITIVE_POLY   0x4443
-
-#define DOCG4_M                14  /* Galois field is of order 2^14 */
-#define DOCG4_T                4   /* BCH alg corrects up to 4 bit errors */
-
-#define DOCG4_FACTORY_BBT_PAGE 16 /* page where read-only factory bbt lives */
-#define DOCG4_REDUNDANT_BBT_PAGE 24 /* page where redundant factory bbt lives */
-
-/*
- * Bytes 0, 1 are used as badblock marker.
- * Bytes 2 - 6 are available to the user.
- * Byte 7 is hamming ecc for first 7 oob bytes only.
- * Bytes 8 - 14 are hw-generated ecc covering entire page + oob bytes 0 - 14.
- * Byte 15 (the last) is used by the driver as a "page written" flag.
- */
-static int docg4_ooblayout_ecc(struct mtd_info *mtd, int section,
-			       struct mtd_oob_region *oobregion)
-{
-	if (section)
-		return -ERANGE;
-
-	oobregion->offset = 7;
-	oobregion->length = 9;
-
-	return 0;
-}
-
-static int docg4_ooblayout_free(struct mtd_info *mtd, int section,
-				struct mtd_oob_region *oobregion)
-{
-	if (section)
-		return -ERANGE;
-
-	oobregion->offset = 2;
-	oobregion->length = 5;
-
-	return 0;
-}
-
-static const struct mtd_ooblayout_ops docg4_ooblayout_ops = {
-	.ecc = docg4_ooblayout_ecc,
-	.free = docg4_ooblayout_free,
-};
-
-/*
- * The device has a nop register which M-Sys claims is for the purpose of
- * inserting precise delays.  But beware; at least some operations fail if the
- * nop writes are replaced with a generic delay!
- */
-static inline void write_nop(void __iomem *docptr)
-{
-	writew(0, docptr + DOC_NOP);
-}
-
-static void docg4_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
-{
-	int i;
-	struct nand_chip *nand = mtd_to_nand(mtd);
-	uint16_t *p = (uint16_t *) buf;
-	len >>= 1;
-
-	for (i = 0; i < len; i++)
-		p[i] = readw(nand->IO_ADDR_R);
-}
-
-static void docg4_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
-{
-	int i;
-	struct nand_chip *nand = mtd_to_nand(mtd);
-	uint16_t *p = (uint16_t *) buf;
-	len >>= 1;
-
-	for (i = 0; i < len; i++)
-		writew(p[i], nand->IO_ADDR_W);
-}
-
-static int poll_status(struct docg4_priv *doc)
-{
-	/*
-	 * Busy-wait for the FLASHREADY bit to be set in the FLASHCONTROL
-	 * register.  Operations known to take a long time (e.g., block erase)
-	 * should sleep for a while before calling this.
-	 */
-
-	uint16_t flash_status;
-	unsigned long timeo;
-	void __iomem *docptr = doc->virtadr;
-
-	dev_dbg(doc->dev, "%s...\n", __func__);
-
-	/* hardware quirk requires reading twice initially */
-	flash_status = readw(docptr + DOC_FLASHCONTROL);
-
-	timeo = jiffies + msecs_to_jiffies(200); /* generous timeout */
-	do {
-		cpu_relax();
-		flash_status = readb(docptr + DOC_FLASHCONTROL);
-	} while (!(flash_status & DOC_CTRL_FLASHREADY) &&
-		 time_before(jiffies, timeo));
-
-	if (unlikely(!(flash_status & DOC_CTRL_FLASHREADY))) {
-		dev_err(doc->dev, "%s: timed out!\n", __func__);
-		return NAND_STATUS_FAIL;
-	}
-
-	return 0;
-}
-
-
-static int docg4_wait(struct mtd_info *mtd, struct nand_chip *nand)
-{
-
-	struct docg4_priv *doc = nand_get_controller_data(nand);
-	int status = NAND_STATUS_WP;       /* inverse logic?? */
-	dev_dbg(doc->dev, "%s...\n", __func__);
-
-	/* report any previously unreported error */
-	if (doc->status) {
-		status |= doc->status;
-		doc->status = 0;
-		return status;
-	}
-
-	status |= poll_status(doc);
-	return status;
-}
-
-static void docg4_select_chip(struct mtd_info *mtd, int chip)
-{
-	/*
-	 * Select among multiple cascaded chips ("floors").  Multiple floors are
-	 * not yet supported, so the only valid non-negative value is 0.
-	 */
-	struct nand_chip *nand = mtd_to_nand(mtd);
-	struct docg4_priv *doc = nand_get_controller_data(nand);
-	void __iomem *docptr = doc->virtadr;
-
-	dev_dbg(doc->dev, "%s: chip %d\n", __func__, chip);
-
-	if (chip < 0)
-		return;		/* deselected */
-
-	if (chip > 0)
-		dev_warn(doc->dev, "multiple floors currently unsupported\n");
-
-	writew(0, docptr + DOC_DEVICESELECT);
-}
-
-static void reset(struct mtd_info *mtd)
-{
-	/* full device reset */
-
-	struct nand_chip *nand = mtd_to_nand(mtd);
-	struct docg4_priv *doc = nand_get_controller_data(nand);
-	void __iomem *docptr = doc->virtadr;
-
-	writew(DOC_ASICMODE_RESET | DOC_ASICMODE_MDWREN,
-	       docptr + DOC_ASICMODE);
-	writew(~(DOC_ASICMODE_RESET | DOC_ASICMODE_MDWREN),
-	       docptr + DOC_ASICMODECONFIRM);
-	write_nop(docptr);
-
-	writew(DOC_ASICMODE_NORMAL | DOC_ASICMODE_MDWREN,
-	       docptr + DOC_ASICMODE);
-	writew(~(DOC_ASICMODE_NORMAL | DOC_ASICMODE_MDWREN),
-	       docptr + DOC_ASICMODECONFIRM);
-
-	writew(DOC_ECCCONF1_ECC_ENABLE, docptr + DOC_ECCCONF1);
-
-	poll_status(doc);
-}
-
-static void read_hw_ecc(void __iomem *docptr, uint8_t *ecc_buf)
-{
-	/* read the 7 hw-generated ecc bytes */
-
-	int i;
-	for (i = 0; i < 7; i++) { /* hw quirk; read twice */
-		ecc_buf[i] = readb(docptr + DOC_BCH_SYNDROM(i));
-		ecc_buf[i] = readb(docptr + DOC_BCH_SYNDROM(i));
-	}
-}
-
-static int correct_data(struct mtd_info *mtd, uint8_t *buf, int page)
-{
-	/*
-	 * Called after a page read when hardware reports bitflips.
-	 * Up to four bitflips can be corrected.
-	 */
-
-	struct nand_chip *nand = mtd_to_nand(mtd);
-	struct docg4_priv *doc = nand_get_controller_data(nand);
-	void __iomem *docptr = doc->virtadr;
-	int i, numerrs, errpos[4];
-	const uint8_t blank_read_hwecc[8] = {
-		0xcf, 0x72, 0xfc, 0x1b, 0xa9, 0xc7, 0xb9, 0 };
-
-	read_hw_ecc(docptr, doc->ecc_buf); /* read 7 hw-generated ecc bytes */
-
-	/* check if read error is due to a blank page */
-	if (!memcmp(doc->ecc_buf, blank_read_hwecc, 7))
-		return 0;	/* yes */
-
-	/* skip additional check of "written flag" if ignore_badblocks */
-	if (ignore_badblocks == false) {
-
-		/*
-		 * If the hw ecc bytes are not those of a blank page, there's
-		 * still a chance that the page is blank, but was read with
-		 * errors.  Check the "written flag" in last oob byte, which
-		 * is set to zero when a page is written.  If more than half
-		 * the bits are set, assume a blank page.  Unfortunately, the
-		 * bit flips(s) are not reported in stats.
-		 */
-
-		if (nand->oob_poi[15]) {
-			int bit, numsetbits = 0;
-			unsigned long written_flag = nand->oob_poi[15];
-			for_each_set_bit(bit, &written_flag, 8)
-				numsetbits++;
-			if (numsetbits > 4) { /* assume blank */
-				dev_warn(doc->dev,
-					 "error(s) in blank page "
-					 "at offset %08x\n",
-					 page * DOCG4_PAGE_SIZE);
-				return 0;
-			}
-		}
-	}
-
-	/*
-	 * The hardware ecc unit produces oob_ecc ^ calc_ecc.  The kernel's bch
-	 * algorithm is used to decode this.  However the hw operates on page
-	 * data in a bit order that is the reverse of that of the bch alg,
-	 * requiring that the bits be reversed on the result.  Thanks to Ivan
-	 * Djelic for his analysis!
-	 */
-	for (i = 0; i < 7; i++)
-		doc->ecc_buf[i] = bitrev8(doc->ecc_buf[i]);
-
-	numerrs = decode_bch(doc->bch, NULL, DOCG4_USERDATA_LEN, NULL,
-			     doc->ecc_buf, NULL, errpos);
-
-	if (numerrs == -EBADMSG) {
-		dev_warn(doc->dev, "uncorrectable errors at offset %08x\n",
-			 page * DOCG4_PAGE_SIZE);
-		return -EBADMSG;
-	}
-
-	BUG_ON(numerrs < 0);	/* -EINVAL, or anything other than -EBADMSG */
-
-	/* undo last step in BCH alg (modulo mirroring not needed) */
-	for (i = 0; i < numerrs; i++)
-		errpos[i] = (errpos[i] & ~7)|(7-(errpos[i] & 7));
-
-	/* fix the errors */
-	for (i = 0; i < numerrs; i++) {
-
-		/* ignore if error within oob ecc bytes */
-		if (errpos[i] > DOCG4_USERDATA_LEN * 8)
-			continue;
-
-		/* if error within oob area preceeding ecc bytes... */
-		if (errpos[i] > DOCG4_PAGE_SIZE * 8)
-			change_bit(errpos[i] - DOCG4_PAGE_SIZE * 8,
-				   (unsigned long *)nand->oob_poi);
-
-		else    /* error in page data */
-			change_bit(errpos[i], (unsigned long *)buf);
-	}
-
-	dev_notice(doc->dev, "%d error(s) corrected at offset %08x\n",
-		   numerrs, page * DOCG4_PAGE_SIZE);
-
-	return numerrs;
-}
-
-static uint8_t docg4_read_byte(struct mtd_info *mtd)
-{
-	struct nand_chip *nand = mtd_to_nand(mtd);
-	struct docg4_priv *doc = nand_get_controller_data(nand);
-
-	dev_dbg(doc->dev, "%s\n", __func__);
-
-	if (doc->last_command.command == NAND_CMD_STATUS) {
-		int status;
-
-		/*
-		 * Previous nand command was status request, so nand
-		 * infrastructure code expects to read the status here.  If an
-		 * error occurred in a previous operation, report it.
-		 */
-		doc->last_command.command = 0;
-
-		if (doc->status) {
-			status = doc->status;
-			doc->status = 0;
-		}
-
-		/* why is NAND_STATUS_WP inverse logic?? */
-		else
-			status = NAND_STATUS_WP | NAND_STATUS_READY;
-
-		return status;
-	}
-
-	dev_warn(doc->dev, "unexpected call to read_byte()\n");
-
-	return 0;
-}
-
-static void write_addr(struct docg4_priv *doc, uint32_t docg4_addr)
-{
-	/* write the four address bytes packed in docg4_addr to the device */
-
-	void __iomem *docptr = doc->virtadr;
-	writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS);
-	docg4_addr >>= 8;
-	writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS);
-	docg4_addr >>= 8;
-	writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS);
-	docg4_addr >>= 8;
-	writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS);
-}
-
-static int read_progstatus(struct docg4_priv *doc)
-{
-	/*
-	 * This apparently checks the status of programming.  Done after an
-	 * erasure, and after page data is written.  On error, the status is
-	 * saved, to be later retrieved by the nand infrastructure code.
-	 */
-	void __iomem *docptr = doc->virtadr;
-
-	/* status is read from the I/O reg */
-	uint16_t status1 = readw(docptr + DOC_IOSPACE_DATA);
-	uint16_t status2 = readw(docptr + DOC_IOSPACE_DATA);
-	uint16_t status3 = readw(docptr + DOCG4_MYSTERY_REG);
-
-	dev_dbg(doc->dev, "docg4: %s: %02x %02x %02x\n",
-	      __func__, status1, status2, status3);
-
-	if (status1 != DOCG4_PROGSTATUS_GOOD
-	    || status2 != DOCG4_PROGSTATUS_GOOD_2
-	    || status3 != DOCG4_PROGSTATUS_GOOD_2) {
-		doc->status = NAND_STATUS_FAIL;
-		dev_warn(doc->dev, "read_progstatus failed: "
-			 "%02x, %02x, %02x\n", status1, status2, status3);
-		return -EIO;
-	}
-	return 0;
-}
-
-static int pageprog(struct mtd_info *mtd)
-{
-	/*
-	 * Final step in writing a page.  Writes the contents of its
-	 * internal buffer out to the flash array, or some such.
-	 */
-
-	struct nand_chip *nand = mtd_to_nand(mtd);
-	struct docg4_priv *doc = nand_get_controller_data(nand);
-	void __iomem *docptr = doc->virtadr;
-	int retval = 0;
-
-	dev_dbg(doc->dev, "docg4: %s\n", __func__);
-
-	writew(DOCG4_SEQ_PAGEPROG, docptr + DOC_FLASHSEQUENCE);
-	writew(DOC_CMD_PROG_CYCLE2, docptr + DOC_FLASHCOMMAND);
-	write_nop(docptr);
-	write_nop(docptr);
-
-	/* Just busy-wait; usleep_range() slows things down noticeably. */
-	poll_status(doc);
-
-	writew(DOCG4_SEQ_FLUSH, docptr + DOC_FLASHSEQUENCE);
-	writew(DOCG4_CMD_FLUSH, docptr + DOC_FLASHCOMMAND);
-	writew(DOC_ECCCONF0_READ_MODE | 4, docptr + DOC_ECCCONF0);
-	write_nop(docptr);
-	write_nop(docptr);
-	write_nop(docptr);
-	write_nop(docptr);
-	write_nop(docptr);
-
-	retval = read_progstatus(doc);
-	writew(0, docptr + DOC_DATAEND);
-	write_nop(docptr);
-	poll_status(doc);
-	write_nop(docptr);
-
-	return retval;
-}
-
-static void sequence_reset(struct mtd_info *mtd)
-{
-	/* common starting sequence for all operations */
-
-	struct nand_chip *nand = mtd_to_nand(mtd);
-	struct docg4_priv *doc = nand_get_controller_data(nand);
-	void __iomem *docptr = doc->virtadr;
-
-	writew(DOC_CTRL_UNKNOWN | DOC_CTRL_CE, docptr + DOC_FLASHCONTROL);
-	writew(DOC_SEQ_RESET, docptr + DOC_FLASHSEQUENCE);
-	writew(DOC_CMD_RESET, docptr + DOC_FLASHCOMMAND);
-	write_nop(docptr);
-	write_nop(docptr);
-	poll_status(doc);
-	write_nop(docptr);
-}
-
-static void read_page_prologue(struct mtd_info *mtd, uint32_t docg4_addr)
-{
-	/* first step in reading a page */
-
-	struct nand_chip *nand = mtd_to_nand(mtd);
-	struct docg4_priv *doc = nand_get_controller_data(nand);
-	void __iomem *docptr = doc->virtadr;
-
-	dev_dbg(doc->dev,
-	      "docg4: %s: g4 page %08x\n", __func__, docg4_addr);
-
-	sequence_reset(mtd);
-
-	writew(DOCG4_SEQ_PAGE_READ, docptr + DOC_FLASHSEQUENCE);
-	writew(DOCG4_CMD_PAGE_READ, docptr + DOC_FLASHCOMMAND);
-	write_nop(docptr);
-
-	write_addr(doc, docg4_addr);
-
-	write_nop(docptr);
-	writew(DOCG4_CMD_READ2, docptr + DOC_FLASHCOMMAND);
-	write_nop(docptr);
-	write_nop(docptr);
-
-	poll_status(doc);
-}
-
-static void write_page_prologue(struct mtd_info *mtd, uint32_t docg4_addr)
-{
-	/* first step in writing a page */
-
-	struct nand_chip *nand = mtd_to_nand(mtd);
-	struct docg4_priv *doc = nand_get_controller_data(nand);
-	void __iomem *docptr = doc->virtadr;
-
-	dev_dbg(doc->dev,
-	      "docg4: %s: g4 addr: %x\n", __func__, docg4_addr);
-	sequence_reset(mtd);
-
-	if (unlikely(reliable_mode)) {
-		writew(DOCG4_SEQ_SETMODE, docptr + DOC_FLASHSEQUENCE);
-		writew(DOCG4_CMD_FAST_MODE, docptr + DOC_FLASHCOMMAND);
-		writew(DOC_CMD_RELIABLE_MODE, docptr + DOC_FLASHCOMMAND);
-		write_nop(docptr);
-	}
-
-	writew(DOCG4_SEQ_PAGEWRITE, docptr + DOC_FLASHSEQUENCE);
-	writew(DOCG4_CMD_PAGEWRITE, docptr + DOC_FLASHCOMMAND);
-	write_nop(docptr);
-	write_addr(doc, docg4_addr);
-	write_nop(docptr);
-	write_nop(docptr);
-	poll_status(doc);
-}
-
-static uint32_t mtd_to_docg4_address(int page, int column)
-{
-	/*
-	 * Convert mtd address to format used by the device, 32 bit packed.
-	 *
-	 * Some notes on G4 addressing... The M-Sys documentation on this device
-	 * claims that pages are 2K in length, and indeed, the format of the
-	 * address used by the device reflects that.  But within each page are
-	 * four 512 byte "sub-pages", each with its own oob data that is
-	 * read/written immediately after the 512 bytes of page data.  This oob
-	 * data contains the ecc bytes for the preceeding 512 bytes.
-	 *
-	 * Rather than tell the mtd nand infrastructure that page size is 2k,
-	 * with four sub-pages each, we engage in a little subterfuge and tell
-	 * the infrastructure code that pages are 512 bytes in size.  This is
-	 * done because during the course of reverse-engineering the device, I
-	 * never observed an instance where an entire 2K "page" was read or
-	 * written as a unit.  Each "sub-page" is always addressed individually,
-	 * its data read/written, and ecc handled before the next "sub-page" is
-	 * addressed.
-	 *
-	 * This requires us to convert addresses passed by the mtd nand
-	 * infrastructure code to those used by the device.
-	 *
-	 * The address that is written to the device consists of four bytes: the
-	 * first two are the 2k page number, and the second is the index into
-	 * the page.  The index is in terms of 16-bit half-words and includes
-	 * the preceeding oob data, so e.g., the index into the second
-	 * "sub-page" is 0x108, and the full device address of the start of mtd
-	 * page 0x201 is 0x00800108.
-	 */
-	int g4_page = page / 4;	                      /* device's 2K page */
-	int g4_index = (page % 4) * 0x108 + column/2; /* offset into page */
-	return (g4_page << 16) | g4_index;	      /* pack */
-}
-
-static void docg4_command(struct mtd_info *mtd, unsigned command, int column,
-			  int page_addr)
-{
-	/* handle standard nand commands */
-
-	struct nand_chip *nand = mtd_to_nand(mtd);
-	struct docg4_priv *doc = nand_get_controller_data(nand);
-	uint32_t g4_addr = mtd_to_docg4_address(page_addr, column);
-
-	dev_dbg(doc->dev, "%s %x, page_addr=%x, column=%x\n",
-	      __func__, command, page_addr, column);
-
-	/*
-	 * Save the command and its arguments.  This enables emulation of
-	 * standard flash devices, and also some optimizations.
-	 */
-	doc->last_command.command = command;
-	doc->last_command.column = column;
-	doc->last_command.page = page_addr;
-
-	switch (command) {
-
-	case NAND_CMD_RESET:
-		reset(mtd);
-		break;
-
-	case NAND_CMD_READ0:
-		read_page_prologue(mtd, g4_addr);
-		break;
-
-	case NAND_CMD_STATUS:
-		/* next call to read_byte() will expect a status */
-		break;
-
-	case NAND_CMD_SEQIN:
-		if (unlikely(reliable_mode)) {
-			uint16_t g4_page = g4_addr >> 16;
-
-			/* writes to odd-numbered 2k pages are invalid */
-			if (g4_page & 0x01)
-				dev_warn(doc->dev,
-					 "invalid reliable mode address\n");
-		}
-
-		write_page_prologue(mtd, g4_addr);
-
-		/* hack for deferred write of oob bytes */
-		if (doc->oob_page == page_addr)
-			memcpy(nand->oob_poi, doc->oob_buf, 16);
-		break;
-
-	case NAND_CMD_PAGEPROG:
-		pageprog(mtd);
-		break;
-
-	/* we don't expect these, based on review of nand_base.c */
-	case NAND_CMD_READOOB:
-	case NAND_CMD_READID:
-	case NAND_CMD_ERASE1:
-	case NAND_CMD_ERASE2:
-		dev_warn(doc->dev, "docg4_command: "
-			 "unexpected nand command 0x%x\n", command);
-		break;
-
-	}
-}
-
-static int read_page(struct mtd_info *mtd, struct nand_chip *nand,
-		     uint8_t *buf, int page, bool use_ecc)
-{
-	struct docg4_priv *doc = nand_get_controller_data(nand);
-	void __iomem *docptr = doc->virtadr;
-	uint16_t status, edc_err, *buf16;
-	int bits_corrected = 0;
-
-	dev_dbg(doc->dev, "%s: page %08x\n", __func__, page);
-
-	nand_read_page_op(nand, page, 0, NULL, 0);
-
-	writew(DOC_ECCCONF0_READ_MODE |
-	       DOC_ECCCONF0_ECC_ENABLE |
-	       DOC_ECCCONF0_UNKNOWN |
-	       DOCG4_BCH_SIZE,
-	       docptr + DOC_ECCCONF0);
-	write_nop(docptr);
-	write_nop(docptr);
-	write_nop(docptr);
-	write_nop(docptr);
-	write_nop(docptr);
-
-	/* the 1st byte from the I/O reg is a status; the rest is page data */
-	status = readw(docptr + DOC_IOSPACE_DATA);
-	if (status & DOCG4_READ_ERROR) {
-		dev_err(doc->dev,
-			"docg4_read_page: bad status: 0x%02x\n", status);
-		writew(0, docptr + DOC_DATAEND);
-		return -EIO;
-	}
-
-	dev_dbg(doc->dev, "%s: status = 0x%x\n", __func__, status);
-
-	docg4_read_buf(mtd, buf, DOCG4_PAGE_SIZE); /* read the page data */
-
-	/* this device always reads oob after page data */
-	/* first 14 oob bytes read from I/O reg */
-	docg4_read_buf(mtd, nand->oob_poi, 14);
-
-	/* last 2 read from another reg */
-	buf16 = (uint16_t *)(nand->oob_poi + 14);
-	*buf16 = readw(docptr + DOCG4_MYSTERY_REG);
-
-	write_nop(docptr);
-
-	if (likely(use_ecc == true)) {
-
-		/* read the register that tells us if bitflip(s) detected  */
-		edc_err = readw(docptr + DOC_ECCCONF1);
-		edc_err = readw(docptr + DOC_ECCCONF1);
-		dev_dbg(doc->dev, "%s: edc_err = 0x%02x\n", __func__, edc_err);
-
-		/* If bitflips are reported, attempt to correct with ecc */
-		if (edc_err & DOC_ECCCONF1_BCH_SYNDROM_ERR) {
-			bits_corrected = correct_data(mtd, buf, page);
-			if (bits_corrected == -EBADMSG)
-				mtd->ecc_stats.failed++;
-			else
-				mtd->ecc_stats.corrected += bits_corrected;
-		}
-	}
-
-	writew(0, docptr + DOC_DATAEND);
-	if (bits_corrected == -EBADMSG)	  /* uncorrectable errors */
-		return 0;
-	return bits_corrected;
-}
-
-
-static int docg4_read_page_raw(struct mtd_info *mtd, struct nand_chip *nand,
-			       uint8_t *buf, int oob_required, int page)
-{
-	return read_page(mtd, nand, buf, page, false);
-}
-
-static int docg4_read_page(struct mtd_info *mtd, struct nand_chip *nand,
-			   uint8_t *buf, int oob_required, int page)
-{
-	return read_page(mtd, nand, buf, page, true);
-}
-
-static int docg4_read_oob(struct mtd_info *mtd, struct nand_chip *nand,
-			  int page)
-{
-	struct docg4_priv *doc = nand_get_controller_data(nand);
-	void __iomem *docptr = doc->virtadr;
-	uint16_t status;
-
-	dev_dbg(doc->dev, "%s: page %x\n", __func__, page);
-
-	nand_read_page_op(nand, page, nand->ecc.size, NULL, 0);
-
-	writew(DOC_ECCCONF0_READ_MODE | DOCG4_OOB_SIZE, docptr + DOC_ECCCONF0);
-	write_nop(docptr);
-	write_nop(docptr);
-	write_nop(docptr);
-	write_nop(docptr);
-	write_nop(docptr);
-
-	/* the 1st byte from the I/O reg is a status; the rest is oob data */
-	status = readw(docptr + DOC_IOSPACE_DATA);
-	if (status & DOCG4_READ_ERROR) {
-		dev_warn(doc->dev,
-			 "docg4_read_oob failed: status = 0x%02x\n", status);
-		return -EIO;
-	}
-
-	dev_dbg(doc->dev, "%s: status = 0x%x\n", __func__, status);
-
-	docg4_read_buf(mtd, nand->oob_poi, 16);
-
-	write_nop(docptr);
-	write_nop(docptr);
-	write_nop(docptr);
-	writew(0, docptr + DOC_DATAEND);
-	write_nop(docptr);
-
-	return 0;
-}
-
-static int docg4_erase_block(struct mtd_info *mtd, int page)
-{
-	struct nand_chip *nand = mtd_to_nand(mtd);
-	struct docg4_priv *doc = nand_get_controller_data(nand);
-	void __iomem *docptr = doc->virtadr;
-	uint16_t g4_page;
-	int status;
-
-	dev_dbg(doc->dev, "%s: page %04x\n", __func__, page);
-
-	sequence_reset(mtd);
-
-	writew(DOCG4_SEQ_BLOCKERASE, docptr + DOC_FLASHSEQUENCE);
-	writew(DOC_CMD_PROG_BLOCK_ADDR, docptr + DOC_FLASHCOMMAND);
-	write_nop(docptr);
-
-	/* only 2 bytes of address are written to specify erase block */
-	g4_page = (uint16_t)(page / 4);  /* to g4's 2k page addressing */
-	writeb(g4_page & 0xff, docptr + DOC_FLASHADDRESS);
-	g4_page >>= 8;
-	writeb(g4_page & 0xff, docptr + DOC_FLASHADDRESS);
-	write_nop(docptr);
-
-	/* start the erasure */
-	writew(DOC_CMD_ERASECYCLE2, docptr + DOC_FLASHCOMMAND);
-	write_nop(docptr);
-	write_nop(docptr);
-
-	usleep_range(500, 1000); /* erasure is long; take a snooze */
-	poll_status(doc);
-	writew(DOCG4_SEQ_FLUSH, docptr + DOC_FLASHSEQUENCE);
-	writew(DOCG4_CMD_FLUSH, docptr + DOC_FLASHCOMMAND);
-	writew(DOC_ECCCONF0_READ_MODE | 4, docptr + DOC_ECCCONF0);
-	write_nop(docptr);
-	write_nop(docptr);
-	write_nop(docptr);
-	write_nop(docptr);
-	write_nop(docptr);
-
-	read_progstatus(doc);
-
-	writew(0, docptr + DOC_DATAEND);
-	write_nop(docptr);
-	poll_status(doc);
-	write_nop(docptr);
-
-	status = nand->waitfunc(mtd, nand);
-	if (status < 0)
-		return status;
-
-	return status & NAND_STATUS_FAIL ? -EIO : 0;
-}
-
-static int write_page(struct mtd_info *mtd, struct nand_chip *nand,
-		      const uint8_t *buf, int page, bool use_ecc)
-{
-	struct docg4_priv *doc = nand_get_controller_data(nand);
-	void __iomem *docptr = doc->virtadr;
-	uint8_t ecc_buf[8];
-
-	dev_dbg(doc->dev, "%s...\n", __func__);
-
-	nand_prog_page_begin_op(nand, page, 0, NULL, 0);
-
-	writew(DOC_ECCCONF0_ECC_ENABLE |
-	       DOC_ECCCONF0_UNKNOWN |
-	       DOCG4_BCH_SIZE,
-	       docptr + DOC_ECCCONF0);
-	write_nop(docptr);
-
-	/* write the page data */
-	docg4_write_buf16(mtd, buf, DOCG4_PAGE_SIZE);
-
-	/* oob bytes 0 through 5 are written to I/O reg */
-	docg4_write_buf16(mtd, nand->oob_poi, 6);
-
-	/* oob byte 6 written to a separate reg */
-	writew(nand->oob_poi[6], docptr + DOCG4_OOB_6_7);
-
-	write_nop(docptr);
-	write_nop(docptr);
-
-	/* write hw-generated ecc bytes to oob */
-	if (likely(use_ecc == true)) {
-		/* oob byte 7 is hamming code */
-		uint8_t hamming = readb(docptr + DOC_HAMMINGPARITY);
-		hamming = readb(docptr + DOC_HAMMINGPARITY); /* 2nd read */
-		writew(hamming, docptr + DOCG4_OOB_6_7);
-		write_nop(docptr);
-
-		/* read the 7 bch bytes from ecc regs */
-		read_hw_ecc(docptr, ecc_buf);
-		ecc_buf[7] = 0;         /* clear the "page written" flag */
-	}
-
-	/* write user-supplied bytes to oob */
-	else {
-		writew(nand->oob_poi[7], docptr + DOCG4_OOB_6_7);
-		write_nop(docptr);
-		memcpy(ecc_buf, &nand->oob_poi[8], 8);
-	}
-
-	docg4_write_buf16(mtd, ecc_buf, 8);
-	write_nop(docptr);
-	write_nop(docptr);
-	writew(0, docptr + DOC_DATAEND);
-	write_nop(docptr);
-
-	return nand_prog_page_end_op(nand);
-}
-
-static int docg4_write_page_raw(struct mtd_info *mtd, struct nand_chip *nand,
-				const uint8_t *buf, int oob_required, int page)
-{
-	return write_page(mtd, nand, buf, page, false);
-}
-
-static int docg4_write_page(struct mtd_info *mtd, struct nand_chip *nand,
-			     const uint8_t *buf, int oob_required, int page)
-{
-	return write_page(mtd, nand, buf, page, true);
-}
-
-static int docg4_write_oob(struct mtd_info *mtd, struct nand_chip *nand,
-			   int page)
-{
-	/*
-	 * Writing oob-only is not really supported, because MLC nand must write
-	 * oob bytes at the same time as page data.  Nonetheless, we save the
-	 * oob buffer contents here, and then write it along with the page data
-	 * if the same page is subsequently written.  This allows user space
-	 * utilities that write the oob data prior to the page data to work
-	 * (e.g., nandwrite).  The disdvantage is that, if the intention was to
-	 * write oob only, the operation is quietly ignored.  Also, oob can get
-	 * corrupted if two concurrent processes are running nandwrite.
-	 */
-
-	/* note that bytes 7..14 are hw generated hamming/ecc and overwritten */
-	struct docg4_priv *doc = nand_get_controller_data(nand);
-	doc->oob_page = page;
-	memcpy(doc->oob_buf, nand->oob_poi, 16);
-	return 0;
-}
-
-static int __init read_factory_bbt(struct mtd_info *mtd)
-{
-	/*
-	 * The device contains a read-only factory bad block table.  Read it and
-	 * update the memory-based bbt accordingly.
-	 */
-
-	struct nand_chip *nand = mtd_to_nand(mtd);
-	struct docg4_priv *doc = nand_get_controller_data(nand);
-	uint32_t g4_addr = mtd_to_docg4_address(DOCG4_FACTORY_BBT_PAGE, 0);
-	uint8_t *buf;
-	int i, block;
-	__u32 eccfailed_stats = mtd->ecc_stats.failed;
-
-	buf = kzalloc(DOCG4_PAGE_SIZE, GFP_KERNEL);
-	if (buf == NULL)
-		return -ENOMEM;
-
-	read_page_prologue(mtd, g4_addr);
-	docg4_read_page(mtd, nand, buf, 0, DOCG4_FACTORY_BBT_PAGE);
-
-	/*
-	 * If no memory-based bbt was created, exit.  This will happen if module
-	 * parameter ignore_badblocks is set.  Then why even call this function?
-	 * For an unknown reason, block erase always fails if it's the first
-	 * operation after device power-up.  The above read ensures it never is.
-	 * Ugly, I know.
-	 */
-	if (nand->bbt == NULL)  /* no memory-based bbt */
-		goto exit;
-
-	if (mtd->ecc_stats.failed > eccfailed_stats) {
-		/*
-		 * Whoops, an ecc failure ocurred reading the factory bbt.
-		 * It is stored redundantly, so we get another chance.
-		 */
-		eccfailed_stats = mtd->ecc_stats.failed;
-		docg4_read_page(mtd, nand, buf, 0, DOCG4_REDUNDANT_BBT_PAGE);
-		if (mtd->ecc_stats.failed > eccfailed_stats) {
-			dev_warn(doc->dev,
-				 "The factory bbt could not be read!\n");
-			goto exit;
-		}
-	}
-
-	/*
-	 * Parse factory bbt and update memory-based bbt.  Factory bbt format is
-	 * simple: one bit per block, block numbers increase left to right (msb
-	 * to lsb).  Bit clear means bad block.
-	 */
-	for (i = block = 0; block < DOCG4_NUMBLOCKS; block += 8, i++) {
-		int bitnum;
-		unsigned long bits = ~buf[i];
-		for_each_set_bit(bitnum, &bits, 8) {
-			int badblock = block + 7 - bitnum;
-			nand->bbt[badblock / 4] |=
-				0x03 << ((badblock % 4) * 2);
-			mtd->ecc_stats.badblocks++;
-			dev_notice(doc->dev, "factory-marked bad block: %d\n",
-				   badblock);
-		}
-	}
- exit:
-	kfree(buf);
-	return 0;
-}
-
-static int docg4_block_markbad(struct mtd_info *mtd, loff_t ofs)
-{
-	/*
-	 * Mark a block as bad.  Bad blocks are marked in the oob area of the
-	 * first page of the block.  The default scan_bbt() in the nand
-	 * infrastructure code works fine for building the memory-based bbt
-	 * during initialization, as does the nand infrastructure function that
-	 * checks if a block is bad by reading the bbt.  This function replaces
-	 * the nand default because writes to oob-only are not supported.
-	 */
-
-	int ret, i;
-	uint8_t *buf;
-	struct nand_chip *nand = mtd_to_nand(mtd);
-	struct docg4_priv *doc = nand_get_controller_data(nand);
-	struct nand_bbt_descr *bbtd = nand->badblock_pattern;
-	int page = (int)(ofs >> nand->page_shift);
-	uint32_t g4_addr = mtd_to_docg4_address(page, 0);
-
-	dev_dbg(doc->dev, "%s: %08llx\n", __func__, ofs);
-
-	if (unlikely(ofs & (DOCG4_BLOCK_SIZE - 1)))
-		dev_warn(doc->dev, "%s: ofs %llx not start of block!\n",
-			 __func__, ofs);
-
-	/* allocate blank buffer for page data */
-	buf = kzalloc(DOCG4_PAGE_SIZE, GFP_KERNEL);
-	if (buf == NULL)
-		return -ENOMEM;
-
-	/* write bit-wise negation of pattern to oob buffer */
-	memset(nand->oob_poi, 0xff, mtd->oobsize);
-	for (i = 0; i < bbtd->len; i++)
-		nand->oob_poi[bbtd->offs + i] = ~bbtd->pattern[i];
-
-	/* write first page of block */
-	write_page_prologue(mtd, g4_addr);
-	docg4_write_page(mtd, nand, buf, 1, page);
-	ret = pageprog(mtd);
-
-	kfree(buf);
-
-	return ret;
-}
-
-static int docg4_block_neverbad(struct mtd_info *mtd, loff_t ofs)
-{
-	/* only called when module_param ignore_badblocks is set */
-	return 0;
-}
-
-static int docg4_suspend(struct platform_device *pdev, pm_message_t state)
-{
-	/*
-	 * Put the device into "deep power-down" mode.  Note that CE# must be
-	 * deasserted for this to take effect.  The xscale, e.g., can be
-	 * configured to float this signal when the processor enters power-down,
-	 * and a suitable pull-up ensures its deassertion.
-	 */
-
-	int i;
-	uint8_t pwr_down;
-	struct docg4_priv *doc = platform_get_drvdata(pdev);
-	void __iomem *docptr = doc->virtadr;
-
-	dev_dbg(doc->dev, "%s...\n", __func__);
-
-	/* poll the register that tells us we're ready to go to sleep */
-	for (i = 0; i < 10; i++) {
-		pwr_down = readb(docptr + DOC_POWERMODE);
-		if (pwr_down & DOC_POWERDOWN_READY)
-			break;
-		usleep_range(1000, 4000);
-	}
-
-	if (pwr_down & DOC_POWERDOWN_READY) {
-		dev_err(doc->dev, "suspend failed; "
-			"timeout polling DOC_POWERDOWN_READY\n");
-		return -EIO;
-	}
-
-	writew(DOC_ASICMODE_POWERDOWN | DOC_ASICMODE_MDWREN,
-	       docptr + DOC_ASICMODE);
-	writew(~(DOC_ASICMODE_POWERDOWN | DOC_ASICMODE_MDWREN),
-	       docptr + DOC_ASICMODECONFIRM);
-
-	write_nop(docptr);
-
-	return 0;
-}
-
-static int docg4_resume(struct platform_device *pdev)
-{
-
-	/*
-	 * Exit power-down.  Twelve consecutive reads of the address below
-	 * accomplishes this, assuming CE# has been asserted.
-	 */
-
-	struct docg4_priv *doc = platform_get_drvdata(pdev);
-	void __iomem *docptr = doc->virtadr;
-	int i;
-
-	dev_dbg(doc->dev, "%s...\n", __func__);
-
-	for (i = 0; i < 12; i++)
-		readb(docptr + 0x1fff);
-
-	return 0;
-}
-
-static void init_mtd_structs(struct mtd_info *mtd)
-{
-	/* initialize mtd and nand data structures */
-
-	/*
-	 * Note that some of the following initializations are not usually
-	 * required within a nand driver because they are performed by the nand
-	 * infrastructure code as part of nand_scan().  In this case they need
-	 * to be initialized here because we skip call to nand_scan_ident() (the
-	 * first half of nand_scan()).  The call to nand_scan_ident() could be
-	 * skipped because for this device the chip id is not read in the manner
-	 * of a standard nand device.
-	 */
-
-	struct nand_chip *nand = mtd_to_nand(mtd);
-	struct docg4_priv *doc = nand_get_controller_data(nand);
-
-	mtd->size = DOCG4_CHIP_SIZE;
-	mtd->name = "Msys_Diskonchip_G4";
-	mtd->writesize = DOCG4_PAGE_SIZE;
-	mtd->erasesize = DOCG4_BLOCK_SIZE;
-	mtd->oobsize = DOCG4_OOB_SIZE;
-	mtd_set_ooblayout(mtd, &docg4_ooblayout_ops);
-	nand->chipsize = DOCG4_CHIP_SIZE;
-	nand->chip_shift = DOCG4_CHIP_SHIFT;
-	nand->bbt_erase_shift = nand->phys_erase_shift = DOCG4_ERASE_SHIFT;
-	nand->chip_delay = 20;
-	nand->page_shift = DOCG4_PAGE_SHIFT;
-	nand->pagemask = 0x3ffff;
-	nand->badblockpos = NAND_LARGE_BADBLOCK_POS;
-	nand->badblockbits = 8;
-	nand->ecc.mode = NAND_ECC_HW_SYNDROME;
-	nand->ecc.size = DOCG4_PAGE_SIZE;
-	nand->ecc.prepad = 8;
-	nand->ecc.bytes	= 8;
-	nand->ecc.strength = DOCG4_T;
-	nand->options = NAND_BUSWIDTH_16 | NAND_NO_SUBPAGE_WRITE;
-	nand->IO_ADDR_R = nand->IO_ADDR_W = doc->virtadr + DOC_IOSPACE_DATA;
-	nand->controller = &nand->dummy_controller;
-	nand_controller_init(nand->controller);
-
-	/* methods */
-	nand->cmdfunc = docg4_command;
-	nand->waitfunc = docg4_wait;
-	nand->select_chip = docg4_select_chip;
-	nand->read_byte = docg4_read_byte;
-	nand->block_markbad = docg4_block_markbad;
-	nand->read_buf = docg4_read_buf;
-	nand->write_buf = docg4_write_buf16;
-	nand->erase = docg4_erase_block;
-	nand->set_features = nand_get_set_features_notsupp;
-	nand->get_features = nand_get_set_features_notsupp;
-	nand->ecc.read_page = docg4_read_page;
-	nand->ecc.write_page = docg4_write_page;
-	nand->ecc.read_page_raw = docg4_read_page_raw;
-	nand->ecc.write_page_raw = docg4_write_page_raw;
-	nand->ecc.read_oob = docg4_read_oob;
-	nand->ecc.write_oob = docg4_write_oob;
-
-	/*
-	 * The way the nand infrastructure code is written, a memory-based bbt
-	 * is not created if NAND_SKIP_BBTSCAN is set.  With no memory bbt,
-	 * nand->block_bad() is used.  So when ignoring bad blocks, we skip the
-	 * scan and define a dummy block_bad() which always returns 0.
-	 */
-	if (ignore_badblocks) {
-		nand->options |= NAND_SKIP_BBTSCAN;
-		nand->block_bad	= docg4_block_neverbad;
-	}
-
-}
-
-static int read_id_reg(struct mtd_info *mtd)
-{
-	struct nand_chip *nand = mtd_to_nand(mtd);
-	struct docg4_priv *doc = nand_get_controller_data(nand);
-	void __iomem *docptr = doc->virtadr;
-	uint16_t id1, id2;
-
-	/* check for presence of g4 chip by reading id registers */
-	id1 = readw(docptr + DOC_CHIPID);
-	id1 = readw(docptr + DOCG4_MYSTERY_REG);
-	id2 = readw(docptr + DOC_CHIPID_INV);
-	id2 = readw(docptr + DOCG4_MYSTERY_REG);
-
-	if (id1 == DOCG4_IDREG1_VALUE && id2 == DOCG4_IDREG2_VALUE) {
-		dev_info(doc->dev,
-			 "NAND device: 128MiB Diskonchip G4 detected\n");
-		return 0;
-	}
-
-	return -ENODEV;
-}
-
-static char const *part_probes[] = { "cmdlinepart", "saftlpart", NULL };
-
-static int docg4_attach_chip(struct nand_chip *chip)
-{
-	struct mtd_info *mtd = nand_to_mtd(chip);
-	struct docg4_priv *doc = (struct docg4_priv *)(chip + 1);
-	int ret;
-
-	init_mtd_structs(mtd);
-
-	/* Initialize kernel BCH algorithm */
-	doc->bch = init_bch(DOCG4_M, DOCG4_T, DOCG4_PRIMITIVE_POLY);
-	if (!doc->bch)
-		return -EINVAL;
-
-	reset(mtd);
-
-	ret = read_id_reg(mtd);
-	if (ret)
-		free_bch(doc->bch);
-
-	return ret;
-}
-
-static void docg4_detach_chip(struct nand_chip *chip)
-{
-	struct docg4_priv *doc = (struct docg4_priv *)(chip + 1);
-
-	free_bch(doc->bch);
-}
-
-static const struct nand_controller_ops docg4_controller_ops = {
-	.attach_chip = docg4_attach_chip,
-	.detach_chip = docg4_detach_chip,
-};
-
-static int __init probe_docg4(struct platform_device *pdev)
-{
-	struct mtd_info *mtd;
-	struct nand_chip *nand;
-	void __iomem *virtadr;
-	struct docg4_priv *doc;
-	int len, retval;
-	struct resource *r;
-	struct device *dev = &pdev->dev;
-
-	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
-	if (r == NULL) {
-		dev_err(dev, "no io memory resource defined!\n");
-		return -ENODEV;
-	}
-
-	virtadr = ioremap(r->start, resource_size(r));
-	if (!virtadr) {
-		dev_err(dev, "Diskonchip ioremap failed: %pR\n", r);
-		return -EIO;
-	}
-
-	len = sizeof(struct nand_chip) + sizeof(struct docg4_priv);
-	nand = kzalloc(len, GFP_KERNEL);
-	if (nand == NULL) {
-		retval = -ENOMEM;
-		goto unmap;
-	}
-
-	mtd = nand_to_mtd(nand);
-	doc = (struct docg4_priv *) (nand + 1);
-	nand_set_controller_data(nand, doc);
-	mtd->dev.parent = &pdev->dev;
-	doc->virtadr = virtadr;
-	doc->dev = dev;
-	platform_set_drvdata(pdev, doc);
-
-	/*
-	 * Running nand_scan() with maxchips == 0 will skip nand_scan_ident(),
-	 * which is a specific operation with this driver and done in the
-	 * ->attach_chip callback.
-	 */
-	nand->dummy_controller.ops = &docg4_controller_ops;
-	retval = nand_scan(mtd, 0);
-	if (retval)
-		goto free_nand;
-
-	retval = read_factory_bbt(mtd);
-	if (retval)
-		goto cleanup_nand;
-
-	retval = mtd_device_parse_register(mtd, part_probes, NULL, NULL, 0);
-	if (retval)
-		goto cleanup_nand;
-
-	doc->mtd = mtd;
-
-	return 0;
-
-cleanup_nand:
-	nand_cleanup(nand);
-free_nand:
-	kfree(nand);
-unmap:
-	iounmap(virtadr);
-
-	return retval;
-}
-
-static int __exit cleanup_docg4(struct platform_device *pdev)
-{
-	struct docg4_priv *doc = platform_get_drvdata(pdev);
-	nand_release(doc->mtd);
-	kfree(mtd_to_nand(doc->mtd));
-	iounmap(doc->virtadr);
-	return 0;
-}
-
-static struct platform_driver docg4_driver = {
-	.driver		= {
-		.name	= "docg4",
-	},
-	.suspend	= docg4_suspend,
-	.resume		= docg4_resume,
-	.remove		= __exit_p(cleanup_docg4),
-};
-
-module_platform_driver_probe(docg4_driver, probe_docg4);
-
-MODULE_LICENSE("GPL");
-MODULE_AUTHOR("Mike Dunn");
-MODULE_DESCRIPTION("M-Systems DiskOnChip G4 device driver");
diff --git a/drivers/mtd/nand/raw/fsl_elbc_nand.c b/drivers/mtd/nand/raw/fsl_elbc_nand.c
index 55f449b..634c550 100644
--- a/drivers/mtd/nand/raw/fsl_elbc_nand.c
+++ b/drivers/mtd/nand/raw/fsl_elbc_nand.c
@@ -1,3 +1,4 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
 /* Freescale Enhanced Local Bus Controller NAND driver
  *
  * Copyright © 2006-2007, 2010 Freescale Semiconductor
@@ -6,20 +7,6 @@
  *          Scott Wood <scottwood@freescale.com>
  *          Jack Lan <jack.lan@freescale.com>
  *          Roy Zang <tie-fei.zang@freescale.com>
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  */
 
 #include <linux/module.h>
@@ -317,10 +304,10 @@
 }
 
 /* cmdfunc send commands to the FCM */
-static void fsl_elbc_cmdfunc(struct mtd_info *mtd, unsigned int command,
+static void fsl_elbc_cmdfunc(struct nand_chip *chip, unsigned int command,
                              int column, int page_addr)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
 	struct fsl_lbc_ctrl *ctrl = priv->ctrl;
 	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
@@ -355,6 +342,15 @@
 		fsl_elbc_run_command(mtd);
 		return;
 
+	/* RNDOUT moves the pointer inside the page */
+	case NAND_CMD_RNDOUT:
+		dev_dbg(priv->dev,
+			"fsl_elbc_cmdfunc: NAND_CMD_RNDOUT, column: 0x%x.\n",
+			column);
+
+		elbc_fcm_ctrl->index = column;
+		return;
+
 	/* READOOB reads only the OOB because no ECC is performed. */
 	case NAND_CMD_READOOB:
 		dev_vdbg(priv->dev,
@@ -533,7 +529,7 @@
 	}
 }
 
-static void fsl_elbc_select_chip(struct mtd_info *mtd, int chip)
+static void fsl_elbc_select_chip(struct nand_chip *chip, int cs)
 {
 	/* The hardware does not seem to support multiple
 	 * chips per bank.
@@ -543,9 +539,9 @@
 /*
  * Write buf to the FCM Controller Data Buffer
  */
-static void fsl_elbc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
+static void fsl_elbc_write_buf(struct nand_chip *chip, const u8 *buf, int len)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
 	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
 	unsigned int bufsize = mtd->writesize + mtd->oobsize;
@@ -581,9 +577,8 @@
  * read a byte from either the FCM hardware buffer if it has any data left
  * otherwise issue a command to read a single byte.
  */
-static u8 fsl_elbc_read_byte(struct mtd_info *mtd)
+static u8 fsl_elbc_read_byte(struct nand_chip *chip)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
 	struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
 	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
 
@@ -598,9 +593,8 @@
 /*
  * Read from the FCM Controller Data Buffer
  */
-static void fsl_elbc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
+static void fsl_elbc_read_buf(struct nand_chip *chip, u8 *buf, int len)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
 	struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
 	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
 	int avail;
@@ -623,7 +617,7 @@
 /* This function is called after Program and Erase Operations to
  * check for success or failure.
  */
-static int fsl_elbc_wait(struct mtd_info *mtd, struct nand_chip *chip)
+static int fsl_elbc_wait(struct nand_chip *chip)
 {
 	struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
 	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
@@ -637,6 +631,95 @@
 	return (elbc_fcm_ctrl->mdr & 0xff) | NAND_STATUS_WP;
 }
 
+static int fsl_elbc_read_page(struct nand_chip *chip, uint8_t *buf,
+			      int oob_required, int page)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
+	struct fsl_lbc_ctrl *ctrl = priv->ctrl;
+	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
+
+	nand_read_page_op(chip, page, 0, buf, mtd->writesize);
+	if (oob_required)
+		fsl_elbc_read_buf(chip, chip->oob_poi, mtd->oobsize);
+
+	if (fsl_elbc_wait(chip) & NAND_STATUS_FAIL)
+		mtd->ecc_stats.failed++;
+
+	return elbc_fcm_ctrl->max_bitflips;
+}
+
+/* ECC will be calculated automatically, and errors will be detected in
+ * waitfunc.
+ */
+static int fsl_elbc_write_page(struct nand_chip *chip, const uint8_t *buf,
+			       int oob_required, int page)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+
+	nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
+	fsl_elbc_write_buf(chip, chip->oob_poi, mtd->oobsize);
+
+	return nand_prog_page_end_op(chip);
+}
+
+/* ECC will be calculated automatically, and errors will be detected in
+ * waitfunc.
+ */
+static int fsl_elbc_write_subpage(struct nand_chip *chip, uint32_t offset,
+				  uint32_t data_len, const uint8_t *buf,
+				  int oob_required, int page)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+
+	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
+	fsl_elbc_write_buf(chip, buf, mtd->writesize);
+	fsl_elbc_write_buf(chip, chip->oob_poi, mtd->oobsize);
+	return nand_prog_page_end_op(chip);
+}
+
+static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv)
+{
+	struct fsl_lbc_ctrl *ctrl = priv->ctrl;
+	struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
+	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
+	struct nand_chip *chip = &priv->chip;
+	struct mtd_info *mtd = nand_to_mtd(chip);
+
+	dev_dbg(priv->dev, "eLBC Set Information for bank %d\n", priv->bank);
+
+	/* Fill in fsl_elbc_mtd structure */
+	mtd->dev.parent = priv->dev;
+	nand_set_flash_node(chip, priv->dev->of_node);
+
+	/* set timeout to maximum */
+	priv->fmr = 15 << FMR_CWTO_SHIFT;
+	if (in_be32(&lbc->bank[priv->bank].or) & OR_FCM_PGS)
+		priv->fmr |= FMR_ECCM;
+
+	/* fill in nand_chip structure */
+	/* set up function call table */
+	chip->legacy.read_byte = fsl_elbc_read_byte;
+	chip->legacy.write_buf = fsl_elbc_write_buf;
+	chip->legacy.read_buf = fsl_elbc_read_buf;
+	chip->legacy.select_chip = fsl_elbc_select_chip;
+	chip->legacy.cmdfunc = fsl_elbc_cmdfunc;
+	chip->legacy.waitfunc = fsl_elbc_wait;
+	chip->legacy.set_features = nand_get_set_features_notsupp;
+	chip->legacy.get_features = nand_get_set_features_notsupp;
+
+	chip->bbt_td = &bbt_main_descr;
+	chip->bbt_md = &bbt_mirror_descr;
+
+	/* set up nand options */
+	chip->bbt_options = NAND_BBT_USE_FLASH;
+
+	chip->controller = &elbc_fcm_ctrl->controller;
+	nand_set_controller_data(chip, priv);
+
+	return 0;
+}
+
 static int fsl_elbc_attach_chip(struct nand_chip *chip)
 {
 	struct mtd_info *mtd = nand_to_mtd(chip);
@@ -645,6 +728,40 @@
 	struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
 	unsigned int al;
 
+	switch (chip->ecc.mode) {
+	/*
+	 * if ECC was not chosen in DT, decide whether to use HW or SW ECC from
+	 * CS Base Register
+	 */
+	case NAND_ECC_NONE:
+		/* If CS Base Register selects full hardware ECC then use it */
+		if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
+		    BR_DECC_CHK_GEN) {
+			chip->ecc.read_page = fsl_elbc_read_page;
+			chip->ecc.write_page = fsl_elbc_write_page;
+			chip->ecc.write_subpage = fsl_elbc_write_subpage;
+
+			chip->ecc.mode = NAND_ECC_HW;
+			mtd_set_ooblayout(mtd, &fsl_elbc_ooblayout_ops);
+			chip->ecc.size = 512;
+			chip->ecc.bytes = 3;
+			chip->ecc.strength = 1;
+		} else {
+			/* otherwise fall back to default software ECC */
+			chip->ecc.mode = NAND_ECC_SOFT;
+			chip->ecc.algo = NAND_ECC_HAMMING;
+		}
+		break;
+
+	/* if SW ECC was chosen in DT, we do not need to set anything here */
+	case NAND_ECC_SOFT:
+		break;
+
+	/* should we also implement NAND_ECC_HW to do as the code above? */
+	default:
+		return -EINVAL;
+	}
+
 	/* calculate FMR Address Length field */
 	al = 0;
 	if (chip->pagemask & 0xffff0000)
@@ -655,13 +772,13 @@
 	priv->fmr |= al << FMR_AL_SHIFT;
 
 	dev_dbg(priv->dev, "fsl_elbc_init: nand->numchips = %d\n",
-	        chip->numchips);
+	        nanddev_ntargets(&chip->base));
 	dev_dbg(priv->dev, "fsl_elbc_init: nand->chipsize = %lld\n",
-	        chip->chipsize);
+	        nanddev_target_size(&chip->base));
 	dev_dbg(priv->dev, "fsl_elbc_init: nand->pagemask = %8x\n",
 	        chip->pagemask);
-	dev_dbg(priv->dev, "fsl_elbc_init: nand->chip_delay = %d\n",
-	        chip->chip_delay);
+	dev_dbg(priv->dev, "fsl_elbc_init: nand->legacy.chip_delay = %d\n",
+	        chip->legacy.chip_delay);
 	dev_dbg(priv->dev, "fsl_elbc_init: nand->badblockpos = %d\n",
 	        chip->badblockpos);
 	dev_dbg(priv->dev, "fsl_elbc_init: nand->chip_shift = %d\n",
@@ -710,108 +827,6 @@
 	.attach_chip = fsl_elbc_attach_chip,
 };
 
-static int fsl_elbc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
-			      uint8_t *buf, int oob_required, int page)
-{
-	struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
-	struct fsl_lbc_ctrl *ctrl = priv->ctrl;
-	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
-
-	nand_read_page_op(chip, page, 0, buf, mtd->writesize);
-	if (oob_required)
-		fsl_elbc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
-
-	if (fsl_elbc_wait(mtd, chip) & NAND_STATUS_FAIL)
-		mtd->ecc_stats.failed++;
-
-	return elbc_fcm_ctrl->max_bitflips;
-}
-
-/* ECC will be calculated automatically, and errors will be detected in
- * waitfunc.
- */
-static int fsl_elbc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
-				const uint8_t *buf, int oob_required, int page)
-{
-	nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
-	fsl_elbc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
-
-	return nand_prog_page_end_op(chip);
-}
-
-/* ECC will be calculated automatically, and errors will be detected in
- * waitfunc.
- */
-static int fsl_elbc_write_subpage(struct mtd_info *mtd, struct nand_chip *chip,
-				uint32_t offset, uint32_t data_len,
-				const uint8_t *buf, int oob_required, int page)
-{
-	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
-	fsl_elbc_write_buf(mtd, buf, mtd->writesize);
-	fsl_elbc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
-	return nand_prog_page_end_op(chip);
-}
-
-static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv)
-{
-	struct fsl_lbc_ctrl *ctrl = priv->ctrl;
-	struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
-	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
-	struct nand_chip *chip = &priv->chip;
-	struct mtd_info *mtd = nand_to_mtd(chip);
-
-	dev_dbg(priv->dev, "eLBC Set Information for bank %d\n", priv->bank);
-
-	/* Fill in fsl_elbc_mtd structure */
-	mtd->dev.parent = priv->dev;
-	nand_set_flash_node(chip, priv->dev->of_node);
-
-	/* set timeout to maximum */
-	priv->fmr = 15 << FMR_CWTO_SHIFT;
-	if (in_be32(&lbc->bank[priv->bank].or) & OR_FCM_PGS)
-		priv->fmr |= FMR_ECCM;
-
-	/* fill in nand_chip structure */
-	/* set up function call table */
-	chip->read_byte = fsl_elbc_read_byte;
-	chip->write_buf = fsl_elbc_write_buf;
-	chip->read_buf = fsl_elbc_read_buf;
-	chip->select_chip = fsl_elbc_select_chip;
-	chip->cmdfunc = fsl_elbc_cmdfunc;
-	chip->waitfunc = fsl_elbc_wait;
-	chip->set_features = nand_get_set_features_notsupp;
-	chip->get_features = nand_get_set_features_notsupp;
-
-	chip->bbt_td = &bbt_main_descr;
-	chip->bbt_md = &bbt_mirror_descr;
-
-	/* set up nand options */
-	chip->bbt_options = NAND_BBT_USE_FLASH;
-
-	chip->controller = &elbc_fcm_ctrl->controller;
-	nand_set_controller_data(chip, priv);
-
-	chip->ecc.read_page = fsl_elbc_read_page;
-	chip->ecc.write_page = fsl_elbc_write_page;
-	chip->ecc.write_subpage = fsl_elbc_write_subpage;
-
-	/* If CS Base Register selects full hardware ECC then use it */
-	if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
-	    BR_DECC_CHK_GEN) {
-		chip->ecc.mode = NAND_ECC_HW;
-		mtd_set_ooblayout(mtd, &fsl_elbc_ooblayout_ops);
-		chip->ecc.size = 512;
-		chip->ecc.bytes = 3;
-		chip->ecc.strength = 1;
-	} else {
-		/* otherwise fall back to default software ECC */
-		chip->ecc.mode = NAND_ECC_SOFT;
-		chip->ecc.algo = NAND_ECC_HAMMING;
-	}
-
-	return 0;
-}
-
 static int fsl_elbc_chip_remove(struct fsl_elbc_mtd *priv)
 {
 	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
@@ -915,7 +930,7 @@
 		goto err;
 
 	priv->chip.controller->ops = &fsl_elbc_controller_ops;
-	ret = nand_scan(mtd, 1);
+	ret = nand_scan(&priv->chip, 1);
 	if (ret)
 		goto err;
 
@@ -942,9 +957,8 @@
 {
 	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = fsl_lbc_ctrl_dev->nand;
 	struct fsl_elbc_mtd *priv = dev_get_drvdata(&pdev->dev);
-	struct mtd_info *mtd = nand_to_mtd(&priv->chip);
 
-	nand_release(mtd);
+	nand_release(&priv->chip);
 	fsl_elbc_chip_remove(priv);
 
 	mutex_lock(&fsl_elbc_nand_mutex);
diff --git a/drivers/mtd/nand/raw/fsl_ifc_nand.c b/drivers/mtd/nand/raw/fsl_ifc_nand.c
index 24f59d0..2af09ed 100644
--- a/drivers/mtd/nand/raw/fsl_ifc_nand.c
+++ b/drivers/mtd/nand/raw/fsl_ifc_nand.c
@@ -1,23 +1,10 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
 /*
  * Freescale Integrated Flash Controller NAND driver
  *
  * Copyright 2011-2012 Freescale Semiconductor, Inc
  *
  * Author: Dipen Dudhat <Dipen.Dudhat@freescale.com>
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  */
 
 #include <linux/module.h>
@@ -30,6 +17,7 @@
 #include <linux/mtd/partitions.h>
 #include <linux/mtd/nand_ecc.h>
 #include <linux/fsl_ifc.h>
+#include <linux/iopoll.h>
 
 #define ERR_BYTE		0xFF /* Value returned for read
 					bytes when read failed	*/
@@ -300,9 +288,9 @@
 }
 
 /* cmdfunc send commands to the IFC NAND Machine */
-static void fsl_ifc_cmdfunc(struct mtd_info *mtd, unsigned int command,
-			     int column, int page_addr) {
-	struct nand_chip *chip = mtd_to_nand(mtd);
+static void fsl_ifc_cmdfunc(struct nand_chip *chip, unsigned int command,
+			    int column, int page_addr) {
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
 	struct fsl_ifc_ctrl *ctrl = priv->ctrl;
 	struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs;
@@ -508,7 +496,7 @@
 	}
 }
 
-static void fsl_ifc_select_chip(struct mtd_info *mtd, int chip)
+static void fsl_ifc_select_chip(struct nand_chip *chip, int cs)
 {
 	/* The hardware does not seem to support multiple
 	 * chips per bank.
@@ -518,9 +506,9 @@
 /*
  * Write buf to the IFC NAND Controller Data Buffer
  */
-static void fsl_ifc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
+static void fsl_ifc_write_buf(struct nand_chip *chip, const u8 *buf, int len)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
 	unsigned int bufsize = mtd->writesize + mtd->oobsize;
 
@@ -544,9 +532,8 @@
  * Read a byte from either the IFC hardware buffer
  * read function for 8-bit buswidth
  */
-static uint8_t fsl_ifc_read_byte(struct mtd_info *mtd)
+static uint8_t fsl_ifc_read_byte(struct nand_chip *chip)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
 	struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
 	unsigned int offset;
 
@@ -567,9 +554,8 @@
  * Read two bytes from the IFC hardware buffer
  * read function for 16-bit buswith
  */
-static uint8_t fsl_ifc_read_byte16(struct mtd_info *mtd)
+static uint8_t fsl_ifc_read_byte16(struct nand_chip *chip)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
 	struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
 	uint16_t data;
 
@@ -590,9 +576,8 @@
 /*
  * Read from the IFC Controller Data Buffer
  */
-static void fsl_ifc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
+static void fsl_ifc_read_buf(struct nand_chip *chip, u8 *buf, int len)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
 	struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
 	int avail;
 
@@ -616,8 +601,9 @@
  * This function is called after Program and Erase Operations to
  * check for success or failure.
  */
-static int fsl_ifc_wait(struct mtd_info *mtd, struct nand_chip *chip)
+static int fsl_ifc_wait(struct nand_chip *chip)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
 	struct fsl_ifc_ctrl *ctrl = priv->ctrl;
 	struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs;
@@ -678,20 +664,21 @@
 	return bitflips;
 }
 
-static int fsl_ifc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
-			     uint8_t *buf, int oob_required, int page)
+static int fsl_ifc_read_page(struct nand_chip *chip, uint8_t *buf,
+			     int oob_required, int page)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
 	struct fsl_ifc_ctrl *ctrl = priv->ctrl;
 	struct fsl_ifc_nand_ctrl *nctrl = ifc_nand_ctrl;
 
 	nand_read_page_op(chip, page, 0, buf, mtd->writesize);
 	if (oob_required)
-		fsl_ifc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
+		fsl_ifc_read_buf(chip, chip->oob_poi, mtd->oobsize);
 
 	if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_ECCER) {
 		if (!oob_required)
-			fsl_ifc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
+			fsl_ifc_read_buf(chip, chip->oob_poi, mtd->oobsize);
 
 		return check_erased_page(chip, buf);
 	}
@@ -705,11 +692,13 @@
 /* ECC will be calculated automatically, and errors will be detected in
  * waitfunc.
  */
-static int fsl_ifc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
-			       const uint8_t *buf, int oob_required, int page)
+static int fsl_ifc_write_page(struct nand_chip *chip, const uint8_t *buf,
+			      int oob_required, int page)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
+
 	nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
-	fsl_ifc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
+	fsl_ifc_write_buf(chip, chip->oob_poi, mtd->oobsize);
 
 	return nand_prog_page_end_op(chip);
 }
@@ -720,13 +709,13 @@
 	struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
 
 	dev_dbg(priv->dev, "%s: nand->numchips = %d\n", __func__,
-							chip->numchips);
+		nanddev_ntargets(&chip->base));
 	dev_dbg(priv->dev, "%s: nand->chipsize = %lld\n", __func__,
-							chip->chipsize);
+	        nanddev_target_size(&chip->base));
 	dev_dbg(priv->dev, "%s: nand->pagemask = %8x\n", __func__,
 							chip->pagemask);
-	dev_dbg(priv->dev, "%s: nand->chip_delay = %d\n", __func__,
-							chip->chip_delay);
+	dev_dbg(priv->dev, "%s: nand->legacy.chip_delay = %d\n", __func__,
+		chip->legacy.chip_delay);
 	dev_dbg(priv->dev, "%s: nand->badblockpos = %d\n", __func__,
 							chip->badblockpos);
 	dev_dbg(priv->dev, "%s: nand->chip_shift = %d\n", __func__,
@@ -761,7 +750,7 @@
 	.attach_chip = fsl_ifc_attach_chip,
 };
 
-static void fsl_ifc_sram_init(struct fsl_ifc_mtd *priv)
+static int fsl_ifc_sram_init(struct fsl_ifc_mtd *priv)
 {
 	struct fsl_ifc_ctrl *ctrl = priv->ctrl;
 	struct fsl_ifc_runtime __iomem *ifc_runtime = ctrl->rregs;
@@ -769,6 +758,27 @@
 	uint32_t csor = 0, csor_8k = 0, csor_ext = 0;
 	uint32_t cs = priv->bank;
 
+	if (ctrl->version < FSL_IFC_VERSION_1_1_0)
+		return 0;
+
+	if (ctrl->version > FSL_IFC_VERSION_1_1_0) {
+		u32 ncfgr, status;
+		int ret;
+
+		/* Trigger auto initialization */
+		ncfgr = ifc_in32(&ifc_runtime->ifc_nand.ncfgr);
+		ifc_out32(ncfgr | IFC_NAND_NCFGR_SRAM_INIT_EN, &ifc_runtime->ifc_nand.ncfgr);
+
+		/* Wait until done */
+		ret = readx_poll_timeout(ifc_in32, &ifc_runtime->ifc_nand.ncfgr,
+					 status, !(status & IFC_NAND_NCFGR_SRAM_INIT_EN),
+					 10, IFC_TIMEOUT_MSECS * 1000);
+		if (ret)
+			dev_err(priv->dev, "Failed to initialize SRAM!\n");
+
+		return ret;
+	}
+
 	/* Save CSOR and CSOR_ext */
 	csor = ifc_in32(&ifc_global->csor_cs[cs].csor);
 	csor_ext = ifc_in32(&ifc_global->csor_cs[cs].csor_ext);
@@ -805,12 +815,16 @@
 	wait_event_timeout(ctrl->nand_wait, ctrl->nand_stat,
 			   msecs_to_jiffies(IFC_TIMEOUT_MSECS));
 
-	if (ctrl->nand_stat != IFC_NAND_EVTER_STAT_OPC)
+	if (ctrl->nand_stat != IFC_NAND_EVTER_STAT_OPC) {
 		pr_err("fsl-ifc: Failed to Initialise SRAM\n");
+		return -ETIMEDOUT;
+	}
 
 	/* Restore CSOR and CSOR_ext */
 	ifc_out32(csor, &ifc_global->csor_cs[cs].csor);
 	ifc_out32(csor_ext, &ifc_global->csor_cs[cs].csor_ext);
+
+	return 0;
 }
 
 static int fsl_ifc_chip_init(struct fsl_ifc_mtd *priv)
@@ -821,6 +835,7 @@
 	struct nand_chip *chip = &priv->chip;
 	struct mtd_info *mtd = nand_to_mtd(&priv->chip);
 	u32 csor;
+	int ret;
 
 	/* Fill in fsl_ifc_mtd structure */
 	mtd->dev.parent = priv->dev;
@@ -830,17 +845,17 @@
 	/* set up function call table */
 	if ((ifc_in32(&ifc_global->cspr_cs[priv->bank].cspr))
 		& CSPR_PORT_SIZE_16)
-		chip->read_byte = fsl_ifc_read_byte16;
+		chip->legacy.read_byte = fsl_ifc_read_byte16;
 	else
-		chip->read_byte = fsl_ifc_read_byte;
+		chip->legacy.read_byte = fsl_ifc_read_byte;
 
-	chip->write_buf = fsl_ifc_write_buf;
-	chip->read_buf = fsl_ifc_read_buf;
-	chip->select_chip = fsl_ifc_select_chip;
-	chip->cmdfunc = fsl_ifc_cmdfunc;
-	chip->waitfunc = fsl_ifc_wait;
-	chip->set_features = nand_get_set_features_notsupp;
-	chip->get_features = nand_get_set_features_notsupp;
+	chip->legacy.write_buf = fsl_ifc_write_buf;
+	chip->legacy.read_buf = fsl_ifc_read_buf;
+	chip->legacy.select_chip = fsl_ifc_select_chip;
+	chip->legacy.cmdfunc = fsl_ifc_cmdfunc;
+	chip->legacy.waitfunc = fsl_ifc_wait;
+	chip->legacy.set_features = nand_get_set_features_notsupp;
+	chip->legacy.get_features = nand_get_set_features_notsupp;
 
 	chip->bbt_td = &bbt_main_descr;
 	chip->bbt_md = &bbt_mirror_descr;
@@ -853,10 +868,10 @@
 
 	if (ifc_in32(&ifc_global->cspr_cs[priv->bank].cspr)
 		& CSPR_PORT_SIZE_16) {
-		chip->read_byte = fsl_ifc_read_byte16;
+		chip->legacy.read_byte = fsl_ifc_read_byte16;
 		chip->options |= NAND_BUSWIDTH_16;
 	} else {
-		chip->read_byte = fsl_ifc_read_byte;
+		chip->legacy.read_byte = fsl_ifc_read_byte;
 	}
 
 	chip->controller = &ifc_nand_ctrl->controller;
@@ -914,8 +929,9 @@
 		chip->ecc.algo = NAND_ECC_HAMMING;
 	}
 
-	if (ctrl->version >= FSL_IFC_VERSION_1_1_0)
-		fsl_ifc_sram_init(priv);
+	ret = fsl_ifc_sram_init(priv);
+	if (ret)
+		return ret;
 
 	/*
 	 * As IFC version 2.0.0 has 16KB of internal SRAM as compared to older
@@ -1051,7 +1067,7 @@
 		goto err;
 
 	priv->chip.controller->ops = &fsl_ifc_controller_ops;
-	ret = nand_scan(mtd, 1);
+	ret = nand_scan(&priv->chip, 1);
 	if (ret)
 		goto err;
 
@@ -1077,9 +1093,8 @@
 static int fsl_ifc_nand_remove(struct platform_device *dev)
 {
 	struct fsl_ifc_mtd *priv = dev_get_drvdata(&dev->dev);
-	struct mtd_info *mtd = nand_to_mtd(&priv->chip);
 
-	nand_release(mtd);
+	nand_release(&priv->chip);
 	fsl_ifc_chip_remove(priv);
 
 	mutex_lock(&fsl_ifc_nand_mutex);
diff --git a/drivers/mtd/nand/raw/fsl_upm.c b/drivers/mtd/nand/raw/fsl_upm.c
index a88e2cf..1054cc0 100644
--- a/drivers/mtd/nand/raw/fsl_upm.c
+++ b/drivers/mtd/nand/raw/fsl_upm.c
@@ -1,14 +1,10 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
 /*
  * Freescale UPM NAND driver.
  *
  * Copyright © 2007-2008  MontaVista Software, Inc.
  *
  * Author: Anton Vorontsov <avorontsov@ru.mvista.com>
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
  */
 
 #include <linux/kernel.h>
@@ -52,9 +48,9 @@
 			    chip);
 }
 
-static int fun_chip_ready(struct mtd_info *mtd)
+static int fun_chip_ready(struct nand_chip *chip)
 {
-	struct fsl_upm_nand *fun = to_fsl_upm_nand(mtd);
+	struct fsl_upm_nand *fun = to_fsl_upm_nand(nand_to_mtd(chip));
 
 	if (gpio_get_value(fun->rnb_gpio[fun->mchip_number]))
 		return 1;
@@ -69,7 +65,7 @@
 		struct mtd_info *mtd = nand_to_mtd(&fun->chip);
 		int cnt = 1000000;
 
-		while (--cnt && !fun_chip_ready(mtd))
+		while (--cnt && !fun_chip_ready(&fun->chip))
 			cpu_relax();
 		if (!cnt)
 			dev_err(fun->dev, "tired waiting for RNB\n");
@@ -78,10 +74,9 @@
 	}
 }
 
-static void fun_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
+static void fun_cmd_ctrl(struct nand_chip *chip, int cmd, unsigned int ctrl)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
-	struct fsl_upm_nand *fun = to_fsl_upm_nand(mtd);
+	struct fsl_upm_nand *fun = to_fsl_upm_nand(nand_to_mtd(chip));
 	u32 mar;
 
 	if (!(ctrl & fun->last_ctrl)) {
@@ -102,51 +97,50 @@
 
 	mar = (cmd << (32 - fun->upm.width)) |
 		fun->mchip_offsets[fun->mchip_number];
-	fsl_upm_run_pattern(&fun->upm, chip->IO_ADDR_R, mar);
+	fsl_upm_run_pattern(&fun->upm, chip->legacy.IO_ADDR_R, mar);
 
 	if (fun->wait_flags & FSL_UPM_WAIT_RUN_PATTERN)
 		fun_wait_rnb(fun);
 }
 
-static void fun_select_chip(struct mtd_info *mtd, int mchip_nr)
+static void fun_select_chip(struct nand_chip *chip, int mchip_nr)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
-	struct fsl_upm_nand *fun = to_fsl_upm_nand(mtd);
+	struct fsl_upm_nand *fun = to_fsl_upm_nand(nand_to_mtd(chip));
 
 	if (mchip_nr == -1) {
-		chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
+		chip->legacy.cmd_ctrl(chip, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
 	} else if (mchip_nr >= 0 && mchip_nr < NAND_MAX_CHIPS) {
 		fun->mchip_number = mchip_nr;
-		chip->IO_ADDR_R = fun->io_base + fun->mchip_offsets[mchip_nr];
-		chip->IO_ADDR_W = chip->IO_ADDR_R;
+		chip->legacy.IO_ADDR_R = fun->io_base + fun->mchip_offsets[mchip_nr];
+		chip->legacy.IO_ADDR_W = chip->legacy.IO_ADDR_R;
 	} else {
 		BUG();
 	}
 }
 
-static uint8_t fun_read_byte(struct mtd_info *mtd)
+static uint8_t fun_read_byte(struct nand_chip *chip)
 {
-	struct fsl_upm_nand *fun = to_fsl_upm_nand(mtd);
+	struct fsl_upm_nand *fun = to_fsl_upm_nand(nand_to_mtd(chip));
 
-	return in_8(fun->chip.IO_ADDR_R);
+	return in_8(fun->chip.legacy.IO_ADDR_R);
 }
 
-static void fun_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
+static void fun_read_buf(struct nand_chip *chip, uint8_t *buf, int len)
 {
-	struct fsl_upm_nand *fun = to_fsl_upm_nand(mtd);
+	struct fsl_upm_nand *fun = to_fsl_upm_nand(nand_to_mtd(chip));
 	int i;
 
 	for (i = 0; i < len; i++)
-		buf[i] = in_8(fun->chip.IO_ADDR_R);
+		buf[i] = in_8(fun->chip.legacy.IO_ADDR_R);
 }
 
-static void fun_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
+static void fun_write_buf(struct nand_chip *chip, const uint8_t *buf, int len)
 {
-	struct fsl_upm_nand *fun = to_fsl_upm_nand(mtd);
+	struct fsl_upm_nand *fun = to_fsl_upm_nand(nand_to_mtd(chip));
 	int i;
 
 	for (i = 0; i < len; i++) {
-		out_8(fun->chip.IO_ADDR_W, buf[i]);
+		out_8(fun->chip.legacy.IO_ADDR_W, buf[i]);
 		if (fun->wait_flags & FSL_UPM_WAIT_WRITE_BYTE)
 			fun_wait_rnb(fun);
 	}
@@ -162,20 +156,20 @@
 	int ret;
 	struct device_node *flash_np;
 
-	fun->chip.IO_ADDR_R = fun->io_base;
-	fun->chip.IO_ADDR_W = fun->io_base;
-	fun->chip.cmd_ctrl = fun_cmd_ctrl;
-	fun->chip.chip_delay = fun->chip_delay;
-	fun->chip.read_byte = fun_read_byte;
-	fun->chip.read_buf = fun_read_buf;
-	fun->chip.write_buf = fun_write_buf;
+	fun->chip.legacy.IO_ADDR_R = fun->io_base;
+	fun->chip.legacy.IO_ADDR_W = fun->io_base;
+	fun->chip.legacy.cmd_ctrl = fun_cmd_ctrl;
+	fun->chip.legacy.chip_delay = fun->chip_delay;
+	fun->chip.legacy.read_byte = fun_read_byte;
+	fun->chip.legacy.read_buf = fun_read_buf;
+	fun->chip.legacy.write_buf = fun_write_buf;
 	fun->chip.ecc.mode = NAND_ECC_SOFT;
 	fun->chip.ecc.algo = NAND_ECC_HAMMING;
 	if (fun->mchip_count > 1)
-		fun->chip.select_chip = fun_select_chip;
+		fun->chip.legacy.select_chip = fun_select_chip;
 
 	if (fun->rnb_gpio[0] >= 0)
-		fun->chip.dev_ready = fun_chip_ready;
+		fun->chip.legacy.dev_ready = fun_chip_ready;
 
 	mtd->dev.parent = fun->dev;
 
@@ -184,14 +178,14 @@
 		return -ENODEV;
 
 	nand_set_flash_node(&fun->chip, flash_np);
-	mtd->name = kasprintf(GFP_KERNEL, "0x%llx.%s", (u64)io_res->start,
-			      flash_np->name);
+	mtd->name = kasprintf(GFP_KERNEL, "0x%llx.%pOFn", (u64)io_res->start,
+			      flash_np);
 	if (!mtd->name) {
 		ret = -ENOMEM;
 		goto err;
 	}
 
-	ret = nand_scan(mtd, fun->mchip_count);
+	ret = nand_scan(&fun->chip, fun->mchip_count);
 	if (ret)
 		goto err;
 
@@ -326,7 +320,7 @@
 	struct mtd_info *mtd = nand_to_mtd(&fun->chip);
 	int i;
 
-	nand_release(mtd);
+	nand_release(&fun->chip);
 	kfree(mtd->name);
 
 	for (i = 0; i < fun->mchip_count; i++) {
diff --git a/drivers/mtd/nand/raw/fsmc_nand.c b/drivers/mtd/nand/raw/fsmc_nand.c
index f418236..a6964fe 100644
--- a/drivers/mtd/nand/raw/fsmc_nand.c
+++ b/drivers/mtd/nand/raw/fsmc_nand.c
@@ -1,3 +1,4 @@
+// SPDX-License-Identifier: GPL-2.0
 /*
  * ST Microelectronics
  * Flexible Static Memory Controller (FSMC)
@@ -10,10 +11,6 @@
  * Based on drivers/mtd/nand/nomadik_nand.c (removed in v3.8)
  *  Copyright © 2007 STMicroelectronics Pvt. Ltd.
  *  Copyright © 2009 Alessandro Rubini
- *
- * This file is licensed under the terms of the GNU General Public
- * License version 2. This program is licensed "as is" without any
- * warranty of any kind, whether express or implied.
  */
 
 #include <linux/clk.h>
@@ -41,15 +38,14 @@
 /* fsmc controller registers for NOR flash */
 #define CTRL			0x0
 	/* ctrl register definitions */
-	#define BANK_ENABLE		(1 << 0)
-	#define MUXED			(1 << 1)
+	#define BANK_ENABLE		BIT(0)
+	#define MUXED			BIT(1)
 	#define NOR_DEV			(2 << 2)
-	#define WIDTH_8			(0 << 4)
-	#define WIDTH_16		(1 << 4)
-	#define RSTPWRDWN		(1 << 6)
-	#define WPROT			(1 << 7)
-	#define WRT_ENABLE		(1 << 12)
-	#define WAIT_ENB		(1 << 13)
+	#define WIDTH_16		BIT(4)
+	#define RSTPWRDWN		BIT(6)
+	#define WPROT			BIT(7)
+	#define WRT_ENABLE		BIT(12)
+	#define WAIT_ENB		BIT(13)
 
 #define CTRL_TIM		0x4
 	/* ctrl_tim register definitions */
@@ -57,43 +53,35 @@
 #define FSMC_NOR_BANK_SZ	0x8
 #define FSMC_NOR_REG_SIZE	0x40
 
-#define FSMC_NOR_REG(base, bank, reg)		(base + \
-						FSMC_NOR_BANK_SZ * (bank) + \
-						reg)
+#define FSMC_NOR_REG(base, bank, reg)	((base) +			\
+					 (FSMC_NOR_BANK_SZ * (bank)) +	\
+					 (reg))
 
 /* fsmc controller registers for NAND flash */
 #define FSMC_PC			0x00
 	/* pc register definitions */
-	#define FSMC_RESET		(1 << 0)
-	#define FSMC_WAITON		(1 << 1)
-	#define FSMC_ENABLE		(1 << 2)
-	#define FSMC_DEVTYPE_NAND	(1 << 3)
-	#define FSMC_DEVWID_8		(0 << 4)
-	#define FSMC_DEVWID_16		(1 << 4)
-	#define FSMC_ECCEN		(1 << 6)
-	#define FSMC_ECCPLEN_512	(0 << 7)
-	#define FSMC_ECCPLEN_256	(1 << 7)
-	#define FSMC_TCLR_1		(1)
+	#define FSMC_RESET		BIT(0)
+	#define FSMC_WAITON		BIT(1)
+	#define FSMC_ENABLE		BIT(2)
+	#define FSMC_DEVTYPE_NAND	BIT(3)
+	#define FSMC_DEVWID_16		BIT(4)
+	#define FSMC_ECCEN		BIT(6)
+	#define FSMC_ECCPLEN_256	BIT(7)
 	#define FSMC_TCLR_SHIFT		(9)
 	#define FSMC_TCLR_MASK		(0xF)
-	#define FSMC_TAR_1		(1)
 	#define FSMC_TAR_SHIFT		(13)
 	#define FSMC_TAR_MASK		(0xF)
 #define STS			0x04
 	/* sts register definitions */
-	#define FSMC_CODE_RDY		(1 << 15)
+	#define FSMC_CODE_RDY		BIT(15)
 #define COMM			0x08
 	/* comm register definitions */
-	#define FSMC_TSET_0		0
 	#define FSMC_TSET_SHIFT		0
 	#define FSMC_TSET_MASK		0xFF
-	#define FSMC_TWAIT_6		6
 	#define FSMC_TWAIT_SHIFT	8
 	#define FSMC_TWAIT_MASK		0xFF
-	#define FSMC_THOLD_4		4
 	#define FSMC_THOLD_SHIFT	16
 	#define FSMC_THOLD_MASK		0xFF
-	#define FSMC_THIZ_1		1
 	#define FSMC_THIZ_SHIFT		24
 	#define FSMC_THIZ_MASK		0xFF
 #define ATTRIB			0x0C
@@ -106,12 +94,12 @@
 #define FSMC_BUSY_WAIT_TIMEOUT	(1 * HZ)
 
 struct fsmc_nand_timings {
-	uint8_t tclr;
-	uint8_t tar;
-	uint8_t thiz;
-	uint8_t thold;
-	uint8_t twait;
-	uint8_t tset;
+	u8 tclr;
+	u8 tar;
+	u8 thiz;
+	u8 thold;
+	u8 twait;
+	u8 tset;
 };
 
 enum access_mode {
@@ -122,19 +110,21 @@
 /**
  * struct fsmc_nand_data - structure for FSMC NAND device state
  *
+ * @base:		Inherit from the nand_controller struct
  * @pid:		Part ID on the AMBA PrimeCell format
- * @mtd:		MTD info for a NAND flash.
  * @nand:		Chip related info for a NAND flash.
- * @partitions:		Partition info for a NAND Flash.
- * @nr_partitions:	Total number of partition of a NAND flash.
  *
  * @bank:		Bank number for probed device.
+ * @dev:		Parent device
+ * @mode:		Access mode
  * @clk:		Clock structure for FSMC.
  *
  * @read_dma_chan:	DMA channel for read access
  * @write_dma_chan:	DMA channel for write access to NAND
  * @dma_access_complete: Completion structure
  *
+ * @dev_timings:	NAND timings
+ *
  * @data_pa:		NAND Physical port for Data.
  * @data_va:		NAND port for Data.
  * @cmd_va:		NAND port for Command.
@@ -142,6 +132,7 @@
  * @regs_va:		Registers base address for a given bank.
  */
 struct fsmc_nand_data {
+	struct nand_controller	base;
 	u32			pid;
 	struct nand_chip	nand;
 
@@ -248,9 +239,9 @@
 	.free = fsmc_ecc4_ooblayout_free,
 };
 
-static inline struct fsmc_nand_data *mtd_to_fsmc(struct mtd_info *mtd)
+static inline struct fsmc_nand_data *nand_to_fsmc(struct nand_chip *chip)
 {
-	return container_of(mtd_to_nand(mtd), struct fsmc_nand_data, nand);
+	return container_of(chip, struct fsmc_nand_data, nand);
 }
 
 /*
@@ -262,8 +253,8 @@
 static void fsmc_nand_setup(struct fsmc_nand_data *host,
 			    struct fsmc_nand_timings *tims)
 {
-	uint32_t value = FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON;
-	uint32_t tclr, tar, thiz, thold, twait, tset;
+	u32 value = FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON;
+	u32 tclr, tar, thiz, thold, twait, tset;
 
 	tclr = (tims->tclr & FSMC_TCLR_MASK) << FSMC_TCLR_SHIFT;
 	tar = (tims->tar & FSMC_TAR_MASK) << FSMC_TAR_SHIFT;
@@ -273,13 +264,9 @@
 	tset = (tims->tset & FSMC_TSET_MASK) << FSMC_TSET_SHIFT;
 
 	if (host->nand.options & NAND_BUSWIDTH_16)
-		writel_relaxed(value | FSMC_DEVWID_16,
-			       host->regs_va + FSMC_PC);
-	else
-		writel_relaxed(value | FSMC_DEVWID_8, host->regs_va + FSMC_PC);
+		value |= FSMC_DEVWID_16;
 
-	writel_relaxed(readl(host->regs_va + FSMC_PC) | tclr | tar,
-		       host->regs_va + FSMC_PC);
+	writel_relaxed(value | tclr | tar, host->regs_va + FSMC_PC);
 	writel_relaxed(thiz | thold | twait | tset, host->regs_va + COMM);
 	writel_relaxed(thiz | thold | twait | tset, host->regs_va + ATTRIB);
 }
@@ -290,7 +277,7 @@
 {
 	unsigned long hclk = clk_get_rate(host->clk);
 	unsigned long hclkn = NSEC_PER_SEC / hclk;
-	uint32_t thiz, thold, twait, tset;
+	u32 thiz, thold, twait, tset;
 
 	if (sdrt->tRC_min < 30000)
 		return -EOPNOTSUPP;
@@ -340,11 +327,10 @@
 	return 0;
 }
 
-static int fsmc_setup_data_interface(struct mtd_info *mtd, int csline,
+static int fsmc_setup_data_interface(struct nand_chip *nand, int csline,
 				     const struct nand_data_interface *conf)
 {
-	struct nand_chip *nand = mtd_to_nand(mtd);
-	struct fsmc_nand_data *host = nand_get_controller_data(nand);
+	struct fsmc_nand_data *host = nand_to_fsmc(nand);
 	struct fsmc_nand_timings tims;
 	const struct nand_sdr_timings *sdrt;
 	int ret;
@@ -368,9 +354,9 @@
 /*
  * fsmc_enable_hwecc - Enables Hardware ECC through FSMC registers
  */
-static void fsmc_enable_hwecc(struct mtd_info *mtd, int mode)
+static void fsmc_enable_hwecc(struct nand_chip *chip, int mode)
 {
-	struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
+	struct fsmc_nand_data *host = nand_to_fsmc(chip);
 
 	writel_relaxed(readl(host->regs_va + FSMC_PC) & ~FSMC_ECCPLEN_256,
 		       host->regs_va + FSMC_PC);
@@ -385,18 +371,18 @@
  * FSMC. ECC is 13 bytes for 512 bytes of data (supports error correction up to
  * max of 8-bits)
  */
-static int fsmc_read_hwecc_ecc4(struct mtd_info *mtd, const uint8_t *data,
-				uint8_t *ecc)
+static int fsmc_read_hwecc_ecc4(struct nand_chip *chip, const u8 *data,
+				u8 *ecc)
 {
-	struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
-	uint32_t ecc_tmp;
+	struct fsmc_nand_data *host = nand_to_fsmc(chip);
+	u32 ecc_tmp;
 	unsigned long deadline = jiffies + FSMC_BUSY_WAIT_TIMEOUT;
 
 	do {
 		if (readl_relaxed(host->regs_va + STS) & FSMC_CODE_RDY)
 			break;
-		else
-			cond_resched();
+
+		cond_resched();
 	} while (!time_after_eq(jiffies, deadline));
 
 	if (time_after_eq(jiffies, deadline)) {
@@ -405,25 +391,25 @@
 	}
 
 	ecc_tmp = readl_relaxed(host->regs_va + ECC1);
-	ecc[0] = (uint8_t) (ecc_tmp >> 0);
-	ecc[1] = (uint8_t) (ecc_tmp >> 8);
-	ecc[2] = (uint8_t) (ecc_tmp >> 16);
-	ecc[3] = (uint8_t) (ecc_tmp >> 24);
+	ecc[0] = ecc_tmp;
+	ecc[1] = ecc_tmp >> 8;
+	ecc[2] = ecc_tmp >> 16;
+	ecc[3] = ecc_tmp >> 24;
 
 	ecc_tmp = readl_relaxed(host->regs_va + ECC2);
-	ecc[4] = (uint8_t) (ecc_tmp >> 0);
-	ecc[5] = (uint8_t) (ecc_tmp >> 8);
-	ecc[6] = (uint8_t) (ecc_tmp >> 16);
-	ecc[7] = (uint8_t) (ecc_tmp >> 24);
+	ecc[4] = ecc_tmp;
+	ecc[5] = ecc_tmp >> 8;
+	ecc[6] = ecc_tmp >> 16;
+	ecc[7] = ecc_tmp >> 24;
 
 	ecc_tmp = readl_relaxed(host->regs_va + ECC3);
-	ecc[8] = (uint8_t) (ecc_tmp >> 0);
-	ecc[9] = (uint8_t) (ecc_tmp >> 8);
-	ecc[10] = (uint8_t) (ecc_tmp >> 16);
-	ecc[11] = (uint8_t) (ecc_tmp >> 24);
+	ecc[8] = ecc_tmp;
+	ecc[9] = ecc_tmp >> 8;
+	ecc[10] = ecc_tmp >> 16;
+	ecc[11] = ecc_tmp >> 24;
 
 	ecc_tmp = readl_relaxed(host->regs_va + STS);
-	ecc[12] = (uint8_t) (ecc_tmp >> 16);
+	ecc[12] = ecc_tmp >> 16;
 
 	return 0;
 }
@@ -433,22 +419,22 @@
  * FSMC. ECC is 3 bytes for 512 bytes of data (supports error correction up to
  * max of 1-bit)
  */
-static int fsmc_read_hwecc_ecc1(struct mtd_info *mtd, const uint8_t *data,
-				uint8_t *ecc)
+static int fsmc_read_hwecc_ecc1(struct nand_chip *chip, const u8 *data,
+				u8 *ecc)
 {
-	struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
-	uint32_t ecc_tmp;
+	struct fsmc_nand_data *host = nand_to_fsmc(chip);
+	u32 ecc_tmp;
 
 	ecc_tmp = readl_relaxed(host->regs_va + ECC1);
-	ecc[0] = (uint8_t) (ecc_tmp >> 0);
-	ecc[1] = (uint8_t) (ecc_tmp >> 8);
-	ecc[2] = (uint8_t) (ecc_tmp >> 16);
+	ecc[0] = ecc_tmp;
+	ecc[1] = ecc_tmp >> 8;
+	ecc[2] = ecc_tmp >> 16;
 
 	return 0;
 }
 
 /* Count the number of 0's in buff upto a max of max_bits */
-static int count_written_bits(uint8_t *buff, int size, int max_bits)
+static int count_written_bits(u8 *buff, int size, int max_bits)
 {
 	int k, written_bits = 0;
 
@@ -469,7 +455,7 @@
 }
 
 static int dma_xfer(struct fsmc_nand_data *host, void *buffer, int len,
-		enum dma_data_direction direction)
+		    enum dma_data_direction direction)
 {
 	struct dma_chan *chan;
 	struct dma_device *dma_dev;
@@ -520,7 +506,7 @@
 
 	time_left =
 	wait_for_completion_timeout(&host->dma_access_complete,
-				msecs_to_jiffies(3000));
+				    msecs_to_jiffies(3000));
 	if (time_left == 0) {
 		dmaengine_terminate_all(chan);
 		dev_err(host->dev, "wait_for_completion_timeout\n");
@@ -538,18 +524,19 @@
 
 /*
  * fsmc_write_buf - write buffer to chip
- * @mtd:	MTD device structure
+ * @host:	FSMC NAND controller
  * @buf:	data buffer
  * @len:	number of bytes to write
  */
-static void fsmc_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
+static void fsmc_write_buf(struct fsmc_nand_data *host, const u8 *buf,
+			   int len)
 {
-	struct fsmc_nand_data *host  = mtd_to_fsmc(mtd);
 	int i;
 
-	if (IS_ALIGNED((uintptr_t)buf, sizeof(uint32_t)) &&
-			IS_ALIGNED(len, sizeof(uint32_t))) {
-		uint32_t *p = (uint32_t *)buf;
+	if (IS_ALIGNED((uintptr_t)buf, sizeof(u32)) &&
+	    IS_ALIGNED(len, sizeof(u32))) {
+		u32 *p = (u32 *)buf;
+
 		len = len >> 2;
 		for (i = 0; i < len; i++)
 			writel_relaxed(p[i], host->data_va);
@@ -561,18 +548,18 @@
 
 /*
  * fsmc_read_buf - read chip data into buffer
- * @mtd:	MTD device structure
+ * @host:	FSMC NAND controller
  * @buf:	buffer to store date
  * @len:	number of bytes to read
  */
-static void fsmc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
+static void fsmc_read_buf(struct fsmc_nand_data *host, u8 *buf, int len)
 {
-	struct fsmc_nand_data *host  = mtd_to_fsmc(mtd);
 	int i;
 
-	if (IS_ALIGNED((uintptr_t)buf, sizeof(uint32_t)) &&
-			IS_ALIGNED(len, sizeof(uint32_t))) {
-		uint32_t *p = (uint32_t *)buf;
+	if (IS_ALIGNED((uintptr_t)buf, sizeof(u32)) &&
+	    IS_ALIGNED(len, sizeof(u32))) {
+		u32 *p = (u32 *)buf;
+
 		len = len >> 2;
 		for (i = 0; i < len; i++)
 			p[i] = readl_relaxed(host->data_va);
@@ -584,51 +571,28 @@
 
 /*
  * fsmc_read_buf_dma - read chip data into buffer
- * @mtd:	MTD device structure
+ * @host:	FSMC NAND controller
  * @buf:	buffer to store date
  * @len:	number of bytes to read
  */
-static void fsmc_read_buf_dma(struct mtd_info *mtd, uint8_t *buf, int len)
+static void fsmc_read_buf_dma(struct fsmc_nand_data *host, u8 *buf,
+			      int len)
 {
-	struct fsmc_nand_data *host  = mtd_to_fsmc(mtd);
-
 	dma_xfer(host, buf, len, DMA_FROM_DEVICE);
 }
 
 /*
  * fsmc_write_buf_dma - write buffer to chip
- * @mtd:	MTD device structure
+ * @host:	FSMC NAND controller
  * @buf:	data buffer
  * @len:	number of bytes to write
  */
-static void fsmc_write_buf_dma(struct mtd_info *mtd, const uint8_t *buf,
-		int len)
+static void fsmc_write_buf_dma(struct fsmc_nand_data *host, const u8 *buf,
+			       int len)
 {
-	struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
-
 	dma_xfer(host, (void *)buf, len, DMA_TO_DEVICE);
 }
 
-/* fsmc_select_chip - assert or deassert nCE */
-static void fsmc_select_chip(struct mtd_info *mtd, int chipnr)
-{
-	struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
-	u32 pc;
-
-	/* Support only one CS */
-	if (chipnr > 0)
-		return;
-
-	pc = readl(host->regs_va + FSMC_PC);
-	if (chipnr < 0)
-		writel_relaxed(pc & ~FSMC_ENABLE, host->regs_va + FSMC_PC);
-	else
-		writel_relaxed(pc | FSMC_ENABLE, host->regs_va + FSMC_PC);
-
-	/* nCE line must be asserted before starting any operation */
-	mb();
-}
-
 /*
  * fsmc_exec_op - hook called by the core to execute NAND operations
  *
@@ -638,64 +602,50 @@
 static int fsmc_exec_op(struct nand_chip *chip, const struct nand_operation *op,
 			bool check_only)
 {
-	struct mtd_info *mtd = nand_to_mtd(chip);
-	struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
+	struct fsmc_nand_data *host = nand_to_fsmc(chip);
 	const struct nand_op_instr *instr = NULL;
 	int ret = 0;
 	unsigned int op_id;
 	int i;
 
 	pr_debug("Executing operation [%d instructions]:\n", op->ninstrs);
+
 	for (op_id = 0; op_id < op->ninstrs; op_id++) {
 		instr = &op->instrs[op_id];
 
+		nand_op_trace("  ", instr);
+
 		switch (instr->type) {
 		case NAND_OP_CMD_INSTR:
-			pr_debug("  ->CMD      [0x%02x]\n",
-				 instr->ctx.cmd.opcode);
-
 			writeb_relaxed(instr->ctx.cmd.opcode, host->cmd_va);
 			break;
 
 		case NAND_OP_ADDR_INSTR:
-			pr_debug("  ->ADDR     [%d cyc]",
-				 instr->ctx.addr.naddrs);
-
 			for (i = 0; i < instr->ctx.addr.naddrs; i++)
 				writeb_relaxed(instr->ctx.addr.addrs[i],
 					       host->addr_va);
 			break;
 
 		case NAND_OP_DATA_IN_INSTR:
-			pr_debug("  ->DATA_IN  [%d B%s]\n", instr->ctx.data.len,
-				 instr->ctx.data.force_8bit ?
-				 ", force 8-bit" : "");
-
 			if (host->mode == USE_DMA_ACCESS)
-				fsmc_read_buf_dma(mtd, instr->ctx.data.buf.in,
+				fsmc_read_buf_dma(host, instr->ctx.data.buf.in,
 						  instr->ctx.data.len);
 			else
-				fsmc_read_buf(mtd, instr->ctx.data.buf.in,
+				fsmc_read_buf(host, instr->ctx.data.buf.in,
 					      instr->ctx.data.len);
 			break;
 
 		case NAND_OP_DATA_OUT_INSTR:
-			pr_debug("  ->DATA_OUT [%d B%s]\n", instr->ctx.data.len,
-				 instr->ctx.data.force_8bit ?
-				 ", force 8-bit" : "");
-
 			if (host->mode == USE_DMA_ACCESS)
-				fsmc_write_buf_dma(mtd, instr->ctx.data.buf.out,
+				fsmc_write_buf_dma(host,
+						   instr->ctx.data.buf.out,
 						   instr->ctx.data.len);
 			else
-				fsmc_write_buf(mtd, instr->ctx.data.buf.out,
+				fsmc_write_buf(host, instr->ctx.data.buf.out,
 					       instr->ctx.data.len);
 			break;
 
 		case NAND_OP_WAITRDY_INSTR:
-			pr_debug("  ->WAITRDY  [max %d ms]\n",
-				 instr->ctx.waitrdy.timeout_ms);
-
 			ret = nand_soft_waitrdy(chip,
 						instr->ctx.waitrdy.timeout_ms);
 			break;
@@ -707,7 +657,6 @@
 
 /*
  * fsmc_read_page_hwecc
- * @mtd:	mtd info structure
  * @chip:	nand chip info structure
  * @buf:	buffer to store read data
  * @oob_required:	caller expects OOB data read to chip->oob_poi
@@ -719,33 +668,35 @@
  * After this read, fsmc hardware generates and reports error data bits(up to a
  * max of 8 bits)
  */
-static int fsmc_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
-				 uint8_t *buf, int oob_required, int page)
+static int fsmc_read_page_hwecc(struct nand_chip *chip, u8 *buf,
+				int oob_required, int page)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	int i, j, s, stat, eccsize = chip->ecc.size;
 	int eccbytes = chip->ecc.bytes;
 	int eccsteps = chip->ecc.steps;
-	uint8_t *p = buf;
-	uint8_t *ecc_calc = chip->ecc.calc_buf;
-	uint8_t *ecc_code = chip->ecc.code_buf;
-	int off, len, group = 0;
+	u8 *p = buf;
+	u8 *ecc_calc = chip->ecc.calc_buf;
+	u8 *ecc_code = chip->ecc.code_buf;
+	int off, len, ret, group = 0;
 	/*
-	 * ecc_oob is intentionally taken as uint16_t. In 16bit devices, we
+	 * ecc_oob is intentionally taken as u16. In 16bit devices, we
 	 * end up reading 14 bytes (7 words) from oob. The local array is
 	 * to maintain word alignment
 	 */
-	uint16_t ecc_oob[7];
-	uint8_t *oob = (uint8_t *)&ecc_oob[0];
+	u16 ecc_oob[7];
+	u8 *oob = (u8 *)&ecc_oob[0];
 	unsigned int max_bitflips = 0;
 
 	for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, p += eccsize) {
 		nand_read_page_op(chip, page, s * eccsize, NULL, 0);
-		chip->ecc.hwctl(mtd, NAND_ECC_READ);
-		nand_read_data_op(chip, p, eccsize, false);
+		chip->ecc.hwctl(chip, NAND_ECC_READ);
+		ret = nand_read_data_op(chip, p, eccsize, false);
+		if (ret)
+			return ret;
 
 		for (j = 0; j < eccbytes;) {
 			struct mtd_oob_region oobregion;
-			int ret;
 
 			ret = mtd_ooblayout_ecc(mtd, group++, &oobregion);
 			if (ret)
@@ -767,9 +718,9 @@
 		}
 
 		memcpy(&ecc_code[i], oob, chip->ecc.bytes);
-		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
+		chip->ecc.calculate(chip, p, &ecc_calc[i]);
 
-		stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
+		stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
 		if (stat < 0) {
 			mtd->ecc_stats.failed++;
 		} else {
@@ -789,16 +740,15 @@
  * @calc_ecc:	ecc calculated from read data
  *
  * calc_ecc is a 104 bit information containing maximum of 8 error
- * offset informations of 13 bits each in 512 bytes of read data.
+ * offset information of 13 bits each in 512 bytes of read data.
  */
-static int fsmc_bch8_correct_data(struct mtd_info *mtd, uint8_t *dat,
-			     uint8_t *read_ecc, uint8_t *calc_ecc)
+static int fsmc_bch8_correct_data(struct nand_chip *chip, u8 *dat,
+				  u8 *read_ecc, u8 *calc_ecc)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
-	struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
-	uint32_t err_idx[8];
-	uint32_t num_err, i;
-	uint32_t ecc1, ecc2, ecc3, ecc4;
+	struct fsmc_nand_data *host = nand_to_fsmc(chip);
+	u32 err_idx[8];
+	u32 num_err, i;
+	u32 ecc1, ecc2, ecc3, ecc4;
 
 	num_err = (readl_relaxed(host->regs_va + STS) >> 10) & 0xF;
 
@@ -839,8 +789,8 @@
 	 * |---idx[7]--|--.....-----|---idx[2]--||---idx[1]--||---idx[0]--|
 	 *
 	 * calc_ecc is a 104 bit information containing maximum of 8 error
-	 * offset informations of 13 bits each. calc_ecc is copied into a
-	 * uint64_t array and error offset indexes are populated in err_idx
+	 * offset information of 13 bits each. calc_ecc is copied into a
+	 * u64 array and error offset indexes are populated in err_idx
 	 * array
 	 */
 	ecc1 = readl_relaxed(host->regs_va + ECC1);
@@ -899,11 +849,13 @@
 		nand->options |= NAND_SKIP_BBTSCAN;
 
 	host->dev_timings = devm_kzalloc(&pdev->dev,
-				sizeof(*host->dev_timings), GFP_KERNEL);
+					 sizeof(*host->dev_timings),
+					 GFP_KERNEL);
 	if (!host->dev_timings)
 		return -ENOMEM;
+
 	ret = of_property_read_u8_array(np, "timings", (u8 *)host->dev_timings,
-						sizeof(*host->dev_timings));
+					sizeof(*host->dev_timings));
 	if (ret)
 		host->dev_timings = NULL;
 
@@ -922,7 +874,7 @@
 static int fsmc_nand_attach_chip(struct nand_chip *nand)
 {
 	struct mtd_info *mtd = nand_to_mtd(nand);
-	struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
+	struct fsmc_nand_data *host = nand_to_fsmc(nand);
 
 	if (AMBA_REV_BITS(host->pid) >= 8) {
 		switch (mtd->oobsize) {
@@ -951,6 +903,7 @@
 		nand->ecc.correct = nand_correct_data;
 		nand->ecc.bytes = 3;
 		nand->ecc.strength = 1;
+		nand->ecc.options |= NAND_ECC_SOFT_HAMMING_SM_ORDER;
 		break;
 
 	case NAND_ECC_SOFT:
@@ -993,8 +946,23 @@
 
 static const struct nand_controller_ops fsmc_nand_controller_ops = {
 	.attach_chip = fsmc_nand_attach_chip,
+	.exec_op = fsmc_exec_op,
+	.setup_data_interface = fsmc_setup_data_interface,
 };
 
+/**
+ * fsmc_nand_disable() - Disables the NAND bank
+ * @host: The instance to disable
+ */
+static void fsmc_nand_disable(struct fsmc_nand_data *host)
+{
+	u32 val;
+
+	val = readl(host->regs_va + FSMC_PC);
+	val &= ~FSMC_ENABLE;
+	writel(val, host->regs_va + FSMC_PC);
+}
+
 /*
  * fsmc_nand_probe - Probe function
  * @pdev:       platform device structure
@@ -1062,10 +1030,13 @@
 	 * AMBA PrimeCell bus. However it is not a PrimeCell.
 	 */
 	for (pid = 0, i = 0; i < 4; i++)
-		pid |= (readl(base + resource_size(res) - 0x20 + 4 * i) & 255) << (i * 8);
+		pid |= (readl(base + resource_size(res) - 0x20 + 4 * i) &
+			255) << (i * 8);
+
 	host->pid = pid;
-	dev_info(&pdev->dev, "FSMC device partno %03x, manufacturer %02x, "
-		 "revision %02x, config %02x\n",
+
+	dev_info(&pdev->dev,
+		 "FSMC device partno %03x, manufacturer %02x, revision %02x, config %02x\n",
 		 AMBA_PART_BITS(pid), AMBA_MANF_BITS(pid),
 		 AMBA_REV_BITS(pid), AMBA_CONFIG_BITS(pid));
 
@@ -1076,13 +1047,9 @@
 
 	/* Link all private pointers */
 	mtd = nand_to_mtd(&host->nand);
-	nand_set_controller_data(nand, host);
 	nand_set_flash_node(nand, pdev->dev.of_node);
 
 	mtd->dev.parent = &pdev->dev;
-	nand->exec_op = fsmc_exec_op;
-	nand->select_chip = fsmc_select_chip;
-	nand->chip_delay = 30;
 
 	/*
 	 * Setup default ECC mode. nand_dt_init() called from nand_scan_ident()
@@ -1108,10 +1075,10 @@
 		}
 	}
 
-	if (host->dev_timings)
+	if (host->dev_timings) {
 		fsmc_nand_setup(host, host->dev_timings);
-	else
-		nand->setup_data_interface = fsmc_setup_data_interface;
+		nand->options |= NAND_KEEP_TIMINGS;
+	}
 
 	if (AMBA_REV_BITS(host->pid) >= 8) {
 		nand->ecc.read_page = fsmc_read_page_hwecc;
@@ -1121,11 +1088,14 @@
 		nand->ecc.strength = 8;
 	}
 
+	nand_controller_init(&host->base);
+	host->base.ops = &fsmc_nand_controller_ops;
+	nand->controller = &host->base;
+
 	/*
 	 * Scan to find existence of the device
 	 */
-	nand->dummy_controller.ops = &fsmc_nand_controller_ops;
-	ret = nand_scan(mtd, 1);
+	ret = nand_scan(nand, 1);
 	if (ret)
 		goto release_dma_write_chan;
 
@@ -1148,6 +1118,7 @@
 	if (host->mode == USE_DMA_ACCESS)
 		dma_release_channel(host->read_dma_chan);
 disable_clk:
+	fsmc_nand_disable(host);
 	clk_disable_unprepare(host->clk);
 
 	return ret;
@@ -1161,7 +1132,8 @@
 	struct fsmc_nand_data *host = platform_get_drvdata(pdev);
 
 	if (host) {
-		nand_release(nand_to_mtd(&host->nand));
+		nand_release(&host->nand);
+		fsmc_nand_disable(host);
 
 		if (host->mode == USE_DMA_ACCESS) {
 			dma_release_channel(host->write_dma_chan);
@@ -1177,19 +1149,24 @@
 static int fsmc_nand_suspend(struct device *dev)
 {
 	struct fsmc_nand_data *host = dev_get_drvdata(dev);
+
 	if (host)
 		clk_disable_unprepare(host->clk);
+
 	return 0;
 }
 
 static int fsmc_nand_resume(struct device *dev)
 {
 	struct fsmc_nand_data *host = dev_get_drvdata(dev);
+
 	if (host) {
 		clk_prepare_enable(host->clk);
 		if (host->dev_timings)
 			fsmc_nand_setup(host, host->dev_timings);
+		nand_reset(&host->nand, 0);
 	}
+
 	return 0;
 }
 #endif
@@ -1214,6 +1191,6 @@
 
 module_platform_driver_probe(fsmc_nand_driver, fsmc_nand_probe);
 
-MODULE_LICENSE("GPL");
+MODULE_LICENSE("GPL v2");
 MODULE_AUTHOR("Vipin Kumar <vipin.kumar@st.com>, Ashish Priyadarshi");
 MODULE_DESCRIPTION("NAND driver for SPEAr Platforms");
diff --git a/drivers/mtd/nand/raw/gpio.c b/drivers/mtd/nand/raw/gpio.c
index 2780af2..f6b1235 100644
--- a/drivers/mtd/nand/raw/gpio.c
+++ b/drivers/mtd/nand/raw/gpio.c
@@ -1,3 +1,4 @@
+// SPDX-License-Identifier: GPL-2.0-only
 /*
  * Updated, and converted to generic GPIO based driver by Russell King.
  *
@@ -9,11 +10,6 @@
  * Device driver for NAND flash that uses a memory mapped interface to
  * read/write the NAND commands and data, and GPIO pins for control signals
  * (the DT binding refers to this as "GPIO assisted NAND flash")
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
- *
  */
 
 #include <linux/kernel.h>
@@ -73,9 +69,10 @@
 static inline void gpio_nand_dosync(struct gpiomtd *gpiomtd) {}
 #endif
 
-static void gpio_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
+static void gpio_nand_cmd_ctrl(struct nand_chip *chip, int cmd,
+			       unsigned int ctrl)
 {
-	struct gpiomtd *gpiomtd = gpio_nand_getpriv(mtd);
+	struct gpiomtd *gpiomtd = gpio_nand_getpriv(nand_to_mtd(chip));
 
 	gpio_nand_dosync(gpiomtd);
 
@@ -89,13 +86,13 @@
 	if (cmd == NAND_CMD_NONE)
 		return;
 
-	writeb(cmd, gpiomtd->nand_chip.IO_ADDR_W);
+	writeb(cmd, gpiomtd->nand_chip.legacy.IO_ADDR_W);
 	gpio_nand_dosync(gpiomtd);
 }
 
-static int gpio_nand_devready(struct mtd_info *mtd)
+static int gpio_nand_devready(struct nand_chip *chip)
 {
-	struct gpiomtd *gpiomtd = gpio_nand_getpriv(mtd);
+	struct gpiomtd *gpiomtd = gpio_nand_getpriv(nand_to_mtd(chip));
 
 	return gpiod_get_value(gpiomtd->rdy);
 }
@@ -194,7 +191,7 @@
 {
 	struct gpiomtd *gpiomtd = platform_get_drvdata(pdev);
 
-	nand_release(nand_to_mtd(&gpiomtd->nand_chip));
+	nand_release(&gpiomtd->nand_chip);
 
 	/* Enable write protection and disable the chip */
 	if (gpiomtd->nwp && !IS_ERR(gpiomtd->nwp))
@@ -224,9 +221,9 @@
 	chip = &gpiomtd->nand_chip;
 
 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
-	chip->IO_ADDR_R = devm_ioremap_resource(dev, res);
-	if (IS_ERR(chip->IO_ADDR_R))
-		return PTR_ERR(chip->IO_ADDR_R);
+	chip->legacy.IO_ADDR_R = devm_ioremap_resource(dev, res);
+	if (IS_ERR(chip->legacy.IO_ADDR_R))
+		return PTR_ERR(chip->legacy.IO_ADDR_R);
 
 	res = gpio_nand_get_io_sync(pdev);
 	if (res) {
@@ -270,15 +267,15 @@
 	}
 	/* Using RDY pin */
 	if (gpiomtd->rdy)
-		chip->dev_ready = gpio_nand_devready;
+		chip->legacy.dev_ready = gpio_nand_devready;
 
 	nand_set_flash_node(chip, pdev->dev.of_node);
-	chip->IO_ADDR_W		= chip->IO_ADDR_R;
+	chip->legacy.IO_ADDR_W	= chip->legacy.IO_ADDR_R;
 	chip->ecc.mode		= NAND_ECC_SOFT;
 	chip->ecc.algo		= NAND_ECC_HAMMING;
 	chip->options		= gpiomtd->plat.options;
-	chip->chip_delay	= gpiomtd->plat.chip_delay;
-	chip->cmd_ctrl		= gpio_nand_cmd_ctrl;
+	chip->legacy.chip_delay	= gpiomtd->plat.chip_delay;
+	chip->legacy.cmd_ctrl	= gpio_nand_cmd_ctrl;
 
 	mtd			= nand_to_mtd(chip);
 	mtd->dev.parent		= dev;
@@ -289,7 +286,7 @@
 	if (gpiomtd->nwp && !IS_ERR(gpiomtd->nwp))
 		gpiod_direction_output(gpiomtd->nwp, 1);
 
-	ret = nand_scan(mtd, 1);
+	ret = nand_scan(chip, 1);
 	if (ret)
 		goto err_wp;
 
diff --git a/drivers/mtd/nand/raw/gpmi-nand/Makefile b/drivers/mtd/nand/raw/gpmi-nand/Makefile
index 3a46248..9bd81a3 100644
--- a/drivers/mtd/nand/raw/gpmi-nand/Makefile
+++ b/drivers/mtd/nand/raw/gpmi-nand/Makefile
@@ -1,3 +1,3 @@
+# SPDX-License-Identifier: GPL-2.0-only
 obj-$(CONFIG_MTD_NAND_GPMI_NAND) += gpmi_nand.o
 gpmi_nand-objs += gpmi-nand.o
-gpmi_nand-objs += gpmi-lib.o
diff --git a/drivers/mtd/nand/raw/gpmi-nand/bch-regs.h b/drivers/mtd/nand/raw/gpmi-nand/bch-regs.h
index 05bb91f..a22b8a5 100644
--- a/drivers/mtd/nand/raw/gpmi-nand/bch-regs.h
+++ b/drivers/mtd/nand/raw/gpmi-nand/bch-regs.h
@@ -1,22 +1,9 @@
+/* SPDX-License-Identifier: GPL-2.0-or-later */
 /*
  * Freescale GPMI NAND Flash Driver
  *
  * Copyright 2008-2011 Freescale Semiconductor, Inc.
  * Copyright 2008 Embedded Alley Solutions, Inc.
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License along
- * with this program; if not, write to the Free Software Foundation, Inc.,
- * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
  */
 #ifndef __GPMI_NAND_BCH_REGS_H
 #define __GPMI_NAND_BCH_REGS_H
diff --git a/drivers/mtd/nand/raw/gpmi-nand/gpmi-lib.c b/drivers/mtd/nand/raw/gpmi-nand/gpmi-lib.c
deleted file mode 100644
index 88ea220..0000000
--- a/drivers/mtd/nand/raw/gpmi-nand/gpmi-lib.c
+++ /dev/null
@@ -1,938 +0,0 @@
-// SPDX-License-Identifier: GPL-2.0+
-/*
- * Freescale GPMI NAND Flash Driver
- *
- * Copyright (C) 2008-2011 Freescale Semiconductor, Inc.
- * Copyright (C) 2008 Embedded Alley Solutions, Inc.
- */
-#include <linux/delay.h>
-#include <linux/clk.h>
-#include <linux/slab.h>
-
-#include "gpmi-nand.h"
-#include "gpmi-regs.h"
-#include "bch-regs.h"
-
-/* Converts time to clock cycles */
-#define TO_CYCLES(duration, period) DIV_ROUND_UP_ULL(duration, period)
-
-#define MXS_SET_ADDR		0x4
-#define MXS_CLR_ADDR		0x8
-/*
- * Clear the bit and poll it cleared.  This is usually called with
- * a reset address and mask being either SFTRST(bit 31) or CLKGATE
- * (bit 30).
- */
-static int clear_poll_bit(void __iomem *addr, u32 mask)
-{
-	int timeout = 0x400;
-
-	/* clear the bit */
-	writel(mask, addr + MXS_CLR_ADDR);
-
-	/*
-	 * SFTRST needs 3 GPMI clocks to settle, the reference manual
-	 * recommends to wait 1us.
-	 */
-	udelay(1);
-
-	/* poll the bit becoming clear */
-	while ((readl(addr) & mask) && --timeout)
-		/* nothing */;
-
-	return !timeout;
-}
-
-#define MODULE_CLKGATE		(1 << 30)
-#define MODULE_SFTRST		(1 << 31)
-/*
- * The current mxs_reset_block() will do two things:
- *  [1] enable the module.
- *  [2] reset the module.
- *
- * In most of the cases, it's ok.
- * But in MX23, there is a hardware bug in the BCH block (see erratum #2847).
- * If you try to soft reset the BCH block, it becomes unusable until
- * the next hard reset. This case occurs in the NAND boot mode. When the board
- * boots by NAND, the ROM of the chip will initialize the BCH blocks itself.
- * So If the driver tries to reset the BCH again, the BCH will not work anymore.
- * You will see a DMA timeout in this case. The bug has been fixed
- * in the following chips, such as MX28.
- *
- * To avoid this bug, just add a new parameter `just_enable` for
- * the mxs_reset_block(), and rewrite it here.
- */
-static int gpmi_reset_block(void __iomem *reset_addr, bool just_enable)
-{
-	int ret;
-	int timeout = 0x400;
-
-	/* clear and poll SFTRST */
-	ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
-	if (unlikely(ret))
-		goto error;
-
-	/* clear CLKGATE */
-	writel(MODULE_CLKGATE, reset_addr + MXS_CLR_ADDR);
-
-	if (!just_enable) {
-		/* set SFTRST to reset the block */
-		writel(MODULE_SFTRST, reset_addr + MXS_SET_ADDR);
-		udelay(1);
-
-		/* poll CLKGATE becoming set */
-		while ((!(readl(reset_addr) & MODULE_CLKGATE)) && --timeout)
-			/* nothing */;
-		if (unlikely(!timeout))
-			goto error;
-	}
-
-	/* clear and poll SFTRST */
-	ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
-	if (unlikely(ret))
-		goto error;
-
-	/* clear and poll CLKGATE */
-	ret = clear_poll_bit(reset_addr, MODULE_CLKGATE);
-	if (unlikely(ret))
-		goto error;
-
-	return 0;
-
-error:
-	pr_err("%s(%p): module reset timeout\n", __func__, reset_addr);
-	return -ETIMEDOUT;
-}
-
-static int __gpmi_enable_clk(struct gpmi_nand_data *this, bool v)
-{
-	struct clk *clk;
-	int ret;
-	int i;
-
-	for (i = 0; i < GPMI_CLK_MAX; i++) {
-		clk = this->resources.clock[i];
-		if (!clk)
-			break;
-
-		if (v) {
-			ret = clk_prepare_enable(clk);
-			if (ret)
-				goto err_clk;
-		} else {
-			clk_disable_unprepare(clk);
-		}
-	}
-	return 0;
-
-err_clk:
-	for (; i > 0; i--)
-		clk_disable_unprepare(this->resources.clock[i - 1]);
-	return ret;
-}
-
-int gpmi_enable_clk(struct gpmi_nand_data *this)
-{
-	return __gpmi_enable_clk(this, true);
-}
-
-int gpmi_disable_clk(struct gpmi_nand_data *this)
-{
-	return __gpmi_enable_clk(this, false);
-}
-
-int gpmi_init(struct gpmi_nand_data *this)
-{
-	struct resources *r = &this->resources;
-	int ret;
-
-	ret = gpmi_enable_clk(this);
-	if (ret)
-		return ret;
-	ret = gpmi_reset_block(r->gpmi_regs, false);
-	if (ret)
-		goto err_out;
-
-	/*
-	 * Reset BCH here, too. We got failures otherwise :(
-	 * See later BCH reset for explanation of MX23 handling
-	 */
-	ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MX23(this));
-	if (ret)
-		goto err_out;
-
-	/* Choose NAND mode. */
-	writel(BM_GPMI_CTRL1_GPMI_MODE, r->gpmi_regs + HW_GPMI_CTRL1_CLR);
-
-	/* Set the IRQ polarity. */
-	writel(BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY,
-				r->gpmi_regs + HW_GPMI_CTRL1_SET);
-
-	/* Disable Write-Protection. */
-	writel(BM_GPMI_CTRL1_DEV_RESET, r->gpmi_regs + HW_GPMI_CTRL1_SET);
-
-	/* Select BCH ECC. */
-	writel(BM_GPMI_CTRL1_BCH_MODE, r->gpmi_regs + HW_GPMI_CTRL1_SET);
-
-	/*
-	 * Decouple the chip select from dma channel. We use dma0 for all
-	 * the chips.
-	 */
-	writel(BM_GPMI_CTRL1_DECOUPLE_CS, r->gpmi_regs + HW_GPMI_CTRL1_SET);
-
-	gpmi_disable_clk(this);
-	return 0;
-err_out:
-	gpmi_disable_clk(this);
-	return ret;
-}
-
-/* This function is very useful. It is called only when the bug occur. */
-void gpmi_dump_info(struct gpmi_nand_data *this)
-{
-	struct resources *r = &this->resources;
-	struct bch_geometry *geo = &this->bch_geometry;
-	u32 reg;
-	int i;
-
-	dev_err(this->dev, "Show GPMI registers :\n");
-	for (i = 0; i <= HW_GPMI_DEBUG / 0x10 + 1; i++) {
-		reg = readl(r->gpmi_regs + i * 0x10);
-		dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
-	}
-
-	/* start to print out the BCH info */
-	dev_err(this->dev, "Show BCH registers :\n");
-	for (i = 0; i <= HW_BCH_VERSION / 0x10 + 1; i++) {
-		reg = readl(r->bch_regs + i * 0x10);
-		dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
-	}
-	dev_err(this->dev, "BCH Geometry :\n"
-		"GF length              : %u\n"
-		"ECC Strength           : %u\n"
-		"Page Size in Bytes     : %u\n"
-		"Metadata Size in Bytes : %u\n"
-		"ECC Chunk Size in Bytes: %u\n"
-		"ECC Chunk Count        : %u\n"
-		"Payload Size in Bytes  : %u\n"
-		"Auxiliary Size in Bytes: %u\n"
-		"Auxiliary Status Offset: %u\n"
-		"Block Mark Byte Offset : %u\n"
-		"Block Mark Bit Offset  : %u\n",
-		geo->gf_len,
-		geo->ecc_strength,
-		geo->page_size,
-		geo->metadata_size,
-		geo->ecc_chunk_size,
-		geo->ecc_chunk_count,
-		geo->payload_size,
-		geo->auxiliary_size,
-		geo->auxiliary_status_offset,
-		geo->block_mark_byte_offset,
-		geo->block_mark_bit_offset);
-}
-
-/* Configures the geometry for BCH.  */
-int bch_set_geometry(struct gpmi_nand_data *this)
-{
-	struct resources *r = &this->resources;
-	struct bch_geometry *bch_geo = &this->bch_geometry;
-	unsigned int block_count;
-	unsigned int block_size;
-	unsigned int metadata_size;
-	unsigned int ecc_strength;
-	unsigned int page_size;
-	unsigned int gf_len;
-	int ret;
-
-	ret = common_nfc_set_geometry(this);
-	if (ret)
-		return ret;
-
-	block_count   = bch_geo->ecc_chunk_count - 1;
-	block_size    = bch_geo->ecc_chunk_size;
-	metadata_size = bch_geo->metadata_size;
-	ecc_strength  = bch_geo->ecc_strength >> 1;
-	page_size     = bch_geo->page_size;
-	gf_len        = bch_geo->gf_len;
-
-	ret = gpmi_enable_clk(this);
-	if (ret)
-		return ret;
-
-	/*
-	* Due to erratum #2847 of the MX23, the BCH cannot be soft reset on this
-	* chip, otherwise it will lock up. So we skip resetting BCH on the MX23.
-	* On the other hand, the MX28 needs the reset, because one case has been
-	* seen where the BCH produced ECC errors constantly after 10000
-	* consecutive reboots. The latter case has not been seen on the MX23
-	* yet, still we don't know if it could happen there as well.
-	*/
-	ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MX23(this));
-	if (ret)
-		goto err_out;
-
-	/* Configure layout 0. */
-	writel(BF_BCH_FLASH0LAYOUT0_NBLOCKS(block_count)
-			| BF_BCH_FLASH0LAYOUT0_META_SIZE(metadata_size)
-			| BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this)
-			| BF_BCH_FLASH0LAYOUT0_GF(gf_len, this)
-			| BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(block_size, this),
-			r->bch_regs + HW_BCH_FLASH0LAYOUT0);
-
-	writel(BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size)
-			| BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this)
-			| BF_BCH_FLASH0LAYOUT1_GF(gf_len, this)
-			| BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(block_size, this),
-			r->bch_regs + HW_BCH_FLASH0LAYOUT1);
-
-	/* Set *all* chip selects to use layout 0. */
-	writel(0, r->bch_regs + HW_BCH_LAYOUTSELECT);
-
-	/* Enable interrupts. */
-	writel(BM_BCH_CTRL_COMPLETE_IRQ_EN,
-				r->bch_regs + HW_BCH_CTRL_SET);
-
-	gpmi_disable_clk(this);
-	return 0;
-err_out:
-	gpmi_disable_clk(this);
-	return ret;
-}
-
-/*
- * <1> Firstly, we should know what's the GPMI-clock means.
- *     The GPMI-clock is the internal clock in the gpmi nand controller.
- *     If you set 100MHz to gpmi nand controller, the GPMI-clock's period
- *     is 10ns. Mark the GPMI-clock's period as GPMI-clock-period.
- *
- * <2> Secondly, we should know what's the frequency on the nand chip pins.
- *     The frequency on the nand chip pins is derived from the GPMI-clock.
- *     We can get it from the following equation:
- *
- *         F = G / (DS + DH)
- *
- *         F  : the frequency on the nand chip pins.
- *         G  : the GPMI clock, such as 100MHz.
- *         DS : GPMI_HW_GPMI_TIMING0:DATA_SETUP
- *         DH : GPMI_HW_GPMI_TIMING0:DATA_HOLD
- *
- * <3> Thirdly, when the frequency on the nand chip pins is above 33MHz,
- *     the nand EDO(extended Data Out) timing could be applied.
- *     The GPMI implements a feedback read strobe to sample the read data.
- *     The feedback read strobe can be delayed to support the nand EDO timing
- *     where the read strobe may deasserts before the read data is valid, and
- *     read data is valid for some time after read strobe.
- *
- *     The following figure illustrates some aspects of a NAND Flash read:
- *
- *                   |<---tREA---->|
- *                   |             |
- *                   |         |   |
- *                   |<--tRP-->|   |
- *                   |         |   |
- *                  __          ___|__________________________________
- *     RDN            \________/   |
- *                                 |
- *                                 /---------\
- *     Read Data    --------------<           >---------
- *                                 \---------/
- *                                |     |
- *                                |<-D->|
- *     FeedbackRDN  ________             ____________
- *                          \___________/
- *
- *          D stands for delay, set in the HW_GPMI_CTRL1:RDN_DELAY.
- *
- *
- * <4> Now, we begin to describe how to compute the right RDN_DELAY.
- *
- *  4.1) From the aspect of the nand chip pins:
- *        Delay = (tREA + C - tRP)               {1}
- *
- *        tREA : the maximum read access time.
- *        C    : a constant to adjust the delay. default is 4000ps.
- *        tRP  : the read pulse width, which is exactly:
- *                   tRP = (GPMI-clock-period) * DATA_SETUP
- *
- *  4.2) From the aspect of the GPMI nand controller:
- *         Delay = RDN_DELAY * 0.125 * RP        {2}
- *
- *         RP   : the DLL reference period.
- *            if (GPMI-clock-period > DLL_THRETHOLD)
- *                   RP = GPMI-clock-period / 2;
- *            else
- *                   RP = GPMI-clock-period;
- *
- *            Set the HW_GPMI_CTRL1:HALF_PERIOD if GPMI-clock-period
- *            is greater DLL_THRETHOLD. In other SOCs, the DLL_THRETHOLD
- *            is 16000ps, but in mx6q, we use 12000ps.
- *
- *  4.3) since {1} equals {2}, we get:
- *
- *                     (tREA + 4000 - tRP) * 8
- *         RDN_DELAY = -----------------------     {3}
- *                           RP
- */
-static void gpmi_nfc_compute_timings(struct gpmi_nand_data *this,
-				     const struct nand_sdr_timings *sdr)
-{
-	struct gpmi_nfc_hardware_timing *hw = &this->hw;
-	unsigned int dll_threshold_ps = this->devdata->max_chain_delay;
-	unsigned int period_ps, reference_period_ps;
-	unsigned int data_setup_cycles, data_hold_cycles, addr_setup_cycles;
-	unsigned int tRP_ps;
-	bool use_half_period;
-	int sample_delay_ps, sample_delay_factor;
-	u16 busy_timeout_cycles;
-	u8 wrn_dly_sel;
-
-	if (sdr->tRC_min >= 30000) {
-		/* ONFI non-EDO modes [0-3] */
-		hw->clk_rate = 22000000;
-		wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS;
-	} else if (sdr->tRC_min >= 25000) {
-		/* ONFI EDO mode 4 */
-		hw->clk_rate = 80000000;
-		wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY;
-	} else {
-		/* ONFI EDO mode 5 */
-		hw->clk_rate = 100000000;
-		wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY;
-	}
-
-	/* SDR core timings are given in picoseconds */
-	period_ps = div_u64((u64)NSEC_PER_SEC * 1000, hw->clk_rate);
-
-	addr_setup_cycles = TO_CYCLES(sdr->tALS_min, period_ps);
-	data_setup_cycles = TO_CYCLES(sdr->tDS_min, period_ps);
-	data_hold_cycles = TO_CYCLES(sdr->tDH_min, period_ps);
-	busy_timeout_cycles = TO_CYCLES(sdr->tWB_max + sdr->tR_max, period_ps);
-
-	hw->timing0 = BF_GPMI_TIMING0_ADDRESS_SETUP(addr_setup_cycles) |
-		      BF_GPMI_TIMING0_DATA_HOLD(data_hold_cycles) |
-		      BF_GPMI_TIMING0_DATA_SETUP(data_setup_cycles);
-	hw->timing1 = BF_GPMI_TIMING1_BUSY_TIMEOUT(busy_timeout_cycles * 4096);
-
-	/*
-	 * Derive NFC ideal delay from {3}:
-	 *
-	 *                     (tREA + 4000 - tRP) * 8
-	 *         RDN_DELAY = -----------------------
-	 *                                RP
-	 */
-	if (period_ps > dll_threshold_ps) {
-		use_half_period = true;
-		reference_period_ps = period_ps / 2;
-	} else {
-		use_half_period = false;
-		reference_period_ps = period_ps;
-	}
-
-	tRP_ps = data_setup_cycles * period_ps;
-	sample_delay_ps = (sdr->tREA_max + 4000 - tRP_ps) * 8;
-	if (sample_delay_ps > 0)
-		sample_delay_factor = sample_delay_ps / reference_period_ps;
-	else
-		sample_delay_factor = 0;
-
-	hw->ctrl1n = BF_GPMI_CTRL1_WRN_DLY_SEL(wrn_dly_sel);
-	if (sample_delay_factor)
-		hw->ctrl1n |= BF_GPMI_CTRL1_RDN_DELAY(sample_delay_factor) |
-			      BM_GPMI_CTRL1_DLL_ENABLE |
-			      (use_half_period ? BM_GPMI_CTRL1_HALF_PERIOD : 0);
-}
-
-void gpmi_nfc_apply_timings(struct gpmi_nand_data *this)
-{
-	struct gpmi_nfc_hardware_timing *hw = &this->hw;
-	struct resources *r = &this->resources;
-	void __iomem *gpmi_regs = r->gpmi_regs;
-	unsigned int dll_wait_time_us;
-
-	clk_set_rate(r->clock[0], hw->clk_rate);
-
-	writel(hw->timing0, gpmi_regs + HW_GPMI_TIMING0);
-	writel(hw->timing1, gpmi_regs + HW_GPMI_TIMING1);
-
-	/*
-	 * Clear several CTRL1 fields, DLL must be disabled when setting
-	 * RDN_DELAY or HALF_PERIOD.
-	 */
-	writel(BM_GPMI_CTRL1_CLEAR_MASK, gpmi_regs + HW_GPMI_CTRL1_CLR);
-	writel(hw->ctrl1n, gpmi_regs + HW_GPMI_CTRL1_SET);
-
-	/* Wait 64 clock cycles before using the GPMI after enabling the DLL */
-	dll_wait_time_us = USEC_PER_SEC / hw->clk_rate * 64;
-	if (!dll_wait_time_us)
-		dll_wait_time_us = 1;
-
-	/* Wait for the DLL to settle. */
-	udelay(dll_wait_time_us);
-}
-
-int gpmi_setup_data_interface(struct mtd_info *mtd, int chipnr,
-			      const struct nand_data_interface *conf)
-{
-	struct nand_chip *chip = mtd_to_nand(mtd);
-	struct gpmi_nand_data *this = nand_get_controller_data(chip);
-	const struct nand_sdr_timings *sdr;
-
-	/* Retrieve required NAND timings */
-	sdr = nand_get_sdr_timings(conf);
-	if (IS_ERR(sdr))
-		return PTR_ERR(sdr);
-
-	/* Only MX6 GPMI controller can reach EDO timings */
-	if (sdr->tRC_min <= 25000 && !GPMI_IS_MX6(this))
-		return -ENOTSUPP;
-
-	/* Stop here if this call was just a check */
-	if (chipnr < 0)
-		return 0;
-
-	/* Do the actual derivation of the controller timings */
-	gpmi_nfc_compute_timings(this, sdr);
-
-	this->hw.must_apply_timings = true;
-
-	return 0;
-}
-
-/* Clears a BCH interrupt. */
-void gpmi_clear_bch(struct gpmi_nand_data *this)
-{
-	struct resources *r = &this->resources;
-	writel(BM_BCH_CTRL_COMPLETE_IRQ, r->bch_regs + HW_BCH_CTRL_CLR);
-}
-
-/* Returns the Ready/Busy status of the given chip. */
-int gpmi_is_ready(struct gpmi_nand_data *this, unsigned chip)
-{
-	struct resources *r = &this->resources;
-	uint32_t mask = 0;
-	uint32_t reg = 0;
-
-	if (GPMI_IS_MX23(this)) {
-		mask = MX23_BM_GPMI_DEBUG_READY0 << chip;
-		reg = readl(r->gpmi_regs + HW_GPMI_DEBUG);
-	} else if (GPMI_IS_MX28(this) || GPMI_IS_MX6(this)) {
-		/*
-		 * In the imx6, all the ready/busy pins are bound
-		 * together. So we only need to check chip 0.
-		 */
-		if (GPMI_IS_MX6(this))
-			chip = 0;
-
-		/* MX28 shares the same R/B register as MX6Q. */
-		mask = MX28_BF_GPMI_STAT_READY_BUSY(1 << chip);
-		reg = readl(r->gpmi_regs + HW_GPMI_STAT);
-	} else
-		dev_err(this->dev, "unknown arch.\n");
-	return reg & mask;
-}
-
-int gpmi_send_command(struct gpmi_nand_data *this)
-{
-	struct dma_chan *channel = get_dma_chan(this);
-	struct dma_async_tx_descriptor *desc;
-	struct scatterlist *sgl;
-	int chip = this->current_chip;
-	int ret;
-	u32 pio[3];
-
-	/* [1] send out the PIO words */
-	pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE)
-		| BM_GPMI_CTRL0_WORD_LENGTH
-		| BF_GPMI_CTRL0_CS(chip, this)
-		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
-		| BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_CLE)
-		| BM_GPMI_CTRL0_ADDRESS_INCREMENT
-		| BF_GPMI_CTRL0_XFER_COUNT(this->command_length);
-	pio[1] = pio[2] = 0;
-	desc = dmaengine_prep_slave_sg(channel,
-					(struct scatterlist *)pio,
-					ARRAY_SIZE(pio), DMA_TRANS_NONE, 0);
-	if (!desc)
-		return -EINVAL;
-
-	/* [2] send out the COMMAND + ADDRESS string stored in @buffer */
-	sgl = &this->cmd_sgl;
-
-	sg_init_one(sgl, this->cmd_buffer, this->command_length);
-	dma_map_sg(this->dev, sgl, 1, DMA_TO_DEVICE);
-	desc = dmaengine_prep_slave_sg(channel,
-				sgl, 1, DMA_MEM_TO_DEV,
-				DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
-	if (!desc)
-		return -EINVAL;
-
-	/* [3] submit the DMA */
-	ret = start_dma_without_bch_irq(this, desc);
-
-	dma_unmap_sg(this->dev, sgl, 1, DMA_TO_DEVICE);
-
-	return ret;
-}
-
-int gpmi_send_data(struct gpmi_nand_data *this, const void *buf, int len)
-{
-	struct dma_async_tx_descriptor *desc;
-	struct dma_chan *channel = get_dma_chan(this);
-	int chip = this->current_chip;
-	int ret;
-	uint32_t command_mode;
-	uint32_t address;
-	u32 pio[2];
-
-	/* [1] PIO */
-	command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE;
-	address      = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
-
-	pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
-		| BM_GPMI_CTRL0_WORD_LENGTH
-		| BF_GPMI_CTRL0_CS(chip, this)
-		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
-		| BF_GPMI_CTRL0_ADDRESS(address)
-		| BF_GPMI_CTRL0_XFER_COUNT(len);
-	pio[1] = 0;
-	desc = dmaengine_prep_slave_sg(channel, (struct scatterlist *)pio,
-					ARRAY_SIZE(pio), DMA_TRANS_NONE, 0);
-	if (!desc)
-		return -EINVAL;
-
-	/* [2] send DMA request */
-	prepare_data_dma(this, buf, len, DMA_TO_DEVICE);
-	desc = dmaengine_prep_slave_sg(channel, &this->data_sgl,
-					1, DMA_MEM_TO_DEV,
-					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
-	if (!desc)
-		return -EINVAL;
-
-	/* [3] submit the DMA */
-	ret = start_dma_without_bch_irq(this, desc);
-
-	dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_TO_DEVICE);
-
-	return ret;
-}
-
-int gpmi_read_data(struct gpmi_nand_data *this, void *buf, int len)
-{
-	struct dma_async_tx_descriptor *desc;
-	struct dma_chan *channel = get_dma_chan(this);
-	int chip = this->current_chip;
-	int ret;
-	u32 pio[2];
-	bool direct;
-
-	/* [1] : send PIO */
-	pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__READ)
-		| BM_GPMI_CTRL0_WORD_LENGTH
-		| BF_GPMI_CTRL0_CS(chip, this)
-		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
-		| BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
-		| BF_GPMI_CTRL0_XFER_COUNT(len);
-	pio[1] = 0;
-	desc = dmaengine_prep_slave_sg(channel,
-					(struct scatterlist *)pio,
-					ARRAY_SIZE(pio), DMA_TRANS_NONE, 0);
-	if (!desc)
-		return -EINVAL;
-
-	/* [2] : send DMA request */
-	direct = prepare_data_dma(this, buf, len, DMA_FROM_DEVICE);
-	desc = dmaengine_prep_slave_sg(channel, &this->data_sgl,
-					1, DMA_DEV_TO_MEM,
-					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
-	if (!desc)
-		return -EINVAL;
-
-	/* [3] : submit the DMA */
-
-	ret = start_dma_without_bch_irq(this, desc);
-
-	dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_FROM_DEVICE);
-	if (!direct)
-		memcpy(buf, this->data_buffer_dma, len);
-
-	return ret;
-}
-
-int gpmi_send_page(struct gpmi_nand_data *this,
-			dma_addr_t payload, dma_addr_t auxiliary)
-{
-	struct bch_geometry *geo = &this->bch_geometry;
-	uint32_t command_mode;
-	uint32_t address;
-	uint32_t ecc_command;
-	uint32_t buffer_mask;
-	struct dma_async_tx_descriptor *desc;
-	struct dma_chan *channel = get_dma_chan(this);
-	int chip = this->current_chip;
-	u32 pio[6];
-
-	/* A DMA descriptor that does an ECC page read. */
-	command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE;
-	address      = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
-	ecc_command  = BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE;
-	buffer_mask  = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE |
-				BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY;
-
-	pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
-		| BM_GPMI_CTRL0_WORD_LENGTH
-		| BF_GPMI_CTRL0_CS(chip, this)
-		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
-		| BF_GPMI_CTRL0_ADDRESS(address)
-		| BF_GPMI_CTRL0_XFER_COUNT(0);
-	pio[1] = 0;
-	pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC
-		| BF_GPMI_ECCCTRL_ECC_CMD(ecc_command)
-		| BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask);
-	pio[3] = geo->page_size;
-	pio[4] = payload;
-	pio[5] = auxiliary;
-
-	desc = dmaengine_prep_slave_sg(channel,
-					(struct scatterlist *)pio,
-					ARRAY_SIZE(pio), DMA_TRANS_NONE,
-					DMA_CTRL_ACK);
-	if (!desc)
-		return -EINVAL;
-
-	return start_dma_with_bch_irq(this, desc);
-}
-
-int gpmi_read_page(struct gpmi_nand_data *this,
-				dma_addr_t payload, dma_addr_t auxiliary)
-{
-	struct bch_geometry *geo = &this->bch_geometry;
-	uint32_t command_mode;
-	uint32_t address;
-	uint32_t ecc_command;
-	uint32_t buffer_mask;
-	struct dma_async_tx_descriptor *desc;
-	struct dma_chan *channel = get_dma_chan(this);
-	int chip = this->current_chip;
-	u32 pio[6];
-
-	/* [1] Wait for the chip to report ready. */
-	command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY;
-	address      = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
-
-	pio[0] =  BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
-		| BM_GPMI_CTRL0_WORD_LENGTH
-		| BF_GPMI_CTRL0_CS(chip, this)
-		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
-		| BF_GPMI_CTRL0_ADDRESS(address)
-		| BF_GPMI_CTRL0_XFER_COUNT(0);
-	pio[1] = 0;
-	desc = dmaengine_prep_slave_sg(channel,
-				(struct scatterlist *)pio, 2,
-				DMA_TRANS_NONE, 0);
-	if (!desc)
-		return -EINVAL;
-
-	/* [2] Enable the BCH block and read. */
-	command_mode = BV_GPMI_CTRL0_COMMAND_MODE__READ;
-	address      = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
-	ecc_command  = BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE;
-	buffer_mask  = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE
-			| BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY;
-
-	pio[0] =  BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
-		| BM_GPMI_CTRL0_WORD_LENGTH
-		| BF_GPMI_CTRL0_CS(chip, this)
-		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
-		| BF_GPMI_CTRL0_ADDRESS(address)
-		| BF_GPMI_CTRL0_XFER_COUNT(geo->page_size);
-
-	pio[1] = 0;
-	pio[2] =  BM_GPMI_ECCCTRL_ENABLE_ECC
-		| BF_GPMI_ECCCTRL_ECC_CMD(ecc_command)
-		| BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask);
-	pio[3] = geo->page_size;
-	pio[4] = payload;
-	pio[5] = auxiliary;
-	desc = dmaengine_prep_slave_sg(channel,
-					(struct scatterlist *)pio,
-					ARRAY_SIZE(pio), DMA_TRANS_NONE,
-					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
-	if (!desc)
-		return -EINVAL;
-
-	/* [3] Disable the BCH block */
-	command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY;
-	address      = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
-
-	pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
-		| BM_GPMI_CTRL0_WORD_LENGTH
-		| BF_GPMI_CTRL0_CS(chip, this)
-		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
-		| BF_GPMI_CTRL0_ADDRESS(address)
-		| BF_GPMI_CTRL0_XFER_COUNT(geo->page_size);
-	pio[1] = 0;
-	pio[2] = 0; /* clear GPMI_HW_GPMI_ECCCTRL, disable the BCH. */
-	desc = dmaengine_prep_slave_sg(channel,
-				(struct scatterlist *)pio, 3,
-				DMA_TRANS_NONE,
-				DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
-	if (!desc)
-		return -EINVAL;
-
-	/* [4] submit the DMA */
-	return start_dma_with_bch_irq(this, desc);
-}
-
-/**
- * gpmi_copy_bits - copy bits from one memory region to another
- * @dst: destination buffer
- * @dst_bit_off: bit offset we're starting to write at
- * @src: source buffer
- * @src_bit_off: bit offset we're starting to read from
- * @nbits: number of bits to copy
- *
- * This functions copies bits from one memory region to another, and is used by
- * the GPMI driver to copy ECC sections which are not guaranteed to be byte
- * aligned.
- *
- * src and dst should not overlap.
- *
- */
-void gpmi_copy_bits(u8 *dst, size_t dst_bit_off,
-		    const u8 *src, size_t src_bit_off,
-		    size_t nbits)
-{
-	size_t i;
-	size_t nbytes;
-	u32 src_buffer = 0;
-	size_t bits_in_src_buffer = 0;
-
-	if (!nbits)
-		return;
-
-	/*
-	 * Move src and dst pointers to the closest byte pointer and store bit
-	 * offsets within a byte.
-	 */
-	src += src_bit_off / 8;
-	src_bit_off %= 8;
-
-	dst += dst_bit_off / 8;
-	dst_bit_off %= 8;
-
-	/*
-	 * Initialize the src_buffer value with bits available in the first
-	 * byte of data so that we end up with a byte aligned src pointer.
-	 */
-	if (src_bit_off) {
-		src_buffer = src[0] >> src_bit_off;
-		if (nbits >= (8 - src_bit_off)) {
-			bits_in_src_buffer += 8 - src_bit_off;
-		} else {
-			src_buffer &= GENMASK(nbits - 1, 0);
-			bits_in_src_buffer += nbits;
-		}
-		nbits -= bits_in_src_buffer;
-		src++;
-	}
-
-	/* Calculate the number of bytes that can be copied from src to dst. */
-	nbytes = nbits / 8;
-
-	/* Try to align dst to a byte boundary. */
-	if (dst_bit_off) {
-		if (bits_in_src_buffer < (8 - dst_bit_off) && nbytes) {
-			src_buffer |= src[0] << bits_in_src_buffer;
-			bits_in_src_buffer += 8;
-			src++;
-			nbytes--;
-		}
-
-		if (bits_in_src_buffer >= (8 - dst_bit_off)) {
-			dst[0] &= GENMASK(dst_bit_off - 1, 0);
-			dst[0] |= src_buffer << dst_bit_off;
-			src_buffer >>= (8 - dst_bit_off);
-			bits_in_src_buffer -= (8 - dst_bit_off);
-			dst_bit_off = 0;
-			dst++;
-			if (bits_in_src_buffer > 7) {
-				bits_in_src_buffer -= 8;
-				dst[0] = src_buffer;
-				dst++;
-				src_buffer >>= 8;
-			}
-		}
-	}
-
-	if (!bits_in_src_buffer && !dst_bit_off) {
-		/*
-		 * Both src and dst pointers are byte aligned, thus we can
-		 * just use the optimized memcpy function.
-		 */
-		if (nbytes)
-			memcpy(dst, src, nbytes);
-	} else {
-		/*
-		 * src buffer is not byte aligned, hence we have to copy each
-		 * src byte to the src_buffer variable before extracting a byte
-		 * to store in dst.
-		 */
-		for (i = 0; i < nbytes; i++) {
-			src_buffer |= src[i] << bits_in_src_buffer;
-			dst[i] = src_buffer;
-			src_buffer >>= 8;
-		}
-	}
-	/* Update dst and src pointers */
-	dst += nbytes;
-	src += nbytes;
-
-	/*
-	 * nbits is the number of remaining bits. It should not exceed 8 as
-	 * we've already copied as much bytes as possible.
-	 */
-	nbits %= 8;
-
-	/*
-	 * If there's no more bits to copy to the destination and src buffer
-	 * was already byte aligned, then we're done.
-	 */
-	if (!nbits && !bits_in_src_buffer)
-		return;
-
-	/* Copy the remaining bits to src_buffer */
-	if (nbits)
-		src_buffer |= (*src & GENMASK(nbits - 1, 0)) <<
-			      bits_in_src_buffer;
-	bits_in_src_buffer += nbits;
-
-	/*
-	 * In case there were not enough bits to get a byte aligned dst buffer
-	 * prepare the src_buffer variable to match the dst organization (shift
-	 * src_buffer by dst_bit_off and retrieve the least significant bits
-	 * from dst).
-	 */
-	if (dst_bit_off)
-		src_buffer = (src_buffer << dst_bit_off) |
-			     (*dst & GENMASK(dst_bit_off - 1, 0));
-	bits_in_src_buffer += dst_bit_off;
-
-	/*
-	 * Keep most significant bits from dst if we end up with an unaligned
-	 * number of bits.
-	 */
-	nbytes = bits_in_src_buffer / 8;
-	if (bits_in_src_buffer % 8) {
-		src_buffer |= (dst[nbytes] &
-			       GENMASK(7, bits_in_src_buffer % 8)) <<
-			      (nbytes * 8);
-		nbytes++;
-	}
-
-	/* Copy the remaining bytes to dst */
-	for (i = 0; i < nbytes; i++) {
-		dst[i] = src_buffer;
-		src_buffer >>= 8;
-	}
-}
diff --git a/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.c b/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.c
index 1c1ebbc..334fe31 100644
--- a/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.c
+++ b/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.c
@@ -6,6 +6,7 @@
  * Copyright (C) 2008 Embedded Alley Solutions, Inc.
  */
 #include <linux/clk.h>
+#include <linux/delay.h>
 #include <linux/slab.h>
 #include <linux/sched/task_stack.h>
 #include <linux/interrupt.h>
@@ -13,7 +14,10 @@
 #include <linux/mtd/partitions.h>
 #include <linux/of.h>
 #include <linux/of_device.h>
+#include <linux/pm_runtime.h>
+#include <linux/dma/mxs-dma.h>
 #include "gpmi-nand.h"
+#include "gpmi-regs.h"
 #include "bch-regs.h"
 
 /* Resource names for the GPMI NAND driver. */
@@ -21,149 +25,208 @@
 #define GPMI_NAND_BCH_REGS_ADDR_RES_NAME   "bch"
 #define GPMI_NAND_BCH_INTERRUPT_RES_NAME   "bch"
 
-/* add our owner bbt descriptor */
-static uint8_t scan_ff_pattern[] = { 0xff };
-static struct nand_bbt_descr gpmi_bbt_descr = {
-	.options	= 0,
-	.offs		= 0,
-	.len		= 1,
-	.pattern	= scan_ff_pattern
-};
+/* Converts time to clock cycles */
+#define TO_CYCLES(duration, period) DIV_ROUND_UP_ULL(duration, period)
 
+#define MXS_SET_ADDR		0x4
+#define MXS_CLR_ADDR		0x8
 /*
- * We may change the layout if we can get the ECC info from the datasheet,
- * else we will use all the (page + OOB).
+ * Clear the bit and poll it cleared.  This is usually called with
+ * a reset address and mask being either SFTRST(bit 31) or CLKGATE
+ * (bit 30).
  */
-static int gpmi_ooblayout_ecc(struct mtd_info *mtd, int section,
-			      struct mtd_oob_region *oobregion)
+static int clear_poll_bit(void __iomem *addr, u32 mask)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
-	struct gpmi_nand_data *this = nand_get_controller_data(chip);
-	struct bch_geometry *geo = &this->bch_geometry;
+	int timeout = 0x400;
 
-	if (section)
-		return -ERANGE;
+	/* clear the bit */
+	writel(mask, addr + MXS_CLR_ADDR);
 
-	oobregion->offset = 0;
-	oobregion->length = geo->page_size - mtd->writesize;
+	/*
+	 * SFTRST needs 3 GPMI clocks to settle, the reference manual
+	 * recommends to wait 1us.
+	 */
+	udelay(1);
 
-	return 0;
+	/* poll the bit becoming clear */
+	while ((readl(addr) & mask) && --timeout)
+		/* nothing */;
+
+	return !timeout;
 }
 
-static int gpmi_ooblayout_free(struct mtd_info *mtd, int section,
-			       struct mtd_oob_region *oobregion)
+#define MODULE_CLKGATE		(1 << 30)
+#define MODULE_SFTRST		(1 << 31)
+/*
+ * The current mxs_reset_block() will do two things:
+ *  [1] enable the module.
+ *  [2] reset the module.
+ *
+ * In most of the cases, it's ok.
+ * But in MX23, there is a hardware bug in the BCH block (see erratum #2847).
+ * If you try to soft reset the BCH block, it becomes unusable until
+ * the next hard reset. This case occurs in the NAND boot mode. When the board
+ * boots by NAND, the ROM of the chip will initialize the BCH blocks itself.
+ * So If the driver tries to reset the BCH again, the BCH will not work anymore.
+ * You will see a DMA timeout in this case. The bug has been fixed
+ * in the following chips, such as MX28.
+ *
+ * To avoid this bug, just add a new parameter `just_enable` for
+ * the mxs_reset_block(), and rewrite it here.
+ */
+static int gpmi_reset_block(void __iomem *reset_addr, bool just_enable)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
-	struct gpmi_nand_data *this = nand_get_controller_data(chip);
-	struct bch_geometry *geo = &this->bch_geometry;
+	int ret;
+	int timeout = 0x400;
 
-	if (section)
-		return -ERANGE;
+	/* clear and poll SFTRST */
+	ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
+	if (unlikely(ret))
+		goto error;
 
-	/* The available oob size we have. */
-	if (geo->page_size < mtd->writesize + mtd->oobsize) {
-		oobregion->offset = geo->page_size - mtd->writesize;
-		oobregion->length = mtd->oobsize - oobregion->offset;
+	/* clear CLKGATE */
+	writel(MODULE_CLKGATE, reset_addr + MXS_CLR_ADDR);
+
+	if (!just_enable) {
+		/* set SFTRST to reset the block */
+		writel(MODULE_SFTRST, reset_addr + MXS_SET_ADDR);
+		udelay(1);
+
+		/* poll CLKGATE becoming set */
+		while ((!(readl(reset_addr) & MODULE_CLKGATE)) && --timeout)
+			/* nothing */;
+		if (unlikely(!timeout))
+			goto error;
 	}
 
+	/* clear and poll SFTRST */
+	ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
+	if (unlikely(ret))
+		goto error;
+
+	/* clear and poll CLKGATE */
+	ret = clear_poll_bit(reset_addr, MODULE_CLKGATE);
+	if (unlikely(ret))
+		goto error;
+
 	return 0;
+
+error:
+	pr_err("%s(%p): module reset timeout\n", __func__, reset_addr);
+	return -ETIMEDOUT;
 }
 
-static const char * const gpmi_clks_for_mx2x[] = {
-	"gpmi_io",
-};
-
-static const struct mtd_ooblayout_ops gpmi_ooblayout_ops = {
-	.ecc = gpmi_ooblayout_ecc,
-	.free = gpmi_ooblayout_free,
-};
-
-static const struct gpmi_devdata gpmi_devdata_imx23 = {
-	.type = IS_MX23,
-	.bch_max_ecc_strength = 20,
-	.max_chain_delay = 16000,
-	.clks = gpmi_clks_for_mx2x,
-	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x),
-};
-
-static const struct gpmi_devdata gpmi_devdata_imx28 = {
-	.type = IS_MX28,
-	.bch_max_ecc_strength = 20,
-	.max_chain_delay = 16000,
-	.clks = gpmi_clks_for_mx2x,
-	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x),
-};
-
-static const char * const gpmi_clks_for_mx6[] = {
-	"gpmi_io", "gpmi_apb", "gpmi_bch", "gpmi_bch_apb", "per1_bch",
-};
-
-static const struct gpmi_devdata gpmi_devdata_imx6q = {
-	.type = IS_MX6Q,
-	.bch_max_ecc_strength = 40,
-	.max_chain_delay = 12000,
-	.clks = gpmi_clks_for_mx6,
-	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx6),
-};
-
-static const struct gpmi_devdata gpmi_devdata_imx6sx = {
-	.type = IS_MX6SX,
-	.bch_max_ecc_strength = 62,
-	.max_chain_delay = 12000,
-	.clks = gpmi_clks_for_mx6,
-	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx6),
-};
-
-static const char * const gpmi_clks_for_mx7d[] = {
-	"gpmi_io", "gpmi_bch_apb",
-};
-
-static const struct gpmi_devdata gpmi_devdata_imx7d = {
-	.type = IS_MX7D,
-	.bch_max_ecc_strength = 62,
-	.max_chain_delay = 12000,
-	.clks = gpmi_clks_for_mx7d,
-	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx7d),
-};
-
-static irqreturn_t bch_irq(int irq, void *cookie)
+static int __gpmi_enable_clk(struct gpmi_nand_data *this, bool v)
 {
-	struct gpmi_nand_data *this = cookie;
+	struct clk *clk;
+	int ret;
+	int i;
 
-	gpmi_clear_bch(this);
-	complete(&this->bch_done);
-	return IRQ_HANDLED;
+	for (i = 0; i < GPMI_CLK_MAX; i++) {
+		clk = this->resources.clock[i];
+		if (!clk)
+			break;
+
+		if (v) {
+			ret = clk_prepare_enable(clk);
+			if (ret)
+				goto err_clk;
+		} else {
+			clk_disable_unprepare(clk);
+		}
+	}
+	return 0;
+
+err_clk:
+	for (; i > 0; i--)
+		clk_disable_unprepare(this->resources.clock[i - 1]);
+	return ret;
 }
 
-/*
- *  Calculate the ECC strength by hand:
- *	E : The ECC strength.
- *	G : the length of Galois Field.
- *	N : The chunk count of per page.
- *	O : the oobsize of the NAND chip.
- *	M : the metasize of per page.
- *
- *	The formula is :
- *		E * G * N
- *	      ------------ <= (O - M)
- *                  8
- *
- *      So, we get E by:
- *                    (O - M) * 8
- *              E <= -------------
- *                       G * N
- */
-static inline int get_ecc_strength(struct gpmi_nand_data *this)
+static int gpmi_init(struct gpmi_nand_data *this)
 {
+	struct resources *r = &this->resources;
+	int ret;
+
+	ret = gpmi_reset_block(r->gpmi_regs, false);
+	if (ret)
+		goto err_out;
+
+	/*
+	 * Reset BCH here, too. We got failures otherwise :(
+	 * See later BCH reset for explanation of MX23 and MX28 handling
+	 */
+	ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MXS(this));
+	if (ret)
+		goto err_out;
+
+	/* Choose NAND mode. */
+	writel(BM_GPMI_CTRL1_GPMI_MODE, r->gpmi_regs + HW_GPMI_CTRL1_CLR);
+
+	/* Set the IRQ polarity. */
+	writel(BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY,
+				r->gpmi_regs + HW_GPMI_CTRL1_SET);
+
+	/* Disable Write-Protection. */
+	writel(BM_GPMI_CTRL1_DEV_RESET, r->gpmi_regs + HW_GPMI_CTRL1_SET);
+
+	/* Select BCH ECC. */
+	writel(BM_GPMI_CTRL1_BCH_MODE, r->gpmi_regs + HW_GPMI_CTRL1_SET);
+
+	/*
+	 * Decouple the chip select from dma channel. We use dma0 for all
+	 * the chips.
+	 */
+	writel(BM_GPMI_CTRL1_DECOUPLE_CS, r->gpmi_regs + HW_GPMI_CTRL1_SET);
+
+	return 0;
+err_out:
+	return ret;
+}
+
+/* This function is very useful. It is called only when the bug occur. */
+static void gpmi_dump_info(struct gpmi_nand_data *this)
+{
+	struct resources *r = &this->resources;
 	struct bch_geometry *geo = &this->bch_geometry;
-	struct mtd_info	*mtd = nand_to_mtd(&this->nand);
-	int ecc_strength;
+	u32 reg;
+	int i;
 
-	ecc_strength = ((mtd->oobsize - geo->metadata_size) * 8)
-			/ (geo->gf_len * geo->ecc_chunk_count);
+	dev_err(this->dev, "Show GPMI registers :\n");
+	for (i = 0; i <= HW_GPMI_DEBUG / 0x10 + 1; i++) {
+		reg = readl(r->gpmi_regs + i * 0x10);
+		dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
+	}
 
-	/* We need the minor even number. */
-	return round_down(ecc_strength, 2);
+	/* start to print out the BCH info */
+	dev_err(this->dev, "Show BCH registers :\n");
+	for (i = 0; i <= HW_BCH_VERSION / 0x10 + 1; i++) {
+		reg = readl(r->bch_regs + i * 0x10);
+		dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
+	}
+	dev_err(this->dev, "BCH Geometry :\n"
+		"GF length              : %u\n"
+		"ECC Strength           : %u\n"
+		"Page Size in Bytes     : %u\n"
+		"Metadata Size in Bytes : %u\n"
+		"ECC Chunk Size in Bytes: %u\n"
+		"ECC Chunk Count        : %u\n"
+		"Payload Size in Bytes  : %u\n"
+		"Auxiliary Size in Bytes: %u\n"
+		"Auxiliary Status Offset: %u\n"
+		"Block Mark Byte Offset : %u\n"
+		"Block Mark Bit Offset  : %u\n",
+		geo->gf_len,
+		geo->ecc_strength,
+		geo->page_size,
+		geo->metadata_size,
+		geo->ecc_chunk_size,
+		geo->ecc_chunk_count,
+		geo->payload_size,
+		geo->auxiliary_size,
+		geo->auxiliary_status_offset,
+		geo->block_mark_byte_offset,
+		geo->block_mark_bit_offset);
 }
 
 static inline bool gpmi_check_ecc(struct gpmi_nand_data *this)
@@ -171,7 +234,7 @@
 	struct bch_geometry *geo = &this->bch_geometry;
 
 	/* Do the sanity check. */
-	if (GPMI_IS_MX23(this) || GPMI_IS_MX28(this)) {
+	if (GPMI_IS_MXS(this)) {
 		/* The mx23/mx28 only support the GF13. */
 		if (geo->gf_len == 14)
 			return false;
@@ -204,7 +267,8 @@
 	default:
 		dev_err(this->dev,
 			"unsupported nand chip. ecc bits : %d, ecc size : %d\n",
-			chip->ecc_strength_ds, chip->ecc_step_ds);
+			chip->base.eccreq.strength,
+			chip->base.eccreq.step_size);
 		return -EINVAL;
 	}
 	geo->ecc_chunk_size = ecc_step;
@@ -295,6 +359,37 @@
 	return 0;
 }
 
+/*
+ *  Calculate the ECC strength by hand:
+ *	E : The ECC strength.
+ *	G : the length of Galois Field.
+ *	N : The chunk count of per page.
+ *	O : the oobsize of the NAND chip.
+ *	M : the metasize of per page.
+ *
+ *	The formula is :
+ *		E * G * N
+ *	      ------------ <= (O - M)
+ *                  8
+ *
+ *      So, we get E by:
+ *                    (O - M) * 8
+ *              E <= -------------
+ *                       G * N
+ */
+static inline int get_ecc_strength(struct gpmi_nand_data *this)
+{
+	struct bch_geometry *geo = &this->bch_geometry;
+	struct mtd_info	*mtd = nand_to_mtd(&this->nand);
+	int ecc_strength;
+
+	ecc_strength = ((mtd->oobsize - geo->metadata_size) * 8)
+			/ (geo->gf_len * geo->ecc_chunk_count);
+
+	/* We need the minor even number. */
+	return round_down(ecc_strength, 2);
+}
+
 static int legacy_set_geometry(struct gpmi_nand_data *this)
 {
 	struct bch_geometry *geo = &this->bch_geometry;
@@ -407,7 +502,7 @@
 	return 0;
 }
 
-int common_nfc_set_geometry(struct gpmi_nand_data *this)
+static int common_nfc_set_geometry(struct gpmi_nand_data *this)
 {
 	struct nand_chip *chip = &this->nand;
 
@@ -417,28 +512,300 @@
 
 	if ((of_property_read_bool(this->dev->of_node, "fsl,use-minimum-ecc"))
 				|| legacy_set_geometry(this)) {
-		if (!(chip->ecc_strength_ds > 0 && chip->ecc_step_ds > 0))
+		if (!(chip->base.eccreq.strength > 0 &&
+		      chip->base.eccreq.step_size > 0))
 			return -EINVAL;
 
-		return set_geometry_by_ecc_info(this, chip->ecc_strength_ds,
-						chip->ecc_step_ds);
+		return set_geometry_by_ecc_info(this,
+						chip->base.eccreq.strength,
+						chip->base.eccreq.step_size);
 	}
 
 	return 0;
 }
 
-struct dma_chan *get_dma_chan(struct gpmi_nand_data *this)
+/* Configures the geometry for BCH.  */
+static int bch_set_geometry(struct gpmi_nand_data *this)
+{
+	struct resources *r = &this->resources;
+	int ret;
+
+	ret = common_nfc_set_geometry(this);
+	if (ret)
+		return ret;
+
+	ret = pm_runtime_get_sync(this->dev);
+	if (ret < 0)
+		return ret;
+
+	/*
+	* Due to erratum #2847 of the MX23, the BCH cannot be soft reset on this
+	* chip, otherwise it will lock up. So we skip resetting BCH on the MX23.
+	* and MX28.
+	*/
+	ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MXS(this));
+	if (ret)
+		goto err_out;
+
+	/* Set *all* chip selects to use layout 0. */
+	writel(0, r->bch_regs + HW_BCH_LAYOUTSELECT);
+
+	ret = 0;
+err_out:
+	pm_runtime_mark_last_busy(this->dev);
+	pm_runtime_put_autosuspend(this->dev);
+
+	return ret;
+}
+
+/*
+ * <1> Firstly, we should know what's the GPMI-clock means.
+ *     The GPMI-clock is the internal clock in the gpmi nand controller.
+ *     If you set 100MHz to gpmi nand controller, the GPMI-clock's period
+ *     is 10ns. Mark the GPMI-clock's period as GPMI-clock-period.
+ *
+ * <2> Secondly, we should know what's the frequency on the nand chip pins.
+ *     The frequency on the nand chip pins is derived from the GPMI-clock.
+ *     We can get it from the following equation:
+ *
+ *         F = G / (DS + DH)
+ *
+ *         F  : the frequency on the nand chip pins.
+ *         G  : the GPMI clock, such as 100MHz.
+ *         DS : GPMI_HW_GPMI_TIMING0:DATA_SETUP
+ *         DH : GPMI_HW_GPMI_TIMING0:DATA_HOLD
+ *
+ * <3> Thirdly, when the frequency on the nand chip pins is above 33MHz,
+ *     the nand EDO(extended Data Out) timing could be applied.
+ *     The GPMI implements a feedback read strobe to sample the read data.
+ *     The feedback read strobe can be delayed to support the nand EDO timing
+ *     where the read strobe may deasserts before the read data is valid, and
+ *     read data is valid for some time after read strobe.
+ *
+ *     The following figure illustrates some aspects of a NAND Flash read:
+ *
+ *                   |<---tREA---->|
+ *                   |             |
+ *                   |         |   |
+ *                   |<--tRP-->|   |
+ *                   |         |   |
+ *                  __          ___|__________________________________
+ *     RDN            \________/   |
+ *                                 |
+ *                                 /---------\
+ *     Read Data    --------------<           >---------
+ *                                 \---------/
+ *                                |     |
+ *                                |<-D->|
+ *     FeedbackRDN  ________             ____________
+ *                          \___________/
+ *
+ *          D stands for delay, set in the HW_GPMI_CTRL1:RDN_DELAY.
+ *
+ *
+ * <4> Now, we begin to describe how to compute the right RDN_DELAY.
+ *
+ *  4.1) From the aspect of the nand chip pins:
+ *        Delay = (tREA + C - tRP)               {1}
+ *
+ *        tREA : the maximum read access time.
+ *        C    : a constant to adjust the delay. default is 4000ps.
+ *        tRP  : the read pulse width, which is exactly:
+ *                   tRP = (GPMI-clock-period) * DATA_SETUP
+ *
+ *  4.2) From the aspect of the GPMI nand controller:
+ *         Delay = RDN_DELAY * 0.125 * RP        {2}
+ *
+ *         RP   : the DLL reference period.
+ *            if (GPMI-clock-period > DLL_THRETHOLD)
+ *                   RP = GPMI-clock-period / 2;
+ *            else
+ *                   RP = GPMI-clock-period;
+ *
+ *            Set the HW_GPMI_CTRL1:HALF_PERIOD if GPMI-clock-period
+ *            is greater DLL_THRETHOLD. In other SOCs, the DLL_THRETHOLD
+ *            is 16000ps, but in mx6q, we use 12000ps.
+ *
+ *  4.3) since {1} equals {2}, we get:
+ *
+ *                     (tREA + 4000 - tRP) * 8
+ *         RDN_DELAY = -----------------------     {3}
+ *                           RP
+ */
+static void gpmi_nfc_compute_timings(struct gpmi_nand_data *this,
+				     const struct nand_sdr_timings *sdr)
+{
+	struct gpmi_nfc_hardware_timing *hw = &this->hw;
+	unsigned int dll_threshold_ps = this->devdata->max_chain_delay;
+	unsigned int period_ps, reference_period_ps;
+	unsigned int data_setup_cycles, data_hold_cycles, addr_setup_cycles;
+	unsigned int tRP_ps;
+	bool use_half_period;
+	int sample_delay_ps, sample_delay_factor;
+	u16 busy_timeout_cycles;
+	u8 wrn_dly_sel;
+
+	if (sdr->tRC_min >= 30000) {
+		/* ONFI non-EDO modes [0-3] */
+		hw->clk_rate = 22000000;
+		wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS;
+	} else if (sdr->tRC_min >= 25000) {
+		/* ONFI EDO mode 4 */
+		hw->clk_rate = 80000000;
+		wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY;
+	} else {
+		/* ONFI EDO mode 5 */
+		hw->clk_rate = 100000000;
+		wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY;
+	}
+
+	/* SDR core timings are given in picoseconds */
+	period_ps = div_u64((u64)NSEC_PER_SEC * 1000, hw->clk_rate);
+
+	addr_setup_cycles = TO_CYCLES(sdr->tALS_min, period_ps);
+	data_setup_cycles = TO_CYCLES(sdr->tDS_min, period_ps);
+	data_hold_cycles = TO_CYCLES(sdr->tDH_min, period_ps);
+	busy_timeout_cycles = TO_CYCLES(sdr->tWB_max + sdr->tR_max, period_ps);
+
+	hw->timing0 = BF_GPMI_TIMING0_ADDRESS_SETUP(addr_setup_cycles) |
+		      BF_GPMI_TIMING0_DATA_HOLD(data_hold_cycles) |
+		      BF_GPMI_TIMING0_DATA_SETUP(data_setup_cycles);
+	hw->timing1 = BF_GPMI_TIMING1_BUSY_TIMEOUT(busy_timeout_cycles * 4096);
+
+	/*
+	 * Derive NFC ideal delay from {3}:
+	 *
+	 *                     (tREA + 4000 - tRP) * 8
+	 *         RDN_DELAY = -----------------------
+	 *                                RP
+	 */
+	if (period_ps > dll_threshold_ps) {
+		use_half_period = true;
+		reference_period_ps = period_ps / 2;
+	} else {
+		use_half_period = false;
+		reference_period_ps = period_ps;
+	}
+
+	tRP_ps = data_setup_cycles * period_ps;
+	sample_delay_ps = (sdr->tREA_max + 4000 - tRP_ps) * 8;
+	if (sample_delay_ps > 0)
+		sample_delay_factor = sample_delay_ps / reference_period_ps;
+	else
+		sample_delay_factor = 0;
+
+	hw->ctrl1n = BF_GPMI_CTRL1_WRN_DLY_SEL(wrn_dly_sel);
+	if (sample_delay_factor)
+		hw->ctrl1n |= BF_GPMI_CTRL1_RDN_DELAY(sample_delay_factor) |
+			      BM_GPMI_CTRL1_DLL_ENABLE |
+			      (use_half_period ? BM_GPMI_CTRL1_HALF_PERIOD : 0);
+}
+
+static void gpmi_nfc_apply_timings(struct gpmi_nand_data *this)
+{
+	struct gpmi_nfc_hardware_timing *hw = &this->hw;
+	struct resources *r = &this->resources;
+	void __iomem *gpmi_regs = r->gpmi_regs;
+	unsigned int dll_wait_time_us;
+
+	clk_set_rate(r->clock[0], hw->clk_rate);
+
+	writel(hw->timing0, gpmi_regs + HW_GPMI_TIMING0);
+	writel(hw->timing1, gpmi_regs + HW_GPMI_TIMING1);
+
+	/*
+	 * Clear several CTRL1 fields, DLL must be disabled when setting
+	 * RDN_DELAY or HALF_PERIOD.
+	 */
+	writel(BM_GPMI_CTRL1_CLEAR_MASK, gpmi_regs + HW_GPMI_CTRL1_CLR);
+	writel(hw->ctrl1n, gpmi_regs + HW_GPMI_CTRL1_SET);
+
+	/* Wait 64 clock cycles before using the GPMI after enabling the DLL */
+	dll_wait_time_us = USEC_PER_SEC / hw->clk_rate * 64;
+	if (!dll_wait_time_us)
+		dll_wait_time_us = 1;
+
+	/* Wait for the DLL to settle. */
+	udelay(dll_wait_time_us);
+}
+
+static int gpmi_setup_data_interface(struct nand_chip *chip, int chipnr,
+				     const struct nand_data_interface *conf)
+{
+	struct gpmi_nand_data *this = nand_get_controller_data(chip);
+	const struct nand_sdr_timings *sdr;
+
+	/* Retrieve required NAND timings */
+	sdr = nand_get_sdr_timings(conf);
+	if (IS_ERR(sdr))
+		return PTR_ERR(sdr);
+
+	/* Only MX6 GPMI controller can reach EDO timings */
+	if (sdr->tRC_min <= 25000 && !GPMI_IS_MX6(this))
+		return -ENOTSUPP;
+
+	/* Stop here if this call was just a check */
+	if (chipnr < 0)
+		return 0;
+
+	/* Do the actual derivation of the controller timings */
+	gpmi_nfc_compute_timings(this, sdr);
+
+	this->hw.must_apply_timings = true;
+
+	return 0;
+}
+
+/* Clears a BCH interrupt. */
+static void gpmi_clear_bch(struct gpmi_nand_data *this)
+{
+	struct resources *r = &this->resources;
+	writel(BM_BCH_CTRL_COMPLETE_IRQ, r->bch_regs + HW_BCH_CTRL_CLR);
+}
+
+static struct dma_chan *get_dma_chan(struct gpmi_nand_data *this)
 {
 	/* We use the DMA channel 0 to access all the nand chips. */
 	return this->dma_chans[0];
 }
 
-/* Can we use the upper's buffer directly for DMA? */
-bool prepare_data_dma(struct gpmi_nand_data *this, const void *buf, int len,
-		      enum dma_data_direction dr)
+/* This will be called after the DMA operation is finished. */
+static void dma_irq_callback(void *param)
 {
-	struct scatterlist *sgl = &this->data_sgl;
+	struct gpmi_nand_data *this = param;
+	struct completion *dma_c = &this->dma_done;
+
+	complete(dma_c);
+}
+
+static irqreturn_t bch_irq(int irq, void *cookie)
+{
+	struct gpmi_nand_data *this = cookie;
+
+	gpmi_clear_bch(this);
+	complete(&this->bch_done);
+	return IRQ_HANDLED;
+}
+
+static int gpmi_raw_len_to_len(struct gpmi_nand_data *this, int raw_len)
+{
+	/*
+	 * raw_len is the length to read/write including bch data which
+	 * we are passed in exec_op. Calculate the data length from it.
+	 */
+	if (this->bch)
+		return ALIGN_DOWN(raw_len, this->bch_geometry.ecc_chunk_size);
+	else
+		return raw_len;
+}
+
+/* Can we use the upper's buffer directly for DMA? */
+static bool prepare_data_dma(struct gpmi_nand_data *this, const void *buf,
+			     int raw_len, struct scatterlist *sgl,
+			     enum dma_data_direction dr)
+{
 	int ret;
+	int len = gpmi_raw_len_to_len(this, raw_len);
 
 	/* first try to map the upper buffer directly */
 	if (virt_addr_valid(buf) && !object_is_on_stack(buf)) {
@@ -454,7 +821,7 @@
 	/* We have to use our own DMA buffer. */
 	sg_init_one(sgl, this->data_buffer_dma, len);
 
-	if (dr == DMA_TO_DEVICE)
+	if (dr == DMA_TO_DEVICE && buf != this->data_buffer_dma)
 		memcpy(this->data_buffer_dma, buf, len);
 
 	dma_map_sg(this->dev, sgl, 1, dr);
@@ -462,67 +829,263 @@
 	return false;
 }
 
-/* This will be called after the DMA operation is finished. */
-static void dma_irq_callback(void *param)
+/**
+ * gpmi_copy_bits - copy bits from one memory region to another
+ * @dst: destination buffer
+ * @dst_bit_off: bit offset we're starting to write at
+ * @src: source buffer
+ * @src_bit_off: bit offset we're starting to read from
+ * @nbits: number of bits to copy
+ *
+ * This functions copies bits from one memory region to another, and is used by
+ * the GPMI driver to copy ECC sections which are not guaranteed to be byte
+ * aligned.
+ *
+ * src and dst should not overlap.
+ *
+ */
+static void gpmi_copy_bits(u8 *dst, size_t dst_bit_off, const u8 *src,
+			   size_t src_bit_off, size_t nbits)
 {
-	struct gpmi_nand_data *this = param;
-	struct completion *dma_c = &this->dma_done;
+	size_t i;
+	size_t nbytes;
+	u32 src_buffer = 0;
+	size_t bits_in_src_buffer = 0;
 
-	complete(dma_c);
-}
+	if (!nbits)
+		return;
 
-int start_dma_without_bch_irq(struct gpmi_nand_data *this,
-				struct dma_async_tx_descriptor *desc)
-{
-	struct completion *dma_c = &this->dma_done;
-	unsigned long timeout;
+	/*
+	 * Move src and dst pointers to the closest byte pointer and store bit
+	 * offsets within a byte.
+	 */
+	src += src_bit_off / 8;
+	src_bit_off %= 8;
 
-	init_completion(dma_c);
+	dst += dst_bit_off / 8;
+	dst_bit_off %= 8;
 
-	desc->callback		= dma_irq_callback;
-	desc->callback_param	= this;
-	dmaengine_submit(desc);
-	dma_async_issue_pending(get_dma_chan(this));
-
-	/* Wait for the interrupt from the DMA block. */
-	timeout = wait_for_completion_timeout(dma_c, msecs_to_jiffies(1000));
-	if (!timeout) {
-		dev_err(this->dev, "DMA timeout, last DMA\n");
-		gpmi_dump_info(this);
-		return -ETIMEDOUT;
+	/*
+	 * Initialize the src_buffer value with bits available in the first
+	 * byte of data so that we end up with a byte aligned src pointer.
+	 */
+	if (src_bit_off) {
+		src_buffer = src[0] >> src_bit_off;
+		if (nbits >= (8 - src_bit_off)) {
+			bits_in_src_buffer += 8 - src_bit_off;
+		} else {
+			src_buffer &= GENMASK(nbits - 1, 0);
+			bits_in_src_buffer += nbits;
+		}
+		nbits -= bits_in_src_buffer;
+		src++;
 	}
-	return 0;
+
+	/* Calculate the number of bytes that can be copied from src to dst. */
+	nbytes = nbits / 8;
+
+	/* Try to align dst to a byte boundary. */
+	if (dst_bit_off) {
+		if (bits_in_src_buffer < (8 - dst_bit_off) && nbytes) {
+			src_buffer |= src[0] << bits_in_src_buffer;
+			bits_in_src_buffer += 8;
+			src++;
+			nbytes--;
+		}
+
+		if (bits_in_src_buffer >= (8 - dst_bit_off)) {
+			dst[0] &= GENMASK(dst_bit_off - 1, 0);
+			dst[0] |= src_buffer << dst_bit_off;
+			src_buffer >>= (8 - dst_bit_off);
+			bits_in_src_buffer -= (8 - dst_bit_off);
+			dst_bit_off = 0;
+			dst++;
+			if (bits_in_src_buffer > 7) {
+				bits_in_src_buffer -= 8;
+				dst[0] = src_buffer;
+				dst++;
+				src_buffer >>= 8;
+			}
+		}
+	}
+
+	if (!bits_in_src_buffer && !dst_bit_off) {
+		/*
+		 * Both src and dst pointers are byte aligned, thus we can
+		 * just use the optimized memcpy function.
+		 */
+		if (nbytes)
+			memcpy(dst, src, nbytes);
+	} else {
+		/*
+		 * src buffer is not byte aligned, hence we have to copy each
+		 * src byte to the src_buffer variable before extracting a byte
+		 * to store in dst.
+		 */
+		for (i = 0; i < nbytes; i++) {
+			src_buffer |= src[i] << bits_in_src_buffer;
+			dst[i] = src_buffer;
+			src_buffer >>= 8;
+		}
+	}
+	/* Update dst and src pointers */
+	dst += nbytes;
+	src += nbytes;
+
+	/*
+	 * nbits is the number of remaining bits. It should not exceed 8 as
+	 * we've already copied as much bytes as possible.
+	 */
+	nbits %= 8;
+
+	/*
+	 * If there's no more bits to copy to the destination and src buffer
+	 * was already byte aligned, then we're done.
+	 */
+	if (!nbits && !bits_in_src_buffer)
+		return;
+
+	/* Copy the remaining bits to src_buffer */
+	if (nbits)
+		src_buffer |= (*src & GENMASK(nbits - 1, 0)) <<
+			      bits_in_src_buffer;
+	bits_in_src_buffer += nbits;
+
+	/*
+	 * In case there were not enough bits to get a byte aligned dst buffer
+	 * prepare the src_buffer variable to match the dst organization (shift
+	 * src_buffer by dst_bit_off and retrieve the least significant bits
+	 * from dst).
+	 */
+	if (dst_bit_off)
+		src_buffer = (src_buffer << dst_bit_off) |
+			     (*dst & GENMASK(dst_bit_off - 1, 0));
+	bits_in_src_buffer += dst_bit_off;
+
+	/*
+	 * Keep most significant bits from dst if we end up with an unaligned
+	 * number of bits.
+	 */
+	nbytes = bits_in_src_buffer / 8;
+	if (bits_in_src_buffer % 8) {
+		src_buffer |= (dst[nbytes] &
+			       GENMASK(7, bits_in_src_buffer % 8)) <<
+			      (nbytes * 8);
+		nbytes++;
+	}
+
+	/* Copy the remaining bytes to dst */
+	for (i = 0; i < nbytes; i++) {
+		dst[i] = src_buffer;
+		src_buffer >>= 8;
+	}
 }
 
+/* add our owner bbt descriptor */
+static uint8_t scan_ff_pattern[] = { 0xff };
+static struct nand_bbt_descr gpmi_bbt_descr = {
+	.options	= 0,
+	.offs		= 0,
+	.len		= 1,
+	.pattern	= scan_ff_pattern
+};
+
 /*
- * This function is used in BCH reading or BCH writing pages.
- * It will wait for the BCH interrupt as long as ONE second.
- * Actually, we must wait for two interrupts :
- *	[1] firstly the DMA interrupt and
- *	[2] secondly the BCH interrupt.
+ * We may change the layout if we can get the ECC info from the datasheet,
+ * else we will use all the (page + OOB).
  */
-int start_dma_with_bch_irq(struct gpmi_nand_data *this,
-			struct dma_async_tx_descriptor *desc)
+static int gpmi_ooblayout_ecc(struct mtd_info *mtd, int section,
+			      struct mtd_oob_region *oobregion)
 {
-	struct completion *bch_c = &this->bch_done;
-	unsigned long timeout;
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct gpmi_nand_data *this = nand_get_controller_data(chip);
+	struct bch_geometry *geo = &this->bch_geometry;
 
-	/* Prepare to receive an interrupt from the BCH block. */
-	init_completion(bch_c);
+	if (section)
+		return -ERANGE;
 
-	/* start the DMA */
-	start_dma_without_bch_irq(this, desc);
+	oobregion->offset = 0;
+	oobregion->length = geo->page_size - mtd->writesize;
 
-	/* Wait for the interrupt from the BCH block. */
-	timeout = wait_for_completion_timeout(bch_c, msecs_to_jiffies(1000));
-	if (!timeout) {
-		dev_err(this->dev, "BCH timeout\n");
-		gpmi_dump_info(this);
-		return -ETIMEDOUT;
-	}
 	return 0;
 }
 
+static int gpmi_ooblayout_free(struct mtd_info *mtd, int section,
+			       struct mtd_oob_region *oobregion)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct gpmi_nand_data *this = nand_get_controller_data(chip);
+	struct bch_geometry *geo = &this->bch_geometry;
+
+	if (section)
+		return -ERANGE;
+
+	/* The available oob size we have. */
+	if (geo->page_size < mtd->writesize + mtd->oobsize) {
+		oobregion->offset = geo->page_size - mtd->writesize;
+		oobregion->length = mtd->oobsize - oobregion->offset;
+	}
+
+	return 0;
+}
+
+static const char * const gpmi_clks_for_mx2x[] = {
+	"gpmi_io",
+};
+
+static const struct mtd_ooblayout_ops gpmi_ooblayout_ops = {
+	.ecc = gpmi_ooblayout_ecc,
+	.free = gpmi_ooblayout_free,
+};
+
+static const struct gpmi_devdata gpmi_devdata_imx23 = {
+	.type = IS_MX23,
+	.bch_max_ecc_strength = 20,
+	.max_chain_delay = 16000,
+	.clks = gpmi_clks_for_mx2x,
+	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x),
+};
+
+static const struct gpmi_devdata gpmi_devdata_imx28 = {
+	.type = IS_MX28,
+	.bch_max_ecc_strength = 20,
+	.max_chain_delay = 16000,
+	.clks = gpmi_clks_for_mx2x,
+	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x),
+};
+
+static const char * const gpmi_clks_for_mx6[] = {
+	"gpmi_io", "gpmi_apb", "gpmi_bch", "gpmi_bch_apb", "per1_bch",
+};
+
+static const struct gpmi_devdata gpmi_devdata_imx6q = {
+	.type = IS_MX6Q,
+	.bch_max_ecc_strength = 40,
+	.max_chain_delay = 12000,
+	.clks = gpmi_clks_for_mx6,
+	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx6),
+};
+
+static const struct gpmi_devdata gpmi_devdata_imx6sx = {
+	.type = IS_MX6SX,
+	.bch_max_ecc_strength = 62,
+	.max_chain_delay = 12000,
+	.clks = gpmi_clks_for_mx6,
+	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx6),
+};
+
+static const char * const gpmi_clks_for_mx7d[] = {
+	"gpmi_io", "gpmi_bch_apb",
+};
+
+static const struct gpmi_devdata gpmi_devdata_imx7d = {
+	.type = IS_MX7D,
+	.bch_max_ecc_strength = 62,
+	.max_chain_delay = 12000,
+	.clks = gpmi_clks_for_mx7d,
+	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx7d),
+};
+
 static int acquire_register_block(struct gpmi_nand_data *this,
 				  const char *res_name)
 {
@@ -664,68 +1227,20 @@
 	release_dma_channels(this);
 }
 
-static int send_page_prepare(struct gpmi_nand_data *this,
-			const void *source, unsigned length,
-			void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
-			const void **use_virt, dma_addr_t *use_phys)
-{
-	struct device *dev = this->dev;
-
-	if (virt_addr_valid(source)) {
-		dma_addr_t source_phys;
-
-		source_phys = dma_map_single(dev, (void *)source, length,
-						DMA_TO_DEVICE);
-		if (dma_mapping_error(dev, source_phys)) {
-			if (alt_size < length) {
-				dev_err(dev, "Alternate buffer is too small\n");
-				return -ENOMEM;
-			}
-			goto map_failed;
-		}
-		*use_virt = source;
-		*use_phys = source_phys;
-		return 0;
-	}
-map_failed:
-	/*
-	 * Copy the content of the source buffer into the alternate
-	 * buffer and set up the return values accordingly.
-	 */
-	memcpy(alt_virt, source, length);
-
-	*use_virt = alt_virt;
-	*use_phys = alt_phys;
-	return 0;
-}
-
-static void send_page_end(struct gpmi_nand_data *this,
-			const void *source, unsigned length,
-			void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
-			const void *used_virt, dma_addr_t used_phys)
-{
-	struct device *dev = this->dev;
-	if (used_virt == source)
-		dma_unmap_single(dev, used_phys, length, DMA_TO_DEVICE);
-}
-
 static void gpmi_free_dma_buffer(struct gpmi_nand_data *this)
 {
 	struct device *dev = this->dev;
+	struct bch_geometry *geo = &this->bch_geometry;
 
-	if (this->page_buffer_virt && virt_addr_valid(this->page_buffer_virt))
-		dma_free_coherent(dev, this->page_buffer_size,
-					this->page_buffer_virt,
-					this->page_buffer_phys);
-	kfree(this->cmd_buffer);
+	if (this->auxiliary_virt && virt_addr_valid(this->auxiliary_virt))
+		dma_free_coherent(dev, geo->auxiliary_size,
+					this->auxiliary_virt,
+					this->auxiliary_phys);
 	kfree(this->data_buffer_dma);
 	kfree(this->raw_buffer);
 
-	this->cmd_buffer	= NULL;
 	this->data_buffer_dma	= NULL;
 	this->raw_buffer	= NULL;
-	this->page_buffer_virt	= NULL;
-	this->page_buffer_size	=  0;
 }
 
 /* Allocate the DMA buffers */
@@ -735,11 +1250,6 @@
 	struct device *dev = this->dev;
 	struct mtd_info *mtd = nand_to_mtd(&this->nand);
 
-	/* [1] Allocate a command buffer. PAGE_SIZE is enough. */
-	this->cmd_buffer = kzalloc(PAGE_SIZE, GFP_DMA | GFP_KERNEL);
-	if (this->cmd_buffer == NULL)
-		goto error_alloc;
-
 	/*
 	 * [2] Allocate a read/write data buffer.
 	 *     The gpmi_alloc_dma_buffer can be called twice.
@@ -753,29 +1263,15 @@
 	if (this->data_buffer_dma == NULL)
 		goto error_alloc;
 
-	/*
-	 * [3] Allocate the page buffer.
-	 *
-	 * Both the payload buffer and the auxiliary buffer must appear on
-	 * 32-bit boundaries. We presume the size of the payload buffer is a
-	 * power of two and is much larger than four, which guarantees the
-	 * auxiliary buffer will appear on a 32-bit boundary.
-	 */
-	this->page_buffer_size = geo->payload_size + geo->auxiliary_size;
-	this->page_buffer_virt = dma_alloc_coherent(dev, this->page_buffer_size,
-					&this->page_buffer_phys, GFP_DMA);
-	if (!this->page_buffer_virt)
+	this->auxiliary_virt = dma_alloc_coherent(dev, geo->auxiliary_size,
+					&this->auxiliary_phys, GFP_DMA);
+	if (!this->auxiliary_virt)
 		goto error_alloc;
 
-	this->raw_buffer = kzalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL);
+	this->raw_buffer = kzalloc((mtd->writesize ?: PAGE_SIZE) + mtd->oobsize, GFP_KERNEL);
 	if (!this->raw_buffer)
 		goto error_alloc;
 
-	/* Slice up the page buffer. */
-	this->payload_virt = this->page_buffer_virt;
-	this->payload_phys = this->page_buffer_phys;
-	this->auxiliary_virt = this->payload_virt + geo->payload_size;
-	this->auxiliary_phys = this->payload_phys + geo->payload_size;
 	return 0;
 
 error_alloc:
@@ -783,112 +1279,6 @@
 	return -ENOMEM;
 }
 
-static void gpmi_cmd_ctrl(struct mtd_info *mtd, int data, unsigned int ctrl)
-{
-	struct nand_chip *chip = mtd_to_nand(mtd);
-	struct gpmi_nand_data *this = nand_get_controller_data(chip);
-	int ret;
-
-	/*
-	 * Every operation begins with a command byte and a series of zero or
-	 * more address bytes. These are distinguished by either the Address
-	 * Latch Enable (ALE) or Command Latch Enable (CLE) signals being
-	 * asserted. When MTD is ready to execute the command, it will deassert
-	 * both latch enables.
-	 *
-	 * Rather than run a separate DMA operation for every single byte, we
-	 * queue them up and run a single DMA operation for the entire series
-	 * of command and data bytes. NAND_CMD_NONE means the END of the queue.
-	 */
-	if ((ctrl & (NAND_ALE | NAND_CLE))) {
-		if (data != NAND_CMD_NONE)
-			this->cmd_buffer[this->command_length++] = data;
-		return;
-	}
-
-	if (!this->command_length)
-		return;
-
-	ret = gpmi_send_command(this);
-	if (ret)
-		dev_err(this->dev, "Chip: %u, Error %d\n",
-			this->current_chip, ret);
-
-	this->command_length = 0;
-}
-
-static int gpmi_dev_ready(struct mtd_info *mtd)
-{
-	struct nand_chip *chip = mtd_to_nand(mtd);
-	struct gpmi_nand_data *this = nand_get_controller_data(chip);
-
-	return gpmi_is_ready(this, this->current_chip);
-}
-
-static void gpmi_select_chip(struct mtd_info *mtd, int chipnr)
-{
-	struct nand_chip *chip = mtd_to_nand(mtd);
-	struct gpmi_nand_data *this = nand_get_controller_data(chip);
-	int ret;
-
-	/*
-	 * For power consumption matters, disable/enable the clock each time a
-	 * die is selected/unselected.
-	 */
-	if (this->current_chip < 0 && chipnr >= 0) {
-		ret = gpmi_enable_clk(this);
-		if (ret)
-			dev_err(this->dev, "Failed to enable the clock\n");
-	} else if (this->current_chip >= 0 && chipnr < 0) {
-		ret = gpmi_disable_clk(this);
-		if (ret)
-			dev_err(this->dev, "Failed to disable the clock\n");
-	}
-
-	/*
-	 * This driver currently supports only one NAND chip. Plus, dies share
-	 * the same configuration. So once timings have been applied on the
-	 * controller side, they will not change anymore. When the time will
-	 * come, the check on must_apply_timings will have to be dropped.
-	 */
-	if (chipnr >= 0 && this->hw.must_apply_timings) {
-		this->hw.must_apply_timings = false;
-		gpmi_nfc_apply_timings(this);
-	}
-
-	this->current_chip = chipnr;
-}
-
-static void gpmi_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
-{
-	struct nand_chip *chip = mtd_to_nand(mtd);
-	struct gpmi_nand_data *this = nand_get_controller_data(chip);
-
-	dev_dbg(this->dev, "len is %d\n", len);
-
-	gpmi_read_data(this, buf, len);
-}
-
-static void gpmi_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
-{
-	struct nand_chip *chip = mtd_to_nand(mtd);
-	struct gpmi_nand_data *this = nand_get_controller_data(chip);
-
-	dev_dbg(this->dev, "len is %d\n", len);
-
-	gpmi_send_data(this, buf, len);
-}
-
-static uint8_t gpmi_read_byte(struct mtd_info *mtd)
-{
-	struct nand_chip *chip = mtd_to_nand(mtd);
-	struct gpmi_nand_data *this = nand_get_controller_data(chip);
-	uint8_t *buf = this->data_buffer_dma;
-
-	gpmi_read_buf(mtd, buf, 1);
-	return buf[0];
-}
-
 /*
  * Handles block mark swapping.
  * It can be called in swapping the block mark, or swapping it back,
@@ -937,54 +1327,20 @@
 	p[1] = (p[1] & mask) | (from_oob >> (8 - bit));
 }
 
-static int gpmi_ecc_read_page_data(struct nand_chip *chip,
-				   uint8_t *buf, int oob_required,
-				   int page)
+static int gpmi_count_bitflips(struct nand_chip *chip, void *buf, int first,
+			       int last, int meta)
 {
 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
 	struct bch_geometry *nfc_geo = &this->bch_geometry;
 	struct mtd_info *mtd = nand_to_mtd(chip);
-	dma_addr_t    payload_phys;
-	unsigned int  i;
+	int i;
 	unsigned char *status;
-	unsigned int  max_bitflips = 0;
-	int           ret;
-	bool          direct = false;
-
-	dev_dbg(this->dev, "page number is : %d\n", page);
-
-	payload_phys = this->payload_phys;
-
-	if (virt_addr_valid(buf)) {
-		dma_addr_t dest_phys;
-
-		dest_phys = dma_map_single(this->dev, buf, nfc_geo->payload_size,
-					   DMA_FROM_DEVICE);
-		if (!dma_mapping_error(this->dev, dest_phys)) {
-			payload_phys = dest_phys;
-			direct = true;
-		}
-	}
-
-	/* go! */
-	ret = gpmi_read_page(this, payload_phys, this->auxiliary_phys);
-
-	if (direct)
-		dma_unmap_single(this->dev, payload_phys, nfc_geo->payload_size,
-				 DMA_FROM_DEVICE);
-
-	if (ret) {
-		dev_err(this->dev, "Error in ECC-based read: %d\n", ret);
-		return ret;
-	}
+	unsigned int max_bitflips = 0;
 
 	/* Loop over status bytes, accumulating ECC status. */
-	status = this->auxiliary_virt + nfc_geo->auxiliary_status_offset;
+	status = this->auxiliary_virt + ALIGN(meta, 4);
 
-	if (!direct)
-		memcpy(buf, this->payload_virt, nfc_geo->payload_size);
-
-	for (i = 0; i < nfc_geo->ecc_chunk_count; i++, status++) {
+	for (i = first; i < last; i++, status++) {
 		if ((*status == STATUS_GOOD) || (*status == STATUS_ERASED))
 			continue;
 
@@ -1064,6 +1420,50 @@
 		max_bitflips = max_t(unsigned int, max_bitflips, *status);
 	}
 
+	return max_bitflips;
+}
+
+static void gpmi_bch_layout_std(struct gpmi_nand_data *this)
+{
+	struct bch_geometry *geo = &this->bch_geometry;
+	unsigned int ecc_strength = geo->ecc_strength >> 1;
+	unsigned int gf_len = geo->gf_len;
+	unsigned int block_size = geo->ecc_chunk_size;
+
+	this->bch_flashlayout0 =
+		BF_BCH_FLASH0LAYOUT0_NBLOCKS(geo->ecc_chunk_count - 1) |
+		BF_BCH_FLASH0LAYOUT0_META_SIZE(geo->metadata_size) |
+		BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this) |
+		BF_BCH_FLASH0LAYOUT0_GF(gf_len, this) |
+		BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(block_size, this);
+
+	this->bch_flashlayout1 =
+		BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(geo->page_size) |
+		BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this) |
+		BF_BCH_FLASH0LAYOUT1_GF(gf_len, this) |
+		BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(block_size, this);
+}
+
+static int gpmi_ecc_read_page(struct nand_chip *chip, uint8_t *buf,
+			      int oob_required, int page)
+{
+	struct gpmi_nand_data *this = nand_get_controller_data(chip);
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	struct bch_geometry *geo = &this->bch_geometry;
+	unsigned int max_bitflips;
+	int ret;
+
+	gpmi_bch_layout_std(this);
+	this->bch = true;
+
+	ret = nand_read_page_op(chip, page, 0, buf, geo->page_size);
+	if (ret)
+		return ret;
+
+	max_bitflips = gpmi_count_bitflips(chip, buf, 0,
+					   geo->ecc_chunk_count,
+					   geo->auxiliary_status_offset);
+
 	/* handle the block mark swapping */
 	block_mark_swapping(this, buf, this->auxiliary_virt);
 
@@ -1085,30 +1485,20 @@
 	return max_bitflips;
 }
 
-static int gpmi_ecc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
-			      uint8_t *buf, int oob_required, int page)
-{
-	nand_read_page_op(chip, page, 0, NULL, 0);
-
-	return gpmi_ecc_read_page_data(chip, buf, oob_required, page);
-}
-
 /* Fake a virtual small page for the subpage read */
-static int gpmi_ecc_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
-			uint32_t offs, uint32_t len, uint8_t *buf, int page)
+static int gpmi_ecc_read_subpage(struct nand_chip *chip, uint32_t offs,
+				 uint32_t len, uint8_t *buf, int page)
 {
 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
-	void __iomem *bch_regs = this->resources.bch_regs;
-	struct bch_geometry old_geo = this->bch_geometry;
 	struct bch_geometry *geo = &this->bch_geometry;
 	int size = chip->ecc.size; /* ECC chunk size */
 	int meta, n, page_size;
-	u32 r1_old, r2_old, r1_new, r2_new;
 	unsigned int max_bitflips;
+	unsigned int ecc_strength;
 	int first, last, marker_pos;
 	int ecc_parity_size;
 	int col = 0;
-	int old_swap_block_mark = this->swap_block_mark;
+	int ret;
 
 	/* The size of ECC parity */
 	ecc_parity_size = geo->gf_len * geo->ecc_strength / 8;
@@ -1130,7 +1520,7 @@
 			dev_dbg(this->dev,
 				"page:%d, first:%d, last:%d, marker at:%d\n",
 				page, first, last, marker_pos);
-			return gpmi_ecc_read_page(mtd, chip, buf, 0, page);
+			return gpmi_ecc_read_page(chip, buf, 0, page);
 		}
 	}
 
@@ -1141,127 +1531,66 @@
 		buf = buf + first * size;
 	}
 
-	nand_read_page_op(chip, page, col, NULL, 0);
+	ecc_parity_size = geo->gf_len * geo->ecc_strength / 8;
 
-	/* Save the old environment */
-	r1_old = r1_new = readl(bch_regs + HW_BCH_FLASH0LAYOUT0);
-	r2_old = r2_new = readl(bch_regs + HW_BCH_FLASH0LAYOUT1);
-
-	/* change the BCH registers and bch_geometry{} */
 	n = last - first + 1;
 	page_size = meta + (size + ecc_parity_size) * n;
+	ecc_strength = geo->ecc_strength >> 1;
 
-	r1_new &= ~(BM_BCH_FLASH0LAYOUT0_NBLOCKS |
-			BM_BCH_FLASH0LAYOUT0_META_SIZE);
-	r1_new |= BF_BCH_FLASH0LAYOUT0_NBLOCKS(n - 1)
-			| BF_BCH_FLASH0LAYOUT0_META_SIZE(meta);
-	writel(r1_new, bch_regs + HW_BCH_FLASH0LAYOUT0);
+	this->bch_flashlayout0 = BF_BCH_FLASH0LAYOUT0_NBLOCKS(n - 1) |
+		BF_BCH_FLASH0LAYOUT0_META_SIZE(meta) |
+		BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this) |
+		BF_BCH_FLASH0LAYOUT0_GF(geo->gf_len, this) |
+		BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(geo->ecc_chunk_size, this);
 
-	r2_new &= ~BM_BCH_FLASH0LAYOUT1_PAGE_SIZE;
-	r2_new |= BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size);
-	writel(r2_new, bch_regs + HW_BCH_FLASH0LAYOUT1);
+	this->bch_flashlayout1 = BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size) |
+		BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this) |
+		BF_BCH_FLASH0LAYOUT1_GF(geo->gf_len, this) |
+		BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(geo->ecc_chunk_size, this);
 
-	geo->ecc_chunk_count = n;
-	geo->payload_size = n * size;
-	geo->page_size = page_size;
-	geo->auxiliary_status_offset = ALIGN(meta, 4);
+	this->bch = true;
+
+	ret = nand_read_page_op(chip, page, col, buf, page_size);
+	if (ret)
+		return ret;
 
 	dev_dbg(this->dev, "page:%d(%d:%d)%d, chunk:(%d:%d), BCH PG size:%d\n",
 		page, offs, len, col, first, n, page_size);
 
-	/* Read the subpage now */
-	this->swap_block_mark = false;
-	max_bitflips = gpmi_ecc_read_page_data(chip, buf, 0, page);
-
-	/* Restore */
-	writel(r1_old, bch_regs + HW_BCH_FLASH0LAYOUT0);
-	writel(r2_old, bch_regs + HW_BCH_FLASH0LAYOUT1);
-	this->bch_geometry = old_geo;
-	this->swap_block_mark = old_swap_block_mark;
+	max_bitflips = gpmi_count_bitflips(chip, buf, first, last, meta);
 
 	return max_bitflips;
 }
 
-static int gpmi_ecc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
-				const uint8_t *buf, int oob_required, int page)
+static int gpmi_ecc_write_page(struct nand_chip *chip, const uint8_t *buf,
+			       int oob_required, int page)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
 	struct bch_geometry *nfc_geo = &this->bch_geometry;
-	const void *payload_virt;
-	dma_addr_t payload_phys;
-	const void *auxiliary_virt;
-	dma_addr_t auxiliary_phys;
-	int        ret;
+	int ret;
 
 	dev_dbg(this->dev, "ecc write page.\n");
 
-	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
+	gpmi_bch_layout_std(this);
+	this->bch = true;
+
+	memcpy(this->auxiliary_virt, chip->oob_poi, nfc_geo->auxiliary_size);
 
 	if (this->swap_block_mark) {
 		/*
-		 * If control arrives here, we're doing block mark swapping.
-		 * Since we can't modify the caller's buffers, we must copy them
-		 * into our own.
+		 * When doing bad block marker swapping we must always copy the
+		 * input buffer as we can't modify the const buffer.
 		 */
-		memcpy(this->payload_virt, buf, mtd->writesize);
-		payload_virt = this->payload_virt;
-		payload_phys = this->payload_phys;
-
-		memcpy(this->auxiliary_virt, chip->oob_poi,
-				nfc_geo->auxiliary_size);
-		auxiliary_virt = this->auxiliary_virt;
-		auxiliary_phys = this->auxiliary_phys;
-
-		/* Handle block mark swapping. */
-		block_mark_swapping(this,
-				(void *)payload_virt, (void *)auxiliary_virt);
-	} else {
-		/*
-		 * If control arrives here, we're not doing block mark swapping,
-		 * so we can to try and use the caller's buffers.
-		 */
-		ret = send_page_prepare(this,
-				buf, mtd->writesize,
-				this->payload_virt, this->payload_phys,
-				nfc_geo->payload_size,
-				&payload_virt, &payload_phys);
-		if (ret) {
-			dev_err(this->dev, "Inadequate payload DMA buffer\n");
-			return 0;
-		}
-
-		ret = send_page_prepare(this,
-				chip->oob_poi, mtd->oobsize,
-				this->auxiliary_virt, this->auxiliary_phys,
-				nfc_geo->auxiliary_size,
-				&auxiliary_virt, &auxiliary_phys);
-		if (ret) {
-			dev_err(this->dev, "Inadequate auxiliary DMA buffer\n");
-			goto exit_auxiliary;
-		}
+		memcpy(this->data_buffer_dma, buf, mtd->writesize);
+		buf = this->data_buffer_dma;
+		block_mark_swapping(this, this->data_buffer_dma,
+				    this->auxiliary_virt);
 	}
 
-	/* Ask the NFC. */
-	ret = gpmi_send_page(this, payload_phys, auxiliary_phys);
-	if (ret)
-		dev_err(this->dev, "Error in ECC-based write: %d\n", ret);
+	ret = nand_prog_page_op(chip, page, 0, buf, nfc_geo->page_size);
 
-	if (!this->swap_block_mark) {
-		send_page_end(this, chip->oob_poi, mtd->oobsize,
-				this->auxiliary_virt, this->auxiliary_phys,
-				nfc_geo->auxiliary_size,
-				auxiliary_virt, auxiliary_phys);
-exit_auxiliary:
-		send_page_end(this, buf, mtd->writesize,
-				this->payload_virt, this->payload_phys,
-				nfc_geo->payload_size,
-				payload_virt, payload_phys);
-	}
-
-	if (ret)
-		return ret;
-
-	return nand_prog_page_end_op(chip);
+	return ret;
 }
 
 /*
@@ -1324,18 +1653,20 @@
  * ECC-based or raw view of the page is implicit in which function it calls
  * (there is a similar pair of ECC-based/raw functions for writing).
  */
-static int gpmi_ecc_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
-				int page)
+static int gpmi_ecc_read_oob(struct nand_chip *chip, int page)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
+	int ret;
 
-	dev_dbg(this->dev, "page number is %d\n", page);
 	/* clear the OOB buffer */
 	memset(chip->oob_poi, ~0, mtd->oobsize);
 
 	/* Read out the conventional OOB. */
-	nand_read_page_op(chip, page, mtd->writesize, NULL, 0);
-	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
+	ret = nand_read_page_op(chip, page, mtd->writesize, chip->oob_poi,
+				mtd->oobsize);
+	if (ret)
+		return ret;
 
 	/*
 	 * Now, we want to make sure the block mark is correct. In the
@@ -1344,16 +1675,17 @@
 	 */
 	if (GPMI_IS_MX23(this)) {
 		/* Read the block mark into the first byte of the OOB buffer. */
-		nand_read_page_op(chip, page, 0, NULL, 0);
-		chip->oob_poi[0] = chip->read_byte(mtd);
+		ret = nand_read_page_op(chip, page, 0, chip->oob_poi, 1);
+		if (ret)
+			return ret;
 	}
 
 	return 0;
 }
 
-static int
-gpmi_ecc_write_oob(struct mtd_info *mtd, struct nand_chip *chip, int page)
+static int gpmi_ecc_write_oob(struct nand_chip *chip, int page)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	struct mtd_oob_region of = { };
 
 	/* Do we have available oob area? */
@@ -1380,10 +1712,10 @@
  * See set_geometry_by_ecc_info inline comments to have a full description
  * of the layout used by the GPMI controller.
  */
-static int gpmi_ecc_read_page_raw(struct mtd_info *mtd,
-				  struct nand_chip *chip, uint8_t *buf,
+static int gpmi_ecc_read_page_raw(struct nand_chip *chip, uint8_t *buf,
 				  int oob_required, int page)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
 	struct bch_geometry *nfc_geo = &this->bch_geometry;
 	int eccsize = nfc_geo->ecc_chunk_size;
@@ -1394,9 +1726,12 @@
 	size_t oob_byte_off;
 	uint8_t *oob = chip->oob_poi;
 	int step;
+	int ret;
 
-	nand_read_page_op(chip, page, 0, tmp_buf,
-			  mtd->writesize + mtd->oobsize);
+	ret = nand_read_page_op(chip, page, 0, tmp_buf,
+				mtd->writesize + mtd->oobsize);
+	if (ret)
+		return ret;
 
 	/*
 	 * If required, swap the bad block marker and the data stored in the
@@ -1464,11 +1799,10 @@
  * See set_geometry_by_ecc_info inline comments to have a full description
  * of the layout used by the GPMI controller.
  */
-static int gpmi_ecc_write_page_raw(struct mtd_info *mtd,
-				   struct nand_chip *chip,
-				   const uint8_t *buf,
+static int gpmi_ecc_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
 				   int oob_required, int page)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
 	struct bch_geometry *nfc_geo = &this->bch_geometry;
 	int eccsize = nfc_geo->ecc_chunk_size;
@@ -1536,28 +1870,26 @@
 				 mtd->writesize + mtd->oobsize);
 }
 
-static int gpmi_ecc_read_oob_raw(struct mtd_info *mtd, struct nand_chip *chip,
-				 int page)
+static int gpmi_ecc_read_oob_raw(struct nand_chip *chip, int page)
 {
-	return gpmi_ecc_read_page_raw(mtd, chip, NULL, 1, page);
+	return gpmi_ecc_read_page_raw(chip, NULL, 1, page);
 }
 
-static int gpmi_ecc_write_oob_raw(struct mtd_info *mtd, struct nand_chip *chip,
-				 int page)
+static int gpmi_ecc_write_oob_raw(struct nand_chip *chip, int page)
 {
-	return gpmi_ecc_write_page_raw(mtd, chip, NULL, 1, page);
+	return gpmi_ecc_write_page_raw(chip, NULL, 1, page);
 }
 
-static int gpmi_block_markbad(struct mtd_info *mtd, loff_t ofs)
+static int gpmi_block_markbad(struct nand_chip *chip, loff_t ofs)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
 	int ret = 0;
 	uint8_t *block_mark;
 	int column, page, chipnr;
 
 	chipnr = (int)(ofs >> chip->chip_shift);
-	chip->select_chip(mtd, chipnr);
+	nand_select_target(chip, chipnr);
 
 	column = !GPMI_IS_MX23(this) ? mtd->writesize : 0;
 
@@ -1570,7 +1902,7 @@
 
 	ret = nand_prog_page_op(chip, page, column, block_mark, 1);
 
-	chip->select_chip(mtd, -1);
+	nand_deselect_target(chip);
 
 	return ret;
 }
@@ -1607,19 +1939,17 @@
 	struct boot_rom_geometry *rom_geo = &this->rom_geometry;
 	struct device *dev = this->dev;
 	struct nand_chip *chip = &this->nand;
-	struct mtd_info *mtd = nand_to_mtd(chip);
 	unsigned int search_area_size_in_strides;
 	unsigned int stride;
 	unsigned int page;
-	uint8_t *buffer = chip->data_buf;
-	int saved_chip_number;
+	u8 *buffer = nand_get_data_buf(chip);
 	int found_an_ncb_fingerprint = false;
+	int ret;
 
 	/* Compute the number of strides in a search area. */
 	search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
 
-	saved_chip_number = this->current_chip;
-	chip->select_chip(mtd, 0);
+	nand_select_target(chip, 0);
 
 	/*
 	 * Loop through the first search area, looking for the NCB fingerprint.
@@ -1636,8 +1966,10 @@
 		 * Read the NCB fingerprint. The fingerprint is four bytes long
 		 * and starts in the 12th byte of the page.
 		 */
-		nand_read_page_op(chip, page, 12, NULL, 0);
-		chip->read_buf(mtd, buffer, strlen(fingerprint));
+		ret = nand_read_page_op(chip, page, 12, buffer,
+					strlen(fingerprint));
+		if (ret)
+			continue;
 
 		/* Look for the fingerprint. */
 		if (!memcmp(buffer, fingerprint, strlen(fingerprint))) {
@@ -1647,7 +1979,7 @@
 
 	}
 
-	chip->select_chip(mtd, saved_chip_number);
+	nand_deselect_target(chip);
 
 	if (found_an_ncb_fingerprint)
 		dev_dbg(dev, "\tFound a fingerprint\n");
@@ -1670,8 +2002,7 @@
 	unsigned int block;
 	unsigned int stride;
 	unsigned int page;
-	uint8_t      *buffer = chip->data_buf;
-	int saved_chip_number;
+	u8 *buffer = nand_get_data_buf(chip);
 	int status;
 
 	/* Compute the search area geometry. */
@@ -1688,9 +2019,7 @@
 	dev_dbg(dev, "\tin Strides: %u\n", search_area_size_in_strides);
 	dev_dbg(dev, "\tin Pages  : %u\n", search_area_size_in_pages);
 
-	/* Select chip 0. */
-	saved_chip_number = this->current_chip;
-	chip->select_chip(mtd, 0);
+	nand_select_target(chip, 0);
 
 	/* Loop over blocks in the first search area, erasing them. */
 	dev_dbg(dev, "Erasing the search area...\n");
@@ -1716,13 +2045,13 @@
 		/* Write the first page of the current stride. */
 		dev_dbg(dev, "Writing an NCB fingerprint in page 0x%x\n", page);
 
-		status = chip->ecc.write_page_raw(mtd, chip, buffer, 0, page);
+		status = chip->ecc.write_page_raw(chip, buffer, 0, page);
 		if (status)
 			dev_err(dev, "[%s] Write failed.\n", __func__);
 	}
 
-	/* Deselect chip 0. */
-	chip->select_chip(mtd, saved_chip_number);
+	nand_deselect_target(chip);
+
 	return 0;
 }
 
@@ -1755,7 +2084,7 @@
 	dev_dbg(dev, "Transcribing bad block marks...\n");
 
 	/* Compute the number of blocks in the entire medium. */
-	block_count = chip->chipsize >> chip->phys_erase_shift;
+	block_count = nanddev_eraseblocks_per_target(&chip->base);
 
 	/*
 	 * Loop over all the blocks in the medium, transcribing block marks as
@@ -1771,10 +2100,13 @@
 		byte = block <<  chip->phys_erase_shift;
 
 		/* Send the command to read the conventional block mark. */
-		chip->select_chip(mtd, chipnr);
-		nand_read_page_op(chip, page, mtd->writesize, NULL, 0);
-		block_mark = chip->read_byte(mtd);
-		chip->select_chip(mtd, -1);
+		nand_select_target(chip, chipnr);
+		ret = nand_read_page_op(chip, page, mtd->writesize, &block_mark,
+					1);
+		nand_deselect_target(chip);
+
+		if (ret)
+			continue;
 
 		/*
 		 * Check if the block is marked bad. If so, we need to mark it
@@ -1783,7 +2115,7 @@
 		 */
 		if (block_mark != 0xff) {
 			dev_dbg(dev, "Transcribing mark in block %u\n", block);
-			ret = chip->block_markbad(mtd, byte);
+			ret = chip->legacy.block_markbad(chip, byte);
 			if (ret)
 				dev_err(dev,
 					"Failed to mark block bad with ret %d\n",
@@ -1889,8 +2221,330 @@
 	return 0;
 }
 
+static struct gpmi_transfer *get_next_transfer(struct gpmi_nand_data *this)
+{
+	struct gpmi_transfer *transfer = &this->transfers[this->ntransfers];
+
+	this->ntransfers++;
+
+	if (this->ntransfers == GPMI_MAX_TRANSFERS)
+		return NULL;
+
+	return transfer;
+}
+
+static struct dma_async_tx_descriptor *gpmi_chain_command(
+	struct gpmi_nand_data *this, u8 cmd, const u8 *addr, int naddr)
+{
+	struct dma_chan *channel = get_dma_chan(this);
+	struct dma_async_tx_descriptor *desc;
+	struct gpmi_transfer *transfer;
+	int chip = this->nand.cur_cs;
+	u32 pio[3];
+
+	/* [1] send out the PIO words */
+	pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE)
+		| BM_GPMI_CTRL0_WORD_LENGTH
+		| BF_GPMI_CTRL0_CS(chip, this)
+		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
+		| BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_CLE)
+		| BM_GPMI_CTRL0_ADDRESS_INCREMENT
+		| BF_GPMI_CTRL0_XFER_COUNT(naddr + 1);
+	pio[1] = 0;
+	pio[2] = 0;
+	desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio),
+				      DMA_TRANS_NONE, 0);
+	if (!desc)
+		return NULL;
+
+	transfer = get_next_transfer(this);
+	if (!transfer)
+		return NULL;
+
+	transfer->cmdbuf[0] = cmd;
+	if (naddr)
+		memcpy(&transfer->cmdbuf[1], addr, naddr);
+
+	sg_init_one(&transfer->sgl, transfer->cmdbuf, naddr + 1);
+	dma_map_sg(this->dev, &transfer->sgl, 1, DMA_TO_DEVICE);
+
+	transfer->direction = DMA_TO_DEVICE;
+
+	desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1, DMA_MEM_TO_DEV,
+				       MXS_DMA_CTRL_WAIT4END);
+	return desc;
+}
+
+static struct dma_async_tx_descriptor *gpmi_chain_wait_ready(
+	struct gpmi_nand_data *this)
+{
+	struct dma_chan *channel = get_dma_chan(this);
+	u32 pio[2];
+
+	pio[0] =  BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY)
+		| BM_GPMI_CTRL0_WORD_LENGTH
+		| BF_GPMI_CTRL0_CS(this->nand.cur_cs, this)
+		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
+		| BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
+		| BF_GPMI_CTRL0_XFER_COUNT(0);
+	pio[1] = 0;
+
+	return mxs_dmaengine_prep_pio(channel, pio, 2, DMA_TRANS_NONE,
+				MXS_DMA_CTRL_WAIT4END | MXS_DMA_CTRL_WAIT4RDY);
+}
+
+static struct dma_async_tx_descriptor *gpmi_chain_data_read(
+	struct gpmi_nand_data *this, void *buf, int raw_len, bool *direct)
+{
+	struct dma_async_tx_descriptor *desc;
+	struct dma_chan *channel = get_dma_chan(this);
+	struct gpmi_transfer *transfer;
+	u32 pio[6] = {};
+
+	transfer = get_next_transfer(this);
+	if (!transfer)
+		return NULL;
+
+	transfer->direction = DMA_FROM_DEVICE;
+
+	*direct = prepare_data_dma(this, buf, raw_len, &transfer->sgl,
+				   DMA_FROM_DEVICE);
+
+	pio[0] =  BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__READ)
+		| BM_GPMI_CTRL0_WORD_LENGTH
+		| BF_GPMI_CTRL0_CS(this->nand.cur_cs, this)
+		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
+		| BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
+		| BF_GPMI_CTRL0_XFER_COUNT(raw_len);
+
+	if (this->bch) {
+		pio[2] =  BM_GPMI_ECCCTRL_ENABLE_ECC
+			| BF_GPMI_ECCCTRL_ECC_CMD(BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE)
+			| BF_GPMI_ECCCTRL_BUFFER_MASK(BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE
+				| BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY);
+		pio[3] = raw_len;
+		pio[4] = transfer->sgl.dma_address;
+		pio[5] = this->auxiliary_phys;
+	}
+
+	desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio),
+				      DMA_TRANS_NONE, 0);
+	if (!desc)
+		return NULL;
+
+	if (!this->bch)
+		desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1,
+					     DMA_DEV_TO_MEM,
+					     MXS_DMA_CTRL_WAIT4END);
+
+	return desc;
+}
+
+static struct dma_async_tx_descriptor *gpmi_chain_data_write(
+	struct gpmi_nand_data *this, const void *buf, int raw_len)
+{
+	struct dma_chan *channel = get_dma_chan(this);
+	struct dma_async_tx_descriptor *desc;
+	struct gpmi_transfer *transfer;
+	u32 pio[6] = {};
+
+	transfer = get_next_transfer(this);
+	if (!transfer)
+		return NULL;
+
+	transfer->direction = DMA_TO_DEVICE;
+
+	prepare_data_dma(this, buf, raw_len, &transfer->sgl, DMA_TO_DEVICE);
+
+	pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE)
+		| BM_GPMI_CTRL0_WORD_LENGTH
+		| BF_GPMI_CTRL0_CS(this->nand.cur_cs, this)
+		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
+		| BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
+		| BF_GPMI_CTRL0_XFER_COUNT(raw_len);
+
+	if (this->bch) {
+		pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC
+			| BF_GPMI_ECCCTRL_ECC_CMD(BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE)
+			| BF_GPMI_ECCCTRL_BUFFER_MASK(BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE |
+					BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY);
+		pio[3] = raw_len;
+		pio[4] = transfer->sgl.dma_address;
+		pio[5] = this->auxiliary_phys;
+	}
+
+	desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio),
+				      DMA_TRANS_NONE,
+				      (this->bch ? MXS_DMA_CTRL_WAIT4END : 0));
+	if (!desc)
+		return NULL;
+
+	if (!this->bch)
+		desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1,
+					       DMA_MEM_TO_DEV,
+					       MXS_DMA_CTRL_WAIT4END);
+
+	return desc;
+}
+
+static int gpmi_nfc_exec_op(struct nand_chip *chip,
+			     const struct nand_operation *op,
+			     bool check_only)
+{
+	const struct nand_op_instr *instr;
+	struct gpmi_nand_data *this = nand_get_controller_data(chip);
+	struct dma_async_tx_descriptor *desc = NULL;
+	int i, ret, buf_len = 0, nbufs = 0;
+	u8 cmd = 0;
+	void *buf_read = NULL;
+	const void *buf_write = NULL;
+	bool direct = false;
+	struct completion *completion;
+	unsigned long to;
+
+	this->ntransfers = 0;
+	for (i = 0; i < GPMI_MAX_TRANSFERS; i++)
+		this->transfers[i].direction = DMA_NONE;
+
+	ret = pm_runtime_get_sync(this->dev);
+	if (ret < 0)
+		return ret;
+
+	/*
+	 * This driver currently supports only one NAND chip. Plus, dies share
+	 * the same configuration. So once timings have been applied on the
+	 * controller side, they will not change anymore. When the time will
+	 * come, the check on must_apply_timings will have to be dropped.
+	 */
+	if (this->hw.must_apply_timings) {
+		this->hw.must_apply_timings = false;
+		gpmi_nfc_apply_timings(this);
+	}
+
+	dev_dbg(this->dev, "%s: %d instructions\n", __func__, op->ninstrs);
+
+	for (i = 0; i < op->ninstrs; i++) {
+		instr = &op->instrs[i];
+
+		nand_op_trace("  ", instr);
+
+		switch (instr->type) {
+		case NAND_OP_WAITRDY_INSTR:
+			desc = gpmi_chain_wait_ready(this);
+			break;
+		case NAND_OP_CMD_INSTR:
+			cmd = instr->ctx.cmd.opcode;
+
+			/*
+			 * When this command has an address cycle chain it
+			 * together with the address cycle
+			 */
+			if (i + 1 != op->ninstrs &&
+			    op->instrs[i + 1].type == NAND_OP_ADDR_INSTR)
+				continue;
+
+			desc = gpmi_chain_command(this, cmd, NULL, 0);
+
+			break;
+		case NAND_OP_ADDR_INSTR:
+			desc = gpmi_chain_command(this, cmd, instr->ctx.addr.addrs,
+						  instr->ctx.addr.naddrs);
+			break;
+		case NAND_OP_DATA_OUT_INSTR:
+			buf_write = instr->ctx.data.buf.out;
+			buf_len = instr->ctx.data.len;
+			nbufs++;
+
+			desc = gpmi_chain_data_write(this, buf_write, buf_len);
+
+			break;
+		case NAND_OP_DATA_IN_INSTR:
+			if (!instr->ctx.data.len)
+				break;
+			buf_read = instr->ctx.data.buf.in;
+			buf_len = instr->ctx.data.len;
+			nbufs++;
+
+			desc = gpmi_chain_data_read(this, buf_read, buf_len,
+						   &direct);
+			break;
+		}
+
+		if (!desc) {
+			ret = -ENXIO;
+			goto unmap;
+		}
+	}
+
+	dev_dbg(this->dev, "%s setup done\n", __func__);
+
+	if (nbufs > 1) {
+		dev_err(this->dev, "Multiple data instructions not supported\n");
+		ret = -EINVAL;
+		goto unmap;
+	}
+
+	if (this->bch) {
+		writel(this->bch_flashlayout0,
+		       this->resources.bch_regs + HW_BCH_FLASH0LAYOUT0);
+		writel(this->bch_flashlayout1,
+		       this->resources.bch_regs + HW_BCH_FLASH0LAYOUT1);
+	}
+
+	if (this->bch && buf_read) {
+		writel(BM_BCH_CTRL_COMPLETE_IRQ_EN,
+		       this->resources.bch_regs + HW_BCH_CTRL_SET);
+		completion = &this->bch_done;
+	} else {
+		desc->callback = dma_irq_callback;
+		desc->callback_param = this;
+		completion = &this->dma_done;
+	}
+
+	init_completion(completion);
+
+	dmaengine_submit(desc);
+	dma_async_issue_pending(get_dma_chan(this));
+
+	to = wait_for_completion_timeout(completion, msecs_to_jiffies(1000));
+	if (!to) {
+		dev_err(this->dev, "DMA timeout, last DMA\n");
+		gpmi_dump_info(this);
+		ret = -ETIMEDOUT;
+		goto unmap;
+	}
+
+	writel(BM_BCH_CTRL_COMPLETE_IRQ_EN,
+	       this->resources.bch_regs + HW_BCH_CTRL_CLR);
+	gpmi_clear_bch(this);
+
+	ret = 0;
+
+unmap:
+	for (i = 0; i < this->ntransfers; i++) {
+		struct gpmi_transfer *transfer = &this->transfers[i];
+
+		if (transfer->direction != DMA_NONE)
+			dma_unmap_sg(this->dev, &transfer->sgl, 1,
+				     transfer->direction);
+	}
+
+	if (!ret && buf_read && !direct)
+		memcpy(buf_read, this->data_buffer_dma,
+		       gpmi_raw_len_to_len(this, buf_len));
+
+	this->bch = false;
+
+	pm_runtime_mark_last_busy(this->dev);
+	pm_runtime_put_autosuspend(this->dev);
+
+	return ret;
+}
+
 static const struct nand_controller_ops gpmi_nand_controller_ops = {
 	.attach_chip = gpmi_nand_attach_chip,
+	.setup_data_interface = gpmi_setup_data_interface,
+	.exec_op = gpmi_nfc_exec_op,
 };
 
 static int gpmi_nand_init(struct gpmi_nand_data *this)
@@ -1899,9 +2553,6 @@
 	struct mtd_info  *mtd = nand_to_mtd(chip);
 	int ret;
 
-	/* init current chip */
-	this->current_chip	= -1;
-
 	/* init the MTD data structures */
 	mtd->name		= "gpmi-nand";
 	mtd->dev.parent		= this->dev;
@@ -1909,15 +2560,8 @@
 	/* init the nand_chip{}, we don't support a 16-bit NAND Flash bus. */
 	nand_set_controller_data(chip, this);
 	nand_set_flash_node(chip, this->pdev->dev.of_node);
-	chip->select_chip	= gpmi_select_chip;
-	chip->setup_data_interface = gpmi_setup_data_interface;
-	chip->cmd_ctrl		= gpmi_cmd_ctrl;
-	chip->dev_ready		= gpmi_dev_ready;
-	chip->read_byte		= gpmi_read_byte;
-	chip->read_buf		= gpmi_read_buf;
-	chip->write_buf		= gpmi_write_buf;
+	chip->legacy.block_markbad = gpmi_block_markbad;
 	chip->badblock_pattern	= &gpmi_bbt_descr;
-	chip->block_markbad	= gpmi_block_markbad;
 	chip->options		|= NAND_NO_SUBPAGE_WRITE;
 
 	/* Set up swap_block_mark, must be set before the gpmi_set_geometry() */
@@ -1933,8 +2577,11 @@
 	if (ret)
 		goto err_out;
 
-	chip->dummy_controller.ops = &gpmi_nand_controller_ops;
-	ret = nand_scan(mtd, GPMI_IS_MX6(this) ? 2 : 1);
+	nand_controller_init(&this->base);
+	this->base.ops = &gpmi_nand_controller_ops;
+	chip->controller = &this->base;
+
+	ret = nand_scan(chip, GPMI_IS_MX6(this) ? 2 : 1);
 	if (ret)
 		goto err_out;
 
@@ -2003,6 +2650,16 @@
 	if (ret)
 		goto exit_acquire_resources;
 
+	ret = __gpmi_enable_clk(this, true);
+	if (ret)
+		goto exit_nfc_init;
+
+	pm_runtime_set_autosuspend_delay(&pdev->dev, 500);
+	pm_runtime_use_autosuspend(&pdev->dev);
+	pm_runtime_set_active(&pdev->dev);
+	pm_runtime_enable(&pdev->dev);
+	pm_runtime_get_sync(&pdev->dev);
+
 	ret = gpmi_init(this);
 	if (ret)
 		goto exit_nfc_init;
@@ -2011,11 +2668,16 @@
 	if (ret)
 		goto exit_nfc_init;
 
+	pm_runtime_mark_last_busy(&pdev->dev);
+	pm_runtime_put_autosuspend(&pdev->dev);
+
 	dev_info(this->dev, "driver registered.\n");
 
 	return 0;
 
 exit_nfc_init:
+	pm_runtime_put(&pdev->dev);
+	pm_runtime_disable(&pdev->dev);
 	release_resources(this);
 exit_acquire_resources:
 
@@ -2026,7 +2688,10 @@
 {
 	struct gpmi_nand_data *this = platform_get_drvdata(pdev);
 
-	nand_release(nand_to_mtd(&this->nand));
+	pm_runtime_put_sync(&pdev->dev);
+	pm_runtime_disable(&pdev->dev);
+
+	nand_release(&this->nand);
 	gpmi_free_dma_buffer(this);
 	release_resources(this);
 	return 0;
@@ -2068,8 +2733,23 @@
 }
 #endif /* CONFIG_PM_SLEEP */
 
+static int __maybe_unused gpmi_runtime_suspend(struct device *dev)
+{
+	struct gpmi_nand_data *this = dev_get_drvdata(dev);
+
+	return __gpmi_enable_clk(this, false);
+}
+
+static int __maybe_unused gpmi_runtime_resume(struct device *dev)
+{
+	struct gpmi_nand_data *this = dev_get_drvdata(dev);
+
+	return __gpmi_enable_clk(this, true);
+}
+
 static const struct dev_pm_ops gpmi_pm_ops = {
 	SET_SYSTEM_SLEEP_PM_OPS(gpmi_pm_suspend, gpmi_pm_resume)
+	SET_RUNTIME_PM_OPS(gpmi_runtime_suspend, gpmi_runtime_resume, NULL)
 };
 
 static struct platform_driver gpmi_nand_driver = {
diff --git a/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.h b/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.h
index 69cd0cb..fdc5ed7 100644
--- a/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.h
+++ b/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.h
@@ -103,6 +103,14 @@
 	u32 ctrl1n;
 };
 
+#define GPMI_MAX_TRANSFERS	8
+
+struct gpmi_transfer {
+	u8 cmdbuf[8];
+	struct scatterlist sgl;
+	enum dma_data_direction direction;
+};
+
 struct gpmi_nand_data {
 	/* Devdata */
 	const struct gpmi_devdata *devdata;
@@ -126,25 +134,18 @@
 	struct boot_rom_geometry rom_geometry;
 
 	/* MTD / NAND */
+	struct nand_controller	base;
 	struct nand_chip	nand;
 
-	/* General-use Variables */
-	int			current_chip;
-	unsigned int		command_length;
+	struct gpmi_transfer	transfers[GPMI_MAX_TRANSFERS];
+	int			ntransfers;
 
-	struct scatterlist	cmd_sgl;
-	char			*cmd_buffer;
+	bool			bch;
+	uint32_t		bch_flashlayout0;
+	uint32_t		bch_flashlayout1;
 
-	struct scatterlist	data_sgl;
 	char			*data_buffer_dma;
 
-	void			*page_buffer_virt;
-	dma_addr_t		page_buffer_phys;
-	unsigned int		page_buffer_size;
-
-	void			*payload_virt;
-	dma_addr_t		payload_phys;
-
 	void			*auxiliary_virt;
 	dma_addr_t		auxiliary_phys;
 
@@ -154,45 +155,8 @@
 #define DMA_CHANS		8
 	struct dma_chan		*dma_chans[DMA_CHANS];
 	struct completion	dma_done;
-
-	/* private */
-	void			*private;
 };
 
-/* Common Services */
-int common_nfc_set_geometry(struct gpmi_nand_data *);
-struct dma_chan *get_dma_chan(struct gpmi_nand_data *);
-bool prepare_data_dma(struct gpmi_nand_data *, const void *buf, int len,
-		      enum dma_data_direction dr);
-int start_dma_without_bch_irq(struct gpmi_nand_data *,
-			      struct dma_async_tx_descriptor *);
-int start_dma_with_bch_irq(struct gpmi_nand_data *,
-			   struct dma_async_tx_descriptor *);
-
-/* GPMI-NAND helper function library */
-int gpmi_init(struct gpmi_nand_data *);
-void gpmi_clear_bch(struct gpmi_nand_data *);
-void gpmi_dump_info(struct gpmi_nand_data *);
-int bch_set_geometry(struct gpmi_nand_data *);
-int gpmi_is_ready(struct gpmi_nand_data *, unsigned chip);
-int gpmi_send_command(struct gpmi_nand_data *);
-int gpmi_enable_clk(struct gpmi_nand_data *this);
-int gpmi_disable_clk(struct gpmi_nand_data *this);
-int gpmi_setup_data_interface(struct mtd_info *mtd, int chipnr,
-			      const struct nand_data_interface *conf);
-void gpmi_nfc_apply_timings(struct gpmi_nand_data *this);
-int gpmi_read_data(struct gpmi_nand_data *, void *buf, int len);
-int gpmi_send_data(struct gpmi_nand_data *, const void *buf, int len);
-
-int gpmi_send_page(struct gpmi_nand_data *,
-		   dma_addr_t payload, dma_addr_t auxiliary);
-int gpmi_read_page(struct gpmi_nand_data *,
-		   dma_addr_t payload, dma_addr_t auxiliary);
-
-void gpmi_copy_bits(u8 *dst, size_t dst_bit_off,
-		    const u8 *src, size_t src_bit_off,
-		    size_t nbits);
-
 /* BCH : Status Block Completion Codes */
 #define STATUS_GOOD		0x00
 #define STATUS_ERASED		0xff
@@ -207,4 +171,5 @@
 
 #define GPMI_IS_MX6(x)		(GPMI_IS_MX6Q(x) || GPMI_IS_MX6SX(x) || \
 				 GPMI_IS_MX7D(x))
+#define GPMI_IS_MXS(x)		(GPMI_IS_MX23(x) || GPMI_IS_MX28(x))
 #endif
diff --git a/drivers/mtd/nand/raw/gpmi-nand/gpmi-regs.h b/drivers/mtd/nand/raw/gpmi-nand/gpmi-regs.h
index d92bf32..f5e4f26 100644
--- a/drivers/mtd/nand/raw/gpmi-nand/gpmi-regs.h
+++ b/drivers/mtd/nand/raw/gpmi-nand/gpmi-regs.h
@@ -1,22 +1,9 @@
+/* SPDX-License-Identifier: GPL-2.0-or-later */
 /*
  * Freescale GPMI NAND Flash Driver
  *
  * Copyright 2008-2011 Freescale Semiconductor, Inc.
  * Copyright 2008 Embedded Alley Solutions, Inc.
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License along
- * with this program; if not, write to the Free Software Foundation, Inc.,
- * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
  */
 #ifndef __GPMI_NAND_GPMI_REGS_H
 #define __GPMI_NAND_GPMI_REGS_H
diff --git a/drivers/mtd/nand/raw/hisi504_nand.c b/drivers/mtd/nand/raw/hisi504_nand.c
index 950dc77..6a4626a 100644
--- a/drivers/mtd/nand/raw/hisi504_nand.c
+++ b/drivers/mtd/nand/raw/hisi504_nand.c
@@ -1,3 +1,4 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
 /*
  * Hisilicon NAND Flash controller driver
  *
@@ -7,16 +8,6 @@
  * Author: Zhou Wang <wangzhou.bry@gmail.com>
  * The initial developer of the original code is Zhiyong Cai
  * <caizhiyong@huawei.com>
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
- * GNU General Public License for more details.
  */
 #include <linux/of.h>
 #include <linux/mtd/mtd.h>
@@ -353,9 +344,8 @@
 	return 0;
 }
 
-static void hisi_nfc_select_chip(struct mtd_info *mtd, int chipselect)
+static void hisi_nfc_select_chip(struct nand_chip *chip, int chipselect)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
 	struct hinfc_host *host = nand_get_controller_data(chip);
 
 	if (chipselect < 0)
@@ -364,9 +354,8 @@
 	host->chipselect = chipselect;
 }
 
-static uint8_t hisi_nfc_read_byte(struct mtd_info *mtd)
+static uint8_t hisi_nfc_read_byte(struct nand_chip *chip)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
 	struct hinfc_host *host = nand_get_controller_data(chip);
 
 	if (host->command == NAND_CMD_STATUS)
@@ -380,28 +369,17 @@
 	return *(uint8_t *)(host->buffer + host->offset - 1);
 }
 
-static u16 hisi_nfc_read_word(struct mtd_info *mtd)
-{
-	struct nand_chip *chip = mtd_to_nand(mtd);
-	struct hinfc_host *host = nand_get_controller_data(chip);
-
-	host->offset += 2;
-	return *(u16 *)(host->buffer + host->offset - 2);
-}
-
 static void
-hisi_nfc_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
+hisi_nfc_write_buf(struct nand_chip *chip, const uint8_t *buf, int len)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
 	struct hinfc_host *host = nand_get_controller_data(chip);
 
 	memcpy(host->buffer + host->offset, buf, len);
 	host->offset += len;
 }
 
-static void hisi_nfc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
+static void hisi_nfc_read_buf(struct nand_chip *chip, uint8_t *buf, int len)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
 	struct hinfc_host *host = nand_get_controller_data(chip);
 
 	memcpy(buf, host->buffer + host->offset, len);
@@ -442,10 +420,10 @@
 	}
 }
 
-static void hisi_nfc_cmdfunc(struct mtd_info *mtd, unsigned command, int column,
-		int page_addr)
+static void hisi_nfc_cmdfunc(struct nand_chip *chip, unsigned command,
+			     int column, int page_addr)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	struct hinfc_host *host = nand_get_controller_data(chip);
 	int is_cache_invalid = 1;
 	unsigned int flag = 0;
@@ -537,15 +515,16 @@
 	return IRQ_HANDLED;
 }
 
-static int hisi_nand_read_page_hwecc(struct mtd_info *mtd,
-	struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
+static int hisi_nand_read_page_hwecc(struct nand_chip *chip, uint8_t *buf,
+				     int oob_required, int page)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	struct hinfc_host *host = nand_get_controller_data(chip);
 	int max_bitflips = 0, stat = 0, stat_max = 0, status_ecc;
 	int stat_1, stat_2;
 
 	nand_read_page_op(chip, page, 0, buf, mtd->writesize);
-	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
+	chip->legacy.read_buf(chip, chip->oob_poi, mtd->oobsize);
 
 	/* errors which can not be corrected by ECC */
 	if (host->irq_status & HINFC504_INTS_UE) {
@@ -569,9 +548,9 @@
 	return max_bitflips;
 }
 
-static int hisi_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
-				int page)
+static int hisi_nand_read_oob(struct nand_chip *chip, int page)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	struct hinfc_host *host = nand_get_controller_data(chip);
 
 	nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
@@ -585,13 +564,15 @@
 	return 0;
 }
 
-static int hisi_nand_write_page_hwecc(struct mtd_info *mtd,
-		struct nand_chip *chip, const uint8_t *buf, int oob_required,
-		int page)
+static int hisi_nand_write_page_hwecc(struct nand_chip *chip,
+				      const uint8_t *buf, int oob_required,
+				      int page)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
+
 	nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
 	if (oob_required)
-		chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
+		chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize);
 
 	return nand_prog_page_end_op(chip);
 }
@@ -792,15 +773,14 @@
 
 	nand_set_controller_data(chip, host);
 	nand_set_flash_node(chip, np);
-	chip->cmdfunc		= hisi_nfc_cmdfunc;
-	chip->select_chip	= hisi_nfc_select_chip;
-	chip->read_byte		= hisi_nfc_read_byte;
-	chip->read_word		= hisi_nfc_read_word;
-	chip->write_buf		= hisi_nfc_write_buf;
-	chip->read_buf		= hisi_nfc_read_buf;
-	chip->chip_delay	= HINFC504_CHIP_DELAY;
-	chip->set_features	= nand_get_set_features_notsupp;
-	chip->get_features	= nand_get_set_features_notsupp;
+	chip->legacy.cmdfunc	= hisi_nfc_cmdfunc;
+	chip->legacy.select_chip	= hisi_nfc_select_chip;
+	chip->legacy.read_byte	= hisi_nfc_read_byte;
+	chip->legacy.write_buf	= hisi_nfc_write_buf;
+	chip->legacy.read_buf	= hisi_nfc_read_buf;
+	chip->legacy.chip_delay	= HINFC504_CHIP_DELAY;
+	chip->legacy.set_features	= nand_get_set_features_notsupp;
+	chip->legacy.get_features	= nand_get_set_features_notsupp;
 
 	hisi_nfc_host_init(host);
 
@@ -810,8 +790,8 @@
 		return ret;
 	}
 
-	chip->dummy_controller.ops = &hisi_nfc_controller_ops;
-	ret = nand_scan(mtd, max_chips);
+	chip->legacy.dummy_controller.ops = &hisi_nfc_controller_ops;
+	ret = nand_scan(chip, max_chips);
 	if (ret)
 		return ret;
 
@@ -828,9 +808,8 @@
 static int hisi_nfc_remove(struct platform_device *pdev)
 {
 	struct hinfc_host *host = platform_get_drvdata(pdev);
-	struct mtd_info *mtd = nand_to_mtd(&host->chip);
 
-	nand_release(mtd);
+	nand_release(&host->chip);
 
 	return 0;
 }
@@ -861,7 +840,7 @@
 	struct hinfc_host *host = dev_get_drvdata(dev);
 	struct nand_chip *chip = &host->chip;
 
-	for (cs = 0; cs < chip->numchips; cs++)
+	for (cs = 0; cs < nanddev_ntargets(&chip->base); cs++)
 		hisi_nfc_send_cmd_reset(host, cs);
 	hinfc_write(host, SET_HINFC504_PWIDTH(HINFC504_W_LATCH,
 		    HINFC504_R_LATCH, HINFC504_RW_LATCH), HINFC504_PWIDTH);
diff --git a/drivers/mtd/nand/raw/ingenic/Kconfig b/drivers/mtd/nand/raw/ingenic/Kconfig
new file mode 100644
index 0000000..e30feb5
--- /dev/null
+++ b/drivers/mtd/nand/raw/ingenic/Kconfig
@@ -0,0 +1,44 @@
+# SPDX-License-Identifier: GPL-2.0-only
+config MTD_NAND_JZ4780
+	tristate "JZ4780 NAND controller"
+	depends on JZ4780_NEMC
+	help
+	  Enables support for NAND Flash connected to the NEMC on JZ4780 SoC
+	  based boards, using the BCH controller for hardware error correction.
+
+if MTD_NAND_JZ4780
+
+config MTD_NAND_INGENIC_ECC
+	bool
+
+config MTD_NAND_JZ4740_ECC
+	tristate "Hardware BCH support for JZ4740 SoC"
+	select MTD_NAND_INGENIC_ECC
+	help
+	  Enable this driver to support the Reed-Solomon error-correction
+	  hardware present on the JZ4740 SoC from Ingenic.
+
+	  This driver can also be built as a module. If so, the module
+	  will be called jz4740-ecc.
+
+config MTD_NAND_JZ4725B_BCH
+	tristate "Hardware BCH support for JZ4725B SoC"
+	select MTD_NAND_INGENIC_ECC
+	help
+	  Enable this driver to support the BCH error-correction hardware
+	  present on the JZ4725B SoC from Ingenic.
+
+	  This driver can also be built as a module. If so, the module
+	  will be called jz4725b-bch.
+
+config MTD_NAND_JZ4780_BCH
+	tristate "Hardware BCH support for JZ4780 SoC"
+	select MTD_NAND_INGENIC_ECC
+	help
+	  Enable this driver to support the BCH error-correction hardware
+	  present on the JZ4780 SoC from Ingenic.
+
+	  This driver can also be built as a module. If so, the module
+	  will be called jz4780-bch.
+
+endif # MTD_NAND_JZ4780
diff --git a/drivers/mtd/nand/raw/ingenic/Makefile b/drivers/mtd/nand/raw/ingenic/Makefile
new file mode 100644
index 0000000..4c53f5e
--- /dev/null
+++ b/drivers/mtd/nand/raw/ingenic/Makefile
@@ -0,0 +1,9 @@
+# SPDX-License-Identifier: GPL-2.0-only
+obj-$(CONFIG_MTD_NAND_JZ4780) += ingenic_nand.o
+
+ingenic_nand-y += ingenic_nand_drv.o
+ingenic_nand-$(CONFIG_MTD_NAND_INGENIC_ECC) += ingenic_ecc.o
+
+obj-$(CONFIG_MTD_NAND_JZ4740_ECC) += jz4740_ecc.o
+obj-$(CONFIG_MTD_NAND_JZ4725B_BCH) += jz4725b_bch.o
+obj-$(CONFIG_MTD_NAND_JZ4780_BCH) += jz4780_bch.o
diff --git a/drivers/mtd/nand/raw/ingenic/ingenic_ecc.c b/drivers/mtd/nand/raw/ingenic/ingenic_ecc.c
new file mode 100644
index 0000000..c954189
--- /dev/null
+++ b/drivers/mtd/nand/raw/ingenic/ingenic_ecc.c
@@ -0,0 +1,157 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * JZ47xx ECC common code
+ *
+ * Copyright (c) 2015 Imagination Technologies
+ * Author: Alex Smith <alex.smith@imgtec.com>
+ */
+
+#include <linux/clk.h>
+#include <linux/init.h>
+#include <linux/module.h>
+#include <linux/of_platform.h>
+#include <linux/platform_device.h>
+
+#include "ingenic_ecc.h"
+
+/**
+ * ingenic_ecc_calculate() - calculate ECC for a data buffer
+ * @ecc: ECC device.
+ * @params: ECC parameters.
+ * @buf: input buffer with raw data.
+ * @ecc_code: output buffer with ECC.
+ *
+ * Return: 0 on success, -ETIMEDOUT if timed out while waiting for ECC
+ * controller.
+ */
+int ingenic_ecc_calculate(struct ingenic_ecc *ecc,
+			  struct ingenic_ecc_params *params,
+			  const u8 *buf, u8 *ecc_code)
+{
+	return ecc->ops->calculate(ecc, params, buf, ecc_code);
+}
+
+/**
+ * ingenic_ecc_correct() - detect and correct bit errors
+ * @ecc: ECC device.
+ * @params: ECC parameters.
+ * @buf: raw data read from the chip.
+ * @ecc_code: ECC read from the chip.
+ *
+ * Given the raw data and the ECC read from the NAND device, detects and
+ * corrects errors in the data.
+ *
+ * Return: the number of bit errors corrected, -EBADMSG if there are too many
+ * errors to correct or -ETIMEDOUT if we timed out waiting for the controller.
+ */
+int ingenic_ecc_correct(struct ingenic_ecc *ecc,
+			struct ingenic_ecc_params *params,
+			u8 *buf, u8 *ecc_code)
+{
+	return ecc->ops->correct(ecc, params, buf, ecc_code);
+}
+
+/**
+ * ingenic_ecc_get() - get the ECC controller device
+ * @np: ECC device tree node.
+ *
+ * Gets the ECC controller device from the specified device tree node. The
+ * device must be released with ingenic_ecc_release() when it is no longer being
+ * used.
+ *
+ * Return: a pointer to ingenic_ecc, errors are encoded into the pointer.
+ * PTR_ERR(-EPROBE_DEFER) if the device hasn't been initialised yet.
+ */
+static struct ingenic_ecc *ingenic_ecc_get(struct device_node *np)
+{
+	struct platform_device *pdev;
+	struct ingenic_ecc *ecc;
+
+	pdev = of_find_device_by_node(np);
+	if (!pdev || !platform_get_drvdata(pdev))
+		return ERR_PTR(-EPROBE_DEFER);
+
+	get_device(&pdev->dev);
+
+	ecc = platform_get_drvdata(pdev);
+	clk_prepare_enable(ecc->clk);
+
+	return ecc;
+}
+
+/**
+ * of_ingenic_ecc_get() - get the ECC controller from a DT node
+ * @of_node: the node that contains an ecc-engine property.
+ *
+ * Get the ecc-engine property from the given device tree
+ * node and pass it to ingenic_ecc_get to do the work.
+ *
+ * Return: a pointer to ingenic_ecc, errors are encoded into the pointer.
+ * PTR_ERR(-EPROBE_DEFER) if the device hasn't been initialised yet.
+ */
+struct ingenic_ecc *of_ingenic_ecc_get(struct device_node *of_node)
+{
+	struct ingenic_ecc *ecc = NULL;
+	struct device_node *np;
+
+	np = of_parse_phandle(of_node, "ecc-engine", 0);
+
+	/*
+	 * If the ecc-engine property is not found, check for the deprecated
+	 * ingenic,bch-controller property
+	 */
+	if (!np)
+		np = of_parse_phandle(of_node, "ingenic,bch-controller", 0);
+
+	if (np) {
+		ecc = ingenic_ecc_get(np);
+		of_node_put(np);
+	}
+	return ecc;
+}
+
+/**
+ * ingenic_ecc_release() - release the ECC controller device
+ * @ecc: ECC device.
+ */
+void ingenic_ecc_release(struct ingenic_ecc *ecc)
+{
+	clk_disable_unprepare(ecc->clk);
+	put_device(ecc->dev);
+}
+
+int ingenic_ecc_probe(struct platform_device *pdev)
+{
+	struct device *dev = &pdev->dev;
+	struct ingenic_ecc *ecc;
+	struct resource *res;
+
+	ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL);
+	if (!ecc)
+		return -ENOMEM;
+
+	ecc->ops = device_get_match_data(dev);
+	if (!ecc->ops)
+		return -EINVAL;
+
+	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+	ecc->base = devm_ioremap_resource(dev, res);
+	if (IS_ERR(ecc->base))
+		return PTR_ERR(ecc->base);
+
+	ecc->ops->disable(ecc);
+
+	ecc->clk = devm_clk_get(dev, NULL);
+	if (IS_ERR(ecc->clk)) {
+		dev_err(dev, "failed to get clock: %ld\n", PTR_ERR(ecc->clk));
+		return PTR_ERR(ecc->clk);
+	}
+
+	mutex_init(&ecc->lock);
+
+	ecc->dev = dev;
+	platform_set_drvdata(pdev, ecc);
+
+	return 0;
+}
+EXPORT_SYMBOL(ingenic_ecc_probe);
diff --git a/drivers/mtd/nand/raw/ingenic/ingenic_ecc.h b/drivers/mtd/nand/raw/ingenic/ingenic_ecc.h
new file mode 100644
index 0000000..2cda439
--- /dev/null
+++ b/drivers/mtd/nand/raw/ingenic/ingenic_ecc.h
@@ -0,0 +1,83 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#ifndef __DRIVERS_MTD_NAND_INGENIC_ECC_INTERNAL_H__
+#define __DRIVERS_MTD_NAND_INGENIC_ECC_INTERNAL_H__
+
+#include <linux/compiler_types.h>
+#include <linux/err.h>
+#include <linux/mutex.h>
+#include <linux/types.h>
+#include <uapi/asm-generic/errno-base.h>
+
+struct clk;
+struct device;
+struct ingenic_ecc;
+struct platform_device;
+
+/**
+ * struct ingenic_ecc_params - ECC parameters
+ * @size: data bytes per ECC step.
+ * @bytes: ECC bytes per step.
+ * @strength: number of correctable bits per ECC step.
+ */
+struct ingenic_ecc_params {
+	int size;
+	int bytes;
+	int strength;
+};
+
+#if IS_ENABLED(CONFIG_MTD_NAND_INGENIC_ECC)
+int ingenic_ecc_calculate(struct ingenic_ecc *ecc,
+			  struct ingenic_ecc_params *params,
+			  const u8 *buf, u8 *ecc_code);
+int ingenic_ecc_correct(struct ingenic_ecc *ecc,
+			struct ingenic_ecc_params *params, u8 *buf,
+			u8 *ecc_code);
+
+void ingenic_ecc_release(struct ingenic_ecc *ecc);
+struct ingenic_ecc *of_ingenic_ecc_get(struct device_node *np);
+#else /* CONFIG_MTD_NAND_INGENIC_ECC */
+int ingenic_ecc_calculate(struct ingenic_ecc *ecc,
+			  struct ingenic_ecc_params *params,
+			  const u8 *buf, u8 *ecc_code)
+{
+	return -ENODEV;
+}
+
+int ingenic_ecc_correct(struct ingenic_ecc *ecc,
+			struct ingenic_ecc_params *params, u8 *buf,
+			u8 *ecc_code)
+{
+	return -ENODEV;
+}
+
+void ingenic_ecc_release(struct ingenic_ecc *ecc)
+{
+}
+
+struct ingenic_ecc *of_ingenic_ecc_get(struct device_node *np)
+{
+	return ERR_PTR(-ENODEV);
+}
+#endif /* CONFIG_MTD_NAND_INGENIC_ECC */
+
+struct ingenic_ecc_ops {
+	void (*disable)(struct ingenic_ecc *ecc);
+	int (*calculate)(struct ingenic_ecc *ecc,
+			 struct ingenic_ecc_params *params,
+			 const u8 *buf, u8 *ecc_code);
+	int (*correct)(struct ingenic_ecc *ecc,
+			struct ingenic_ecc_params *params,
+			u8 *buf, u8 *ecc_code);
+};
+
+struct ingenic_ecc {
+	struct device *dev;
+	const struct ingenic_ecc_ops *ops;
+	void __iomem *base;
+	struct clk *clk;
+	struct mutex lock;
+};
+
+int ingenic_ecc_probe(struct platform_device *pdev);
+
+#endif /* __DRIVERS_MTD_NAND_INGENIC_ECC_INTERNAL_H__ */
diff --git a/drivers/mtd/nand/raw/ingenic/ingenic_nand_drv.c b/drivers/mtd/nand/raw/ingenic/ingenic_nand_drv.c
new file mode 100644
index 0000000..49afebe
--- /dev/null
+++ b/drivers/mtd/nand/raw/ingenic/ingenic_nand_drv.c
@@ -0,0 +1,529 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Ingenic JZ47xx NAND driver
+ *
+ * Copyright (c) 2015 Imagination Technologies
+ * Author: Alex Smith <alex.smith@imgtec.com>
+ */
+
+#include <linux/delay.h>
+#include <linux/init.h>
+#include <linux/io.h>
+#include <linux/list.h>
+#include <linux/module.h>
+#include <linux/of.h>
+#include <linux/of_address.h>
+#include <linux/of_device.h>
+#include <linux/gpio/consumer.h>
+#include <linux/platform_device.h>
+#include <linux/slab.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/mtd/partitions.h>
+
+#include <linux/jz4780-nemc.h>
+
+#include "ingenic_ecc.h"
+
+#define DRV_NAME	"ingenic-nand"
+
+/* Command delay when there is no R/B pin. */
+#define RB_DELAY_US	100
+
+struct jz_soc_info {
+	unsigned long data_offset;
+	unsigned long addr_offset;
+	unsigned long cmd_offset;
+	const struct mtd_ooblayout_ops *oob_layout;
+};
+
+struct ingenic_nand_cs {
+	unsigned int bank;
+	void __iomem *base;
+};
+
+struct ingenic_nfc {
+	struct device *dev;
+	struct ingenic_ecc *ecc;
+	const struct jz_soc_info *soc_info;
+	struct nand_controller controller;
+	unsigned int num_banks;
+	struct list_head chips;
+	int selected;
+	struct ingenic_nand_cs cs[];
+};
+
+struct ingenic_nand {
+	struct nand_chip chip;
+	struct list_head chip_list;
+
+	struct gpio_desc *busy_gpio;
+	struct gpio_desc *wp_gpio;
+	unsigned int reading: 1;
+};
+
+static inline struct ingenic_nand *to_ingenic_nand(struct mtd_info *mtd)
+{
+	return container_of(mtd_to_nand(mtd), struct ingenic_nand, chip);
+}
+
+static inline struct ingenic_nfc *to_ingenic_nfc(struct nand_controller *ctrl)
+{
+	return container_of(ctrl, struct ingenic_nfc, controller);
+}
+
+static int qi_lb60_ooblayout_ecc(struct mtd_info *mtd, int section,
+				 struct mtd_oob_region *oobregion)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct nand_ecc_ctrl *ecc = &chip->ecc;
+
+	if (section || !ecc->total)
+		return -ERANGE;
+
+	oobregion->length = ecc->total;
+	oobregion->offset = 12;
+
+	return 0;
+}
+
+static int qi_lb60_ooblayout_free(struct mtd_info *mtd, int section,
+				  struct mtd_oob_region *oobregion)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct nand_ecc_ctrl *ecc = &chip->ecc;
+
+	if (section)
+		return -ERANGE;
+
+	oobregion->length = mtd->oobsize - ecc->total - 12;
+	oobregion->offset = 12 + ecc->total;
+
+	return 0;
+}
+
+const struct mtd_ooblayout_ops qi_lb60_ooblayout_ops = {
+	.ecc = qi_lb60_ooblayout_ecc,
+	.free = qi_lb60_ooblayout_free,
+};
+
+static int jz4725b_ooblayout_ecc(struct mtd_info *mtd, int section,
+				 struct mtd_oob_region *oobregion)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct nand_ecc_ctrl *ecc = &chip->ecc;
+
+	if (section || !ecc->total)
+		return -ERANGE;
+
+	oobregion->length = ecc->total;
+	oobregion->offset = 3;
+
+	return 0;
+}
+
+static int jz4725b_ooblayout_free(struct mtd_info *mtd, int section,
+				  struct mtd_oob_region *oobregion)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct nand_ecc_ctrl *ecc = &chip->ecc;
+
+	if (section)
+		return -ERANGE;
+
+	oobregion->length = mtd->oobsize - ecc->total - 3;
+	oobregion->offset = 3 + ecc->total;
+
+	return 0;
+}
+
+static const struct mtd_ooblayout_ops jz4725b_ooblayout_ops = {
+	.ecc = jz4725b_ooblayout_ecc,
+	.free = jz4725b_ooblayout_free,
+};
+
+static void ingenic_nand_select_chip(struct nand_chip *chip, int chipnr)
+{
+	struct ingenic_nand *nand = to_ingenic_nand(nand_to_mtd(chip));
+	struct ingenic_nfc *nfc = to_ingenic_nfc(nand->chip.controller);
+	struct ingenic_nand_cs *cs;
+
+	/* Ensure the currently selected chip is deasserted. */
+	if (chipnr == -1 && nfc->selected >= 0) {
+		cs = &nfc->cs[nfc->selected];
+		jz4780_nemc_assert(nfc->dev, cs->bank, false);
+	}
+
+	nfc->selected = chipnr;
+}
+
+static void ingenic_nand_cmd_ctrl(struct nand_chip *chip, int cmd,
+				  unsigned int ctrl)
+{
+	struct ingenic_nand *nand = to_ingenic_nand(nand_to_mtd(chip));
+	struct ingenic_nfc *nfc = to_ingenic_nfc(nand->chip.controller);
+	struct ingenic_nand_cs *cs;
+
+	if (WARN_ON(nfc->selected < 0))
+		return;
+
+	cs = &nfc->cs[nfc->selected];
+
+	jz4780_nemc_assert(nfc->dev, cs->bank, ctrl & NAND_NCE);
+
+	if (cmd == NAND_CMD_NONE)
+		return;
+
+	if (ctrl & NAND_ALE)
+		writeb(cmd, cs->base + nfc->soc_info->addr_offset);
+	else if (ctrl & NAND_CLE)
+		writeb(cmd, cs->base + nfc->soc_info->cmd_offset);
+}
+
+static int ingenic_nand_dev_ready(struct nand_chip *chip)
+{
+	struct ingenic_nand *nand = to_ingenic_nand(nand_to_mtd(chip));
+
+	return !gpiod_get_value_cansleep(nand->busy_gpio);
+}
+
+static void ingenic_nand_ecc_hwctl(struct nand_chip *chip, int mode)
+{
+	struct ingenic_nand *nand = to_ingenic_nand(nand_to_mtd(chip));
+
+	nand->reading = (mode == NAND_ECC_READ);
+}
+
+static int ingenic_nand_ecc_calculate(struct nand_chip *chip, const u8 *dat,
+				      u8 *ecc_code)
+{
+	struct ingenic_nand *nand = to_ingenic_nand(nand_to_mtd(chip));
+	struct ingenic_nfc *nfc = to_ingenic_nfc(nand->chip.controller);
+	struct ingenic_ecc_params params;
+
+	/*
+	 * Don't need to generate the ECC when reading, the ECC engine does it
+	 * for us as part of decoding/correction.
+	 */
+	if (nand->reading)
+		return 0;
+
+	params.size = nand->chip.ecc.size;
+	params.bytes = nand->chip.ecc.bytes;
+	params.strength = nand->chip.ecc.strength;
+
+	return ingenic_ecc_calculate(nfc->ecc, &params, dat, ecc_code);
+}
+
+static int ingenic_nand_ecc_correct(struct nand_chip *chip, u8 *dat,
+				    u8 *read_ecc, u8 *calc_ecc)
+{
+	struct ingenic_nand *nand = to_ingenic_nand(nand_to_mtd(chip));
+	struct ingenic_nfc *nfc = to_ingenic_nfc(nand->chip.controller);
+	struct ingenic_ecc_params params;
+
+	params.size = nand->chip.ecc.size;
+	params.bytes = nand->chip.ecc.bytes;
+	params.strength = nand->chip.ecc.strength;
+
+	return ingenic_ecc_correct(nfc->ecc, &params, dat, read_ecc);
+}
+
+static int ingenic_nand_attach_chip(struct nand_chip *chip)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	struct ingenic_nfc *nfc = to_ingenic_nfc(chip->controller);
+	int eccbytes;
+
+	if (chip->ecc.strength == 4) {
+		/* JZ4740 uses 9 bytes of ECC to correct maximum 4 errors */
+		chip->ecc.bytes = 9;
+	} else {
+		chip->ecc.bytes = fls((1 + 8) * chip->ecc.size)	*
+				  (chip->ecc.strength / 8);
+	}
+
+	switch (chip->ecc.mode) {
+	case NAND_ECC_HW:
+		if (!nfc->ecc) {
+			dev_err(nfc->dev, "HW ECC selected, but ECC controller not found\n");
+			return -ENODEV;
+		}
+
+		chip->ecc.hwctl = ingenic_nand_ecc_hwctl;
+		chip->ecc.calculate = ingenic_nand_ecc_calculate;
+		chip->ecc.correct = ingenic_nand_ecc_correct;
+		/* fall through */
+	case NAND_ECC_SOFT:
+		dev_info(nfc->dev, "using %s (strength %d, size %d, bytes %d)\n",
+			 (nfc->ecc) ? "hardware ECC" : "software ECC",
+			 chip->ecc.strength, chip->ecc.size, chip->ecc.bytes);
+		break;
+	case NAND_ECC_NONE:
+		dev_info(nfc->dev, "not using ECC\n");
+		break;
+	default:
+		dev_err(nfc->dev, "ECC mode %d not supported\n",
+			chip->ecc.mode);
+		return -EINVAL;
+	}
+
+	/* The NAND core will generate the ECC layout for SW ECC */
+	if (chip->ecc.mode != NAND_ECC_HW)
+		return 0;
+
+	/* Generate ECC layout. ECC codes are right aligned in the OOB area. */
+	eccbytes = mtd->writesize / chip->ecc.size * chip->ecc.bytes;
+
+	if (eccbytes > mtd->oobsize - 2) {
+		dev_err(nfc->dev,
+			"invalid ECC config: required %d ECC bytes, but only %d are available",
+			eccbytes, mtd->oobsize - 2);
+		return -EINVAL;
+	}
+
+	/*
+	 * The generic layout for BBT markers will most likely overlap with our
+	 * ECC bytes in the OOB, so move the BBT markers outside the OOB area.
+	 */
+	if (chip->bbt_options & NAND_BBT_USE_FLASH)
+		chip->bbt_options |= NAND_BBT_NO_OOB;
+
+	/* For legacy reasons we use a different layout on the qi,lb60 board. */
+	if (of_machine_is_compatible("qi,lb60"))
+		mtd_set_ooblayout(mtd, &qi_lb60_ooblayout_ops);
+	else
+		mtd_set_ooblayout(mtd, nfc->soc_info->oob_layout);
+
+	return 0;
+}
+
+static const struct nand_controller_ops ingenic_nand_controller_ops = {
+	.attach_chip = ingenic_nand_attach_chip,
+};
+
+static int ingenic_nand_init_chip(struct platform_device *pdev,
+				  struct ingenic_nfc *nfc,
+				  struct device_node *np,
+				  unsigned int chipnr)
+{
+	struct device *dev = &pdev->dev;
+	struct ingenic_nand *nand;
+	struct ingenic_nand_cs *cs;
+	struct nand_chip *chip;
+	struct mtd_info *mtd;
+	const __be32 *reg;
+	int ret = 0;
+
+	cs = &nfc->cs[chipnr];
+
+	reg = of_get_property(np, "reg", NULL);
+	if (!reg)
+		return -EINVAL;
+
+	cs->bank = be32_to_cpu(*reg);
+
+	jz4780_nemc_set_type(nfc->dev, cs->bank, JZ4780_NEMC_BANK_NAND);
+
+	cs->base = devm_platform_ioremap_resource(pdev, chipnr);
+	if (IS_ERR(cs->base))
+		return PTR_ERR(cs->base);
+
+	nand = devm_kzalloc(dev, sizeof(*nand), GFP_KERNEL);
+	if (!nand)
+		return -ENOMEM;
+
+	nand->busy_gpio = devm_gpiod_get_optional(dev, "rb", GPIOD_IN);
+
+	if (IS_ERR(nand->busy_gpio)) {
+		ret = PTR_ERR(nand->busy_gpio);
+		dev_err(dev, "failed to request busy GPIO: %d\n", ret);
+		return ret;
+	} else if (nand->busy_gpio) {
+		nand->chip.legacy.dev_ready = ingenic_nand_dev_ready;
+	}
+
+	nand->wp_gpio = devm_gpiod_get_optional(dev, "wp", GPIOD_OUT_LOW);
+
+	if (IS_ERR(nand->wp_gpio)) {
+		ret = PTR_ERR(nand->wp_gpio);
+		dev_err(dev, "failed to request WP GPIO: %d\n", ret);
+		return ret;
+	}
+
+	chip = &nand->chip;
+	mtd = nand_to_mtd(chip);
+	mtd->name = devm_kasprintf(dev, GFP_KERNEL, "%s.%d", dev_name(dev),
+				   cs->bank);
+	if (!mtd->name)
+		return -ENOMEM;
+	mtd->dev.parent = dev;
+
+	chip->legacy.IO_ADDR_R = cs->base + nfc->soc_info->data_offset;
+	chip->legacy.IO_ADDR_W = cs->base + nfc->soc_info->data_offset;
+	chip->legacy.chip_delay = RB_DELAY_US;
+	chip->options = NAND_NO_SUBPAGE_WRITE;
+	chip->legacy.select_chip = ingenic_nand_select_chip;
+	chip->legacy.cmd_ctrl = ingenic_nand_cmd_ctrl;
+	chip->ecc.mode = NAND_ECC_HW;
+	chip->controller = &nfc->controller;
+	nand_set_flash_node(chip, np);
+
+	chip->controller->ops = &ingenic_nand_controller_ops;
+	ret = nand_scan(chip, 1);
+	if (ret)
+		return ret;
+
+	ret = mtd_device_register(mtd, NULL, 0);
+	if (ret) {
+		nand_release(chip);
+		return ret;
+	}
+
+	list_add_tail(&nand->chip_list, &nfc->chips);
+
+	return 0;
+}
+
+static void ingenic_nand_cleanup_chips(struct ingenic_nfc *nfc)
+{
+	struct ingenic_nand *chip;
+
+	while (!list_empty(&nfc->chips)) {
+		chip = list_first_entry(&nfc->chips,
+					struct ingenic_nand, chip_list);
+		nand_release(&chip->chip);
+		list_del(&chip->chip_list);
+	}
+}
+
+static int ingenic_nand_init_chips(struct ingenic_nfc *nfc,
+				   struct platform_device *pdev)
+{
+	struct device *dev = &pdev->dev;
+	struct device_node *np;
+	int i = 0;
+	int ret;
+	int num_chips = of_get_child_count(dev->of_node);
+
+	if (num_chips > nfc->num_banks) {
+		dev_err(dev, "found %d chips but only %d banks\n",
+			num_chips, nfc->num_banks);
+		return -EINVAL;
+	}
+
+	for_each_child_of_node(dev->of_node, np) {
+		ret = ingenic_nand_init_chip(pdev, nfc, np, i);
+		if (ret) {
+			ingenic_nand_cleanup_chips(nfc);
+			of_node_put(np);
+			return ret;
+		}
+
+		i++;
+	}
+
+	return 0;
+}
+
+static int ingenic_nand_probe(struct platform_device *pdev)
+{
+	struct device *dev = &pdev->dev;
+	unsigned int num_banks;
+	struct ingenic_nfc *nfc;
+	int ret;
+
+	num_banks = jz4780_nemc_num_banks(dev);
+	if (num_banks == 0) {
+		dev_err(dev, "no banks found\n");
+		return -ENODEV;
+	}
+
+	nfc = devm_kzalloc(dev, struct_size(nfc, cs, num_banks), GFP_KERNEL);
+	if (!nfc)
+		return -ENOMEM;
+
+	nfc->soc_info = device_get_match_data(dev);
+	if (!nfc->soc_info)
+		return -EINVAL;
+
+	/*
+	 * Check for ECC HW before we call nand_scan_ident, to prevent us from
+	 * having to call it again if the ECC driver returns -EPROBE_DEFER.
+	 */
+	nfc->ecc = of_ingenic_ecc_get(dev->of_node);
+	if (IS_ERR(nfc->ecc))
+		return PTR_ERR(nfc->ecc);
+
+	nfc->dev = dev;
+	nfc->num_banks = num_banks;
+
+	nand_controller_init(&nfc->controller);
+	INIT_LIST_HEAD(&nfc->chips);
+
+	ret = ingenic_nand_init_chips(nfc, pdev);
+	if (ret) {
+		if (nfc->ecc)
+			ingenic_ecc_release(nfc->ecc);
+		return ret;
+	}
+
+	platform_set_drvdata(pdev, nfc);
+	return 0;
+}
+
+static int ingenic_nand_remove(struct platform_device *pdev)
+{
+	struct ingenic_nfc *nfc = platform_get_drvdata(pdev);
+
+	if (nfc->ecc)
+		ingenic_ecc_release(nfc->ecc);
+
+	ingenic_nand_cleanup_chips(nfc);
+
+	return 0;
+}
+
+static const struct jz_soc_info jz4740_soc_info = {
+	.data_offset = 0x00000000,
+	.cmd_offset = 0x00008000,
+	.addr_offset = 0x00010000,
+	.oob_layout = &nand_ooblayout_lp_ops,
+};
+
+static const struct jz_soc_info jz4725b_soc_info = {
+	.data_offset = 0x00000000,
+	.cmd_offset = 0x00008000,
+	.addr_offset = 0x00010000,
+	.oob_layout = &jz4725b_ooblayout_ops,
+};
+
+static const struct jz_soc_info jz4780_soc_info = {
+	.data_offset = 0x00000000,
+	.cmd_offset = 0x00400000,
+	.addr_offset = 0x00800000,
+	.oob_layout = &nand_ooblayout_lp_ops,
+};
+
+static const struct of_device_id ingenic_nand_dt_match[] = {
+	{ .compatible = "ingenic,jz4740-nand", .data = &jz4740_soc_info },
+	{ .compatible = "ingenic,jz4725b-nand", .data = &jz4725b_soc_info },
+	{ .compatible = "ingenic,jz4780-nand", .data = &jz4780_soc_info },
+	{},
+};
+MODULE_DEVICE_TABLE(of, ingenic_nand_dt_match);
+
+static struct platform_driver ingenic_nand_driver = {
+	.probe		= ingenic_nand_probe,
+	.remove		= ingenic_nand_remove,
+	.driver	= {
+		.name	= DRV_NAME,
+		.of_match_table = of_match_ptr(ingenic_nand_dt_match),
+	},
+};
+module_platform_driver(ingenic_nand_driver);
+
+MODULE_AUTHOR("Alex Smith <alex@alex-smith.me.uk>");
+MODULE_AUTHOR("Harvey Hunt <harveyhuntnexus@gmail.com>");
+MODULE_DESCRIPTION("Ingenic JZ47xx NAND driver");
+MODULE_LICENSE("GPL v2");
diff --git a/drivers/mtd/nand/raw/ingenic/jz4725b_bch.c b/drivers/mtd/nand/raw/ingenic/jz4725b_bch.c
new file mode 100644
index 0000000..6c852ea
--- /dev/null
+++ b/drivers/mtd/nand/raw/ingenic/jz4725b_bch.c
@@ -0,0 +1,295 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * JZ4725B BCH controller driver
+ *
+ * Copyright (C) 2019 Paul Cercueil <paul@crapouillou.net>
+ *
+ * Based on jz4780_bch.c
+ */
+
+#include <linux/bitops.h>
+#include <linux/device.h>
+#include <linux/io.h>
+#include <linux/iopoll.h>
+#include <linux/module.h>
+#include <linux/mutex.h>
+#include <linux/of_platform.h>
+#include <linux/platform_device.h>
+
+#include "ingenic_ecc.h"
+
+#define BCH_BHCR			0x0
+#define BCH_BHCSR			0x4
+#define BCH_BHCCR			0x8
+#define BCH_BHCNT			0xc
+#define BCH_BHDR			0x10
+#define BCH_BHPAR0			0x14
+#define BCH_BHERR0			0x28
+#define BCH_BHINT			0x24
+#define BCH_BHINTES			0x3c
+#define BCH_BHINTEC			0x40
+#define BCH_BHINTE			0x38
+
+#define BCH_BHCR_ENCE			BIT(3)
+#define BCH_BHCR_BSEL			BIT(2)
+#define BCH_BHCR_INIT			BIT(1)
+#define BCH_BHCR_BCHE			BIT(0)
+
+#define BCH_BHCNT_DEC_COUNT_SHIFT	16
+#define BCH_BHCNT_DEC_COUNT_MASK	(0x3ff << BCH_BHCNT_DEC_COUNT_SHIFT)
+#define BCH_BHCNT_ENC_COUNT_SHIFT	0
+#define BCH_BHCNT_ENC_COUNT_MASK	(0x3ff << BCH_BHCNT_ENC_COUNT_SHIFT)
+
+#define BCH_BHERR_INDEX0_SHIFT		0
+#define BCH_BHERR_INDEX0_MASK		(0x1fff << BCH_BHERR_INDEX0_SHIFT)
+#define BCH_BHERR_INDEX1_SHIFT		16
+#define BCH_BHERR_INDEX1_MASK		(0x1fff << BCH_BHERR_INDEX1_SHIFT)
+
+#define BCH_BHINT_ERRC_SHIFT		28
+#define BCH_BHINT_ERRC_MASK		(0xf << BCH_BHINT_ERRC_SHIFT)
+#define BCH_BHINT_TERRC_SHIFT		16
+#define BCH_BHINT_TERRC_MASK		(0x7f << BCH_BHINT_TERRC_SHIFT)
+#define BCH_BHINT_ALL_0			BIT(5)
+#define BCH_BHINT_ALL_F			BIT(4)
+#define BCH_BHINT_DECF			BIT(3)
+#define BCH_BHINT_ENCF			BIT(2)
+#define BCH_BHINT_UNCOR			BIT(1)
+#define BCH_BHINT_ERR			BIT(0)
+
+/* Timeout for BCH calculation/correction. */
+#define BCH_TIMEOUT_US			100000
+
+static inline void jz4725b_bch_config_set(struct ingenic_ecc *bch, u32 cfg)
+{
+	writel(cfg, bch->base + BCH_BHCSR);
+}
+
+static inline void jz4725b_bch_config_clear(struct ingenic_ecc *bch, u32 cfg)
+{
+	writel(cfg, bch->base + BCH_BHCCR);
+}
+
+static int jz4725b_bch_reset(struct ingenic_ecc *bch,
+			     struct ingenic_ecc_params *params, bool calc_ecc)
+{
+	u32 reg, max_value;
+
+	/* Clear interrupt status. */
+	writel(readl(bch->base + BCH_BHINT), bch->base + BCH_BHINT);
+
+	/* Initialise and enable BCH. */
+	jz4725b_bch_config_clear(bch, 0x1f);
+	jz4725b_bch_config_set(bch, BCH_BHCR_BCHE);
+
+	if (params->strength == 8)
+		jz4725b_bch_config_set(bch, BCH_BHCR_BSEL);
+	else
+		jz4725b_bch_config_clear(bch, BCH_BHCR_BSEL);
+
+	if (calc_ecc) /* calculate ECC from data */
+		jz4725b_bch_config_set(bch, BCH_BHCR_ENCE);
+	else /* correct data from ECC */
+		jz4725b_bch_config_clear(bch, BCH_BHCR_ENCE);
+
+	jz4725b_bch_config_set(bch, BCH_BHCR_INIT);
+
+	max_value = BCH_BHCNT_ENC_COUNT_MASK >> BCH_BHCNT_ENC_COUNT_SHIFT;
+	if (params->size > max_value)
+		return -EINVAL;
+
+	max_value = BCH_BHCNT_DEC_COUNT_MASK >> BCH_BHCNT_DEC_COUNT_SHIFT;
+	if (params->size + params->bytes > max_value)
+		return -EINVAL;
+
+	/* Set up BCH count register. */
+	reg = params->size << BCH_BHCNT_ENC_COUNT_SHIFT;
+	reg |= (params->size + params->bytes) << BCH_BHCNT_DEC_COUNT_SHIFT;
+	writel(reg, bch->base + BCH_BHCNT);
+
+	return 0;
+}
+
+static void jz4725b_bch_disable(struct ingenic_ecc *bch)
+{
+	/* Clear interrupts */
+	writel(readl(bch->base + BCH_BHINT), bch->base + BCH_BHINT);
+
+	/* Disable the hardware */
+	jz4725b_bch_config_clear(bch, BCH_BHCR_BCHE);
+}
+
+static void jz4725b_bch_write_data(struct ingenic_ecc *bch, const u8 *buf,
+				   size_t size)
+{
+	while (size--)
+		writeb(*buf++, bch->base + BCH_BHDR);
+}
+
+static void jz4725b_bch_read_parity(struct ingenic_ecc *bch, u8 *buf,
+				    size_t size)
+{
+	size_t size32 = size / sizeof(u32);
+	size_t size8 = size % sizeof(u32);
+	u32 *dest32;
+	u8 *dest8;
+	u32 val, offset = 0;
+
+	dest32 = (u32 *)buf;
+	while (size32--) {
+		*dest32++ = readl_relaxed(bch->base + BCH_BHPAR0 + offset);
+		offset += sizeof(u32);
+	}
+
+	dest8 = (u8 *)dest32;
+	val = readl_relaxed(bch->base + BCH_BHPAR0 + offset);
+	switch (size8) {
+	case 3:
+		dest8[2] = (val >> 16) & 0xff;
+		/* fall-through */
+	case 2:
+		dest8[1] = (val >> 8) & 0xff;
+		/* fall-through */
+	case 1:
+		dest8[0] = val & 0xff;
+		break;
+	}
+}
+
+static int jz4725b_bch_wait_complete(struct ingenic_ecc *bch, unsigned int irq,
+				     u32 *status)
+{
+	u32 reg;
+	int ret;
+
+	/*
+	 * While we could use interrupts here and sleep until the operation
+	 * completes, the controller works fairly quickly (usually a few
+	 * microseconds) and so the overhead of sleeping until we get an
+	 * interrupt quite noticeably decreases performance.
+	 */
+	ret = readl_relaxed_poll_timeout(bch->base + BCH_BHINT, reg,
+					 reg & irq, 0, BCH_TIMEOUT_US);
+	if (ret)
+		return ret;
+
+	if (status)
+		*status = reg;
+
+	writel(reg, bch->base + BCH_BHINT);
+
+	return 0;
+}
+
+static int jz4725b_calculate(struct ingenic_ecc *bch,
+			     struct ingenic_ecc_params *params,
+			     const u8 *buf, u8 *ecc_code)
+{
+	int ret;
+
+	mutex_lock(&bch->lock);
+
+	ret = jz4725b_bch_reset(bch, params, true);
+	if (ret) {
+		dev_err(bch->dev, "Unable to init BCH with given parameters\n");
+		goto out_disable;
+	}
+
+	jz4725b_bch_write_data(bch, buf, params->size);
+
+	ret = jz4725b_bch_wait_complete(bch, BCH_BHINT_ENCF, NULL);
+	if (ret) {
+		dev_err(bch->dev, "timed out while calculating ECC\n");
+		goto out_disable;
+	}
+
+	jz4725b_bch_read_parity(bch, ecc_code, params->bytes);
+
+out_disable:
+	jz4725b_bch_disable(bch);
+	mutex_unlock(&bch->lock);
+
+	return ret;
+}
+
+static int jz4725b_correct(struct ingenic_ecc *bch,
+			   struct ingenic_ecc_params *params,
+			   u8 *buf, u8 *ecc_code)
+{
+	u32 reg, errors, bit;
+	unsigned int i;
+	int ret;
+
+	mutex_lock(&bch->lock);
+
+	ret = jz4725b_bch_reset(bch, params, false);
+	if (ret) {
+		dev_err(bch->dev, "Unable to init BCH with given parameters\n");
+		goto out;
+	}
+
+	jz4725b_bch_write_data(bch, buf, params->size);
+	jz4725b_bch_write_data(bch, ecc_code, params->bytes);
+
+	ret = jz4725b_bch_wait_complete(bch, BCH_BHINT_DECF, &reg);
+	if (ret) {
+		dev_err(bch->dev, "timed out while correcting data\n");
+		goto out;
+	}
+
+	if (reg & (BCH_BHINT_ALL_F | BCH_BHINT_ALL_0)) {
+		/* Data and ECC is all 0xff or 0x00 - nothing to correct */
+		ret = 0;
+		goto out;
+	}
+
+	if (reg & BCH_BHINT_UNCOR) {
+		/* Uncorrectable ECC error */
+		ret = -EBADMSG;
+		goto out;
+	}
+
+	errors = (reg & BCH_BHINT_ERRC_MASK) >> BCH_BHINT_ERRC_SHIFT;
+
+	/* Correct any detected errors. */
+	for (i = 0; i < errors; i++) {
+		if (i & 1) {
+			bit = (reg & BCH_BHERR_INDEX1_MASK) >> BCH_BHERR_INDEX1_SHIFT;
+		} else {
+			reg = readl(bch->base + BCH_BHERR0 + (i * 4));
+			bit = (reg & BCH_BHERR_INDEX0_MASK) >> BCH_BHERR_INDEX0_SHIFT;
+		}
+
+		buf[(bit >> 3)] ^= BIT(bit & 0x7);
+	}
+
+out:
+	jz4725b_bch_disable(bch);
+	mutex_unlock(&bch->lock);
+
+	return ret;
+}
+
+static const struct ingenic_ecc_ops jz4725b_bch_ops = {
+	.disable = jz4725b_bch_disable,
+	.calculate = jz4725b_calculate,
+	.correct = jz4725b_correct,
+};
+
+static const struct of_device_id jz4725b_bch_dt_match[] = {
+	{ .compatible = "ingenic,jz4725b-bch", .data = &jz4725b_bch_ops },
+	{},
+};
+MODULE_DEVICE_TABLE(of, jz4725b_bch_dt_match);
+
+static struct platform_driver jz4725b_bch_driver = {
+	.probe		= ingenic_ecc_probe,
+	.driver	= {
+		.name	= "jz4725b-bch",
+		.of_match_table = jz4725b_bch_dt_match,
+	},
+};
+module_platform_driver(jz4725b_bch_driver);
+
+MODULE_AUTHOR("Paul Cercueil <paul@crapouillou.net>");
+MODULE_DESCRIPTION("Ingenic JZ4725B BCH controller driver");
+MODULE_LICENSE("GPL v2");
diff --git a/drivers/mtd/nand/raw/ingenic/jz4740_ecc.c b/drivers/mtd/nand/raw/ingenic/jz4740_ecc.c
new file mode 100644
index 0000000..13fea64
--- /dev/null
+++ b/drivers/mtd/nand/raw/ingenic/jz4740_ecc.c
@@ -0,0 +1,197 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * JZ4740 ECC controller driver
+ *
+ * Copyright (c) 2019 Paul Cercueil <paul@crapouillou.net>
+ *
+ * based on jz4740-nand.c
+ */
+
+#include <linux/bitops.h>
+#include <linux/device.h>
+#include <linux/io.h>
+#include <linux/module.h>
+#include <linux/of_platform.h>
+#include <linux/platform_device.h>
+
+#include "ingenic_ecc.h"
+
+#define JZ_REG_NAND_ECC_CTRL	0x00
+#define JZ_REG_NAND_DATA	0x04
+#define JZ_REG_NAND_PAR0	0x08
+#define JZ_REG_NAND_PAR1	0x0C
+#define JZ_REG_NAND_PAR2	0x10
+#define JZ_REG_NAND_IRQ_STAT	0x14
+#define JZ_REG_NAND_IRQ_CTRL	0x18
+#define JZ_REG_NAND_ERR(x)	(0x1C + ((x) << 2))
+
+#define JZ_NAND_ECC_CTRL_PAR_READY	BIT(4)
+#define JZ_NAND_ECC_CTRL_ENCODING	BIT(3)
+#define JZ_NAND_ECC_CTRL_RS		BIT(2)
+#define JZ_NAND_ECC_CTRL_RESET		BIT(1)
+#define JZ_NAND_ECC_CTRL_ENABLE		BIT(0)
+
+#define JZ_NAND_STATUS_ERR_COUNT	(BIT(31) | BIT(30) | BIT(29))
+#define JZ_NAND_STATUS_PAD_FINISH	BIT(4)
+#define JZ_NAND_STATUS_DEC_FINISH	BIT(3)
+#define JZ_NAND_STATUS_ENC_FINISH	BIT(2)
+#define JZ_NAND_STATUS_UNCOR_ERROR	BIT(1)
+#define JZ_NAND_STATUS_ERROR		BIT(0)
+
+static const uint8_t empty_block_ecc[] = {
+	0xcd, 0x9d, 0x90, 0x58, 0xf4, 0x8b, 0xff, 0xb7, 0x6f
+};
+
+static void jz4740_ecc_reset(struct ingenic_ecc *ecc, bool calc_ecc)
+{
+	uint32_t reg;
+
+	/* Clear interrupt status */
+	writel(0, ecc->base + JZ_REG_NAND_IRQ_STAT);
+
+	/* Initialize and enable ECC hardware */
+	reg = readl(ecc->base + JZ_REG_NAND_ECC_CTRL);
+	reg |= JZ_NAND_ECC_CTRL_RESET;
+	reg |= JZ_NAND_ECC_CTRL_ENABLE;
+	reg |= JZ_NAND_ECC_CTRL_RS;
+	if (calc_ecc) /* calculate ECC from data */
+		reg |= JZ_NAND_ECC_CTRL_ENCODING;
+	else /* correct data from ECC */
+		reg &= ~JZ_NAND_ECC_CTRL_ENCODING;
+
+	writel(reg, ecc->base + JZ_REG_NAND_ECC_CTRL);
+}
+
+static int jz4740_ecc_calculate(struct ingenic_ecc *ecc,
+				struct ingenic_ecc_params *params,
+				const u8 *buf, u8 *ecc_code)
+{
+	uint32_t reg, status;
+	unsigned int timeout = 1000;
+	int i;
+
+	jz4740_ecc_reset(ecc, true);
+
+	do {
+		status = readl(ecc->base + JZ_REG_NAND_IRQ_STAT);
+	} while (!(status & JZ_NAND_STATUS_ENC_FINISH) && --timeout);
+
+	if (timeout == 0)
+		return -ETIMEDOUT;
+
+	reg = readl(ecc->base + JZ_REG_NAND_ECC_CTRL);
+	reg &= ~JZ_NAND_ECC_CTRL_ENABLE;
+	writel(reg, ecc->base + JZ_REG_NAND_ECC_CTRL);
+
+	for (i = 0; i < params->bytes; ++i)
+		ecc_code[i] = readb(ecc->base + JZ_REG_NAND_PAR0 + i);
+
+	/*
+	 * If the written data is completely 0xff, we also want to write 0xff as
+	 * ECC, otherwise we will get in trouble when doing subpage writes.
+	 */
+	if (memcmp(ecc_code, empty_block_ecc, ARRAY_SIZE(empty_block_ecc)) == 0)
+		memset(ecc_code, 0xff, ARRAY_SIZE(empty_block_ecc));
+
+	return 0;
+}
+
+static void jz_nand_correct_data(uint8_t *buf, int index, int mask)
+{
+	int offset = index & 0x7;
+	uint16_t data;
+
+	index += (index >> 3);
+
+	data = buf[index];
+	data |= buf[index + 1] << 8;
+
+	mask ^= (data >> offset) & 0x1ff;
+	data &= ~(0x1ff << offset);
+	data |= (mask << offset);
+
+	buf[index] = data & 0xff;
+	buf[index + 1] = (data >> 8) & 0xff;
+}
+
+static int jz4740_ecc_correct(struct ingenic_ecc *ecc,
+			      struct ingenic_ecc_params *params,
+			      u8 *buf, u8 *ecc_code)
+{
+	int i, error_count, index;
+	uint32_t reg, status, error;
+	unsigned int timeout = 1000;
+
+	jz4740_ecc_reset(ecc, false);
+
+	for (i = 0; i < params->bytes; ++i)
+		writeb(ecc_code[i], ecc->base + JZ_REG_NAND_PAR0 + i);
+
+	reg = readl(ecc->base + JZ_REG_NAND_ECC_CTRL);
+	reg |= JZ_NAND_ECC_CTRL_PAR_READY;
+	writel(reg, ecc->base + JZ_REG_NAND_ECC_CTRL);
+
+	do {
+		status = readl(ecc->base + JZ_REG_NAND_IRQ_STAT);
+	} while (!(status & JZ_NAND_STATUS_DEC_FINISH) && --timeout);
+
+	if (timeout == 0)
+		return -ETIMEDOUT;
+
+	reg = readl(ecc->base + JZ_REG_NAND_ECC_CTRL);
+	reg &= ~JZ_NAND_ECC_CTRL_ENABLE;
+	writel(reg, ecc->base + JZ_REG_NAND_ECC_CTRL);
+
+	if (status & JZ_NAND_STATUS_ERROR) {
+		if (status & JZ_NAND_STATUS_UNCOR_ERROR)
+			return -EBADMSG;
+
+		error_count = (status & JZ_NAND_STATUS_ERR_COUNT) >> 29;
+
+		for (i = 0; i < error_count; ++i) {
+			error = readl(ecc->base + JZ_REG_NAND_ERR(i));
+			index = ((error >> 16) & 0x1ff) - 1;
+			if (index >= 0 && index < params->size)
+				jz_nand_correct_data(buf, index, error & 0x1ff);
+		}
+
+		return error_count;
+	}
+
+	return 0;
+}
+
+static void jz4740_ecc_disable(struct ingenic_ecc *ecc)
+{
+	u32 reg;
+
+	writel(0, ecc->base + JZ_REG_NAND_IRQ_STAT);
+	reg = readl(ecc->base + JZ_REG_NAND_ECC_CTRL);
+	reg &= ~JZ_NAND_ECC_CTRL_ENABLE;
+	writel(reg, ecc->base + JZ_REG_NAND_ECC_CTRL);
+}
+
+static const struct ingenic_ecc_ops jz4740_ecc_ops = {
+	.disable = jz4740_ecc_disable,
+	.calculate = jz4740_ecc_calculate,
+	.correct = jz4740_ecc_correct,
+};
+
+static const struct of_device_id jz4740_ecc_dt_match[] = {
+	{ .compatible = "ingenic,jz4740-ecc", .data = &jz4740_ecc_ops },
+	{},
+};
+MODULE_DEVICE_TABLE(of, jz4740_ecc_dt_match);
+
+static struct platform_driver jz4740_ecc_driver = {
+	.probe		= ingenic_ecc_probe,
+	.driver	= {
+		.name	= "jz4740-ecc",
+		.of_match_table = jz4740_ecc_dt_match,
+	},
+};
+module_platform_driver(jz4740_ecc_driver);
+
+MODULE_AUTHOR("Paul Cercueil <paul@crapouillou.net>");
+MODULE_DESCRIPTION("Ingenic JZ4740 ECC controller driver");
+MODULE_LICENSE("GPL v2");
diff --git a/drivers/mtd/nand/raw/ingenic/jz4780_bch.c b/drivers/mtd/nand/raw/ingenic/jz4780_bch.c
new file mode 100644
index 0000000..079266a
--- /dev/null
+++ b/drivers/mtd/nand/raw/ingenic/jz4780_bch.c
@@ -0,0 +1,271 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * JZ4780 BCH controller driver
+ *
+ * Copyright (c) 2015 Imagination Technologies
+ * Author: Alex Smith <alex.smith@imgtec.com>
+ */
+
+#include <linux/bitops.h>
+#include <linux/clk.h>
+#include <linux/device.h>
+#include <linux/io.h>
+#include <linux/iopoll.h>
+#include <linux/module.h>
+#include <linux/mutex.h>
+#include <linux/of_platform.h>
+#include <linux/platform_device.h>
+
+#include "ingenic_ecc.h"
+
+#define BCH_BHCR			0x0
+#define BCH_BHCCR			0x8
+#define BCH_BHCNT			0xc
+#define BCH_BHDR			0x10
+#define BCH_BHPAR0			0x14
+#define BCH_BHERR0			0x84
+#define BCH_BHINT			0x184
+#define BCH_BHINTES			0x188
+#define BCH_BHINTEC			0x18c
+#define BCH_BHINTE			0x190
+
+#define BCH_BHCR_BSEL_SHIFT		4
+#define BCH_BHCR_BSEL_MASK		(0x7f << BCH_BHCR_BSEL_SHIFT)
+#define BCH_BHCR_ENCE			BIT(2)
+#define BCH_BHCR_INIT			BIT(1)
+#define BCH_BHCR_BCHE			BIT(0)
+
+#define BCH_BHCNT_PARITYSIZE_SHIFT	16
+#define BCH_BHCNT_PARITYSIZE_MASK	(0x7f << BCH_BHCNT_PARITYSIZE_SHIFT)
+#define BCH_BHCNT_BLOCKSIZE_SHIFT	0
+#define BCH_BHCNT_BLOCKSIZE_MASK	(0x7ff << BCH_BHCNT_BLOCKSIZE_SHIFT)
+
+#define BCH_BHERR_MASK_SHIFT		16
+#define BCH_BHERR_MASK_MASK		(0xffff << BCH_BHERR_MASK_SHIFT)
+#define BCH_BHERR_INDEX_SHIFT		0
+#define BCH_BHERR_INDEX_MASK		(0x7ff << BCH_BHERR_INDEX_SHIFT)
+
+#define BCH_BHINT_ERRC_SHIFT		24
+#define BCH_BHINT_ERRC_MASK		(0x7f << BCH_BHINT_ERRC_SHIFT)
+#define BCH_BHINT_TERRC_SHIFT		16
+#define BCH_BHINT_TERRC_MASK		(0x7f << BCH_BHINT_TERRC_SHIFT)
+#define BCH_BHINT_DECF			BIT(3)
+#define BCH_BHINT_ENCF			BIT(2)
+#define BCH_BHINT_UNCOR			BIT(1)
+#define BCH_BHINT_ERR			BIT(0)
+
+#define BCH_CLK_RATE			(200 * 1000 * 1000)
+
+/* Timeout for BCH calculation/correction. */
+#define BCH_TIMEOUT_US			100000
+
+static void jz4780_bch_reset(struct ingenic_ecc *bch,
+			     struct ingenic_ecc_params *params, bool encode)
+{
+	u32 reg;
+
+	/* Clear interrupt status. */
+	writel(readl(bch->base + BCH_BHINT), bch->base + BCH_BHINT);
+
+	/* Set up BCH count register. */
+	reg = params->size << BCH_BHCNT_BLOCKSIZE_SHIFT;
+	reg |= params->bytes << BCH_BHCNT_PARITYSIZE_SHIFT;
+	writel(reg, bch->base + BCH_BHCNT);
+
+	/* Initialise and enable BCH. */
+	reg = BCH_BHCR_BCHE | BCH_BHCR_INIT;
+	reg |= params->strength << BCH_BHCR_BSEL_SHIFT;
+	if (encode)
+		reg |= BCH_BHCR_ENCE;
+	writel(reg, bch->base + BCH_BHCR);
+}
+
+static void jz4780_bch_disable(struct ingenic_ecc *bch)
+{
+	writel(readl(bch->base + BCH_BHINT), bch->base + BCH_BHINT);
+	writel(BCH_BHCR_BCHE, bch->base + BCH_BHCCR);
+}
+
+static void jz4780_bch_write_data(struct ingenic_ecc *bch, const void *buf,
+				  size_t size)
+{
+	size_t size32 = size / sizeof(u32);
+	size_t size8 = size % sizeof(u32);
+	const u32 *src32;
+	const u8 *src8;
+
+	src32 = (const u32 *)buf;
+	while (size32--)
+		writel(*src32++, bch->base + BCH_BHDR);
+
+	src8 = (const u8 *)src32;
+	while (size8--)
+		writeb(*src8++, bch->base + BCH_BHDR);
+}
+
+static void jz4780_bch_read_parity(struct ingenic_ecc *bch, void *buf,
+				   size_t size)
+{
+	size_t size32 = size / sizeof(u32);
+	size_t size8 = size % sizeof(u32);
+	u32 *dest32;
+	u8 *dest8;
+	u32 val, offset = 0;
+
+	dest32 = (u32 *)buf;
+	while (size32--) {
+		*dest32++ = readl(bch->base + BCH_BHPAR0 + offset);
+		offset += sizeof(u32);
+	}
+
+	dest8 = (u8 *)dest32;
+	val = readl(bch->base + BCH_BHPAR0 + offset);
+	switch (size8) {
+	case 3:
+		dest8[2] = (val >> 16) & 0xff;
+		/* fall through */
+	case 2:
+		dest8[1] = (val >> 8) & 0xff;
+		/* fall through */
+	case 1:
+		dest8[0] = val & 0xff;
+		break;
+	}
+}
+
+static bool jz4780_bch_wait_complete(struct ingenic_ecc *bch, unsigned int irq,
+				     u32 *status)
+{
+	u32 reg;
+	int ret;
+
+	/*
+	 * While we could use interrupts here and sleep until the operation
+	 * completes, the controller works fairly quickly (usually a few
+	 * microseconds) and so the overhead of sleeping until we get an
+	 * interrupt quite noticeably decreases performance.
+	 */
+	ret = readl_poll_timeout(bch->base + BCH_BHINT, reg,
+				 (reg & irq) == irq, 0, BCH_TIMEOUT_US);
+	if (ret)
+		return false;
+
+	if (status)
+		*status = reg;
+
+	writel(reg, bch->base + BCH_BHINT);
+	return true;
+}
+
+static int jz4780_calculate(struct ingenic_ecc *bch,
+			    struct ingenic_ecc_params *params,
+			    const u8 *buf, u8 *ecc_code)
+{
+	int ret = 0;
+
+	mutex_lock(&bch->lock);
+
+	jz4780_bch_reset(bch, params, true);
+	jz4780_bch_write_data(bch, buf, params->size);
+
+	if (jz4780_bch_wait_complete(bch, BCH_BHINT_ENCF, NULL)) {
+		jz4780_bch_read_parity(bch, ecc_code, params->bytes);
+	} else {
+		dev_err(bch->dev, "timed out while calculating ECC\n");
+		ret = -ETIMEDOUT;
+	}
+
+	jz4780_bch_disable(bch);
+	mutex_unlock(&bch->lock);
+	return ret;
+}
+
+static int jz4780_correct(struct ingenic_ecc *bch,
+			  struct ingenic_ecc_params *params,
+			  u8 *buf, u8 *ecc_code)
+{
+	u32 reg, mask, index;
+	int i, ret, count;
+
+	mutex_lock(&bch->lock);
+
+	jz4780_bch_reset(bch, params, false);
+	jz4780_bch_write_data(bch, buf, params->size);
+	jz4780_bch_write_data(bch, ecc_code, params->bytes);
+
+	if (!jz4780_bch_wait_complete(bch, BCH_BHINT_DECF, &reg)) {
+		dev_err(bch->dev, "timed out while correcting data\n");
+		ret = -ETIMEDOUT;
+		goto out;
+	}
+
+	if (reg & BCH_BHINT_UNCOR) {
+		dev_warn(bch->dev, "uncorrectable ECC error\n");
+		ret = -EBADMSG;
+		goto out;
+	}
+
+	/* Correct any detected errors. */
+	if (reg & BCH_BHINT_ERR) {
+		count = (reg & BCH_BHINT_ERRC_MASK) >> BCH_BHINT_ERRC_SHIFT;
+		ret = (reg & BCH_BHINT_TERRC_MASK) >> BCH_BHINT_TERRC_SHIFT;
+
+		for (i = 0; i < count; i++) {
+			reg = readl(bch->base + BCH_BHERR0 + (i * 4));
+			mask = (reg & BCH_BHERR_MASK_MASK) >>
+						BCH_BHERR_MASK_SHIFT;
+			index = (reg & BCH_BHERR_INDEX_MASK) >>
+						BCH_BHERR_INDEX_SHIFT;
+			buf[(index * 2) + 0] ^= mask;
+			buf[(index * 2) + 1] ^= mask >> 8;
+		}
+	} else {
+		ret = 0;
+	}
+
+out:
+	jz4780_bch_disable(bch);
+	mutex_unlock(&bch->lock);
+	return ret;
+}
+
+static int jz4780_bch_probe(struct platform_device *pdev)
+{
+	struct ingenic_ecc *bch;
+	int ret;
+
+	ret = ingenic_ecc_probe(pdev);
+	if (ret)
+		return ret;
+
+	bch = platform_get_drvdata(pdev);
+	clk_set_rate(bch->clk, BCH_CLK_RATE);
+
+	return 0;
+}
+
+static const struct ingenic_ecc_ops jz4780_bch_ops = {
+	.disable = jz4780_bch_disable,
+	.calculate = jz4780_calculate,
+	.correct = jz4780_correct,
+};
+
+static const struct of_device_id jz4780_bch_dt_match[] = {
+	{ .compatible = "ingenic,jz4780-bch", .data = &jz4780_bch_ops },
+	{},
+};
+MODULE_DEVICE_TABLE(of, jz4780_bch_dt_match);
+
+static struct platform_driver jz4780_bch_driver = {
+	.probe		= jz4780_bch_probe,
+	.driver	= {
+		.name	= "jz4780-bch",
+		.of_match_table = of_match_ptr(jz4780_bch_dt_match),
+	},
+};
+module_platform_driver(jz4780_bch_driver);
+
+MODULE_AUTHOR("Alex Smith <alex@alex-smith.me.uk>");
+MODULE_AUTHOR("Harvey Hunt <harveyhuntnexus@gmail.com>");
+MODULE_DESCRIPTION("Ingenic JZ4780 BCH error correction driver");
+MODULE_LICENSE("GPL v2");
diff --git a/drivers/mtd/nand/raw/internals.h b/drivers/mtd/nand/raw/internals.h
new file mode 100644
index 0000000..cba6fe7
--- /dev/null
+++ b/drivers/mtd/nand/raw/internals.h
@@ -0,0 +1,149 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+/*
+ * Copyright (c) 2018 - Bootlin
+ *
+ * Author: Boris Brezillon <boris.brezillon@bootlin.com>
+ *
+ * Header containing internal definitions to be used only by core files.
+ * NAND controller drivers should not include this file.
+ */
+
+#ifndef __LINUX_RAWNAND_INTERNALS
+#define __LINUX_RAWNAND_INTERNALS
+
+#include <linux/mtd/rawnand.h>
+
+/*
+ * NAND Flash Manufacturer ID Codes
+ */
+#define NAND_MFR_AMD		0x01
+#define NAND_MFR_ATO		0x9b
+#define NAND_MFR_EON		0x92
+#define NAND_MFR_ESMT		0xc8
+#define NAND_MFR_FUJITSU	0x04
+#define NAND_MFR_HYNIX		0xad
+#define NAND_MFR_INTEL		0x89
+#define NAND_MFR_MACRONIX	0xc2
+#define NAND_MFR_MICRON		0x2c
+#define NAND_MFR_NATIONAL	0x8f
+#define NAND_MFR_RENESAS	0x07
+#define NAND_MFR_SAMSUNG	0xec
+#define NAND_MFR_SANDISK	0x45
+#define NAND_MFR_STMICRO	0x20
+#define NAND_MFR_TOSHIBA	0x98
+#define NAND_MFR_WINBOND	0xef
+
+/**
+ * struct nand_manufacturer_ops - NAND Manufacturer operations
+ * @detect: detect the NAND memory organization and capabilities
+ * @init: initialize all vendor specific fields (like the ->read_retry()
+ *	  implementation) if any.
+ * @cleanup: the ->init() function may have allocated resources, ->cleanup()
+ *	     is here to let vendor specific code release those resources.
+ * @fixup_onfi_param_page: apply vendor specific fixups to the ONFI parameter
+ *			   page. This is called after the checksum is verified.
+ */
+struct nand_manufacturer_ops {
+	void (*detect)(struct nand_chip *chip);
+	int (*init)(struct nand_chip *chip);
+	void (*cleanup)(struct nand_chip *chip);
+	void (*fixup_onfi_param_page)(struct nand_chip *chip,
+				      struct nand_onfi_params *p);
+};
+
+/**
+ * struct nand_manufacturer - NAND Flash Manufacturer structure
+ * @name: Manufacturer name
+ * @id: manufacturer ID code of device.
+ * @ops: manufacturer operations
+ */
+struct nand_manufacturer {
+	int id;
+	char *name;
+	const struct nand_manufacturer_ops *ops;
+};
+
+
+extern struct nand_flash_dev nand_flash_ids[];
+
+extern const struct nand_manufacturer_ops amd_nand_manuf_ops;
+extern const struct nand_manufacturer_ops esmt_nand_manuf_ops;
+extern const struct nand_manufacturer_ops hynix_nand_manuf_ops;
+extern const struct nand_manufacturer_ops macronix_nand_manuf_ops;
+extern const struct nand_manufacturer_ops micron_nand_manuf_ops;
+extern const struct nand_manufacturer_ops samsung_nand_manuf_ops;
+extern const struct nand_manufacturer_ops toshiba_nand_manuf_ops;
+
+/* Core functions */
+const struct nand_manufacturer *nand_get_manufacturer(u8 id);
+int nand_bbm_get_next_page(struct nand_chip *chip, int page);
+int nand_markbad_bbm(struct nand_chip *chip, loff_t ofs);
+int nand_erase_nand(struct nand_chip *chip, struct erase_info *instr,
+		    int allowbbt);
+int onfi_fill_data_interface(struct nand_chip *chip,
+			     enum nand_data_interface_type type,
+			     int timing_mode);
+int nand_get_features(struct nand_chip *chip, int addr, u8 *subfeature_param);
+int nand_set_features(struct nand_chip *chip, int addr, u8 *subfeature_param);
+int nand_read_page_raw_notsupp(struct nand_chip *chip, u8 *buf,
+			       int oob_required, int page);
+int nand_write_page_raw_notsupp(struct nand_chip *chip, const u8 *buf,
+				int oob_required, int page);
+int nand_exit_status_op(struct nand_chip *chip);
+int nand_read_param_page_op(struct nand_chip *chip, u8 page, void *buf,
+			    unsigned int len);
+void nand_decode_ext_id(struct nand_chip *chip);
+void panic_nand_wait(struct nand_chip *chip, unsigned long timeo);
+void sanitize_string(uint8_t *s, size_t len);
+
+static inline bool nand_has_exec_op(struct nand_chip *chip)
+{
+	if (!chip->controller || !chip->controller->ops ||
+	    !chip->controller->ops->exec_op)
+		return false;
+
+	return true;
+}
+
+static inline int nand_exec_op(struct nand_chip *chip,
+			       const struct nand_operation *op)
+{
+	if (!nand_has_exec_op(chip))
+		return -ENOTSUPP;
+
+	if (WARN_ON(op->cs >= nanddev_ntargets(&chip->base)))
+		return -EINVAL;
+
+	return chip->controller->ops->exec_op(chip, op, false);
+}
+
+static inline bool nand_has_setup_data_iface(struct nand_chip *chip)
+{
+	if (!chip->controller || !chip->controller->ops ||
+	    !chip->controller->ops->setup_data_interface)
+		return false;
+
+	if (chip->options & NAND_KEEP_TIMINGS)
+		return false;
+
+	return true;
+}
+
+/* BBT functions */
+int nand_markbad_bbt(struct nand_chip *chip, loff_t offs);
+int nand_isreserved_bbt(struct nand_chip *chip, loff_t offs);
+int nand_isbad_bbt(struct nand_chip *chip, loff_t offs, int allowbbt);
+
+/* Legacy */
+void nand_legacy_set_defaults(struct nand_chip *chip);
+void nand_legacy_adjust_cmdfunc(struct nand_chip *chip);
+int nand_legacy_check_hooks(struct nand_chip *chip);
+
+/* ONFI functions */
+u16 onfi_crc16(u16 crc, u8 const *p, size_t len);
+int nand_onfi_detect(struct nand_chip *chip);
+
+/* JEDEC functions */
+int nand_jedec_detect(struct nand_chip *chip);
+
+#endif /* __LINUX_RAWNAND_INTERNALS */
diff --git a/drivers/mtd/nand/raw/jz4740_nand.c b/drivers/mtd/nand/raw/jz4740_nand.c
deleted file mode 100644
index a751545..0000000
--- a/drivers/mtd/nand/raw/jz4740_nand.c
+++ /dev/null
@@ -1,543 +0,0 @@
-/*
- *  Copyright (C) 2009-2010, Lars-Peter Clausen <lars@metafoo.de>
- *  JZ4740 SoC NAND controller driver
- *
- *  This program is free software; you can redistribute it and/or modify it
- *  under  the terms of the GNU General  Public License as published by the
- *  Free Software Foundation;  either version 2 of the License, or (at your
- *  option) any later version.
- *
- *  You should have received a copy of the GNU General Public License along
- *  with this program; if not, write to the Free Software Foundation, Inc.,
- *  675 Mass Ave, Cambridge, MA 02139, USA.
- *
- */
-
-#include <linux/io.h>
-#include <linux/ioport.h>
-#include <linux/kernel.h>
-#include <linux/module.h>
-#include <linux/platform_device.h>
-#include <linux/slab.h>
-
-#include <linux/mtd/mtd.h>
-#include <linux/mtd/rawnand.h>
-#include <linux/mtd/partitions.h>
-
-#include <linux/gpio/consumer.h>
-
-#include <linux/platform_data/jz4740/jz4740_nand.h>
-
-#define JZ_REG_NAND_CTRL	0x50
-#define JZ_REG_NAND_ECC_CTRL	0x100
-#define JZ_REG_NAND_DATA	0x104
-#define JZ_REG_NAND_PAR0	0x108
-#define JZ_REG_NAND_PAR1	0x10C
-#define JZ_REG_NAND_PAR2	0x110
-#define JZ_REG_NAND_IRQ_STAT	0x114
-#define JZ_REG_NAND_IRQ_CTRL	0x118
-#define JZ_REG_NAND_ERR(x)	(0x11C + ((x) << 2))
-
-#define JZ_NAND_ECC_CTRL_PAR_READY	BIT(4)
-#define JZ_NAND_ECC_CTRL_ENCODING	BIT(3)
-#define JZ_NAND_ECC_CTRL_RS		BIT(2)
-#define JZ_NAND_ECC_CTRL_RESET		BIT(1)
-#define JZ_NAND_ECC_CTRL_ENABLE		BIT(0)
-
-#define JZ_NAND_STATUS_ERR_COUNT	(BIT(31) | BIT(30) | BIT(29))
-#define JZ_NAND_STATUS_PAD_FINISH	BIT(4)
-#define JZ_NAND_STATUS_DEC_FINISH	BIT(3)
-#define JZ_NAND_STATUS_ENC_FINISH	BIT(2)
-#define JZ_NAND_STATUS_UNCOR_ERROR	BIT(1)
-#define JZ_NAND_STATUS_ERROR		BIT(0)
-
-#define JZ_NAND_CTRL_ENABLE_CHIP(x) BIT((x) << 1)
-#define JZ_NAND_CTRL_ASSERT_CHIP(x) BIT(((x) << 1) + 1)
-#define JZ_NAND_CTRL_ASSERT_CHIP_MASK 0xaa
-
-#define JZ_NAND_MEM_CMD_OFFSET 0x08000
-#define JZ_NAND_MEM_ADDR_OFFSET 0x10000
-
-struct jz_nand {
-	struct nand_chip chip;
-	void __iomem *base;
-	struct resource *mem;
-
-	unsigned char banks[JZ_NAND_NUM_BANKS];
-	void __iomem *bank_base[JZ_NAND_NUM_BANKS];
-	struct resource *bank_mem[JZ_NAND_NUM_BANKS];
-
-	int selected_bank;
-
-	struct gpio_desc *busy_gpio;
-	bool is_reading;
-};
-
-static inline struct jz_nand *mtd_to_jz_nand(struct mtd_info *mtd)
-{
-	return container_of(mtd_to_nand(mtd), struct jz_nand, chip);
-}
-
-static void jz_nand_select_chip(struct mtd_info *mtd, int chipnr)
-{
-	struct jz_nand *nand = mtd_to_jz_nand(mtd);
-	struct nand_chip *chip = mtd_to_nand(mtd);
-	uint32_t ctrl;
-	int banknr;
-
-	ctrl = readl(nand->base + JZ_REG_NAND_CTRL);
-	ctrl &= ~JZ_NAND_CTRL_ASSERT_CHIP_MASK;
-
-	if (chipnr == -1) {
-		banknr = -1;
-	} else {
-		banknr = nand->banks[chipnr] - 1;
-		chip->IO_ADDR_R = nand->bank_base[banknr];
-		chip->IO_ADDR_W = nand->bank_base[banknr];
-	}
-	writel(ctrl, nand->base + JZ_REG_NAND_CTRL);
-
-	nand->selected_bank = banknr;
-}
-
-static void jz_nand_cmd_ctrl(struct mtd_info *mtd, int dat, unsigned int ctrl)
-{
-	struct jz_nand *nand = mtd_to_jz_nand(mtd);
-	struct nand_chip *chip = mtd_to_nand(mtd);
-	uint32_t reg;
-	void __iomem *bank_base = nand->bank_base[nand->selected_bank];
-
-	BUG_ON(nand->selected_bank < 0);
-
-	if (ctrl & NAND_CTRL_CHANGE) {
-		BUG_ON((ctrl & NAND_ALE) && (ctrl & NAND_CLE));
-		if (ctrl & NAND_ALE)
-			bank_base += JZ_NAND_MEM_ADDR_OFFSET;
-		else if (ctrl & NAND_CLE)
-			bank_base += JZ_NAND_MEM_CMD_OFFSET;
-		chip->IO_ADDR_W = bank_base;
-
-		reg = readl(nand->base + JZ_REG_NAND_CTRL);
-		if (ctrl & NAND_NCE)
-			reg |= JZ_NAND_CTRL_ASSERT_CHIP(nand->selected_bank);
-		else
-			reg &= ~JZ_NAND_CTRL_ASSERT_CHIP(nand->selected_bank);
-		writel(reg, nand->base + JZ_REG_NAND_CTRL);
-	}
-	if (dat != NAND_CMD_NONE)
-		writeb(dat, chip->IO_ADDR_W);
-}
-
-static int jz_nand_dev_ready(struct mtd_info *mtd)
-{
-	struct jz_nand *nand = mtd_to_jz_nand(mtd);
-	return gpiod_get_value_cansleep(nand->busy_gpio);
-}
-
-static void jz_nand_hwctl(struct mtd_info *mtd, int mode)
-{
-	struct jz_nand *nand = mtd_to_jz_nand(mtd);
-	uint32_t reg;
-
-	writel(0, nand->base + JZ_REG_NAND_IRQ_STAT);
-	reg = readl(nand->base + JZ_REG_NAND_ECC_CTRL);
-
-	reg |= JZ_NAND_ECC_CTRL_RESET;
-	reg |= JZ_NAND_ECC_CTRL_ENABLE;
-	reg |= JZ_NAND_ECC_CTRL_RS;
-
-	switch (mode) {
-	case NAND_ECC_READ:
-		reg &= ~JZ_NAND_ECC_CTRL_ENCODING;
-		nand->is_reading = true;
-		break;
-	case NAND_ECC_WRITE:
-		reg |= JZ_NAND_ECC_CTRL_ENCODING;
-		nand->is_reading = false;
-		break;
-	default:
-		break;
-	}
-
-	writel(reg, nand->base + JZ_REG_NAND_ECC_CTRL);
-}
-
-static int jz_nand_calculate_ecc_rs(struct mtd_info *mtd, const uint8_t *dat,
-	uint8_t *ecc_code)
-{
-	struct jz_nand *nand = mtd_to_jz_nand(mtd);
-	uint32_t reg, status;
-	int i;
-	unsigned int timeout = 1000;
-	static uint8_t empty_block_ecc[] = {0xcd, 0x9d, 0x90, 0x58, 0xf4,
-						0x8b, 0xff, 0xb7, 0x6f};
-
-	if (nand->is_reading)
-		return 0;
-
-	do {
-		status = readl(nand->base + JZ_REG_NAND_IRQ_STAT);
-	} while (!(status & JZ_NAND_STATUS_ENC_FINISH) && --timeout);
-
-	if (timeout == 0)
-	    return -1;
-
-	reg = readl(nand->base + JZ_REG_NAND_ECC_CTRL);
-	reg &= ~JZ_NAND_ECC_CTRL_ENABLE;
-	writel(reg, nand->base + JZ_REG_NAND_ECC_CTRL);
-
-	for (i = 0; i < 9; ++i)
-		ecc_code[i] = readb(nand->base + JZ_REG_NAND_PAR0 + i);
-
-	/* If the written data is completly 0xff, we also want to write 0xff as
-	 * ecc, otherwise we will get in trouble when doing subpage writes. */
-	if (memcmp(ecc_code, empty_block_ecc, 9) == 0)
-		memset(ecc_code, 0xff, 9);
-
-	return 0;
-}
-
-static void jz_nand_correct_data(uint8_t *dat, int index, int mask)
-{
-	int offset = index & 0x7;
-	uint16_t data;
-
-	index += (index >> 3);
-
-	data = dat[index];
-	data |= dat[index+1] << 8;
-
-	mask ^= (data >> offset) & 0x1ff;
-	data &= ~(0x1ff << offset);
-	data |= (mask << offset);
-
-	dat[index] = data & 0xff;
-	dat[index+1] = (data >> 8) & 0xff;
-}
-
-static int jz_nand_correct_ecc_rs(struct mtd_info *mtd, uint8_t *dat,
-	uint8_t *read_ecc, uint8_t *calc_ecc)
-{
-	struct jz_nand *nand = mtd_to_jz_nand(mtd);
-	int i, error_count, index;
-	uint32_t reg, status, error;
-	unsigned int timeout = 1000;
-
-	for (i = 0; i < 9; ++i)
-		writeb(read_ecc[i], nand->base + JZ_REG_NAND_PAR0 + i);
-
-	reg = readl(nand->base + JZ_REG_NAND_ECC_CTRL);
-	reg |= JZ_NAND_ECC_CTRL_PAR_READY;
-	writel(reg, nand->base + JZ_REG_NAND_ECC_CTRL);
-
-	do {
-		status = readl(nand->base + JZ_REG_NAND_IRQ_STAT);
-	} while (!(status & JZ_NAND_STATUS_DEC_FINISH) && --timeout);
-
-	if (timeout == 0)
-		return -ETIMEDOUT;
-
-	reg = readl(nand->base + JZ_REG_NAND_ECC_CTRL);
-	reg &= ~JZ_NAND_ECC_CTRL_ENABLE;
-	writel(reg, nand->base + JZ_REG_NAND_ECC_CTRL);
-
-	if (status & JZ_NAND_STATUS_ERROR) {
-		if (status & JZ_NAND_STATUS_UNCOR_ERROR)
-			return -EBADMSG;
-
-		error_count = (status & JZ_NAND_STATUS_ERR_COUNT) >> 29;
-
-		for (i = 0; i < error_count; ++i) {
-			error = readl(nand->base + JZ_REG_NAND_ERR(i));
-			index = ((error >> 16) & 0x1ff) - 1;
-			if (index >= 0 && index < 512)
-				jz_nand_correct_data(dat, index, error & 0x1ff);
-		}
-
-		return error_count;
-	}
-
-	return 0;
-}
-
-static int jz_nand_ioremap_resource(struct platform_device *pdev,
-	const char *name, struct resource **res, void *__iomem *base)
-{
-	int ret;
-
-	*res = platform_get_resource_byname(pdev, IORESOURCE_MEM, name);
-	if (!*res) {
-		dev_err(&pdev->dev, "Failed to get platform %s memory\n", name);
-		ret = -ENXIO;
-		goto err;
-	}
-
-	*res = request_mem_region((*res)->start, resource_size(*res),
-				pdev->name);
-	if (!*res) {
-		dev_err(&pdev->dev, "Failed to request %s memory region\n", name);
-		ret = -EBUSY;
-		goto err;
-	}
-
-	*base = ioremap((*res)->start, resource_size(*res));
-	if (!*base) {
-		dev_err(&pdev->dev, "Failed to ioremap %s memory region\n", name);
-		ret = -EBUSY;
-		goto err_release_mem;
-	}
-
-	return 0;
-
-err_release_mem:
-	release_mem_region((*res)->start, resource_size(*res));
-err:
-	*res = NULL;
-	*base = NULL;
-	return ret;
-}
-
-static inline void jz_nand_iounmap_resource(struct resource *res,
-					    void __iomem *base)
-{
-	iounmap(base);
-	release_mem_region(res->start, resource_size(res));
-}
-
-static int jz_nand_detect_bank(struct platform_device *pdev,
-			       struct jz_nand *nand, unsigned char bank,
-			       size_t chipnr, uint8_t *nand_maf_id,
-			       uint8_t *nand_dev_id)
-{
-	int ret;
-	char res_name[6];
-	uint32_t ctrl;
-	struct nand_chip *chip = &nand->chip;
-	struct mtd_info *mtd = nand_to_mtd(chip);
-	u8 id[2];
-
-	/* Request I/O resource. */
-	sprintf(res_name, "bank%d", bank);
-	ret = jz_nand_ioremap_resource(pdev, res_name,
-					&nand->bank_mem[bank - 1],
-					&nand->bank_base[bank - 1]);
-	if (ret)
-		return ret;
-
-	/* Enable chip in bank. */
-	ctrl = readl(nand->base + JZ_REG_NAND_CTRL);
-	ctrl |= JZ_NAND_CTRL_ENABLE_CHIP(bank - 1);
-	writel(ctrl, nand->base + JZ_REG_NAND_CTRL);
-
-	if (chipnr == 0) {
-		/* Detect first chip. */
-		ret = nand_scan(mtd, 1);
-		if (ret)
-			goto notfound_id;
-
-		/* Retrieve the IDs from the first chip. */
-		chip->select_chip(mtd, 0);
-		nand_reset_op(chip);
-		nand_readid_op(chip, 0, id, sizeof(id));
-		*nand_maf_id = id[0];
-		*nand_dev_id = id[1];
-	} else {
-		/* Detect additional chip. */
-		chip->select_chip(mtd, chipnr);
-		nand_reset_op(chip);
-		nand_readid_op(chip, 0, id, sizeof(id));
-		if (*nand_maf_id != id[0] || *nand_dev_id != id[1]) {
-			ret = -ENODEV;
-			goto notfound_id;
-		}
-
-		/* Update size of the MTD. */
-		chip->numchips++;
-		mtd->size += chip->chipsize;
-	}
-
-	dev_info(&pdev->dev, "Found chip %zu on bank %i\n", chipnr, bank);
-	return 0;
-
-notfound_id:
-	dev_info(&pdev->dev, "No chip found on bank %i\n", bank);
-	ctrl &= ~(JZ_NAND_CTRL_ENABLE_CHIP(bank - 1));
-	writel(ctrl, nand->base + JZ_REG_NAND_CTRL);
-	jz_nand_iounmap_resource(nand->bank_mem[bank - 1],
-				 nand->bank_base[bank - 1]);
-	return ret;
-}
-
-static int jz_nand_attach_chip(struct nand_chip *chip)
-{
-	struct mtd_info *mtd = nand_to_mtd(chip);
-	struct device *dev = mtd->dev.parent;
-	struct jz_nand_platform_data *pdata = dev_get_platdata(dev);
-	struct platform_device *pdev = to_platform_device(dev);
-
-	if (pdata && pdata->ident_callback)
-		pdata->ident_callback(pdev, mtd, &pdata->partitions,
-				      &pdata->num_partitions);
-
-	return 0;
-}
-
-static const struct nand_controller_ops jz_nand_controller_ops = {
-	.attach_chip = jz_nand_attach_chip,
-};
-
-static int jz_nand_probe(struct platform_device *pdev)
-{
-	int ret;
-	struct jz_nand *nand;
-	struct nand_chip *chip;
-	struct mtd_info *mtd;
-	struct jz_nand_platform_data *pdata = dev_get_platdata(&pdev->dev);
-	size_t chipnr, bank_idx;
-	uint8_t nand_maf_id = 0, nand_dev_id = 0;
-
-	nand = kzalloc(sizeof(*nand), GFP_KERNEL);
-	if (!nand)
-		return -ENOMEM;
-
-	ret = jz_nand_ioremap_resource(pdev, "mmio", &nand->mem, &nand->base);
-	if (ret)
-		goto err_free;
-
-	nand->busy_gpio = devm_gpiod_get_optional(&pdev->dev, "busy", GPIOD_IN);
-	if (IS_ERR(nand->busy_gpio)) {
-		ret = PTR_ERR(nand->busy_gpio);
-		dev_err(&pdev->dev, "Failed to request busy gpio %d\n",
-		    ret);
-		goto err_iounmap_mmio;
-	}
-
-	chip		= &nand->chip;
-	mtd		= nand_to_mtd(chip);
-	mtd->dev.parent = &pdev->dev;
-	mtd->name	= "jz4740-nand";
-
-	chip->ecc.hwctl		= jz_nand_hwctl;
-	chip->ecc.calculate	= jz_nand_calculate_ecc_rs;
-	chip->ecc.correct	= jz_nand_correct_ecc_rs;
-	chip->ecc.mode		= NAND_ECC_HW_OOB_FIRST;
-	chip->ecc.size		= 512;
-	chip->ecc.bytes		= 9;
-	chip->ecc.strength	= 4;
-	chip->ecc.options	= NAND_ECC_GENERIC_ERASED_CHECK;
-
-	chip->chip_delay = 50;
-	chip->cmd_ctrl = jz_nand_cmd_ctrl;
-	chip->select_chip = jz_nand_select_chip;
-	chip->dummy_controller.ops = &jz_nand_controller_ops;
-
-	if (nand->busy_gpio)
-		chip->dev_ready = jz_nand_dev_ready;
-
-	platform_set_drvdata(pdev, nand);
-
-	/* We are going to autodetect NAND chips in the banks specified in the
-	 * platform data. Although nand_scan_ident() can detect multiple chips,
-	 * it requires those chips to be numbered consecuitively, which is not
-	 * always the case for external memory banks. And a fixed chip-to-bank
-	 * mapping is not practical either, since for example Dingoo units
-	 * produced at different times have NAND chips in different banks.
-	 */
-	chipnr = 0;
-	for (bank_idx = 0; bank_idx < JZ_NAND_NUM_BANKS; bank_idx++) {
-		unsigned char bank;
-
-		/* If there is no platform data, look for NAND in bank 1,
-		 * which is the most likely bank since it is the only one
-		 * that can be booted from.
-		 */
-		bank = pdata ? pdata->banks[bank_idx] : bank_idx ^ 1;
-		if (bank == 0)
-			break;
-		if (bank > JZ_NAND_NUM_BANKS) {
-			dev_warn(&pdev->dev,
-				"Skipping non-existing bank: %d\n", bank);
-			continue;
-		}
-		/* The detection routine will directly or indirectly call
-		 * jz_nand_select_chip(), so nand->banks has to contain the
-		 * bank we're checking.
-		 */
-		nand->banks[chipnr] = bank;
-		if (jz_nand_detect_bank(pdev, nand, bank, chipnr,
-					&nand_maf_id, &nand_dev_id) == 0)
-			chipnr++;
-		else
-			nand->banks[chipnr] = 0;
-	}
-	if (chipnr == 0) {
-		dev_err(&pdev->dev, "No NAND chips found\n");
-		goto err_iounmap_mmio;
-	}
-
-	ret = mtd_device_register(mtd, pdata ? pdata->partitions : NULL,
-				  pdata ? pdata->num_partitions : 0);
-
-	if (ret) {
-		dev_err(&pdev->dev, "Failed to add mtd device\n");
-		goto err_cleanup_nand;
-	}
-
-	dev_info(&pdev->dev, "Successfully registered JZ4740 NAND driver\n");
-
-	return 0;
-
-err_cleanup_nand:
-	nand_cleanup(chip);
-	while (chipnr--) {
-		unsigned char bank = nand->banks[chipnr];
-		jz_nand_iounmap_resource(nand->bank_mem[bank - 1],
-					 nand->bank_base[bank - 1]);
-	}
-	writel(0, nand->base + JZ_REG_NAND_CTRL);
-err_iounmap_mmio:
-	jz_nand_iounmap_resource(nand->mem, nand->base);
-err_free:
-	kfree(nand);
-	return ret;
-}
-
-static int jz_nand_remove(struct platform_device *pdev)
-{
-	struct jz_nand *nand = platform_get_drvdata(pdev);
-	size_t i;
-
-	nand_release(nand_to_mtd(&nand->chip));
-
-	/* Deassert and disable all chips */
-	writel(0, nand->base + JZ_REG_NAND_CTRL);
-
-	for (i = 0; i < JZ_NAND_NUM_BANKS; ++i) {
-		unsigned char bank = nand->banks[i];
-		if (bank != 0) {
-			jz_nand_iounmap_resource(nand->bank_mem[bank - 1],
-						 nand->bank_base[bank - 1]);
-		}
-	}
-
-	jz_nand_iounmap_resource(nand->mem, nand->base);
-
-	kfree(nand);
-
-	return 0;
-}
-
-static struct platform_driver jz_nand_driver = {
-	.probe = jz_nand_probe,
-	.remove = jz_nand_remove,
-	.driver = {
-		.name = "jz4740-nand",
-	},
-};
-
-module_platform_driver(jz_nand_driver);
-
-MODULE_LICENSE("GPL");
-MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
-MODULE_DESCRIPTION("NAND controller driver for JZ4740 SoC");
-MODULE_ALIAS("platform:jz4740-nand");
diff --git a/drivers/mtd/nand/raw/jz4780_bch.c b/drivers/mtd/nand/raw/jz4780_bch.c
deleted file mode 100644
index 731c605..0000000
--- a/drivers/mtd/nand/raw/jz4780_bch.c
+++ /dev/null
@@ -1,380 +0,0 @@
-/*
- * JZ4780 BCH controller
- *
- * Copyright (c) 2015 Imagination Technologies
- * Author: Alex Smith <alex.smith@imgtec.com>
- *
- * This program is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 as published
- * by the Free Software Foundation.
- */
-
-#include <linux/bitops.h>
-#include <linux/clk.h>
-#include <linux/delay.h>
-#include <linux/init.h>
-#include <linux/iopoll.h>
-#include <linux/module.h>
-#include <linux/mutex.h>
-#include <linux/of.h>
-#include <linux/of_platform.h>
-#include <linux/platform_device.h>
-#include <linux/sched.h>
-#include <linux/slab.h>
-
-#include "jz4780_bch.h"
-
-#define BCH_BHCR			0x0
-#define BCH_BHCCR			0x8
-#define BCH_BHCNT			0xc
-#define BCH_BHDR			0x10
-#define BCH_BHPAR0			0x14
-#define BCH_BHERR0			0x84
-#define BCH_BHINT			0x184
-#define BCH_BHINTES			0x188
-#define BCH_BHINTEC			0x18c
-#define BCH_BHINTE			0x190
-
-#define BCH_BHCR_BSEL_SHIFT		4
-#define BCH_BHCR_BSEL_MASK		(0x7f << BCH_BHCR_BSEL_SHIFT)
-#define BCH_BHCR_ENCE			BIT(2)
-#define BCH_BHCR_INIT			BIT(1)
-#define BCH_BHCR_BCHE			BIT(0)
-
-#define BCH_BHCNT_PARITYSIZE_SHIFT	16
-#define BCH_BHCNT_PARITYSIZE_MASK	(0x7f << BCH_BHCNT_PARITYSIZE_SHIFT)
-#define BCH_BHCNT_BLOCKSIZE_SHIFT	0
-#define BCH_BHCNT_BLOCKSIZE_MASK	(0x7ff << BCH_BHCNT_BLOCKSIZE_SHIFT)
-
-#define BCH_BHERR_MASK_SHIFT		16
-#define BCH_BHERR_MASK_MASK		(0xffff << BCH_BHERR_MASK_SHIFT)
-#define BCH_BHERR_INDEX_SHIFT		0
-#define BCH_BHERR_INDEX_MASK		(0x7ff << BCH_BHERR_INDEX_SHIFT)
-
-#define BCH_BHINT_ERRC_SHIFT		24
-#define BCH_BHINT_ERRC_MASK		(0x7f << BCH_BHINT_ERRC_SHIFT)
-#define BCH_BHINT_TERRC_SHIFT		16
-#define BCH_BHINT_TERRC_MASK		(0x7f << BCH_BHINT_TERRC_SHIFT)
-#define BCH_BHINT_DECF			BIT(3)
-#define BCH_BHINT_ENCF			BIT(2)
-#define BCH_BHINT_UNCOR			BIT(1)
-#define BCH_BHINT_ERR			BIT(0)
-
-#define BCH_CLK_RATE			(200 * 1000 * 1000)
-
-/* Timeout for BCH calculation/correction. */
-#define BCH_TIMEOUT_US			100000
-
-struct jz4780_bch {
-	struct device *dev;
-	void __iomem *base;
-	struct clk *clk;
-	struct mutex lock;
-};
-
-static void jz4780_bch_init(struct jz4780_bch *bch,
-			    struct jz4780_bch_params *params, bool encode)
-{
-	u32 reg;
-
-	/* Clear interrupt status. */
-	writel(readl(bch->base + BCH_BHINT), bch->base + BCH_BHINT);
-
-	/* Set up BCH count register. */
-	reg = params->size << BCH_BHCNT_BLOCKSIZE_SHIFT;
-	reg |= params->bytes << BCH_BHCNT_PARITYSIZE_SHIFT;
-	writel(reg, bch->base + BCH_BHCNT);
-
-	/* Initialise and enable BCH. */
-	reg = BCH_BHCR_BCHE | BCH_BHCR_INIT;
-	reg |= params->strength << BCH_BHCR_BSEL_SHIFT;
-	if (encode)
-		reg |= BCH_BHCR_ENCE;
-	writel(reg, bch->base + BCH_BHCR);
-}
-
-static void jz4780_bch_disable(struct jz4780_bch *bch)
-{
-	writel(readl(bch->base + BCH_BHINT), bch->base + BCH_BHINT);
-	writel(BCH_BHCR_BCHE, bch->base + BCH_BHCCR);
-}
-
-static void jz4780_bch_write_data(struct jz4780_bch *bch, const void *buf,
-				  size_t size)
-{
-	size_t size32 = size / sizeof(u32);
-	size_t size8 = size % sizeof(u32);
-	const u32 *src32;
-	const u8 *src8;
-
-	src32 = (const u32 *)buf;
-	while (size32--)
-		writel(*src32++, bch->base + BCH_BHDR);
-
-	src8 = (const u8 *)src32;
-	while (size8--)
-		writeb(*src8++, bch->base + BCH_BHDR);
-}
-
-static void jz4780_bch_read_parity(struct jz4780_bch *bch, void *buf,
-				   size_t size)
-{
-	size_t size32 = size / sizeof(u32);
-	size_t size8 = size % sizeof(u32);
-	u32 *dest32;
-	u8 *dest8;
-	u32 val, offset = 0;
-
-	dest32 = (u32 *)buf;
-	while (size32--) {
-		*dest32++ = readl(bch->base + BCH_BHPAR0 + offset);
-		offset += sizeof(u32);
-	}
-
-	dest8 = (u8 *)dest32;
-	val = readl(bch->base + BCH_BHPAR0 + offset);
-	switch (size8) {
-	case 3:
-		dest8[2] = (val >> 16) & 0xff;
-	case 2:
-		dest8[1] = (val >> 8) & 0xff;
-	case 1:
-		dest8[0] = val & 0xff;
-		break;
-	}
-}
-
-static bool jz4780_bch_wait_complete(struct jz4780_bch *bch, unsigned int irq,
-				     u32 *status)
-{
-	u32 reg;
-	int ret;
-
-	/*
-	 * While we could use interrupts here and sleep until the operation
-	 * completes, the controller works fairly quickly (usually a few
-	 * microseconds) and so the overhead of sleeping until we get an
-	 * interrupt quite noticeably decreases performance.
-	 */
-	ret = readl_poll_timeout(bch->base + BCH_BHINT, reg,
-				 (reg & irq) == irq, 0, BCH_TIMEOUT_US);
-	if (ret)
-		return false;
-
-	if (status)
-		*status = reg;
-
-	writel(reg, bch->base + BCH_BHINT);
-	return true;
-}
-
-/**
- * jz4780_bch_calculate() - calculate ECC for a data buffer
- * @bch: BCH device.
- * @params: BCH parameters.
- * @buf: input buffer with raw data.
- * @ecc_code: output buffer with ECC.
- *
- * Return: 0 on success, -ETIMEDOUT if timed out while waiting for BCH
- * controller.
- */
-int jz4780_bch_calculate(struct jz4780_bch *bch, struct jz4780_bch_params *params,
-			 const u8 *buf, u8 *ecc_code)
-{
-	int ret = 0;
-
-	mutex_lock(&bch->lock);
-	jz4780_bch_init(bch, params, true);
-	jz4780_bch_write_data(bch, buf, params->size);
-
-	if (jz4780_bch_wait_complete(bch, BCH_BHINT_ENCF, NULL)) {
-		jz4780_bch_read_parity(bch, ecc_code, params->bytes);
-	} else {
-		dev_err(bch->dev, "timed out while calculating ECC\n");
-		ret = -ETIMEDOUT;
-	}
-
-	jz4780_bch_disable(bch);
-	mutex_unlock(&bch->lock);
-	return ret;
-}
-EXPORT_SYMBOL(jz4780_bch_calculate);
-
-/**
- * jz4780_bch_correct() - detect and correct bit errors
- * @bch: BCH device.
- * @params: BCH parameters.
- * @buf: raw data read from the chip.
- * @ecc_code: ECC read from the chip.
- *
- * Given the raw data and the ECC read from the NAND device, detects and
- * corrects errors in the data.
- *
- * Return: the number of bit errors corrected, -EBADMSG if there are too many
- * errors to correct or -ETIMEDOUT if we timed out waiting for the controller.
- */
-int jz4780_bch_correct(struct jz4780_bch *bch, struct jz4780_bch_params *params,
-		       u8 *buf, u8 *ecc_code)
-{
-	u32 reg, mask, index;
-	int i, ret, count;
-
-	mutex_lock(&bch->lock);
-
-	jz4780_bch_init(bch, params, false);
-	jz4780_bch_write_data(bch, buf, params->size);
-	jz4780_bch_write_data(bch, ecc_code, params->bytes);
-
-	if (!jz4780_bch_wait_complete(bch, BCH_BHINT_DECF, &reg)) {
-		dev_err(bch->dev, "timed out while correcting data\n");
-		ret = -ETIMEDOUT;
-		goto out;
-	}
-
-	if (reg & BCH_BHINT_UNCOR) {
-		dev_warn(bch->dev, "uncorrectable ECC error\n");
-		ret = -EBADMSG;
-		goto out;
-	}
-
-	/* Correct any detected errors. */
-	if (reg & BCH_BHINT_ERR) {
-		count = (reg & BCH_BHINT_ERRC_MASK) >> BCH_BHINT_ERRC_SHIFT;
-		ret = (reg & BCH_BHINT_TERRC_MASK) >> BCH_BHINT_TERRC_SHIFT;
-
-		for (i = 0; i < count; i++) {
-			reg = readl(bch->base + BCH_BHERR0 + (i * 4));
-			mask = (reg & BCH_BHERR_MASK_MASK) >>
-						BCH_BHERR_MASK_SHIFT;
-			index = (reg & BCH_BHERR_INDEX_MASK) >>
-						BCH_BHERR_INDEX_SHIFT;
-			buf[(index * 2) + 0] ^= mask;
-			buf[(index * 2) + 1] ^= mask >> 8;
-		}
-	} else {
-		ret = 0;
-	}
-
-out:
-	jz4780_bch_disable(bch);
-	mutex_unlock(&bch->lock);
-	return ret;
-}
-EXPORT_SYMBOL(jz4780_bch_correct);
-
-/**
- * jz4780_bch_get() - get the BCH controller device
- * @np: BCH device tree node.
- *
- * Gets the BCH controller device from the specified device tree node. The
- * device must be released with jz4780_bch_release() when it is no longer being
- * used.
- *
- * Return: a pointer to jz4780_bch, errors are encoded into the pointer.
- * PTR_ERR(-EPROBE_DEFER) if the device hasn't been initialised yet.
- */
-static struct jz4780_bch *jz4780_bch_get(struct device_node *np)
-{
-	struct platform_device *pdev;
-	struct jz4780_bch *bch;
-
-	pdev = of_find_device_by_node(np);
-	if (!pdev || !platform_get_drvdata(pdev))
-		return ERR_PTR(-EPROBE_DEFER);
-
-	get_device(&pdev->dev);
-
-	bch = platform_get_drvdata(pdev);
-	clk_prepare_enable(bch->clk);
-
-	return bch;
-}
-
-/**
- * of_jz4780_bch_get() - get the BCH controller from a DT node
- * @of_node: the node that contains a bch-controller property.
- *
- * Get the bch-controller property from the given device tree
- * node and pass it to jz4780_bch_get to do the work.
- *
- * Return: a pointer to jz4780_bch, errors are encoded into the pointer.
- * PTR_ERR(-EPROBE_DEFER) if the device hasn't been initialised yet.
- */
-struct jz4780_bch *of_jz4780_bch_get(struct device_node *of_node)
-{
-	struct jz4780_bch *bch = NULL;
-	struct device_node *np;
-
-	np = of_parse_phandle(of_node, "ingenic,bch-controller", 0);
-
-	if (np) {
-		bch = jz4780_bch_get(np);
-		of_node_put(np);
-	}
-	return bch;
-}
-EXPORT_SYMBOL(of_jz4780_bch_get);
-
-/**
- * jz4780_bch_release() - release the BCH controller device
- * @bch: BCH device.
- */
-void jz4780_bch_release(struct jz4780_bch *bch)
-{
-	clk_disable_unprepare(bch->clk);
-	put_device(bch->dev);
-}
-EXPORT_SYMBOL(jz4780_bch_release);
-
-static int jz4780_bch_probe(struct platform_device *pdev)
-{
-	struct device *dev = &pdev->dev;
-	struct jz4780_bch *bch;
-	struct resource *res;
-
-	bch = devm_kzalloc(dev, sizeof(*bch), GFP_KERNEL);
-	if (!bch)
-		return -ENOMEM;
-
-	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
-	bch->base = devm_ioremap_resource(dev, res);
-	if (IS_ERR(bch->base))
-		return PTR_ERR(bch->base);
-
-	jz4780_bch_disable(bch);
-
-	bch->clk = devm_clk_get(dev, NULL);
-	if (IS_ERR(bch->clk)) {
-		dev_err(dev, "failed to get clock: %ld\n", PTR_ERR(bch->clk));
-		return PTR_ERR(bch->clk);
-	}
-
-	clk_set_rate(bch->clk, BCH_CLK_RATE);
-
-	mutex_init(&bch->lock);
-
-	bch->dev = dev;
-	platform_set_drvdata(pdev, bch);
-
-	return 0;
-}
-
-static const struct of_device_id jz4780_bch_dt_match[] = {
-	{ .compatible = "ingenic,jz4780-bch" },
-	{},
-};
-MODULE_DEVICE_TABLE(of, jz4780_bch_dt_match);
-
-static struct platform_driver jz4780_bch_driver = {
-	.probe		= jz4780_bch_probe,
-	.driver	= {
-		.name	= "jz4780-bch",
-		.of_match_table = of_match_ptr(jz4780_bch_dt_match),
-	},
-};
-module_platform_driver(jz4780_bch_driver);
-
-MODULE_AUTHOR("Alex Smith <alex@alex-smith.me.uk>");
-MODULE_AUTHOR("Harvey Hunt <harveyhuntnexus@gmail.com>");
-MODULE_DESCRIPTION("Ingenic JZ4780 BCH error correction driver");
-MODULE_LICENSE("GPL v2");
diff --git a/drivers/mtd/nand/raw/jz4780_bch.h b/drivers/mtd/nand/raw/jz4780_bch.h
deleted file mode 100644
index bf47180..0000000
--- a/drivers/mtd/nand/raw/jz4780_bch.h
+++ /dev/null
@@ -1,43 +0,0 @@
-/*
- * JZ4780 BCH controller
- *
- * Copyright (c) 2015 Imagination Technologies
- * Author: Alex Smith <alex.smith@imgtec.com>
- *
- * This program is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 as published
- * by the Free Software Foundation.
- */
-
-#ifndef __DRIVERS_MTD_NAND_JZ4780_BCH_H__
-#define __DRIVERS_MTD_NAND_JZ4780_BCH_H__
-
-#include <linux/types.h>
-
-struct device;
-struct device_node;
-struct jz4780_bch;
-
-/**
- * struct jz4780_bch_params - BCH parameters
- * @size: data bytes per ECC step.
- * @bytes: ECC bytes per step.
- * @strength: number of correctable bits per ECC step.
- */
-struct jz4780_bch_params {
-	int size;
-	int bytes;
-	int strength;
-};
-
-int jz4780_bch_calculate(struct jz4780_bch *bch,
-				struct jz4780_bch_params *params,
-				const u8 *buf, u8 *ecc_code);
-int jz4780_bch_correct(struct jz4780_bch *bch,
-			      struct jz4780_bch_params *params, u8 *buf,
-			      u8 *ecc_code);
-
-void jz4780_bch_release(struct jz4780_bch *bch);
-struct jz4780_bch *of_jz4780_bch_get(struct device_node *np);
-
-#endif /* __DRIVERS_MTD_NAND_JZ4780_BCH_H__ */
diff --git a/drivers/mtd/nand/raw/jz4780_nand.c b/drivers/mtd/nand/raw/jz4780_nand.c
deleted file mode 100644
index db4fa60..0000000
--- a/drivers/mtd/nand/raw/jz4780_nand.c
+++ /dev/null
@@ -1,415 +0,0 @@
-/*
- * JZ4780 NAND driver
- *
- * Copyright (c) 2015 Imagination Technologies
- * Author: Alex Smith <alex.smith@imgtec.com>
- *
- * This program is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 as published
- * by the Free Software Foundation.
- */
-
-#include <linux/delay.h>
-#include <linux/init.h>
-#include <linux/io.h>
-#include <linux/list.h>
-#include <linux/module.h>
-#include <linux/of.h>
-#include <linux/of_address.h>
-#include <linux/gpio/consumer.h>
-#include <linux/platform_device.h>
-#include <linux/slab.h>
-#include <linux/mtd/mtd.h>
-#include <linux/mtd/rawnand.h>
-#include <linux/mtd/partitions.h>
-
-#include <linux/jz4780-nemc.h>
-
-#include "jz4780_bch.h"
-
-#define DRV_NAME	"jz4780-nand"
-
-#define OFFSET_DATA	0x00000000
-#define OFFSET_CMD	0x00400000
-#define OFFSET_ADDR	0x00800000
-
-/* Command delay when there is no R/B pin. */
-#define RB_DELAY_US	100
-
-struct jz4780_nand_cs {
-	unsigned int bank;
-	void __iomem *base;
-};
-
-struct jz4780_nand_controller {
-	struct device *dev;
-	struct jz4780_bch *bch;
-	struct nand_controller controller;
-	unsigned int num_banks;
-	struct list_head chips;
-	int selected;
-	struct jz4780_nand_cs cs[];
-};
-
-struct jz4780_nand_chip {
-	struct nand_chip chip;
-	struct list_head chip_list;
-
-	struct gpio_desc *busy_gpio;
-	struct gpio_desc *wp_gpio;
-	unsigned int reading: 1;
-};
-
-static inline struct jz4780_nand_chip *to_jz4780_nand_chip(struct mtd_info *mtd)
-{
-	return container_of(mtd_to_nand(mtd), struct jz4780_nand_chip, chip);
-}
-
-static inline struct jz4780_nand_controller
-*to_jz4780_nand_controller(struct nand_controller *ctrl)
-{
-	return container_of(ctrl, struct jz4780_nand_controller, controller);
-}
-
-static void jz4780_nand_select_chip(struct mtd_info *mtd, int chipnr)
-{
-	struct jz4780_nand_chip *nand = to_jz4780_nand_chip(mtd);
-	struct jz4780_nand_controller *nfc = to_jz4780_nand_controller(nand->chip.controller);
-	struct jz4780_nand_cs *cs;
-
-	/* Ensure the currently selected chip is deasserted. */
-	if (chipnr == -1 && nfc->selected >= 0) {
-		cs = &nfc->cs[nfc->selected];
-		jz4780_nemc_assert(nfc->dev, cs->bank, false);
-	}
-
-	nfc->selected = chipnr;
-}
-
-static void jz4780_nand_cmd_ctrl(struct mtd_info *mtd, int cmd,
-				 unsigned int ctrl)
-{
-	struct jz4780_nand_chip *nand = to_jz4780_nand_chip(mtd);
-	struct jz4780_nand_controller *nfc = to_jz4780_nand_controller(nand->chip.controller);
-	struct jz4780_nand_cs *cs;
-
-	if (WARN_ON(nfc->selected < 0))
-		return;
-
-	cs = &nfc->cs[nfc->selected];
-
-	jz4780_nemc_assert(nfc->dev, cs->bank, ctrl & NAND_NCE);
-
-	if (cmd == NAND_CMD_NONE)
-		return;
-
-	if (ctrl & NAND_ALE)
-		writeb(cmd, cs->base + OFFSET_ADDR);
-	else if (ctrl & NAND_CLE)
-		writeb(cmd, cs->base + OFFSET_CMD);
-}
-
-static int jz4780_nand_dev_ready(struct mtd_info *mtd)
-{
-	struct jz4780_nand_chip *nand = to_jz4780_nand_chip(mtd);
-
-	return !gpiod_get_value_cansleep(nand->busy_gpio);
-}
-
-static void jz4780_nand_ecc_hwctl(struct mtd_info *mtd, int mode)
-{
-	struct jz4780_nand_chip *nand = to_jz4780_nand_chip(mtd);
-
-	nand->reading = (mode == NAND_ECC_READ);
-}
-
-static int jz4780_nand_ecc_calculate(struct mtd_info *mtd, const u8 *dat,
-				     u8 *ecc_code)
-{
-	struct jz4780_nand_chip *nand = to_jz4780_nand_chip(mtd);
-	struct jz4780_nand_controller *nfc = to_jz4780_nand_controller(nand->chip.controller);
-	struct jz4780_bch_params params;
-
-	/*
-	 * Don't need to generate the ECC when reading, BCH does it for us as
-	 * part of decoding/correction.
-	 */
-	if (nand->reading)
-		return 0;
-
-	params.size = nand->chip.ecc.size;
-	params.bytes = nand->chip.ecc.bytes;
-	params.strength = nand->chip.ecc.strength;
-
-	return jz4780_bch_calculate(nfc->bch, &params, dat, ecc_code);
-}
-
-static int jz4780_nand_ecc_correct(struct mtd_info *mtd, u8 *dat,
-				   u8 *read_ecc, u8 *calc_ecc)
-{
-	struct jz4780_nand_chip *nand = to_jz4780_nand_chip(mtd);
-	struct jz4780_nand_controller *nfc = to_jz4780_nand_controller(nand->chip.controller);
-	struct jz4780_bch_params params;
-
-	params.size = nand->chip.ecc.size;
-	params.bytes = nand->chip.ecc.bytes;
-	params.strength = nand->chip.ecc.strength;
-
-	return jz4780_bch_correct(nfc->bch, &params, dat, read_ecc);
-}
-
-static int jz4780_nand_attach_chip(struct nand_chip *chip)
-{
-	struct mtd_info *mtd = nand_to_mtd(chip);
-	struct jz4780_nand_controller *nfc = to_jz4780_nand_controller(chip->controller);
-	int eccbytes;
-
-	chip->ecc.bytes = fls((1 + 8) * chip->ecc.size)	*
-				(chip->ecc.strength / 8);
-
-	switch (chip->ecc.mode) {
-	case NAND_ECC_HW:
-		if (!nfc->bch) {
-			dev_err(nfc->dev,
-				"HW BCH selected, but BCH controller not found\n");
-			return -ENODEV;
-		}
-
-		chip->ecc.hwctl = jz4780_nand_ecc_hwctl;
-		chip->ecc.calculate = jz4780_nand_ecc_calculate;
-		chip->ecc.correct = jz4780_nand_ecc_correct;
-		/* fall through */
-	case NAND_ECC_SOFT:
-		dev_info(nfc->dev, "using %s (strength %d, size %d, bytes %d)\n",
-			 (nfc->bch) ? "hardware BCH" : "software ECC",
-			 chip->ecc.strength, chip->ecc.size, chip->ecc.bytes);
-		break;
-	case NAND_ECC_NONE:
-		dev_info(nfc->dev, "not using ECC\n");
-		break;
-	default:
-		dev_err(nfc->dev, "ECC mode %d not supported\n",
-			chip->ecc.mode);
-		return -EINVAL;
-	}
-
-	/* The NAND core will generate the ECC layout for SW ECC */
-	if (chip->ecc.mode != NAND_ECC_HW)
-		return 0;
-
-	/* Generate ECC layout. ECC codes are right aligned in the OOB area. */
-	eccbytes = mtd->writesize / chip->ecc.size * chip->ecc.bytes;
-
-	if (eccbytes > mtd->oobsize - 2) {
-		dev_err(nfc->dev,
-			"invalid ECC config: required %d ECC bytes, but only %d are available",
-			eccbytes, mtd->oobsize - 2);
-		return -EINVAL;
-	}
-
-	mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
-
-	return 0;
-}
-
-static const struct nand_controller_ops jz4780_nand_controller_ops = {
-	.attach_chip = jz4780_nand_attach_chip,
-};
-
-static int jz4780_nand_init_chip(struct platform_device *pdev,
-				struct jz4780_nand_controller *nfc,
-				struct device_node *np,
-				unsigned int chipnr)
-{
-	struct device *dev = &pdev->dev;
-	struct jz4780_nand_chip *nand;
-	struct jz4780_nand_cs *cs;
-	struct resource *res;
-	struct nand_chip *chip;
-	struct mtd_info *mtd;
-	const __be32 *reg;
-	int ret = 0;
-
-	cs = &nfc->cs[chipnr];
-
-	reg = of_get_property(np, "reg", NULL);
-	if (!reg)
-		return -EINVAL;
-
-	cs->bank = be32_to_cpu(*reg);
-
-	jz4780_nemc_set_type(nfc->dev, cs->bank, JZ4780_NEMC_BANK_NAND);
-
-	res = platform_get_resource(pdev, IORESOURCE_MEM, chipnr);
-	cs->base = devm_ioremap_resource(dev, res);
-	if (IS_ERR(cs->base))
-		return PTR_ERR(cs->base);
-
-	nand = devm_kzalloc(dev, sizeof(*nand), GFP_KERNEL);
-	if (!nand)
-		return -ENOMEM;
-
-	nand->busy_gpio = devm_gpiod_get_optional(dev, "rb", GPIOD_IN);
-
-	if (IS_ERR(nand->busy_gpio)) {
-		ret = PTR_ERR(nand->busy_gpio);
-		dev_err(dev, "failed to request busy GPIO: %d\n", ret);
-		return ret;
-	} else if (nand->busy_gpio) {
-		nand->chip.dev_ready = jz4780_nand_dev_ready;
-	}
-
-	nand->wp_gpio = devm_gpiod_get_optional(dev, "wp", GPIOD_OUT_LOW);
-
-	if (IS_ERR(nand->wp_gpio)) {
-		ret = PTR_ERR(nand->wp_gpio);
-		dev_err(dev, "failed to request WP GPIO: %d\n", ret);
-		return ret;
-	}
-
-	chip = &nand->chip;
-	mtd = nand_to_mtd(chip);
-	mtd->name = devm_kasprintf(dev, GFP_KERNEL, "%s.%d", dev_name(dev),
-				   cs->bank);
-	if (!mtd->name)
-		return -ENOMEM;
-	mtd->dev.parent = dev;
-
-	chip->IO_ADDR_R = cs->base + OFFSET_DATA;
-	chip->IO_ADDR_W = cs->base + OFFSET_DATA;
-	chip->chip_delay = RB_DELAY_US;
-	chip->options = NAND_NO_SUBPAGE_WRITE;
-	chip->select_chip = jz4780_nand_select_chip;
-	chip->cmd_ctrl = jz4780_nand_cmd_ctrl;
-	chip->ecc.mode = NAND_ECC_HW;
-	chip->controller = &nfc->controller;
-	nand_set_flash_node(chip, np);
-
-	chip->controller->ops = &jz4780_nand_controller_ops;
-	ret = nand_scan(mtd, 1);
-	if (ret)
-		return ret;
-
-	ret = mtd_device_register(mtd, NULL, 0);
-	if (ret) {
-		nand_release(mtd);
-		return ret;
-	}
-
-	list_add_tail(&nand->chip_list, &nfc->chips);
-
-	return 0;
-}
-
-static void jz4780_nand_cleanup_chips(struct jz4780_nand_controller *nfc)
-{
-	struct jz4780_nand_chip *chip;
-
-	while (!list_empty(&nfc->chips)) {
-		chip = list_first_entry(&nfc->chips, struct jz4780_nand_chip, chip_list);
-		nand_release(nand_to_mtd(&chip->chip));
-		list_del(&chip->chip_list);
-	}
-}
-
-static int jz4780_nand_init_chips(struct jz4780_nand_controller *nfc,
-				  struct platform_device *pdev)
-{
-	struct device *dev = &pdev->dev;
-	struct device_node *np;
-	int i = 0;
-	int ret;
-	int num_chips = of_get_child_count(dev->of_node);
-
-	if (num_chips > nfc->num_banks) {
-		dev_err(dev, "found %d chips but only %d banks\n", num_chips, nfc->num_banks);
-		return -EINVAL;
-	}
-
-	for_each_child_of_node(dev->of_node, np) {
-		ret = jz4780_nand_init_chip(pdev, nfc, np, i);
-		if (ret) {
-			jz4780_nand_cleanup_chips(nfc);
-			return ret;
-		}
-
-		i++;
-	}
-
-	return 0;
-}
-
-static int jz4780_nand_probe(struct platform_device *pdev)
-{
-	struct device *dev = &pdev->dev;
-	unsigned int num_banks;
-	struct jz4780_nand_controller *nfc;
-	int ret;
-
-	num_banks = jz4780_nemc_num_banks(dev);
-	if (num_banks == 0) {
-		dev_err(dev, "no banks found\n");
-		return -ENODEV;
-	}
-
-	nfc = devm_kzalloc(dev, sizeof(*nfc) + (sizeof(nfc->cs[0]) * num_banks), GFP_KERNEL);
-	if (!nfc)
-		return -ENOMEM;
-
-	/*
-	 * Check for BCH HW before we call nand_scan_ident, to prevent us from
-	 * having to call it again if the BCH driver returns -EPROBE_DEFER.
-	 */
-	nfc->bch = of_jz4780_bch_get(dev->of_node);
-	if (IS_ERR(nfc->bch))
-		return PTR_ERR(nfc->bch);
-
-	nfc->dev = dev;
-	nfc->num_banks = num_banks;
-
-	nand_controller_init(&nfc->controller);
-	INIT_LIST_HEAD(&nfc->chips);
-
-	ret = jz4780_nand_init_chips(nfc, pdev);
-	if (ret) {
-		if (nfc->bch)
-			jz4780_bch_release(nfc->bch);
-		return ret;
-	}
-
-	platform_set_drvdata(pdev, nfc);
-	return 0;
-}
-
-static int jz4780_nand_remove(struct platform_device *pdev)
-{
-	struct jz4780_nand_controller *nfc = platform_get_drvdata(pdev);
-
-	if (nfc->bch)
-		jz4780_bch_release(nfc->bch);
-
-	jz4780_nand_cleanup_chips(nfc);
-
-	return 0;
-}
-
-static const struct of_device_id jz4780_nand_dt_match[] = {
-	{ .compatible = "ingenic,jz4780-nand" },
-	{},
-};
-MODULE_DEVICE_TABLE(of, jz4780_nand_dt_match);
-
-static struct platform_driver jz4780_nand_driver = {
-	.probe		= jz4780_nand_probe,
-	.remove		= jz4780_nand_remove,
-	.driver	= {
-		.name	= DRV_NAME,
-		.of_match_table = of_match_ptr(jz4780_nand_dt_match),
-	},
-};
-module_platform_driver(jz4780_nand_driver);
-
-MODULE_AUTHOR("Alex Smith <alex@alex-smith.me.uk>");
-MODULE_AUTHOR("Harvey Hunt <harveyhuntnexus@gmail.com>");
-MODULE_DESCRIPTION("Ingenic JZ4780 NAND driver");
-MODULE_LICENSE("GPL v2");
diff --git a/drivers/mtd/nand/raw/lpc32xx_mlc.c b/drivers/mtd/nand/raw/lpc32xx_mlc.c
index e82abad..78b31f8 100644
--- a/drivers/mtd/nand/raw/lpc32xx_mlc.c
+++ b/drivers/mtd/nand/raw/lpc32xx_mlc.c
@@ -1,3 +1,4 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
 /*
  * Driver for NAND MLC Controller in LPC32xx
  *
@@ -6,17 +7,6 @@
  * Copyright © 2011 WORK Microwave GmbH
  * Copyright © 2011, 2012 Roland Stigge
  *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
- * GNU General Public License for more details.
- *
- *
  * NAND Flash Controller Operation:
  * - Read: Auto Decode
  * - Write: Auto Encode
@@ -286,10 +276,9 @@
 /*
  * Hardware specific access to control lines
  */
-static void lpc32xx_nand_cmd_ctrl(struct mtd_info *mtd, int cmd,
+static void lpc32xx_nand_cmd_ctrl(struct nand_chip *nand_chip, int cmd,
 				  unsigned int ctrl)
 {
-	struct nand_chip *nand_chip = mtd_to_nand(mtd);
 	struct lpc32xx_nand_host *host = nand_get_controller_data(nand_chip);
 
 	if (cmd != NAND_CMD_NONE) {
@@ -303,9 +292,8 @@
 /*
  * Read Device Ready (NAND device _and_ controller ready)
  */
-static int lpc32xx_nand_device_ready(struct mtd_info *mtd)
+static int lpc32xx_nand_device_ready(struct nand_chip *nand_chip)
 {
-	struct nand_chip *nand_chip = mtd_to_nand(mtd);
 	struct lpc32xx_nand_host *host = nand_get_controller_data(nand_chip);
 
 	if ((readb(MLC_ISR(host->io_base)) &
@@ -330,8 +318,9 @@
 	return IRQ_HANDLED;
 }
 
-static int lpc32xx_waitfunc_nand(struct mtd_info *mtd, struct nand_chip *chip)
+static int lpc32xx_waitfunc_nand(struct nand_chip *chip)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
 
 	if (readb(MLC_ISR(host->io_base)) & MLCISR_NAND_READY)
@@ -349,9 +338,9 @@
 	return NAND_STATUS_READY;
 }
 
-static int lpc32xx_waitfunc_controller(struct mtd_info *mtd,
-				       struct nand_chip *chip)
+static int lpc32xx_waitfunc_controller(struct nand_chip *chip)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
 
 	if (readb(MLC_ISR(host->io_base)) & MLCISR_CONTROLLER_READY)
@@ -369,10 +358,10 @@
 	return NAND_STATUS_READY;
 }
 
-static int lpc32xx_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
+static int lpc32xx_waitfunc(struct nand_chip *chip)
 {
-	lpc32xx_waitfunc_nand(mtd, chip);
-	lpc32xx_waitfunc_controller(mtd, chip);
+	lpc32xx_waitfunc_nand(chip);
+	lpc32xx_waitfunc_controller(chip);
 
 	return NAND_STATUS_READY;
 }
@@ -442,9 +431,10 @@
 	return -ENXIO;
 }
 
-static int lpc32xx_read_page(struct mtd_info *mtd, struct nand_chip *chip,
-			     uint8_t *buf, int oob_required, int page)
+static int lpc32xx_read_page(struct nand_chip *chip, uint8_t *buf,
+			     int oob_required, int page)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
 	int i, j;
 	uint8_t *oobbuf = chip->oob_poi;
@@ -470,7 +460,7 @@
 		writeb(0x00, MLC_ECC_AUTO_DEC_REG(host->io_base));
 
 		/* Wait for Controller Ready */
-		lpc32xx_waitfunc_controller(mtd, chip);
+		lpc32xx_waitfunc_controller(chip);
 
 		/* Check ECC Error status */
 		mlc_isr = readl(MLC_ISR(host->io_base));
@@ -507,11 +497,11 @@
 	return 0;
 }
 
-static int lpc32xx_write_page_lowlevel(struct mtd_info *mtd,
-				       struct nand_chip *chip,
+static int lpc32xx_write_page_lowlevel(struct nand_chip *chip,
 				       const uint8_t *buf, int oob_required,
 				       int page)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
 	const uint8_t *oobbuf = chip->oob_poi;
 	uint8_t *dma_buf = (uint8_t *)buf;
@@ -551,32 +541,30 @@
 		writeb(0x00, MLC_ECC_AUTO_ENC_REG(host->io_base));
 
 		/* Wait for Controller Ready */
-		lpc32xx_waitfunc_controller(mtd, chip);
+		lpc32xx_waitfunc_controller(chip);
 	}
 
 	return nand_prog_page_end_op(chip);
 }
 
-static int lpc32xx_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
-			    int page)
+static int lpc32xx_read_oob(struct nand_chip *chip, int page)
 {
 	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
 
 	/* Read whole page - necessary with MLC controller! */
-	lpc32xx_read_page(mtd, chip, host->dummy_buf, 1, page);
+	lpc32xx_read_page(chip, host->dummy_buf, 1, page);
 
 	return 0;
 }
 
-static int lpc32xx_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
-			      int page)
+static int lpc32xx_write_oob(struct nand_chip *chip, int page)
 {
 	/* None, write_oob conflicts with the automatic LPC MLC ECC decoder! */
 	return 0;
 }
 
 /* Prepares MLC for transfers with H/W ECC enabled: always enabled anyway */
-static void lpc32xx_ecc_enable(struct mtd_info *mtd, int mode)
+static void lpc32xx_ecc_enable(struct nand_chip *chip, int mode)
 {
 	/* Always enabled! */
 }
@@ -741,11 +729,11 @@
 	if (res)
 		goto put_clk;
 
-	nand_chip->cmd_ctrl = lpc32xx_nand_cmd_ctrl;
-	nand_chip->dev_ready = lpc32xx_nand_device_ready;
-	nand_chip->chip_delay = 25; /* us */
-	nand_chip->IO_ADDR_R = MLC_DATA(host->io_base);
-	nand_chip->IO_ADDR_W = MLC_DATA(host->io_base);
+	nand_chip->legacy.cmd_ctrl = lpc32xx_nand_cmd_ctrl;
+	nand_chip->legacy.dev_ready = lpc32xx_nand_device_ready;
+	nand_chip->legacy.chip_delay = 25; /* us */
+	nand_chip->legacy.IO_ADDR_R = MLC_DATA(host->io_base);
+	nand_chip->legacy.IO_ADDR_W = MLC_DATA(host->io_base);
 
 	/* Init NAND controller */
 	lpc32xx_nand_setup(host);
@@ -762,7 +750,7 @@
 	nand_chip->ecc.read_oob = lpc32xx_read_oob;
 	nand_chip->ecc.strength = 4;
 	nand_chip->ecc.bytes = 10;
-	nand_chip->waitfunc = lpc32xx_waitfunc;
+	nand_chip->legacy.waitfunc = lpc32xx_waitfunc;
 
 	nand_chip->options = NAND_NO_SUBPAGE_WRITE;
 	nand_chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
@@ -801,8 +789,8 @@
 	 * Scan to find existence of the device and get the type of NAND device:
 	 * SMALL block or LARGE block.
 	 */
-	nand_chip->dummy_controller.ops = &lpc32xx_nand_controller_ops;
-	res = nand_scan(mtd, 1);
+	nand_chip->legacy.dummy_controller.ops = &lpc32xx_nand_controller_ops;
+	res = nand_scan(nand_chip, 1);
 	if (res)
 		goto free_irq;
 
@@ -839,9 +827,8 @@
 static int lpc32xx_nand_remove(struct platform_device *pdev)
 {
 	struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
-	struct mtd_info *mtd = nand_to_mtd(&host->nand_chip);
 
-	nand_release(mtd);
+	nand_release(&host->nand_chip);
 	free_irq(host->irq, host);
 	if (use_dma)
 		dma_release_channel(host->dma_chan);
diff --git a/drivers/mtd/nand/raw/lpc32xx_slc.c b/drivers/mtd/nand/raw/lpc32xx_slc.c
index a4e8b7e..163f976 100644
--- a/drivers/mtd/nand/raw/lpc32xx_slc.c
+++ b/drivers/mtd/nand/raw/lpc32xx_slc.c
@@ -1,3 +1,4 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
 /*
  * NXP LPC32XX NAND SLC driver
  *
@@ -7,16 +8,6 @@
  *
  * Copyright © 2011 NXP Semiconductors
  * Copyright © 2012 Roland Stigge
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
- * GNU General Public License for more details.
  */
 
 #include <linux/slab.h>
@@ -278,11 +269,10 @@
 /*
  * Hardware specific access to control lines
  */
-static void lpc32xx_nand_cmd_ctrl(struct mtd_info *mtd, int cmd,
-	unsigned int ctrl)
+static void lpc32xx_nand_cmd_ctrl(struct nand_chip *chip, int cmd,
+				  unsigned int ctrl)
 {
 	uint32_t tmp;
-	struct nand_chip *chip = mtd_to_nand(mtd);
 	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
 
 	/* Does CE state need to be changed? */
@@ -304,9 +294,8 @@
 /*
  * Read the Device Ready pin
  */
-static int lpc32xx_nand_device_ready(struct mtd_info *mtd)
+static int lpc32xx_nand_device_ready(struct nand_chip *chip)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
 	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
 	int rdy = 0;
 
@@ -337,7 +326,7 @@
 /*
  * Prepares SLC for transfers with H/W ECC enabled
  */
-static void lpc32xx_nand_ecc_enable(struct mtd_info *mtd, int mode)
+static void lpc32xx_nand_ecc_enable(struct nand_chip *chip, int mode)
 {
 	/* Hardware ECC is enabled automatically in hardware as needed */
 }
@@ -345,7 +334,7 @@
 /*
  * Calculates the ECC for the data
  */
-static int lpc32xx_nand_ecc_calculate(struct mtd_info *mtd,
+static int lpc32xx_nand_ecc_calculate(struct nand_chip *chip,
 				      const unsigned char *buf,
 				      unsigned char *code)
 {
@@ -359,9 +348,8 @@
 /*
  * Read a single byte from NAND device
  */
-static uint8_t lpc32xx_nand_read_byte(struct mtd_info *mtd)
+static uint8_t lpc32xx_nand_read_byte(struct nand_chip *chip)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
 	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
 
 	return (uint8_t)readl(SLC_DATA(host->io_base));
@@ -370,9 +358,8 @@
 /*
  * Simple device read without ECC
  */
-static void lpc32xx_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
+static void lpc32xx_nand_read_buf(struct nand_chip *chip, u_char *buf, int len)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
 	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
 
 	/* Direct device read with no ECC */
@@ -383,9 +370,9 @@
 /*
  * Simple device write without ECC
  */
-static void lpc32xx_nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
+static void lpc32xx_nand_write_buf(struct nand_chip *chip, const uint8_t *buf,
+				   int len)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
 	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
 
 	/* Direct device write with no ECC */
@@ -396,18 +383,20 @@
 /*
  * Read the OOB data from the device without ECC using FIFO method
  */
-static int lpc32xx_nand_read_oob_syndrome(struct mtd_info *mtd,
-					  struct nand_chip *chip, int page)
+static int lpc32xx_nand_read_oob_syndrome(struct nand_chip *chip, int page)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
+
 	return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
 }
 
 /*
  * Write the OOB data to the device without ECC using FIFO method
  */
-static int lpc32xx_nand_write_oob_syndrome(struct mtd_info *mtd,
-	struct nand_chip *chip, int page)
+static int lpc32xx_nand_write_oob_syndrome(struct nand_chip *chip, int page)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
+
 	return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi,
 				 mtd->oobsize);
 }
@@ -610,10 +599,10 @@
  * Read the data and OOB data from the device, use ECC correction with the
  * data, disable ECC for the OOB data
  */
-static int lpc32xx_nand_read_page_syndrome(struct mtd_info *mtd,
-					   struct nand_chip *chip, uint8_t *buf,
+static int lpc32xx_nand_read_page_syndrome(struct nand_chip *chip, uint8_t *buf,
 					   int oob_required, int page)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
 	struct mtd_oob_region oobregion = { };
 	int stat, i, status, error;
@@ -626,7 +615,7 @@
 	status = lpc32xx_xfer(mtd, buf, chip->ecc.steps, 1);
 
 	/* Get OOB data */
-	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
+	chip->legacy.read_buf(chip, chip->oob_poi, mtd->oobsize);
 
 	/* Convert to stored ECC format */
 	lpc32xx_slc_ecc_copy(tmpecc, (uint32_t *) host->ecc_buf, chip->ecc.steps);
@@ -639,7 +628,7 @@
 	oobecc = chip->oob_poi + oobregion.offset;
 
 	for (i = 0; i < chip->ecc.steps; i++) {
-		stat = chip->ecc.correct(mtd, buf, oobecc,
+		stat = chip->ecc.correct(chip, buf, oobecc,
 					 &tmpecc[i * chip->ecc.bytes]);
 		if (stat < 0)
 			mtd->ecc_stats.failed++;
@@ -657,17 +646,18 @@
  * Read the data and OOB data from the device, no ECC correction with the
  * data or OOB data
  */
-static int lpc32xx_nand_read_page_raw_syndrome(struct mtd_info *mtd,
-					       struct nand_chip *chip,
+static int lpc32xx_nand_read_page_raw_syndrome(struct nand_chip *chip,
 					       uint8_t *buf, int oob_required,
 					       int page)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
+
 	/* Issue read command */
 	nand_read_page_op(chip, page, 0, NULL, 0);
 
 	/* Raw reads can just use the FIFO interface */
-	chip->read_buf(mtd, buf, chip->ecc.size * chip->ecc.steps);
-	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
+	chip->legacy.read_buf(chip, buf, chip->ecc.size * chip->ecc.steps);
+	chip->legacy.read_buf(chip, chip->oob_poi, mtd->oobsize);
 
 	return 0;
 }
@@ -676,11 +666,11 @@
  * Write the data and OOB data to the device, use ECC with the data,
  * disable ECC for the OOB data
  */
-static int lpc32xx_nand_write_page_syndrome(struct mtd_info *mtd,
-					    struct nand_chip *chip,
+static int lpc32xx_nand_write_page_syndrome(struct nand_chip *chip,
 					    const uint8_t *buf,
 					    int oob_required, int page)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
 	struct mtd_oob_region oobregion = { };
 	uint8_t *pb;
@@ -705,7 +695,7 @@
 	lpc32xx_slc_ecc_copy(pb, (uint32_t *)host->ecc_buf, chip->ecc.steps);
 
 	/* Write ECC data to device */
-	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
+	chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize);
 
 	return nand_prog_page_end_op(chip);
 }
@@ -714,15 +704,16 @@
  * Write the data and OOB data to the device, no ECC correction with the
  * data or OOB data
  */
-static int lpc32xx_nand_write_page_raw_syndrome(struct mtd_info *mtd,
-						struct nand_chip *chip,
+static int lpc32xx_nand_write_page_raw_syndrome(struct nand_chip *chip,
 						const uint8_t *buf,
 						int oob_required, int page)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
+
 	/* Raw writes can just use the FIFO interface */
 	nand_prog_page_begin_op(chip, page, 0, buf,
 				chip->ecc.size * chip->ecc.steps);
-	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
+	chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize);
 
 	return nand_prog_page_end_op(chip);
 }
@@ -878,11 +869,11 @@
 		goto enable_wp;
 
 	/* Set NAND IO addresses and command/ready functions */
-	chip->IO_ADDR_R = SLC_DATA(host->io_base);
-	chip->IO_ADDR_W = SLC_DATA(host->io_base);
-	chip->cmd_ctrl = lpc32xx_nand_cmd_ctrl;
-	chip->dev_ready = lpc32xx_nand_device_ready;
-	chip->chip_delay = 20; /* 20us command delay time */
+	chip->legacy.IO_ADDR_R = SLC_DATA(host->io_base);
+	chip->legacy.IO_ADDR_W = SLC_DATA(host->io_base);
+	chip->legacy.cmd_ctrl = lpc32xx_nand_cmd_ctrl;
+	chip->legacy.dev_ready = lpc32xx_nand_device_ready;
+	chip->legacy.chip_delay = 20; /* 20us command delay time */
 
 	/* Init NAND controller */
 	lpc32xx_nand_setup(host);
@@ -891,9 +882,9 @@
 
 	/* NAND callbacks for LPC32xx SLC hardware */
 	chip->ecc.mode = NAND_ECC_HW_SYNDROME;
-	chip->read_byte = lpc32xx_nand_read_byte;
-	chip->read_buf = lpc32xx_nand_read_buf;
-	chip->write_buf = lpc32xx_nand_write_buf;
+	chip->legacy.read_byte = lpc32xx_nand_read_byte;
+	chip->legacy.read_buf = lpc32xx_nand_read_buf;
+	chip->legacy.write_buf = lpc32xx_nand_write_buf;
 	chip->ecc.read_page_raw = lpc32xx_nand_read_page_raw_syndrome;
 	chip->ecc.read_page = lpc32xx_nand_read_page_syndrome;
 	chip->ecc.write_page_raw = lpc32xx_nand_write_page_raw_syndrome;
@@ -924,8 +915,8 @@
 	}
 
 	/* Find NAND device */
-	chip->dummy_controller.ops = &lpc32xx_nand_controller_ops;
-	res = nand_scan(mtd, 1);
+	chip->legacy.dummy_controller.ops = &lpc32xx_nand_controller_ops;
+	res = nand_scan(chip, 1);
 	if (res)
 		goto release_dma;
 
@@ -956,9 +947,8 @@
 {
 	uint32_t tmp;
 	struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
-	struct mtd_info *mtd = nand_to_mtd(&host->nand_chip);
 
-	nand_release(mtd);
+	nand_release(&host->nand_chip);
 	dma_release_channel(host->dma_chan);
 
 	/* Force CE high */
diff --git a/drivers/mtd/nand/raw/marvell_nand.c b/drivers/mtd/nand/raw/marvell_nand.c
index c7573cc..fc49e13 100644
--- a/drivers/mtd/nand/raw/marvell_nand.c
+++ b/drivers/mtd/nand/raw/marvell_nand.c
@@ -5,6 +5,73 @@
  * Copyright (C) 2017 Marvell
  * Author: Miquel RAYNAL <miquel.raynal@free-electrons.com>
  *
+ *
+ * This NAND controller driver handles two versions of the hardware,
+ * one is called NFCv1 and is available on PXA SoCs and the other is
+ * called NFCv2 and is available on Armada SoCs.
+ *
+ * The main visible difference is that NFCv1 only has Hamming ECC
+ * capabilities, while NFCv2 also embeds a BCH ECC engine. Also, DMA
+ * is not used with NFCv2.
+ *
+ * The ECC layouts are depicted in details in Marvell AN-379, but here
+ * is a brief description.
+ *
+ * When using Hamming, the data is split in 512B chunks (either 1, 2
+ * or 4) and each chunk will have its own ECC "digest" of 6B at the
+ * beginning of the OOB area and eventually the remaining free OOB
+ * bytes (also called "spare" bytes in the driver). This engine
+ * corrects up to 1 bit per chunk and detects reliably an error if
+ * there are at most 2 bitflips. Here is the page layout used by the
+ * controller when Hamming is chosen:
+ *
+ * +-------------------------------------------------------------+
+ * | Data 1 | ... | Data N | ECC 1 | ... | ECCN | Free OOB bytes |
+ * +-------------------------------------------------------------+
+ *
+ * When using the BCH engine, there are N identical (data + free OOB +
+ * ECC) sections and potentially an extra one to deal with
+ * configurations where the chosen (data + free OOB + ECC) sizes do
+ * not align with the page (data + OOB) size. ECC bytes are always
+ * 30B per ECC chunk. Here is the page layout used by the controller
+ * when BCH is chosen:
+ *
+ * +-----------------------------------------
+ * | Data 1 | Free OOB bytes 1 | ECC 1 | ...
+ * +-----------------------------------------
+ *
+ *      -------------------------------------------
+ *       ... | Data N | Free OOB bytes N | ECC N |
+ *      -------------------------------------------
+ *
+ *           --------------------------------------------+
+ *            Last Data | Last Free OOB bytes | Last ECC |
+ *           --------------------------------------------+
+ *
+ * In both cases, the layout seen by the user is always: all data
+ * first, then all free OOB bytes and finally all ECC bytes. With BCH,
+ * ECC bytes are 30B long and are padded with 0xFF to align on 32
+ * bytes.
+ *
+ * The controller has certain limitations that are handled by the
+ * driver:
+ *   - It can only read 2k at a time. To overcome this limitation, the
+ *     driver issues data cycles on the bus, without issuing new
+ *     CMD + ADDR cycles. The Marvell term is "naked" operations.
+ *   - The ECC strength in BCH mode cannot be tuned. It is fixed 16
+ *     bits. What can be tuned is the ECC block size as long as it
+ *     stays between 512B and 2kiB. It's usually chosen based on the
+ *     chip ECC requirements. For instance, using 2kiB ECC chunks
+ *     provides 4b/512B correctability.
+ *   - The controller will always treat data bytes, free OOB bytes
+ *     and ECC bytes in that order, no matter what the real layout is
+ *     (which is usually all data then all OOB bytes). The
+ *     marvell_nfc_layouts array below contains the currently
+ *     supported layouts.
+ *   - Because of these weird layouts, the Bad Block Markers can be
+ *     located in data section. In this case, the NAND_BBT_NO_OOB_BBM
+ *     option must be set to prevent scanning/writing bad block
+ *     markers.
  */
 
 #include <linux/module.h>
@@ -217,8 +284,11 @@
 	MARVELL_LAYOUT(  512,   512,  1,  1,  1,  512,  8,  8,  0,  0,  0),
 	MARVELL_LAYOUT( 2048,   512,  1,  1,  1, 2048, 40, 24,  0,  0,  0),
 	MARVELL_LAYOUT( 2048,   512,  4,  1,  1, 2048, 32, 30,  0,  0,  0),
+	MARVELL_LAYOUT( 2048,   512,  8,  2,  1, 1024,  0, 30,1024,32, 30),
 	MARVELL_LAYOUT( 4096,   512,  4,  2,  2, 2048, 32, 30,  0,  0,  0),
 	MARVELL_LAYOUT( 4096,   512,  8,  5,  4, 1024,  0, 30,  0, 64, 30),
+	MARVELL_LAYOUT( 8192,   512,  4,  4,  4, 2048,  0, 30,  0,  0,  0),
+	MARVELL_LAYOUT( 8192,   512,  8,  9,  8, 1024,  0, 30,  0, 160, 30),
 };
 
 /**
@@ -308,7 +378,7 @@
  * @dev:		Parent device (used to print error messages)
  * @regs:		NAND controller registers
  * @core_clk:		Core clock
- * @reg_clk:		Regiters clock
+ * @reg_clk:		Registers clock
  * @complete:		Completion object to wait for NAND controller events
  * @assigned_cs:	Bitmask describing already assigned CS lines
  * @chips:		List containing all the NAND chips attached to
@@ -444,9 +514,14 @@
 	writel_relaxed(reg & ~int_mask, nfc->regs + NDCR);
 }
 
-static void marvell_nfc_clear_int(struct marvell_nfc *nfc, u32 int_mask)
+static u32 marvell_nfc_clear_int(struct marvell_nfc *nfc, u32 int_mask)
 {
+	u32 reg;
+
+	reg = readl_relaxed(nfc->regs + NDSR);
 	writel_relaxed(int_mask, nfc->regs + NDSR);
+
+	return reg & int_mask;
 }
 
 static void marvell_nfc_force_byte_access(struct nand_chip *chip,
@@ -613,6 +688,7 @@
 static int marvell_nfc_wait_op(struct nand_chip *chip, unsigned int timeout_ms)
 {
 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
+	u32 pending;
 	int ret;
 
 	/* Timeout is expressed in ms */
@@ -625,8 +701,13 @@
 	ret = wait_for_completion_timeout(&nfc->complete,
 					  msecs_to_jiffies(timeout_ms));
 	marvell_nfc_disable_int(nfc, NDCR_RDYM);
-	marvell_nfc_clear_int(nfc, NDSR_RDY(0) | NDSR_RDY(1));
-	if (!ret) {
+	pending = marvell_nfc_clear_int(nfc, NDSR_RDY(0) | NDSR_RDY(1));
+
+	/*
+	 * In case the interrupt was not served in the required time frame,
+	 * check if the ISR was not served or if something went actually wrong.
+	 */
+	if (ret && !pending) {
 		dev_err(nfc->dev, "Timeout waiting for RB signal\n");
 		return -ETIMEDOUT;
 	}
@@ -634,25 +715,13 @@
 	return 0;
 }
 
-static void marvell_nfc_select_chip(struct mtd_info *mtd, int die_nr)
+static void marvell_nfc_select_target(struct nand_chip *chip,
+				      unsigned int die_nr)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
 	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
 	u32 ndcr_generic;
 
-	if (chip == nfc->selected_chip && die_nr == marvell_nand->selected_die)
-		return;
-
-	if (die_nr < 0 || die_nr >= marvell_nand->nsels) {
-		nfc->selected_chip = NULL;
-		marvell_nand->selected_die = -1;
-		return;
-	}
-
-	writel_relaxed(marvell_nand->ndtr0, nfc->regs + NDTR0);
-	writel_relaxed(marvell_nand->ndtr1, nfc->regs + NDTR1);
-
 	/*
 	 * Reset the NDCR register to a clean state for this particular chip,
 	 * also clear ND_RUN bit.
@@ -664,6 +733,12 @@
 	/* Also reset the interrupt status register */
 	marvell_nfc_clear_int(nfc, NDCR_ALL_INT);
 
+	if (chip == nfc->selected_chip && die_nr == marvell_nand->selected_die)
+		return;
+
+	writel_relaxed(marvell_nand->ndtr0, nfc->regs + NDTR0);
+	writel_relaxed(marvell_nand->ndtr1, nfc->regs + NDTR1);
+
 	nfc->selected_chip = chip;
 	marvell_nand->selected_die = die_nr;
 }
@@ -955,28 +1030,26 @@
 	}
 
 	ret = marvell_nfc_wait_cmdd(chip);
-
 	return ret;
 }
 
-static int marvell_nfc_hw_ecc_hmg_read_page_raw(struct mtd_info *mtd,
-						struct nand_chip *chip, u8 *buf,
+static int marvell_nfc_hw_ecc_hmg_read_page_raw(struct nand_chip *chip, u8 *buf,
 						int oob_required, int page)
 {
+	marvell_nfc_select_target(chip, chip->cur_cs);
 	return marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi,
 						   true, page);
 }
 
-static int marvell_nfc_hw_ecc_hmg_read_page(struct mtd_info *mtd,
-					    struct nand_chip *chip,
-					    u8 *buf, int oob_required,
-					    int page)
+static int marvell_nfc_hw_ecc_hmg_read_page(struct nand_chip *chip, u8 *buf,
+					    int oob_required, int page)
 {
 	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
 	unsigned int full_sz = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
 	int max_bitflips = 0, ret;
 	u8 *raw_buf;
 
+	marvell_nfc_select_target(chip, chip->cur_cs);
 	marvell_nfc_enable_hw_ecc(chip);
 	marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, false,
 					    page);
@@ -1008,14 +1081,13 @@
  * it appears before the ECC bytes when reading), the ->read_oob_raw() function
  * also stands for ->read_oob().
  */
-static int marvell_nfc_hw_ecc_hmg_read_oob_raw(struct mtd_info *mtd,
-					       struct nand_chip *chip, int page)
+static int marvell_nfc_hw_ecc_hmg_read_oob_raw(struct nand_chip *chip, int page)
 {
-	/* Invalidate page cache */
-	chip->pagebuf = -1;
+	u8 *buf = nand_get_data_buf(chip);
 
-	return marvell_nfc_hw_ecc_hmg_do_read_page(chip, chip->data_buf,
-						   chip->oob_poi, true, page);
+	marvell_nfc_select_target(chip, chip->cur_cs);
+	return marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi,
+						   true, page);
 }
 
 /* Hamming write helpers */
@@ -1073,22 +1145,22 @@
 	return ret;
 }
 
-static int marvell_nfc_hw_ecc_hmg_write_page_raw(struct mtd_info *mtd,
-						 struct nand_chip *chip,
+static int marvell_nfc_hw_ecc_hmg_write_page_raw(struct nand_chip *chip,
 						 const u8 *buf,
 						 int oob_required, int page)
 {
+	marvell_nfc_select_target(chip, chip->cur_cs);
 	return marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi,
 						    true, page);
 }
 
-static int marvell_nfc_hw_ecc_hmg_write_page(struct mtd_info *mtd,
-					     struct nand_chip *chip,
+static int marvell_nfc_hw_ecc_hmg_write_page(struct nand_chip *chip,
 					     const u8 *buf,
 					     int oob_required, int page)
 {
 	int ret;
 
+	marvell_nfc_select_target(chip, chip->cur_cs);
 	marvell_nfc_enable_hw_ecc(chip);
 	ret = marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi,
 						   false, page);
@@ -1102,24 +1174,24 @@
  * it appears before the ECC bytes when reading), the ->write_oob_raw() function
  * also stands for ->write_oob().
  */
-static int marvell_nfc_hw_ecc_hmg_write_oob_raw(struct mtd_info *mtd,
-						struct nand_chip *chip,
+static int marvell_nfc_hw_ecc_hmg_write_oob_raw(struct nand_chip *chip,
 						int page)
 {
-	/* Invalidate page cache */
-	chip->pagebuf = -1;
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	u8 *buf = nand_get_data_buf(chip);
 
-	memset(chip->data_buf, 0xFF, mtd->writesize);
+	memset(buf, 0xFF, mtd->writesize);
 
-	return marvell_nfc_hw_ecc_hmg_do_write_page(chip, chip->data_buf,
-						    chip->oob_poi, true, page);
+	marvell_nfc_select_target(chip, chip->cur_cs);
+	return marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi,
+						    true, page);
 }
 
 /* BCH read helpers */
-static int marvell_nfc_hw_ecc_bch_read_page_raw(struct mtd_info *mtd,
-						struct nand_chip *chip, u8 *buf,
+static int marvell_nfc_hw_ecc_bch_read_page_raw(struct nand_chip *chip, u8 *buf,
 						int oob_required, int page)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
 	u8 *oob = chip->oob_poi;
 	int chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
@@ -1130,6 +1202,8 @@
 	int ecc_len = lt->ecc_bytes;
 	int chunk;
 
+	marvell_nfc_select_target(chip, chip->cur_cs);
+
 	if (oob_required)
 		memset(chip->oob_poi, 0xFF, mtd->oobsize);
 
@@ -1228,17 +1302,19 @@
 	}
 }
 
-static int marvell_nfc_hw_ecc_bch_read_page(struct mtd_info *mtd,
-					    struct nand_chip *chip,
+static int marvell_nfc_hw_ecc_bch_read_page(struct nand_chip *chip,
 					    u8 *buf, int oob_required,
 					    int page)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
-	int data_len = lt->data_bytes, spare_len = lt->spare_bytes, ecc_len;
-	u8 *data = buf, *spare = chip->oob_poi, *ecc;
+	int data_len = lt->data_bytes, spare_len = lt->spare_bytes;
+	u8 *data = buf, *spare = chip->oob_poi;
 	int max_bitflips = 0;
 	u32 failure_mask = 0;
-	int chunk, ecc_offset_in_page, ret;
+	int chunk, ret;
+
+	marvell_nfc_select_target(chip, chip->cur_cs);
 
 	/*
 	 * With BCH, OOB is not fully used (and thus not read entirely), not
@@ -1279,73 +1355,96 @@
 	 * the controller in normal mode and must be re-read in raw mode. To
 	 * avoid dropping the performances, we prefer not to include them. The
 	 * user should re-read the page in raw mode if ECC bytes are required.
+	 */
+
+	/*
+	 * In case there is any subpage read error reported by ->correct(), we
+	 * usually re-read only ECC bytes in raw mode and check if the whole
+	 * page is empty. In this case, it is normal that the ECC check failed
+	 * and we just ignore the error.
 	 *
-	 * However, for any subpage read error reported by ->correct(), the ECC
-	 * bytes must be read in raw mode and the full subpage must be checked
-	 * to see if it is entirely empty of if there was an actual error.
+	 * However, it has been empirically observed that for some layouts (e.g
+	 * 2k page, 8b strength per 512B chunk), the controller tries to correct
+	 * bits and may create itself bitflips in the erased area. To overcome
+	 * this strange behavior, the whole page is re-read in raw mode, not
+	 * only the ECC bytes.
 	 */
 	for (chunk = 0; chunk < lt->nchunks; chunk++) {
+		int data_off_in_page, spare_off_in_page, ecc_off_in_page;
+		int data_off, spare_off, ecc_off;
+		int data_len, spare_len, ecc_len;
+
 		/* No failure reported for this chunk, move to the next one */
 		if (!(failure_mask & BIT(chunk)))
 			continue;
 
-		/* Derive ECC bytes positions (in page/buffer) and length */
-		ecc = chip->oob_poi +
-			(lt->full_chunk_cnt * lt->spare_bytes) +
-			lt->last_spare_bytes +
-			(chunk * ALIGN(lt->ecc_bytes, 32));
-		ecc_offset_in_page =
-			(chunk * (lt->data_bytes + lt->spare_bytes +
-				  lt->ecc_bytes)) +
-			(chunk < lt->full_chunk_cnt ?
-			 lt->data_bytes + lt->spare_bytes :
-			 lt->last_data_bytes + lt->last_spare_bytes);
-		ecc_len = chunk < lt->full_chunk_cnt ?
-			lt->ecc_bytes : lt->last_ecc_bytes;
+		data_off_in_page = chunk * (lt->data_bytes + lt->spare_bytes +
+					    lt->ecc_bytes);
+		spare_off_in_page = data_off_in_page +
+			(chunk < lt->full_chunk_cnt ? lt->data_bytes :
+						      lt->last_data_bytes);
+		ecc_off_in_page = spare_off_in_page +
+			(chunk < lt->full_chunk_cnt ? lt->spare_bytes :
+						      lt->last_spare_bytes);
 
-		/* Do the actual raw read of the ECC bytes */
-		nand_change_read_column_op(chip, ecc_offset_in_page,
-					   ecc, ecc_len, false);
+		data_off = chunk * lt->data_bytes;
+		spare_off = chunk * lt->spare_bytes;
+		ecc_off = (lt->full_chunk_cnt * lt->spare_bytes) +
+			  lt->last_spare_bytes +
+			  (chunk * (lt->ecc_bytes + 2));
 
-		/* Derive data/spare bytes positions (in buffer) and length */
-		data = buf + (chunk * lt->data_bytes);
-		data_len = chunk < lt->full_chunk_cnt ?
-			lt->data_bytes : lt->last_data_bytes;
-		spare = chip->oob_poi + (chunk * (lt->spare_bytes +
-						  lt->ecc_bytes));
-		spare_len = chunk < lt->full_chunk_cnt ?
-			lt->spare_bytes : lt->last_spare_bytes;
+		data_len = chunk < lt->full_chunk_cnt ? lt->data_bytes :
+							lt->last_data_bytes;
+		spare_len = chunk < lt->full_chunk_cnt ? lt->spare_bytes :
+							 lt->last_spare_bytes;
+		ecc_len = chunk < lt->full_chunk_cnt ? lt->ecc_bytes :
+						       lt->last_ecc_bytes;
+
+		/*
+		 * Only re-read the ECC bytes, unless we are using the 2k/8b
+		 * layout which is buggy in the sense that the ECC engine will
+		 * try to correct data bytes anyway, creating bitflips. In this
+		 * case, re-read the entire page.
+		 */
+		if (lt->writesize == 2048 && lt->strength == 8) {
+			nand_change_read_column_op(chip, data_off_in_page,
+						   buf + data_off, data_len,
+						   false);
+			nand_change_read_column_op(chip, spare_off_in_page,
+						   chip->oob_poi + spare_off, spare_len,
+						   false);
+		}
+
+		nand_change_read_column_op(chip, ecc_off_in_page,
+					   chip->oob_poi + ecc_off, ecc_len,
+					   false);
 
 		/* Check the entire chunk (data + spare + ecc) for emptyness */
-		marvell_nfc_check_empty_chunk(chip, data, data_len, spare,
-					      spare_len, ecc, ecc_len,
+		marvell_nfc_check_empty_chunk(chip, buf + data_off, data_len,
+					      chip->oob_poi + spare_off, spare_len,
+					      chip->oob_poi + ecc_off, ecc_len,
 					      &max_bitflips);
 	}
 
 	return max_bitflips;
 }
 
-static int marvell_nfc_hw_ecc_bch_read_oob_raw(struct mtd_info *mtd,
-					       struct nand_chip *chip, int page)
+static int marvell_nfc_hw_ecc_bch_read_oob_raw(struct nand_chip *chip, int page)
 {
-	/* Invalidate page cache */
-	chip->pagebuf = -1;
+	u8 *buf = nand_get_data_buf(chip);
 
-	return chip->ecc.read_page_raw(mtd, chip, chip->data_buf, true, page);
+	return chip->ecc.read_page_raw(chip, buf, true, page);
 }
 
-static int marvell_nfc_hw_ecc_bch_read_oob(struct mtd_info *mtd,
-					   struct nand_chip *chip, int page)
+static int marvell_nfc_hw_ecc_bch_read_oob(struct nand_chip *chip, int page)
 {
-	/* Invalidate page cache */
-	chip->pagebuf = -1;
+	u8 *buf = nand_get_data_buf(chip);
 
-	return chip->ecc.read_page(mtd, chip, chip->data_buf, true, page);
+	return chip->ecc.read_page(chip, buf, true, page);
 }
 
 /* BCH write helpers */
-static int marvell_nfc_hw_ecc_bch_write_page_raw(struct mtd_info *mtd,
-						 struct nand_chip *chip,
+static int marvell_nfc_hw_ecc_bch_write_page_raw(struct nand_chip *chip,
 						 const u8 *buf,
 						 int oob_required, int page)
 {
@@ -1359,6 +1458,8 @@
 		lt->last_spare_bytes;
 	int chunk;
 
+	marvell_nfc_select_target(chip, chip->cur_cs);
+
 	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
 
 	for (chunk = 0; chunk < lt->nchunks; chunk++) {
@@ -1458,11 +1559,11 @@
 	return 0;
 }
 
-static int marvell_nfc_hw_ecc_bch_write_page(struct mtd_info *mtd,
-					     struct nand_chip *chip,
+static int marvell_nfc_hw_ecc_bch_write_page(struct nand_chip *chip,
 					     const u8 *buf,
 					     int oob_required, int page)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
 	const u8 *data = buf;
 	const u8 *spare = chip->oob_poi;
@@ -1470,6 +1571,8 @@
 	int spare_len = lt->spare_bytes;
 	int chunk, ret;
 
+	marvell_nfc_select_target(chip, chip->cur_cs);
+
 	/* Spare data will be written anyway, so clear it to avoid garbage */
 	if (!oob_required)
 		memset(chip->oob_poi, 0xFF, mtd->oobsize);
@@ -1507,27 +1610,25 @@
 	return 0;
 }
 
-static int marvell_nfc_hw_ecc_bch_write_oob_raw(struct mtd_info *mtd,
-						struct nand_chip *chip,
+static int marvell_nfc_hw_ecc_bch_write_oob_raw(struct nand_chip *chip,
 						int page)
 {
-	/* Invalidate page cache */
-	chip->pagebuf = -1;
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	u8 *buf = nand_get_data_buf(chip);
 
-	memset(chip->data_buf, 0xFF, mtd->writesize);
+	memset(buf, 0xFF, mtd->writesize);
 
-	return chip->ecc.write_page_raw(mtd, chip, chip->data_buf, true, page);
+	return chip->ecc.write_page_raw(chip, buf, true, page);
 }
 
-static int marvell_nfc_hw_ecc_bch_write_oob(struct mtd_info *mtd,
-					    struct nand_chip *chip, int page)
+static int marvell_nfc_hw_ecc_bch_write_oob(struct nand_chip *chip, int page)
 {
-	/* Invalidate page cache */
-	chip->pagebuf = -1;
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	u8 *buf = nand_get_data_buf(chip);
 
-	memset(chip->data_buf, 0xFF, mtd->writesize);
+	memset(buf, 0xFF, mtd->writesize);
 
-	return chip->ecc.write_page(mtd, chip, chip->data_buf, true, page);
+	return chip->ecc.write_page(chip, buf, true, page);
 }
 
 /* NAND framework ->exec_op() hooks and related helpers */
@@ -2006,6 +2107,8 @@
 {
 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
 
+	marvell_nfc_select_target(chip, op->cs);
+
 	if (nfc->caps->is_nfcv2)
 		return nand_op_parser_exec_op(chip, &marvell_nfcv2_op_parser,
 					      op, check_only);
@@ -2097,6 +2200,16 @@
 		return -ENOTSUPP;
 	}
 
+	/* Special care for the layout 2k/8-bit/512B  */
+	if (l->writesize == 2048 && l->strength == 8) {
+		if (mtd->oobsize < 128) {
+			dev_err(nfc->dev, "Requested layout needs at least 128 OOB bytes\n");
+			return -ENOTSUPP;
+		} else {
+			chip->bbt_options |= NAND_BBT_NO_OOB_BBM;
+		}
+	}
+
 	mtd_set_ooblayout(mtd, &marvell_nand_ooblayout_ops);
 	ecc->steps = l->nchunks;
 	ecc->size = l->data_bytes;
@@ -2135,9 +2248,9 @@
 	int ret;
 
 	if (ecc->mode != NAND_ECC_NONE && (!ecc->size || !ecc->strength)) {
-		if (chip->ecc_step_ds && chip->ecc_strength_ds) {
-			ecc->size = chip->ecc_step_ds;
-			ecc->strength = chip->ecc_strength_ds;
+		if (chip->base.eccreq.step_size && chip->base.eccreq.strength) {
+			ecc->size = chip->base.eccreq.step_size;
+			ecc->strength = chip->base.eccreq.strength;
 		} else {
 			dev_info(nfc->dev,
 				 "No minimum ECC strength, using 1b/512B\n");
@@ -2192,11 +2305,10 @@
 	.pattern = bbt_mirror_pattern
 };
 
-static int marvell_nfc_setup_data_interface(struct mtd_info *mtd, int chipnr,
+static int marvell_nfc_setup_data_interface(struct nand_chip *chip, int chipnr,
 					    const struct nand_data_interface
 					    *conf)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
 	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
 	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
 	unsigned int period_ns = 1000000000 / clk_get_rate(nfc->core_clk) * 2;
@@ -2395,6 +2507,8 @@
 
 static const struct nand_controller_ops marvell_nand_controller_ops = {
 	.attach_chip = marvell_nand_attach_chip,
+	.exec_op = marvell_nfc_exec_op,
+	.setup_data_interface = marvell_nfc_setup_data_interface,
 };
 
 static int marvell_nand_chip_init(struct device *dev, struct marvell_nfc *nfc,
@@ -2427,9 +2541,8 @@
 	}
 
 	/* Alloc the nand chip structure */
-	marvell_nand = devm_kzalloc(dev, sizeof(*marvell_nand) +
-				    (nsels *
-				     sizeof(struct marvell_nand_chip_sel)),
+	marvell_nand = devm_kzalloc(dev,
+				    struct_size(marvell_nand, sels, nsels),
 				    GFP_KERNEL);
 	if (!marvell_nand) {
 		dev_err(dev, "could not allocate chip structure\n");
@@ -2517,10 +2630,8 @@
 	chip->controller = &nfc->controller;
 	nand_set_flash_node(chip, np);
 
-	chip->exec_op = marvell_nfc_exec_op;
-	chip->select_chip = marvell_nfc_select_chip;
 	if (!of_property_read_bool(np, "marvell,nand-keep-config"))
-		chip->setup_data_interface = marvell_nfc_setup_data_interface;
+		chip->options |= NAND_KEEP_TIMINGS;
 
 	mtd = nand_to_mtd(chip);
 	mtd->dev.parent = dev;
@@ -2540,7 +2651,7 @@
 
 	chip->options |= NAND_BUSWIDTH_AUTO;
 
-	ret = nand_scan(mtd, marvell_nand->nsels);
+	ret = nand_scan(chip, marvell_nand->nsels);
 	if (ret) {
 		dev_err(dev, "could not scan the nand chip\n");
 		return ret;
@@ -2553,7 +2664,7 @@
 		ret = mtd_device_register(mtd, NULL, 0);
 	if (ret) {
 		dev_err(dev, "failed to register mtd device: %d\n", ret);
-		nand_release(mtd);
+		nand_release(chip);
 		return ret;
 	}
 
@@ -2608,7 +2719,7 @@
 	struct marvell_nand_chip *entry, *temp;
 
 	list_for_each_entry_safe(entry, temp, &nfc->chips, node) {
-		nand_release(nand_to_mtd(&entry->chip));
+		nand_release(&entry->chip);
 		list_del(&entry->node);
 	}
 }
@@ -2699,24 +2810,23 @@
 		struct regmap *sysctrl_base =
 			syscon_regmap_lookup_by_phandle(np,
 							"marvell,system-controller");
-		u32 reg;
 
 		if (IS_ERR(sysctrl_base))
 			return PTR_ERR(sysctrl_base);
 
-		reg = GENCONF_SOC_DEVICE_MUX_NFC_EN |
-		      GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST |
-		      GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST |
-		      GENCONF_SOC_DEVICE_MUX_NFC_INT_EN;
-		regmap_write(sysctrl_base, GENCONF_SOC_DEVICE_MUX, reg);
+		regmap_write(sysctrl_base, GENCONF_SOC_DEVICE_MUX,
+			     GENCONF_SOC_DEVICE_MUX_NFC_EN |
+			     GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST |
+			     GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST |
+			     GENCONF_SOC_DEVICE_MUX_NFC_INT_EN);
 
-		regmap_read(sysctrl_base, GENCONF_CLK_GATING_CTRL, &reg);
-		reg |= GENCONF_CLK_GATING_CTRL_ND_GATE;
-		regmap_write(sysctrl_base, GENCONF_CLK_GATING_CTRL, reg);
+		regmap_update_bits(sysctrl_base, GENCONF_CLK_GATING_CTRL,
+				   GENCONF_CLK_GATING_CTRL_ND_GATE,
+				   GENCONF_CLK_GATING_CTRL_ND_GATE);
 
-		regmap_read(sysctrl_base, GENCONF_ND_CLK_CTRL, &reg);
-		reg |= GENCONF_ND_CLK_CTRL_EN;
-		regmap_write(sysctrl_base, GENCONF_ND_CLK_CTRL, reg);
+		regmap_update_bits(sysctrl_base, GENCONF_ND_CLK_CTRL,
+				   GENCONF_ND_CLK_CTRL_EN,
+				   GENCONF_ND_CLK_CTRL_EN);
 	}
 
 	/* Configure the DMA if appropriate */
@@ -2870,7 +2980,7 @@
 
 	/*
 	 * Reset nfc->selected_chip so the next command will cause the timing
-	 * registers to be restored in marvell_nfc_select_chip().
+	 * registers to be restored in marvell_nfc_select_target().
 	 */
 	nfc->selected_chip = NULL;
 
diff --git a/drivers/mtd/nand/raw/meson_nand.c b/drivers/mtd/nand/raw/meson_nand.c
new file mode 100644
index 0000000..1b82b68
--- /dev/null
+++ b/drivers/mtd/nand/raw/meson_nand.c
@@ -0,0 +1,1469 @@
+// SPDX-License-Identifier: (GPL-2.0+ OR MIT)
+/*
+ * Amlogic Meson Nand Flash Controller Driver
+ *
+ * Copyright (c) 2018 Amlogic, inc.
+ * Author: Liang Yang <liang.yang@amlogic.com>
+ */
+
+#include <linux/platform_device.h>
+#include <linux/dma-mapping.h>
+#include <linux/interrupt.h>
+#include <linux/clk.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mfd/syscon.h>
+#include <linux/regmap.h>
+#include <linux/slab.h>
+#include <linux/module.h>
+#include <linux/iopoll.h>
+#include <linux/of.h>
+#include <linux/of_device.h>
+#include <linux/sched/task_stack.h>
+
+#define NFC_REG_CMD		0x00
+#define NFC_CMD_IDLE		(0xc << 14)
+#define NFC_CMD_CLE		(0x5 << 14)
+#define NFC_CMD_ALE		(0x6 << 14)
+#define NFC_CMD_ADL		((0 << 16) | (3 << 20))
+#define NFC_CMD_ADH		((1 << 16) | (3 << 20))
+#define NFC_CMD_AIL		((2 << 16) | (3 << 20))
+#define NFC_CMD_AIH		((3 << 16) | (3 << 20))
+#define NFC_CMD_SEED		((8 << 16) | (3 << 20))
+#define NFC_CMD_M2N		((0 << 17) | (2 << 20))
+#define NFC_CMD_N2M		((1 << 17) | (2 << 20))
+#define NFC_CMD_RB		BIT(20)
+#define NFC_CMD_SCRAMBLER_ENABLE	BIT(19)
+#define NFC_CMD_SCRAMBLER_DISABLE	0
+#define NFC_CMD_SHORTMODE_DISABLE	0
+#define NFC_CMD_RB_INT		BIT(14)
+
+#define NFC_CMD_GET_SIZE(x)	(((x) >> 22) & GENMASK(4, 0))
+
+#define NFC_REG_CFG		0x04
+#define NFC_REG_DADR		0x08
+#define NFC_REG_IADR		0x0c
+#define NFC_REG_BUF		0x10
+#define NFC_REG_INFO		0x14
+#define NFC_REG_DC		0x18
+#define NFC_REG_ADR		0x1c
+#define NFC_REG_DL		0x20
+#define NFC_REG_DH		0x24
+#define NFC_REG_CADR		0x28
+#define NFC_REG_SADR		0x2c
+#define NFC_REG_PINS		0x30
+#define NFC_REG_VER		0x38
+
+#define NFC_RB_IRQ_EN		BIT(21)
+
+#define CMDRWGEN(cmd_dir, ran, bch, short_mode, page_size, pages)	\
+	(								\
+		(cmd_dir)			|			\
+		((ran) << 19)			|			\
+		((bch) << 14)			|			\
+		((short_mode) << 13)		|			\
+		(((page_size) & 0x7f) << 6)	|			\
+		((pages) & 0x3f)					\
+	)
+
+#define GENCMDDADDRL(adl, addr)		((adl) | ((addr) & 0xffff))
+#define GENCMDDADDRH(adh, addr)		((adh) | (((addr) >> 16) & 0xffff))
+#define GENCMDIADDRL(ail, addr)		((ail) | ((addr) & 0xffff))
+#define GENCMDIADDRH(aih, addr)		((aih) | (((addr) >> 16) & 0xffff))
+
+#define DMA_DIR(dir)		((dir) ? NFC_CMD_N2M : NFC_CMD_M2N)
+
+#define ECC_CHECK_RETURN_FF	(-1)
+
+#define NAND_CE0		(0xe << 10)
+#define NAND_CE1		(0xd << 10)
+
+#define DMA_BUSY_TIMEOUT	0x100000
+#define CMD_FIFO_EMPTY_TIMEOUT	1000
+
+#define MAX_CE_NUM		2
+
+/* eMMC clock register, misc control */
+#define CLK_SELECT_NAND		BIT(31)
+
+#define NFC_CLK_CYCLE		6
+
+/* nand flash controller delay 3 ns */
+#define NFC_DEFAULT_DELAY	3000
+
+#define ROW_ADDER(page, index)	(((page) >> (8 * (index))) & 0xff)
+#define MAX_CYCLE_ADDRS		5
+#define DIRREAD			1
+#define DIRWRITE		0
+
+#define ECC_PARITY_BCH8_512B	14
+#define ECC_COMPLETE            BIT(31)
+#define ECC_ERR_CNT(x)		(((x) >> 24) & GENMASK(5, 0))
+#define ECC_ZERO_CNT(x)		(((x) >> 16) & GENMASK(5, 0))
+#define ECC_UNCORRECTABLE	0x3f
+
+#define PER_INFO_BYTE		8
+
+struct meson_nfc_nand_chip {
+	struct list_head node;
+	struct nand_chip nand;
+	unsigned long clk_rate;
+	unsigned long level1_divider;
+	u32 bus_timing;
+	u32 twb;
+	u32 tadl;
+	u32 tbers_max;
+
+	u32 bch_mode;
+	u8 *data_buf;
+	__le64 *info_buf;
+	u32 nsels;
+	u8 sels[0];
+};
+
+struct meson_nand_ecc {
+	u32 bch;
+	u32 strength;
+};
+
+struct meson_nfc_data {
+	const struct nand_ecc_caps *ecc_caps;
+};
+
+struct meson_nfc_param {
+	u32 chip_select;
+	u32 rb_select;
+};
+
+struct nand_rw_cmd {
+	u32 cmd0;
+	u32 addrs[MAX_CYCLE_ADDRS];
+	u32 cmd1;
+};
+
+struct nand_timing {
+	u32 twb;
+	u32 tadl;
+	u32 tbers_max;
+};
+
+struct meson_nfc {
+	struct nand_controller controller;
+	struct clk *core_clk;
+	struct clk *device_clk;
+	struct clk *phase_tx;
+	struct clk *phase_rx;
+
+	unsigned long clk_rate;
+	u32 bus_timing;
+
+	struct device *dev;
+	void __iomem *reg_base;
+	struct regmap *reg_clk;
+	struct completion completion;
+	struct list_head chips;
+	const struct meson_nfc_data *data;
+	struct meson_nfc_param param;
+	struct nand_timing timing;
+	union {
+		int cmd[32];
+		struct nand_rw_cmd rw;
+	} cmdfifo;
+
+	dma_addr_t daddr;
+	dma_addr_t iaddr;
+
+	unsigned long assigned_cs;
+};
+
+enum {
+	NFC_ECC_BCH8_1K		= 2,
+	NFC_ECC_BCH24_1K,
+	NFC_ECC_BCH30_1K,
+	NFC_ECC_BCH40_1K,
+	NFC_ECC_BCH50_1K,
+	NFC_ECC_BCH60_1K,
+};
+
+#define MESON_ECC_DATA(b, s)	{ .bch = (b),	.strength = (s)}
+
+static struct meson_nand_ecc meson_ecc[] = {
+	MESON_ECC_DATA(NFC_ECC_BCH8_1K, 8),
+	MESON_ECC_DATA(NFC_ECC_BCH24_1K, 24),
+	MESON_ECC_DATA(NFC_ECC_BCH30_1K, 30),
+	MESON_ECC_DATA(NFC_ECC_BCH40_1K, 40),
+	MESON_ECC_DATA(NFC_ECC_BCH50_1K, 50),
+	MESON_ECC_DATA(NFC_ECC_BCH60_1K, 60),
+};
+
+static int meson_nand_calc_ecc_bytes(int step_size, int strength)
+{
+	int ecc_bytes;
+
+	if (step_size == 512 && strength == 8)
+		return ECC_PARITY_BCH8_512B;
+
+	ecc_bytes = DIV_ROUND_UP(strength * fls(step_size * 8), 8);
+	ecc_bytes = ALIGN(ecc_bytes, 2);
+
+	return ecc_bytes;
+}
+
+NAND_ECC_CAPS_SINGLE(meson_gxl_ecc_caps,
+		     meson_nand_calc_ecc_bytes, 1024, 8, 24, 30, 40, 50, 60);
+NAND_ECC_CAPS_SINGLE(meson_axg_ecc_caps,
+		     meson_nand_calc_ecc_bytes, 1024, 8);
+
+static struct meson_nfc_nand_chip *to_meson_nand(struct nand_chip *nand)
+{
+	return container_of(nand, struct meson_nfc_nand_chip, nand);
+}
+
+static void meson_nfc_select_chip(struct nand_chip *nand, int chip)
+{
+	struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
+	struct meson_nfc *nfc = nand_get_controller_data(nand);
+	int ret, value;
+
+	if (chip < 0 || WARN_ON_ONCE(chip >= meson_chip->nsels))
+		return;
+
+	nfc->param.chip_select = meson_chip->sels[chip] ? NAND_CE1 : NAND_CE0;
+	nfc->param.rb_select = nfc->param.chip_select;
+	nfc->timing.twb = meson_chip->twb;
+	nfc->timing.tadl = meson_chip->tadl;
+	nfc->timing.tbers_max = meson_chip->tbers_max;
+
+	if (nfc->clk_rate != meson_chip->clk_rate) {
+		ret = clk_set_rate(nfc->device_clk, meson_chip->clk_rate);
+		if (ret) {
+			dev_err(nfc->dev, "failed to set clock rate\n");
+			return;
+		}
+		nfc->clk_rate = meson_chip->clk_rate;
+	}
+	if (nfc->bus_timing != meson_chip->bus_timing) {
+		value = (NFC_CLK_CYCLE - 1) | (meson_chip->bus_timing << 5);
+		writel(value, nfc->reg_base + NFC_REG_CFG);
+		writel((1 << 31), nfc->reg_base + NFC_REG_CMD);
+		nfc->bus_timing =  meson_chip->bus_timing;
+	}
+}
+
+static void meson_nfc_cmd_idle(struct meson_nfc *nfc, u32 time)
+{
+	writel(nfc->param.chip_select | NFC_CMD_IDLE | (time & 0x3ff),
+	       nfc->reg_base + NFC_REG_CMD);
+}
+
+static void meson_nfc_cmd_seed(struct meson_nfc *nfc, u32 seed)
+{
+	writel(NFC_CMD_SEED | (0xc2 + (seed & 0x7fff)),
+	       nfc->reg_base + NFC_REG_CMD);
+}
+
+static void meson_nfc_cmd_access(struct nand_chip *nand, int raw, bool dir,
+				 int scrambler)
+{
+	struct mtd_info *mtd = nand_to_mtd(nand);
+	struct meson_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd));
+	struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
+	u32 bch = meson_chip->bch_mode, cmd;
+	int len = mtd->writesize, pagesize, pages;
+
+	pagesize = nand->ecc.size;
+
+	if (raw) {
+		len = mtd->writesize + mtd->oobsize;
+		cmd = (len & GENMASK(5, 0)) | scrambler | DMA_DIR(dir);
+		writel(cmd, nfc->reg_base + NFC_REG_CMD);
+		return;
+	}
+
+	pages = len / nand->ecc.size;
+
+	cmd = CMDRWGEN(DMA_DIR(dir), scrambler, bch,
+		       NFC_CMD_SHORTMODE_DISABLE, pagesize, pages);
+
+	writel(cmd, nfc->reg_base + NFC_REG_CMD);
+}
+
+static void meson_nfc_drain_cmd(struct meson_nfc *nfc)
+{
+	/*
+	 * Insert two commands to make sure all valid commands are finished.
+	 *
+	 * The Nand flash controller is designed as two stages pipleline -
+	 *  a) fetch and b) excute.
+	 * There might be cases when the driver see command queue is empty,
+	 * but the Nand flash controller still has two commands buffered,
+	 * one is fetched into NFC request queue (ready to run), and another
+	 * is actively executing. So pushing 2 "IDLE" commands guarantees that
+	 * the pipeline is emptied.
+	 */
+	meson_nfc_cmd_idle(nfc, 0);
+	meson_nfc_cmd_idle(nfc, 0);
+}
+
+static int meson_nfc_wait_cmd_finish(struct meson_nfc *nfc,
+				     unsigned int timeout_ms)
+{
+	u32 cmd_size = 0;
+	int ret;
+
+	/* wait cmd fifo is empty */
+	ret = readl_relaxed_poll_timeout(nfc->reg_base + NFC_REG_CMD, cmd_size,
+					 !NFC_CMD_GET_SIZE(cmd_size),
+					 10, timeout_ms * 1000);
+	if (ret)
+		dev_err(nfc->dev, "wait for empty CMD FIFO time out\n");
+
+	return ret;
+}
+
+static int meson_nfc_wait_dma_finish(struct meson_nfc *nfc)
+{
+	meson_nfc_drain_cmd(nfc);
+
+	return meson_nfc_wait_cmd_finish(nfc, DMA_BUSY_TIMEOUT);
+}
+
+static u8 *meson_nfc_oob_ptr(struct nand_chip *nand, int i)
+{
+	struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
+	int len;
+
+	len = nand->ecc.size * (i + 1) + (nand->ecc.bytes + 2) * i;
+
+	return meson_chip->data_buf + len;
+}
+
+static u8 *meson_nfc_data_ptr(struct nand_chip *nand, int i)
+{
+	struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
+	int len, temp;
+
+	temp = nand->ecc.size + nand->ecc.bytes;
+	len = (temp + 2) * i;
+
+	return meson_chip->data_buf + len;
+}
+
+static void meson_nfc_get_data_oob(struct nand_chip *nand,
+				   u8 *buf, u8 *oobbuf)
+{
+	int i, oob_len = 0;
+	u8 *dsrc, *osrc;
+
+	oob_len = nand->ecc.bytes + 2;
+	for (i = 0; i < nand->ecc.steps; i++) {
+		if (buf) {
+			dsrc = meson_nfc_data_ptr(nand, i);
+			memcpy(buf, dsrc, nand->ecc.size);
+			buf += nand->ecc.size;
+		}
+		osrc = meson_nfc_oob_ptr(nand, i);
+		memcpy(oobbuf, osrc, oob_len);
+		oobbuf += oob_len;
+	}
+}
+
+static void meson_nfc_set_data_oob(struct nand_chip *nand,
+				   const u8 *buf, u8 *oobbuf)
+{
+	int i, oob_len = 0;
+	u8 *dsrc, *osrc;
+
+	oob_len = nand->ecc.bytes + 2;
+	for (i = 0; i < nand->ecc.steps; i++) {
+		if (buf) {
+			dsrc = meson_nfc_data_ptr(nand, i);
+			memcpy(dsrc, buf, nand->ecc.size);
+			buf += nand->ecc.size;
+		}
+		osrc = meson_nfc_oob_ptr(nand, i);
+		memcpy(osrc, oobbuf, oob_len);
+		oobbuf += oob_len;
+	}
+}
+
+static int meson_nfc_queue_rb(struct meson_nfc *nfc, int timeout_ms)
+{
+	u32 cmd, cfg;
+	int ret = 0;
+
+	meson_nfc_cmd_idle(nfc, nfc->timing.twb);
+	meson_nfc_drain_cmd(nfc);
+	meson_nfc_wait_cmd_finish(nfc, CMD_FIFO_EMPTY_TIMEOUT);
+
+	cfg = readl(nfc->reg_base + NFC_REG_CFG);
+	cfg |= NFC_RB_IRQ_EN;
+	writel(cfg, nfc->reg_base + NFC_REG_CFG);
+
+	reinit_completion(&nfc->completion);
+
+	/* use the max erase time as the maximum clock for waiting R/B */
+	cmd = NFC_CMD_RB | NFC_CMD_RB_INT
+		| nfc->param.chip_select | nfc->timing.tbers_max;
+	writel(cmd, nfc->reg_base + NFC_REG_CMD);
+
+	ret = wait_for_completion_timeout(&nfc->completion,
+					  msecs_to_jiffies(timeout_ms));
+	if (ret == 0)
+		ret = -1;
+
+	return ret;
+}
+
+static void meson_nfc_set_user_byte(struct nand_chip *nand, u8 *oob_buf)
+{
+	struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
+	__le64 *info;
+	int i, count;
+
+	for (i = 0, count = 0; i < nand->ecc.steps; i++, count += 2) {
+		info = &meson_chip->info_buf[i];
+		*info |= oob_buf[count];
+		*info |= oob_buf[count + 1] << 8;
+	}
+}
+
+static void meson_nfc_get_user_byte(struct nand_chip *nand, u8 *oob_buf)
+{
+	struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
+	__le64 *info;
+	int i, count;
+
+	for (i = 0, count = 0; i < nand->ecc.steps; i++, count += 2) {
+		info = &meson_chip->info_buf[i];
+		oob_buf[count] = *info;
+		oob_buf[count + 1] = *info >> 8;
+	}
+}
+
+static int meson_nfc_ecc_correct(struct nand_chip *nand, u32 *bitflips,
+				 u64 *correct_bitmap)
+{
+	struct mtd_info *mtd = nand_to_mtd(nand);
+	struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
+	__le64 *info;
+	int ret = 0, i;
+
+	for (i = 0; i < nand->ecc.steps; i++) {
+		info = &meson_chip->info_buf[i];
+		if (ECC_ERR_CNT(*info) != ECC_UNCORRECTABLE) {
+			mtd->ecc_stats.corrected += ECC_ERR_CNT(*info);
+			*bitflips = max_t(u32, *bitflips, ECC_ERR_CNT(*info));
+			*correct_bitmap |= 1 >> i;
+			continue;
+		}
+		if ((nand->options & NAND_NEED_SCRAMBLING) &&
+		    ECC_ZERO_CNT(*info) < nand->ecc.strength) {
+			mtd->ecc_stats.corrected += ECC_ZERO_CNT(*info);
+			*bitflips = max_t(u32, *bitflips,
+					  ECC_ZERO_CNT(*info));
+			ret = ECC_CHECK_RETURN_FF;
+		} else {
+			ret = -EBADMSG;
+		}
+	}
+	return ret;
+}
+
+static int meson_nfc_dma_buffer_setup(struct nand_chip *nand, void *databuf,
+				      int datalen, void *infobuf, int infolen,
+				      enum dma_data_direction dir)
+{
+	struct meson_nfc *nfc = nand_get_controller_data(nand);
+	u32 cmd;
+	int ret = 0;
+
+	nfc->daddr = dma_map_single(nfc->dev, databuf, datalen, dir);
+	ret = dma_mapping_error(nfc->dev, nfc->daddr);
+	if (ret) {
+		dev_err(nfc->dev, "DMA mapping error\n");
+		return ret;
+	}
+	cmd = GENCMDDADDRL(NFC_CMD_ADL, nfc->daddr);
+	writel(cmd, nfc->reg_base + NFC_REG_CMD);
+
+	cmd = GENCMDDADDRH(NFC_CMD_ADH, nfc->daddr);
+	writel(cmd, nfc->reg_base + NFC_REG_CMD);
+
+	if (infobuf) {
+		nfc->iaddr = dma_map_single(nfc->dev, infobuf, infolen, dir);
+		ret = dma_mapping_error(nfc->dev, nfc->iaddr);
+		if (ret) {
+			dev_err(nfc->dev, "DMA mapping error\n");
+			dma_unmap_single(nfc->dev,
+					 nfc->daddr, datalen, dir);
+			return ret;
+		}
+		cmd = GENCMDIADDRL(NFC_CMD_AIL, nfc->iaddr);
+		writel(cmd, nfc->reg_base + NFC_REG_CMD);
+
+		cmd = GENCMDIADDRH(NFC_CMD_AIH, nfc->iaddr);
+		writel(cmd, nfc->reg_base + NFC_REG_CMD);
+	}
+
+	return ret;
+}
+
+static void meson_nfc_dma_buffer_release(struct nand_chip *nand,
+					 int infolen, int datalen,
+					 enum dma_data_direction dir)
+{
+	struct meson_nfc *nfc = nand_get_controller_data(nand);
+
+	dma_unmap_single(nfc->dev, nfc->daddr, datalen, dir);
+	if (infolen)
+		dma_unmap_single(nfc->dev, nfc->iaddr, infolen, dir);
+}
+
+static int meson_nfc_read_buf(struct nand_chip *nand, u8 *buf, int len)
+{
+	struct meson_nfc *nfc = nand_get_controller_data(nand);
+	int ret = 0;
+	u32 cmd;
+	u8 *info;
+
+	info = kzalloc(PER_INFO_BYTE, GFP_KERNEL);
+	if (!info)
+		return -ENOMEM;
+
+	ret = meson_nfc_dma_buffer_setup(nand, buf, len, info,
+					 PER_INFO_BYTE, DMA_FROM_DEVICE);
+	if (ret)
+		goto out;
+
+	cmd = NFC_CMD_N2M | (len & GENMASK(5, 0));
+	writel(cmd, nfc->reg_base + NFC_REG_CMD);
+
+	meson_nfc_drain_cmd(nfc);
+	meson_nfc_wait_cmd_finish(nfc, 1000);
+	meson_nfc_dma_buffer_release(nand, len, PER_INFO_BYTE, DMA_FROM_DEVICE);
+
+out:
+	kfree(info);
+
+	return ret;
+}
+
+static int meson_nfc_write_buf(struct nand_chip *nand, u8 *buf, int len)
+{
+	struct meson_nfc *nfc = nand_get_controller_data(nand);
+	int ret = 0;
+	u32 cmd;
+
+	ret = meson_nfc_dma_buffer_setup(nand, buf, len, NULL,
+					 0, DMA_TO_DEVICE);
+	if (ret)
+		return ret;
+
+	cmd = NFC_CMD_M2N | (len & GENMASK(5, 0));
+	writel(cmd, nfc->reg_base + NFC_REG_CMD);
+
+	meson_nfc_drain_cmd(nfc);
+	meson_nfc_wait_cmd_finish(nfc, 1000);
+	meson_nfc_dma_buffer_release(nand, len, 0, DMA_TO_DEVICE);
+
+	return ret;
+}
+
+static int meson_nfc_rw_cmd_prepare_and_execute(struct nand_chip *nand,
+						int page, bool in)
+{
+	struct mtd_info *mtd = nand_to_mtd(nand);
+	struct meson_nfc *nfc = nand_get_controller_data(nand);
+	const struct nand_sdr_timings *sdr =
+		nand_get_sdr_timings(&nand->data_interface);
+	u32 *addrs = nfc->cmdfifo.rw.addrs;
+	u32 cs = nfc->param.chip_select;
+	u32 cmd0, cmd_num, row_start;
+	int ret = 0, i;
+
+	cmd_num = sizeof(struct nand_rw_cmd) / sizeof(int);
+
+	cmd0 = in ? NAND_CMD_READ0 : NAND_CMD_SEQIN;
+	nfc->cmdfifo.rw.cmd0 = cs | NFC_CMD_CLE | cmd0;
+
+	addrs[0] = cs | NFC_CMD_ALE | 0;
+	if (mtd->writesize <= 512) {
+		cmd_num--;
+		row_start = 1;
+	} else {
+		addrs[1] = cs | NFC_CMD_ALE | 0;
+		row_start = 2;
+	}
+
+	addrs[row_start] = cs | NFC_CMD_ALE | ROW_ADDER(page, 0);
+	addrs[row_start + 1] = cs | NFC_CMD_ALE | ROW_ADDER(page, 1);
+
+	if (nand->options & NAND_ROW_ADDR_3)
+		addrs[row_start + 2] =
+			cs | NFC_CMD_ALE | ROW_ADDER(page, 2);
+	else
+		cmd_num--;
+
+	/* subtract cmd1 */
+	cmd_num--;
+
+	for (i = 0; i < cmd_num; i++)
+		writel_relaxed(nfc->cmdfifo.cmd[i],
+			       nfc->reg_base + NFC_REG_CMD);
+
+	if (in) {
+		nfc->cmdfifo.rw.cmd1 = cs | NFC_CMD_CLE | NAND_CMD_READSTART;
+		writel(nfc->cmdfifo.rw.cmd1, nfc->reg_base + NFC_REG_CMD);
+		meson_nfc_queue_rb(nfc, PSEC_TO_MSEC(sdr->tR_max));
+	} else {
+		meson_nfc_cmd_idle(nfc, nfc->timing.tadl);
+	}
+
+	return ret;
+}
+
+static int meson_nfc_write_page_sub(struct nand_chip *nand,
+				    int page, int raw)
+{
+	struct mtd_info *mtd = nand_to_mtd(nand);
+	const struct nand_sdr_timings *sdr =
+		nand_get_sdr_timings(&nand->data_interface);
+	struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
+	struct meson_nfc *nfc = nand_get_controller_data(nand);
+	int data_len, info_len;
+	u32 cmd;
+	int ret;
+
+	meson_nfc_select_chip(nand, nand->cur_cs);
+
+	data_len =  mtd->writesize + mtd->oobsize;
+	info_len = nand->ecc.steps * PER_INFO_BYTE;
+
+	ret = meson_nfc_rw_cmd_prepare_and_execute(nand, page, DIRWRITE);
+	if (ret)
+		return ret;
+
+	ret = meson_nfc_dma_buffer_setup(nand, meson_chip->data_buf,
+					 data_len, meson_chip->info_buf,
+					 info_len, DMA_TO_DEVICE);
+	if (ret)
+		return ret;
+
+	if (nand->options & NAND_NEED_SCRAMBLING) {
+		meson_nfc_cmd_seed(nfc, page);
+		meson_nfc_cmd_access(nand, raw, DIRWRITE,
+				     NFC_CMD_SCRAMBLER_ENABLE);
+	} else {
+		meson_nfc_cmd_access(nand, raw, DIRWRITE,
+				     NFC_CMD_SCRAMBLER_DISABLE);
+	}
+
+	cmd = nfc->param.chip_select | NFC_CMD_CLE | NAND_CMD_PAGEPROG;
+	writel(cmd, nfc->reg_base + NFC_REG_CMD);
+	meson_nfc_queue_rb(nfc, PSEC_TO_MSEC(sdr->tPROG_max));
+
+	meson_nfc_dma_buffer_release(nand, data_len, info_len, DMA_TO_DEVICE);
+
+	return ret;
+}
+
+static int meson_nfc_write_page_raw(struct nand_chip *nand, const u8 *buf,
+				    int oob_required, int page)
+{
+	u8 *oob_buf = nand->oob_poi;
+
+	meson_nfc_set_data_oob(nand, buf, oob_buf);
+
+	return meson_nfc_write_page_sub(nand, page, 1);
+}
+
+static int meson_nfc_write_page_hwecc(struct nand_chip *nand,
+				      const u8 *buf, int oob_required, int page)
+{
+	struct mtd_info *mtd = nand_to_mtd(nand);
+	struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
+	u8 *oob_buf = nand->oob_poi;
+
+	memcpy(meson_chip->data_buf, buf, mtd->writesize);
+	memset(meson_chip->info_buf, 0, nand->ecc.steps * PER_INFO_BYTE);
+	meson_nfc_set_user_byte(nand, oob_buf);
+
+	return meson_nfc_write_page_sub(nand, page, 0);
+}
+
+static void meson_nfc_check_ecc_pages_valid(struct meson_nfc *nfc,
+					    struct nand_chip *nand, int raw)
+{
+	struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
+	__le64 *info;
+	u32 neccpages;
+	int ret;
+
+	neccpages = raw ? 1 : nand->ecc.steps;
+	info = &meson_chip->info_buf[neccpages - 1];
+	do {
+		usleep_range(10, 15);
+		/* info is updated by nfc dma engine*/
+		smp_rmb();
+		ret = *info & ECC_COMPLETE;
+	} while (!ret);
+}
+
+static int meson_nfc_read_page_sub(struct nand_chip *nand,
+				   int page, int raw)
+{
+	struct mtd_info *mtd = nand_to_mtd(nand);
+	struct meson_nfc *nfc = nand_get_controller_data(nand);
+	struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
+	int data_len, info_len;
+	int ret;
+
+	meson_nfc_select_chip(nand, nand->cur_cs);
+
+	data_len =  mtd->writesize + mtd->oobsize;
+	info_len = nand->ecc.steps * PER_INFO_BYTE;
+
+	ret = meson_nfc_rw_cmd_prepare_and_execute(nand, page, DIRREAD);
+	if (ret)
+		return ret;
+
+	ret = meson_nfc_dma_buffer_setup(nand, meson_chip->data_buf,
+					 data_len, meson_chip->info_buf,
+					 info_len, DMA_FROM_DEVICE);
+	if (ret)
+		return ret;
+
+	if (nand->options & NAND_NEED_SCRAMBLING) {
+		meson_nfc_cmd_seed(nfc, page);
+		meson_nfc_cmd_access(nand, raw, DIRREAD,
+				     NFC_CMD_SCRAMBLER_ENABLE);
+	} else {
+		meson_nfc_cmd_access(nand, raw, DIRREAD,
+				     NFC_CMD_SCRAMBLER_DISABLE);
+	}
+
+	ret = meson_nfc_wait_dma_finish(nfc);
+	meson_nfc_check_ecc_pages_valid(nfc, nand, raw);
+
+	meson_nfc_dma_buffer_release(nand, data_len, info_len, DMA_FROM_DEVICE);
+
+	return ret;
+}
+
+static int meson_nfc_read_page_raw(struct nand_chip *nand, u8 *buf,
+				   int oob_required, int page)
+{
+	u8 *oob_buf = nand->oob_poi;
+	int ret;
+
+	ret = meson_nfc_read_page_sub(nand, page, 1);
+	if (ret)
+		return ret;
+
+	meson_nfc_get_data_oob(nand, buf, oob_buf);
+
+	return 0;
+}
+
+static int meson_nfc_read_page_hwecc(struct nand_chip *nand, u8 *buf,
+				     int oob_required, int page)
+{
+	struct mtd_info *mtd = nand_to_mtd(nand);
+	struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
+	struct nand_ecc_ctrl *ecc = &nand->ecc;
+	u64 correct_bitmap = 0;
+	u32 bitflips = 0;
+	u8 *oob_buf = nand->oob_poi;
+	int ret, i;
+
+	ret = meson_nfc_read_page_sub(nand, page, 0);
+	if (ret)
+		return ret;
+
+	meson_nfc_get_user_byte(nand, oob_buf);
+	ret = meson_nfc_ecc_correct(nand, &bitflips, &correct_bitmap);
+	if (ret == ECC_CHECK_RETURN_FF) {
+		if (buf)
+			memset(buf, 0xff, mtd->writesize);
+		memset(oob_buf, 0xff, mtd->oobsize);
+	} else if (ret < 0) {
+		if ((nand->options & NAND_NEED_SCRAMBLING) || !buf) {
+			mtd->ecc_stats.failed++;
+			return bitflips;
+		}
+		ret  = meson_nfc_read_page_raw(nand, buf, 0, page);
+		if (ret)
+			return ret;
+
+		for (i = 0; i < nand->ecc.steps ; i++) {
+			u8 *data = buf + i * ecc->size;
+			u8 *oob = nand->oob_poi + i * (ecc->bytes + 2);
+
+			if (correct_bitmap & (1 << i))
+				continue;
+			ret = nand_check_erased_ecc_chunk(data,	ecc->size,
+							  oob, ecc->bytes + 2,
+							  NULL, 0,
+							  ecc->strength);
+			if (ret < 0) {
+				mtd->ecc_stats.failed++;
+			} else {
+				mtd->ecc_stats.corrected += ret;
+				bitflips =  max_t(u32, bitflips, ret);
+			}
+		}
+	} else if (buf && buf != meson_chip->data_buf) {
+		memcpy(buf, meson_chip->data_buf, mtd->writesize);
+	}
+
+	return bitflips;
+}
+
+static int meson_nfc_read_oob_raw(struct nand_chip *nand, int page)
+{
+	return meson_nfc_read_page_raw(nand, NULL, 1, page);
+}
+
+static int meson_nfc_read_oob(struct nand_chip *nand, int page)
+{
+	return meson_nfc_read_page_hwecc(nand, NULL, 1, page);
+}
+
+static bool meson_nfc_is_buffer_dma_safe(const void *buffer)
+{
+	if (virt_addr_valid(buffer) && (!object_is_on_stack(buffer)))
+		return true;
+	return false;
+}
+
+static void *
+meson_nand_op_get_dma_safe_input_buf(const struct nand_op_instr *instr)
+{
+	if (WARN_ON(instr->type != NAND_OP_DATA_IN_INSTR))
+		return NULL;
+
+	if (meson_nfc_is_buffer_dma_safe(instr->ctx.data.buf.in))
+		return instr->ctx.data.buf.in;
+
+	return kzalloc(instr->ctx.data.len, GFP_KERNEL);
+}
+
+static void
+meson_nand_op_put_dma_safe_input_buf(const struct nand_op_instr *instr,
+				     void *buf)
+{
+	if (WARN_ON(instr->type != NAND_OP_DATA_IN_INSTR) ||
+	    WARN_ON(!buf))
+		return;
+
+	if (buf == instr->ctx.data.buf.in)
+		return;
+
+	memcpy(instr->ctx.data.buf.in, buf, instr->ctx.data.len);
+	kfree(buf);
+}
+
+static void *
+meson_nand_op_get_dma_safe_output_buf(const struct nand_op_instr *instr)
+{
+	if (WARN_ON(instr->type != NAND_OP_DATA_OUT_INSTR))
+		return NULL;
+
+	if (meson_nfc_is_buffer_dma_safe(instr->ctx.data.buf.out))
+		return (void *)instr->ctx.data.buf.out;
+
+	return kmemdup(instr->ctx.data.buf.out,
+		       instr->ctx.data.len, GFP_KERNEL);
+}
+
+static void
+meson_nand_op_put_dma_safe_output_buf(const struct nand_op_instr *instr,
+				      const void *buf)
+{
+	if (WARN_ON(instr->type != NAND_OP_DATA_OUT_INSTR) ||
+	    WARN_ON(!buf))
+		return;
+
+	if (buf != instr->ctx.data.buf.out)
+		kfree(buf);
+}
+
+static int meson_nfc_exec_op(struct nand_chip *nand,
+			     const struct nand_operation *op, bool check_only)
+{
+	struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
+	struct meson_nfc *nfc = nand_get_controller_data(nand);
+	const struct nand_op_instr *instr = NULL;
+	void *buf;
+	u32 op_id, delay_idle, cmd;
+	int i;
+
+	meson_nfc_select_chip(nand, op->cs);
+	for (op_id = 0; op_id < op->ninstrs; op_id++) {
+		instr = &op->instrs[op_id];
+		delay_idle = DIV_ROUND_UP(PSEC_TO_NSEC(instr->delay_ns),
+					  meson_chip->level1_divider *
+					  NFC_CLK_CYCLE);
+		switch (instr->type) {
+		case NAND_OP_CMD_INSTR:
+			cmd = nfc->param.chip_select | NFC_CMD_CLE;
+			cmd |= instr->ctx.cmd.opcode & 0xff;
+			writel(cmd, nfc->reg_base + NFC_REG_CMD);
+			meson_nfc_cmd_idle(nfc, delay_idle);
+			break;
+
+		case NAND_OP_ADDR_INSTR:
+			for (i = 0; i < instr->ctx.addr.naddrs; i++) {
+				cmd = nfc->param.chip_select | NFC_CMD_ALE;
+				cmd |= instr->ctx.addr.addrs[i] & 0xff;
+				writel(cmd, nfc->reg_base + NFC_REG_CMD);
+			}
+			meson_nfc_cmd_idle(nfc, delay_idle);
+			break;
+
+		case NAND_OP_DATA_IN_INSTR:
+			buf = meson_nand_op_get_dma_safe_input_buf(instr);
+			if (!buf)
+				return -ENOMEM;
+			meson_nfc_read_buf(nand, buf, instr->ctx.data.len);
+			meson_nand_op_put_dma_safe_input_buf(instr, buf);
+			break;
+
+		case NAND_OP_DATA_OUT_INSTR:
+			buf = meson_nand_op_get_dma_safe_output_buf(instr);
+			if (!buf)
+				return -ENOMEM;
+			meson_nfc_write_buf(nand, buf, instr->ctx.data.len);
+			meson_nand_op_put_dma_safe_output_buf(instr, buf);
+			break;
+
+		case NAND_OP_WAITRDY_INSTR:
+			meson_nfc_queue_rb(nfc, instr->ctx.waitrdy.timeout_ms);
+			if (instr->delay_ns)
+				meson_nfc_cmd_idle(nfc, delay_idle);
+			break;
+		}
+	}
+	meson_nfc_wait_cmd_finish(nfc, 1000);
+	return 0;
+}
+
+static int meson_ooblayout_ecc(struct mtd_info *mtd, int section,
+			       struct mtd_oob_region *oobregion)
+{
+	struct nand_chip *nand = mtd_to_nand(mtd);
+
+	if (section >= nand->ecc.steps)
+		return -ERANGE;
+
+	oobregion->offset =  2 + (section * (2 + nand->ecc.bytes));
+	oobregion->length = nand->ecc.bytes;
+
+	return 0;
+}
+
+static int meson_ooblayout_free(struct mtd_info *mtd, int section,
+				struct mtd_oob_region *oobregion)
+{
+	struct nand_chip *nand = mtd_to_nand(mtd);
+
+	if (section >= nand->ecc.steps)
+		return -ERANGE;
+
+	oobregion->offset = section * (2 + nand->ecc.bytes);
+	oobregion->length = 2;
+
+	return 0;
+}
+
+static const struct mtd_ooblayout_ops meson_ooblayout_ops = {
+	.ecc = meson_ooblayout_ecc,
+	.free = meson_ooblayout_free,
+};
+
+static int meson_nfc_clk_init(struct meson_nfc *nfc)
+{
+	int ret;
+
+	/* request core clock */
+	nfc->core_clk = devm_clk_get(nfc->dev, "core");
+	if (IS_ERR(nfc->core_clk)) {
+		dev_err(nfc->dev, "failed to get core clock\n");
+		return PTR_ERR(nfc->core_clk);
+	}
+
+	nfc->device_clk = devm_clk_get(nfc->dev, "device");
+	if (IS_ERR(nfc->device_clk)) {
+		dev_err(nfc->dev, "failed to get device clock\n");
+		return PTR_ERR(nfc->device_clk);
+	}
+
+	nfc->phase_tx = devm_clk_get(nfc->dev, "tx");
+	if (IS_ERR(nfc->phase_tx)) {
+		dev_err(nfc->dev, "failed to get TX clk\n");
+		return PTR_ERR(nfc->phase_tx);
+	}
+
+	nfc->phase_rx = devm_clk_get(nfc->dev, "rx");
+	if (IS_ERR(nfc->phase_rx)) {
+		dev_err(nfc->dev, "failed to get RX clk\n");
+		return PTR_ERR(nfc->phase_rx);
+	}
+
+	/* init SD_EMMC_CLOCK to sane defaults w/min clock rate */
+	regmap_update_bits(nfc->reg_clk,
+			   0, CLK_SELECT_NAND, CLK_SELECT_NAND);
+
+	ret = clk_prepare_enable(nfc->core_clk);
+	if (ret) {
+		dev_err(nfc->dev, "failed to enable core clock\n");
+		return ret;
+	}
+
+	ret = clk_prepare_enable(nfc->device_clk);
+	if (ret) {
+		dev_err(nfc->dev, "failed to enable device clock\n");
+		goto err_device_clk;
+	}
+
+	ret = clk_prepare_enable(nfc->phase_tx);
+	if (ret) {
+		dev_err(nfc->dev, "failed to enable TX clock\n");
+		goto err_phase_tx;
+	}
+
+	ret = clk_prepare_enable(nfc->phase_rx);
+	if (ret) {
+		dev_err(nfc->dev, "failed to enable RX clock\n");
+		goto err_phase_rx;
+	}
+
+	ret = clk_set_rate(nfc->device_clk, 24000000);
+	if (ret)
+		goto err_phase_rx;
+
+	return 0;
+err_phase_rx:
+	clk_disable_unprepare(nfc->phase_tx);
+err_phase_tx:
+	clk_disable_unprepare(nfc->device_clk);
+err_device_clk:
+	clk_disable_unprepare(nfc->core_clk);
+	return ret;
+}
+
+static void meson_nfc_disable_clk(struct meson_nfc *nfc)
+{
+	clk_disable_unprepare(nfc->phase_rx);
+	clk_disable_unprepare(nfc->phase_tx);
+	clk_disable_unprepare(nfc->device_clk);
+	clk_disable_unprepare(nfc->core_clk);
+}
+
+static void meson_nfc_free_buffer(struct nand_chip *nand)
+{
+	struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
+
+	kfree(meson_chip->info_buf);
+	kfree(meson_chip->data_buf);
+}
+
+static int meson_chip_buffer_init(struct nand_chip *nand)
+{
+	struct mtd_info *mtd = nand_to_mtd(nand);
+	struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
+	u32 page_bytes, info_bytes, nsectors;
+
+	nsectors = mtd->writesize / nand->ecc.size;
+
+	page_bytes =  mtd->writesize + mtd->oobsize;
+	info_bytes = nsectors * PER_INFO_BYTE;
+
+	meson_chip->data_buf = kmalloc(page_bytes, GFP_KERNEL);
+	if (!meson_chip->data_buf)
+		return -ENOMEM;
+
+	meson_chip->info_buf = kmalloc(info_bytes, GFP_KERNEL);
+	if (!meson_chip->info_buf) {
+		kfree(meson_chip->data_buf);
+		return -ENOMEM;
+	}
+
+	return 0;
+}
+
+static
+int meson_nfc_setup_data_interface(struct nand_chip *nand, int csline,
+				   const struct nand_data_interface *conf)
+{
+	struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
+	const struct nand_sdr_timings *timings;
+	u32 div, bt_min, bt_max, tbers_clocks;
+
+	timings = nand_get_sdr_timings(conf);
+	if (IS_ERR(timings))
+		return -ENOTSUPP;
+
+	if (csline == NAND_DATA_IFACE_CHECK_ONLY)
+		return 0;
+
+	div = DIV_ROUND_UP((timings->tRC_min / 1000), NFC_CLK_CYCLE);
+	bt_min = (timings->tREA_max + NFC_DEFAULT_DELAY) / div;
+	bt_max = (NFC_DEFAULT_DELAY + timings->tRHOH_min +
+		  timings->tRC_min / 2) / div;
+
+	meson_chip->twb = DIV_ROUND_UP(PSEC_TO_NSEC(timings->tWB_max),
+				       div * NFC_CLK_CYCLE);
+	meson_chip->tadl = DIV_ROUND_UP(PSEC_TO_NSEC(timings->tADL_min),
+					div * NFC_CLK_CYCLE);
+	tbers_clocks = DIV_ROUND_UP_ULL(PSEC_TO_NSEC(timings->tBERS_max),
+					div * NFC_CLK_CYCLE);
+	meson_chip->tbers_max = ilog2(tbers_clocks);
+	if (!is_power_of_2(tbers_clocks))
+		meson_chip->tbers_max++;
+
+	bt_min = DIV_ROUND_UP(bt_min, 1000);
+	bt_max = DIV_ROUND_UP(bt_max, 1000);
+
+	if (bt_max < bt_min)
+		return -EINVAL;
+
+	meson_chip->level1_divider = div;
+	meson_chip->clk_rate = 1000000000 / meson_chip->level1_divider;
+	meson_chip->bus_timing = (bt_min + bt_max) / 2 + 1;
+
+	return 0;
+}
+
+static int meson_nand_bch_mode(struct nand_chip *nand)
+{
+	struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
+	int i;
+
+	if (nand->ecc.strength > 60 || nand->ecc.strength < 8)
+		return -EINVAL;
+
+	for (i = 0; i < ARRAY_SIZE(meson_ecc); i++) {
+		if (meson_ecc[i].strength == nand->ecc.strength) {
+			meson_chip->bch_mode = meson_ecc[i].bch;
+			return 0;
+		}
+	}
+
+	return -EINVAL;
+}
+
+static void meson_nand_detach_chip(struct nand_chip *nand)
+{
+	meson_nfc_free_buffer(nand);
+}
+
+static int meson_nand_attach_chip(struct nand_chip *nand)
+{
+	struct meson_nfc *nfc = nand_get_controller_data(nand);
+	struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
+	struct mtd_info *mtd = nand_to_mtd(nand);
+	int nsectors = mtd->writesize / 1024;
+	int ret;
+
+	if (!mtd->name) {
+		mtd->name = devm_kasprintf(nfc->dev, GFP_KERNEL,
+					   "%s:nand%d",
+					   dev_name(nfc->dev),
+					   meson_chip->sels[0]);
+		if (!mtd->name)
+			return -ENOMEM;
+	}
+
+	if (nand->bbt_options & NAND_BBT_USE_FLASH)
+		nand->bbt_options |= NAND_BBT_NO_OOB;
+
+	nand->options |= NAND_NO_SUBPAGE_WRITE;
+
+	ret = nand_ecc_choose_conf(nand, nfc->data->ecc_caps,
+				   mtd->oobsize - 2 * nsectors);
+	if (ret) {
+		dev_err(nfc->dev, "failed to ECC init\n");
+		return -EINVAL;
+	}
+
+	mtd_set_ooblayout(mtd, &meson_ooblayout_ops);
+
+	ret = meson_nand_bch_mode(nand);
+	if (ret)
+		return -EINVAL;
+
+	nand->ecc.mode = NAND_ECC_HW;
+	nand->ecc.write_page_raw = meson_nfc_write_page_raw;
+	nand->ecc.write_page = meson_nfc_write_page_hwecc;
+	nand->ecc.write_oob_raw = nand_write_oob_std;
+	nand->ecc.write_oob = nand_write_oob_std;
+
+	nand->ecc.read_page_raw = meson_nfc_read_page_raw;
+	nand->ecc.read_page = meson_nfc_read_page_hwecc;
+	nand->ecc.read_oob_raw = meson_nfc_read_oob_raw;
+	nand->ecc.read_oob = meson_nfc_read_oob;
+
+	if (nand->options & NAND_BUSWIDTH_16) {
+		dev_err(nfc->dev, "16bits bus width not supported");
+		return -EINVAL;
+	}
+	ret = meson_chip_buffer_init(nand);
+	if (ret)
+		return -ENOMEM;
+
+	return ret;
+}
+
+static const struct nand_controller_ops meson_nand_controller_ops = {
+	.attach_chip = meson_nand_attach_chip,
+	.detach_chip = meson_nand_detach_chip,
+	.setup_data_interface = meson_nfc_setup_data_interface,
+	.exec_op = meson_nfc_exec_op,
+};
+
+static int
+meson_nfc_nand_chip_init(struct device *dev,
+			 struct meson_nfc *nfc, struct device_node *np)
+{
+	struct meson_nfc_nand_chip *meson_chip;
+	struct nand_chip *nand;
+	struct mtd_info *mtd;
+	int ret, i;
+	u32 tmp, nsels;
+
+	nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32));
+	if (!nsels || nsels > MAX_CE_NUM) {
+		dev_err(dev, "invalid register property size\n");
+		return -EINVAL;
+	}
+
+	meson_chip = devm_kzalloc(dev, struct_size(meson_chip, sels, nsels),
+				  GFP_KERNEL);
+	if (!meson_chip)
+		return -ENOMEM;
+
+	meson_chip->nsels = nsels;
+
+	for (i = 0; i < nsels; i++) {
+		ret = of_property_read_u32_index(np, "reg", i, &tmp);
+		if (ret) {
+			dev_err(dev, "could not retrieve register property: %d\n",
+				ret);
+			return ret;
+		}
+
+		if (test_and_set_bit(tmp, &nfc->assigned_cs)) {
+			dev_err(dev, "CS %d already assigned\n", tmp);
+			return -EINVAL;
+		}
+	}
+
+	nand = &meson_chip->nand;
+	nand->controller = &nfc->controller;
+	nand->controller->ops = &meson_nand_controller_ops;
+	nand_set_flash_node(nand, np);
+	nand_set_controller_data(nand, nfc);
+
+	nand->options |= NAND_USE_BOUNCE_BUFFER;
+	mtd = nand_to_mtd(nand);
+	mtd->owner = THIS_MODULE;
+	mtd->dev.parent = dev;
+
+	ret = nand_scan(nand, nsels);
+	if (ret)
+		return ret;
+
+	ret = mtd_device_register(mtd, NULL, 0);
+	if (ret) {
+		dev_err(dev, "failed to register MTD device: %d\n", ret);
+		nand_cleanup(nand);
+		return ret;
+	}
+
+	list_add_tail(&meson_chip->node, &nfc->chips);
+
+	return 0;
+}
+
+static int meson_nfc_nand_chip_cleanup(struct meson_nfc *nfc)
+{
+	struct meson_nfc_nand_chip *meson_chip;
+	struct mtd_info *mtd;
+	int ret;
+
+	while (!list_empty(&nfc->chips)) {
+		meson_chip = list_first_entry(&nfc->chips,
+					      struct meson_nfc_nand_chip, node);
+		mtd = nand_to_mtd(&meson_chip->nand);
+		ret = mtd_device_unregister(mtd);
+		if (ret)
+			return ret;
+
+		meson_nfc_free_buffer(&meson_chip->nand);
+		nand_cleanup(&meson_chip->nand);
+		list_del(&meson_chip->node);
+	}
+
+	return 0;
+}
+
+static int meson_nfc_nand_chips_init(struct device *dev,
+				     struct meson_nfc *nfc)
+{
+	struct device_node *np = dev->of_node;
+	struct device_node *nand_np;
+	int ret;
+
+	for_each_child_of_node(np, nand_np) {
+		ret = meson_nfc_nand_chip_init(dev, nfc, nand_np);
+		if (ret) {
+			meson_nfc_nand_chip_cleanup(nfc);
+			of_node_put(nand_np);
+			return ret;
+		}
+	}
+
+	return 0;
+}
+
+static irqreturn_t meson_nfc_irq(int irq, void *id)
+{
+	struct meson_nfc *nfc = id;
+	u32 cfg;
+
+	cfg = readl(nfc->reg_base + NFC_REG_CFG);
+	if (!(cfg & NFC_RB_IRQ_EN))
+		return IRQ_NONE;
+
+	cfg &= ~(NFC_RB_IRQ_EN);
+	writel(cfg, nfc->reg_base + NFC_REG_CFG);
+
+	complete(&nfc->completion);
+	return IRQ_HANDLED;
+}
+
+static const struct meson_nfc_data meson_gxl_data = {
+	.ecc_caps = &meson_gxl_ecc_caps,
+};
+
+static const struct meson_nfc_data meson_axg_data = {
+	.ecc_caps = &meson_axg_ecc_caps,
+};
+
+static const struct of_device_id meson_nfc_id_table[] = {
+	{
+		.compatible = "amlogic,meson-gxl-nfc",
+		.data = &meson_gxl_data,
+	}, {
+		.compatible = "amlogic,meson-axg-nfc",
+		.data = &meson_axg_data,
+	},
+	{}
+};
+MODULE_DEVICE_TABLE(of, meson_nfc_id_table);
+
+static int meson_nfc_probe(struct platform_device *pdev)
+{
+	struct device *dev = &pdev->dev;
+	struct meson_nfc *nfc;
+	struct resource *res;
+	int ret, irq;
+
+	nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
+	if (!nfc)
+		return -ENOMEM;
+
+	nfc->data = of_device_get_match_data(&pdev->dev);
+	if (!nfc->data)
+		return -ENODEV;
+
+	nand_controller_init(&nfc->controller);
+	INIT_LIST_HEAD(&nfc->chips);
+	init_completion(&nfc->completion);
+
+	nfc->dev = dev;
+
+	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+	nfc->reg_base = devm_ioremap_resource(dev, res);
+	if (IS_ERR(nfc->reg_base))
+		return PTR_ERR(nfc->reg_base);
+
+	nfc->reg_clk =
+		syscon_regmap_lookup_by_phandle(dev->of_node,
+						"amlogic,mmc-syscon");
+	if (IS_ERR(nfc->reg_clk)) {
+		dev_err(dev, "Failed to lookup clock base\n");
+		return PTR_ERR(nfc->reg_clk);
+	}
+
+	irq = platform_get_irq(pdev, 0);
+	if (irq < 0) {
+		dev_err(dev, "no NFC IRQ resource\n");
+		return -EINVAL;
+	}
+
+	ret = meson_nfc_clk_init(nfc);
+	if (ret) {
+		dev_err(dev, "failed to initialize NAND clock\n");
+		return ret;
+	}
+
+	writel(0, nfc->reg_base + NFC_REG_CFG);
+	ret = devm_request_irq(dev, irq, meson_nfc_irq, 0, dev_name(dev), nfc);
+	if (ret) {
+		dev_err(dev, "failed to request NFC IRQ\n");
+		ret = -EINVAL;
+		goto err_clk;
+	}
+
+	ret = dma_set_mask(dev, DMA_BIT_MASK(32));
+	if (ret) {
+		dev_err(dev, "failed to set DMA mask\n");
+		goto err_clk;
+	}
+
+	platform_set_drvdata(pdev, nfc);
+
+	ret = meson_nfc_nand_chips_init(dev, nfc);
+	if (ret) {
+		dev_err(dev, "failed to init NAND chips\n");
+		goto err_clk;
+	}
+
+	return 0;
+err_clk:
+	meson_nfc_disable_clk(nfc);
+	return ret;
+}
+
+static int meson_nfc_remove(struct platform_device *pdev)
+{
+	struct meson_nfc *nfc = platform_get_drvdata(pdev);
+	int ret;
+
+	ret = meson_nfc_nand_chip_cleanup(nfc);
+	if (ret)
+		return ret;
+
+	meson_nfc_disable_clk(nfc);
+
+	platform_set_drvdata(pdev, NULL);
+
+	return 0;
+}
+
+static struct platform_driver meson_nfc_driver = {
+	.probe  = meson_nfc_probe,
+	.remove = meson_nfc_remove,
+	.driver = {
+		.name  = "meson-nand",
+		.of_match_table = meson_nfc_id_table,
+	},
+};
+module_platform_driver(meson_nfc_driver);
+
+MODULE_LICENSE("Dual MIT/GPL");
+MODULE_AUTHOR("Liang Yang <liang.yang@amlogic.com>");
+MODULE_DESCRIPTION("Amlogic's Meson NAND Flash Controller driver");
diff --git a/drivers/mtd/nand/raw/mpc5121_nfc.c b/drivers/mtd/nand/raw/mpc5121_nfc.c
index 6d1740d..8b90def 100644
--- a/drivers/mtd/nand/raw/mpc5121_nfc.c
+++ b/drivers/mtd/nand/raw/mpc5121_nfc.c
@@ -1,3 +1,4 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
 /*
  * Copyright 2004-2008 Freescale Semiconductor, Inc.
  * Copyright 2009 Semihalf.
@@ -8,20 +9,6 @@
  * Based on original driver from Freescale Semiconductor
  * written by John Rigby <jrigby@freescale.com> on basis of mxc_nand.c.
  * Reworked and extended by Piotr Ziecik <kosmo@semihalf.com>.
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public License
- * as published by the Free Software Foundation; either version 2
- * of the License, or (at your option) any later version.
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
- * MA 02110-1301, USA.
  */
 
 #include <linux/module.h>
@@ -263,8 +250,10 @@
 }
 
 /* Control chip select signals */
-static void mpc5121_nfc_select_chip(struct mtd_info *mtd, int chip)
+static void mpc5121_nfc_select_chip(struct nand_chip *nand, int chip)
 {
+	struct mtd_info *mtd = nand_to_mtd(nand);
+
 	if (chip < 0) {
 		nfc_clear(mtd, NFC_CONFIG1, NFC_CE);
 		return;
@@ -299,9 +288,9 @@
 }
 
 /* Control chips select signal on ADS5121 board */
-static void ads5121_select_chip(struct mtd_info *mtd, int chip)
+static void ads5121_select_chip(struct nand_chip *nand, int chip)
 {
-	struct nand_chip *nand = mtd_to_nand(mtd);
+	struct mtd_info *mtd = nand_to_mtd(nand);
 	struct mpc5121_nfc_prv *prv = nand_get_controller_data(nand);
 	u8 v;
 
@@ -309,16 +298,16 @@
 	v |= 0x0F;
 
 	if (chip >= 0) {
-		mpc5121_nfc_select_chip(mtd, 0);
+		mpc5121_nfc_select_chip(nand, 0);
 		v &= ~(1 << chip);
 	} else
-		mpc5121_nfc_select_chip(mtd, -1);
+		mpc5121_nfc_select_chip(nand, -1);
 
 	out_8(prv->csreg, v);
 }
 
 /* Read NAND Ready/Busy signal */
-static int mpc5121_nfc_dev_ready(struct mtd_info *mtd)
+static int mpc5121_nfc_dev_ready(struct nand_chip *nand)
 {
 	/*
 	 * NFC handles ready/busy signal internally. Therefore, this function
@@ -328,10 +317,10 @@
 }
 
 /* Write command to NAND flash */
-static void mpc5121_nfc_command(struct mtd_info *mtd, unsigned command,
-							int column, int page)
+static void mpc5121_nfc_command(struct nand_chip *chip, unsigned command,
+				int column, int page)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	struct mpc5121_nfc_prv *prv = nand_get_controller_data(chip);
 
 	prv->column = (column >= 0) ? column : 0;
@@ -362,7 +351,7 @@
 		break;
 
 	case NAND_CMD_SEQIN:
-		mpc5121_nfc_command(mtd, NAND_CMD_READ0, column, page);
+		mpc5121_nfc_command(chip, NAND_CMD_READ0, column, page);
 		column = 0;
 		break;
 
@@ -493,34 +482,24 @@
 }
 
 /* Read data from NFC buffers */
-static void mpc5121_nfc_read_buf(struct mtd_info *mtd, u_char *buf, int len)
+static void mpc5121_nfc_read_buf(struct nand_chip *chip, u_char *buf, int len)
 {
-	mpc5121_nfc_buf_copy(mtd, buf, len, 0);
+	mpc5121_nfc_buf_copy(nand_to_mtd(chip), buf, len, 0);
 }
 
 /* Write data to NFC buffers */
-static void mpc5121_nfc_write_buf(struct mtd_info *mtd,
-						const u_char *buf, int len)
+static void mpc5121_nfc_write_buf(struct nand_chip *chip, const u_char *buf,
+				  int len)
 {
-	mpc5121_nfc_buf_copy(mtd, (u_char *)buf, len, 1);
+	mpc5121_nfc_buf_copy(nand_to_mtd(chip), (u_char *)buf, len, 1);
 }
 
 /* Read byte from NFC buffers */
-static u8 mpc5121_nfc_read_byte(struct mtd_info *mtd)
+static u8 mpc5121_nfc_read_byte(struct nand_chip *chip)
 {
 	u8 tmp;
 
-	mpc5121_nfc_read_buf(mtd, &tmp, sizeof(tmp));
-
-	return tmp;
-}
-
-/* Read word from NFC buffers */
-static u16 mpc5121_nfc_read_word(struct mtd_info *mtd)
-{
-	u16 tmp;
-
-	mpc5121_nfc_read_buf(mtd, (u_char *)&tmp, sizeof(tmp));
+	mpc5121_nfc_read_buf(chip, &tmp, sizeof(tmp));
 
 	return tmp;
 }
@@ -700,15 +679,14 @@
 	}
 
 	mtd->name = "MPC5121 NAND";
-	chip->dev_ready = mpc5121_nfc_dev_ready;
-	chip->cmdfunc = mpc5121_nfc_command;
-	chip->read_byte = mpc5121_nfc_read_byte;
-	chip->read_word = mpc5121_nfc_read_word;
-	chip->read_buf = mpc5121_nfc_read_buf;
-	chip->write_buf = mpc5121_nfc_write_buf;
-	chip->select_chip = mpc5121_nfc_select_chip;
-	chip->set_features	= nand_get_set_features_notsupp;
-	chip->get_features	= nand_get_set_features_notsupp;
+	chip->legacy.dev_ready = mpc5121_nfc_dev_ready;
+	chip->legacy.cmdfunc = mpc5121_nfc_command;
+	chip->legacy.read_byte = mpc5121_nfc_read_byte;
+	chip->legacy.read_buf = mpc5121_nfc_read_buf;
+	chip->legacy.write_buf = mpc5121_nfc_write_buf;
+	chip->legacy.select_chip = mpc5121_nfc_select_chip;
+	chip->legacy.set_features = nand_get_set_features_notsupp;
+	chip->legacy.get_features = nand_get_set_features_notsupp;
 	chip->bbt_options = NAND_BBT_USE_FLASH;
 	chip->ecc.mode = NAND_ECC_SOFT;
 	chip->ecc.algo = NAND_ECC_HAMMING;
@@ -721,7 +699,7 @@
 			return retval;
 		}
 
-		chip->select_chip = ads5121_select_chip;
+		chip->legacy.select_chip = ads5121_select_chip;
 	}
 
 	/* Enable NFC clock */
@@ -778,7 +756,7 @@
 	}
 
 	/* Detect NAND chips */
-	retval = nand_scan(mtd, be32_to_cpup(chips_no));
+	retval = nand_scan(chip, be32_to_cpup(chips_no));
 	if (retval) {
 		dev_err(dev, "NAND Flash not found !\n");
 		goto error;
@@ -828,7 +806,7 @@
 	struct device *dev = &op->dev;
 	struct mtd_info *mtd = dev_get_drvdata(dev);
 
-	nand_release(mtd);
+	nand_release(mtd_to_nand(mtd));
 	mpc5121_nfc_free(dev, mtd);
 
 	return 0;
diff --git a/drivers/mtd/nand/raw/mtk_ecc.c b/drivers/mtd/nand/raw/mtk_ecc.c
index 6432bd7..74595b6 100644
--- a/drivers/mtd/nand/raw/mtk_ecc.c
+++ b/drivers/mtd/nand/raw/mtk_ecc.c
@@ -1,17 +1,9 @@
+// SPDX-License-Identifier: GPL-2.0 OR MIT
 /*
  * MTK ECC controller driver.
  * Copyright (C) 2016  MediaTek Inc.
  * Authors:	Xiaolei Li		<xiaolei.li@mediatek.com>
  *		Jorge Ramirez-Ortiz	<jorge.ramirez-ortiz@linaro.org>
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
- * GNU General Public License for more details.
  */
 
 #include <linux/platform_device.h>
@@ -267,11 +259,15 @@
 	struct mtk_ecc *ecc;
 
 	pdev = of_find_device_by_node(np);
-	if (!pdev || !platform_get_drvdata(pdev))
+	if (!pdev)
 		return ERR_PTR(-EPROBE_DEFER);
 
-	get_device(&pdev->dev);
 	ecc = platform_get_drvdata(pdev);
+	if (!ecc) {
+		put_device(&pdev->dev);
+		return ERR_PTR(-EPROBE_DEFER);
+	}
+
 	clk_prepare_enable(ecc->clk);
 	mtk_ecc_hw_init(ecc);
 
@@ -600,4 +596,4 @@
 
 MODULE_AUTHOR("Xiaolei Li <xiaolei.li@mediatek.com>");
 MODULE_DESCRIPTION("MTK Nand ECC Driver");
-MODULE_LICENSE("GPL");
+MODULE_LICENSE("Dual MIT/GPL");
diff --git a/drivers/mtd/nand/raw/mtk_ecc.h b/drivers/mtd/nand/raw/mtk_ecc.h
index a455df0..0e48c36 100644
--- a/drivers/mtd/nand/raw/mtk_ecc.h
+++ b/drivers/mtd/nand/raw/mtk_ecc.h
@@ -1,12 +1,10 @@
+/* SPDX-License-Identifier: GPL-2.0 OR MIT */
 /*
  * MTK SDG1 ECC controller
  *
  * Copyright (c) 2016 Mediatek
  * Authors:	Xiaolei Li		<xiaolei.li@mediatek.com>
  *		Jorge Ramirez-Ortiz	<jorge.ramirez-ortiz@linaro.org>
- * This program is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 as published
- * by the Free Software Foundation.
  */
 
 #ifndef __DRIVERS_MTD_NAND_MTK_ECC_H__
diff --git a/drivers/mtd/nand/raw/mtk_nand.c b/drivers/mtd/nand/raw/mtk_nand.c
index 57b5ed1..373d47d 100644
--- a/drivers/mtd/nand/raw/mtk_nand.c
+++ b/drivers/mtd/nand/raw/mtk_nand.c
@@ -1,17 +1,9 @@
+// SPDX-License-Identifier: GPL-2.0 OR MIT
 /*
  * MTK NAND Flash controller driver.
  * Copyright (C) 2016 MediaTek Inc.
  * Authors:	Xiaolei Li		<xiaolei.li@mediatek.com>
  *		Jorge Ramirez-Ortiz	<jorge.ramirez-ortiz@linaro.org>
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
- * GNU General Public License for more details.
  */
 
 #include <linux/platform_device.h>
@@ -87,6 +79,10 @@
 #define NFI_FDMM(x)		(0xA4 + (x) * sizeof(u32) * 2)
 #define NFI_FDM_MAX_SIZE	(8)
 #define NFI_FDM_MIN_SIZE	(1)
+#define NFI_DEBUG_CON1		(0x220)
+#define		STROBE_MASK		GENMASK(4, 3)
+#define		STROBE_SHIFT		(3)
+#define		MAX_STROBE_DLY		(3)
 #define NFI_MASTER_STA		(0x224)
 #define		MASTER_STA_MASK		(0x0FFF)
 #define NFI_EMPTY_THRESH	(0x23C)
@@ -158,6 +154,8 @@
 	struct list_head chips;
 
 	u8 *buffer;
+
+	unsigned long assigned_cs;
 };
 
 /*
@@ -389,23 +387,22 @@
 	return 0;
 }
 
-static void mtk_nfc_select_chip(struct mtd_info *mtd, int chip)
+static void mtk_nfc_select_chip(struct nand_chip *nand, int chip)
 {
-	struct nand_chip *nand = mtd_to_nand(mtd);
 	struct mtk_nfc *nfc = nand_get_controller_data(nand);
 	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(nand);
 
 	if (chip < 0)
 		return;
 
-	mtk_nfc_hw_runtime_config(mtd);
+	mtk_nfc_hw_runtime_config(nand_to_mtd(nand));
 
 	nfi_writel(nfc, mtk_nand->sels[chip], NFI_CSEL);
 }
 
-static int mtk_nfc_dev_ready(struct mtd_info *mtd)
+static int mtk_nfc_dev_ready(struct nand_chip *nand)
 {
-	struct mtk_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd));
+	struct mtk_nfc *nfc = nand_get_controller_data(nand);
 
 	if (nfi_readl(nfc, NFI_STA) & STA_BUSY)
 		return 0;
@@ -413,9 +410,10 @@
 	return 1;
 }
 
-static void mtk_nfc_cmd_ctrl(struct mtd_info *mtd, int dat, unsigned int ctrl)
+static void mtk_nfc_cmd_ctrl(struct nand_chip *chip, int dat,
+			     unsigned int ctrl)
 {
-	struct mtk_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd));
+	struct mtk_nfc *nfc = nand_get_controller_data(chip);
 
 	if (ctrl & NAND_ALE) {
 		mtk_nfc_send_address(nfc, dat);
@@ -438,9 +436,8 @@
 		dev_err(nfc->dev, "data not ready\n");
 }
 
-static inline u8 mtk_nfc_read_byte(struct mtd_info *mtd)
+static inline u8 mtk_nfc_read_byte(struct nand_chip *chip)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
 	u32 reg;
 
@@ -467,17 +464,17 @@
 	return nfi_readb(nfc, NFI_DATAR);
 }
 
-static void mtk_nfc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
+static void mtk_nfc_read_buf(struct nand_chip *chip, u8 *buf, int len)
 {
 	int i;
 
 	for (i = 0; i < len; i++)
-		buf[i] = mtk_nfc_read_byte(mtd);
+		buf[i] = mtk_nfc_read_byte(chip);
 }
 
-static void mtk_nfc_write_byte(struct mtd_info *mtd, u8 byte)
+static void mtk_nfc_write_byte(struct nand_chip *chip, u8 byte)
 {
-	struct mtk_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd));
+	struct mtk_nfc *nfc = nand_get_controller_data(chip);
 	u32 reg;
 
 	reg = nfi_readl(nfc, NFI_STA) & NFI_FSM_MASK;
@@ -496,20 +493,21 @@
 	nfi_writeb(nfc, byte, NFI_DATAW);
 }
 
-static void mtk_nfc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
+static void mtk_nfc_write_buf(struct nand_chip *chip, const u8 *buf, int len)
 {
 	int i;
 
 	for (i = 0; i < len; i++)
-		mtk_nfc_write_byte(mtd, buf[i]);
+		mtk_nfc_write_byte(chip, buf[i]);
 }
 
-static int mtk_nfc_setup_data_interface(struct mtd_info *mtd, int csline,
+static int mtk_nfc_setup_data_interface(struct nand_chip *chip, int csline,
 					const struct nand_data_interface *conf)
 {
-	struct mtk_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd));
+	struct mtk_nfc *nfc = nand_get_controller_data(chip);
 	const struct nand_sdr_timings *timings;
-	u32 rate, tpoecs, tprecs, tc2r, tw2r, twh, twst, trlt;
+	u32 rate, tpoecs, tprecs, tc2r, tw2r, twh, twst = 0, trlt = 0;
+	u32 temp, tsel = 0;
 
 	timings = nand_get_sdr_timings(conf);
 	if (IS_ERR(timings))
@@ -545,14 +543,53 @@
 	twh = DIV_ROUND_UP(twh * rate, 1000000) - 1;
 	twh &= 0xf;
 
-	twst = timings->tWP_min / 1000;
+	/* Calculate real WE#/RE# hold time in nanosecond */
+	temp = (twh + 1) * 1000000 / rate;
+	/* nanosecond to picosecond */
+	temp *= 1000;
+
+	/*
+	 * WE# low level time should be expaned to meet WE# pulse time
+	 * and WE# cycle time at the same time.
+	 */
+	if (temp < timings->tWC_min)
+		twst = timings->tWC_min - temp;
+	twst = max(timings->tWP_min, twst) / 1000;
 	twst = DIV_ROUND_UP(twst * rate, 1000000) - 1;
 	twst &= 0xf;
 
-	trlt = max(timings->tREA_max, timings->tRP_min) / 1000;
+	/*
+	 * RE# low level time should be expaned to meet RE# pulse time
+	 * and RE# cycle time at the same time.
+	 */
+	if (temp < timings->tRC_min)
+		trlt = timings->tRC_min - temp;
+	trlt = max(trlt, timings->tRP_min) / 1000;
 	trlt = DIV_ROUND_UP(trlt * rate, 1000000) - 1;
 	trlt &= 0xf;
 
+	/* Calculate RE# pulse time in nanosecond. */
+	temp = (trlt + 1) * 1000000 / rate;
+	/* nanosecond to picosecond */
+	temp *= 1000;
+	/*
+	 * If RE# access time is bigger than RE# pulse time,
+	 * delay sampling data timing.
+	 */
+	if (temp < timings->tREA_max) {
+		tsel = timings->tREA_max / 1000;
+		tsel = DIV_ROUND_UP(tsel * rate, 1000000);
+		tsel -= (trlt + 1);
+		if (tsel > MAX_STROBE_DLY) {
+			trlt += tsel - MAX_STROBE_DLY;
+			tsel = MAX_STROBE_DLY;
+		}
+	}
+	temp = nfi_readl(nfc, NFI_DEBUG_CON1);
+	temp &= ~STROBE_MASK;
+	temp |= tsel << STROBE_SHIFT;
+	nfi_writel(nfc, temp, NFI_DEBUG_CON1);
+
 	/*
 	 * ACCON: access timing control register
 	 * -------------------------------------
@@ -807,27 +844,27 @@
 	return nand_prog_page_end_op(chip);
 }
 
-static int mtk_nfc_write_page_hwecc(struct mtd_info *mtd,
-				    struct nand_chip *chip, const u8 *buf,
+static int mtk_nfc_write_page_hwecc(struct nand_chip *chip, const u8 *buf,
 				    int oob_on, int page)
 {
-	return mtk_nfc_write_page(mtd, chip, buf, page, 0);
+	return mtk_nfc_write_page(nand_to_mtd(chip), chip, buf, page, 0);
 }
 
-static int mtk_nfc_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
-				  const u8 *buf, int oob_on, int pg)
+static int mtk_nfc_write_page_raw(struct nand_chip *chip, const u8 *buf,
+				  int oob_on, int pg)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
 
 	mtk_nfc_format_page(mtd, buf);
 	return mtk_nfc_write_page(mtd, chip, nfc->buffer, pg, 1);
 }
 
-static int mtk_nfc_write_subpage_hwecc(struct mtd_info *mtd,
-				       struct nand_chip *chip, u32 offset,
+static int mtk_nfc_write_subpage_hwecc(struct nand_chip *chip, u32 offset,
 				       u32 data_len, const u8 *buf,
 				       int oob_on, int page)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
 	int ret;
 
@@ -839,25 +876,26 @@
 	return mtk_nfc_write_page(mtd, chip, nfc->buffer, page, 1);
 }
 
-static int mtk_nfc_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
-				 int page)
+static int mtk_nfc_write_oob_std(struct nand_chip *chip, int page)
 {
-	return mtk_nfc_write_page_raw(mtd, chip, NULL, 1, page);
+	return mtk_nfc_write_page_raw(chip, NULL, 1, page);
 }
 
-static int mtk_nfc_update_ecc_stats(struct mtd_info *mtd, u8 *buf, u32 sectors)
+static int mtk_nfc_update_ecc_stats(struct mtd_info *mtd, u8 *buf, u32 start,
+				    u32 sectors)
 {
 	struct nand_chip *chip = mtd_to_nand(mtd);
 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
 	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
 	struct mtk_ecc_stats stats;
+	u32 reg_size = mtk_nand->fdm.reg_size;
 	int rc, i;
 
 	rc = nfi_readl(nfc, NFI_STA) & STA_EMP_PAGE;
 	if (rc) {
 		memset(buf, 0xff, sectors * chip->ecc.size);
 		for (i = 0; i < sectors; i++)
-			memset(oob_ptr(chip, i), 0xff, mtk_nand->fdm.reg_size);
+			memset(oob_ptr(chip, start + i), 0xff, reg_size);
 		return 0;
 	}
 
@@ -877,7 +915,7 @@
 	u32 spare = mtk_nand->spare_per_sector;
 	u32 column, sectors, start, end, reg;
 	dma_addr_t addr;
-	int bitflips;
+	int bitflips = 0;
 	size_t len;
 	u8 *buf;
 	int rc;
@@ -944,14 +982,11 @@
 	if (rc < 0) {
 		dev_err(nfc->dev, "subpage done timeout\n");
 		bitflips = -EIO;
-	} else {
-		bitflips = 0;
-		if (!raw) {
-			rc = mtk_ecc_wait_done(nfc->ecc, ECC_DECODE);
-			bitflips = rc < 0 ? -ETIMEDOUT :
-				mtk_nfc_update_ecc_stats(mtd, buf, sectors);
-			mtk_nfc_read_fdm(chip, start, sectors);
-		}
+	} else if (!raw) {
+		rc = mtk_ecc_wait_done(nfc->ecc, ECC_DECODE);
+		bitflips = rc < 0 ? -ETIMEDOUT :
+			mtk_nfc_update_ecc_stats(mtd, buf, start, sectors);
+		mtk_nfc_read_fdm(chip, start, sectors);
 	}
 
 	dma_unmap_single(nfc->dev, addr, len, DMA_FROM_DEVICE);
@@ -969,23 +1004,25 @@
 	return bitflips;
 }
 
-static int mtk_nfc_read_subpage_hwecc(struct mtd_info *mtd,
-				      struct nand_chip *chip, u32 off,
+static int mtk_nfc_read_subpage_hwecc(struct nand_chip *chip, u32 off,
 				      u32 len, u8 *p, int pg)
 {
-	return mtk_nfc_read_subpage(mtd, chip, off, len, p, pg, 0);
+	return mtk_nfc_read_subpage(nand_to_mtd(chip), chip, off, len, p, pg,
+				    0);
 }
 
-static int mtk_nfc_read_page_hwecc(struct mtd_info *mtd,
-				   struct nand_chip *chip, u8 *p,
-				   int oob_on, int pg)
+static int mtk_nfc_read_page_hwecc(struct nand_chip *chip, u8 *p, int oob_on,
+				   int pg)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
+
 	return mtk_nfc_read_subpage(mtd, chip, 0, mtd->writesize, p, pg, 0);
 }
 
-static int mtk_nfc_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
-				 u8 *buf, int oob_on, int page)
+static int mtk_nfc_read_page_raw(struct nand_chip *chip, u8 *buf, int oob_on,
+				 int page)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
 	struct mtk_nfc *nfc = nand_get_controller_data(chip);
 	struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
@@ -1011,10 +1048,9 @@
 	return ret;
 }
 
-static int mtk_nfc_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
-				int page)
+static int mtk_nfc_read_oob_std(struct nand_chip *chip, int page)
 {
-	return mtk_nfc_read_page_raw(mtd, chip, NULL, 1, page);
+	return mtk_nfc_read_page_raw(chip, NULL, 1, page);
 }
 
 static inline void mtk_nfc_hw_init(struct mtk_nfc *nfc)
@@ -1198,8 +1234,8 @@
 	/* if optional dt settings not present */
 	if (!nand->ecc.size || !nand->ecc.strength) {
 		/* use datasheet requirements */
-		nand->ecc.strength = nand->ecc_strength_ds;
-		nand->ecc.size = nand->ecc_step_ds;
+		nand->ecc.strength = nand->base.eccreq.strength;
+		nand->ecc.size = nand->base.eccreq.step_size;
 
 		/*
 		 * align eccstrength and eccsize
@@ -1289,6 +1325,7 @@
 
 static const struct nand_controller_ops mtk_nfc_controller_ops = {
 	.attach_chip = mtk_nfc_attach_chip,
+	.setup_data_interface = mtk_nfc_setup_data_interface,
 };
 
 static int mtk_nfc_nand_chip_init(struct device *dev, struct mtk_nfc *nfc,
@@ -1323,6 +1360,17 @@
 			dev_err(dev, "reg property failure : %d\n", ret);
 			return ret;
 		}
+
+		if (tmp >= MTK_NAND_MAX_NSELS) {
+			dev_err(dev, "invalid CS: %u\n", tmp);
+			return -EINVAL;
+		}
+
+		if (test_and_set_bit(tmp, &nfc->assigned_cs)) {
+			dev_err(dev, "CS %u already assigned\n", tmp);
+			return -EINVAL;
+		}
+
 		chip->sels[i] = tmp;
 	}
 
@@ -1333,14 +1381,13 @@
 	nand_set_controller_data(nand, nfc);
 
 	nand->options |= NAND_USE_BOUNCE_BUFFER | NAND_SUBPAGE_READ;
-	nand->dev_ready = mtk_nfc_dev_ready;
-	nand->select_chip = mtk_nfc_select_chip;
-	nand->write_byte = mtk_nfc_write_byte;
-	nand->write_buf = mtk_nfc_write_buf;
-	nand->read_byte = mtk_nfc_read_byte;
-	nand->read_buf = mtk_nfc_read_buf;
-	nand->cmd_ctrl = mtk_nfc_cmd_ctrl;
-	nand->setup_data_interface = mtk_nfc_setup_data_interface;
+	nand->legacy.dev_ready = mtk_nfc_dev_ready;
+	nand->legacy.select_chip = mtk_nfc_select_chip;
+	nand->legacy.write_byte = mtk_nfc_write_byte;
+	nand->legacy.write_buf = mtk_nfc_write_buf;
+	nand->legacy.read_byte = mtk_nfc_read_byte;
+	nand->legacy.read_buf = mtk_nfc_read_buf;
+	nand->legacy.cmd_ctrl = mtk_nfc_cmd_ctrl;
 
 	/* set default mode in case dt entry is missing */
 	nand->ecc.mode = NAND_ECC_HW;
@@ -1365,14 +1412,14 @@
 
 	mtk_nfc_hw_init(nfc);
 
-	ret = nand_scan(mtd, nsels);
+	ret = nand_scan(nand, nsels);
 	if (ret)
 		return ret;
 
 	ret = mtd_device_register(mtd, NULL, 0);
 	if (ret) {
 		dev_err(dev, "mtd parse partition error\n");
-		nand_release(mtd);
+		nand_release(nand);
 		return ret;
 	}
 
@@ -1452,8 +1499,7 @@
 	if (!nfc)
 		return -ENOMEM;
 
-	spin_lock_init(&nfc->controller.lock);
-	init_waitqueue_head(&nfc->controller.wq);
+	nand_controller_init(&nfc->controller);
 	INIT_LIST_HEAD(&nfc->chips);
 	nfc->controller.ops = &mtk_nfc_controller_ops;
 
@@ -1538,7 +1584,7 @@
 	while (!list_empty(&nfc->chips)) {
 		chip = list_first_entry(&nfc->chips, struct mtk_nfc_nand_chip,
 					node);
-		nand_release(nand_to_mtd(&chip->nand));
+		nand_release(&chip->nand);
 		list_del(&chip->node);
 	}
 
@@ -1599,6 +1645,6 @@
 
 module_platform_driver(mtk_nfc_driver);
 
-MODULE_LICENSE("GPL");
+MODULE_LICENSE("Dual MIT/GPL");
 MODULE_AUTHOR("Xiaolei Li <xiaolei.li@mediatek.com>");
 MODULE_DESCRIPTION("MTK Nand Flash Controller Driver");
diff --git a/drivers/mtd/nand/raw/mxc_nand.c b/drivers/mtd/nand/raw/mxc_nand.c
index 4c9214d..59554c1 100644
--- a/drivers/mtd/nand/raw/mxc_nand.c
+++ b/drivers/mtd/nand/raw/mxc_nand.c
@@ -136,8 +136,8 @@
 	void (*irq_control)(struct mxc_nand_host *, int);
 	u32 (*get_ecc_status)(struct mxc_nand_host *);
 	const struct mtd_ooblayout_ops *ooblayout;
-	void (*select_chip)(struct mtd_info *mtd, int chip);
-	int (*setup_data_interface)(struct mtd_info *mtd, int csline,
+	void (*select_chip)(struct nand_chip *chip, int cs);
+	int (*setup_data_interface)(struct nand_chip *chip, int csline,
 				    const struct nand_data_interface *conf);
 	void (*enable_hwecc)(struct nand_chip *chip, bool enable);
 
@@ -701,7 +701,7 @@
 }
 
 /* This functions is used by upper layer to checks if device is ready */
-static int mxc_nand_dev_ready(struct mtd_info *mtd)
+static int mxc_nand_dev_ready(struct nand_chip *chip)
 {
 	/*
 	 * NFC handles R/B internally. Therefore, this function
@@ -816,8 +816,8 @@
 	return max_bitflips;
 }
 
-static int mxc_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
-			      uint8_t *buf, int oob_required, int page)
+static int mxc_nand_read_page(struct nand_chip *chip, uint8_t *buf,
+			      int oob_required, int page)
 {
 	struct mxc_nand_host *host = nand_get_controller_data(chip);
 	void *oob_buf;
@@ -830,8 +830,8 @@
 	return host->devtype_data->read_page(chip, buf, oob_buf, 1, page);
 }
 
-static int mxc_nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
-				  uint8_t *buf, int oob_required, int page)
+static int mxc_nand_read_page_raw(struct nand_chip *chip, uint8_t *buf,
+				  int oob_required, int page)
 {
 	struct mxc_nand_host *host = nand_get_controller_data(chip);
 	void *oob_buf;
@@ -844,8 +844,7 @@
 	return host->devtype_data->read_page(chip, buf, oob_buf, 0, page);
 }
 
-static int mxc_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
-			     int page)
+static int mxc_nand_read_oob(struct nand_chip *chip, int page)
 {
 	struct mxc_nand_host *host = nand_get_controller_data(chip);
 
@@ -874,22 +873,21 @@
 	return 0;
 }
 
-static int mxc_nand_write_page_ecc(struct mtd_info *mtd, struct nand_chip *chip,
-				   const uint8_t *buf, int oob_required,
-				   int page)
+static int mxc_nand_write_page_ecc(struct nand_chip *chip, const uint8_t *buf,
+				   int oob_required, int page)
 {
 	return mxc_nand_write_page(chip, buf, true, page);
 }
 
-static int mxc_nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
-				   const uint8_t *buf, int oob_required, int page)
+static int mxc_nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
+				   int oob_required, int page)
 {
 	return mxc_nand_write_page(chip, buf, false, page);
 }
 
-static int mxc_nand_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
-			      int page)
+static int mxc_nand_write_oob(struct nand_chip *chip, int page)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	struct mxc_nand_host *host = nand_get_controller_data(chip);
 
 	memset(host->data_buf, 0xff, mtd->writesize);
@@ -897,9 +895,8 @@
 	return mxc_nand_write_page(chip, host->data_buf, false, page);
 }
 
-static u_char mxc_nand_read_byte(struct mtd_info *mtd)
+static u_char mxc_nand_read_byte(struct nand_chip *nand_chip)
 {
-	struct nand_chip *nand_chip = mtd_to_nand(mtd);
 	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
 	uint8_t ret;
 
@@ -921,25 +918,13 @@
 	return ret;
 }
 
-static uint16_t mxc_nand_read_word(struct mtd_info *mtd)
-{
-	struct nand_chip *nand_chip = mtd_to_nand(mtd);
-	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
-	uint16_t ret;
-
-	ret = *(uint16_t *)(host->data_buf + host->buf_start);
-	host->buf_start += 2;
-
-	return ret;
-}
-
 /* Write data of length len to buffer buf. The data to be
  * written on NAND Flash is first copied to RAMbuffer. After the Data Input
  * Operation by the NFC, the data is written to NAND Flash */
-static void mxc_nand_write_buf(struct mtd_info *mtd,
-				const u_char *buf, int len)
+static void mxc_nand_write_buf(struct nand_chip *nand_chip, const u_char *buf,
+			       int len)
 {
-	struct nand_chip *nand_chip = mtd_to_nand(mtd);
+	struct mtd_info *mtd = nand_to_mtd(nand_chip);
 	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
 	u16 col = host->buf_start;
 	int n = mtd->oobsize + mtd->writesize - col;
@@ -955,9 +940,10 @@
  * Flash first the data output cycle is initiated by the NFC, which copies
  * the data to RAMbuffer. This data of length len is then copied to buffer buf.
  */
-static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
+static void mxc_nand_read_buf(struct nand_chip *nand_chip, u_char *buf,
+			      int len)
 {
-	struct nand_chip *nand_chip = mtd_to_nand(mtd);
+	struct mtd_info *mtd = nand_to_mtd(nand_chip);
 	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
 	u16 col = host->buf_start;
 	int n = mtd->oobsize + mtd->writesize - col;
@@ -971,9 +957,8 @@
 
 /* This function is used by upper layer for select and
  * deselect of the NAND chip */
-static void mxc_nand_select_chip_v1_v3(struct mtd_info *mtd, int chip)
+static void mxc_nand_select_chip_v1_v3(struct nand_chip *nand_chip, int chip)
 {
-	struct nand_chip *nand_chip = mtd_to_nand(mtd);
 	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
 
 	if (chip == -1) {
@@ -992,9 +977,8 @@
 	}
 }
 
-static void mxc_nand_select_chip_v2(struct mtd_info *mtd, int chip)
+static void mxc_nand_select_chip_v2(struct nand_chip *nand_chip, int chip)
 {
-	struct nand_chip *nand_chip = mtd_to_nand(mtd);
 	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
 
 	if (chip == -1) {
@@ -1155,11 +1139,10 @@
 	writew(0x4, NFC_V1_V2_WRPROT);
 }
 
-static int mxc_nand_v2_setup_data_interface(struct mtd_info *mtd, int csline,
+static int mxc_nand_v2_setup_data_interface(struct nand_chip *chip, int csline,
 					const struct nand_data_interface *conf)
 {
-	struct nand_chip *nand_chip = mtd_to_nand(mtd);
-	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
+	struct mxc_nand_host *host = nand_get_controller_data(chip);
 	int tRC_min_ns, tRC_ps, ret;
 	unsigned long rate, rate_round;
 	const struct nand_sdr_timings *timings;
@@ -1349,10 +1332,10 @@
 
 /* Used by the upper layer to write command to NAND Flash for
  * different operations to be carried out on NAND Flash */
-static void mxc_nand_command(struct mtd_info *mtd, unsigned command,
-				int column, int page_addr)
+static void mxc_nand_command(struct nand_chip *nand_chip, unsigned command,
+			     int column, int page_addr)
 {
-	struct nand_chip *nand_chip = mtd_to_nand(mtd);
+	struct mtd_info *mtd = nand_to_mtd(nand_chip);
 	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
 
 	dev_dbg(host->dev, "mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
@@ -1409,17 +1392,17 @@
 	}
 }
 
-static int mxc_nand_set_features(struct mtd_info *mtd, struct nand_chip *chip,
-				 int addr, u8 *subfeature_param)
+static int mxc_nand_set_features(struct nand_chip *chip, int addr,
+				 u8 *subfeature_param)
 {
-	struct nand_chip *nand_chip = mtd_to_nand(mtd);
-	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	struct mxc_nand_host *host = nand_get_controller_data(chip);
 	int i;
 
 	host->buf_start = 0;
 
 	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
-		chip->write_byte(mtd, subfeature_param[i]);
+		chip->legacy.write_byte(chip, subfeature_param[i]);
 
 	memcpy32_toio(host->main_area0, host->data_buf, mtd->writesize);
 	host->devtype_data->send_cmd(host, NAND_CMD_SET_FEATURES, false);
@@ -1429,11 +1412,11 @@
 	return 0;
 }
 
-static int mxc_nand_get_features(struct mtd_info *mtd, struct nand_chip *chip,
-				 int addr, u8 *subfeature_param)
+static int mxc_nand_get_features(struct nand_chip *chip, int addr,
+				 u8 *subfeature_param)
 {
-	struct nand_chip *nand_chip = mtd_to_nand(mtd);
-	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	struct mxc_nand_host *host = nand_get_controller_data(chip);
 	int i;
 
 	host->devtype_data->send_cmd(host, NAND_CMD_GET_FEATURES, false);
@@ -1443,7 +1426,7 @@
 	host->buf_start = 0;
 
 	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
-		*subfeature_param++ = chip->read_byte(mtd);
+		*subfeature_param++ = chip->legacy.read_byte(chip);
 
 	return 0;
 }
@@ -1755,8 +1738,17 @@
 	return 0;
 }
 
+static int mxcnd_setup_data_interface(struct nand_chip *chip, int chipnr,
+				      const struct nand_data_interface *conf)
+{
+	struct mxc_nand_host *host = nand_get_controller_data(chip);
+
+	return host->devtype_data->setup_data_interface(chip, chipnr, conf);
+}
+
 static const struct nand_controller_ops mxcnd_controller_ops = {
 	.attach_chip = mxcnd_attach_chip,
+	.setup_data_interface = mxcnd_setup_data_interface,
 };
 
 static int mxcnd_probe(struct platform_device *pdev)
@@ -1786,18 +1778,17 @@
 	mtd->name = DRIVER_NAME;
 
 	/* 50 us command delay time */
-	this->chip_delay = 5;
+	this->legacy.chip_delay = 5;
 
 	nand_set_controller_data(this, host);
 	nand_set_flash_node(this, pdev->dev.of_node),
-	this->dev_ready = mxc_nand_dev_ready;
-	this->cmdfunc = mxc_nand_command;
-	this->read_byte = mxc_nand_read_byte;
-	this->read_word = mxc_nand_read_word;
-	this->write_buf = mxc_nand_write_buf;
-	this->read_buf = mxc_nand_read_buf;
-	this->set_features = mxc_nand_set_features;
-	this->get_features = mxc_nand_get_features;
+	this->legacy.dev_ready = mxc_nand_dev_ready;
+	this->legacy.cmdfunc = mxc_nand_command;
+	this->legacy.read_byte = mxc_nand_read_byte;
+	this->legacy.write_buf = mxc_nand_write_buf;
+	this->legacy.read_buf = mxc_nand_read_buf;
+	this->legacy.set_features = mxc_nand_set_features;
+	this->legacy.get_features = mxc_nand_get_features;
 
 	host->clk = devm_clk_get(&pdev->dev, NULL);
 	if (IS_ERR(host->clk))
@@ -1818,7 +1809,8 @@
 	if (err < 0)
 		return err;
 
-	this->setup_data_interface = host->devtype_data->setup_data_interface;
+	if (!host->devtype_data->setup_data_interface)
+		this->options |= NAND_KEEP_TIMINGS;
 
 	if (host->devtype_data->needs_ip) {
 		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
@@ -1846,7 +1838,7 @@
 	this->ecc.bytes = host->devtype_data->eccbytes;
 	host->eccsize = host->devtype_data->eccsize;
 
-	this->select_chip = host->devtype_data->select_chip;
+	this->legacy.select_chip = host->devtype_data->select_chip;
 	this->ecc.size = 512;
 	mtd_set_ooblayout(mtd, host->devtype_data->ooblayout);
 
@@ -1899,8 +1891,8 @@
 	}
 
 	/* Scan the NAND device */
-	this->dummy_controller.ops = &mxcnd_controller_ops;
-	err = nand_scan(mtd, is_imx25_nfc(host) ? 4 : 1);
+	this->legacy.dummy_controller.ops = &mxcnd_controller_ops;
+	err = nand_scan(this, is_imx25_nfc(host) ? 4 : 1);
 	if (err)
 		goto escan;
 
@@ -1928,7 +1920,7 @@
 {
 	struct mxc_nand_host *host = platform_get_drvdata(pdev);
 
-	nand_release(nand_to_mtd(&host->nand));
+	nand_release(&host->nand);
 	if (host->clk_act)
 		clk_disable_unprepare(host->clk);
 
diff --git a/drivers/mtd/nand/raw/mxic_nand.c b/drivers/mtd/nand/raw/mxic_nand.c
new file mode 100644
index 0000000..9d49e6c
--- /dev/null
+++ b/drivers/mtd/nand/raw/mxic_nand.c
@@ -0,0 +1,582 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (C) 2019 Macronix International Co., Ltd.
+ *
+ * Author:
+ *	Mason Yang <masonccyang@mxic.com.tw>
+ */
+
+#include <linux/clk.h>
+#include <linux/io.h>
+#include <linux/iopoll.h>
+#include <linux/interrupt.h>
+#include <linux/module.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/mtd/nand_ecc.h>
+#include <linux/platform_device.h>
+
+#include "internals.h"
+
+#define HC_CFG			0x0
+#define HC_CFG_IF_CFG(x)	((x) << 27)
+#define HC_CFG_DUAL_SLAVE	BIT(31)
+#define HC_CFG_INDIVIDUAL	BIT(30)
+#define HC_CFG_NIO(x)		(((x) / 4) << 27)
+#define HC_CFG_TYPE(s, t)	((t) << (23 + ((s) * 2)))
+#define HC_CFG_TYPE_SPI_NOR	0
+#define HC_CFG_TYPE_SPI_NAND	1
+#define HC_CFG_TYPE_SPI_RAM	2
+#define HC_CFG_TYPE_RAW_NAND	3
+#define HC_CFG_SLV_ACT(x)	((x) << 21)
+#define HC_CFG_CLK_PH_EN	BIT(20)
+#define HC_CFG_CLK_POL_INV	BIT(19)
+#define HC_CFG_BIG_ENDIAN	BIT(18)
+#define HC_CFG_DATA_PASS	BIT(17)
+#define HC_CFG_IDLE_SIO_LVL(x)	((x) << 16)
+#define HC_CFG_MAN_START_EN	BIT(3)
+#define HC_CFG_MAN_START	BIT(2)
+#define HC_CFG_MAN_CS_EN	BIT(1)
+#define HC_CFG_MAN_CS_ASSERT	BIT(0)
+
+#define INT_STS			0x4
+#define INT_STS_EN		0x8
+#define INT_SIG_EN		0xc
+#define INT_STS_ALL		GENMASK(31, 0)
+#define INT_RDY_PIN		BIT(26)
+#define INT_RDY_SR		BIT(25)
+#define INT_LNR_SUSP		BIT(24)
+#define INT_ECC_ERR		BIT(17)
+#define INT_CRC_ERR		BIT(16)
+#define INT_LWR_DIS		BIT(12)
+#define INT_LRD_DIS		BIT(11)
+#define INT_SDMA_INT		BIT(10)
+#define INT_DMA_FINISH		BIT(9)
+#define INT_RX_NOT_FULL		BIT(3)
+#define INT_RX_NOT_EMPTY	BIT(2)
+#define INT_TX_NOT_FULL		BIT(1)
+#define INT_TX_EMPTY		BIT(0)
+
+#define HC_EN			0x10
+#define HC_EN_BIT		BIT(0)
+
+#define TXD(x)			(0x14 + ((x) * 4))
+#define RXD			0x24
+
+#define SS_CTRL(s)		(0x30 + ((s) * 4))
+#define LRD_CFG			0x44
+#define LWR_CFG			0x80
+#define RWW_CFG			0x70
+#define OP_READ			BIT(23)
+#define OP_DUMMY_CYC(x)		((x) << 17)
+#define OP_ADDR_BYTES(x)	((x) << 14)
+#define OP_CMD_BYTES(x)		(((x) - 1) << 13)
+#define OP_OCTA_CRC_EN		BIT(12)
+#define OP_DQS_EN		BIT(11)
+#define OP_ENHC_EN		BIT(10)
+#define OP_PREAMBLE_EN		BIT(9)
+#define OP_DATA_DDR		BIT(8)
+#define OP_DATA_BUSW(x)		((x) << 6)
+#define OP_ADDR_DDR		BIT(5)
+#define OP_ADDR_BUSW(x)		((x) << 3)
+#define OP_CMD_DDR		BIT(2)
+#define OP_CMD_BUSW(x)		(x)
+#define OP_BUSW_1		0
+#define OP_BUSW_2		1
+#define OP_BUSW_4		2
+#define OP_BUSW_8		3
+
+#define OCTA_CRC		0x38
+#define OCTA_CRC_IN_EN(s)	BIT(3 + ((s) * 16))
+#define OCTA_CRC_CHUNK(s, x)	((fls((x) / 32)) << (1 + ((s) * 16)))
+#define OCTA_CRC_OUT_EN(s)	BIT(0 + ((s) * 16))
+
+#define ONFI_DIN_CNT(s)		(0x3c + (s))
+
+#define LRD_CTRL		0x48
+#define RWW_CTRL		0x74
+#define LWR_CTRL		0x84
+#define LMODE_EN		BIT(31)
+#define LMODE_SLV_ACT(x)	((x) << 21)
+#define LMODE_CMD1(x)		((x) << 8)
+#define LMODE_CMD0(x)		(x)
+
+#define LRD_ADDR		0x4c
+#define LWR_ADDR		0x88
+#define LRD_RANGE		0x50
+#define LWR_RANGE		0x8c
+
+#define AXI_SLV_ADDR		0x54
+
+#define DMAC_RD_CFG		0x58
+#define DMAC_WR_CFG		0x94
+#define DMAC_CFG_PERIPH_EN	BIT(31)
+#define DMAC_CFG_ALLFLUSH_EN	BIT(30)
+#define DMAC_CFG_LASTFLUSH_EN	BIT(29)
+#define DMAC_CFG_QE(x)		(((x) + 1) << 16)
+#define DMAC_CFG_BURST_LEN(x)	(((x) + 1) << 12)
+#define DMAC_CFG_BURST_SZ(x)	((x) << 8)
+#define DMAC_CFG_DIR_READ	BIT(1)
+#define DMAC_CFG_START		BIT(0)
+
+#define DMAC_RD_CNT		0x5c
+#define DMAC_WR_CNT		0x98
+
+#define SDMA_ADDR		0x60
+
+#define DMAM_CFG		0x64
+#define DMAM_CFG_START		BIT(31)
+#define DMAM_CFG_CONT		BIT(30)
+#define DMAM_CFG_SDMA_GAP(x)	(fls((x) / 8192) << 2)
+#define DMAM_CFG_DIR_READ	BIT(1)
+#define DMAM_CFG_EN		BIT(0)
+
+#define DMAM_CNT		0x68
+
+#define LNR_TIMER_TH		0x6c
+
+#define RDM_CFG0		0x78
+#define RDM_CFG0_POLY(x)	(x)
+
+#define RDM_CFG1		0x7c
+#define RDM_CFG1_RDM_EN		BIT(31)
+#define RDM_CFG1_SEED(x)	(x)
+
+#define LWR_SUSP_CTRL		0x90
+#define LWR_SUSP_CTRL_EN	BIT(31)
+
+#define DMAS_CTRL		0x9c
+#define DMAS_CTRL_EN		BIT(31)
+#define DMAS_CTRL_DIR_READ	BIT(30)
+
+#define DATA_STROB		0xa0
+#define DATA_STROB_EDO_EN	BIT(2)
+#define DATA_STROB_INV_POL	BIT(1)
+#define DATA_STROB_DELAY_2CYC	BIT(0)
+
+#define IDLY_CODE(x)		(0xa4 + ((x) * 4))
+#define IDLY_CODE_VAL(x, v)	((v) << (((x) % 4) * 8))
+
+#define GPIO			0xc4
+#define GPIO_PT(x)		BIT(3 + ((x) * 16))
+#define GPIO_RESET(x)		BIT(2 + ((x) * 16))
+#define GPIO_HOLDB(x)		BIT(1 + ((x) * 16))
+#define GPIO_WPB(x)		BIT((x) * 16)
+
+#define HC_VER			0xd0
+
+#define HW_TEST(x)		(0xe0 + ((x) * 4))
+
+#define MXIC_NFC_MAX_CLK_HZ	50000000
+#define IRQ_TIMEOUT		1000
+
+struct mxic_nand_ctlr {
+	struct clk *ps_clk;
+	struct clk *send_clk;
+	struct clk *send_dly_clk;
+	struct completion complete;
+	void __iomem *regs;
+	struct nand_controller controller;
+	struct device *dev;
+	struct nand_chip chip;
+};
+
+static int mxic_nfc_clk_enable(struct mxic_nand_ctlr *nfc)
+{
+	int ret;
+
+	ret = clk_prepare_enable(nfc->ps_clk);
+	if (ret)
+		return ret;
+
+	ret = clk_prepare_enable(nfc->send_clk);
+	if (ret)
+		goto err_ps_clk;
+
+	ret = clk_prepare_enable(nfc->send_dly_clk);
+	if (ret)
+		goto err_send_dly_clk;
+
+	return ret;
+
+err_send_dly_clk:
+	clk_disable_unprepare(nfc->send_clk);
+err_ps_clk:
+	clk_disable_unprepare(nfc->ps_clk);
+
+	return ret;
+}
+
+static void mxic_nfc_clk_disable(struct mxic_nand_ctlr *nfc)
+{
+	clk_disable_unprepare(nfc->send_clk);
+	clk_disable_unprepare(nfc->send_dly_clk);
+	clk_disable_unprepare(nfc->ps_clk);
+}
+
+static void mxic_nfc_set_input_delay(struct mxic_nand_ctlr *nfc, u8 idly_code)
+{
+	writel(IDLY_CODE_VAL(0, idly_code) |
+	       IDLY_CODE_VAL(1, idly_code) |
+	       IDLY_CODE_VAL(2, idly_code) |
+	       IDLY_CODE_VAL(3, idly_code),
+	       nfc->regs + IDLY_CODE(0));
+	writel(IDLY_CODE_VAL(4, idly_code) |
+	       IDLY_CODE_VAL(5, idly_code) |
+	       IDLY_CODE_VAL(6, idly_code) |
+	       IDLY_CODE_VAL(7, idly_code),
+	       nfc->regs + IDLY_CODE(1));
+}
+
+static int mxic_nfc_clk_setup(struct mxic_nand_ctlr *nfc, unsigned long freq)
+{
+	int ret;
+
+	ret = clk_set_rate(nfc->send_clk, freq);
+	if (ret)
+		return ret;
+
+	ret = clk_set_rate(nfc->send_dly_clk, freq);
+	if (ret)
+		return ret;
+
+	/*
+	 * A constant delay range from 0x0 ~ 0x1F for input delay,
+	 * the unit is 78 ps, the max input delay is 2.418 ns.
+	 */
+	mxic_nfc_set_input_delay(nfc, 0xf);
+
+	/*
+	 * Phase degree = 360 * freq * output-delay
+	 * where output-delay is a constant value 1 ns in FPGA.
+	 *
+	 * Get Phase degree = 360 * freq * 1 ns
+	 *                  = 360 * freq * 1 sec / 1000000000
+	 *                  = 9 * freq / 25000000
+	 */
+	ret = clk_set_phase(nfc->send_dly_clk, 9 * freq / 25000000);
+	if (ret)
+		return ret;
+
+	return 0;
+}
+
+static int mxic_nfc_set_freq(struct mxic_nand_ctlr *nfc, unsigned long freq)
+{
+	int ret;
+
+	if (freq > MXIC_NFC_MAX_CLK_HZ)
+		freq = MXIC_NFC_MAX_CLK_HZ;
+
+	mxic_nfc_clk_disable(nfc);
+	ret = mxic_nfc_clk_setup(nfc, freq);
+	if (ret)
+		return ret;
+
+	ret = mxic_nfc_clk_enable(nfc);
+	if (ret)
+		return ret;
+
+	return 0;
+}
+
+static irqreturn_t mxic_nfc_isr(int irq, void *dev_id)
+{
+	struct mxic_nand_ctlr *nfc = dev_id;
+	u32 sts;
+
+	sts = readl(nfc->regs + INT_STS);
+	if (sts & INT_RDY_PIN)
+		complete(&nfc->complete);
+	else
+		return IRQ_NONE;
+
+	return IRQ_HANDLED;
+}
+
+static void mxic_nfc_hw_init(struct mxic_nand_ctlr *nfc)
+{
+	writel(HC_CFG_NIO(8) | HC_CFG_TYPE(1, HC_CFG_TYPE_RAW_NAND) |
+	       HC_CFG_SLV_ACT(0) | HC_CFG_MAN_CS_EN |
+	       HC_CFG_IDLE_SIO_LVL(1), nfc->regs + HC_CFG);
+	writel(INT_STS_ALL, nfc->regs + INT_STS_EN);
+	writel(INT_RDY_PIN, nfc->regs + INT_SIG_EN);
+	writel(0x0, nfc->regs + ONFI_DIN_CNT(0));
+	writel(0, nfc->regs + LRD_CFG);
+	writel(0, nfc->regs + LRD_CTRL);
+	writel(0x0, nfc->regs + HC_EN);
+}
+
+static void mxic_nfc_cs_enable(struct mxic_nand_ctlr *nfc)
+{
+	writel(readl(nfc->regs + HC_CFG) | HC_CFG_MAN_CS_EN,
+	       nfc->regs + HC_CFG);
+	writel(HC_CFG_MAN_CS_ASSERT | readl(nfc->regs + HC_CFG),
+	       nfc->regs + HC_CFG);
+}
+
+static void mxic_nfc_cs_disable(struct mxic_nand_ctlr *nfc)
+{
+	writel(~HC_CFG_MAN_CS_ASSERT & readl(nfc->regs + HC_CFG),
+	       nfc->regs + HC_CFG);
+}
+
+static int  mxic_nfc_wait_ready(struct nand_chip *chip)
+{
+	struct mxic_nand_ctlr *nfc = nand_get_controller_data(chip);
+	int ret;
+
+	ret = wait_for_completion_timeout(&nfc->complete,
+					  msecs_to_jiffies(IRQ_TIMEOUT));
+	if (!ret) {
+		dev_err(nfc->dev, "nand device timeout\n");
+		return -ETIMEDOUT;
+	}
+
+	return 0;
+}
+
+static int mxic_nfc_data_xfer(struct mxic_nand_ctlr *nfc, const void *txbuf,
+			      void *rxbuf, unsigned int len)
+{
+	unsigned int pos = 0;
+
+	while (pos < len) {
+		unsigned int nbytes = len - pos;
+		u32 data = 0xffffffff;
+		u32 sts;
+		int ret;
+
+		if (nbytes > 4)
+			nbytes = 4;
+
+		if (txbuf)
+			memcpy(&data, txbuf + pos, nbytes);
+
+		ret = readl_poll_timeout(nfc->regs + INT_STS, sts,
+					 sts & INT_TX_EMPTY, 0, USEC_PER_SEC);
+		if (ret)
+			return ret;
+
+		writel(data, nfc->regs + TXD(nbytes % 4));
+
+		ret = readl_poll_timeout(nfc->regs + INT_STS, sts,
+					 sts & INT_TX_EMPTY, 0, USEC_PER_SEC);
+		if (ret)
+			return ret;
+
+		ret = readl_poll_timeout(nfc->regs + INT_STS, sts,
+					 sts & INT_RX_NOT_EMPTY, 0,
+					 USEC_PER_SEC);
+		if (ret)
+			return ret;
+
+		data = readl(nfc->regs + RXD);
+		if (rxbuf) {
+			data >>= (8 * (4 - nbytes));
+			memcpy(rxbuf + pos, &data, nbytes);
+		}
+		if (readl(nfc->regs + INT_STS) & INT_RX_NOT_EMPTY)
+			dev_warn(nfc->dev, "RX FIFO not empty\n");
+
+		pos += nbytes;
+	}
+
+	return 0;
+}
+
+static int mxic_nfc_exec_op(struct nand_chip *chip,
+			    const struct nand_operation *op, bool check_only)
+{
+	struct mxic_nand_ctlr *nfc = nand_get_controller_data(chip);
+	const struct nand_op_instr *instr = NULL;
+	int ret = 0;
+	unsigned int op_id;
+
+	mxic_nfc_cs_enable(nfc);
+	init_completion(&nfc->complete);
+	for (op_id = 0; op_id < op->ninstrs; op_id++) {
+		instr = &op->instrs[op_id];
+
+		switch (instr->type) {
+		case NAND_OP_CMD_INSTR:
+			writel(0, nfc->regs + HC_EN);
+			writel(HC_EN_BIT, nfc->regs + HC_EN);
+			writel(OP_CMD_BUSW(OP_BUSW_8) |  OP_DUMMY_CYC(0x3F) |
+			       OP_CMD_BYTES(0), nfc->regs + SS_CTRL(0));
+
+			ret = mxic_nfc_data_xfer(nfc,
+						 &instr->ctx.cmd.opcode,
+						 NULL, 1);
+			break;
+
+		case NAND_OP_ADDR_INSTR:
+			writel(OP_ADDR_BUSW(OP_BUSW_8) | OP_DUMMY_CYC(0x3F) |
+			       OP_ADDR_BYTES(instr->ctx.addr.naddrs),
+			       nfc->regs + SS_CTRL(0));
+			ret = mxic_nfc_data_xfer(nfc,
+						 instr->ctx.addr.addrs, NULL,
+						 instr->ctx.addr.naddrs);
+			break;
+
+		case NAND_OP_DATA_IN_INSTR:
+			writel(0x0, nfc->regs + ONFI_DIN_CNT(0));
+			writel(OP_DATA_BUSW(OP_BUSW_8) | OP_DUMMY_CYC(0x3F) |
+			       OP_READ, nfc->regs + SS_CTRL(0));
+			ret = mxic_nfc_data_xfer(nfc, NULL,
+						 instr->ctx.data.buf.in,
+						 instr->ctx.data.len);
+			break;
+
+		case NAND_OP_DATA_OUT_INSTR:
+			writel(instr->ctx.data.len,
+			       nfc->regs + ONFI_DIN_CNT(0));
+			writel(OP_DATA_BUSW(OP_BUSW_8) | OP_DUMMY_CYC(0x3F),
+			       nfc->regs + SS_CTRL(0));
+			ret = mxic_nfc_data_xfer(nfc,
+						 instr->ctx.data.buf.out, NULL,
+						 instr->ctx.data.len);
+			break;
+
+		case NAND_OP_WAITRDY_INSTR:
+			ret = mxic_nfc_wait_ready(chip);
+			break;
+		}
+	}
+	mxic_nfc_cs_disable(nfc);
+
+	return ret;
+}
+
+static int mxic_nfc_setup_data_interface(struct nand_chip *chip, int chipnr,
+					 const struct nand_data_interface *conf)
+{
+	struct mxic_nand_ctlr *nfc = nand_get_controller_data(chip);
+	const struct nand_sdr_timings *sdr;
+	unsigned long freq;
+	int ret;
+
+	sdr = nand_get_sdr_timings(conf);
+	if (IS_ERR(sdr))
+		return PTR_ERR(sdr);
+
+	if (chipnr == NAND_DATA_IFACE_CHECK_ONLY)
+		return 0;
+
+	freq = NSEC_PER_SEC / (sdr->tRC_min / 1000);
+
+	ret =  mxic_nfc_set_freq(nfc, freq);
+	if (ret)
+		dev_err(nfc->dev, "set freq:%ld failed\n", freq);
+
+	if (sdr->tRC_min < 30000)
+		writel(DATA_STROB_EDO_EN, nfc->regs + DATA_STROB);
+
+	return 0;
+}
+
+static const struct nand_controller_ops mxic_nand_controller_ops = {
+	.exec_op = mxic_nfc_exec_op,
+	.setup_data_interface = mxic_nfc_setup_data_interface,
+};
+
+static int mxic_nfc_probe(struct platform_device *pdev)
+{
+	struct device_node *nand_np, *np = pdev->dev.of_node;
+	struct mtd_info *mtd;
+	struct mxic_nand_ctlr *nfc;
+	struct nand_chip *nand_chip;
+	int err;
+	int irq;
+
+	nfc = devm_kzalloc(&pdev->dev, sizeof(struct mxic_nand_ctlr),
+			   GFP_KERNEL);
+	if (!nfc)
+		return -ENOMEM;
+
+	nfc->ps_clk = devm_clk_get(&pdev->dev, "ps");
+	if (IS_ERR(nfc->ps_clk))
+		return PTR_ERR(nfc->ps_clk);
+
+	nfc->send_clk = devm_clk_get(&pdev->dev, "send");
+	if (IS_ERR(nfc->send_clk))
+		return PTR_ERR(nfc->send_clk);
+
+	nfc->send_dly_clk = devm_clk_get(&pdev->dev, "send_dly");
+	if (IS_ERR(nfc->send_dly_clk))
+		return PTR_ERR(nfc->send_dly_clk);
+
+	nfc->regs = devm_platform_ioremap_resource(pdev, 0);
+	if (IS_ERR(nfc->regs))
+		return PTR_ERR(nfc->regs);
+
+	nand_chip = &nfc->chip;
+	mtd = nand_to_mtd(nand_chip);
+	mtd->dev.parent = &pdev->dev;
+
+	for_each_child_of_node(np, nand_np)
+		nand_set_flash_node(nand_chip, nand_np);
+
+	nand_chip->priv = nfc;
+	nfc->dev = &pdev->dev;
+	nfc->controller.ops = &mxic_nand_controller_ops;
+	nand_controller_init(&nfc->controller);
+	nand_chip->controller = &nfc->controller;
+
+	irq = platform_get_irq(pdev, 0);
+	if (irq < 0) {
+		dev_err(&pdev->dev, "failed to retrieve irq\n");
+		return irq;
+	}
+
+	mxic_nfc_hw_init(nfc);
+
+	err = devm_request_irq(&pdev->dev, irq, mxic_nfc_isr,
+			       0, "mxic-nfc", nfc);
+	if (err)
+		goto fail;
+
+	err = nand_scan(nand_chip, 1);
+	if (err)
+		goto fail;
+
+	err = mtd_device_register(mtd, NULL, 0);
+	if (err)
+		goto fail;
+
+	platform_set_drvdata(pdev, nfc);
+	return 0;
+
+fail:
+	mxic_nfc_clk_disable(nfc);
+	return err;
+}
+
+static int mxic_nfc_remove(struct platform_device *pdev)
+{
+	struct mxic_nand_ctlr *nfc = platform_get_drvdata(pdev);
+
+	nand_release(&nfc->chip);
+	mxic_nfc_clk_disable(nfc);
+	return 0;
+}
+
+static const struct of_device_id mxic_nfc_of_ids[] = {
+	{ .compatible = "mxic,multi-itfc-v009-nand-controller", },
+	{},
+};
+MODULE_DEVICE_TABLE(of, mxic_nfc_of_ids);
+
+static struct platform_driver mxic_nfc_driver = {
+	.probe = mxic_nfc_probe,
+	.remove = mxic_nfc_remove,
+	.driver = {
+		.name = "mxic-nfc",
+		.of_match_table = mxic_nfc_of_ids,
+	},
+};
+module_platform_driver(mxic_nfc_driver);
+
+MODULE_AUTHOR("Mason Yang <masonccyang@mxic.com.tw>");
+MODULE_DESCRIPTION("Macronix raw NAND controller driver");
+MODULE_LICENSE("GPL v2");
diff --git a/drivers/mtd/nand/raw/nand_amd.c b/drivers/mtd/nand/raw/nand_amd.c
index 22f060f..c3d4dae 100644
--- a/drivers/mtd/nand/raw/nand_amd.c
+++ b/drivers/mtd/nand/raw/nand_amd.c
@@ -1,25 +1,19 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
 /*
  * Copyright (C) 2017 Free Electrons
  * Copyright (C) 2017 NextThing Co
  *
  * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
- * GNU General Public License for more details.
  */
 
-#include <linux/mtd/rawnand.h>
+#include "internals.h"
 
 static void amd_nand_decode_id(struct nand_chip *chip)
 {
 	struct mtd_info *mtd = nand_to_mtd(chip);
+	struct nand_memory_organization *memorg;
+
+	memorg = nanddev_get_memorg(&chip->base);
 
 	nand_decode_ext_id(chip);
 
@@ -31,16 +25,24 @@
 	 */
 	if (chip->id.data[4] != 0x00 && chip->id.data[5] == 0x00 &&
 	    chip->id.data[6] == 0x00 && chip->id.data[7] == 0x00 &&
-	    mtd->writesize == 512) {
-		mtd->erasesize = 128 * 1024;
-		mtd->erasesize <<= ((chip->id.data[3] & 0x03) << 1);
+	    memorg->pagesize == 512) {
+		memorg->pages_per_eraseblock = 256;
+		memorg->pages_per_eraseblock <<= ((chip->id.data[3] & 0x03) << 1);
+		mtd->erasesize = memorg->pages_per_eraseblock *
+				 memorg->pagesize;
 	}
 }
 
 static int amd_nand_init(struct nand_chip *chip)
 {
 	if (nand_is_slc(chip))
-		chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
+		/*
+		 * According to the datasheet of some Cypress SLC NANDs,
+		 * the bad block markers can be in the first, second or last
+		 * page of a block. So let's check all three locations.
+		 */
+		chip->options |= NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE |
+				 NAND_BBM_LASTPAGE;
 
 	return 0;
 }
diff --git a/drivers/mtd/nand/raw/nand_base.c b/drivers/mtd/nand/raw/nand_base.c
index d527e44..5c2c30a 100644
--- a/drivers/mtd/nand/raw/nand_base.c
+++ b/drivers/mtd/nand/raw/nand_base.c
@@ -1,3 +1,4 @@
+// SPDX-License-Identifier: GPL-2.0-only
 /*
  *  Overview:
  *   This is the generic MTD driver for NAND flash devices. It should be
@@ -20,11 +21,6 @@
  *	Check, if mtd->ecctype should be set to MTD_ECC_HW
  *	if we have HW ECC support.
  *	BBT table is not serialized, has to be fixed
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
- *
  */
 
 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
@@ -36,10 +32,8 @@
 #include <linux/sched.h>
 #include <linux/slab.h>
 #include <linux/mm.h>
-#include <linux/nmi.h>
 #include <linux/types.h>
 #include <linux/mtd/mtd.h>
-#include <linux/mtd/rawnand.h>
 #include <linux/mtd/nand_ecc.h>
 #include <linux/mtd/nand_bch.h>
 #include <linux/interrupt.h>
@@ -47,11 +41,9 @@
 #include <linux/io.h>
 #include <linux/mtd/partitions.h>
 #include <linux/of.h>
+#include <linux/gpio/consumer.h>
 
-static int nand_get_device(struct mtd_info *mtd, int new_state);
-
-static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
-			     struct mtd_oob_ops *ops);
+#include "internals.h"
 
 /* Define default oob placement schemes for large and small page devices */
 static int nand_ooblayout_ecc_sp(struct mtd_info *mtd, int section,
@@ -213,10 +205,8 @@
 	.free = nand_ooblayout_free_lp_hamming,
 };
 
-static int check_offs_len(struct mtd_info *mtd,
-					loff_t ofs, uint64_t len)
+static int check_offs_len(struct nand_chip *chip, loff_t ofs, uint64_t len)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
 	int ret = 0;
 
 	/* Start address must align on block boundary */
@@ -235,211 +225,102 @@
 }
 
 /**
+ * nand_select_target() - Select a NAND target (A.K.A. die)
+ * @chip: NAND chip object
+ * @cs: the CS line to select. Note that this CS id is always from the chip
+ *	PoV, not the controller one
+ *
+ * Select a NAND target so that further operations executed on @chip go to the
+ * selected NAND target.
+ */
+void nand_select_target(struct nand_chip *chip, unsigned int cs)
+{
+	/*
+	 * cs should always lie between 0 and nanddev_ntargets(), when that's
+	 * not the case it's a bug and the caller should be fixed.
+	 */
+	if (WARN_ON(cs > nanddev_ntargets(&chip->base)))
+		return;
+
+	chip->cur_cs = cs;
+
+	if (chip->legacy.select_chip)
+		chip->legacy.select_chip(chip, cs);
+}
+EXPORT_SYMBOL_GPL(nand_select_target);
+
+/**
+ * nand_deselect_target() - Deselect the currently selected target
+ * @chip: NAND chip object
+ *
+ * Deselect the currently selected NAND target. The result of operations
+ * executed on @chip after the target has been deselected is undefined.
+ */
+void nand_deselect_target(struct nand_chip *chip)
+{
+	if (chip->legacy.select_chip)
+		chip->legacy.select_chip(chip, -1);
+
+	chip->cur_cs = -1;
+}
+EXPORT_SYMBOL_GPL(nand_deselect_target);
+
+/**
  * nand_release_device - [GENERIC] release chip
- * @mtd: MTD device structure
+ * @chip: NAND chip object
  *
  * Release chip lock and wake up anyone waiting on the device.
  */
-static void nand_release_device(struct mtd_info *mtd)
+static void nand_release_device(struct nand_chip *chip)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
-
 	/* Release the controller and the chip */
-	spin_lock(&chip->controller->lock);
-	chip->controller->active = NULL;
-	chip->state = FL_READY;
-	wake_up(&chip->controller->wq);
-	spin_unlock(&chip->controller->lock);
+	mutex_unlock(&chip->controller->lock);
+	mutex_unlock(&chip->lock);
 }
 
 /**
- * nand_read_byte - [DEFAULT] read one byte from the chip
- * @mtd: MTD device structure
+ * nand_bbm_get_next_page - Get the next page for bad block markers
+ * @chip: NAND chip object
+ * @page: First page to start checking for bad block marker usage
  *
- * Default read function for 8bit buswidth
+ * Returns an integer that corresponds to the page offset within a block, for
+ * a page that is used to store bad block markers. If no more pages are
+ * available, -EINVAL is returned.
  */
-static uint8_t nand_read_byte(struct mtd_info *mtd)
+int nand_bbm_get_next_page(struct nand_chip *chip, int page)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
-	return readb(chip->IO_ADDR_R);
-}
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	int last_page = ((mtd->erasesize - mtd->writesize) >>
+			 chip->page_shift) & chip->pagemask;
 
-/**
- * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
- * @mtd: MTD device structure
- *
- * Default read function for 16bit buswidth with endianness conversion.
- *
- */
-static uint8_t nand_read_byte16(struct mtd_info *mtd)
-{
-	struct nand_chip *chip = mtd_to_nand(mtd);
-	return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
-}
+	if (page == 0 && chip->options & NAND_BBM_FIRSTPAGE)
+		return 0;
+	else if (page <= 1 && chip->options & NAND_BBM_SECONDPAGE)
+		return 1;
+	else if (page <= last_page && chip->options & NAND_BBM_LASTPAGE)
+		return last_page;
 
-/**
- * nand_read_word - [DEFAULT] read one word from the chip
- * @mtd: MTD device structure
- *
- * Default read function for 16bit buswidth without endianness conversion.
- */
-static u16 nand_read_word(struct mtd_info *mtd)
-{
-	struct nand_chip *chip = mtd_to_nand(mtd);
-	return readw(chip->IO_ADDR_R);
-}
-
-/**
- * nand_select_chip - [DEFAULT] control CE line
- * @mtd: MTD device structure
- * @chipnr: chipnumber to select, -1 for deselect
- *
- * Default select function for 1 chip devices.
- */
-static void nand_select_chip(struct mtd_info *mtd, int chipnr)
-{
-	struct nand_chip *chip = mtd_to_nand(mtd);
-
-	switch (chipnr) {
-	case -1:
-		chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
-		break;
-	case 0:
-		break;
-
-	default:
-		BUG();
-	}
-}
-
-/**
- * nand_write_byte - [DEFAULT] write single byte to chip
- * @mtd: MTD device structure
- * @byte: value to write
- *
- * Default function to write a byte to I/O[7:0]
- */
-static void nand_write_byte(struct mtd_info *mtd, uint8_t byte)
-{
-	struct nand_chip *chip = mtd_to_nand(mtd);
-
-	chip->write_buf(mtd, &byte, 1);
-}
-
-/**
- * nand_write_byte16 - [DEFAULT] write single byte to a chip with width 16
- * @mtd: MTD device structure
- * @byte: value to write
- *
- * Default function to write a byte to I/O[7:0] on a 16-bit wide chip.
- */
-static void nand_write_byte16(struct mtd_info *mtd, uint8_t byte)
-{
-	struct nand_chip *chip = mtd_to_nand(mtd);
-	uint16_t word = byte;
-
-	/*
-	 * It's not entirely clear what should happen to I/O[15:8] when writing
-	 * a byte. The ONFi spec (Revision 3.1; 2012-09-19, Section 2.16) reads:
-	 *
-	 *    When the host supports a 16-bit bus width, only data is
-	 *    transferred at the 16-bit width. All address and command line
-	 *    transfers shall use only the lower 8-bits of the data bus. During
-	 *    command transfers, the host may place any value on the upper
-	 *    8-bits of the data bus. During address transfers, the host shall
-	 *    set the upper 8-bits of the data bus to 00h.
-	 *
-	 * One user of the write_byte callback is nand_set_features. The
-	 * four parameters are specified to be written to I/O[7:0], but this is
-	 * neither an address nor a command transfer. Let's assume a 0 on the
-	 * upper I/O lines is OK.
-	 */
-	chip->write_buf(mtd, (uint8_t *)&word, 2);
-}
-
-/**
- * nand_write_buf - [DEFAULT] write buffer to chip
- * @mtd: MTD device structure
- * @buf: data buffer
- * @len: number of bytes to write
- *
- * Default write function for 8bit buswidth.
- */
-static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
-{
-	struct nand_chip *chip = mtd_to_nand(mtd);
-
-	iowrite8_rep(chip->IO_ADDR_W, buf, len);
-}
-
-/**
- * nand_read_buf - [DEFAULT] read chip data into buffer
- * @mtd: MTD device structure
- * @buf: buffer to store date
- * @len: number of bytes to read
- *
- * Default read function for 8bit buswidth.
- */
-static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
-{
-	struct nand_chip *chip = mtd_to_nand(mtd);
-
-	ioread8_rep(chip->IO_ADDR_R, buf, len);
-}
-
-/**
- * nand_write_buf16 - [DEFAULT] write buffer to chip
- * @mtd: MTD device structure
- * @buf: data buffer
- * @len: number of bytes to write
- *
- * Default write function for 16bit buswidth.
- */
-static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
-{
-	struct nand_chip *chip = mtd_to_nand(mtd);
-	u16 *p = (u16 *) buf;
-
-	iowrite16_rep(chip->IO_ADDR_W, p, len >> 1);
-}
-
-/**
- * nand_read_buf16 - [DEFAULT] read chip data into buffer
- * @mtd: MTD device structure
- * @buf: buffer to store date
- * @len: number of bytes to read
- *
- * Default read function for 16bit buswidth.
- */
-static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
-{
-	struct nand_chip *chip = mtd_to_nand(mtd);
-	u16 *p = (u16 *) buf;
-
-	ioread16_rep(chip->IO_ADDR_R, p, len >> 1);
+	return -EINVAL;
 }
 
 /**
  * nand_block_bad - [DEFAULT] Read bad block marker from the chip
- * @mtd: MTD device structure
+ * @chip: NAND chip object
  * @ofs: offset from device start
  *
  * Check, if the block is bad.
  */
-static int nand_block_bad(struct mtd_info *mtd, loff_t ofs)
+static int nand_block_bad(struct nand_chip *chip, loff_t ofs)
 {
-	int page, page_end, res;
-	struct nand_chip *chip = mtd_to_nand(mtd);
+	int first_page, page_offset;
+	int res;
 	u8 bad;
 
-	if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
-		ofs += mtd->erasesize - mtd->writesize;
+	first_page = (int)(ofs >> chip->page_shift) & chip->pagemask;
+	page_offset = nand_bbm_get_next_page(chip, 0);
 
-	page = (int)(ofs >> chip->page_shift) & chip->pagemask;
-	page_end = page + (chip->bbt_options & NAND_BBT_SCAN2NDPAGE ? 2 : 1);
-
-	for (; page < page_end; page++) {
-		res = chip->ecc.read_oob(mtd, chip, page);
+	while (page_offset >= 0) {
+		res = chip->ecc.read_oob(chip, first_page + page_offset);
 		if (res < 0)
 			return res;
 
@@ -451,115 +332,50 @@
 			res = hweight8(bad) < chip->badblockbits;
 		if (res)
 			return res;
+
+		page_offset = nand_bbm_get_next_page(chip, page_offset + 1);
 	}
 
 	return 0;
 }
 
-/**
- * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
- * @mtd: MTD device structure
- * @ofs: offset from device start
- *
- * This is the default implementation, which can be overridden by a hardware
- * specific driver. It provides the details for writing a bad block marker to a
- * block.
- */
-static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
+static int nand_isbad_bbm(struct nand_chip *chip, loff_t ofs)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
-	struct mtd_oob_ops ops;
-	uint8_t buf[2] = { 0, 0 };
-	int ret = 0, res, i = 0;
+	if (chip->legacy.block_bad)
+		return chip->legacy.block_bad(chip, ofs);
 
-	memset(&ops, 0, sizeof(ops));
-	ops.oobbuf = buf;
-	ops.ooboffs = chip->badblockpos;
-	if (chip->options & NAND_BUSWIDTH_16) {
-		ops.ooboffs &= ~0x01;
-		ops.len = ops.ooblen = 2;
-	} else {
-		ops.len = ops.ooblen = 1;
-	}
-	ops.mode = MTD_OPS_PLACE_OOB;
-
-	/* Write to first/last page(s) if necessary */
-	if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
-		ofs += mtd->erasesize - mtd->writesize;
-	do {
-		res = nand_do_write_oob(mtd, ofs, &ops);
-		if (!ret)
-			ret = res;
-
-		i++;
-		ofs += mtd->writesize;
-	} while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);
-
-	return ret;
+	return nand_block_bad(chip, ofs);
 }
 
 /**
- * nand_block_markbad_lowlevel - mark a block bad
- * @mtd: MTD device structure
- * @ofs: offset from device start
+ * nand_get_device - [GENERIC] Get chip for selected access
+ * @chip: NAND chip structure
  *
- * This function performs the generic NAND bad block marking steps (i.e., bad
- * block table(s) and/or marker(s)). We only allow the hardware driver to
- * specify how to write bad block markers to OOB (chip->block_markbad).
+ * Lock the device and its controller for exclusive access
  *
- * We try operations in the following order:
- *
- *  (1) erase the affected block, to allow OOB marker to be written cleanly
- *  (2) write bad block marker to OOB area of affected block (unless flag
- *      NAND_BBT_NO_OOB_BBM is present)
- *  (3) update the BBT
- *
- * Note that we retain the first error encountered in (2) or (3), finish the
- * procedures, and dump the error in the end.
-*/
-static int nand_block_markbad_lowlevel(struct mtd_info *mtd, loff_t ofs)
+ * Return: -EBUSY if the chip has been suspended, 0 otherwise
+ */
+static int nand_get_device(struct nand_chip *chip)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
-	int res, ret = 0;
-
-	if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
-		struct erase_info einfo;
-
-		/* Attempt erase before marking OOB */
-		memset(&einfo, 0, sizeof(einfo));
-		einfo.addr = ofs;
-		einfo.len = 1ULL << chip->phys_erase_shift;
-		nand_erase_nand(mtd, &einfo, 0);
-
-		/* Write bad block marker to OOB */
-		nand_get_device(mtd, FL_WRITING);
-		ret = chip->block_markbad(mtd, ofs);
-		nand_release_device(mtd);
+	mutex_lock(&chip->lock);
+	if (chip->suspended) {
+		mutex_unlock(&chip->lock);
+		return -EBUSY;
 	}
+	mutex_lock(&chip->controller->lock);
 
-	/* Mark block bad in BBT */
-	if (chip->bbt) {
-		res = nand_markbad_bbt(mtd, ofs);
-		if (!ret)
-			ret = res;
-	}
-
-	if (!ret)
-		mtd->ecc_stats.badblocks++;
-
-	return ret;
+	return 0;
 }
 
 /**
  * nand_check_wp - [GENERIC] check if the chip is write protected
- * @mtd: MTD device structure
+ * @chip: NAND chip object
  *
  * Check, if the device is write protected. The function expects, that the
  * device is already selected.
  */
-static int nand_check_wp(struct mtd_info *mtd)
+static int nand_check_wp(struct nand_chip *chip)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
 	u8 status;
 	int ret;
 
@@ -576,6 +392,225 @@
 }
 
 /**
+ * nand_fill_oob - [INTERN] Transfer client buffer to oob
+ * @chip: NAND chip object
+ * @oob: oob data buffer
+ * @len: oob data write length
+ * @ops: oob ops structure
+ */
+static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob, size_t len,
+			      struct mtd_oob_ops *ops)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	int ret;
+
+	/*
+	 * Initialise to all 0xFF, to avoid the possibility of left over OOB
+	 * data from a previous OOB read.
+	 */
+	memset(chip->oob_poi, 0xff, mtd->oobsize);
+
+	switch (ops->mode) {
+
+	case MTD_OPS_PLACE_OOB:
+	case MTD_OPS_RAW:
+		memcpy(chip->oob_poi + ops->ooboffs, oob, len);
+		return oob + len;
+
+	case MTD_OPS_AUTO_OOB:
+		ret = mtd_ooblayout_set_databytes(mtd, oob, chip->oob_poi,
+						  ops->ooboffs, len);
+		BUG_ON(ret);
+		return oob + len;
+
+	default:
+		BUG();
+	}
+	return NULL;
+}
+
+/**
+ * nand_do_write_oob - [MTD Interface] NAND write out-of-band
+ * @chip: NAND chip object
+ * @to: offset to write to
+ * @ops: oob operation description structure
+ *
+ * NAND write out-of-band.
+ */
+static int nand_do_write_oob(struct nand_chip *chip, loff_t to,
+			     struct mtd_oob_ops *ops)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	int chipnr, page, status, len, ret;
+
+	pr_debug("%s: to = 0x%08x, len = %i\n",
+			 __func__, (unsigned int)to, (int)ops->ooblen);
+
+	len = mtd_oobavail(mtd, ops);
+
+	/* Do not allow write past end of page */
+	if ((ops->ooboffs + ops->ooblen) > len) {
+		pr_debug("%s: attempt to write past end of page\n",
+				__func__);
+		return -EINVAL;
+	}
+
+	chipnr = (int)(to >> chip->chip_shift);
+
+	/*
+	 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
+	 * of my DiskOnChip 2000 test units) will clear the whole data page too
+	 * if we don't do this. I have no clue why, but I seem to have 'fixed'
+	 * it in the doc2000 driver in August 1999.  dwmw2.
+	 */
+	ret = nand_reset(chip, chipnr);
+	if (ret)
+		return ret;
+
+	nand_select_target(chip, chipnr);
+
+	/* Shift to get page */
+	page = (int)(to >> chip->page_shift);
+
+	/* Check, if it is write protected */
+	if (nand_check_wp(chip)) {
+		nand_deselect_target(chip);
+		return -EROFS;
+	}
+
+	/* Invalidate the page cache, if we write to the cached page */
+	if (page == chip->pagecache.page)
+		chip->pagecache.page = -1;
+
+	nand_fill_oob(chip, ops->oobbuf, ops->ooblen, ops);
+
+	if (ops->mode == MTD_OPS_RAW)
+		status = chip->ecc.write_oob_raw(chip, page & chip->pagemask);
+	else
+		status = chip->ecc.write_oob(chip, page & chip->pagemask);
+
+	nand_deselect_target(chip);
+
+	if (status)
+		return status;
+
+	ops->oobretlen = ops->ooblen;
+
+	return 0;
+}
+
+/**
+ * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
+ * @chip: NAND chip object
+ * @ofs: offset from device start
+ *
+ * This is the default implementation, which can be overridden by a hardware
+ * specific driver. It provides the details for writing a bad block marker to a
+ * block.
+ */
+static int nand_default_block_markbad(struct nand_chip *chip, loff_t ofs)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	struct mtd_oob_ops ops;
+	uint8_t buf[2] = { 0, 0 };
+	int ret = 0, res, page_offset;
+
+	memset(&ops, 0, sizeof(ops));
+	ops.oobbuf = buf;
+	ops.ooboffs = chip->badblockpos;
+	if (chip->options & NAND_BUSWIDTH_16) {
+		ops.ooboffs &= ~0x01;
+		ops.len = ops.ooblen = 2;
+	} else {
+		ops.len = ops.ooblen = 1;
+	}
+	ops.mode = MTD_OPS_PLACE_OOB;
+
+	page_offset = nand_bbm_get_next_page(chip, 0);
+
+	while (page_offset >= 0) {
+		res = nand_do_write_oob(chip,
+					ofs + (page_offset * mtd->writesize),
+					&ops);
+
+		if (!ret)
+			ret = res;
+
+		page_offset = nand_bbm_get_next_page(chip, page_offset + 1);
+	}
+
+	return ret;
+}
+
+/**
+ * nand_markbad_bbm - mark a block by updating the BBM
+ * @chip: NAND chip object
+ * @ofs: offset of the block to mark bad
+ */
+int nand_markbad_bbm(struct nand_chip *chip, loff_t ofs)
+{
+	if (chip->legacy.block_markbad)
+		return chip->legacy.block_markbad(chip, ofs);
+
+	return nand_default_block_markbad(chip, ofs);
+}
+
+/**
+ * nand_block_markbad_lowlevel - mark a block bad
+ * @chip: NAND chip object
+ * @ofs: offset from device start
+ *
+ * This function performs the generic NAND bad block marking steps (i.e., bad
+ * block table(s) and/or marker(s)). We only allow the hardware driver to
+ * specify how to write bad block markers to OOB (chip->legacy.block_markbad).
+ *
+ * We try operations in the following order:
+ *
+ *  (1) erase the affected block, to allow OOB marker to be written cleanly
+ *  (2) write bad block marker to OOB area of affected block (unless flag
+ *      NAND_BBT_NO_OOB_BBM is present)
+ *  (3) update the BBT
+ *
+ * Note that we retain the first error encountered in (2) or (3), finish the
+ * procedures, and dump the error in the end.
+*/
+static int nand_block_markbad_lowlevel(struct nand_chip *chip, loff_t ofs)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	int res, ret = 0;
+
+	if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
+		struct erase_info einfo;
+
+		/* Attempt erase before marking OOB */
+		memset(&einfo, 0, sizeof(einfo));
+		einfo.addr = ofs;
+		einfo.len = 1ULL << chip->phys_erase_shift;
+		nand_erase_nand(chip, &einfo, 0);
+
+		/* Write bad block marker to OOB */
+		ret = nand_get_device(chip);
+		if (ret)
+			return ret;
+
+		ret = nand_markbad_bbm(chip, ofs);
+		nand_release_device(chip);
+	}
+
+	/* Mark block bad in BBT */
+	if (chip->bbt) {
+		res = nand_markbad_bbt(chip, ofs);
+		if (!ret)
+			ret = res;
+	}
+
+	if (!ret)
+		mtd->ecc_stats.badblocks++;
+
+	return ret;
+}
+
+/**
  * nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
  * @mtd: MTD device structure
  * @ofs: offset from device start
@@ -589,105 +624,28 @@
 	if (!chip->bbt)
 		return 0;
 	/* Return info from the table */
-	return nand_isreserved_bbt(mtd, ofs);
+	return nand_isreserved_bbt(chip, ofs);
 }
 
 /**
  * nand_block_checkbad - [GENERIC] Check if a block is marked bad
- * @mtd: MTD device structure
+ * @chip: NAND chip object
  * @ofs: offset from device start
  * @allowbbt: 1, if its allowed to access the bbt area
  *
  * Check, if the block is bad. Either by reading the bad block table or
  * calling of the scan function.
  */
-static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int allowbbt)
+static int nand_block_checkbad(struct nand_chip *chip, loff_t ofs, int allowbbt)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
-
-	if (!chip->bbt)
-		return chip->block_bad(mtd, ofs);
-
 	/* Return info from the table */
-	return nand_isbad_bbt(mtd, ofs, allowbbt);
+	if (chip->bbt)
+		return nand_isbad_bbt(chip, ofs, allowbbt);
+
+	return nand_isbad_bbm(chip, ofs);
 }
 
 /**
- * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
- * @mtd: MTD device structure
- * @timeo: Timeout
- *
- * Helper function for nand_wait_ready used when needing to wait in interrupt
- * context.
- */
-static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
-{
-	struct nand_chip *chip = mtd_to_nand(mtd);
-	int i;
-
-	/* Wait for the device to get ready */
-	for (i = 0; i < timeo; i++) {
-		if (chip->dev_ready(mtd))
-			break;
-		touch_softlockup_watchdog();
-		mdelay(1);
-	}
-}
-
-/**
- * nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
- * @mtd: MTD device structure
- *
- * Wait for the ready pin after a command, and warn if a timeout occurs.
- */
-void nand_wait_ready(struct mtd_info *mtd)
-{
-	struct nand_chip *chip = mtd_to_nand(mtd);
-	unsigned long timeo = 400;
-
-	if (in_interrupt() || oops_in_progress)
-		return panic_nand_wait_ready(mtd, timeo);
-
-	/* Wait until command is processed or timeout occurs */
-	timeo = jiffies + msecs_to_jiffies(timeo);
-	do {
-		if (chip->dev_ready(mtd))
-			return;
-		cond_resched();
-	} while (time_before(jiffies, timeo));
-
-	if (!chip->dev_ready(mtd))
-		pr_warn_ratelimited("timeout while waiting for chip to become ready\n");
-}
-EXPORT_SYMBOL_GPL(nand_wait_ready);
-
-/**
- * nand_wait_status_ready - [GENERIC] Wait for the ready status after commands.
- * @mtd: MTD device structure
- * @timeo: Timeout in ms
- *
- * Wait for status ready (i.e. command done) or timeout.
- */
-static void nand_wait_status_ready(struct mtd_info *mtd, unsigned long timeo)
-{
-	register struct nand_chip *chip = mtd_to_nand(mtd);
-	int ret;
-
-	timeo = jiffies + msecs_to_jiffies(timeo);
-	do {
-		u8 status;
-
-		ret = nand_read_data_op(chip, &status, sizeof(status), true);
-		if (ret)
-			return;
-
-		if (status & NAND_STATUS_READY)
-			break;
-		touch_softlockup_watchdog();
-	} while (time_before(jiffies, timeo));
-};
-
-/**
  * nand_soft_waitrdy - Poll STATUS reg until RDY bit is set to 1
  * @chip: NAND chip structure
  * @timeout_ms: Timeout in ms
@@ -710,7 +668,7 @@
 	u8 status = 0;
 	int ret;
 
-	if (!chip->exec_op)
+	if (!nand_has_exec_op(chip))
 		return -ENOTSUPP;
 
 	/* Wait tWB before polling the STATUS reg. */
@@ -753,332 +711,37 @@
 EXPORT_SYMBOL_GPL(nand_soft_waitrdy);
 
 /**
- * nand_command - [DEFAULT] Send command to NAND device
- * @mtd: MTD device structure
- * @command: the command to be sent
- * @column: the column address for this command, -1 if none
- * @page_addr: the page address for this command, -1 if none
+ * nand_gpio_waitrdy - Poll R/B GPIO pin until ready
+ * @chip: NAND chip structure
+ * @gpiod: GPIO descriptor of R/B pin
+ * @timeout_ms: Timeout in ms
  *
- * Send command to NAND device. This function is used for small page devices
- * (512 Bytes per page).
- */
-static void nand_command(struct mtd_info *mtd, unsigned int command,
-			 int column, int page_addr)
-{
-	register struct nand_chip *chip = mtd_to_nand(mtd);
-	int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
-
-	/* Write out the command to the device */
-	if (command == NAND_CMD_SEQIN) {
-		int readcmd;
-
-		if (column >= mtd->writesize) {
-			/* OOB area */
-			column -= mtd->writesize;
-			readcmd = NAND_CMD_READOOB;
-		} else if (column < 256) {
-			/* First 256 bytes --> READ0 */
-			readcmd = NAND_CMD_READ0;
-		} else {
-			column -= 256;
-			readcmd = NAND_CMD_READ1;
-		}
-		chip->cmd_ctrl(mtd, readcmd, ctrl);
-		ctrl &= ~NAND_CTRL_CHANGE;
-	}
-	if (command != NAND_CMD_NONE)
-		chip->cmd_ctrl(mtd, command, ctrl);
-
-	/* Address cycle, when necessary */
-	ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
-	/* Serially input address */
-	if (column != -1) {
-		/* Adjust columns for 16 bit buswidth */
-		if (chip->options & NAND_BUSWIDTH_16 &&
-				!nand_opcode_8bits(command))
-			column >>= 1;
-		chip->cmd_ctrl(mtd, column, ctrl);
-		ctrl &= ~NAND_CTRL_CHANGE;
-	}
-	if (page_addr != -1) {
-		chip->cmd_ctrl(mtd, page_addr, ctrl);
-		ctrl &= ~NAND_CTRL_CHANGE;
-		chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
-		if (chip->options & NAND_ROW_ADDR_3)
-			chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
-	}
-	chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
-
-	/*
-	 * Program and erase have their own busy handlers status and sequential
-	 * in needs no delay
-	 */
-	switch (command) {
-
-	case NAND_CMD_NONE:
-	case NAND_CMD_PAGEPROG:
-	case NAND_CMD_ERASE1:
-	case NAND_CMD_ERASE2:
-	case NAND_CMD_SEQIN:
-	case NAND_CMD_STATUS:
-	case NAND_CMD_READID:
-	case NAND_CMD_SET_FEATURES:
-		return;
-
-	case NAND_CMD_RESET:
-		if (chip->dev_ready)
-			break;
-		udelay(chip->chip_delay);
-		chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
-			       NAND_CTRL_CLE | NAND_CTRL_CHANGE);
-		chip->cmd_ctrl(mtd,
-			       NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
-		/* EZ-NAND can take upto 250ms as per ONFi v4.0 */
-		nand_wait_status_ready(mtd, 250);
-		return;
-
-		/* This applies to read commands */
-	case NAND_CMD_READ0:
-		/*
-		 * READ0 is sometimes used to exit GET STATUS mode. When this
-		 * is the case no address cycles are requested, and we can use
-		 * this information to detect that we should not wait for the
-		 * device to be ready.
-		 */
-		if (column == -1 && page_addr == -1)
-			return;
-
-	default:
-		/*
-		 * If we don't have access to the busy pin, we apply the given
-		 * command delay
-		 */
-		if (!chip->dev_ready) {
-			udelay(chip->chip_delay);
-			return;
-		}
-	}
-	/*
-	 * Apply this short delay always to ensure that we do wait tWB in
-	 * any case on any machine.
-	 */
-	ndelay(100);
-
-	nand_wait_ready(mtd);
-}
-
-static void nand_ccs_delay(struct nand_chip *chip)
-{
-	/*
-	 * The controller already takes care of waiting for tCCS when the RNDIN
-	 * or RNDOUT command is sent, return directly.
-	 */
-	if (!(chip->options & NAND_WAIT_TCCS))
-		return;
-
-	/*
-	 * Wait tCCS_min if it is correctly defined, otherwise wait 500ns
-	 * (which should be safe for all NANDs).
-	 */
-	if (chip->setup_data_interface)
-		ndelay(chip->data_interface.timings.sdr.tCCS_min / 1000);
-	else
-		ndelay(500);
-}
-
-/**
- * nand_command_lp - [DEFAULT] Send command to NAND large page device
- * @mtd: MTD device structure
- * @command: the command to be sent
- * @column: the column address for this command, -1 if none
- * @page_addr: the page address for this command, -1 if none
+ * Poll the R/B GPIO pin until it becomes ready. If that does not happen
+ * whitin the specified timeout, -ETIMEDOUT is returned.
  *
- * Send command to NAND device. This is the version for the new large page
- * devices. We don't have the separate regions as we have in the small page
- * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
- */
-static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
-			    int column, int page_addr)
-{
-	register struct nand_chip *chip = mtd_to_nand(mtd);
-
-	/* Emulate NAND_CMD_READOOB */
-	if (command == NAND_CMD_READOOB) {
-		column += mtd->writesize;
-		command = NAND_CMD_READ0;
-	}
-
-	/* Command latch cycle */
-	if (command != NAND_CMD_NONE)
-		chip->cmd_ctrl(mtd, command,
-			       NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
-
-	if (column != -1 || page_addr != -1) {
-		int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
-
-		/* Serially input address */
-		if (column != -1) {
-			/* Adjust columns for 16 bit buswidth */
-			if (chip->options & NAND_BUSWIDTH_16 &&
-					!nand_opcode_8bits(command))
-				column >>= 1;
-			chip->cmd_ctrl(mtd, column, ctrl);
-			ctrl &= ~NAND_CTRL_CHANGE;
-
-			/* Only output a single addr cycle for 8bits opcodes. */
-			if (!nand_opcode_8bits(command))
-				chip->cmd_ctrl(mtd, column >> 8, ctrl);
-		}
-		if (page_addr != -1) {
-			chip->cmd_ctrl(mtd, page_addr, ctrl);
-			chip->cmd_ctrl(mtd, page_addr >> 8,
-				       NAND_NCE | NAND_ALE);
-			if (chip->options & NAND_ROW_ADDR_3)
-				chip->cmd_ctrl(mtd, page_addr >> 16,
-					       NAND_NCE | NAND_ALE);
-		}
-	}
-	chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
-
-	/*
-	 * Program and erase have their own busy handlers status, sequential
-	 * in and status need no delay.
-	 */
-	switch (command) {
-
-	case NAND_CMD_NONE:
-	case NAND_CMD_CACHEDPROG:
-	case NAND_CMD_PAGEPROG:
-	case NAND_CMD_ERASE1:
-	case NAND_CMD_ERASE2:
-	case NAND_CMD_SEQIN:
-	case NAND_CMD_STATUS:
-	case NAND_CMD_READID:
-	case NAND_CMD_SET_FEATURES:
-		return;
-
-	case NAND_CMD_RNDIN:
-		nand_ccs_delay(chip);
-		return;
-
-	case NAND_CMD_RESET:
-		if (chip->dev_ready)
-			break;
-		udelay(chip->chip_delay);
-		chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
-			       NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
-		chip->cmd_ctrl(mtd, NAND_CMD_NONE,
-			       NAND_NCE | NAND_CTRL_CHANGE);
-		/* EZ-NAND can take upto 250ms as per ONFi v4.0 */
-		nand_wait_status_ready(mtd, 250);
-		return;
-
-	case NAND_CMD_RNDOUT:
-		/* No ready / busy check necessary */
-		chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
-			       NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
-		chip->cmd_ctrl(mtd, NAND_CMD_NONE,
-			       NAND_NCE | NAND_CTRL_CHANGE);
-
-		nand_ccs_delay(chip);
-		return;
-
-	case NAND_CMD_READ0:
-		/*
-		 * READ0 is sometimes used to exit GET STATUS mode. When this
-		 * is the case no address cycles are requested, and we can use
-		 * this information to detect that READSTART should not be
-		 * issued.
-		 */
-		if (column == -1 && page_addr == -1)
-			return;
-
-		chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
-			       NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
-		chip->cmd_ctrl(mtd, NAND_CMD_NONE,
-			       NAND_NCE | NAND_CTRL_CHANGE);
-
-		/* This applies to read commands */
-	default:
-		/*
-		 * If we don't have access to the busy pin, we apply the given
-		 * command delay.
-		 */
-		if (!chip->dev_ready) {
-			udelay(chip->chip_delay);
-			return;
-		}
-	}
-
-	/*
-	 * Apply this short delay always to ensure that we do wait tWB in
-	 * any case on any machine.
-	 */
-	ndelay(100);
-
-	nand_wait_ready(mtd);
-}
-
-/**
- * panic_nand_get_device - [GENERIC] Get chip for selected access
- * @chip: the nand chip descriptor
- * @mtd: MTD device structure
- * @new_state: the state which is requested
+ * This helper is intended to be used when the controller has access to the
+ * NAND R/B pin over GPIO.
  *
- * Used when in panic, no locks are taken.
+ * Return 0 if the R/B pin indicates chip is ready, a negative error otherwise.
  */
-static void panic_nand_get_device(struct nand_chip *chip,
-		      struct mtd_info *mtd, int new_state)
+int nand_gpio_waitrdy(struct nand_chip *chip, struct gpio_desc *gpiod,
+		      unsigned long timeout_ms)
 {
-	/* Hardware controller shared among independent devices */
-	chip->controller->active = chip;
-	chip->state = new_state;
-}
-
-/**
- * nand_get_device - [GENERIC] Get chip for selected access
- * @mtd: MTD device structure
- * @new_state: the state which is requested
- *
- * Get the device and lock it for exclusive access
- */
-static int
-nand_get_device(struct mtd_info *mtd, int new_state)
-{
-	struct nand_chip *chip = mtd_to_nand(mtd);
-	spinlock_t *lock = &chip->controller->lock;
-	wait_queue_head_t *wq = &chip->controller->wq;
-	DECLARE_WAITQUEUE(wait, current);
-retry:
-	spin_lock(lock);
-
-	/* Hardware controller shared among independent devices */
-	if (!chip->controller->active)
-		chip->controller->active = chip;
-
-	if (chip->controller->active == chip && chip->state == FL_READY) {
-		chip->state = new_state;
-		spin_unlock(lock);
-		return 0;
-	}
-	if (new_state == FL_PM_SUSPENDED) {
-		if (chip->controller->active->state == FL_PM_SUSPENDED) {
-			chip->state = FL_PM_SUSPENDED;
-			spin_unlock(lock);
+	/* Wait until R/B pin indicates chip is ready or timeout occurs */
+	timeout_ms = jiffies + msecs_to_jiffies(timeout_ms);
+	do {
+		if (gpiod_get_value_cansleep(gpiod))
 			return 0;
-		}
-	}
-	set_current_state(TASK_UNINTERRUPTIBLE);
-	add_wait_queue(wq, &wait);
-	spin_unlock(lock);
-	schedule();
-	remove_wait_queue(wq, &wait);
-	goto retry;
-}
+
+		cond_resched();
+	} while	(time_before(jiffies, timeout_ms));
+
+	return gpiod_get_value_cansleep(gpiod) ? 0 : -ETIMEDOUT;
+};
+EXPORT_SYMBOL_GPL(nand_gpio_waitrdy);
 
 /**
  * panic_nand_wait - [GENERIC] wait until the command is done
- * @mtd: MTD device structure
  * @chip: NAND chip structure
  * @timeo: timeout
  *
@@ -1086,13 +749,12 @@
  * we are in interrupt context. May happen when in panic and trying to write
  * an oops through mtdoops.
  */
-static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
-			    unsigned long timeo)
+void panic_nand_wait(struct nand_chip *chip, unsigned long timeo)
 {
 	int i;
 	for (i = 0; i < timeo; i++) {
-		if (chip->dev_ready) {
-			if (chip->dev_ready(mtd))
+		if (chip->legacy.dev_ready) {
+			if (chip->legacy.dev_ready(chip))
 				break;
 		} else {
 			int ret;
@@ -1110,60 +772,6 @@
 	}
 }
 
-/**
- * nand_wait - [DEFAULT] wait until the command is done
- * @mtd: MTD device structure
- * @chip: NAND chip structure
- *
- * Wait for command done. This applies to erase and program only.
- */
-static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
-{
-
-	unsigned long timeo = 400;
-	u8 status;
-	int ret;
-
-	/*
-	 * Apply this short delay always to ensure that we do wait tWB in any
-	 * case on any machine.
-	 */
-	ndelay(100);
-
-	ret = nand_status_op(chip, NULL);
-	if (ret)
-		return ret;
-
-	if (in_interrupt() || oops_in_progress)
-		panic_nand_wait(mtd, chip, timeo);
-	else {
-		timeo = jiffies + msecs_to_jiffies(timeo);
-		do {
-			if (chip->dev_ready) {
-				if (chip->dev_ready(mtd))
-					break;
-			} else {
-				ret = nand_read_data_op(chip, &status,
-							sizeof(status), true);
-				if (ret)
-					return ret;
-
-				if (status & NAND_STATUS_READY)
-					break;
-			}
-			cond_resched();
-		} while (time_before(jiffies, timeo));
-	}
-
-	ret = nand_read_data_op(chip, &status, sizeof(status), true);
-	if (ret)
-		return ret;
-
-	/* This can happen if in case of timeout or buggy dev_ready */
-	WARN_ON(!(status & NAND_STATUS_READY));
-	return status;
-}
-
 static bool nand_supports_get_features(struct nand_chip *chip, int addr)
 {
 	return (chip->parameters.supports_set_get_features &&
@@ -1177,48 +785,6 @@
 }
 
 /**
- * nand_get_features - wrapper to perform a GET_FEATURE
- * @chip: NAND chip info structure
- * @addr: feature address
- * @subfeature_param: the subfeature parameters, a four bytes array
- *
- * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
- * operation cannot be handled.
- */
-int nand_get_features(struct nand_chip *chip, int addr,
-		      u8 *subfeature_param)
-{
-	struct mtd_info *mtd = nand_to_mtd(chip);
-
-	if (!nand_supports_get_features(chip, addr))
-		return -ENOTSUPP;
-
-	return chip->get_features(mtd, chip, addr, subfeature_param);
-}
-EXPORT_SYMBOL_GPL(nand_get_features);
-
-/**
- * nand_set_features - wrapper to perform a SET_FEATURE
- * @chip: NAND chip info structure
- * @addr: feature address
- * @subfeature_param: the subfeature parameters, a four bytes array
- *
- * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
- * operation cannot be handled.
- */
-int nand_set_features(struct nand_chip *chip, int addr,
-		      u8 *subfeature_param)
-{
-	struct mtd_info *mtd = nand_to_mtd(chip);
-
-	if (!nand_supports_set_features(chip, addr))
-		return -ENOTSUPP;
-
-	return chip->set_features(mtd, chip, addr, subfeature_param);
-}
-EXPORT_SYMBOL_GPL(nand_set_features);
-
-/**
  * nand_reset_data_interface - Reset data interface and timings
  * @chip: The NAND chip
  * @chipnr: Internal die id
@@ -1229,10 +795,9 @@
  */
 static int nand_reset_data_interface(struct nand_chip *chip, int chipnr)
 {
-	struct mtd_info *mtd = nand_to_mtd(chip);
 	int ret;
 
-	if (!chip->setup_data_interface)
+	if (!nand_has_setup_data_iface(chip))
 		return 0;
 
 	/*
@@ -1250,7 +815,8 @@
 	 */
 
 	onfi_fill_data_interface(chip, NAND_SDR_IFACE, 0);
-	ret = chip->setup_data_interface(mtd, chipnr, &chip->data_interface);
+	ret = chip->controller->ops->setup_data_interface(chip, chipnr,
+							&chip->data_interface);
 	if (ret)
 		pr_err("Failed to configure data interface to SDR timing mode 0\n");
 
@@ -1272,27 +838,27 @@
  */
 static int nand_setup_data_interface(struct nand_chip *chip, int chipnr)
 {
-	struct mtd_info *mtd = nand_to_mtd(chip);
 	u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = {
 		chip->onfi_timing_mode_default,
 	};
 	int ret;
 
-	if (!chip->setup_data_interface)
+	if (!nand_has_setup_data_iface(chip))
 		return 0;
 
 	/* Change the mode on the chip side (if supported by the NAND chip) */
 	if (nand_supports_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE)) {
-		chip->select_chip(mtd, chipnr);
+		nand_select_target(chip, chipnr);
 		ret = nand_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE,
 					tmode_param);
-		chip->select_chip(mtd, -1);
+		nand_deselect_target(chip);
 		if (ret)
 			return ret;
 	}
 
 	/* Change the mode on the controller side */
-	ret = chip->setup_data_interface(mtd, chipnr, &chip->data_interface);
+	ret = chip->controller->ops->setup_data_interface(chip, chipnr,
+							&chip->data_interface);
 	if (ret)
 		return ret;
 
@@ -1301,10 +867,10 @@
 		return 0;
 
 	memset(tmode_param, 0, ONFI_SUBFEATURE_PARAM_LEN);
-	chip->select_chip(mtd, chipnr);
+	nand_select_target(chip, chipnr);
 	ret = nand_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE,
 				tmode_param);
-	chip->select_chip(mtd, -1);
+	nand_deselect_target(chip);
 	if (ret)
 		goto err_reset_chip;
 
@@ -1322,9 +888,9 @@
 	 * timing mode.
 	 */
 	nand_reset_data_interface(chip, chipnr);
-	chip->select_chip(mtd, chipnr);
+	nand_select_target(chip, chipnr);
 	nand_reset_op(chip);
-	chip->select_chip(mtd, -1);
+	nand_deselect_target(chip);
 
 	return ret;
 }
@@ -1345,10 +911,9 @@
  */
 static int nand_init_data_interface(struct nand_chip *chip)
 {
-	struct mtd_info *mtd = nand_to_mtd(chip);
 	int modes, mode, ret;
 
-	if (!chip->setup_data_interface)
+	if (!nand_has_setup_data_iface(chip))
 		return 0;
 
 	/*
@@ -1356,15 +921,15 @@
 	 * if the NAND does not support ONFI, fallback to the default ONFI
 	 * timing mode.
 	 */
-	modes = onfi_get_async_timing_mode(chip);
-	if (modes == ONFI_TIMING_MODE_UNKNOWN) {
+	if (chip->parameters.onfi) {
+		modes = chip->parameters.onfi->async_timing_mode;
+	} else {
 		if (!chip->onfi_timing_mode_default)
 			return 0;
 
 		modes = GENMASK(chip->onfi_timing_mode_default, 0);
 	}
 
-
 	for (mode = fls(modes) - 1; mode >= 0; mode--) {
 		ret = onfi_fill_data_interface(chip, NAND_SDR_IFACE, mode);
 		if (ret)
@@ -1374,7 +939,7 @@
 		 * Pass NAND_DATA_IFACE_CHECK_ONLY to only check if the
 		 * controller supports the requested timings.
 		 */
-		ret = chip->setup_data_interface(mtd,
+		ret = chip->controller->ops->setup_data_interface(chip,
 						 NAND_DATA_IFACE_CHECK_ONLY,
 						 &chip->data_interface);
 		if (!ret) {
@@ -1455,7 +1020,7 @@
 				 PSEC_TO_NSEC(sdr->tRR_min)),
 		NAND_OP_DATA_IN(len, buf, 0),
 	};
-	struct nand_operation op = NAND_OPERATION(instrs);
+	struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
 	int ret;
 
 	/* Drop the DATA_IN instruction if len is set to 0. */
@@ -1498,7 +1063,7 @@
 				 PSEC_TO_NSEC(sdr->tRR_min)),
 		NAND_OP_DATA_IN(len, buf, 0),
 	};
-	struct nand_operation op = NAND_OPERATION(instrs);
+	struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
 	int ret;
 
 	/* Drop the DATA_IN instruction if len is set to 0. */
@@ -1544,7 +1109,7 @@
 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
 		return -EINVAL;
 
-	if (chip->exec_op) {
+	if (nand_has_exec_op(chip)) {
 		if (mtd->writesize > 512)
 			return nand_lp_exec_read_page_op(chip, page,
 							 offset_in_page, buf,
@@ -1554,9 +1119,9 @@
 						 buf, len);
 	}
 
-	chip->cmdfunc(mtd, NAND_CMD_READ0, offset_in_page, page);
+	chip->legacy.cmdfunc(chip, NAND_CMD_READ0, offset_in_page, page);
 	if (len)
-		chip->read_buf(mtd, buf, len);
+		chip->legacy.read_buf(chip, buf, len);
 
 	return 0;
 }
@@ -1574,17 +1139,16 @@
  *
  * Returns 0 on success, a negative error code otherwise.
  */
-static int nand_read_param_page_op(struct nand_chip *chip, u8 page, void *buf,
-				   unsigned int len)
+int nand_read_param_page_op(struct nand_chip *chip, u8 page, void *buf,
+			    unsigned int len)
 {
-	struct mtd_info *mtd = nand_to_mtd(chip);
 	unsigned int i;
 	u8 *p = buf;
 
 	if (len && !buf)
 		return -EINVAL;
 
-	if (chip->exec_op) {
+	if (nand_has_exec_op(chip)) {
 		const struct nand_sdr_timings *sdr =
 			nand_get_sdr_timings(&chip->data_interface);
 		struct nand_op_instr instrs[] = {
@@ -1594,7 +1158,7 @@
 					 PSEC_TO_NSEC(sdr->tRR_min)),
 			NAND_OP_8BIT_DATA_IN(len, buf, 0),
 		};
-		struct nand_operation op = NAND_OPERATION(instrs);
+		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
 
 		/* Drop the DATA_IN instruction if len is set to 0. */
 		if (!len)
@@ -1603,9 +1167,9 @@
 		return nand_exec_op(chip, &op);
 	}
 
-	chip->cmdfunc(mtd, NAND_CMD_PARAM, page, -1);
+	chip->legacy.cmdfunc(chip, NAND_CMD_PARAM, page, -1);
 	for (i = 0; i < len; i++)
-		p[i] = chip->read_byte(mtd);
+		p[i] = chip->legacy.read_byte(chip);
 
 	return 0;
 }
@@ -1639,7 +1203,7 @@
 	if (mtd->writesize <= 512)
 		return -ENOTSUPP;
 
-	if (chip->exec_op) {
+	if (nand_has_exec_op(chip)) {
 		const struct nand_sdr_timings *sdr =
 			nand_get_sdr_timings(&chip->data_interface);
 		u8 addrs[2] = {};
@@ -1650,7 +1214,7 @@
 				    PSEC_TO_NSEC(sdr->tCCS_min)),
 			NAND_OP_DATA_IN(len, buf, 0),
 		};
-		struct nand_operation op = NAND_OPERATION(instrs);
+		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
 		int ret;
 
 		ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
@@ -1666,9 +1230,9 @@
 		return nand_exec_op(chip, &op);
 	}
 
-	chip->cmdfunc(mtd, NAND_CMD_RNDOUT, offset_in_page, -1);
+	chip->legacy.cmdfunc(chip, NAND_CMD_RNDOUT, offset_in_page, -1);
 	if (len)
-		chip->read_buf(mtd, buf, len);
+		chip->legacy.read_buf(chip, buf, len);
 
 	return 0;
 }
@@ -1698,14 +1262,14 @@
 	if (offset_in_oob + len > mtd->oobsize)
 		return -EINVAL;
 
-	if (chip->exec_op)
+	if (nand_has_exec_op(chip))
 		return nand_read_page_op(chip, page,
 					 mtd->writesize + offset_in_oob,
 					 buf, len);
 
-	chip->cmdfunc(mtd, NAND_CMD_READOOB, offset_in_oob, page);
+	chip->legacy.cmdfunc(chip, NAND_CMD_READOOB, offset_in_oob, page);
 	if (len)
-		chip->read_buf(mtd, buf, len);
+		chip->legacy.read_buf(chip, buf, len);
 
 	return 0;
 }
@@ -1732,7 +1296,7 @@
 		NAND_OP_CMD(NAND_CMD_PAGEPROG, PSEC_TO_NSEC(sdr->tWB_max)),
 		NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tPROG_max), 0),
 	};
-	struct nand_operation op = NAND_OPERATION(instrs);
+	struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
 	int naddrs = nand_fill_column_cycles(chip, addrs, offset_in_page);
 	int ret;
 	u8 status;
@@ -1811,14 +1375,14 @@
 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
 		return -EINVAL;
 
-	if (chip->exec_op)
+	if (nand_has_exec_op(chip))
 		return nand_exec_prog_page_op(chip, page, offset_in_page, buf,
 					      len, false);
 
-	chip->cmdfunc(mtd, NAND_CMD_SEQIN, offset_in_page, page);
+	chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page, page);
 
 	if (buf)
-		chip->write_buf(mtd, buf, len);
+		chip->legacy.write_buf(chip, buf, len);
 
 	return 0;
 }
@@ -1835,11 +1399,10 @@
  */
 int nand_prog_page_end_op(struct nand_chip *chip)
 {
-	struct mtd_info *mtd = nand_to_mtd(chip);
 	int ret;
 	u8 status;
 
-	if (chip->exec_op) {
+	if (nand_has_exec_op(chip)) {
 		const struct nand_sdr_timings *sdr =
 			nand_get_sdr_timings(&chip->data_interface);
 		struct nand_op_instr instrs[] = {
@@ -1847,7 +1410,7 @@
 				    PSEC_TO_NSEC(sdr->tWB_max)),
 			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tPROG_max), 0),
 		};
-		struct nand_operation op = NAND_OPERATION(instrs);
+		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
 
 		ret = nand_exec_op(chip, &op);
 		if (ret)
@@ -1857,8 +1420,8 @@
 		if (ret)
 			return ret;
 	} else {
-		chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
-		ret = chip->waitfunc(mtd, chip);
+		chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1);
+		ret = chip->legacy.waitfunc(chip);
 		if (ret < 0)
 			return ret;
 
@@ -1898,14 +1461,15 @@
 	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
 		return -EINVAL;
 
-	if (chip->exec_op) {
+	if (nand_has_exec_op(chip)) {
 		status = nand_exec_prog_page_op(chip, page, offset_in_page, buf,
 						len, true);
 	} else {
-		chip->cmdfunc(mtd, NAND_CMD_SEQIN, offset_in_page, page);
-		chip->write_buf(mtd, buf, len);
-		chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
-		status = chip->waitfunc(mtd, chip);
+		chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page,
+				     page);
+		chip->legacy.write_buf(chip, buf, len);
+		chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1);
+		status = chip->legacy.waitfunc(chip);
 	}
 
 	if (status & NAND_STATUS_FAIL)
@@ -1945,7 +1509,7 @@
 	if (mtd->writesize <= 512)
 		return -ENOTSUPP;
 
-	if (chip->exec_op) {
+	if (nand_has_exec_op(chip)) {
 		const struct nand_sdr_timings *sdr =
 			nand_get_sdr_timings(&chip->data_interface);
 		u8 addrs[2];
@@ -1954,7 +1518,7 @@
 			NAND_OP_ADDR(2, addrs, PSEC_TO_NSEC(sdr->tCCS_min)),
 			NAND_OP_DATA_OUT(len, buf, 0),
 		};
-		struct nand_operation op = NAND_OPERATION(instrs);
+		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
 		int ret;
 
 		ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
@@ -1970,9 +1534,9 @@
 		return nand_exec_op(chip, &op);
 	}
 
-	chip->cmdfunc(mtd, NAND_CMD_RNDIN, offset_in_page, -1);
+	chip->legacy.cmdfunc(chip, NAND_CMD_RNDIN, offset_in_page, -1);
 	if (len)
-		chip->write_buf(mtd, buf, len);
+		chip->legacy.write_buf(chip, buf, len);
 
 	return 0;
 }
@@ -1994,14 +1558,13 @@
 int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf,
 		   unsigned int len)
 {
-	struct mtd_info *mtd = nand_to_mtd(chip);
 	unsigned int i;
 	u8 *id = buf;
 
 	if (len && !buf)
 		return -EINVAL;
 
-	if (chip->exec_op) {
+	if (nand_has_exec_op(chip)) {
 		const struct nand_sdr_timings *sdr =
 			nand_get_sdr_timings(&chip->data_interface);
 		struct nand_op_instr instrs[] = {
@@ -2009,7 +1572,7 @@
 			NAND_OP_ADDR(1, &addr, PSEC_TO_NSEC(sdr->tADL_min)),
 			NAND_OP_8BIT_DATA_IN(len, buf, 0),
 		};
-		struct nand_operation op = NAND_OPERATION(instrs);
+		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
 
 		/* Drop the DATA_IN instruction if len is set to 0. */
 		if (!len)
@@ -2018,10 +1581,10 @@
 		return nand_exec_op(chip, &op);
 	}
 
-	chip->cmdfunc(mtd, NAND_CMD_READID, addr, -1);
+	chip->legacy.cmdfunc(chip, NAND_CMD_READID, addr, -1);
 
 	for (i = 0; i < len; i++)
-		id[i] = chip->read_byte(mtd);
+		id[i] = chip->legacy.read_byte(chip);
 
 	return 0;
 }
@@ -2040,9 +1603,7 @@
  */
 int nand_status_op(struct nand_chip *chip, u8 *status)
 {
-	struct mtd_info *mtd = nand_to_mtd(chip);
-
-	if (chip->exec_op) {
+	if (nand_has_exec_op(chip)) {
 		const struct nand_sdr_timings *sdr =
 			nand_get_sdr_timings(&chip->data_interface);
 		struct nand_op_instr instrs[] = {
@@ -2050,7 +1611,7 @@
 				    PSEC_TO_NSEC(sdr->tADL_min)),
 			NAND_OP_8BIT_DATA_IN(1, status, 0),
 		};
-		struct nand_operation op = NAND_OPERATION(instrs);
+		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
 
 		if (!status)
 			op.ninstrs--;
@@ -2058,9 +1619,9 @@
 		return nand_exec_op(chip, &op);
 	}
 
-	chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
+	chip->legacy.cmdfunc(chip, NAND_CMD_STATUS, -1, -1);
 	if (status)
-		*status = chip->read_byte(mtd);
+		*status = chip->legacy.read_byte(chip);
 
 	return 0;
 }
@@ -2079,22 +1640,19 @@
  */
 int nand_exit_status_op(struct nand_chip *chip)
 {
-	struct mtd_info *mtd = nand_to_mtd(chip);
-
-	if (chip->exec_op) {
+	if (nand_has_exec_op(chip)) {
 		struct nand_op_instr instrs[] = {
 			NAND_OP_CMD(NAND_CMD_READ0, 0),
 		};
-		struct nand_operation op = NAND_OPERATION(instrs);
+		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
 
 		return nand_exec_op(chip, &op);
 	}
 
-	chip->cmdfunc(mtd, NAND_CMD_READ0, -1, -1);
+	chip->legacy.cmdfunc(chip, NAND_CMD_READ0, -1, -1);
 
 	return 0;
 }
-EXPORT_SYMBOL_GPL(nand_exit_status_op);
 
 /**
  * nand_erase_op - Do an erase operation
@@ -2109,13 +1667,12 @@
  */
 int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock)
 {
-	struct mtd_info *mtd = nand_to_mtd(chip);
 	unsigned int page = eraseblock <<
 			    (chip->phys_erase_shift - chip->page_shift);
 	int ret;
 	u8 status;
 
-	if (chip->exec_op) {
+	if (nand_has_exec_op(chip)) {
 		const struct nand_sdr_timings *sdr =
 			nand_get_sdr_timings(&chip->data_interface);
 		u8 addrs[3] = {	page, page >> 8, page >> 16 };
@@ -2126,7 +1683,7 @@
 				    PSEC_TO_MSEC(sdr->tWB_max)),
 			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tBERS_max), 0),
 		};
-		struct nand_operation op = NAND_OPERATION(instrs);
+		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
 
 		if (chip->options & NAND_ROW_ADDR_3)
 			instrs[1].ctx.addr.naddrs++;
@@ -2139,10 +1696,10 @@
 		if (ret)
 			return ret;
 	} else {
-		chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
-		chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
+		chip->legacy.cmdfunc(chip, NAND_CMD_ERASE1, -1, page);
+		chip->legacy.cmdfunc(chip, NAND_CMD_ERASE2, -1, -1);
 
-		ret = chip->waitfunc(mtd, chip);
+		ret = chip->legacy.waitfunc(chip);
 		if (ret < 0)
 			return ret;
 
@@ -2171,11 +1728,10 @@
 static int nand_set_features_op(struct nand_chip *chip, u8 feature,
 				const void *data)
 {
-	struct mtd_info *mtd = nand_to_mtd(chip);
 	const u8 *params = data;
 	int i, ret;
 
-	if (chip->exec_op) {
+	if (nand_has_exec_op(chip)) {
 		const struct nand_sdr_timings *sdr =
 			nand_get_sdr_timings(&chip->data_interface);
 		struct nand_op_instr instrs[] = {
@@ -2185,16 +1741,16 @@
 					      PSEC_TO_NSEC(sdr->tWB_max)),
 			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tFEAT_max), 0),
 		};
-		struct nand_operation op = NAND_OPERATION(instrs);
+		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
 
 		return nand_exec_op(chip, &op);
 	}
 
-	chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, feature, -1);
+	chip->legacy.cmdfunc(chip, NAND_CMD_SET_FEATURES, feature, -1);
 	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
-		chip->write_byte(mtd, params[i]);
+		chip->legacy.write_byte(chip, params[i]);
 
-	ret = chip->waitfunc(mtd, chip);
+	ret = chip->legacy.waitfunc(chip);
 	if (ret < 0)
 		return ret;
 
@@ -2219,11 +1775,10 @@
 static int nand_get_features_op(struct nand_chip *chip, u8 feature,
 				void *data)
 {
-	struct mtd_info *mtd = nand_to_mtd(chip);
 	u8 *params = data;
 	int i;
 
-	if (chip->exec_op) {
+	if (nand_has_exec_op(chip)) {
 		const struct nand_sdr_timings *sdr =
 			nand_get_sdr_timings(&chip->data_interface);
 		struct nand_op_instr instrs[] = {
@@ -2234,14 +1789,36 @@
 			NAND_OP_8BIT_DATA_IN(ONFI_SUBFEATURE_PARAM_LEN,
 					     data, 0),
 		};
-		struct nand_operation op = NAND_OPERATION(instrs);
+		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
 
 		return nand_exec_op(chip, &op);
 	}
 
-	chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, feature, -1);
+	chip->legacy.cmdfunc(chip, NAND_CMD_GET_FEATURES, feature, -1);
 	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
-		params[i] = chip->read_byte(mtd);
+		params[i] = chip->legacy.read_byte(chip);
+
+	return 0;
+}
+
+static int nand_wait_rdy_op(struct nand_chip *chip, unsigned int timeout_ms,
+			    unsigned int delay_ns)
+{
+	if (nand_has_exec_op(chip)) {
+		struct nand_op_instr instrs[] = {
+			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(timeout_ms),
+					 PSEC_TO_NSEC(delay_ns)),
+		};
+		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
+
+		return nand_exec_op(chip, &op);
+	}
+
+	/* Apply delay or wait for ready/busy pin */
+	if (!chip->legacy.dev_ready)
+		udelay(chip->legacy.chip_delay);
+	else
+		nand_wait_ready(chip);
 
 	return 0;
 }
@@ -2258,21 +1835,19 @@
  */
 int nand_reset_op(struct nand_chip *chip)
 {
-	struct mtd_info *mtd = nand_to_mtd(chip);
-
-	if (chip->exec_op) {
+	if (nand_has_exec_op(chip)) {
 		const struct nand_sdr_timings *sdr =
 			nand_get_sdr_timings(&chip->data_interface);
 		struct nand_op_instr instrs[] = {
 			NAND_OP_CMD(NAND_CMD_RESET, PSEC_TO_NSEC(sdr->tWB_max)),
 			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tRST_max), 0),
 		};
-		struct nand_operation op = NAND_OPERATION(instrs);
+		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
 
 		return nand_exec_op(chip, &op);
 	}
 
-	chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
+	chip->legacy.cmdfunc(chip, NAND_CMD_RESET, -1, -1);
 
 	return 0;
 }
@@ -2294,16 +1869,14 @@
 int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len,
 		      bool force_8bit)
 {
-	struct mtd_info *mtd = nand_to_mtd(chip);
-
 	if (!len || !buf)
 		return -EINVAL;
 
-	if (chip->exec_op) {
+	if (nand_has_exec_op(chip)) {
 		struct nand_op_instr instrs[] = {
 			NAND_OP_DATA_IN(len, buf, 0),
 		};
-		struct nand_operation op = NAND_OPERATION(instrs);
+		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
 
 		instrs[0].ctx.data.force_8bit = force_8bit;
 
@@ -2315,9 +1888,9 @@
 		unsigned int i;
 
 		for (i = 0; i < len; i++)
-			p[i] = chip->read_byte(mtd);
+			p[i] = chip->legacy.read_byte(chip);
 	} else {
-		chip->read_buf(mtd, buf, len);
+		chip->legacy.read_buf(chip, buf, len);
 	}
 
 	return 0;
@@ -2340,16 +1913,14 @@
 int nand_write_data_op(struct nand_chip *chip, const void *buf,
 		       unsigned int len, bool force_8bit)
 {
-	struct mtd_info *mtd = nand_to_mtd(chip);
-
 	if (!len || !buf)
 		return -EINVAL;
 
-	if (chip->exec_op) {
+	if (nand_has_exec_op(chip)) {
 		struct nand_op_instr instrs[] = {
 			NAND_OP_DATA_OUT(len, buf, 0),
 		};
-		struct nand_operation op = NAND_OPERATION(instrs);
+		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
 
 		instrs[0].ctx.data.force_8bit = force_8bit;
 
@@ -2361,9 +1932,9 @@
 		unsigned int i;
 
 		for (i = 0; i < len; i++)
-			chip->write_byte(mtd, p[i]);
+			chip->legacy.write_byte(chip, p[i]);
 	} else {
-		chip->write_buf(mtd, buf, len);
+		chip->legacy.write_buf(chip, buf, len);
 	}
 
 	return 0;
@@ -2540,35 +2111,7 @@
 		if (instr == &ctx->subop.instrs[0])
 			prefix = "    ->";
 
-		switch (instr->type) {
-		case NAND_OP_CMD_INSTR:
-			pr_debug("%sCMD      [0x%02x]\n", prefix,
-				 instr->ctx.cmd.opcode);
-			break;
-		case NAND_OP_ADDR_INSTR:
-			pr_debug("%sADDR     [%d cyc: %*ph]\n", prefix,
-				 instr->ctx.addr.naddrs,
-				 instr->ctx.addr.naddrs < 64 ?
-				 instr->ctx.addr.naddrs : 64,
-				 instr->ctx.addr.addrs);
-			break;
-		case NAND_OP_DATA_IN_INSTR:
-			pr_debug("%sDATA_IN  [%d B%s]\n", prefix,
-				 instr->ctx.data.len,
-				 instr->ctx.data.force_8bit ?
-				 ", force 8-bit" : "");
-			break;
-		case NAND_OP_DATA_OUT_INSTR:
-			pr_debug("%sDATA_OUT [%d B%s]\n", prefix,
-				 instr->ctx.data.len,
-				 instr->ctx.data.force_8bit ?
-				 ", force 8-bit" : "");
-			break;
-		case NAND_OP_WAITRDY_INSTR:
-			pr_debug("%sWAITRDY  [max %d ms]\n", prefix,
-				 instr->ctx.waitrdy.timeout_ms);
-			break;
-		}
+		nand_op_trace(prefix, instr);
 
 		if (instr == &ctx->subop.instrs[ctx->subop.ninstrs - 1])
 			prefix = "      ";
@@ -2581,6 +2124,22 @@
 }
 #endif
 
+static int nand_op_parser_cmp_ctx(const struct nand_op_parser_ctx *a,
+				  const struct nand_op_parser_ctx *b)
+{
+	if (a->subop.ninstrs < b->subop.ninstrs)
+		return -1;
+	else if (a->subop.ninstrs > b->subop.ninstrs)
+		return 1;
+
+	if (a->subop.last_instr_end_off < b->subop.last_instr_end_off)
+		return -1;
+	else if (a->subop.last_instr_end_off > b->subop.last_instr_end_off)
+		return 1;
+
+	return 0;
+}
+
 /**
  * nand_op_parser_exec_op - exec_op parser
  * @chip: the NAND chip
@@ -2615,30 +2174,38 @@
 	unsigned int i;
 
 	while (ctx.subop.instrs < op->instrs + op->ninstrs) {
-		int ret;
+		const struct nand_op_parser_pattern *pattern;
+		struct nand_op_parser_ctx best_ctx;
+		int ret, best_pattern = -1;
 
 		for (i = 0; i < parser->npatterns; i++) {
-			const struct nand_op_parser_pattern *pattern;
+			struct nand_op_parser_ctx test_ctx = ctx;
 
 			pattern = &parser->patterns[i];
-			if (!nand_op_parser_match_pat(pattern, &ctx))
+			if (!nand_op_parser_match_pat(pattern, &test_ctx))
 				continue;
 
-			nand_op_parser_trace(&ctx);
+			if (best_pattern >= 0 &&
+			    nand_op_parser_cmp_ctx(&test_ctx, &best_ctx) <= 0)
+				continue;
 
-			if (check_only)
-				break;
+			best_pattern = i;
+			best_ctx = test_ctx;
+		}
 
+		if (best_pattern < 0) {
+			pr_debug("->exec_op() parser: pattern not found!\n");
+			return -ENOTSUPP;
+		}
+
+		ctx = best_ctx;
+		nand_op_parser_trace(&ctx);
+
+		if (!check_only) {
+			pattern = &parser->patterns[best_pattern];
 			ret = pattern->exec(chip, &ctx.subop);
 			if (ret)
 				return ret;
-
-			break;
-		}
-
-		if (i == parser->npatterns) {
-			pr_debug("->exec_op() parser: pattern not found!\n");
-			return -ENOTSUPP;
 		}
 
 		/*
@@ -2798,7 +2365,6 @@
  */
 int nand_reset(struct nand_chip *chip, int chipnr)
 {
-	struct mtd_info *mtd = nand_to_mtd(chip);
 	struct nand_data_interface saved_data_intf = chip->data_interface;
 	int ret;
 
@@ -2808,11 +2374,12 @@
 
 	/*
 	 * The CS line has to be released before we can apply the new NAND
-	 * interface settings, hence this weird ->select_chip() dance.
+	 * interface settings, hence this weird nand_select_target()
+	 * nand_deselect_target() dance.
 	 */
-	chip->select_chip(mtd, chipnr);
+	nand_select_target(chip, chipnr);
 	ret = nand_reset_op(chip);
-	chip->select_chip(mtd, -1);
+	nand_deselect_target(chip);
 	if (ret)
 		return ret;
 
@@ -2836,6 +2403,48 @@
 EXPORT_SYMBOL_GPL(nand_reset);
 
 /**
+ * nand_get_features - wrapper to perform a GET_FEATURE
+ * @chip: NAND chip info structure
+ * @addr: feature address
+ * @subfeature_param: the subfeature parameters, a four bytes array
+ *
+ * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
+ * operation cannot be handled.
+ */
+int nand_get_features(struct nand_chip *chip, int addr,
+		      u8 *subfeature_param)
+{
+	if (!nand_supports_get_features(chip, addr))
+		return -ENOTSUPP;
+
+	if (chip->legacy.get_features)
+		return chip->legacy.get_features(chip, addr, subfeature_param);
+
+	return nand_get_features_op(chip, addr, subfeature_param);
+}
+
+/**
+ * nand_set_features - wrapper to perform a SET_FEATURE
+ * @chip: NAND chip info structure
+ * @addr: feature address
+ * @subfeature_param: the subfeature parameters, a four bytes array
+ *
+ * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
+ * operation cannot be handled.
+ */
+int nand_set_features(struct nand_chip *chip, int addr,
+		      u8 *subfeature_param)
+{
+	if (!nand_supports_set_features(chip, addr))
+		return -ENOTSUPP;
+
+	if (chip->legacy.set_features)
+		return chip->legacy.set_features(chip, addr, subfeature_param);
+
+	return nand_set_features_op(chip, addr, subfeature_param);
+}
+
+/**
  * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data
  * @buf: buffer to test
  * @len: buffer length
@@ -2968,7 +2577,6 @@
 
 /**
  * nand_read_page_raw_notsupp - dummy read raw page function
- * @mtd: mtd info structure
  * @chip: nand chip info structure
  * @buf: buffer to store read data
  * @oob_required: caller requires OOB data read to chip->oob_poi
@@ -2976,16 +2584,14 @@
  *
  * Returns -ENOTSUPP unconditionally.
  */
-int nand_read_page_raw_notsupp(struct mtd_info *mtd, struct nand_chip *chip,
-			       u8 *buf, int oob_required, int page)
+int nand_read_page_raw_notsupp(struct nand_chip *chip, u8 *buf,
+			       int oob_required, int page)
 {
 	return -ENOTSUPP;
 }
-EXPORT_SYMBOL(nand_read_page_raw_notsupp);
 
 /**
  * nand_read_page_raw - [INTERN] read raw page data without ecc
- * @mtd: mtd info structure
  * @chip: nand chip info structure
  * @buf: buffer to store read data
  * @oob_required: caller requires OOB data read to chip->oob_poi
@@ -2993,9 +2599,10 @@
  *
  * Not for syndrome calculating ECC controllers, which use a special oob layout.
  */
-int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
-		       uint8_t *buf, int oob_required, int page)
+int nand_read_page_raw(struct nand_chip *chip, uint8_t *buf, int oob_required,
+		       int page)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	int ret;
 
 	ret = nand_read_page_op(chip, page, 0, buf, mtd->writesize);
@@ -3015,7 +2622,6 @@
 
 /**
  * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
- * @mtd: mtd info structure
  * @chip: nand chip info structure
  * @buf: buffer to store read data
  * @oob_required: caller requires OOB data read to chip->oob_poi
@@ -3023,10 +2629,10 @@
  *
  * We need a special oob layout and handling even when OOB isn't used.
  */
-static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
-				       struct nand_chip *chip, uint8_t *buf,
+static int nand_read_page_raw_syndrome(struct nand_chip *chip, uint8_t *buf,
 				       int oob_required, int page)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	int eccsize = chip->ecc.size;
 	int eccbytes = chip->ecc.bytes;
 	uint8_t *oob = chip->oob_poi;
@@ -3080,15 +2686,15 @@
 
 /**
  * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
- * @mtd: mtd info structure
  * @chip: nand chip info structure
  * @buf: buffer to store read data
  * @oob_required: caller requires OOB data read to chip->oob_poi
  * @page: page number to read
  */
-static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
-				uint8_t *buf, int oob_required, int page)
+static int nand_read_page_swecc(struct nand_chip *chip, uint8_t *buf,
+				int oob_required, int page)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	int i, eccsize = chip->ecc.size, ret;
 	int eccbytes = chip->ecc.bytes;
 	int eccsteps = chip->ecc.steps;
@@ -3097,10 +2703,10 @@
 	uint8_t *ecc_code = chip->ecc.code_buf;
 	unsigned int max_bitflips = 0;
 
-	chip->ecc.read_page_raw(mtd, chip, buf, 1, page);
+	chip->ecc.read_page_raw(chip, buf, 1, page);
 
 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
-		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
+		chip->ecc.calculate(chip, p, &ecc_calc[i]);
 
 	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
 					 chip->ecc.total);
@@ -3113,7 +2719,7 @@
 	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
 		int stat;
 
-		stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
+		stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
 		if (stat < 0) {
 			mtd->ecc_stats.failed++;
 		} else {
@@ -3126,17 +2732,16 @@
 
 /**
  * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
- * @mtd: mtd info structure
  * @chip: nand chip info structure
  * @data_offs: offset of requested data within the page
  * @readlen: data length
  * @bufpoi: buffer to store read data
  * @page: page number to read
  */
-static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
-			uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi,
-			int page)
+static int nand_read_subpage(struct nand_chip *chip, uint32_t data_offs,
+			     uint32_t readlen, uint8_t *bufpoi, int page)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	int start_step, end_step, num_steps, ret;
 	uint8_t *p;
 	int data_col_addr, i, gaps = 0;
@@ -3165,7 +2770,7 @@
 
 	/* Calculate ECC */
 	for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
-		chip->ecc.calculate(mtd, p, &chip->ecc.calc_buf[i]);
+		chip->ecc.calculate(chip, p, &chip->ecc.calc_buf[i]);
 
 	/*
 	 * The performance is faster if we position offsets according to
@@ -3214,7 +2819,7 @@
 	for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
 		int stat;
 
-		stat = chip->ecc.correct(mtd, p, &chip->ecc.code_buf[i],
+		stat = chip->ecc.correct(chip, p, &chip->ecc.code_buf[i],
 					 &chip->ecc.calc_buf[i]);
 		if (stat == -EBADMSG &&
 		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
@@ -3238,7 +2843,6 @@
 
 /**
  * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
- * @mtd: mtd info structure
  * @chip: nand chip info structure
  * @buf: buffer to store read data
  * @oob_required: caller requires OOB data read to chip->oob_poi
@@ -3246,9 +2850,10 @@
  *
  * Not for syndrome calculating ECC controllers which need a special oob layout.
  */
-static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
-				uint8_t *buf, int oob_required, int page)
+static int nand_read_page_hwecc(struct nand_chip *chip, uint8_t *buf,
+				int oob_required, int page)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	int i, eccsize = chip->ecc.size, ret;
 	int eccbytes = chip->ecc.bytes;
 	int eccsteps = chip->ecc.steps;
@@ -3262,13 +2867,13 @@
 		return ret;
 
 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
-		chip->ecc.hwctl(mtd, NAND_ECC_READ);
+		chip->ecc.hwctl(chip, NAND_ECC_READ);
 
 		ret = nand_read_data_op(chip, p, eccsize, false);
 		if (ret)
 			return ret;
 
-		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
+		chip->ecc.calculate(chip, p, &ecc_calc[i]);
 	}
 
 	ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false);
@@ -3286,7 +2891,7 @@
 	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
 		int stat;
 
-		stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
+		stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
 		if (stat == -EBADMSG &&
 		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
 			/* check for empty pages with bitflips */
@@ -3308,7 +2913,6 @@
 
 /**
  * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
- * @mtd: mtd info structure
  * @chip: nand chip info structure
  * @buf: buffer to store read data
  * @oob_required: caller requires OOB data read to chip->oob_poi
@@ -3320,9 +2924,10 @@
  * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
  * the data area, by overwriting the NAND manufacturer bad block markings.
  */
-static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
-	struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
+static int nand_read_page_hwecc_oob_first(struct nand_chip *chip, uint8_t *buf,
+					  int oob_required, int page)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	int i, eccsize = chip->ecc.size, ret;
 	int eccbytes = chip->ecc.bytes;
 	int eccsteps = chip->ecc.steps;
@@ -3348,15 +2953,15 @@
 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
 		int stat;
 
-		chip->ecc.hwctl(mtd, NAND_ECC_READ);
+		chip->ecc.hwctl(chip, NAND_ECC_READ);
 
 		ret = nand_read_data_op(chip, p, eccsize, false);
 		if (ret)
 			return ret;
 
-		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
+		chip->ecc.calculate(chip, p, &ecc_calc[i]);
 
-		stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
+		stat = chip->ecc.correct(chip, p, &ecc_code[i], NULL);
 		if (stat == -EBADMSG &&
 		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
 			/* check for empty pages with bitflips */
@@ -3378,7 +2983,6 @@
 
 /**
  * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
- * @mtd: mtd info structure
  * @chip: nand chip info structure
  * @buf: buffer to store read data
  * @oob_required: caller requires OOB data read to chip->oob_poi
@@ -3387,9 +2991,10 @@
  * The hw generator calculates the error syndrome automatically. Therefore we
  * need a special oob layout and handling.
  */
-static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
-				   uint8_t *buf, int oob_required, int page)
+static int nand_read_page_syndrome(struct nand_chip *chip, uint8_t *buf,
+				   int oob_required, int page)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	int ret, i, eccsize = chip->ecc.size;
 	int eccbytes = chip->ecc.bytes;
 	int eccsteps = chip->ecc.steps;
@@ -3405,7 +3010,7 @@
 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
 		int stat;
 
-		chip->ecc.hwctl(mtd, NAND_ECC_READ);
+		chip->ecc.hwctl(chip, NAND_ECC_READ);
 
 		ret = nand_read_data_op(chip, p, eccsize, false);
 		if (ret)
@@ -3420,13 +3025,13 @@
 			oob += chip->ecc.prepad;
 		}
 
-		chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
+		chip->ecc.hwctl(chip, NAND_ECC_READSYN);
 
 		ret = nand_read_data_op(chip, oob, eccbytes, false);
 		if (ret)
 			return ret;
 
-		stat = chip->ecc.correct(mtd, p, oob, NULL);
+		stat = chip->ecc.correct(chip, p, oob, NULL);
 
 		oob += eccbytes;
 
@@ -3470,15 +3075,15 @@
 
 /**
  * nand_transfer_oob - [INTERN] Transfer oob to client buffer
- * @mtd: mtd info structure
+ * @chip: NAND chip object
  * @oob: oob destination address
  * @ops: oob ops structure
  * @len: size of oob to transfer
  */
-static uint8_t *nand_transfer_oob(struct mtd_info *mtd, uint8_t *oob,
+static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
 				  struct mtd_oob_ops *ops, size_t len)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	int ret;
 
 	switch (ops->mode) {
@@ -3502,17 +3107,15 @@
 
 /**
  * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
- * @mtd: MTD device structure
+ * @chip: NAND chip object
  * @retry_mode: the retry mode to use
  *
  * Some vendors supply a special command to shift the Vt threshold, to be used
  * when there are too many bitflips in a page (i.e., ECC error). After setting
  * a new threshold, the host should retry reading the page.
  */
-static int nand_setup_read_retry(struct mtd_info *mtd, int retry_mode)
+static int nand_setup_read_retry(struct nand_chip *chip, int retry_mode)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
-
 	pr_debug("setting READ RETRY mode %d\n", retry_mode);
 
 	if (retry_mode >= chip->read_retries)
@@ -3521,22 +3124,33 @@
 	if (!chip->setup_read_retry)
 		return -EOPNOTSUPP;
 
-	return chip->setup_read_retry(mtd, retry_mode);
+	return chip->setup_read_retry(chip, retry_mode);
+}
+
+static void nand_wait_readrdy(struct nand_chip *chip)
+{
+	const struct nand_sdr_timings *sdr;
+
+	if (!(chip->options & NAND_NEED_READRDY))
+		return;
+
+	sdr = nand_get_sdr_timings(&chip->data_interface);
+	WARN_ON(nand_wait_rdy_op(chip, PSEC_TO_MSEC(sdr->tR_max), 0));
 }
 
 /**
  * nand_do_read_ops - [INTERN] Read data with ECC
- * @mtd: MTD device structure
+ * @chip: NAND chip object
  * @from: offset to read from
  * @ops: oob ops structure
  *
  * Internal function. Called with chip held.
  */
-static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
+static int nand_do_read_ops(struct nand_chip *chip, loff_t from,
 			    struct mtd_oob_ops *ops)
 {
 	int chipnr, page, realpage, col, bytes, aligned, oob_required;
-	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	int ret = 0;
 	uint32_t readlen = ops->len;
 	uint32_t oobreadlen = ops->ooblen;
@@ -3549,7 +3163,7 @@
 	bool ecc_fail = false;
 
 	chipnr = (int)(from >> chip->chip_shift);
-	chip->select_chip(mtd, chipnr);
+	nand_select_target(chip, chipnr);
 
 	realpage = (int)(from >> chip->page_shift);
 	page = realpage & chip->pagemask;
@@ -3576,7 +3190,7 @@
 			use_bufpoi = 0;
 
 		/* Is the current page in the buffer? */
-		if (realpage != chip->pagebuf || oob) {
+		if (realpage != chip->pagecache.page || oob) {
 			bufpoi = use_bufpoi ? chip->data_buf : buf;
 
 			if (use_bufpoi && aligned)
@@ -3589,21 +3203,20 @@
 			 * the read methods return max bitflips per ecc step.
 			 */
 			if (unlikely(ops->mode == MTD_OPS_RAW))
-				ret = chip->ecc.read_page_raw(mtd, chip, bufpoi,
+				ret = chip->ecc.read_page_raw(chip, bufpoi,
 							      oob_required,
 							      page);
 			else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
 				 !oob)
-				ret = chip->ecc.read_subpage(mtd, chip,
-							col, bytes, bufpoi,
-							page);
+				ret = chip->ecc.read_subpage(chip, col, bytes,
+							     bufpoi, page);
 			else
-				ret = chip->ecc.read_page(mtd, chip, bufpoi,
+				ret = chip->ecc.read_page(chip, bufpoi,
 							  oob_required, page);
 			if (ret < 0) {
 				if (use_bufpoi)
 					/* Invalidate page cache */
-					chip->pagebuf = -1;
+					chip->pagecache.page = -1;
 				break;
 			}
 
@@ -3612,11 +3225,11 @@
 				if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
 				    !(mtd->ecc_stats.failed - ecc_failures) &&
 				    (ops->mode != MTD_OPS_RAW)) {
-					chip->pagebuf = realpage;
-					chip->pagebuf_bitflips = ret;
+					chip->pagecache.page = realpage;
+					chip->pagecache.bitflips = ret;
 				} else {
 					/* Invalidate page cache */
-					chip->pagebuf = -1;
+					chip->pagecache.page = -1;
 				}
 				memcpy(buf, chip->data_buf + col, bytes);
 			}
@@ -3625,24 +3238,18 @@
 				int toread = min(oobreadlen, max_oobsize);
 
 				if (toread) {
-					oob = nand_transfer_oob(mtd,
-						oob, ops, toread);
+					oob = nand_transfer_oob(chip, oob, ops,
+								toread);
 					oobreadlen -= toread;
 				}
 			}
 
-			if (chip->options & NAND_NEED_READRDY) {
-				/* Apply delay or wait for ready/busy pin */
-				if (!chip->dev_ready)
-					udelay(chip->chip_delay);
-				else
-					nand_wait_ready(mtd);
-			}
+			nand_wait_readrdy(chip);
 
 			if (mtd->ecc_stats.failed - ecc_failures) {
 				if (retry_mode + 1 < chip->read_retries) {
 					retry_mode++;
-					ret = nand_setup_read_retry(mtd,
+					ret = nand_setup_read_retry(chip,
 							retry_mode);
 					if (ret < 0)
 						break;
@@ -3662,14 +3269,14 @@
 			memcpy(buf, chip->data_buf + col, bytes);
 			buf += bytes;
 			max_bitflips = max_t(unsigned int, max_bitflips,
-					     chip->pagebuf_bitflips);
+					     chip->pagecache.bitflips);
 		}
 
 		readlen -= bytes;
 
 		/* Reset to retry mode 0 */
 		if (retry_mode) {
-			ret = nand_setup_read_retry(mtd, 0);
+			ret = nand_setup_read_retry(chip, 0);
 			if (ret < 0)
 				break;
 			retry_mode = 0;
@@ -3687,11 +3294,11 @@
 		/* Check, if we cross a chip boundary */
 		if (!page) {
 			chipnr++;
-			chip->select_chip(mtd, -1);
-			chip->select_chip(mtd, chipnr);
+			nand_deselect_target(chip);
+			nand_select_target(chip, chipnr);
 		}
 	}
-	chip->select_chip(mtd, -1);
+	nand_deselect_target(chip);
 
 	ops->retlen = ops->len - (size_t) readlen;
 	if (oob)
@@ -3708,12 +3315,13 @@
 
 /**
  * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
- * @mtd: mtd info structure
  * @chip: nand chip info structure
  * @page: page number to read
  */
-int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip, int page)
+int nand_read_oob_std(struct nand_chip *chip, int page)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
+
 	return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
 }
 EXPORT_SYMBOL(nand_read_oob_std);
@@ -3721,13 +3329,12 @@
 /**
  * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
  *			    with syndromes
- * @mtd: mtd info structure
  * @chip: nand chip info structure
  * @page: page number to read
  */
-int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
-			   int page)
+static int nand_read_oob_syndrome(struct nand_chip *chip, int page)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	int length = mtd->oobsize;
 	int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
 	int eccsize = chip->ecc.size;
@@ -3772,16 +3379,16 @@
 
 	return 0;
 }
-EXPORT_SYMBOL(nand_read_oob_syndrome);
 
 /**
  * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
- * @mtd: mtd info structure
  * @chip: nand chip info structure
  * @page: page number to write
  */
-int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip, int page)
+int nand_write_oob_std(struct nand_chip *chip, int page)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
+
 	return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi,
 				 mtd->oobsize);
 }
@@ -3790,13 +3397,12 @@
 /**
  * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
  *			     with syndrome - only for large page flash
- * @mtd: mtd info structure
  * @chip: nand chip info structure
  * @page: page number to write
  */
-int nand_write_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
-			    int page)
+static int nand_write_oob_syndrome(struct nand_chip *chip, int page)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
 	int eccsize = chip->ecc.size, length = mtd->oobsize;
 	int ret, i, len, pos, sndcmd = 0, steps = chip->ecc.steps;
@@ -3860,22 +3466,21 @@
 
 	return nand_prog_page_end_op(chip);
 }
-EXPORT_SYMBOL(nand_write_oob_syndrome);
 
 /**
  * nand_do_read_oob - [INTERN] NAND read out-of-band
- * @mtd: MTD device structure
+ * @chip: NAND chip object
  * @from: offset to read from
  * @ops: oob operations description structure
  *
  * NAND read out-of-band data from the spare area.
  */
-static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
+static int nand_do_read_oob(struct nand_chip *chip, loff_t from,
 			    struct mtd_oob_ops *ops)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	unsigned int max_bitflips = 0;
 	int page, realpage, chipnr;
-	struct nand_chip *chip = mtd_to_nand(mtd);
 	struct mtd_ecc_stats stats;
 	int readlen = ops->ooblen;
 	int len;
@@ -3890,7 +3495,7 @@
 	len = mtd_oobavail(mtd, ops);
 
 	chipnr = (int)(from >> chip->chip_shift);
-	chip->select_chip(mtd, chipnr);
+	nand_select_target(chip, chipnr);
 
 	/* Shift to get page */
 	realpage = (int)(from >> chip->page_shift);
@@ -3898,23 +3503,17 @@
 
 	while (1) {
 		if (ops->mode == MTD_OPS_RAW)
-			ret = chip->ecc.read_oob_raw(mtd, chip, page);
+			ret = chip->ecc.read_oob_raw(chip, page);
 		else
-			ret = chip->ecc.read_oob(mtd, chip, page);
+			ret = chip->ecc.read_oob(chip, page);
 
 		if (ret < 0)
 			break;
 
 		len = min(len, readlen);
-		buf = nand_transfer_oob(mtd, buf, ops, len);
+		buf = nand_transfer_oob(chip, buf, ops, len);
 
-		if (chip->options & NAND_NEED_READRDY) {
-			/* Apply delay or wait for ready/busy pin */
-			if (!chip->dev_ready)
-				udelay(chip->chip_delay);
-			else
-				nand_wait_ready(mtd);
-		}
+		nand_wait_readrdy(chip);
 
 		max_bitflips = max_t(unsigned int, max_bitflips, ret);
 
@@ -3929,11 +3528,11 @@
 		/* Check, if we cross a chip boundary */
 		if (!page) {
 			chipnr++;
-			chip->select_chip(mtd, -1);
-			chip->select_chip(mtd, chipnr);
+			nand_deselect_target(chip);
+			nand_select_target(chip, chipnr);
 		}
 	}
-	chip->select_chip(mtd, -1);
+	nand_deselect_target(chip);
 
 	ops->oobretlen = ops->ooblen - readlen;
 
@@ -3957,6 +3556,7 @@
 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
 			 struct mtd_oob_ops *ops)
 {
+	struct nand_chip *chip = mtd_to_nand(mtd);
 	int ret;
 
 	ops->retlen = 0;
@@ -3966,20 +3566,21 @@
 	    ops->mode != MTD_OPS_RAW)
 		return -ENOTSUPP;
 
-	nand_get_device(mtd, FL_READING);
+	ret = nand_get_device(chip);
+	if (ret)
+		return ret;
 
 	if (!ops->datbuf)
-		ret = nand_do_read_oob(mtd, from, ops);
+		ret = nand_do_read_oob(chip, from, ops);
 	else
-		ret = nand_do_read_ops(mtd, from, ops);
+		ret = nand_do_read_ops(chip, from, ops);
 
-	nand_release_device(mtd);
+	nand_release_device(chip);
 	return ret;
 }
 
 /**
  * nand_write_page_raw_notsupp - dummy raw page write function
- * @mtd: mtd info structure
  * @chip: nand chip info structure
  * @buf: data buffer
  * @oob_required: must write chip->oob_poi to OOB
@@ -3987,16 +3588,14 @@
  *
  * Returns -ENOTSUPP unconditionally.
  */
-int nand_write_page_raw_notsupp(struct mtd_info *mtd, struct nand_chip *chip,
-				const u8 *buf, int oob_required, int page)
+int nand_write_page_raw_notsupp(struct nand_chip *chip, const u8 *buf,
+				int oob_required, int page)
 {
 	return -ENOTSUPP;
 }
-EXPORT_SYMBOL(nand_write_page_raw_notsupp);
 
 /**
  * nand_write_page_raw - [INTERN] raw page write function
- * @mtd: mtd info structure
  * @chip: nand chip info structure
  * @buf: data buffer
  * @oob_required: must write chip->oob_poi to OOB
@@ -4004,9 +3603,10 @@
  *
  * Not for syndrome calculating ECC controllers, which use a special oob layout.
  */
-int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
-			const uint8_t *buf, int oob_required, int page)
+int nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
+			int oob_required, int page)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	int ret;
 
 	ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
@@ -4026,7 +3626,6 @@
 
 /**
  * nand_write_page_raw_syndrome - [INTERN] raw page write function
- * @mtd: mtd info structure
  * @chip: nand chip info structure
  * @buf: data buffer
  * @oob_required: must write chip->oob_poi to OOB
@@ -4034,11 +3633,11 @@
  *
  * We need a special oob layout and handling even when ECC isn't checked.
  */
-static int nand_write_page_raw_syndrome(struct mtd_info *mtd,
-					struct nand_chip *chip,
+static int nand_write_page_raw_syndrome(struct nand_chip *chip,
 					const uint8_t *buf, int oob_required,
 					int page)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	int eccsize = chip->ecc.size;
 	int eccbytes = chip->ecc.bytes;
 	uint8_t *oob = chip->oob_poi;
@@ -4091,16 +3690,15 @@
 }
 /**
  * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
- * @mtd: mtd info structure
  * @chip: nand chip info structure
  * @buf: data buffer
  * @oob_required: must write chip->oob_poi to OOB
  * @page: page number to write
  */
-static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
-				 const uint8_t *buf, int oob_required,
-				 int page)
+static int nand_write_page_swecc(struct nand_chip *chip, const uint8_t *buf,
+				 int oob_required, int page)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	int i, eccsize = chip->ecc.size, ret;
 	int eccbytes = chip->ecc.bytes;
 	int eccsteps = chip->ecc.steps;
@@ -4109,28 +3707,27 @@
 
 	/* Software ECC calculation */
 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
-		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
+		chip->ecc.calculate(chip, p, &ecc_calc[i]);
 
 	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
 					 chip->ecc.total);
 	if (ret)
 		return ret;
 
-	return chip->ecc.write_page_raw(mtd, chip, buf, 1, page);
+	return chip->ecc.write_page_raw(chip, buf, 1, page);
 }
 
 /**
  * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
- * @mtd: mtd info structure
  * @chip: nand chip info structure
  * @buf: data buffer
  * @oob_required: must write chip->oob_poi to OOB
  * @page: page number to write
  */
-static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
-				  const uint8_t *buf, int oob_required,
-				  int page)
+static int nand_write_page_hwecc(struct nand_chip *chip, const uint8_t *buf,
+				 int oob_required, int page)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	int i, eccsize = chip->ecc.size, ret;
 	int eccbytes = chip->ecc.bytes;
 	int eccsteps = chip->ecc.steps;
@@ -4142,13 +3739,13 @@
 		return ret;
 
 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
-		chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
+		chip->ecc.hwctl(chip, NAND_ECC_WRITE);
 
 		ret = nand_write_data_op(chip, p, eccsize, false);
 		if (ret)
 			return ret;
 
-		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
+		chip->ecc.calculate(chip, p, &ecc_calc[i]);
 	}
 
 	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
@@ -4166,7 +3763,6 @@
 
 /**
  * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write
- * @mtd:	mtd info structure
  * @chip:	nand chip info structure
  * @offset:	column address of subpage within the page
  * @data_len:	data length
@@ -4174,11 +3770,11 @@
  * @oob_required: must write chip->oob_poi to OOB
  * @page: page number to write
  */
-static int nand_write_subpage_hwecc(struct mtd_info *mtd,
-				struct nand_chip *chip, uint32_t offset,
-				uint32_t data_len, const uint8_t *buf,
-				int oob_required, int page)
+static int nand_write_subpage_hwecc(struct nand_chip *chip, uint32_t offset,
+				    uint32_t data_len, const uint8_t *buf,
+				    int oob_required, int page)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	uint8_t *oob_buf  = chip->oob_poi;
 	uint8_t *ecc_calc = chip->ecc.calc_buf;
 	int ecc_size      = chip->ecc.size;
@@ -4195,7 +3791,7 @@
 
 	for (step = 0; step < ecc_steps; step++) {
 		/* configure controller for WRITE access */
-		chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
+		chip->ecc.hwctl(chip, NAND_ECC_WRITE);
 
 		/* write data (untouched subpages already masked by 0xFF) */
 		ret = nand_write_data_op(chip, buf, ecc_size, false);
@@ -4206,7 +3802,7 @@
 		if ((step < start_step) || (step > end_step))
 			memset(ecc_calc, 0xff, ecc_bytes);
 		else
-			chip->ecc.calculate(mtd, buf, ecc_calc);
+			chip->ecc.calculate(chip, buf, ecc_calc);
 
 		/* mask OOB of un-touched subpages by padding 0xFF */
 		/* if oob_required, preserve OOB metadata of written subpage */
@@ -4237,7 +3833,6 @@
 
 /**
  * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
- * @mtd: mtd info structure
  * @chip: nand chip info structure
  * @buf: data buffer
  * @oob_required: must write chip->oob_poi to OOB
@@ -4246,11 +3841,10 @@
  * The hw generator calculates the error syndrome automatically. Therefore we
  * need a special oob layout and handling.
  */
-static int nand_write_page_syndrome(struct mtd_info *mtd,
-				    struct nand_chip *chip,
-				    const uint8_t *buf, int oob_required,
-				    int page)
+static int nand_write_page_syndrome(struct nand_chip *chip, const uint8_t *buf,
+				    int oob_required, int page)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	int i, eccsize = chip->ecc.size;
 	int eccbytes = chip->ecc.bytes;
 	int eccsteps = chip->ecc.steps;
@@ -4263,7 +3857,7 @@
 		return ret;
 
 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
-		chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
+		chip->ecc.hwctl(chip, NAND_ECC_WRITE);
 
 		ret = nand_write_data_op(chip, p, eccsize, false);
 		if (ret)
@@ -4278,7 +3872,7 @@
 			oob += chip->ecc.prepad;
 		}
 
-		chip->ecc.calculate(mtd, p, oob);
+		chip->ecc.calculate(chip, p, oob);
 
 		ret = nand_write_data_op(chip, oob, eccbytes, false);
 		if (ret)
@@ -4309,7 +3903,6 @@
 
 /**
  * nand_write_page - write one page
- * @mtd: MTD device structure
  * @chip: NAND chip descriptor
  * @offset: address offset within the page
  * @data_len: length of actual data to be written
@@ -4318,10 +3911,11 @@
  * @page: page number to write
  * @raw: use _raw version of write_page
  */
-static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
-		uint32_t offset, int data_len, const uint8_t *buf,
-		int oob_required, int page, int raw)
+static int nand_write_page(struct nand_chip *chip, uint32_t offset,
+			   int data_len, const uint8_t *buf, int oob_required,
+			   int page, int raw)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	int status, subpage;
 
 	if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
@@ -4331,14 +3925,13 @@
 		subpage = 0;
 
 	if (unlikely(raw))
-		status = chip->ecc.write_page_raw(mtd, chip, buf,
-						  oob_required, page);
+		status = chip->ecc.write_page_raw(chip, buf, oob_required,
+						  page);
 	else if (subpage)
-		status = chip->ecc.write_subpage(mtd, chip, offset, data_len,
-						 buf, oob_required, page);
+		status = chip->ecc.write_subpage(chip, offset, data_len, buf,
+						 oob_required, page);
 	else
-		status = chip->ecc.write_page(mtd, chip, buf, oob_required,
-					      page);
+		status = chip->ecc.write_page(chip, buf, oob_required, page);
 
 	if (status < 0)
 		return status;
@@ -4346,59 +3939,21 @@
 	return 0;
 }
 
-/**
- * nand_fill_oob - [INTERN] Transfer client buffer to oob
- * @mtd: MTD device structure
- * @oob: oob data buffer
- * @len: oob data write length
- * @ops: oob ops structure
- */
-static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
-			      struct mtd_oob_ops *ops)
-{
-	struct nand_chip *chip = mtd_to_nand(mtd);
-	int ret;
-
-	/*
-	 * Initialise to all 0xFF, to avoid the possibility of left over OOB
-	 * data from a previous OOB read.
-	 */
-	memset(chip->oob_poi, 0xff, mtd->oobsize);
-
-	switch (ops->mode) {
-
-	case MTD_OPS_PLACE_OOB:
-	case MTD_OPS_RAW:
-		memcpy(chip->oob_poi + ops->ooboffs, oob, len);
-		return oob + len;
-
-	case MTD_OPS_AUTO_OOB:
-		ret = mtd_ooblayout_set_databytes(mtd, oob, chip->oob_poi,
-						  ops->ooboffs, len);
-		BUG_ON(ret);
-		return oob + len;
-
-	default:
-		BUG();
-	}
-	return NULL;
-}
-
 #define NOTALIGNED(x)	((x & (chip->subpagesize - 1)) != 0)
 
 /**
  * nand_do_write_ops - [INTERN] NAND write with ECC
- * @mtd: MTD device structure
+ * @chip: NAND chip object
  * @to: offset to write to
  * @ops: oob operations description structure
  *
  * NAND write with ECC.
  */
-static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
+static int nand_do_write_ops(struct nand_chip *chip, loff_t to,
 			     struct mtd_oob_ops *ops)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	int chipnr, realpage, page, column;
-	struct nand_chip *chip = mtd_to_nand(mtd);
 	uint32_t writelen = ops->len;
 
 	uint32_t oobwritelen = ops->ooblen;
@@ -4423,10 +3978,10 @@
 	column = to & (mtd->writesize - 1);
 
 	chipnr = (int)(to >> chip->chip_shift);
-	chip->select_chip(mtd, chipnr);
+	nand_select_target(chip, chipnr);
 
 	/* Check, if it is write protected */
-	if (nand_check_wp(mtd)) {
+	if (nand_check_wp(chip)) {
 		ret = -EIO;
 		goto err_out;
 	}
@@ -4435,9 +3990,9 @@
 	page = realpage & chip->pagemask;
 
 	/* Invalidate the page cache, when we write to the cached page */
-	if (to <= ((loff_t)chip->pagebuf << chip->page_shift) &&
-	    ((loff_t)chip->pagebuf << chip->page_shift) < (to + ops->len))
-		chip->pagebuf = -1;
+	if (to <= ((loff_t)chip->pagecache.page << chip->page_shift) &&
+	    ((loff_t)chip->pagecache.page << chip->page_shift) < (to + ops->len))
+		chip->pagecache.page = -1;
 
 	/* Don't allow multipage oob writes with offset */
 	if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
@@ -4466,22 +4021,21 @@
 					 __func__, buf);
 			if (part_pagewr)
 				bytes = min_t(int, bytes - column, writelen);
-			chip->pagebuf = -1;
-			memset(chip->data_buf, 0xff, mtd->writesize);
-			memcpy(&chip->data_buf[column], buf, bytes);
-			wbuf = chip->data_buf;
+			wbuf = nand_get_data_buf(chip);
+			memset(wbuf, 0xff, mtd->writesize);
+			memcpy(&wbuf[column], buf, bytes);
 		}
 
 		if (unlikely(oob)) {
 			size_t len = min(oobwritelen, oobmaxlen);
-			oob = nand_fill_oob(mtd, oob, len, ops);
+			oob = nand_fill_oob(chip, oob, len, ops);
 			oobwritelen -= len;
 		} else {
 			/* We still need to erase leftover OOB data */
 			memset(chip->oob_poi, 0xff, mtd->oobsize);
 		}
 
-		ret = nand_write_page(mtd, chip, column, bytes, wbuf,
+		ret = nand_write_page(chip, column, bytes, wbuf,
 				      oob_required, page,
 				      (ops->mode == MTD_OPS_RAW));
 		if (ret)
@@ -4499,8 +4053,8 @@
 		/* Check, if we cross a chip boundary */
 		if (!page) {
 			chipnr++;
-			chip->select_chip(mtd, -1);
-			chip->select_chip(mtd, chipnr);
+			nand_deselect_target(chip);
+			nand_select_target(chip, chipnr);
 		}
 	}
 
@@ -4509,7 +4063,7 @@
 		ops->oobretlen = ops->ooblen;
 
 err_out:
-	chip->select_chip(mtd, -1);
+	nand_deselect_target(chip);
 	return ret;
 }
 
@@ -4532,94 +4086,23 @@
 	struct mtd_oob_ops ops;
 	int ret;
 
-	/* Grab the device */
-	panic_nand_get_device(chip, mtd, FL_WRITING);
-
-	chip->select_chip(mtd, chipnr);
+	nand_select_target(chip, chipnr);
 
 	/* Wait for the device to get ready */
-	panic_nand_wait(mtd, chip, 400);
+	panic_nand_wait(chip, 400);
 
 	memset(&ops, 0, sizeof(ops));
 	ops.len = len;
 	ops.datbuf = (uint8_t *)buf;
 	ops.mode = MTD_OPS_PLACE_OOB;
 
-	ret = nand_do_write_ops(mtd, to, &ops);
+	ret = nand_do_write_ops(chip, to, &ops);
 
 	*retlen = ops.retlen;
 	return ret;
 }
 
 /**
- * nand_do_write_oob - [MTD Interface] NAND write out-of-band
- * @mtd: MTD device structure
- * @to: offset to write to
- * @ops: oob operation description structure
- *
- * NAND write out-of-band.
- */
-static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
-			     struct mtd_oob_ops *ops)
-{
-	int chipnr, page, status, len;
-	struct nand_chip *chip = mtd_to_nand(mtd);
-
-	pr_debug("%s: to = 0x%08x, len = %i\n",
-			 __func__, (unsigned int)to, (int)ops->ooblen);
-
-	len = mtd_oobavail(mtd, ops);
-
-	/* Do not allow write past end of page */
-	if ((ops->ooboffs + ops->ooblen) > len) {
-		pr_debug("%s: attempt to write past end of page\n",
-				__func__);
-		return -EINVAL;
-	}
-
-	chipnr = (int)(to >> chip->chip_shift);
-
-	/*
-	 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
-	 * of my DiskOnChip 2000 test units) will clear the whole data page too
-	 * if we don't do this. I have no clue why, but I seem to have 'fixed'
-	 * it in the doc2000 driver in August 1999.  dwmw2.
-	 */
-	nand_reset(chip, chipnr);
-
-	chip->select_chip(mtd, chipnr);
-
-	/* Shift to get page */
-	page = (int)(to >> chip->page_shift);
-
-	/* Check, if it is write protected */
-	if (nand_check_wp(mtd)) {
-		chip->select_chip(mtd, -1);
-		return -EROFS;
-	}
-
-	/* Invalidate the page cache, if we write to the cached page */
-	if (page == chip->pagebuf)
-		chip->pagebuf = -1;
-
-	nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
-
-	if (ops->mode == MTD_OPS_RAW)
-		status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask);
-	else
-		status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
-
-	chip->select_chip(mtd, -1);
-
-	if (status)
-		return status;
-
-	ops->oobretlen = ops->ooblen;
-
-	return 0;
-}
-
-/**
  * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
  * @mtd: MTD device structure
  * @to: offset to write to
@@ -4628,11 +4111,14 @@
 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
 			  struct mtd_oob_ops *ops)
 {
-	int ret = -ENOTSUPP;
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	int ret;
 
 	ops->retlen = 0;
 
-	nand_get_device(mtd, FL_WRITING);
+	ret = nand_get_device(chip);
+	if (ret)
+		return ret;
 
 	switch (ops->mode) {
 	case MTD_OPS_PLACE_OOB:
@@ -4645,34 +4131,16 @@
 	}
 
 	if (!ops->datbuf)
-		ret = nand_do_write_oob(mtd, to, ops);
+		ret = nand_do_write_oob(chip, to, ops);
 	else
-		ret = nand_do_write_ops(mtd, to, ops);
+		ret = nand_do_write_ops(chip, to, ops);
 
 out:
-	nand_release_device(mtd);
+	nand_release_device(chip);
 	return ret;
 }
 
 /**
- * single_erase - [GENERIC] NAND standard block erase command function
- * @mtd: MTD device structure
- * @page: the page address of the block which will be erased
- *
- * Standard erase command for NAND chips. Returns NAND status.
- */
-static int single_erase(struct mtd_info *mtd, int page)
-{
-	struct nand_chip *chip = mtd_to_nand(mtd);
-	unsigned int eraseblock;
-
-	/* Send commands to erase a block */
-	eraseblock = page >> (chip->phys_erase_shift - chip->page_shift);
-
-	return nand_erase_op(chip, eraseblock);
-}
-
-/**
  * nand_erase - [MTD Interface] erase block(s)
  * @mtd: MTD device structure
  * @instr: erase instruction
@@ -4681,33 +4149,34 @@
  */
 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
 {
-	return nand_erase_nand(mtd, instr, 0);
+	return nand_erase_nand(mtd_to_nand(mtd), instr, 0);
 }
 
 /**
  * nand_erase_nand - [INTERN] erase block(s)
- * @mtd: MTD device structure
+ * @chip: NAND chip object
  * @instr: erase instruction
  * @allowbbt: allow erasing the bbt area
  *
  * Erase one ore more blocks.
  */
-int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
+int nand_erase_nand(struct nand_chip *chip, struct erase_info *instr,
 		    int allowbbt)
 {
-	int page, status, pages_per_block, ret, chipnr;
-	struct nand_chip *chip = mtd_to_nand(mtd);
+	int page, pages_per_block, ret, chipnr;
 	loff_t len;
 
 	pr_debug("%s: start = 0x%012llx, len = %llu\n",
 			__func__, (unsigned long long)instr->addr,
 			(unsigned long long)instr->len);
 
-	if (check_offs_len(mtd, instr->addr, instr->len))
+	if (check_offs_len(chip, instr->addr, instr->len))
 		return -EINVAL;
 
 	/* Grab the lock and see if the device is available */
-	nand_get_device(mtd, FL_ERASING);
+	ret = nand_get_device(chip);
+	if (ret)
+		return ret;
 
 	/* Shift to get first page */
 	page = (int)(instr->addr >> chip->page_shift);
@@ -4717,10 +4186,10 @@
 	pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
 
 	/* Select the NAND device */
-	chip->select_chip(mtd, chipnr);
+	nand_select_target(chip, chipnr);
 
 	/* Check, if it is write protected */
-	if (nand_check_wp(mtd)) {
+	if (nand_check_wp(chip)) {
 		pr_debug("%s: device is write protected!\n",
 				__func__);
 		ret = -EIO;
@@ -4732,7 +4201,7 @@
 
 	while (len) {
 		/* Check if we have a bad block, we do not erase bad blocks! */
-		if (nand_block_checkbad(mtd, ((loff_t) page) <<
+		if (nand_block_checkbad(chip, ((loff_t) page) <<
 					chip->page_shift, allowbbt)) {
 			pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
 				    __func__, page);
@@ -4744,17 +4213,15 @@
 		 * Invalidate the page cache, if we erase the block which
 		 * contains the current cached page.
 		 */
-		if (page <= chip->pagebuf && chip->pagebuf <
+		if (page <= chip->pagecache.page && chip->pagecache.page <
 		    (page + pages_per_block))
-			chip->pagebuf = -1;
+			chip->pagecache.page = -1;
 
-		status = chip->erase(mtd, page & chip->pagemask);
-
-		/* See if block erase succeeded */
-		if (status) {
+		ret = nand_erase_op(chip, (page & chip->pagemask) >>
+				    (chip->phys_erase_shift - chip->page_shift));
+		if (ret) {
 			pr_debug("%s: failed erase, page 0x%08x\n",
 					__func__, page);
-			ret = -EIO;
 			instr->fail_addr =
 				((loff_t)page << chip->page_shift);
 			goto erase_exit;
@@ -4767,8 +4234,8 @@
 		/* Check, if we cross a chip boundary */
 		if (len && !(page & chip->pagemask)) {
 			chipnr++;
-			chip->select_chip(mtd, -1);
-			chip->select_chip(mtd, chipnr);
+			nand_deselect_target(chip);
+			nand_select_target(chip, chipnr);
 		}
 	}
 
@@ -4776,8 +4243,8 @@
 erase_exit:
 
 	/* Deselect and wake up anyone waiting on the device */
-	chip->select_chip(mtd, -1);
-	nand_release_device(mtd);
+	nand_deselect_target(chip);
+	nand_release_device(chip);
 
 	/* Return more or less happy */
 	return ret;
@@ -4791,12 +4258,14 @@
  */
 static void nand_sync(struct mtd_info *mtd)
 {
+	struct nand_chip *chip = mtd_to_nand(mtd);
+
 	pr_debug("%s: called\n", __func__);
 
 	/* Grab the lock and see if the device is available */
-	nand_get_device(mtd, FL_SYNCING);
+	WARN_ON(nand_get_device(chip));
 	/* Release it and go back */
-	nand_release_device(mtd);
+	nand_release_device(chip);
 }
 
 /**
@@ -4811,13 +4280,16 @@
 	int ret;
 
 	/* Select the NAND device */
-	nand_get_device(mtd, FL_READING);
-	chip->select_chip(mtd, chipnr);
+	ret = nand_get_device(chip);
+	if (ret)
+		return ret;
 
-	ret = nand_block_checkbad(mtd, offs, 0);
+	nand_select_target(chip, chipnr);
 
-	chip->select_chip(mtd, -1);
-	nand_release_device(mtd);
+	ret = nand_block_checkbad(chip, offs, 0);
+
+	nand_deselect_target(chip);
+	nand_release_device(chip);
 
 	return ret;
 }
@@ -4839,97 +4311,22 @@
 		return ret;
 	}
 
-	return nand_block_markbad_lowlevel(mtd, ofs);
+	return nand_block_markbad_lowlevel(mtd_to_nand(mtd), ofs);
 }
 
 /**
- * nand_max_bad_blocks - [MTD Interface] Max number of bad blocks for an mtd
- * @mtd: MTD device structure
- * @ofs: offset relative to mtd start
- * @len: length of mtd
- */
-static int nand_max_bad_blocks(struct mtd_info *mtd, loff_t ofs, size_t len)
-{
-	struct nand_chip *chip = mtd_to_nand(mtd);
-	u32 part_start_block;
-	u32 part_end_block;
-	u32 part_start_die;
-	u32 part_end_die;
-
-	/*
-	 * max_bb_per_die and blocks_per_die used to determine
-	 * the maximum bad block count.
-	 */
-	if (!chip->max_bb_per_die || !chip->blocks_per_die)
-		return -ENOTSUPP;
-
-	/* Get the start and end of the partition in erase blocks. */
-	part_start_block = mtd_div_by_eb(ofs, mtd);
-	part_end_block = mtd_div_by_eb(len, mtd) + part_start_block - 1;
-
-	/* Get the start and end LUNs of the partition. */
-	part_start_die = part_start_block / chip->blocks_per_die;
-	part_end_die = part_end_block / chip->blocks_per_die;
-
-	/*
-	 * Look up the bad blocks per unit and multiply by the number of units
-	 * that the partition spans.
-	 */
-	return chip->max_bb_per_die * (part_end_die - part_start_die + 1);
-}
-
-/**
- * nand_default_set_features- [REPLACEABLE] set NAND chip features
- * @mtd: MTD device structure
- * @chip: nand chip info structure
- * @addr: feature address.
- * @subfeature_param: the subfeature parameters, a four bytes array.
- */
-static int nand_default_set_features(struct mtd_info *mtd,
-				     struct nand_chip *chip, int addr,
-				     uint8_t *subfeature_param)
-{
-	return nand_set_features_op(chip, addr, subfeature_param);
-}
-
-/**
- * nand_default_get_features- [REPLACEABLE] get NAND chip features
- * @mtd: MTD device structure
- * @chip: nand chip info structure
- * @addr: feature address.
- * @subfeature_param: the subfeature parameters, a four bytes array.
- */
-static int nand_default_get_features(struct mtd_info *mtd,
-				     struct nand_chip *chip, int addr,
-				     uint8_t *subfeature_param)
-{
-	return nand_get_features_op(chip, addr, subfeature_param);
-}
-
-/**
- * nand_get_set_features_notsupp - set/get features stub returning -ENOTSUPP
- * @mtd: MTD device structure
- * @chip: nand chip info structure
- * @addr: feature address.
- * @subfeature_param: the subfeature parameters, a four bytes array.
- *
- * Should be used by NAND controller drivers that do not support the SET/GET
- * FEATURES operations.
- */
-int nand_get_set_features_notsupp(struct mtd_info *mtd, struct nand_chip *chip,
-				  int addr, u8 *subfeature_param)
-{
-	return -ENOTSUPP;
-}
-EXPORT_SYMBOL(nand_get_set_features_notsupp);
-
-/**
  * nand_suspend - [MTD Interface] Suspend the NAND flash
  * @mtd: MTD device structure
  */
 static int nand_suspend(struct mtd_info *mtd)
 {
-	return nand_get_device(mtd, FL_PM_SUSPENDED);
+	struct nand_chip *chip = mtd_to_nand(mtd);
+
+	mutex_lock(&chip->lock);
+	chip->suspended = 1;
+	mutex_unlock(&chip->lock);
+
+	return 0;
 }
 
 /**
@@ -4940,11 +4337,13 @@
 {
 	struct nand_chip *chip = mtd_to_nand(mtd);
 
-	if (chip->state == FL_PM_SUSPENDED)
-		nand_release_device(mtd);
+	mutex_lock(&chip->lock);
+	if (chip->suspended)
+		chip->suspended = 0;
 	else
 		pr_err("%s called for a chip which is not in suspended state\n",
 			__func__);
+	mutex_unlock(&chip->lock);
 }
 
 /**
@@ -4954,62 +4353,26 @@
  */
 static void nand_shutdown(struct mtd_info *mtd)
 {
-	nand_get_device(mtd, FL_PM_SUSPENDED);
+	nand_suspend(mtd);
 }
 
 /* Set default functions */
 static void nand_set_defaults(struct nand_chip *chip)
 {
-	unsigned int busw = chip->options & NAND_BUSWIDTH_16;
-
-	/* check for proper chip_delay setup, set 20us if not */
-	if (!chip->chip_delay)
-		chip->chip_delay = 20;
-
-	/* check, if a user supplied command function given */
-	if (!chip->cmdfunc && !chip->exec_op)
-		chip->cmdfunc = nand_command;
-
-	/* check, if a user supplied wait function given */
-	if (chip->waitfunc == NULL)
-		chip->waitfunc = nand_wait;
-
-	if (!chip->select_chip)
-		chip->select_chip = nand_select_chip;
-
-	/* set for ONFI nand */
-	if (!chip->set_features)
-		chip->set_features = nand_default_set_features;
-	if (!chip->get_features)
-		chip->get_features = nand_default_get_features;
-
-	/* If called twice, pointers that depend on busw may need to be reset */
-	if (!chip->read_byte || chip->read_byte == nand_read_byte)
-		chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
-	if (!chip->read_word)
-		chip->read_word = nand_read_word;
-	if (!chip->block_bad)
-		chip->block_bad = nand_block_bad;
-	if (!chip->block_markbad)
-		chip->block_markbad = nand_default_block_markbad;
-	if (!chip->write_buf || chip->write_buf == nand_write_buf)
-		chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
-	if (!chip->write_byte || chip->write_byte == nand_write_byte)
-		chip->write_byte = busw ? nand_write_byte16 : nand_write_byte;
-	if (!chip->read_buf || chip->read_buf == nand_read_buf)
-		chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
-
+	/* If no controller is provided, use the dummy, legacy one. */
 	if (!chip->controller) {
-		chip->controller = &chip->dummy_controller;
+		chip->controller = &chip->legacy.dummy_controller;
 		nand_controller_init(chip->controller);
 	}
 
+	nand_legacy_set_defaults(chip);
+
 	if (!chip->buf_align)
 		chip->buf_align = 1;
 }
 
 /* Sanitize ONFI strings so we can safely print them */
-static void sanitize_string(uint8_t *s, size_t len)
+void sanitize_string(uint8_t *s, size_t len)
 {
 	ssize_t i;
 
@@ -5026,390 +4389,6 @@
 	strim(s);
 }
 
-static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
-{
-	int i;
-	while (len--) {
-		crc ^= *p++ << 8;
-		for (i = 0; i < 8; i++)
-			crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
-	}
-
-	return crc;
-}
-
-/* Parse the Extended Parameter Page. */
-static int nand_flash_detect_ext_param_page(struct nand_chip *chip,
-					    struct nand_onfi_params *p)
-{
-	struct onfi_ext_param_page *ep;
-	struct onfi_ext_section *s;
-	struct onfi_ext_ecc_info *ecc;
-	uint8_t *cursor;
-	int ret;
-	int len;
-	int i;
-
-	len = le16_to_cpu(p->ext_param_page_length) * 16;
-	ep = kmalloc(len, GFP_KERNEL);
-	if (!ep)
-		return -ENOMEM;
-
-	/* Send our own NAND_CMD_PARAM. */
-	ret = nand_read_param_page_op(chip, 0, NULL, 0);
-	if (ret)
-		goto ext_out;
-
-	/* Use the Change Read Column command to skip the ONFI param pages. */
-	ret = nand_change_read_column_op(chip,
-					 sizeof(*p) * p->num_of_param_pages,
-					 ep, len, true);
-	if (ret)
-		goto ext_out;
-
-	ret = -EINVAL;
-	if ((onfi_crc16(ONFI_CRC_BASE, ((uint8_t *)ep) + 2, len - 2)
-		!= le16_to_cpu(ep->crc))) {
-		pr_debug("fail in the CRC.\n");
-		goto ext_out;
-	}
-
-	/*
-	 * Check the signature.
-	 * Do not strictly follow the ONFI spec, maybe changed in future.
-	 */
-	if (strncmp(ep->sig, "EPPS", 4)) {
-		pr_debug("The signature is invalid.\n");
-		goto ext_out;
-	}
-
-	/* find the ECC section. */
-	cursor = (uint8_t *)(ep + 1);
-	for (i = 0; i < ONFI_EXT_SECTION_MAX; i++) {
-		s = ep->sections + i;
-		if (s->type == ONFI_SECTION_TYPE_2)
-			break;
-		cursor += s->length * 16;
-	}
-	if (i == ONFI_EXT_SECTION_MAX) {
-		pr_debug("We can not find the ECC section.\n");
-		goto ext_out;
-	}
-
-	/* get the info we want. */
-	ecc = (struct onfi_ext_ecc_info *)cursor;
-
-	if (!ecc->codeword_size) {
-		pr_debug("Invalid codeword size\n");
-		goto ext_out;
-	}
-
-	chip->ecc_strength_ds = ecc->ecc_bits;
-	chip->ecc_step_ds = 1 << ecc->codeword_size;
-	ret = 0;
-
-ext_out:
-	kfree(ep);
-	return ret;
-}
-
-/*
- * Recover data with bit-wise majority
- */
-static void nand_bit_wise_majority(const void **srcbufs,
-				   unsigned int nsrcbufs,
-				   void *dstbuf,
-				   unsigned int bufsize)
-{
-	int i, j, k;
-
-	for (i = 0; i < bufsize; i++) {
-		u8 val = 0;
-
-		for (j = 0; j < 8; j++) {
-			unsigned int cnt = 0;
-
-			for (k = 0; k < nsrcbufs; k++) {
-				const u8 *srcbuf = srcbufs[k];
-
-				if (srcbuf[i] & BIT(j))
-					cnt++;
-			}
-
-			if (cnt > nsrcbufs / 2)
-				val |= BIT(j);
-		}
-
-		((u8 *)dstbuf)[i] = val;
-	}
-}
-
-/*
- * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
- */
-static int nand_flash_detect_onfi(struct nand_chip *chip)
-{
-	struct mtd_info *mtd = nand_to_mtd(chip);
-	struct nand_onfi_params *p;
-	struct onfi_params *onfi;
-	int onfi_version = 0;
-	char id[4];
-	int i, ret, val;
-
-	/* Try ONFI for unknown chip or LP */
-	ret = nand_readid_op(chip, 0x20, id, sizeof(id));
-	if (ret || strncmp(id, "ONFI", 4))
-		return 0;
-
-	/* ONFI chip: allocate a buffer to hold its parameter page */
-	p = kzalloc((sizeof(*p) * 3), GFP_KERNEL);
-	if (!p)
-		return -ENOMEM;
-
-	ret = nand_read_param_page_op(chip, 0, NULL, 0);
-	if (ret) {
-		ret = 0;
-		goto free_onfi_param_page;
-	}
-
-	for (i = 0; i < 3; i++) {
-		ret = nand_read_data_op(chip, &p[i], sizeof(*p), true);
-		if (ret) {
-			ret = 0;
-			goto free_onfi_param_page;
-		}
-
-		if (onfi_crc16(ONFI_CRC_BASE, (u8 *)&p[i], 254) ==
-				le16_to_cpu(p->crc)) {
-			if (i)
-				memcpy(p, &p[i], sizeof(*p));
-			break;
-		}
-	}
-
-	if (i == 3) {
-		const void *srcbufs[3] = {p, p + 1, p + 2};
-
-		pr_warn("Could not find a valid ONFI parameter page, trying bit-wise majority to recover it\n");
-		nand_bit_wise_majority(srcbufs, ARRAY_SIZE(srcbufs), p,
-				       sizeof(*p));
-
-		if (onfi_crc16(ONFI_CRC_BASE, (u8 *)p, 254) !=
-				le16_to_cpu(p->crc)) {
-			pr_err("ONFI parameter recovery failed, aborting\n");
-			goto free_onfi_param_page;
-		}
-	}
-
-	if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
-	    chip->manufacturer.desc->ops->fixup_onfi_param_page)
-		chip->manufacturer.desc->ops->fixup_onfi_param_page(chip, p);
-
-	/* Check version */
-	val = le16_to_cpu(p->revision);
-	if (val & ONFI_VERSION_2_3)
-		onfi_version = 23;
-	else if (val & ONFI_VERSION_2_2)
-		onfi_version = 22;
-	else if (val & ONFI_VERSION_2_1)
-		onfi_version = 21;
-	else if (val & ONFI_VERSION_2_0)
-		onfi_version = 20;
-	else if (val & ONFI_VERSION_1_0)
-		onfi_version = 10;
-
-	if (!onfi_version) {
-		pr_info("unsupported ONFI version: %d\n", val);
-		goto free_onfi_param_page;
-	}
-
-	sanitize_string(p->manufacturer, sizeof(p->manufacturer));
-	sanitize_string(p->model, sizeof(p->model));
-	chip->parameters.model = kstrdup(p->model, GFP_KERNEL);
-	if (!chip->parameters.model) {
-		ret = -ENOMEM;
-		goto free_onfi_param_page;
-	}
-
-	mtd->writesize = le32_to_cpu(p->byte_per_page);
-
-	/*
-	 * pages_per_block and blocks_per_lun may not be a power-of-2 size
-	 * (don't ask me who thought of this...). MTD assumes that these
-	 * dimensions will be power-of-2, so just truncate the remaining area.
-	 */
-	mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
-	mtd->erasesize *= mtd->writesize;
-
-	mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
-
-	/* See erasesize comment */
-	chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
-	chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
-	chip->bits_per_cell = p->bits_per_cell;
-
-	chip->max_bb_per_die = le16_to_cpu(p->bb_per_lun);
-	chip->blocks_per_die = le32_to_cpu(p->blocks_per_lun);
-
-	if (le16_to_cpu(p->features) & ONFI_FEATURE_16_BIT_BUS)
-		chip->options |= NAND_BUSWIDTH_16;
-
-	if (p->ecc_bits != 0xff) {
-		chip->ecc_strength_ds = p->ecc_bits;
-		chip->ecc_step_ds = 512;
-	} else if (onfi_version >= 21 &&
-		(le16_to_cpu(p->features) & ONFI_FEATURE_EXT_PARAM_PAGE)) {
-
-		/*
-		 * The nand_flash_detect_ext_param_page() uses the
-		 * Change Read Column command which maybe not supported
-		 * by the chip->cmdfunc. So try to update the chip->cmdfunc
-		 * now. We do not replace user supplied command function.
-		 */
-		if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
-			chip->cmdfunc = nand_command_lp;
-
-		/* The Extended Parameter Page is supported since ONFI 2.1. */
-		if (nand_flash_detect_ext_param_page(chip, p))
-			pr_warn("Failed to detect ONFI extended param page\n");
-	} else {
-		pr_warn("Could not retrieve ONFI ECC requirements\n");
-	}
-
-	/* Save some parameters from the parameter page for future use */
-	if (le16_to_cpu(p->opt_cmd) & ONFI_OPT_CMD_SET_GET_FEATURES) {
-		chip->parameters.supports_set_get_features = true;
-		bitmap_set(chip->parameters.get_feature_list,
-			   ONFI_FEATURE_ADDR_TIMING_MODE, 1);
-		bitmap_set(chip->parameters.set_feature_list,
-			   ONFI_FEATURE_ADDR_TIMING_MODE, 1);
-	}
-
-	onfi = kzalloc(sizeof(*onfi), GFP_KERNEL);
-	if (!onfi) {
-		ret = -ENOMEM;
-		goto free_model;
-	}
-
-	onfi->version = onfi_version;
-	onfi->tPROG = le16_to_cpu(p->t_prog);
-	onfi->tBERS = le16_to_cpu(p->t_bers);
-	onfi->tR = le16_to_cpu(p->t_r);
-	onfi->tCCS = le16_to_cpu(p->t_ccs);
-	onfi->async_timing_mode = le16_to_cpu(p->async_timing_mode);
-	onfi->vendor_revision = le16_to_cpu(p->vendor_revision);
-	memcpy(onfi->vendor, p->vendor, sizeof(p->vendor));
-	chip->parameters.onfi = onfi;
-
-	/* Identification done, free the full ONFI parameter page and exit */
-	kfree(p);
-
-	return 1;
-
-free_model:
-	kfree(chip->parameters.model);
-free_onfi_param_page:
-	kfree(p);
-
-	return ret;
-}
-
-/*
- * Check if the NAND chip is JEDEC compliant, returns 1 if it is, 0 otherwise.
- */
-static int nand_flash_detect_jedec(struct nand_chip *chip)
-{
-	struct mtd_info *mtd = nand_to_mtd(chip);
-	struct nand_jedec_params *p;
-	struct jedec_ecc_info *ecc;
-	int jedec_version = 0;
-	char id[5];
-	int i, val, ret;
-
-	/* Try JEDEC for unknown chip or LP */
-	ret = nand_readid_op(chip, 0x40, id, sizeof(id));
-	if (ret || strncmp(id, "JEDEC", sizeof(id)))
-		return 0;
-
-	/* JEDEC chip: allocate a buffer to hold its parameter page */
-	p = kzalloc(sizeof(*p), GFP_KERNEL);
-	if (!p)
-		return -ENOMEM;
-
-	ret = nand_read_param_page_op(chip, 0x40, NULL, 0);
-	if (ret) {
-		ret = 0;
-		goto free_jedec_param_page;
-	}
-
-	for (i = 0; i < 3; i++) {
-		ret = nand_read_data_op(chip, p, sizeof(*p), true);
-		if (ret) {
-			ret = 0;
-			goto free_jedec_param_page;
-		}
-
-		if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 510) ==
-				le16_to_cpu(p->crc))
-			break;
-	}
-
-	if (i == 3) {
-		pr_err("Could not find valid JEDEC parameter page; aborting\n");
-		goto free_jedec_param_page;
-	}
-
-	/* Check version */
-	val = le16_to_cpu(p->revision);
-	if (val & (1 << 2))
-		jedec_version = 10;
-	else if (val & (1 << 1))
-		jedec_version = 1; /* vendor specific version */
-
-	if (!jedec_version) {
-		pr_info("unsupported JEDEC version: %d\n", val);
-		goto free_jedec_param_page;
-	}
-
-	sanitize_string(p->manufacturer, sizeof(p->manufacturer));
-	sanitize_string(p->model, sizeof(p->model));
-	chip->parameters.model = kstrdup(p->model, GFP_KERNEL);
-	if (!chip->parameters.model) {
-		ret = -ENOMEM;
-		goto free_jedec_param_page;
-	}
-
-	mtd->writesize = le32_to_cpu(p->byte_per_page);
-
-	/* Please reference to the comment for nand_flash_detect_onfi. */
-	mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
-	mtd->erasesize *= mtd->writesize;
-
-	mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
-
-	/* Please reference to the comment for nand_flash_detect_onfi. */
-	chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
-	chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
-	chip->bits_per_cell = p->bits_per_cell;
-
-	if (le16_to_cpu(p->features) & JEDEC_FEATURE_16_BIT_BUS)
-		chip->options |= NAND_BUSWIDTH_16;
-
-	/* ECC info */
-	ecc = &p->ecc_info[0];
-
-	if (ecc->codeword_size >= 9) {
-		chip->ecc_strength_ds = ecc->ecc_bits;
-		chip->ecc_step_ds = 1 << ecc->codeword_size;
-	} else {
-		pr_warn("Invalid codeword size\n");
-	}
-
-free_jedec_param_page:
-	kfree(p);
-	return ret;
-}
-
 /*
  * nand_id_has_period - Check if an ID string has a given wraparound period
  * @id_data: the ID string
@@ -5486,21 +4465,29 @@
  */
 void nand_decode_ext_id(struct nand_chip *chip)
 {
+	struct nand_memory_organization *memorg;
 	struct mtd_info *mtd = nand_to_mtd(chip);
 	int extid;
 	u8 *id_data = chip->id.data;
+
+	memorg = nanddev_get_memorg(&chip->base);
+
 	/* The 3rd id byte holds MLC / multichip data */
-	chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
+	memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
 	/* The 4th id byte is the important one */
 	extid = id_data[3];
 
 	/* Calc pagesize */
-	mtd->writesize = 1024 << (extid & 0x03);
+	memorg->pagesize = 1024 << (extid & 0x03);
+	mtd->writesize = memorg->pagesize;
 	extid >>= 2;
 	/* Calc oobsize */
-	mtd->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9);
+	memorg->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9);
+	mtd->oobsize = memorg->oobsize;
 	extid >>= 2;
 	/* Calc blocksize. Blocksize is multiples of 64KiB */
+	memorg->pages_per_eraseblock = ((64 * 1024) << (extid & 0x03)) /
+				       memorg->pagesize;
 	mtd->erasesize = (64 * 1024) << (extid & 0x03);
 	extid >>= 2;
 	/* Get buswidth information */
@@ -5517,13 +4504,19 @@
 static void nand_decode_id(struct nand_chip *chip, struct nand_flash_dev *type)
 {
 	struct mtd_info *mtd = nand_to_mtd(chip);
+	struct nand_memory_organization *memorg;
 
+	memorg = nanddev_get_memorg(&chip->base);
+
+	memorg->pages_per_eraseblock = type->erasesize / type->pagesize;
 	mtd->erasesize = type->erasesize;
-	mtd->writesize = type->pagesize;
-	mtd->oobsize = mtd->writesize / 32;
+	memorg->pagesize = type->pagesize;
+	mtd->writesize = memorg->pagesize;
+	memorg->oobsize = memorg->pagesize / 32;
+	mtd->oobsize = memorg->oobsize;
 
 	/* All legacy ID NAND are small-page, SLC */
-	chip->bits_per_cell = 1;
+	memorg->bits_per_cell = 1;
 }
 
 /*
@@ -5537,9 +4530,9 @@
 
 	/* Set the bad block position */
 	if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
-		chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
+		chip->badblockpos = NAND_BBM_POS_LARGE;
 	else
-		chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
+		chip->badblockpos = NAND_BBM_POS_SMALL;
 }
 
 static inline bool is_full_id_nand(struct nand_flash_dev *type)
@@ -5551,18 +4544,28 @@
 			      struct nand_flash_dev *type)
 {
 	struct mtd_info *mtd = nand_to_mtd(chip);
+	struct nand_memory_organization *memorg;
 	u8 *id_data = chip->id.data;
 
-	if (!strncmp(type->id, id_data, type->id_len)) {
-		mtd->writesize = type->pagesize;
-		mtd->erasesize = type->erasesize;
-		mtd->oobsize = type->oobsize;
+	memorg = nanddev_get_memorg(&chip->base);
 
-		chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
-		chip->chipsize = (uint64_t)type->chipsize << 20;
+	if (!strncmp(type->id, id_data, type->id_len)) {
+		memorg->pagesize = type->pagesize;
+		mtd->writesize = memorg->pagesize;
+		memorg->pages_per_eraseblock = type->erasesize /
+					       type->pagesize;
+		mtd->erasesize = type->erasesize;
+		memorg->oobsize = type->oobsize;
+		mtd->oobsize = memorg->oobsize;
+
+		memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
+		memorg->eraseblocks_per_lun =
+			DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20,
+					   memorg->pagesize *
+					   memorg->pages_per_eraseblock);
 		chip->options |= type->options;
-		chip->ecc_strength_ds = NAND_ECC_STRENGTH(type);
-		chip->ecc_step_ds = NAND_ECC_STEP(type);
+		chip->base.eccreq.strength = NAND_ECC_STRENGTH(type);
+		chip->base.eccreq.step_size = NAND_ECC_STEP(type);
 		chip->onfi_timing_mode_default =
 					type->onfi_timing_mode_default;
 
@@ -5588,8 +4591,12 @@
 	 */
 	if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
 	    chip->manufacturer.desc->ops->detect) {
+		struct nand_memory_organization *memorg;
+
+		memorg = nanddev_get_memorg(&chip->base);
+
 		/* The 3rd id byte holds MLC / multichip data */
-		chip->bits_per_cell = nand_get_bits_per_cell(chip->id.data[2]);
+		memorg->bits_per_cell = nand_get_bits_per_cell(chip->id.data[2]);
 		chip->manufacturer.desc->ops->detect(chip);
 	} else {
 		nand_decode_ext_id(chip);
@@ -5625,6 +4632,12 @@
 		chip->manufacturer.desc->ops->cleanup(chip);
 }
 
+static const char *
+nand_manufacturer_name(const struct nand_manufacturer *manufacturer)
+{
+	return manufacturer ? manufacturer->name : "Unknown";
+}
+
 /*
  * Get the flash and manufacturer id and lookup if the type is supported.
  */
@@ -5632,9 +4645,19 @@
 {
 	const struct nand_manufacturer *manufacturer;
 	struct mtd_info *mtd = nand_to_mtd(chip);
+	struct nand_memory_organization *memorg;
 	int busw, ret;
 	u8 *id_data = chip->id.data;
 	u8 maf_id, dev_id;
+	u64 targetsize;
+
+	/*
+	 * Let's start by initializing memorg fields that might be left
+	 * unassigned by the ID-based detection logic.
+	 */
+	memorg = nanddev_get_memorg(&chip->base);
+	memorg->planes_per_lun = 1;
+	memorg->luns_per_target = 1;
 
 	/*
 	 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
@@ -5645,7 +4668,7 @@
 		return ret;
 
 	/* Select the device */
-	chip->select_chip(mtd, 0);
+	nand_select_target(chip, 0);
 
 	/* Send the command for reading device ID */
 	ret = nand_readid_op(chip, 0, id_data, 2);
@@ -5709,14 +4732,14 @@
 
 	if (!type->name || !type->pagesize) {
 		/* Check if the chip is ONFI compliant */
-		ret = nand_flash_detect_onfi(chip);
+		ret = nand_onfi_detect(chip);
 		if (ret < 0)
 			return ret;
 		else if (ret)
 			goto ident_done;
 
 		/* Check if the chip is JEDEC compliant */
-		ret = nand_flash_detect_jedec(chip);
+		ret = nand_jedec_detect(chip);
 		if (ret < 0)
 			return ret;
 		else if (ret)
@@ -5730,8 +4753,6 @@
 	if (!chip->parameters.model)
 		return -ENOMEM;
 
-	chip->chipsize = (uint64_t)type->chipsize << 20;
-
 	if (!type->pagesize)
 		nand_manufacturer_detect(chip);
 	else
@@ -5740,6 +4761,11 @@
 	/* Get chip options */
 	chip->options |= type->options;
 
+	memorg->eraseblocks_per_lun =
+			DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20,
+					   memorg->pagesize *
+					   memorg->pages_per_eraseblock);
+
 ident_done:
 	if (!mtd->name)
 		mtd->name = chip->parameters.model;
@@ -5768,14 +4794,15 @@
 	/* Calculate the address shift from the page size */
 	chip->page_shift = ffs(mtd->writesize) - 1;
 	/* Convert chipsize to number of pages per chip -1 */
-	chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
+	targetsize = nanddev_target_size(&chip->base);
+	chip->pagemask = (targetsize >> chip->page_shift) - 1;
 
 	chip->bbt_erase_shift = chip->phys_erase_shift =
 		ffs(mtd->erasesize) - 1;
-	if (chip->chipsize & 0xffffffff)
-		chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
+	if (targetsize & 0xffffffff)
+		chip->chip_shift = ffs((unsigned)targetsize) - 1;
 	else {
-		chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
+		chip->chip_shift = ffs((unsigned)(targetsize >> 32));
 		chip->chip_shift += 32 - 1;
 	}
 
@@ -5783,18 +4810,15 @@
 		chip->options |= NAND_ROW_ADDR_3;
 
 	chip->badblockbits = 8;
-	chip->erase = single_erase;
 
-	/* Do not replace user supplied command function! */
-	if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
-		chip->cmdfunc = nand_command_lp;
+	nand_legacy_adjust_cmdfunc(chip);
 
 	pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
 		maf_id, dev_id);
 	pr_info("%s %s\n", nand_manufacturer_name(manufacturer),
 		chip->parameters.model);
 	pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
-		(int)(chip->chipsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
+		(int)(targetsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
 		mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
 	return 0;
 
@@ -5953,7 +4977,7 @@
 
 /**
  * nand_scan_ident - Scan for the NAND device
- * @mtd: MTD device structure
+ * @chip: NAND chip object
  * @maxchips: number of chips to scan for
  * @table: alternative NAND ID table
  *
@@ -5965,13 +4989,22 @@
  * prevented dynamic allocations during this phase which was unconvenient and
  * as been banned for the benefit of the ->init_ecc()/cleanup_ecc() hooks.
  */
-static int nand_scan_ident(struct mtd_info *mtd, int maxchips,
+static int nand_scan_ident(struct nand_chip *chip, unsigned int maxchips,
 			   struct nand_flash_dev *table)
 {
-	int i, nand_maf_id, nand_dev_id;
-	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	struct nand_memory_organization *memorg;
+	int nand_maf_id, nand_dev_id;
+	unsigned int i;
 	int ret;
 
+	memorg = nanddev_get_memorg(&chip->base);
+
+	/* Assume all dies are deselected when we enter nand_scan_ident(). */
+	chip->cur_cs = -1;
+
+	mutex_init(&chip->lock);
+
 	/* Enforce the right timings for reset/detection */
 	onfi_fill_data_interface(chip, NAND_SDR_IFACE, 0);
 
@@ -5982,61 +5015,56 @@
 	if (!mtd->name && mtd->dev.parent)
 		mtd->name = dev_name(mtd->dev.parent);
 
-	/*
-	 * ->cmdfunc() is legacy and will only be used if ->exec_op() is not
-	 * populated.
-	 */
-	if (!chip->exec_op) {
-		/*
-		 * Default functions assigned for ->cmdfunc() and
-		 * ->select_chip() both expect ->cmd_ctrl() to be populated.
-		 */
-		if ((!chip->cmdfunc || !chip->select_chip) && !chip->cmd_ctrl) {
-			pr_err("->cmd_ctrl() should be provided\n");
-			return -EINVAL;
-		}
-	}
-
 	/* Set the default functions */
 	nand_set_defaults(chip);
 
+	ret = nand_legacy_check_hooks(chip);
+	if (ret)
+		return ret;
+
+	memorg->ntargets = maxchips;
+
 	/* Read the flash type */
 	ret = nand_detect(chip, table);
 	if (ret) {
 		if (!(chip->options & NAND_SCAN_SILENT_NODEV))
 			pr_warn("No NAND device found\n");
-		chip->select_chip(mtd, -1);
+		nand_deselect_target(chip);
 		return ret;
 	}
 
 	nand_maf_id = chip->id.data[0];
 	nand_dev_id = chip->id.data[1];
 
-	chip->select_chip(mtd, -1);
+	nand_deselect_target(chip);
 
 	/* Check for a chip array */
 	for (i = 1; i < maxchips; i++) {
 		u8 id[2];
 
 		/* See comment in nand_get_flash_type for reset */
-		nand_reset(chip, i);
+		ret = nand_reset(chip, i);
+		if (ret)
+			break;
 
-		chip->select_chip(mtd, i);
+		nand_select_target(chip, i);
 		/* Send the command for reading device ID */
-		nand_readid_op(chip, 0, id, sizeof(id));
+		ret = nand_readid_op(chip, 0, id, sizeof(id));
+		if (ret)
+			break;
 		/* Read manufacturer and device IDs */
 		if (nand_maf_id != id[0] || nand_dev_id != id[1]) {
-			chip->select_chip(mtd, -1);
+			nand_deselect_target(chip);
 			break;
 		}
-		chip->select_chip(mtd, -1);
+		nand_deselect_target(chip);
 	}
 	if (i > 1)
 		pr_info("%d chips detected\n", i);
 
 	/* Store the number of chips and calc total size for mtd */
-	chip->numchips = i;
-	mtd->size = i * chip->chipsize;
+	memorg->ntargets = i;
+	mtd->size = i * nanddev_target_size(&chip->base);
 
 	return 0;
 }
@@ -6047,9 +5075,9 @@
 	kfree(chip->parameters.onfi);
 }
 
-static int nand_set_ecc_soft_ops(struct mtd_info *mtd)
+static int nand_set_ecc_soft_ops(struct nand_chip *chip)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	struct nand_ecc_ctrl *ecc = &chip->ecc;
 
 	if (WARN_ON(ecc->mode != NAND_ECC_SOFT))
@@ -6070,10 +5098,14 @@
 			ecc->size = 256;
 		ecc->bytes = 3;
 		ecc->strength = 1;
+
+		if (IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC))
+			ecc->options |= NAND_ECC_SOFT_HAMMING_SM_ORDER;
+
 		return 0;
 	case NAND_ECC_BCH:
 		if (!mtd_nand_has_bch()) {
-			WARN(1, "CONFIG_MTD_NAND_ECC_BCH not enabled\n");
+			WARN(1, "CONFIG_MTD_NAND_ECC_SW_BCH not enabled\n");
 			return -EINVAL;
 		}
 		ecc->calculate = nand_bch_calculate_ecc;
@@ -6213,8 +5245,8 @@
 {
 	struct mtd_info *mtd = nand_to_mtd(chip);
 	const struct nand_ecc_step_info *stepinfo;
-	int req_step = chip->ecc_step_ds;
-	int req_strength = chip->ecc_strength_ds;
+	int req_step = chip->base.eccreq.step_size;
+	int req_strength = chip->base.eccreq.strength;
 	int req_corr, step_size, strength, nsteps, ecc_bytes, ecc_bytes_total;
 	int best_step, best_strength, best_ecc_bytes;
 	int best_ecc_bytes_total = INT_MAX;
@@ -6401,13 +5433,13 @@
  * Requirement (2) ensures we can correct even when all bitflips are clumped
  * in the same sector.
  */
-static bool nand_ecc_strength_good(struct mtd_info *mtd)
+static bool nand_ecc_strength_good(struct nand_chip *chip)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	struct nand_ecc_ctrl *ecc = &chip->ecc;
 	int corr, ds_corr;
 
-	if (ecc->size == 0 || chip->ecc_step_ds == 0)
+	if (ecc->size == 0 || chip->base.eccreq.step_size == 0)
 		/* Not enough information */
 		return true;
 
@@ -6416,22 +5448,67 @@
 	 * the correction density.
 	 */
 	corr = (mtd->writesize * ecc->strength) / ecc->size;
-	ds_corr = (mtd->writesize * chip->ecc_strength_ds) / chip->ecc_step_ds;
+	ds_corr = (mtd->writesize * chip->base.eccreq.strength) /
+		  chip->base.eccreq.step_size;
 
-	return corr >= ds_corr && ecc->strength >= chip->ecc_strength_ds;
+	return corr >= ds_corr && ecc->strength >= chip->base.eccreq.strength;
 }
 
+static int rawnand_erase(struct nand_device *nand, const struct nand_pos *pos)
+{
+	struct nand_chip *chip = container_of(nand, struct nand_chip,
+					      base);
+	unsigned int eb = nanddev_pos_to_row(nand, pos);
+	int ret;
+
+	eb >>= nand->rowconv.eraseblock_addr_shift;
+
+	nand_select_target(chip, pos->target);
+	ret = nand_erase_op(chip, eb);
+	nand_deselect_target(chip);
+
+	return ret;
+}
+
+static int rawnand_markbad(struct nand_device *nand,
+			   const struct nand_pos *pos)
+{
+	struct nand_chip *chip = container_of(nand, struct nand_chip,
+					      base);
+
+	return nand_markbad_bbm(chip, nanddev_pos_to_offs(nand, pos));
+}
+
+static bool rawnand_isbad(struct nand_device *nand, const struct nand_pos *pos)
+{
+	struct nand_chip *chip = container_of(nand, struct nand_chip,
+					      base);
+	int ret;
+
+	nand_select_target(chip, pos->target);
+	ret = nand_isbad_bbm(chip, nanddev_pos_to_offs(nand, pos));
+	nand_deselect_target(chip);
+
+	return ret;
+}
+
+static const struct nand_ops rawnand_ops = {
+	.erase = rawnand_erase,
+	.markbad = rawnand_markbad,
+	.isbad = rawnand_isbad,
+};
+
 /**
  * nand_scan_tail - Scan for the NAND device
- * @mtd: MTD device structure
+ * @chip: NAND chip object
  *
  * This is the second phase of the normal nand_scan() function. It fills out
  * all the uninitialized function pointers with the defaults and scans for a
  * bad block table if appropriate.
  */
-static int nand_scan_tail(struct mtd_info *mtd)
+static int nand_scan_tail(struct nand_chip *chip)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	struct nand_ecc_ctrl *ecc = &chip->ecc;
 	int ret, i;
 
@@ -6451,9 +5528,9 @@
 	 * to explictly select the relevant die when interacting with the NAND
 	 * chip.
 	 */
-	chip->select_chip(mtd, 0);
+	nand_select_target(chip, 0);
 	ret = nand_manufacturer_init(chip);
-	chip->select_chip(mtd, -1);
+	nand_deselect_target(chip);
 	if (ret)
 		goto err_free_buf;
 
@@ -6510,6 +5587,7 @@
 		}
 		if (!ecc->read_page)
 			ecc->read_page = nand_read_page_hwecc_oob_first;
+		/* fall through */
 
 	case NAND_ECC_HW:
 		/* Use standard hwecc read page function? */
@@ -6529,6 +5607,7 @@
 			ecc->read_subpage = nand_read_subpage;
 		if (!ecc->write_subpage && ecc->hwctl && ecc->calculate)
 			ecc->write_subpage = nand_write_subpage_hwecc;
+		/* fall through */
 
 	case NAND_ECC_HW_SYNDROME:
 		if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
@@ -6566,9 +5645,10 @@
 			ecc->size, mtd->writesize);
 		ecc->mode = NAND_ECC_SOFT;
 		ecc->algo = NAND_ECC_HAMMING;
+		/* fall through */
 
 	case NAND_ECC_SOFT:
-		ret = nand_set_ecc_soft_ops(mtd);
+		ret = nand_set_ecc_soft_ops(chip);
 		if (ret) {
 			ret = -EINVAL;
 			goto err_nand_manuf_cleanup;
@@ -6653,7 +5733,7 @@
 	mtd->oobavail = ret;
 
 	/* ECC sanity check: warn if it's too weak */
-	if (!nand_ecc_strength_good(mtd))
+	if (!nand_ecc_strength_good(chip))
 		pr_warn("WARNING: %s: the ECC used on your system is too weak compared to the one required by the NAND chip\n",
 			mtd->name);
 
@@ -6672,11 +5752,8 @@
 	}
 	chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
 
-	/* Initialize state */
-	chip->state = FL_READY;
-
 	/* Invalidate the pagebuffer reference */
-	chip->pagebuf = -1;
+	chip->pagecache.page = -1;
 
 	/* Large page NAND with SOFT_ECC should support subpage reads */
 	switch (ecc->mode) {
@@ -6689,10 +5766,15 @@
 		break;
 	}
 
+	ret = nanddev_init(&chip->base, &rawnand_ops, mtd->owner);
+	if (ret)
+		goto err_nand_manuf_cleanup;
+
+	/* Adjust the MTD_CAP_ flags when NAND_ROM is set. */
+	if (chip->options & NAND_ROM)
+		mtd->flags = MTD_CAP_ROM;
+
 	/* Fill in remaining MTD driver data */
-	mtd->type = nand_is_slc(chip) ? MTD_NANDFLASH : MTD_MLCNANDFLASH;
-	mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
-						MTD_CAP_NANDFLASH;
 	mtd->_erase = nand_erase;
 	mtd->_point = NULL;
 	mtd->_unpoint = NULL;
@@ -6708,8 +5790,7 @@
 	mtd->_block_isreserved = nand_block_isreserved;
 	mtd->_block_isbad = nand_block_isbad;
 	mtd->_block_markbad = nand_block_markbad;
-	mtd->_max_bad_blocks = nand_max_bad_blocks;
-	mtd->writebufsize = mtd->writesize;
+	mtd->_max_bad_blocks = nanddev_mtd_max_bad_blocks;
 
 	/*
 	 * Initialize bitflip_threshold to its default prior scan_bbt() call.
@@ -6722,13 +5803,13 @@
 	/* Initialize the ->data_interface field. */
 	ret = nand_init_data_interface(chip);
 	if (ret)
-		goto err_nand_manuf_cleanup;
+		goto err_nanddev_cleanup;
 
 	/* Enter fastest possible mode on all dies. */
-	for (i = 0; i < chip->numchips; i++) {
+	for (i = 0; i < nanddev_ntargets(&chip->base); i++) {
 		ret = nand_setup_data_interface(chip, i);
 		if (ret)
-			goto err_nand_manuf_cleanup;
+			goto err_nanddev_cleanup;
 	}
 
 	/* Check, if we should skip the bad block table scan */
@@ -6738,11 +5819,14 @@
 	/* Build bad block table */
 	ret = nand_create_bbt(chip);
 	if (ret)
-		goto err_nand_manuf_cleanup;
+		goto err_nanddev_cleanup;
 
 	return 0;
 
 
+err_nanddev_cleanup:
+	nanddev_cleanup(&chip->base);
+
 err_nand_manuf_cleanup:
 	nand_manufacturer_cleanup(chip);
 
@@ -6770,33 +5854,31 @@
 
 /**
  * nand_scan_with_ids - [NAND Interface] Scan for the NAND device
- * @mtd: MTD device structure
- * @maxchips: number of chips to scan for. @nand_scan_ident() will not be run if
- *	      this parameter is zero (useful for specific drivers that must
- *	      handle this part of the process themselves, e.g docg4).
+ * @chip: NAND chip object
+ * @maxchips: number of chips to scan for.
  * @ids: optional flash IDs table
  *
  * This fills out all the uninitialized function pointers with the defaults.
  * The flash ID is read and the mtd/chip structures are filled with the
  * appropriate values.
  */
-int nand_scan_with_ids(struct mtd_info *mtd, int maxchips,
+int nand_scan_with_ids(struct nand_chip *chip, unsigned int maxchips,
 		       struct nand_flash_dev *ids)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
 	int ret;
 
-	if (maxchips) {
-		ret = nand_scan_ident(mtd, maxchips, ids);
-		if (ret)
-			return ret;
-	}
+	if (!maxchips)
+		return -EINVAL;
+
+	ret = nand_scan_ident(chip, maxchips, ids);
+	if (ret)
+		return ret;
 
 	ret = nand_attach(chip);
 	if (ret)
 		goto cleanup_ident;
 
-	ret = nand_scan_tail(mtd);
+	ret = nand_scan_tail(chip);
 	if (ret)
 		goto detach_chip;
 
@@ -6847,12 +5929,12 @@
 /**
  * nand_release - [NAND Interface] Unregister the MTD device and free resources
  *		  held by the NAND device
- * @mtd: MTD device structure
+ * @chip: NAND chip object
  */
-void nand_release(struct mtd_info *mtd)
+void nand_release(struct nand_chip *chip)
 {
-	mtd_device_unregister(mtd);
-	nand_cleanup(mtd_to_nand(mtd));
+	mtd_device_unregister(nand_to_mtd(chip));
+	nand_cleanup(chip);
 }
 EXPORT_SYMBOL_GPL(nand_release);
 
diff --git a/drivers/mtd/nand/raw/nand_bbt.c b/drivers/mtd/nand/raw/nand_bbt.c
index 39db352..96045d6 100644
--- a/drivers/mtd/nand/raw/nand_bbt.c
+++ b/drivers/mtd/nand/raw/nand_bbt.c
@@ -1,13 +1,10 @@
+// SPDX-License-Identifier: GPL-2.0-only
 /*
  *  Overview:
  *   Bad block table support for the NAND driver
  *
  *  Copyright © 2004 Thomas Gleixner (tglx@linutronix.de)
  *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
- *
  * Description:
  *
  * When nand_scan_bbt is called, then it tries to find the bad block table
@@ -54,20 +51,20 @@
  * Following assumptions are made:
  * - bbts start at a page boundary, if autolocated on a block boundary
  * - the space necessary for a bbt in FLASH does not exceed a block boundary
- *
  */
 
 #include <linux/slab.h>
 #include <linux/types.h>
 #include <linux/mtd/mtd.h>
 #include <linux/mtd/bbm.h>
-#include <linux/mtd/rawnand.h>
 #include <linux/bitops.h>
 #include <linux/delay.h>
 #include <linux/vmalloc.h>
 #include <linux/export.h>
 #include <linux/string.h>
 
+#include "internals.h"
+
 #define BBT_BLOCK_GOOD		0x00
 #define BBT_BLOCK_WORN		0x01
 #define BBT_BLOCK_RESERVED	0x02
@@ -76,8 +73,6 @@
 #define BBT_ENTRY_MASK		0x03
 #define BBT_ENTRY_SHIFT		2
 
-static int nand_update_bbt(struct mtd_info *mtd, loff_t offs);
-
 static inline uint8_t bbt_get_entry(struct nand_chip *chip, int block)
 {
 	uint8_t entry = chip->bbt[block >> BBT_ENTRY_SHIFT];
@@ -159,7 +154,7 @@
 
 /**
  * read_bbt - [GENERIC] Read the bad block table starting from page
- * @mtd: MTD device structure
+ * @this: NAND chip object
  * @buf: temporary buffer
  * @page: the starting page
  * @num: the number of bbt descriptors to read
@@ -168,11 +163,11 @@
  *
  * Read the bad block table starting from page.
  */
-static int read_bbt(struct mtd_info *mtd, uint8_t *buf, int page, int num,
-		struct nand_bbt_descr *td, int offs)
+static int read_bbt(struct nand_chip *this, uint8_t *buf, int page, int num,
+		    struct nand_bbt_descr *td, int offs)
 {
+	struct mtd_info *mtd = nand_to_mtd(this);
 	int res, ret = 0, i, j, act = 0;
-	struct nand_chip *this = mtd_to_nand(mtd);
 	size_t retlen, len, totlen;
 	loff_t from;
 	int bits = td->options & NAND_BBT_NRBITS_MSK;
@@ -252,7 +247,7 @@
 
 /**
  * read_abs_bbt - [GENERIC] Read the bad block table starting at a given page
- * @mtd: MTD device structure
+ * @this: NAND chip object
  * @buf: temporary buffer
  * @td: descriptor for the bad block table
  * @chip: read the table for a specific chip, -1 read all chips; applies only if
@@ -261,24 +256,26 @@
  * Read the bad block table for all chips starting at a given page. We assume
  * that the bbt bits are in consecutive order.
  */
-static int read_abs_bbt(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *td, int chip)
+static int read_abs_bbt(struct nand_chip *this, uint8_t *buf,
+			struct nand_bbt_descr *td, int chip)
 {
-	struct nand_chip *this = mtd_to_nand(mtd);
+	struct mtd_info *mtd = nand_to_mtd(this);
+	u64 targetsize = nanddev_target_size(&this->base);
 	int res = 0, i;
 
 	if (td->options & NAND_BBT_PERCHIP) {
 		int offs = 0;
-		for (i = 0; i < this->numchips; i++) {
+		for (i = 0; i < nanddev_ntargets(&this->base); i++) {
 			if (chip == -1 || chip == i)
-				res = read_bbt(mtd, buf, td->pages[i],
-					this->chipsize >> this->bbt_erase_shift,
+				res = read_bbt(this, buf, td->pages[i],
+					targetsize >> this->bbt_erase_shift,
 					td, offs);
 			if (res)
 				return res;
-			offs += this->chipsize >> this->bbt_erase_shift;
+			offs += targetsize >> this->bbt_erase_shift;
 		}
 	} else {
-		res = read_bbt(mtd, buf, td->pages[0],
+		res = read_bbt(this, buf, td->pages[0],
 				mtd->size >> this->bbt_erase_shift, td, 0);
 		if (res)
 			return res;
@@ -287,9 +284,10 @@
 }
 
 /* BBT marker is in the first page, no OOB */
-static int scan_read_data(struct mtd_info *mtd, uint8_t *buf, loff_t offs,
-			 struct nand_bbt_descr *td)
+static int scan_read_data(struct nand_chip *this, uint8_t *buf, loff_t offs,
+			  struct nand_bbt_descr *td)
 {
+	struct mtd_info *mtd = nand_to_mtd(this);
 	size_t retlen;
 	size_t len;
 
@@ -302,7 +300,7 @@
 
 /**
  * scan_read_oob - [GENERIC] Scan data+OOB region to buffer
- * @mtd: MTD device structure
+ * @this: NAND chip object
  * @buf: temporary buffer
  * @offs: offset at which to scan
  * @len: length of data region to read
@@ -311,9 +309,10 @@
  * page,OOB,page,OOB,... in buf. Completes transfer and returns the "strongest"
  * ECC condition (error or bitflip). May quit on the first (non-ECC) error.
  */
-static int scan_read_oob(struct mtd_info *mtd, uint8_t *buf, loff_t offs,
+static int scan_read_oob(struct nand_chip *this, uint8_t *buf, loff_t offs,
 			 size_t len)
 {
+	struct mtd_info *mtd = nand_to_mtd(this);
 	struct mtd_oob_ops ops;
 	int res, ret = 0;
 
@@ -341,19 +340,20 @@
 	return ret;
 }
 
-static int scan_read(struct mtd_info *mtd, uint8_t *buf, loff_t offs,
-			 size_t len, struct nand_bbt_descr *td)
+static int scan_read(struct nand_chip *this, uint8_t *buf, loff_t offs,
+		     size_t len, struct nand_bbt_descr *td)
 {
 	if (td->options & NAND_BBT_NO_OOB)
-		return scan_read_data(mtd, buf, offs, td);
+		return scan_read_data(this, buf, offs, td);
 	else
-		return scan_read_oob(mtd, buf, offs, len);
+		return scan_read_oob(this, buf, offs, len);
 }
 
 /* Scan write data with oob to flash */
-static int scan_write_bbt(struct mtd_info *mtd, loff_t offs, size_t len,
+static int scan_write_bbt(struct nand_chip *this, loff_t offs, size_t len,
 			  uint8_t *buf, uint8_t *oob)
 {
+	struct mtd_info *mtd = nand_to_mtd(this);
 	struct mtd_oob_ops ops;
 
 	ops.mode = MTD_OPS_PLACE_OOB;
@@ -366,8 +366,9 @@
 	return mtd_write_oob(mtd, offs, &ops);
 }
 
-static u32 bbt_get_ver_offs(struct mtd_info *mtd, struct nand_bbt_descr *td)
+static u32 bbt_get_ver_offs(struct nand_chip *this, struct nand_bbt_descr *td)
 {
+	struct mtd_info *mtd = nand_to_mtd(this);
 	u32 ver_offs = td->veroffs;
 
 	if (!(td->options & NAND_BBT_NO_OOB))
@@ -377,7 +378,7 @@
 
 /**
  * read_abs_bbts - [GENERIC] Read the bad block table(s) for all chips starting at a given page
- * @mtd: MTD device structure
+ * @this: NAND chip object
  * @buf: temporary buffer
  * @td: descriptor for the bad block table
  * @md:	descriptor for the bad block table mirror
@@ -385,36 +386,38 @@
  * Read the bad block table(s) for all chips starting at a given page. We
  * assume that the bbt bits are in consecutive order.
  */
-static void read_abs_bbts(struct mtd_info *mtd, uint8_t *buf,
+static void read_abs_bbts(struct nand_chip *this, uint8_t *buf,
 			  struct nand_bbt_descr *td, struct nand_bbt_descr *md)
 {
-	struct nand_chip *this = mtd_to_nand(mtd);
+	struct mtd_info *mtd = nand_to_mtd(this);
 
 	/* Read the primary version, if available */
 	if (td->options & NAND_BBT_VERSION) {
-		scan_read(mtd, buf, (loff_t)td->pages[0] << this->page_shift,
-			      mtd->writesize, td);
-		td->version[0] = buf[bbt_get_ver_offs(mtd, td)];
+		scan_read(this, buf, (loff_t)td->pages[0] << this->page_shift,
+			  mtd->writesize, td);
+		td->version[0] = buf[bbt_get_ver_offs(this, td)];
 		pr_info("Bad block table at page %d, version 0x%02X\n",
 			 td->pages[0], td->version[0]);
 	}
 
 	/* Read the mirror version, if available */
 	if (md && (md->options & NAND_BBT_VERSION)) {
-		scan_read(mtd, buf, (loff_t)md->pages[0] << this->page_shift,
-			      mtd->writesize, md);
-		md->version[0] = buf[bbt_get_ver_offs(mtd, md)];
+		scan_read(this, buf, (loff_t)md->pages[0] << this->page_shift,
+			  mtd->writesize, md);
+		md->version[0] = buf[bbt_get_ver_offs(this, md)];
 		pr_info("Bad block table at page %d, version 0x%02X\n",
 			 md->pages[0], md->version[0]);
 	}
 }
 
 /* Scan a given block partially */
-static int scan_block_fast(struct mtd_info *mtd, struct nand_bbt_descr *bd,
-			   loff_t offs, uint8_t *buf, int numpages)
+static int scan_block_fast(struct nand_chip *this, struct nand_bbt_descr *bd,
+			   loff_t offs, uint8_t *buf)
 {
+	struct mtd_info *mtd = nand_to_mtd(this);
+
 	struct mtd_oob_ops ops;
-	int j, ret;
+	int ret, page_offset;
 
 	ops.ooblen = mtd->oobsize;
 	ops.oobbuf = buf;
@@ -422,12 +425,15 @@
 	ops.datbuf = NULL;
 	ops.mode = MTD_OPS_PLACE_OOB;
 
-	for (j = 0; j < numpages; j++) {
+	page_offset = nand_bbm_get_next_page(this, 0);
+
+	while (page_offset >= 0) {
 		/*
 		 * Read the full oob until read_oob is fixed to handle single
 		 * byte reads for 16 bit buswidth.
 		 */
-		ret = mtd_read_oob(mtd, offs, &ops);
+		ret = mtd_read_oob(mtd, offs + (page_offset * mtd->writesize),
+				   &ops);
 		/* Ignore ECC errors when checking for BBM */
 		if (ret && !mtd_is_bitflip_or_eccerr(ret))
 			return ret;
@@ -435,14 +441,15 @@
 		if (check_short_pattern(buf, bd))
 			return 1;
 
-		offs += mtd->writesize;
+		page_offset = nand_bbm_get_next_page(this, page_offset + 1);
 	}
+
 	return 0;
 }
 
 /**
  * create_bbt - [GENERIC] Create a bad block table by scanning the device
- * @mtd: MTD device structure
+ * @this: NAND chip object
  * @buf: temporary buffer
  * @bd: descriptor for the good/bad block search pattern
  * @chip: create the table for a specific chip, -1 read all chips; applies only
@@ -451,46 +458,38 @@
  * Create a bad block table by scanning the device for the given good/bad block
  * identify pattern.
  */
-static int create_bbt(struct mtd_info *mtd, uint8_t *buf,
-	struct nand_bbt_descr *bd, int chip)
+static int create_bbt(struct nand_chip *this, uint8_t *buf,
+		      struct nand_bbt_descr *bd, int chip)
 {
-	struct nand_chip *this = mtd_to_nand(mtd);
-	int i, numblocks, numpages;
-	int startblock;
+	u64 targetsize = nanddev_target_size(&this->base);
+	struct mtd_info *mtd = nand_to_mtd(this);
+	int i, numblocks, startblock;
 	loff_t from;
 
 	pr_info("Scanning device for bad blocks\n");
 
-	if (bd->options & NAND_BBT_SCAN2NDPAGE)
-		numpages = 2;
-	else
-		numpages = 1;
-
 	if (chip == -1) {
 		numblocks = mtd->size >> this->bbt_erase_shift;
 		startblock = 0;
 		from = 0;
 	} else {
-		if (chip >= this->numchips) {
+		if (chip >= nanddev_ntargets(&this->base)) {
 			pr_warn("create_bbt(): chipnr (%d) > available chips (%d)\n",
-			       chip + 1, this->numchips);
+			        chip + 1, nanddev_ntargets(&this->base));
 			return -EINVAL;
 		}
-		numblocks = this->chipsize >> this->bbt_erase_shift;
+		numblocks = targetsize >> this->bbt_erase_shift;
 		startblock = chip * numblocks;
 		numblocks += startblock;
 		from = (loff_t)startblock << this->bbt_erase_shift;
 	}
 
-	if (this->bbt_options & NAND_BBT_SCANLASTPAGE)
-		from += mtd->erasesize - (mtd->writesize * numpages);
-
 	for (i = startblock; i < numblocks; i++) {
 		int ret;
 
 		BUG_ON(bd->options & NAND_BBT_NO_OOB);
 
-		ret = scan_block_fast(mtd, bd, from, buf, numpages);
+		ret = scan_block_fast(this, bd, from, buf);
 		if (ret < 0)
 			return ret;
 
@@ -508,7 +507,7 @@
 
 /**
  * search_bbt - [GENERIC] scan the device for a specific bad block table
- * @mtd: MTD device structure
+ * @this: NAND chip object
  * @buf: temporary buffer
  * @td: descriptor for the bad block table
  *
@@ -521,9 +520,11 @@
  *
  * The bbt ident pattern resides in the oob area of the first page in a block.
  */
-static int search_bbt(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *td)
+static int search_bbt(struct nand_chip *this, uint8_t *buf,
+		      struct nand_bbt_descr *td)
 {
-	struct nand_chip *this = mtd_to_nand(mtd);
+	u64 targetsize = nanddev_target_size(&this->base);
+	struct mtd_info *mtd = nand_to_mtd(this);
 	int i, chips;
 	int startblock, block, dir;
 	int scanlen = mtd->writesize + mtd->oobsize;
@@ -541,8 +542,8 @@
 
 	/* Do we have a bbt per chip? */
 	if (td->options & NAND_BBT_PERCHIP) {
-		chips = this->numchips;
-		bbtblocks = this->chipsize >> this->bbt_erase_shift;
+		chips = nanddev_ntargets(&this->base);
+		bbtblocks = targetsize >> this->bbt_erase_shift;
 		startblock &= bbtblocks - 1;
 	} else {
 		chips = 1;
@@ -560,17 +561,17 @@
 			loff_t offs = (loff_t)actblock << this->bbt_erase_shift;
 
 			/* Read first page */
-			scan_read(mtd, buf, offs, mtd->writesize, td);
+			scan_read(this, buf, offs, mtd->writesize, td);
 			if (!check_pattern(buf, scanlen, mtd->writesize, td)) {
 				td->pages[i] = actblock << blocktopage;
 				if (td->options & NAND_BBT_VERSION) {
-					offs = bbt_get_ver_offs(mtd, td);
+					offs = bbt_get_ver_offs(this, td);
 					td->version[i] = buf[offs];
 				}
 				break;
 			}
 		}
-		startblock += this->chipsize >> this->bbt_erase_shift;
+		startblock += targetsize >> this->bbt_erase_shift;
 	}
 	/* Check, if we found a bbt for each requested chip */
 	for (i = 0; i < chips; i++) {
@@ -585,23 +586,23 @@
 
 /**
  * search_read_bbts - [GENERIC] scan the device for bad block table(s)
- * @mtd: MTD device structure
+ * @this: NAND chip object
  * @buf: temporary buffer
  * @td: descriptor for the bad block table
  * @md: descriptor for the bad block table mirror
  *
  * Search and read the bad block table(s).
  */
-static void search_read_bbts(struct mtd_info *mtd, uint8_t *buf,
+static void search_read_bbts(struct nand_chip *this, uint8_t *buf,
 			     struct nand_bbt_descr *td,
 			     struct nand_bbt_descr *md)
 {
 	/* Search the primary table */
-	search_bbt(mtd, buf, td);
+	search_bbt(this, buf, td);
 
 	/* Search the mirror table */
 	if (md)
-		search_bbt(mtd, buf, md);
+		search_bbt(this, buf, md);
 }
 
 /**
@@ -620,6 +621,7 @@
 static int get_bbt_block(struct nand_chip *this, struct nand_bbt_descr *td,
 			 struct nand_bbt_descr *md, int chip)
 {
+	u64 targetsize = nanddev_target_size(&this->base);
 	int startblock, dir, page, numblocks, i;
 
 	/*
@@ -631,9 +633,9 @@
 		return td->pages[chip] >>
 				(this->bbt_erase_shift - this->page_shift);
 
-	numblocks = (int)(this->chipsize >> this->bbt_erase_shift);
+	numblocks = (int)(targetsize >> this->bbt_erase_shift);
 	if (!(td->options & NAND_BBT_PERCHIP))
-		numblocks *= this->numchips;
+		numblocks *= nanddev_ntargets(&this->base);
 
 	/*
 	 * Automatic placement of the bad block table. Search direction
@@ -683,14 +685,13 @@
 			       struct nand_bbt_descr *td,
 			       int chip, int block)
 {
-	struct mtd_info *mtd = nand_to_mtd(this);
 	loff_t to;
 	int res;
 
 	bbt_mark_entry(this, block, BBT_BLOCK_WORN);
 
 	to = (loff_t)block << this->bbt_erase_shift;
-	res = this->block_markbad(mtd, to);
+	res = nand_markbad_bbm(this, to);
 	if (res)
 		pr_warn("nand_bbt: error %d while marking block %d bad\n",
 			res, block);
@@ -700,7 +701,7 @@
 
 /**
  * write_bbt - [GENERIC] (Re)write the bad block table
- * @mtd: MTD device structure
+ * @this: NAND chip object
  * @buf: temporary buffer
  * @td: descriptor for the bad block table
  * @md: descriptor for the bad block table mirror
@@ -708,11 +709,12 @@
  *
  * (Re)write the bad block table.
  */
-static int write_bbt(struct mtd_info *mtd, uint8_t *buf,
+static int write_bbt(struct nand_chip *this, uint8_t *buf,
 		     struct nand_bbt_descr *td, struct nand_bbt_descr *md,
 		     int chipsel)
 {
-	struct nand_chip *this = mtd_to_nand(mtd);
+	u64 targetsize = nanddev_target_size(&this->base);
+	struct mtd_info *mtd = nand_to_mtd(this);
 	struct erase_info einfo;
 	int i, res, chip = 0;
 	int bits, page, offs, numblocks, sft, sftmsk;
@@ -732,10 +734,10 @@
 		rcode = 0xff;
 	/* Write bad block table per chip rather than per device? */
 	if (td->options & NAND_BBT_PERCHIP) {
-		numblocks = (int)(this->chipsize >> this->bbt_erase_shift);
+		numblocks = (int)(targetsize >> this->bbt_erase_shift);
 		/* Full device write or specific chip? */
 		if (chipsel == -1) {
-			nrchips = this->numchips;
+			nrchips = nanddev_ntargets(&this->base);
 		} else {
 			nrchips = chipsel + 1;
 			chip = chipsel;
@@ -854,7 +856,7 @@
 		memset(&einfo, 0, sizeof(einfo));
 		einfo.addr = to;
 		einfo.len = 1 << this->bbt_erase_shift;
-		res = nand_erase_nand(mtd, &einfo, 1);
+		res = nand_erase_nand(this, &einfo, 1);
 		if (res < 0) {
 			pr_warn("nand_bbt: error while erasing BBT block %d\n",
 				res);
@@ -862,9 +864,9 @@
 			continue;
 		}
 
-		res = scan_write_bbt(mtd, to, len, buf,
-				td->options & NAND_BBT_NO_OOB ? NULL :
-				&buf[len]);
+		res = scan_write_bbt(this, to, len, buf,
+				     td->options & NAND_BBT_NO_OOB ?
+				     NULL : &buf[len]);
 		if (res < 0) {
 			pr_warn("nand_bbt: error while writing BBT block %d\n",
 				res);
@@ -887,22 +889,23 @@
 
 /**
  * nand_memory_bbt - [GENERIC] create a memory based bad block table
- * @mtd: MTD device structure
+ * @this: NAND chip object
  * @bd: descriptor for the good/bad block search pattern
  *
  * The function creates a memory based bbt by scanning the device for
  * manufacturer / software marked good / bad blocks.
  */
-static inline int nand_memory_bbt(struct mtd_info *mtd, struct nand_bbt_descr *bd)
+static inline int nand_memory_bbt(struct nand_chip *this,
+				  struct nand_bbt_descr *bd)
 {
-	struct nand_chip *this = mtd_to_nand(mtd);
+	u8 *pagebuf = nand_get_data_buf(this);
 
-	return create_bbt(mtd, this->data_buf, bd, -1);
+	return create_bbt(this, pagebuf, bd, -1);
 }
 
 /**
  * check_create - [GENERIC] create and write bbt(s) if necessary
- * @mtd: MTD device structure
+ * @this: the NAND device
  * @buf: temporary buffer
  * @bd: descriptor for the good/bad block search pattern
  *
@@ -911,17 +914,17 @@
  * for the chip/device. Update is necessary if one of the tables is missing or
  * the version nr. of one table is less than the other.
  */
-static int check_create(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *bd)
+static int check_create(struct nand_chip *this, uint8_t *buf,
+			struct nand_bbt_descr *bd)
 {
 	int i, chips, writeops, create, chipsel, res, res2;
-	struct nand_chip *this = mtd_to_nand(mtd);
 	struct nand_bbt_descr *td = this->bbt_td;
 	struct nand_bbt_descr *md = this->bbt_md;
 	struct nand_bbt_descr *rd, *rd2;
 
 	/* Do we have a bbt per chip? */
 	if (td->options & NAND_BBT_PERCHIP)
-		chips = this->numchips;
+		chips = nanddev_ntargets(&this->base);
 	else
 		chips = 1;
 
@@ -971,7 +974,7 @@
 
 			/* Create the table in memory by scanning the chip(s) */
 			if (!(this->bbt_options & NAND_BBT_CREATE_EMPTY))
-				create_bbt(mtd, buf, bd, chipsel);
+				create_bbt(this, buf, bd, chipsel);
 
 			td->version[i] = 1;
 			if (md)
@@ -980,7 +983,7 @@
 
 		/* Read back first? */
 		if (rd) {
-			res = read_abs_bbt(mtd, buf, rd, chipsel);
+			res = read_abs_bbt(this, buf, rd, chipsel);
 			if (mtd_is_eccerr(res)) {
 				/* Mark table as invalid */
 				rd->pages[i] = -1;
@@ -991,7 +994,7 @@
 		}
 		/* If they weren't versioned, read both */
 		if (rd2) {
-			res2 = read_abs_bbt(mtd, buf, rd2, chipsel);
+			res2 = read_abs_bbt(this, buf, rd2, chipsel);
 			if (mtd_is_eccerr(res2)) {
 				/* Mark table as invalid */
 				rd2->pages[i] = -1;
@@ -1013,14 +1016,14 @@
 
 		/* Write the bad block table to the device? */
 		if ((writeops & 0x01) && (td->options & NAND_BBT_WRITE)) {
-			res = write_bbt(mtd, buf, td, md, chipsel);
+			res = write_bbt(this, buf, td, md, chipsel);
 			if (res < 0)
 				return res;
 		}
 
 		/* Write the mirror bad block table to the device? */
 		if ((writeops & 0x02) && md && (md->options & NAND_BBT_WRITE)) {
-			res = write_bbt(mtd, buf, md, td, chipsel);
+			res = write_bbt(this, buf, md, td, chipsel);
 			if (res < 0)
 				return res;
 		}
@@ -1029,201 +1032,15 @@
 }
 
 /**
- * mark_bbt_regions - [GENERIC] mark the bad block table regions
- * @mtd: MTD device structure
- * @td: bad block table descriptor
- *
- * The bad block table regions are marked as "bad" to prevent accidental
- * erasures / writes. The regions are identified by the mark 0x02.
- */
-static void mark_bbt_region(struct mtd_info *mtd, struct nand_bbt_descr *td)
-{
-	struct nand_chip *this = mtd_to_nand(mtd);
-	int i, j, chips, block, nrblocks, update;
-	uint8_t oldval;
-
-	/* Do we have a bbt per chip? */
-	if (td->options & NAND_BBT_PERCHIP) {
-		chips = this->numchips;
-		nrblocks = (int)(this->chipsize >> this->bbt_erase_shift);
-	} else {
-		chips = 1;
-		nrblocks = (int)(mtd->size >> this->bbt_erase_shift);
-	}
-
-	for (i = 0; i < chips; i++) {
-		if ((td->options & NAND_BBT_ABSPAGE) ||
-		    !(td->options & NAND_BBT_WRITE)) {
-			if (td->pages[i] == -1)
-				continue;
-			block = td->pages[i] >> (this->bbt_erase_shift - this->page_shift);
-			oldval = bbt_get_entry(this, block);
-			bbt_mark_entry(this, block, BBT_BLOCK_RESERVED);
-			if ((oldval != BBT_BLOCK_RESERVED) &&
-					td->reserved_block_code)
-				nand_update_bbt(mtd, (loff_t)block <<
-						this->bbt_erase_shift);
-			continue;
-		}
-		update = 0;
-		if (td->options & NAND_BBT_LASTBLOCK)
-			block = ((i + 1) * nrblocks) - td->maxblocks;
-		else
-			block = i * nrblocks;
-		for (j = 0; j < td->maxblocks; j++) {
-			oldval = bbt_get_entry(this, block);
-			bbt_mark_entry(this, block, BBT_BLOCK_RESERVED);
-			if (oldval != BBT_BLOCK_RESERVED)
-				update = 1;
-			block++;
-		}
-		/*
-		 * If we want reserved blocks to be recorded to flash, and some
-		 * new ones have been marked, then we need to update the stored
-		 * bbts.  This should only happen once.
-		 */
-		if (update && td->reserved_block_code)
-			nand_update_bbt(mtd, (loff_t)(block - 1) <<
-					this->bbt_erase_shift);
-	}
-}
-
-/**
- * verify_bbt_descr - verify the bad block description
- * @mtd: MTD device structure
- * @bd: the table to verify
- *
- * This functions performs a few sanity checks on the bad block description
- * table.
- */
-static void verify_bbt_descr(struct mtd_info *mtd, struct nand_bbt_descr *bd)
-{
-	struct nand_chip *this = mtd_to_nand(mtd);
-	u32 pattern_len;
-	u32 bits;
-	u32 table_size;
-
-	if (!bd)
-		return;
-
-	pattern_len = bd->len;
-	bits = bd->options & NAND_BBT_NRBITS_MSK;
-
-	BUG_ON((this->bbt_options & NAND_BBT_NO_OOB) &&
-			!(this->bbt_options & NAND_BBT_USE_FLASH));
-	BUG_ON(!bits);
-
-	if (bd->options & NAND_BBT_VERSION)
-		pattern_len++;
-
-	if (bd->options & NAND_BBT_NO_OOB) {
-		BUG_ON(!(this->bbt_options & NAND_BBT_USE_FLASH));
-		BUG_ON(!(this->bbt_options & NAND_BBT_NO_OOB));
-		BUG_ON(bd->offs);
-		if (bd->options & NAND_BBT_VERSION)
-			BUG_ON(bd->veroffs != bd->len);
-		BUG_ON(bd->options & NAND_BBT_SAVECONTENT);
-	}
-
-	if (bd->options & NAND_BBT_PERCHIP)
-		table_size = this->chipsize >> this->bbt_erase_shift;
-	else
-		table_size = mtd->size >> this->bbt_erase_shift;
-	table_size >>= 3;
-	table_size *= bits;
-	if (bd->options & NAND_BBT_NO_OOB)
-		table_size += pattern_len;
-	BUG_ON(table_size > (1 << this->bbt_erase_shift));
-}
-
-/**
- * nand_scan_bbt - [NAND Interface] scan, find, read and maybe create bad block table(s)
- * @mtd: MTD device structure
- * @bd: descriptor for the good/bad block search pattern
- *
- * The function checks, if a bad block table(s) is/are already available. If
- * not it scans the device for manufacturer marked good / bad blocks and writes
- * the bad block table(s) to the selected place.
- *
- * The bad block table memory is allocated here. It must be freed by calling
- * the nand_free_bbt function.
- */
-static int nand_scan_bbt(struct mtd_info *mtd, struct nand_bbt_descr *bd)
-{
-	struct nand_chip *this = mtd_to_nand(mtd);
-	int len, res;
-	uint8_t *buf;
-	struct nand_bbt_descr *td = this->bbt_td;
-	struct nand_bbt_descr *md = this->bbt_md;
-
-	len = (mtd->size >> (this->bbt_erase_shift + 2)) ? : 1;
-	/*
-	 * Allocate memory (2bit per block) and clear the memory bad block
-	 * table.
-	 */
-	this->bbt = kzalloc(len, GFP_KERNEL);
-	if (!this->bbt)
-		return -ENOMEM;
-
-	/*
-	 * If no primary table decriptor is given, scan the device to build a
-	 * memory based bad block table.
-	 */
-	if (!td) {
-		if ((res = nand_memory_bbt(mtd, bd))) {
-			pr_err("nand_bbt: can't scan flash and build the RAM-based BBT\n");
-			goto err;
-		}
-		return 0;
-	}
-	verify_bbt_descr(mtd, td);
-	verify_bbt_descr(mtd, md);
-
-	/* Allocate a temporary buffer for one eraseblock incl. oob */
-	len = (1 << this->bbt_erase_shift);
-	len += (len >> this->page_shift) * mtd->oobsize;
-	buf = vmalloc(len);
-	if (!buf) {
-		res = -ENOMEM;
-		goto err;
-	}
-
-	/* Is the bbt at a given page? */
-	if (td->options & NAND_BBT_ABSPAGE) {
-		read_abs_bbts(mtd, buf, td, md);
-	} else {
-		/* Search the bad block table using a pattern in oob */
-		search_read_bbts(mtd, buf, td, md);
-	}
-
-	res = check_create(mtd, buf, bd);
-	if (res)
-		goto err;
-
-	/* Prevent the bbt regions from erasing / writing */
-	mark_bbt_region(mtd, td);
-	if (md)
-		mark_bbt_region(mtd, md);
-
-	vfree(buf);
-	return 0;
-
-err:
-	kfree(this->bbt);
-	this->bbt = NULL;
-	return res;
-}
-
-/**
  * nand_update_bbt - update bad block table(s)
- * @mtd: MTD device structure
+ * @this: the NAND device
  * @offs: the offset of the newly marked block
  *
  * The function updates the bad block table(s).
  */
-static int nand_update_bbt(struct mtd_info *mtd, loff_t offs)
+static int nand_update_bbt(struct nand_chip *this, loff_t offs)
 {
-	struct nand_chip *this = mtd_to_nand(mtd);
+	struct mtd_info *mtd = nand_to_mtd(this);
 	int len, res = 0;
 	int chip, chipsel;
 	uint8_t *buf;
@@ -1255,13 +1072,13 @@
 
 	/* Write the bad block table to the device? */
 	if (td->options & NAND_BBT_WRITE) {
-		res = write_bbt(mtd, buf, td, md, chipsel);
+		res = write_bbt(this, buf, td, md, chipsel);
 		if (res < 0)
 			goto out;
 	}
 	/* Write the mirror bad block table to the device? */
 	if (md && (md->options & NAND_BBT_WRITE)) {
-		res = write_bbt(mtd, buf, md, td, chipsel);
+		res = write_bbt(this, buf, md, td, chipsel);
 	}
 
  out:
@@ -1269,6 +1086,196 @@
 	return res;
 }
 
+/**
+ * mark_bbt_regions - [GENERIC] mark the bad block table regions
+ * @this: the NAND device
+ * @td: bad block table descriptor
+ *
+ * The bad block table regions are marked as "bad" to prevent accidental
+ * erasures / writes. The regions are identified by the mark 0x02.
+ */
+static void mark_bbt_region(struct nand_chip *this, struct nand_bbt_descr *td)
+{
+	u64 targetsize = nanddev_target_size(&this->base);
+	struct mtd_info *mtd = nand_to_mtd(this);
+	int i, j, chips, block, nrblocks, update;
+	uint8_t oldval;
+
+	/* Do we have a bbt per chip? */
+	if (td->options & NAND_BBT_PERCHIP) {
+		chips = nanddev_ntargets(&this->base);
+		nrblocks = (int)(targetsize >> this->bbt_erase_shift);
+	} else {
+		chips = 1;
+		nrblocks = (int)(mtd->size >> this->bbt_erase_shift);
+	}
+
+	for (i = 0; i < chips; i++) {
+		if ((td->options & NAND_BBT_ABSPAGE) ||
+		    !(td->options & NAND_BBT_WRITE)) {
+			if (td->pages[i] == -1)
+				continue;
+			block = td->pages[i] >> (this->bbt_erase_shift - this->page_shift);
+			oldval = bbt_get_entry(this, block);
+			bbt_mark_entry(this, block, BBT_BLOCK_RESERVED);
+			if ((oldval != BBT_BLOCK_RESERVED) &&
+					td->reserved_block_code)
+				nand_update_bbt(this, (loff_t)block <<
+						this->bbt_erase_shift);
+			continue;
+		}
+		update = 0;
+		if (td->options & NAND_BBT_LASTBLOCK)
+			block = ((i + 1) * nrblocks) - td->maxblocks;
+		else
+			block = i * nrblocks;
+		for (j = 0; j < td->maxblocks; j++) {
+			oldval = bbt_get_entry(this, block);
+			bbt_mark_entry(this, block, BBT_BLOCK_RESERVED);
+			if (oldval != BBT_BLOCK_RESERVED)
+				update = 1;
+			block++;
+		}
+		/*
+		 * If we want reserved blocks to be recorded to flash, and some
+		 * new ones have been marked, then we need to update the stored
+		 * bbts.  This should only happen once.
+		 */
+		if (update && td->reserved_block_code)
+			nand_update_bbt(this, (loff_t)(block - 1) <<
+					this->bbt_erase_shift);
+	}
+}
+
+/**
+ * verify_bbt_descr - verify the bad block description
+ * @this: the NAND device
+ * @bd: the table to verify
+ *
+ * This functions performs a few sanity checks on the bad block description
+ * table.
+ */
+static void verify_bbt_descr(struct nand_chip *this, struct nand_bbt_descr *bd)
+{
+	u64 targetsize = nanddev_target_size(&this->base);
+	struct mtd_info *mtd = nand_to_mtd(this);
+	u32 pattern_len;
+	u32 bits;
+	u32 table_size;
+
+	if (!bd)
+		return;
+
+	pattern_len = bd->len;
+	bits = bd->options & NAND_BBT_NRBITS_MSK;
+
+	BUG_ON((this->bbt_options & NAND_BBT_NO_OOB) &&
+			!(this->bbt_options & NAND_BBT_USE_FLASH));
+	BUG_ON(!bits);
+
+	if (bd->options & NAND_BBT_VERSION)
+		pattern_len++;
+
+	if (bd->options & NAND_BBT_NO_OOB) {
+		BUG_ON(!(this->bbt_options & NAND_BBT_USE_FLASH));
+		BUG_ON(!(this->bbt_options & NAND_BBT_NO_OOB));
+		BUG_ON(bd->offs);
+		if (bd->options & NAND_BBT_VERSION)
+			BUG_ON(bd->veroffs != bd->len);
+		BUG_ON(bd->options & NAND_BBT_SAVECONTENT);
+	}
+
+	if (bd->options & NAND_BBT_PERCHIP)
+		table_size = targetsize >> this->bbt_erase_shift;
+	else
+		table_size = mtd->size >> this->bbt_erase_shift;
+	table_size >>= 3;
+	table_size *= bits;
+	if (bd->options & NAND_BBT_NO_OOB)
+		table_size += pattern_len;
+	BUG_ON(table_size > (1 << this->bbt_erase_shift));
+}
+
+/**
+ * nand_scan_bbt - [NAND Interface] scan, find, read and maybe create bad block table(s)
+ * @this: the NAND device
+ * @bd: descriptor for the good/bad block search pattern
+ *
+ * The function checks, if a bad block table(s) is/are already available. If
+ * not it scans the device for manufacturer marked good / bad blocks and writes
+ * the bad block table(s) to the selected place.
+ *
+ * The bad block table memory is allocated here. It must be freed by calling
+ * the nand_free_bbt function.
+ */
+static int nand_scan_bbt(struct nand_chip *this, struct nand_bbt_descr *bd)
+{
+	struct mtd_info *mtd = nand_to_mtd(this);
+	int len, res;
+	uint8_t *buf;
+	struct nand_bbt_descr *td = this->bbt_td;
+	struct nand_bbt_descr *md = this->bbt_md;
+
+	len = (mtd->size >> (this->bbt_erase_shift + 2)) ? : 1;
+	/*
+	 * Allocate memory (2bit per block) and clear the memory bad block
+	 * table.
+	 */
+	this->bbt = kzalloc(len, GFP_KERNEL);
+	if (!this->bbt)
+		return -ENOMEM;
+
+	/*
+	 * If no primary table decriptor is given, scan the device to build a
+	 * memory based bad block table.
+	 */
+	if (!td) {
+		if ((res = nand_memory_bbt(this, bd))) {
+			pr_err("nand_bbt: can't scan flash and build the RAM-based BBT\n");
+			goto err_free_bbt;
+		}
+		return 0;
+	}
+	verify_bbt_descr(this, td);
+	verify_bbt_descr(this, md);
+
+	/* Allocate a temporary buffer for one eraseblock incl. oob */
+	len = (1 << this->bbt_erase_shift);
+	len += (len >> this->page_shift) * mtd->oobsize;
+	buf = vmalloc(len);
+	if (!buf) {
+		res = -ENOMEM;
+		goto err_free_bbt;
+	}
+
+	/* Is the bbt at a given page? */
+	if (td->options & NAND_BBT_ABSPAGE) {
+		read_abs_bbts(this, buf, td, md);
+	} else {
+		/* Search the bad block table using a pattern in oob */
+		search_read_bbts(this, buf, td, md);
+	}
+
+	res = check_create(this, buf, bd);
+	if (res)
+		goto err_free_buf;
+
+	/* Prevent the bbt regions from erasing / writing */
+	mark_bbt_region(this, td);
+	if (md)
+		mark_bbt_region(this, md);
+
+	vfree(buf);
+	return 0;
+
+err_free_buf:
+	vfree(buf);
+err_free_bbt:
+	kfree(this->bbt);
+	this->bbt = NULL;
+	return res;
+}
+
 /*
  * Define some generic bad / good block scan pattern which are used
  * while scanning a device for factory marked good / bad blocks.
@@ -1382,18 +1389,17 @@
 			return ret;
 	}
 
-	return nand_scan_bbt(nand_to_mtd(this), this->badblock_pattern);
+	return nand_scan_bbt(this, this->badblock_pattern);
 }
 EXPORT_SYMBOL(nand_create_bbt);
 
 /**
  * nand_isreserved_bbt - [NAND Interface] Check if a block is reserved
- * @mtd: MTD device structure
+ * @this: NAND chip object
  * @offs: offset in the device
  */
-int nand_isreserved_bbt(struct mtd_info *mtd, loff_t offs)
+int nand_isreserved_bbt(struct nand_chip *this, loff_t offs)
 {
-	struct nand_chip *this = mtd_to_nand(mtd);
 	int block;
 
 	block = (int)(offs >> this->bbt_erase_shift);
@@ -1402,13 +1408,12 @@
 
 /**
  * nand_isbad_bbt - [NAND Interface] Check if a block is bad
- * @mtd: MTD device structure
+ * @this: NAND chip object
  * @offs: offset in the device
  * @allowbbt: allow access to bad block table region
  */
-int nand_isbad_bbt(struct mtd_info *mtd, loff_t offs, int allowbbt)
+int nand_isbad_bbt(struct nand_chip *this, loff_t offs, int allowbbt)
 {
-	struct nand_chip *this = mtd_to_nand(mtd);
 	int block, res;
 
 	block = (int)(offs >> this->bbt_erase_shift);
@@ -1430,12 +1435,11 @@
 
 /**
  * nand_markbad_bbt - [NAND Interface] Mark a block bad in the BBT
- * @mtd: MTD device structure
+ * @this: NAND chip object
  * @offs: offset of the bad block
  */
-int nand_markbad_bbt(struct mtd_info *mtd, loff_t offs)
+int nand_markbad_bbt(struct nand_chip *this, loff_t offs)
 {
-	struct nand_chip *this = mtd_to_nand(mtd);
 	int block, ret = 0;
 
 	block = (int)(offs >> this->bbt_erase_shift);
@@ -1445,7 +1449,7 @@
 
 	/* Update flash-based bad block table */
 	if (this->bbt_options & NAND_BBT_USE_FLASH)
-		ret = nand_update_bbt(mtd, offs);
+		ret = nand_update_bbt(this, offs);
 
 	return ret;
 }
diff --git a/drivers/mtd/nand/raw/nand_bch.c b/drivers/mtd/nand/raw/nand_bch.c
index b7387ac..1752731 100644
--- a/drivers/mtd/nand/raw/nand_bch.c
+++ b/drivers/mtd/nand/raw/nand_bch.c
@@ -1,22 +1,9 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
 /*
  * This file provides ECC correction for more than 1 bit per block of data,
  * using binary BCH codes. It relies on the generic BCH library lib/bch.c.
  *
  * Copyright © 2011 Ivan Djelic <ivan.djelic@parrot.com>
- *
- * This file is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License as published by the
- * Free Software Foundation; either version 2 or (at your option) any
- * later version.
- *
- * This file is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
- * for more details.
- *
- * You should have received a copy of the GNU General Public License along
- * with this file; if not, write to the Free Software Foundation, Inc.,
- * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
  */
 
 #include <linux/types.h>
@@ -43,14 +30,13 @@
 
 /**
  * nand_bch_calculate_ecc - [NAND Interface] Calculate ECC for data block
- * @mtd:	MTD block structure
+ * @chip:	NAND chip object
  * @buf:	input buffer with raw data
  * @code:	output buffer with ECC
  */
-int nand_bch_calculate_ecc(struct mtd_info *mtd, const unsigned char *buf,
+int nand_bch_calculate_ecc(struct nand_chip *chip, const unsigned char *buf,
 			   unsigned char *code)
 {
-	const struct nand_chip *chip = mtd_to_nand(mtd);
 	struct nand_bch_control *nbc = chip->ecc.priv;
 	unsigned int i;
 
@@ -67,17 +53,16 @@
 
 /**
  * nand_bch_correct_data - [NAND Interface] Detect and correct bit error(s)
- * @mtd:	MTD block structure
+ * @chip:	NAND chip object
  * @buf:	raw data read from the chip
  * @read_ecc:	ECC from the chip
  * @calc_ecc:	the ECC calculated from raw data
  *
  * Detect and correct bit errors for a data byte block
  */
-int nand_bch_correct_data(struct mtd_info *mtd, unsigned char *buf,
+int nand_bch_correct_data(struct nand_chip *chip, unsigned char *buf,
 			  unsigned char *read_ecc, unsigned char *calc_ecc)
 {
-	const struct nand_chip *chip = mtd_to_nand(mtd);
 	struct nand_bch_control *nbc = chip->ecc.priv;
 	unsigned int *errloc = nbc->errloc;
 	int i, count;
@@ -185,7 +170,7 @@
 		goto fail;
 	}
 
-	nbc->eccmask = kmalloc(eccbytes, GFP_KERNEL);
+	nbc->eccmask = kzalloc(eccbytes, GFP_KERNEL);
 	nbc->errloc = kmalloc_array(t, sizeof(*nbc->errloc), GFP_KERNEL);
 	if (!nbc->eccmask || !nbc->errloc)
 		goto fail;
@@ -197,7 +182,6 @@
 		goto fail;
 
 	memset(erased_page, 0xff, eccsize);
-	memset(nbc->eccmask, 0, eccbytes);
 	encode_bch(nbc->bch, erased_page, eccsize, nbc->eccmask);
 	kfree(erased_page);
 
diff --git a/drivers/mtd/nand/raw/nand_ecc.c b/drivers/mtd/nand/raw/nand_ecc.c
index 8e132ed..09fdced 100644
--- a/drivers/mtd/nand/raw/nand_ecc.c
+++ b/drivers/mtd/nand/raw/nand_ecc.c
@@ -1,3 +1,4 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
 /*
  * This file contains an ECC algorithm that detects and corrects 1 bit
  * errors in a 256 byte block of data.
@@ -10,22 +11,7 @@
  *   Thomas Gleixner (tglx@linutronix.de)
  *
  * Information on how this algorithm works and how it was developed
- * can be found in Documentation/mtd/nand_ecc.txt
- *
- * This file is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License as published by the
- * Free Software Foundation; either version 2 or (at your option) any
- * later version.
- *
- * This file is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
- * for more details.
- *
- * You should have received a copy of the GNU General Public License along
- * with this file; if not, write to the Free Software Foundation, Inc.,
- * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
- *
+ * can be found in Documentation/driver-api/mtd/nand_ecc.rst
  */
 
 #include <linux/types.h>
@@ -132,9 +118,10 @@
  * @buf:	input buffer with raw data
  * @eccsize:	data bytes per ECC step (256 or 512)
  * @code:	output buffer with ECC
+ * @sm_order:	Smart Media byte ordering
  */
 void __nand_calculate_ecc(const unsigned char *buf, unsigned int eccsize,
-		       unsigned char *code)
+			  unsigned char *code, bool sm_order)
 {
 	int i;
 	const uint32_t *bp = (uint32_t *)buf;
@@ -330,45 +317,26 @@
 	 * possible, but benchmarks showed that on the system this is developed
 	 * the code below is the fastest
 	 */
-#ifdef CONFIG_MTD_NAND_ECC_SMC
-	code[0] =
-	    (invparity[rp7] << 7) |
-	    (invparity[rp6] << 6) |
-	    (invparity[rp5] << 5) |
-	    (invparity[rp4] << 4) |
-	    (invparity[rp3] << 3) |
-	    (invparity[rp2] << 2) |
-	    (invparity[rp1] << 1) |
-	    (invparity[rp0]);
-	code[1] =
-	    (invparity[rp15] << 7) |
-	    (invparity[rp14] << 6) |
-	    (invparity[rp13] << 5) |
-	    (invparity[rp12] << 4) |
-	    (invparity[rp11] << 3) |
-	    (invparity[rp10] << 2) |
-	    (invparity[rp9] << 1)  |
-	    (invparity[rp8]);
-#else
-	code[1] =
-	    (invparity[rp7] << 7) |
-	    (invparity[rp6] << 6) |
-	    (invparity[rp5] << 5) |
-	    (invparity[rp4] << 4) |
-	    (invparity[rp3] << 3) |
-	    (invparity[rp2] << 2) |
-	    (invparity[rp1] << 1) |
-	    (invparity[rp0]);
-	code[0] =
-	    (invparity[rp15] << 7) |
-	    (invparity[rp14] << 6) |
-	    (invparity[rp13] << 5) |
-	    (invparity[rp12] << 4) |
-	    (invparity[rp11] << 3) |
-	    (invparity[rp10] << 2) |
-	    (invparity[rp9] << 1)  |
-	    (invparity[rp8]);
-#endif
+	if (sm_order) {
+		code[0] = (invparity[rp7] << 7) | (invparity[rp6] << 6) |
+			  (invparity[rp5] << 5) | (invparity[rp4] << 4) |
+			  (invparity[rp3] << 3) | (invparity[rp2] << 2) |
+			  (invparity[rp1] << 1) | (invparity[rp0]);
+		code[1] = (invparity[rp15] << 7) | (invparity[rp14] << 6) |
+			  (invparity[rp13] << 5) | (invparity[rp12] << 4) |
+			  (invparity[rp11] << 3) | (invparity[rp10] << 2) |
+			  (invparity[rp9] << 1) | (invparity[rp8]);
+	} else {
+		code[1] = (invparity[rp7] << 7) | (invparity[rp6] << 6) |
+			  (invparity[rp5] << 5) | (invparity[rp4] << 4) |
+			  (invparity[rp3] << 3) | (invparity[rp2] << 2) |
+			  (invparity[rp1] << 1) | (invparity[rp0]);
+		code[0] = (invparity[rp15] << 7) | (invparity[rp14] << 6) |
+			  (invparity[rp13] << 5) | (invparity[rp12] << 4) |
+			  (invparity[rp11] << 3) | (invparity[rp10] << 2) |
+			  (invparity[rp9] << 1) | (invparity[rp8]);
+	}
+
 	if (eccsize_mult == 1)
 		code[2] =
 		    (invparity[par & 0xf0] << 7) |
@@ -394,15 +362,16 @@
 /**
  * nand_calculate_ecc - [NAND Interface] Calculate 3-byte ECC for 256/512-byte
  *			 block
- * @mtd:	MTD block structure
+ * @chip:	NAND chip object
  * @buf:	input buffer with raw data
  * @code:	output buffer with ECC
  */
-int nand_calculate_ecc(struct mtd_info *mtd, const unsigned char *buf,
+int nand_calculate_ecc(struct nand_chip *chip, const unsigned char *buf,
 		       unsigned char *code)
 {
-	__nand_calculate_ecc(buf,
-			mtd_to_nand(mtd)->ecc.size, code);
+	bool sm_order = chip->ecc.options & NAND_ECC_SOFT_HAMMING_SM_ORDER;
+
+	__nand_calculate_ecc(buf, chip->ecc.size, code, sm_order);
 
 	return 0;
 }
@@ -414,12 +383,13 @@
  * @read_ecc:	ECC from the chip
  * @calc_ecc:	the ECC calculated from raw data
  * @eccsize:	data bytes per ECC step (256 or 512)
+ * @sm_order:	Smart Media byte order
  *
  * Detect and correct a 1 bit error for eccsize byte block
  */
 int __nand_correct_data(unsigned char *buf,
 			unsigned char *read_ecc, unsigned char *calc_ecc,
-			unsigned int eccsize)
+			unsigned int eccsize, bool sm_order)
 {
 	unsigned char b0, b1, b2, bit_addr;
 	unsigned int byte_addr;
@@ -431,13 +401,14 @@
 	 * we might need the xor result  more than once,
 	 * so keep them in a local var
 	*/
-#ifdef CONFIG_MTD_NAND_ECC_SMC
-	b0 = read_ecc[0] ^ calc_ecc[0];
-	b1 = read_ecc[1] ^ calc_ecc[1];
-#else
-	b0 = read_ecc[1] ^ calc_ecc[1];
-	b1 = read_ecc[0] ^ calc_ecc[0];
-#endif
+	if (sm_order) {
+		b0 = read_ecc[0] ^ calc_ecc[0];
+		b1 = read_ecc[1] ^ calc_ecc[1];
+	} else {
+		b0 = read_ecc[1] ^ calc_ecc[1];
+		b1 = read_ecc[0] ^ calc_ecc[0];
+	}
+
 	b2 = read_ecc[2] ^ calc_ecc[2];
 
 	/* check if there are any bitfaults */
@@ -491,18 +462,20 @@
 
 /**
  * nand_correct_data - [NAND Interface] Detect and correct bit error(s)
- * @mtd:	MTD block structure
+ * @chip:	NAND chip object
  * @buf:	raw data read from the chip
  * @read_ecc:	ECC from the chip
  * @calc_ecc:	the ECC calculated from raw data
  *
  * Detect and correct a 1 bit error for 256/512 byte block
  */
-int nand_correct_data(struct mtd_info *mtd, unsigned char *buf,
+int nand_correct_data(struct nand_chip *chip, unsigned char *buf,
 		      unsigned char *read_ecc, unsigned char *calc_ecc)
 {
-	return __nand_correct_data(buf, read_ecc, calc_ecc,
-				   mtd_to_nand(mtd)->ecc.size);
+	bool sm_order = chip->ecc.options & NAND_ECC_SOFT_HAMMING_SM_ORDER;
+
+	return __nand_correct_data(buf, read_ecc, calc_ecc, chip->ecc.size,
+				   sm_order);
 }
 EXPORT_SYMBOL(nand_correct_data);
 
diff --git a/drivers/mtd/nand/raw/nand_esmt.c b/drivers/mtd/nand/raw/nand_esmt.c
new file mode 100644
index 0000000..3338c68
--- /dev/null
+++ b/drivers/mtd/nand/raw/nand_esmt.c
@@ -0,0 +1,54 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (C) 2018 Toradex AG
+ *
+ * Author: Marcel Ziswiler <marcel.ziswiler@toradex.com>
+ */
+
+#include <linux/mtd/rawnand.h>
+#include "internals.h"
+
+static void esmt_nand_decode_id(struct nand_chip *chip)
+{
+	nand_decode_ext_id(chip);
+
+	/* Extract ECC requirements from 5th id byte. */
+	if (chip->id.len >= 5 && nand_is_slc(chip)) {
+		chip->base.eccreq.step_size = 512;
+		switch (chip->id.data[4] & 0x3) {
+		case 0x0:
+			chip->base.eccreq.strength = 4;
+			break;
+		case 0x1:
+			chip->base.eccreq.strength = 2;
+			break;
+		case 0x2:
+			chip->base.eccreq.strength = 1;
+			break;
+		default:
+			WARN(1, "Could not get ECC info");
+			chip->base.eccreq.step_size = 0;
+			break;
+		}
+	}
+}
+
+static int esmt_nand_init(struct nand_chip *chip)
+{
+	if (nand_is_slc(chip))
+		/*
+		 * It is known that some ESMT SLC NANDs have been shipped
+		 * with the factory bad block markers in the first or last page
+		 * of the block, instead of the first or second page. To be on
+		 * the safe side, let's check all three locations.
+		 */
+		chip->options |= NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE |
+				 NAND_BBM_LASTPAGE;
+
+	return 0;
+}
+
+const struct nand_manufacturer_ops esmt_nand_manuf_ops = {
+	.detect = esmt_nand_decode_id,
+	.init = esmt_nand_init,
+};
diff --git a/drivers/mtd/nand/raw/nand_hynix.c b/drivers/mtd/nand/raw/nand_hynix.c
index 4ffbb26..194e422 100644
--- a/drivers/mtd/nand/raw/nand_hynix.c
+++ b/drivers/mtd/nand/raw/nand_hynix.c
@@ -1,24 +1,16 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
 /*
  * Copyright (C) 2017 Free Electrons
  * Copyright (C) 2017 NextThing Co
  *
  * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
- * GNU General Public License for more details.
  */
 
-#include <linux/mtd/rawnand.h>
 #include <linux/sizes.h>
 #include <linux/slab.h>
 
+#include "internals.h"
+
 #define NAND_HYNIX_CMD_SET_PARAMS	0x36
 #define NAND_HYNIX_CMD_APPLY_PARAMS	0x16
 
@@ -79,46 +71,42 @@
 
 static int hynix_nand_cmd_op(struct nand_chip *chip, u8 cmd)
 {
-	struct mtd_info *mtd = nand_to_mtd(chip);
-
-	if (chip->exec_op) {
+	if (nand_has_exec_op(chip)) {
 		struct nand_op_instr instrs[] = {
 			NAND_OP_CMD(cmd, 0),
 		};
-		struct nand_operation op = NAND_OPERATION(instrs);
+		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
 
 		return nand_exec_op(chip, &op);
 	}
 
-	chip->cmdfunc(mtd, cmd, -1, -1);
+	chip->legacy.cmdfunc(chip, cmd, -1, -1);
 
 	return 0;
 }
 
 static int hynix_nand_reg_write_op(struct nand_chip *chip, u8 addr, u8 val)
 {
-	struct mtd_info *mtd = nand_to_mtd(chip);
 	u16 column = ((u16)addr << 8) | addr;
 
-	if (chip->exec_op) {
+	if (nand_has_exec_op(chip)) {
 		struct nand_op_instr instrs[] = {
 			NAND_OP_ADDR(1, &addr, 0),
 			NAND_OP_8BIT_DATA_OUT(1, &val, 0),
 		};
-		struct nand_operation op = NAND_OPERATION(instrs);
+		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
 
 		return nand_exec_op(chip, &op);
 	}
 
-	chip->cmdfunc(mtd, NAND_CMD_NONE, column, -1);
-	chip->write_byte(mtd, val);
+	chip->legacy.cmdfunc(chip, NAND_CMD_NONE, column, -1);
+	chip->legacy.write_byte(chip, val);
 
 	return 0;
 }
 
-static int hynix_nand_setup_read_retry(struct mtd_info *mtd, int retry_mode)
+static int hynix_nand_setup_read_retry(struct nand_chip *chip, int retry_mode)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
 	struct hynix_nand *hynix = nand_get_manufacturer_data(chip);
 	const u8 *values;
 	int i, ret;
@@ -421,24 +409,27 @@
 				       bool valid_jedecid)
 {
 	struct mtd_info *mtd = nand_to_mtd(chip);
+	struct nand_memory_organization *memorg;
 	u8 oobsize;
 
+	memorg = nanddev_get_memorg(&chip->base);
+
 	oobsize = ((chip->id.data[3] >> 2) & 0x3) |
 		  ((chip->id.data[3] >> 4) & 0x4);
 
 	if (valid_jedecid) {
 		switch (oobsize) {
 		case 0:
-			mtd->oobsize = 2048;
+			memorg->oobsize = 2048;
 			break;
 		case 1:
-			mtd->oobsize = 1664;
+			memorg->oobsize = 1664;
 			break;
 		case 2:
-			mtd->oobsize = 1024;
+			memorg->oobsize = 1024;
 			break;
 		case 3:
-			mtd->oobsize = 640;
+			memorg->oobsize = 640;
 			break;
 		default:
 			/*
@@ -453,25 +444,25 @@
 	} else {
 		switch (oobsize) {
 		case 0:
-			mtd->oobsize = 128;
+			memorg->oobsize = 128;
 			break;
 		case 1:
-			mtd->oobsize = 224;
+			memorg->oobsize = 224;
 			break;
 		case 2:
-			mtd->oobsize = 448;
+			memorg->oobsize = 448;
 			break;
 		case 3:
-			mtd->oobsize = 64;
+			memorg->oobsize = 64;
 			break;
 		case 4:
-			mtd->oobsize = 32;
+			memorg->oobsize = 32;
 			break;
 		case 5:
-			mtd->oobsize = 16;
+			memorg->oobsize = 16;
 			break;
 		case 6:
-			mtd->oobsize = 640;
+			memorg->oobsize = 640;
 			break;
 		default:
 			/*
@@ -495,8 +486,10 @@
 		 * the actual OOB size for this chip is: 640 * 16k / 8k).
 		 */
 		if (chip->id.data[1] == 0xde)
-			mtd->oobsize *= mtd->writesize / SZ_8K;
+			memorg->oobsize *= memorg->pagesize / SZ_8K;
 	}
+
+	mtd->oobsize = memorg->oobsize;
 }
 
 static void hynix_nand_extract_ecc_requirements(struct nand_chip *chip,
@@ -506,30 +499,30 @@
 
 	if (valid_jedecid) {
 		/* Reference: H27UCG8T2E datasheet */
-		chip->ecc_step_ds = 1024;
+		chip->base.eccreq.step_size = 1024;
 
 		switch (ecc_level) {
 		case 0:
-			chip->ecc_step_ds = 0;
-			chip->ecc_strength_ds = 0;
+			chip->base.eccreq.step_size = 0;
+			chip->base.eccreq.strength = 0;
 			break;
 		case 1:
-			chip->ecc_strength_ds = 4;
+			chip->base.eccreq.strength = 4;
 			break;
 		case 2:
-			chip->ecc_strength_ds = 24;
+			chip->base.eccreq.strength = 24;
 			break;
 		case 3:
-			chip->ecc_strength_ds = 32;
+			chip->base.eccreq.strength = 32;
 			break;
 		case 4:
-			chip->ecc_strength_ds = 40;
+			chip->base.eccreq.strength = 40;
 			break;
 		case 5:
-			chip->ecc_strength_ds = 50;
+			chip->base.eccreq.strength = 50;
 			break;
 		case 6:
-			chip->ecc_strength_ds = 60;
+			chip->base.eccreq.strength = 60;
 			break;
 		default:
 			/*
@@ -550,14 +543,14 @@
 		if (nand_tech < 3) {
 			/* > 26nm, reference: H27UBG8T2A datasheet */
 			if (ecc_level < 5) {
-				chip->ecc_step_ds = 512;
-				chip->ecc_strength_ds = 1 << ecc_level;
+				chip->base.eccreq.step_size = 512;
+				chip->base.eccreq.strength = 1 << ecc_level;
 			} else if (ecc_level < 7) {
 				if (ecc_level == 5)
-					chip->ecc_step_ds = 2048;
+					chip->base.eccreq.step_size = 2048;
 				else
-					chip->ecc_step_ds = 1024;
-				chip->ecc_strength_ds = 24;
+					chip->base.eccreq.step_size = 1024;
+				chip->base.eccreq.strength = 24;
 			} else {
 				/*
 				 * We should never reach this case, but if that
@@ -570,14 +563,14 @@
 		} else {
 			/* <= 26nm, reference: H27UBG8T2B datasheet */
 			if (!ecc_level) {
-				chip->ecc_step_ds = 0;
-				chip->ecc_strength_ds = 0;
+				chip->base.eccreq.step_size = 0;
+				chip->base.eccreq.strength = 0;
 			} else if (ecc_level < 5) {
-				chip->ecc_step_ds = 512;
-				chip->ecc_strength_ds = 1 << (ecc_level - 1);
+				chip->base.eccreq.step_size = 512;
+				chip->base.eccreq.strength = 1 << (ecc_level - 1);
 			} else {
-				chip->ecc_step_ds = 1024;
-				chip->ecc_strength_ds = 24 +
+				chip->base.eccreq.step_size = 1024;
+				chip->base.eccreq.strength = 24 +
 							(8 * (ecc_level - 5));
 			}
 		}
@@ -590,7 +583,7 @@
 	u8 nand_tech;
 
 	/* We need scrambling on all TLC NANDs*/
-	if (chip->bits_per_cell > 2)
+	if (nanddev_bits_per_cell(&chip->base) > 2)
 		chip->options |= NAND_NEED_SCRAMBLING;
 
 	/* And on MLC NANDs with sub-3xnm process */
@@ -612,9 +605,12 @@
 static void hynix_nand_decode_id(struct nand_chip *chip)
 {
 	struct mtd_info *mtd = nand_to_mtd(chip);
+	struct nand_memory_organization *memorg;
 	bool valid_jedecid;
 	u8 tmp;
 
+	memorg = nanddev_get_memorg(&chip->base);
+
 	/*
 	 * Exclude all SLC NANDs from this advanced detection scheme.
 	 * According to the ranges defined in several datasheets, it might
@@ -628,7 +624,8 @@
 	}
 
 	/* Extract pagesize */
-	mtd->writesize = 2048 << (chip->id.data[3] & 0x03);
+	memorg->pagesize = 2048 << (chip->id.data[3] & 0x03);
+	mtd->writesize = memorg->pagesize;
 
 	tmp = (chip->id.data[3] >> 4) & 0x3;
 	/*
@@ -638,12 +635,19 @@
 	 * The only exception is when ID[3][4:5] == 3 and ID[3][7] == 0, in
 	 * this case the erasesize is set to 768KiB.
 	 */
-	if (chip->id.data[3] & 0x80)
+	if (chip->id.data[3] & 0x80) {
+		memorg->pages_per_eraseblock = (SZ_1M << tmp) /
+					       memorg->pagesize;
 		mtd->erasesize = SZ_1M << tmp;
-	else if (tmp == 3)
+	} else if (tmp == 3) {
+		memorg->pages_per_eraseblock = (SZ_512K + SZ_256K) /
+					       memorg->pagesize;
 		mtd->erasesize = SZ_512K + SZ_256K;
-	else
+	} else {
+		memorg->pages_per_eraseblock = (SZ_128K << tmp) /
+					       memorg->pagesize;
 		mtd->erasesize = SZ_128K << tmp;
+	}
 
 	/*
 	 * Modern Toggle DDR NANDs have a valid JEDECID even though they are
@@ -675,9 +679,9 @@
 	int ret;
 
 	if (!nand_is_slc(chip))
-		chip->bbt_options |= NAND_BBT_SCANLASTPAGE;
+		chip->options |= NAND_BBM_LASTPAGE;
 	else
-		chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
+		chip->options |= NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE;
 
 	hynix = kzalloc(sizeof(*hynix), GFP_KERNEL);
 	if (!hynix)
diff --git a/drivers/mtd/nand/raw/nand_ids.c b/drivers/mtd/nand/raw/nand_ids.c
index 5423c3b..ba27902 100644
--- a/drivers/mtd/nand/raw/nand_ids.c
+++ b/drivers/mtd/nand/raw/nand_ids.c
@@ -1,14 +1,12 @@
+// SPDX-License-Identifier: GPL-2.0-only
 /*
  *  Copyright (C) 2002 Thomas Gleixner (tglx@linutronix.de)
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
- *
  */
-#include <linux/mtd/rawnand.h>
+
 #include <linux/sizes.h>
 
+#include "internals.h"
+
 #define LP_OPTIONS 0
 #define LP_OPTIONS16 (LP_OPTIONS | NAND_BUSWIDTH_16)
 
@@ -169,21 +167,21 @@
 
 /* Manufacturer IDs */
 static const struct nand_manufacturer nand_manufacturers[] = {
-	{NAND_MFR_TOSHIBA, "Toshiba", &toshiba_nand_manuf_ops},
-	{NAND_MFR_ESMT, "ESMT"},
-	{NAND_MFR_SAMSUNG, "Samsung", &samsung_nand_manuf_ops},
+	{NAND_MFR_AMD, "AMD/Spansion", &amd_nand_manuf_ops},
+	{NAND_MFR_ATO, "ATO"},
+	{NAND_MFR_EON, "Eon"},
+	{NAND_MFR_ESMT, "ESMT", &esmt_nand_manuf_ops},
 	{NAND_MFR_FUJITSU, "Fujitsu"},
+	{NAND_MFR_HYNIX, "Hynix", &hynix_nand_manuf_ops},
+	{NAND_MFR_INTEL, "Intel"},
+	{NAND_MFR_MACRONIX, "Macronix", &macronix_nand_manuf_ops},
+	{NAND_MFR_MICRON, "Micron", &micron_nand_manuf_ops},
 	{NAND_MFR_NATIONAL, "National"},
 	{NAND_MFR_RENESAS, "Renesas"},
-	{NAND_MFR_STMICRO, "ST Micro"},
-	{NAND_MFR_HYNIX, "Hynix", &hynix_nand_manuf_ops},
-	{NAND_MFR_MICRON, "Micron", &micron_nand_manuf_ops},
-	{NAND_MFR_AMD, "AMD/Spansion", &amd_nand_manuf_ops},
-	{NAND_MFR_MACRONIX, "Macronix", &macronix_nand_manuf_ops},
-	{NAND_MFR_EON, "Eon"},
+	{NAND_MFR_SAMSUNG, "Samsung", &samsung_nand_manuf_ops},
 	{NAND_MFR_SANDISK, "SanDisk"},
-	{NAND_MFR_INTEL, "Intel"},
-	{NAND_MFR_ATO, "ATO"},
+	{NAND_MFR_STMICRO, "ST Micro"},
+	{NAND_MFR_TOSHIBA, "Toshiba", &toshiba_nand_manuf_ops},
 	{NAND_MFR_WINBOND, "Winbond"},
 };
 
diff --git a/drivers/mtd/nand/raw/nand_jedec.c b/drivers/mtd/nand/raw/nand_jedec.c
new file mode 100644
index 0000000..9b540e7
--- /dev/null
+++ b/drivers/mtd/nand/raw/nand_jedec.c
@@ -0,0 +1,124 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
+ *		  2002-2006 Thomas Gleixner (tglx@linutronix.de)
+ *
+ *  Credits:
+ *	David Woodhouse for adding multichip support
+ *
+ *	Aleph One Ltd. and Toby Churchill Ltd. for supporting the
+ *	rework for 2K page size chips
+ *
+ * This file contains all ONFI helpers.
+ */
+
+#include <linux/slab.h>
+
+#include "internals.h"
+
+/*
+ * Check if the NAND chip is JEDEC compliant, returns 1 if it is, 0 otherwise.
+ */
+int nand_jedec_detect(struct nand_chip *chip)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	struct nand_memory_organization *memorg;
+	struct nand_jedec_params *p;
+	struct jedec_ecc_info *ecc;
+	int jedec_version = 0;
+	char id[5];
+	int i, val, ret;
+
+	memorg = nanddev_get_memorg(&chip->base);
+
+	/* Try JEDEC for unknown chip or LP */
+	ret = nand_readid_op(chip, 0x40, id, sizeof(id));
+	if (ret || strncmp(id, "JEDEC", sizeof(id)))
+		return 0;
+
+	/* JEDEC chip: allocate a buffer to hold its parameter page */
+	p = kzalloc(sizeof(*p), GFP_KERNEL);
+	if (!p)
+		return -ENOMEM;
+
+	ret = nand_read_param_page_op(chip, 0x40, NULL, 0);
+	if (ret) {
+		ret = 0;
+		goto free_jedec_param_page;
+	}
+
+	for (i = 0; i < 3; i++) {
+		ret = nand_read_data_op(chip, p, sizeof(*p), true);
+		if (ret) {
+			ret = 0;
+			goto free_jedec_param_page;
+		}
+
+		if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 510) ==
+				le16_to_cpu(p->crc))
+			break;
+	}
+
+	if (i == 3) {
+		pr_err("Could not find valid JEDEC parameter page; aborting\n");
+		goto free_jedec_param_page;
+	}
+
+	/* Check version */
+	val = le16_to_cpu(p->revision);
+	if (val & (1 << 2))
+		jedec_version = 10;
+	else if (val & (1 << 1))
+		jedec_version = 1; /* vendor specific version */
+
+	if (!jedec_version) {
+		pr_info("unsupported JEDEC version: %d\n", val);
+		goto free_jedec_param_page;
+	}
+
+	sanitize_string(p->manufacturer, sizeof(p->manufacturer));
+	sanitize_string(p->model, sizeof(p->model));
+	chip->parameters.model = kstrdup(p->model, GFP_KERNEL);
+	if (!chip->parameters.model) {
+		ret = -ENOMEM;
+		goto free_jedec_param_page;
+	}
+
+	memorg->pagesize = le32_to_cpu(p->byte_per_page);
+	mtd->writesize = memorg->pagesize;
+
+	/* Please reference to the comment for nand_flash_detect_onfi. */
+	memorg->pages_per_eraseblock =
+			1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
+	mtd->erasesize = memorg->pages_per_eraseblock * memorg->pagesize;
+
+	memorg->oobsize = le16_to_cpu(p->spare_bytes_per_page);
+	mtd->oobsize = memorg->oobsize;
+
+	memorg->luns_per_target = p->lun_count;
+	memorg->planes_per_lun = 1 << p->multi_plane_addr;
+
+	/* Please reference to the comment for nand_flash_detect_onfi. */
+	memorg->eraseblocks_per_lun =
+		1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
+	memorg->bits_per_cell = p->bits_per_cell;
+
+	if (le16_to_cpu(p->features) & JEDEC_FEATURE_16_BIT_BUS)
+		chip->options |= NAND_BUSWIDTH_16;
+
+	/* ECC info */
+	ecc = &p->ecc_info[0];
+
+	if (ecc->codeword_size >= 9) {
+		chip->base.eccreq.strength = ecc->ecc_bits;
+		chip->base.eccreq.step_size = 1 << ecc->codeword_size;
+	} else {
+		pr_warn("Invalid codeword size\n");
+	}
+
+	ret = 1;
+
+free_jedec_param_page:
+	kfree(p);
+	return ret;
+}
diff --git a/drivers/mtd/nand/raw/nand_legacy.c b/drivers/mtd/nand/raw/nand_legacy.c
new file mode 100644
index 0000000..f2526ec
--- /dev/null
+++ b/drivers/mtd/nand/raw/nand_legacy.c
@@ -0,0 +1,640 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
+ *		  2002-2006 Thomas Gleixner (tglx@linutronix.de)
+ *
+ *  Credits:
+ *	David Woodhouse for adding multichip support
+ *
+ *	Aleph One Ltd. and Toby Churchill Ltd. for supporting the
+ *	rework for 2K page size chips
+ *
+ * This file contains all legacy helpers/code that should be removed
+ * at some point.
+ */
+
+#include <linux/delay.h>
+#include <linux/io.h>
+#include <linux/nmi.h>
+
+#include "internals.h"
+
+/**
+ * nand_read_byte - [DEFAULT] read one byte from the chip
+ * @chip: NAND chip object
+ *
+ * Default read function for 8bit buswidth
+ */
+static uint8_t nand_read_byte(struct nand_chip *chip)
+{
+	return readb(chip->legacy.IO_ADDR_R);
+}
+
+/**
+ * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
+ * @chip: NAND chip object
+ *
+ * Default read function for 16bit buswidth with endianness conversion.
+ *
+ */
+static uint8_t nand_read_byte16(struct nand_chip *chip)
+{
+	return (uint8_t) cpu_to_le16(readw(chip->legacy.IO_ADDR_R));
+}
+
+/**
+ * nand_select_chip - [DEFAULT] control CE line
+ * @chip: NAND chip object
+ * @chipnr: chipnumber to select, -1 for deselect
+ *
+ * Default select function for 1 chip devices.
+ */
+static void nand_select_chip(struct nand_chip *chip, int chipnr)
+{
+	switch (chipnr) {
+	case -1:
+		chip->legacy.cmd_ctrl(chip, NAND_CMD_NONE,
+				      0 | NAND_CTRL_CHANGE);
+		break;
+	case 0:
+		break;
+
+	default:
+		BUG();
+	}
+}
+
+/**
+ * nand_write_byte - [DEFAULT] write single byte to chip
+ * @chip: NAND chip object
+ * @byte: value to write
+ *
+ * Default function to write a byte to I/O[7:0]
+ */
+static void nand_write_byte(struct nand_chip *chip, uint8_t byte)
+{
+	chip->legacy.write_buf(chip, &byte, 1);
+}
+
+/**
+ * nand_write_byte16 - [DEFAULT] write single byte to a chip with width 16
+ * @chip: NAND chip object
+ * @byte: value to write
+ *
+ * Default function to write a byte to I/O[7:0] on a 16-bit wide chip.
+ */
+static void nand_write_byte16(struct nand_chip *chip, uint8_t byte)
+{
+	uint16_t word = byte;
+
+	/*
+	 * It's not entirely clear what should happen to I/O[15:8] when writing
+	 * a byte. The ONFi spec (Revision 3.1; 2012-09-19, Section 2.16) reads:
+	 *
+	 *    When the host supports a 16-bit bus width, only data is
+	 *    transferred at the 16-bit width. All address and command line
+	 *    transfers shall use only the lower 8-bits of the data bus. During
+	 *    command transfers, the host may place any value on the upper
+	 *    8-bits of the data bus. During address transfers, the host shall
+	 *    set the upper 8-bits of the data bus to 00h.
+	 *
+	 * One user of the write_byte callback is nand_set_features. The
+	 * four parameters are specified to be written to I/O[7:0], but this is
+	 * neither an address nor a command transfer. Let's assume a 0 on the
+	 * upper I/O lines is OK.
+	 */
+	chip->legacy.write_buf(chip, (uint8_t *)&word, 2);
+}
+
+/**
+ * nand_write_buf - [DEFAULT] write buffer to chip
+ * @chip: NAND chip object
+ * @buf: data buffer
+ * @len: number of bytes to write
+ *
+ * Default write function for 8bit buswidth.
+ */
+static void nand_write_buf(struct nand_chip *chip, const uint8_t *buf, int len)
+{
+	iowrite8_rep(chip->legacy.IO_ADDR_W, buf, len);
+}
+
+/**
+ * nand_read_buf - [DEFAULT] read chip data into buffer
+ * @chip: NAND chip object
+ * @buf: buffer to store date
+ * @len: number of bytes to read
+ *
+ * Default read function for 8bit buswidth.
+ */
+static void nand_read_buf(struct nand_chip *chip, uint8_t *buf, int len)
+{
+	ioread8_rep(chip->legacy.IO_ADDR_R, buf, len);
+}
+
+/**
+ * nand_write_buf16 - [DEFAULT] write buffer to chip
+ * @chip: NAND chip object
+ * @buf: data buffer
+ * @len: number of bytes to write
+ *
+ * Default write function for 16bit buswidth.
+ */
+static void nand_write_buf16(struct nand_chip *chip, const uint8_t *buf,
+			     int len)
+{
+	u16 *p = (u16 *) buf;
+
+	iowrite16_rep(chip->legacy.IO_ADDR_W, p, len >> 1);
+}
+
+/**
+ * nand_read_buf16 - [DEFAULT] read chip data into buffer
+ * @chip: NAND chip object
+ * @buf: buffer to store date
+ * @len: number of bytes to read
+ *
+ * Default read function for 16bit buswidth.
+ */
+static void nand_read_buf16(struct nand_chip *chip, uint8_t *buf, int len)
+{
+	u16 *p = (u16 *) buf;
+
+	ioread16_rep(chip->legacy.IO_ADDR_R, p, len >> 1);
+}
+
+/**
+ * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
+ * @chip: NAND chip object
+ * @timeo: Timeout
+ *
+ * Helper function for nand_wait_ready used when needing to wait in interrupt
+ * context.
+ */
+static void panic_nand_wait_ready(struct nand_chip *chip, unsigned long timeo)
+{
+	int i;
+
+	/* Wait for the device to get ready */
+	for (i = 0; i < timeo; i++) {
+		if (chip->legacy.dev_ready(chip))
+			break;
+		touch_softlockup_watchdog();
+		mdelay(1);
+	}
+}
+
+/**
+ * nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
+ * @chip: NAND chip object
+ *
+ * Wait for the ready pin after a command, and warn if a timeout occurs.
+ */
+void nand_wait_ready(struct nand_chip *chip)
+{
+	unsigned long timeo = 400;
+
+	if (in_interrupt() || oops_in_progress)
+		return panic_nand_wait_ready(chip, timeo);
+
+	/* Wait until command is processed or timeout occurs */
+	timeo = jiffies + msecs_to_jiffies(timeo);
+	do {
+		if (chip->legacy.dev_ready(chip))
+			return;
+		cond_resched();
+	} while (time_before(jiffies, timeo));
+
+	if (!chip->legacy.dev_ready(chip))
+		pr_warn_ratelimited("timeout while waiting for chip to become ready\n");
+}
+EXPORT_SYMBOL_GPL(nand_wait_ready);
+
+/**
+ * nand_wait_status_ready - [GENERIC] Wait for the ready status after commands.
+ * @chip: NAND chip object
+ * @timeo: Timeout in ms
+ *
+ * Wait for status ready (i.e. command done) or timeout.
+ */
+static void nand_wait_status_ready(struct nand_chip *chip, unsigned long timeo)
+{
+	int ret;
+
+	timeo = jiffies + msecs_to_jiffies(timeo);
+	do {
+		u8 status;
+
+		ret = nand_read_data_op(chip, &status, sizeof(status), true);
+		if (ret)
+			return;
+
+		if (status & NAND_STATUS_READY)
+			break;
+		touch_softlockup_watchdog();
+	} while (time_before(jiffies, timeo));
+};
+
+/**
+ * nand_command - [DEFAULT] Send command to NAND device
+ * @chip: NAND chip object
+ * @command: the command to be sent
+ * @column: the column address for this command, -1 if none
+ * @page_addr: the page address for this command, -1 if none
+ *
+ * Send command to NAND device. This function is used for small page devices
+ * (512 Bytes per page).
+ */
+static void nand_command(struct nand_chip *chip, unsigned int command,
+			 int column, int page_addr)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
+
+	/* Write out the command to the device */
+	if (command == NAND_CMD_SEQIN) {
+		int readcmd;
+
+		if (column >= mtd->writesize) {
+			/* OOB area */
+			column -= mtd->writesize;
+			readcmd = NAND_CMD_READOOB;
+		} else if (column < 256) {
+			/* First 256 bytes --> READ0 */
+			readcmd = NAND_CMD_READ0;
+		} else {
+			column -= 256;
+			readcmd = NAND_CMD_READ1;
+		}
+		chip->legacy.cmd_ctrl(chip, readcmd, ctrl);
+		ctrl &= ~NAND_CTRL_CHANGE;
+	}
+	if (command != NAND_CMD_NONE)
+		chip->legacy.cmd_ctrl(chip, command, ctrl);
+
+	/* Address cycle, when necessary */
+	ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
+	/* Serially input address */
+	if (column != -1) {
+		/* Adjust columns for 16 bit buswidth */
+		if (chip->options & NAND_BUSWIDTH_16 &&
+				!nand_opcode_8bits(command))
+			column >>= 1;
+		chip->legacy.cmd_ctrl(chip, column, ctrl);
+		ctrl &= ~NAND_CTRL_CHANGE;
+	}
+	if (page_addr != -1) {
+		chip->legacy.cmd_ctrl(chip, page_addr, ctrl);
+		ctrl &= ~NAND_CTRL_CHANGE;
+		chip->legacy.cmd_ctrl(chip, page_addr >> 8, ctrl);
+		if (chip->options & NAND_ROW_ADDR_3)
+			chip->legacy.cmd_ctrl(chip, page_addr >> 16, ctrl);
+	}
+	chip->legacy.cmd_ctrl(chip, NAND_CMD_NONE,
+			      NAND_NCE | NAND_CTRL_CHANGE);
+
+	/*
+	 * Program and erase have their own busy handlers status and sequential
+	 * in needs no delay
+	 */
+	switch (command) {
+
+	case NAND_CMD_NONE:
+	case NAND_CMD_PAGEPROG:
+	case NAND_CMD_ERASE1:
+	case NAND_CMD_ERASE2:
+	case NAND_CMD_SEQIN:
+	case NAND_CMD_STATUS:
+	case NAND_CMD_READID:
+	case NAND_CMD_SET_FEATURES:
+		return;
+
+	case NAND_CMD_RESET:
+		if (chip->legacy.dev_ready)
+			break;
+		udelay(chip->legacy.chip_delay);
+		chip->legacy.cmd_ctrl(chip, NAND_CMD_STATUS,
+				      NAND_CTRL_CLE | NAND_CTRL_CHANGE);
+		chip->legacy.cmd_ctrl(chip, NAND_CMD_NONE,
+				      NAND_NCE | NAND_CTRL_CHANGE);
+		/* EZ-NAND can take upto 250ms as per ONFi v4.0 */
+		nand_wait_status_ready(chip, 250);
+		return;
+
+		/* This applies to read commands */
+	case NAND_CMD_READ0:
+		/*
+		 * READ0 is sometimes used to exit GET STATUS mode. When this
+		 * is the case no address cycles are requested, and we can use
+		 * this information to detect that we should not wait for the
+		 * device to be ready.
+		 */
+		if (column == -1 && page_addr == -1)
+			return;
+		/* fall through */
+
+	default:
+		/*
+		 * If we don't have access to the busy pin, we apply the given
+		 * command delay
+		 */
+		if (!chip->legacy.dev_ready) {
+			udelay(chip->legacy.chip_delay);
+			return;
+		}
+	}
+	/*
+	 * Apply this short delay always to ensure that we do wait tWB in
+	 * any case on any machine.
+	 */
+	ndelay(100);
+
+	nand_wait_ready(chip);
+}
+
+static void nand_ccs_delay(struct nand_chip *chip)
+{
+	/*
+	 * The controller already takes care of waiting for tCCS when the RNDIN
+	 * or RNDOUT command is sent, return directly.
+	 */
+	if (!(chip->options & NAND_WAIT_TCCS))
+		return;
+
+	/*
+	 * Wait tCCS_min if it is correctly defined, otherwise wait 500ns
+	 * (which should be safe for all NANDs).
+	 */
+	if (nand_has_setup_data_iface(chip))
+		ndelay(chip->data_interface.timings.sdr.tCCS_min / 1000);
+	else
+		ndelay(500);
+}
+
+/**
+ * nand_command_lp - [DEFAULT] Send command to NAND large page device
+ * @chip: NAND chip object
+ * @command: the command to be sent
+ * @column: the column address for this command, -1 if none
+ * @page_addr: the page address for this command, -1 if none
+ *
+ * Send command to NAND device. This is the version for the new large page
+ * devices. We don't have the separate regions as we have in the small page
+ * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
+ */
+static void nand_command_lp(struct nand_chip *chip, unsigned int command,
+			    int column, int page_addr)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+
+	/* Emulate NAND_CMD_READOOB */
+	if (command == NAND_CMD_READOOB) {
+		column += mtd->writesize;
+		command = NAND_CMD_READ0;
+	}
+
+	/* Command latch cycle */
+	if (command != NAND_CMD_NONE)
+		chip->legacy.cmd_ctrl(chip, command,
+				      NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
+
+	if (column != -1 || page_addr != -1) {
+		int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
+
+		/* Serially input address */
+		if (column != -1) {
+			/* Adjust columns for 16 bit buswidth */
+			if (chip->options & NAND_BUSWIDTH_16 &&
+					!nand_opcode_8bits(command))
+				column >>= 1;
+			chip->legacy.cmd_ctrl(chip, column, ctrl);
+			ctrl &= ~NAND_CTRL_CHANGE;
+
+			/* Only output a single addr cycle for 8bits opcodes. */
+			if (!nand_opcode_8bits(command))
+				chip->legacy.cmd_ctrl(chip, column >> 8, ctrl);
+		}
+		if (page_addr != -1) {
+			chip->legacy.cmd_ctrl(chip, page_addr, ctrl);
+			chip->legacy.cmd_ctrl(chip, page_addr >> 8,
+					     NAND_NCE | NAND_ALE);
+			if (chip->options & NAND_ROW_ADDR_3)
+				chip->legacy.cmd_ctrl(chip, page_addr >> 16,
+						      NAND_NCE | NAND_ALE);
+		}
+	}
+	chip->legacy.cmd_ctrl(chip, NAND_CMD_NONE,
+			      NAND_NCE | NAND_CTRL_CHANGE);
+
+	/*
+	 * Program and erase have their own busy handlers status, sequential
+	 * in and status need no delay.
+	 */
+	switch (command) {
+
+	case NAND_CMD_NONE:
+	case NAND_CMD_CACHEDPROG:
+	case NAND_CMD_PAGEPROG:
+	case NAND_CMD_ERASE1:
+	case NAND_CMD_ERASE2:
+	case NAND_CMD_SEQIN:
+	case NAND_CMD_STATUS:
+	case NAND_CMD_READID:
+	case NAND_CMD_SET_FEATURES:
+		return;
+
+	case NAND_CMD_RNDIN:
+		nand_ccs_delay(chip);
+		return;
+
+	case NAND_CMD_RESET:
+		if (chip->legacy.dev_ready)
+			break;
+		udelay(chip->legacy.chip_delay);
+		chip->legacy.cmd_ctrl(chip, NAND_CMD_STATUS,
+				      NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
+		chip->legacy.cmd_ctrl(chip, NAND_CMD_NONE,
+				      NAND_NCE | NAND_CTRL_CHANGE);
+		/* EZ-NAND can take upto 250ms as per ONFi v4.0 */
+		nand_wait_status_ready(chip, 250);
+		return;
+
+	case NAND_CMD_RNDOUT:
+		/* No ready / busy check necessary */
+		chip->legacy.cmd_ctrl(chip, NAND_CMD_RNDOUTSTART,
+				      NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
+		chip->legacy.cmd_ctrl(chip, NAND_CMD_NONE,
+				      NAND_NCE | NAND_CTRL_CHANGE);
+
+		nand_ccs_delay(chip);
+		return;
+
+	case NAND_CMD_READ0:
+		/*
+		 * READ0 is sometimes used to exit GET STATUS mode. When this
+		 * is the case no address cycles are requested, and we can use
+		 * this information to detect that READSTART should not be
+		 * issued.
+		 */
+		if (column == -1 && page_addr == -1)
+			return;
+
+		chip->legacy.cmd_ctrl(chip, NAND_CMD_READSTART,
+				      NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
+		chip->legacy.cmd_ctrl(chip, NAND_CMD_NONE,
+				      NAND_NCE | NAND_CTRL_CHANGE);
+
+		/* fall through - This applies to read commands */
+	default:
+		/*
+		 * If we don't have access to the busy pin, we apply the given
+		 * command delay.
+		 */
+		if (!chip->legacy.dev_ready) {
+			udelay(chip->legacy.chip_delay);
+			return;
+		}
+	}
+
+	/*
+	 * Apply this short delay always to ensure that we do wait tWB in
+	 * any case on any machine.
+	 */
+	ndelay(100);
+
+	nand_wait_ready(chip);
+}
+
+/**
+ * nand_get_set_features_notsupp - set/get features stub returning -ENOTSUPP
+ * @chip: nand chip info structure
+ * @addr: feature address.
+ * @subfeature_param: the subfeature parameters, a four bytes array.
+ *
+ * Should be used by NAND controller drivers that do not support the SET/GET
+ * FEATURES operations.
+ */
+int nand_get_set_features_notsupp(struct nand_chip *chip, int addr,
+				  u8 *subfeature_param)
+{
+	return -ENOTSUPP;
+}
+EXPORT_SYMBOL(nand_get_set_features_notsupp);
+
+/**
+ * nand_wait - [DEFAULT] wait until the command is done
+ * @chip: NAND chip structure
+ *
+ * Wait for command done. This applies to erase and program only.
+ */
+static int nand_wait(struct nand_chip *chip)
+{
+
+	unsigned long timeo = 400;
+	u8 status;
+	int ret;
+
+	/*
+	 * Apply this short delay always to ensure that we do wait tWB in any
+	 * case on any machine.
+	 */
+	ndelay(100);
+
+	ret = nand_status_op(chip, NULL);
+	if (ret)
+		return ret;
+
+	if (in_interrupt() || oops_in_progress)
+		panic_nand_wait(chip, timeo);
+	else {
+		timeo = jiffies + msecs_to_jiffies(timeo);
+		do {
+			if (chip->legacy.dev_ready) {
+				if (chip->legacy.dev_ready(chip))
+					break;
+			} else {
+				ret = nand_read_data_op(chip, &status,
+							sizeof(status), true);
+				if (ret)
+					return ret;
+
+				if (status & NAND_STATUS_READY)
+					break;
+			}
+			cond_resched();
+		} while (time_before(jiffies, timeo));
+	}
+
+	ret = nand_read_data_op(chip, &status, sizeof(status), true);
+	if (ret)
+		return ret;
+
+	/* This can happen if in case of timeout or buggy dev_ready */
+	WARN_ON(!(status & NAND_STATUS_READY));
+	return status;
+}
+
+void nand_legacy_set_defaults(struct nand_chip *chip)
+{
+	unsigned int busw = chip->options & NAND_BUSWIDTH_16;
+
+	if (nand_has_exec_op(chip))
+		return;
+
+	/* check for proper chip_delay setup, set 20us if not */
+	if (!chip->legacy.chip_delay)
+		chip->legacy.chip_delay = 20;
+
+	/* check, if a user supplied command function given */
+	if (!chip->legacy.cmdfunc)
+		chip->legacy.cmdfunc = nand_command;
+
+	/* check, if a user supplied wait function given */
+	if (chip->legacy.waitfunc == NULL)
+		chip->legacy.waitfunc = nand_wait;
+
+	if (!chip->legacy.select_chip)
+		chip->legacy.select_chip = nand_select_chip;
+
+	/* If called twice, pointers that depend on busw may need to be reset */
+	if (!chip->legacy.read_byte || chip->legacy.read_byte == nand_read_byte)
+		chip->legacy.read_byte = busw ? nand_read_byte16 : nand_read_byte;
+	if (!chip->legacy.write_buf || chip->legacy.write_buf == nand_write_buf)
+		chip->legacy.write_buf = busw ? nand_write_buf16 : nand_write_buf;
+	if (!chip->legacy.write_byte || chip->legacy.write_byte == nand_write_byte)
+		chip->legacy.write_byte = busw ? nand_write_byte16 : nand_write_byte;
+	if (!chip->legacy.read_buf || chip->legacy.read_buf == nand_read_buf)
+		chip->legacy.read_buf = busw ? nand_read_buf16 : nand_read_buf;
+}
+
+void nand_legacy_adjust_cmdfunc(struct nand_chip *chip)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+
+	/* Do not replace user supplied command function! */
+	if (mtd->writesize > 512 && chip->legacy.cmdfunc == nand_command)
+		chip->legacy.cmdfunc = nand_command_lp;
+}
+
+int nand_legacy_check_hooks(struct nand_chip *chip)
+{
+	/*
+	 * ->legacy.cmdfunc() is legacy and will only be used if ->exec_op() is
+	 * not populated.
+	 */
+	if (nand_has_exec_op(chip))
+		return 0;
+
+	/*
+	 * Default functions assigned for ->legacy.cmdfunc() and
+	 * ->legacy.select_chip() both expect ->legacy.cmd_ctrl() to be
+	 *  populated.
+	 */
+	if ((!chip->legacy.cmdfunc || !chip->legacy.select_chip) &&
+	    !chip->legacy.cmd_ctrl) {
+		pr_err("->legacy.cmd_ctrl() should be provided\n");
+		return -EINVAL;
+	}
+
+	return 0;
+}
diff --git a/drivers/mtd/nand/raw/nand_macronix.c b/drivers/mtd/nand/raw/nand_macronix.c
index 49c546c..58511ae 100644
--- a/drivers/mtd/nand/raw/nand_macronix.c
+++ b/drivers/mtd/nand/raw/nand_macronix.c
@@ -1,21 +1,56 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
 /*
  * Copyright (C) 2017 Free Electrons
  * Copyright (C) 2017 NextThing Co
  *
  * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
- * GNU General Public License for more details.
  */
 
-#include <linux/mtd/rawnand.h>
+#include "internals.h"
+
+#define MACRONIX_READ_RETRY_BIT BIT(0)
+#define MACRONIX_NUM_READ_RETRY_MODES 6
+
+struct nand_onfi_vendor_macronix {
+	u8 reserved;
+	u8 reliability_func;
+} __packed;
+
+static int macronix_nand_setup_read_retry(struct nand_chip *chip, int mode)
+{
+	u8 feature[ONFI_SUBFEATURE_PARAM_LEN];
+
+	if (!chip->parameters.supports_set_get_features ||
+	    !test_bit(ONFI_FEATURE_ADDR_READ_RETRY,
+		      chip->parameters.set_feature_list))
+		return -ENOTSUPP;
+
+	feature[0] = mode;
+	return nand_set_features(chip, ONFI_FEATURE_ADDR_READ_RETRY, feature);
+}
+
+static void macronix_nand_onfi_init(struct nand_chip *chip)
+{
+	struct nand_parameters *p = &chip->parameters;
+	struct nand_onfi_vendor_macronix *mxic;
+
+	if (!p->onfi)
+		return;
+
+	mxic = (struct nand_onfi_vendor_macronix *)p->onfi->vendor;
+	if ((mxic->reliability_func & MACRONIX_READ_RETRY_BIT) == 0)
+		return;
+
+	chip->read_retries = MACRONIX_NUM_READ_RETRY_MODES;
+	chip->setup_read_retry = macronix_nand_setup_read_retry;
+
+	if (p->supports_set_get_features) {
+		bitmap_set(p->set_feature_list,
+			   ONFI_FEATURE_ADDR_READ_RETRY, 1);
+		bitmap_set(p->get_feature_list,
+			   ONFI_FEATURE_ADDR_READ_RETRY, 1);
+	}
+}
 
 /*
  * Macronix AC series does not support using SET/GET_FEATURES to change
@@ -33,6 +68,13 @@
 		"MX30LF4G18AC",
 		"MX30LF4G28AC",
 		"MX60LF8G18AC",
+		"MX30UF1G18AC",
+		"MX30UF1G16AC",
+		"MX30UF2G18AC",
+		"MX30UF2G16AC",
+		"MX30UF4G18AC",
+		"MX30UF4G16AC",
+		"MX30UF4G28AC",
 	};
 
 	if (!chip->parameters.supports_set_get_features)
@@ -55,9 +97,10 @@
 static int macronix_nand_init(struct nand_chip *chip)
 {
 	if (nand_is_slc(chip))
-		chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
+		chip->options |= NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE;
 
 	macronix_nand_fix_broken_get_timings(chip);
+	macronix_nand_onfi_init(chip);
 
 	return 0;
 }
diff --git a/drivers/mtd/nand/raw/nand_micron.c b/drivers/mtd/nand/raw/nand_micron.c
index f5dc0a7..8ca9fad 100644
--- a/drivers/mtd/nand/raw/nand_micron.c
+++ b/drivers/mtd/nand/raw/nand_micron.c
@@ -1,23 +1,15 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
 /*
  * Copyright (C) 2017 Free Electrons
  * Copyright (C) 2017 NextThing Co
  *
  * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
- * GNU General Public License for more details.
  */
 
-#include <linux/mtd/rawnand.h>
 #include <linux/slab.h>
 
+#include "internals.h"
+
 /*
  * Special Micron status bit 3 indicates that the block has been
  * corrected by on-die ECC and should be rewritten.
@@ -74,9 +66,8 @@
 	struct micron_on_die_ecc ecc;
 };
 
-static int micron_nand_setup_read_retry(struct mtd_info *mtd, int retry_mode)
+static int micron_nand_setup_read_retry(struct nand_chip *chip, int retry_mode)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
 	u8 feature[ONFI_SUBFEATURE_PARAM_LEN] = {retry_mode};
 
 	return nand_set_features(chip, ONFI_FEATURE_ADDR_READ_RETRY, feature);
@@ -290,10 +281,10 @@
 }
 
 static int
-micron_nand_read_page_on_die_ecc(struct mtd_info *mtd, struct nand_chip *chip,
-				 uint8_t *buf, int oob_required,
-				 int page)
+micron_nand_read_page_on_die_ecc(struct nand_chip *chip, uint8_t *buf,
+				 int oob_required, int page)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	u8 status;
 	int ret, max_bitflips = 0;
 
@@ -332,9 +323,8 @@
 }
 
 static int
-micron_nand_write_page_on_die_ecc(struct mtd_info *mtd, struct nand_chip *chip,
-				  const uint8_t *buf, int oob_required,
-				  int page)
+micron_nand_write_page_on_die_ecc(struct nand_chip *chip, const uint8_t *buf,
+				  int oob_required, int page)
 {
 	int ret;
 
@@ -342,7 +332,7 @@
 	if (ret)
 		return ret;
 
-	ret = nand_write_page_raw(mtd, chip, buf, oob_required, page);
+	ret = nand_write_page_raw(chip, buf, oob_required, page);
 	micron_nand_on_die_ecc_setup(chip, false);
 
 	return ret;
@@ -386,13 +376,13 @@
 	if (!chip->parameters.onfi)
 		return MICRON_ON_DIE_UNSUPPORTED;
 
-	if (chip->bits_per_cell != 1)
+	if (nanddev_bits_per_cell(&chip->base) != 1)
 		return MICRON_ON_DIE_UNSUPPORTED;
 
 	/*
 	 * We only support on-die ECC of 4/512 or 8/512
 	 */
-	if  (chip->ecc_strength_ds != 4 && chip->ecc_strength_ds != 8)
+	if  (chip->base.eccreq.strength != 4 && chip->base.eccreq.strength != 8)
 		return MICRON_ON_DIE_UNSUPPORTED;
 
 	/* 0x2 means on-die ECC is available. */
@@ -400,6 +390,14 @@
 	    (chip->id.data[4] & MICRON_ID_INTERNAL_ECC_MASK) != 0x2)
 		return MICRON_ON_DIE_UNSUPPORTED;
 
+	/*
+	 * It seems that there are devices which do not support ECC officially.
+	 * At least the MT29F2G08ABAGA / MT29F2G08ABBGA devices supports
+	 * enabling the ECC feature but don't reflect that to the READ_ID table.
+	 * So we have to guarantee that we disable the ECC feature directly
+	 * after we did the READ_ID table command. Later we can evaluate the
+	 * ECC_ENABLE support.
+	 */
 	ret = micron_nand_on_die_ecc_setup(chip, true);
 	if (ret)
 		return MICRON_ON_DIE_UNSUPPORTED;
@@ -408,13 +406,13 @@
 	if (ret)
 		return MICRON_ON_DIE_UNSUPPORTED;
 
-	if (!(id[4] & MICRON_ID_ECC_ENABLED))
-		return MICRON_ON_DIE_UNSUPPORTED;
-
 	ret = micron_nand_on_die_ecc_setup(chip, false);
 	if (ret)
 		return MICRON_ON_DIE_UNSUPPORTED;
 
+	if (!(id[4] & MICRON_ID_ECC_ENABLED))
+		return MICRON_ON_DIE_UNSUPPORTED;
+
 	ret = nand_readid_op(chip, 0, id, sizeof(id));
 	if (ret)
 		return MICRON_ON_DIE_UNSUPPORTED;
@@ -425,7 +423,7 @@
 	/*
 	 * We only support on-die ECC of 4/512 or 8/512
 	 */
-	if  (chip->ecc_strength_ds != 4 && chip->ecc_strength_ds != 8)
+	if  (chip->base.eccreq.strength != 4 && chip->base.eccreq.strength != 8)
 		return MICRON_ON_DIE_UNSUPPORTED;
 
 	return MICRON_ON_DIE_SUPPORTED;
@@ -449,7 +447,7 @@
 		goto err_free_manuf_data;
 
 	if (mtd->writesize == 2048)
-		chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
+		chip->options |= NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE;
 
 	ondie = micron_supports_on_die_ecc(chip);
 
@@ -480,7 +478,7 @@
 		 * That's not needed for 8-bit ECC, because the status expose
 		 * a better approximation of the number of bitflips in a page.
 		 */
-		if (chip->ecc_strength_ds == 4) {
+		if (chip->base.eccreq.strength == 4) {
 			micron->ecc.rawbuf = kmalloc(mtd->writesize +
 						     mtd->oobsize,
 						     GFP_KERNEL);
@@ -490,16 +488,16 @@
 			}
 		}
 
-		if (chip->ecc_strength_ds == 4)
+		if (chip->base.eccreq.strength == 4)
 			mtd_set_ooblayout(mtd,
 					  &micron_nand_on_die_4_ooblayout_ops);
 		else
 			mtd_set_ooblayout(mtd,
 					  &micron_nand_on_die_8_ooblayout_ops);
 
-		chip->ecc.bytes = chip->ecc_strength_ds * 2;
+		chip->ecc.bytes = chip->base.eccreq.strength * 2;
 		chip->ecc.size = 512;
-		chip->ecc.strength = chip->ecc_strength_ds;
+		chip->ecc.strength = chip->base.eccreq.strength;
 		chip->ecc.algo = NAND_ECC_BCH;
 		chip->ecc.read_page = micron_nand_read_page_on_die_ecc;
 		chip->ecc.write_page = micron_nand_write_page_on_die_ecc;
diff --git a/drivers/mtd/nand/raw/nand_onfi.c b/drivers/mtd/nand/raw/nand_onfi.c
new file mode 100644
index 0000000..0b879bd
--- /dev/null
+++ b/drivers/mtd/nand/raw/nand_onfi.c
@@ -0,0 +1,312 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
+ *		  2002-2006 Thomas Gleixner (tglx@linutronix.de)
+ *
+ *  Credits:
+ *	David Woodhouse for adding multichip support
+ *
+ *	Aleph One Ltd. and Toby Churchill Ltd. for supporting the
+ *	rework for 2K page size chips
+ *
+ * This file contains all ONFI helpers.
+ */
+
+#include <linux/slab.h>
+
+#include "internals.h"
+
+u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
+{
+	int i;
+	while (len--) {
+		crc ^= *p++ << 8;
+		for (i = 0; i < 8; i++)
+			crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
+	}
+
+	return crc;
+}
+
+/* Parse the Extended Parameter Page. */
+static int nand_flash_detect_ext_param_page(struct nand_chip *chip,
+					    struct nand_onfi_params *p)
+{
+	struct onfi_ext_param_page *ep;
+	struct onfi_ext_section *s;
+	struct onfi_ext_ecc_info *ecc;
+	uint8_t *cursor;
+	int ret;
+	int len;
+	int i;
+
+	len = le16_to_cpu(p->ext_param_page_length) * 16;
+	ep = kmalloc(len, GFP_KERNEL);
+	if (!ep)
+		return -ENOMEM;
+
+	/* Send our own NAND_CMD_PARAM. */
+	ret = nand_read_param_page_op(chip, 0, NULL, 0);
+	if (ret)
+		goto ext_out;
+
+	/* Use the Change Read Column command to skip the ONFI param pages. */
+	ret = nand_change_read_column_op(chip,
+					 sizeof(*p) * p->num_of_param_pages,
+					 ep, len, true);
+	if (ret)
+		goto ext_out;
+
+	ret = -EINVAL;
+	if ((onfi_crc16(ONFI_CRC_BASE, ((uint8_t *)ep) + 2, len - 2)
+		!= le16_to_cpu(ep->crc))) {
+		pr_debug("fail in the CRC.\n");
+		goto ext_out;
+	}
+
+	/*
+	 * Check the signature.
+	 * Do not strictly follow the ONFI spec, maybe changed in future.
+	 */
+	if (strncmp(ep->sig, "EPPS", 4)) {
+		pr_debug("The signature is invalid.\n");
+		goto ext_out;
+	}
+
+	/* find the ECC section. */
+	cursor = (uint8_t *)(ep + 1);
+	for (i = 0; i < ONFI_EXT_SECTION_MAX; i++) {
+		s = ep->sections + i;
+		if (s->type == ONFI_SECTION_TYPE_2)
+			break;
+		cursor += s->length * 16;
+	}
+	if (i == ONFI_EXT_SECTION_MAX) {
+		pr_debug("We can not find the ECC section.\n");
+		goto ext_out;
+	}
+
+	/* get the info we want. */
+	ecc = (struct onfi_ext_ecc_info *)cursor;
+
+	if (!ecc->codeword_size) {
+		pr_debug("Invalid codeword size\n");
+		goto ext_out;
+	}
+
+	chip->base.eccreq.strength = ecc->ecc_bits;
+	chip->base.eccreq.step_size = 1 << ecc->codeword_size;
+	ret = 0;
+
+ext_out:
+	kfree(ep);
+	return ret;
+}
+
+/*
+ * Recover data with bit-wise majority
+ */
+static void nand_bit_wise_majority(const void **srcbufs,
+				   unsigned int nsrcbufs,
+				   void *dstbuf,
+				   unsigned int bufsize)
+{
+	int i, j, k;
+
+	for (i = 0; i < bufsize; i++) {
+		u8 val = 0;
+
+		for (j = 0; j < 8; j++) {
+			unsigned int cnt = 0;
+
+			for (k = 0; k < nsrcbufs; k++) {
+				const u8 *srcbuf = srcbufs[k];
+
+				if (srcbuf[i] & BIT(j))
+					cnt++;
+			}
+
+			if (cnt > nsrcbufs / 2)
+				val |= BIT(j);
+		}
+
+		((u8 *)dstbuf)[i] = val;
+	}
+}
+
+/*
+ * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
+ */
+int nand_onfi_detect(struct nand_chip *chip)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	struct nand_memory_organization *memorg;
+	struct nand_onfi_params *p;
+	struct onfi_params *onfi;
+	int onfi_version = 0;
+	char id[4];
+	int i, ret, val;
+
+	memorg = nanddev_get_memorg(&chip->base);
+
+	/* Try ONFI for unknown chip or LP */
+	ret = nand_readid_op(chip, 0x20, id, sizeof(id));
+	if (ret || strncmp(id, "ONFI", 4))
+		return 0;
+
+	/* ONFI chip: allocate a buffer to hold its parameter page */
+	p = kzalloc((sizeof(*p) * 3), GFP_KERNEL);
+	if (!p)
+		return -ENOMEM;
+
+	ret = nand_read_param_page_op(chip, 0, NULL, 0);
+	if (ret) {
+		ret = 0;
+		goto free_onfi_param_page;
+	}
+
+	for (i = 0; i < 3; i++) {
+		ret = nand_read_data_op(chip, &p[i], sizeof(*p), true);
+		if (ret) {
+			ret = 0;
+			goto free_onfi_param_page;
+		}
+
+		if (onfi_crc16(ONFI_CRC_BASE, (u8 *)&p[i], 254) ==
+				le16_to_cpu(p->crc)) {
+			if (i)
+				memcpy(p, &p[i], sizeof(*p));
+			break;
+		}
+	}
+
+	if (i == 3) {
+		const void *srcbufs[3] = {p, p + 1, p + 2};
+
+		pr_warn("Could not find a valid ONFI parameter page, trying bit-wise majority to recover it\n");
+		nand_bit_wise_majority(srcbufs, ARRAY_SIZE(srcbufs), p,
+				       sizeof(*p));
+
+		if (onfi_crc16(ONFI_CRC_BASE, (u8 *)p, 254) !=
+				le16_to_cpu(p->crc)) {
+			pr_err("ONFI parameter recovery failed, aborting\n");
+			goto free_onfi_param_page;
+		}
+	}
+
+	if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
+	    chip->manufacturer.desc->ops->fixup_onfi_param_page)
+		chip->manufacturer.desc->ops->fixup_onfi_param_page(chip, p);
+
+	/* Check version */
+	val = le16_to_cpu(p->revision);
+	if (val & ONFI_VERSION_2_3)
+		onfi_version = 23;
+	else if (val & ONFI_VERSION_2_2)
+		onfi_version = 22;
+	else if (val & ONFI_VERSION_2_1)
+		onfi_version = 21;
+	else if (val & ONFI_VERSION_2_0)
+		onfi_version = 20;
+	else if (val & ONFI_VERSION_1_0)
+		onfi_version = 10;
+
+	if (!onfi_version) {
+		pr_info("unsupported ONFI version: %d\n", val);
+		goto free_onfi_param_page;
+	}
+
+	sanitize_string(p->manufacturer, sizeof(p->manufacturer));
+	sanitize_string(p->model, sizeof(p->model));
+	chip->parameters.model = kstrdup(p->model, GFP_KERNEL);
+	if (!chip->parameters.model) {
+		ret = -ENOMEM;
+		goto free_onfi_param_page;
+	}
+
+	memorg->pagesize = le32_to_cpu(p->byte_per_page);
+	mtd->writesize = memorg->pagesize;
+
+	/*
+	 * pages_per_block and blocks_per_lun may not be a power-of-2 size
+	 * (don't ask me who thought of this...). MTD assumes that these
+	 * dimensions will be power-of-2, so just truncate the remaining area.
+	 */
+	memorg->pages_per_eraseblock =
+			1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
+	mtd->erasesize = memorg->pages_per_eraseblock * memorg->pagesize;
+
+	memorg->oobsize = le16_to_cpu(p->spare_bytes_per_page);
+	mtd->oobsize = memorg->oobsize;
+
+	memorg->luns_per_target = p->lun_count;
+	memorg->planes_per_lun = 1 << p->interleaved_bits;
+
+	/* See erasesize comment */
+	memorg->eraseblocks_per_lun =
+		1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
+	memorg->max_bad_eraseblocks_per_lun = le32_to_cpu(p->blocks_per_lun);
+	memorg->bits_per_cell = p->bits_per_cell;
+
+	if (le16_to_cpu(p->features) & ONFI_FEATURE_16_BIT_BUS)
+		chip->options |= NAND_BUSWIDTH_16;
+
+	if (p->ecc_bits != 0xff) {
+		chip->base.eccreq.strength = p->ecc_bits;
+		chip->base.eccreq.step_size = 512;
+	} else if (onfi_version >= 21 &&
+		(le16_to_cpu(p->features) & ONFI_FEATURE_EXT_PARAM_PAGE)) {
+
+		/*
+		 * The nand_flash_detect_ext_param_page() uses the
+		 * Change Read Column command which maybe not supported
+		 * by the chip->legacy.cmdfunc. So try to update the
+		 * chip->legacy.cmdfunc now. We do not replace user supplied
+		 * command function.
+		 */
+		nand_legacy_adjust_cmdfunc(chip);
+
+		/* The Extended Parameter Page is supported since ONFI 2.1. */
+		if (nand_flash_detect_ext_param_page(chip, p))
+			pr_warn("Failed to detect ONFI extended param page\n");
+	} else {
+		pr_warn("Could not retrieve ONFI ECC requirements\n");
+	}
+
+	/* Save some parameters from the parameter page for future use */
+	if (le16_to_cpu(p->opt_cmd) & ONFI_OPT_CMD_SET_GET_FEATURES) {
+		chip->parameters.supports_set_get_features = true;
+		bitmap_set(chip->parameters.get_feature_list,
+			   ONFI_FEATURE_ADDR_TIMING_MODE, 1);
+		bitmap_set(chip->parameters.set_feature_list,
+			   ONFI_FEATURE_ADDR_TIMING_MODE, 1);
+	}
+
+	onfi = kzalloc(sizeof(*onfi), GFP_KERNEL);
+	if (!onfi) {
+		ret = -ENOMEM;
+		goto free_model;
+	}
+
+	onfi->version = onfi_version;
+	onfi->tPROG = le16_to_cpu(p->t_prog);
+	onfi->tBERS = le16_to_cpu(p->t_bers);
+	onfi->tR = le16_to_cpu(p->t_r);
+	onfi->tCCS = le16_to_cpu(p->t_ccs);
+	onfi->async_timing_mode = le16_to_cpu(p->async_timing_mode);
+	onfi->vendor_revision = le16_to_cpu(p->vendor_revision);
+	memcpy(onfi->vendor, p->vendor, sizeof(p->vendor));
+	chip->parameters.onfi = onfi;
+
+	/* Identification done, free the full ONFI parameter page and exit */
+	kfree(p);
+
+	return 1;
+
+free_model:
+	kfree(chip->parameters.model);
+free_onfi_param_page:
+	kfree(p);
+
+	return ret;
+}
diff --git a/drivers/mtd/nand/raw/nand_samsung.c b/drivers/mtd/nand/raw/nand_samsung.c
index ef022f6..3a4a19e 100644
--- a/drivers/mtd/nand/raw/nand_samsung.c
+++ b/drivers/mtd/nand/raw/nand_samsung.c
@@ -1,25 +1,19 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
 /*
  * Copyright (C) 2017 Free Electrons
  * Copyright (C) 2017 NextThing Co
  *
  * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
- * GNU General Public License for more details.
  */
 
-#include <linux/mtd/rawnand.h>
+#include "internals.h"
 
 static void samsung_nand_decode_id(struct nand_chip *chip)
 {
 	struct mtd_info *mtd = nand_to_mtd(chip);
+	struct nand_memory_organization *memorg;
+
+	memorg = nanddev_get_memorg(&chip->base);
 
 	/* New Samsung (6 byte ID): Samsung K9GAG08U0F (p.44) */
 	if (chip->id.len == 6 && !nand_is_slc(chip) &&
@@ -27,29 +21,30 @@
 		u8 extid = chip->id.data[3];
 
 		/* Get pagesize */
-		mtd->writesize = 2048 << (extid & 0x03);
+		memorg->pagesize = 2048 << (extid & 0x03);
+		mtd->writesize = memorg->pagesize;
 
 		extid >>= 2;
 
 		/* Get oobsize */
 		switch (((extid >> 2) & 0x4) | (extid & 0x3)) {
 		case 1:
-			mtd->oobsize = 128;
+			memorg->oobsize = 128;
 			break;
 		case 2:
-			mtd->oobsize = 218;
+			memorg->oobsize = 218;
 			break;
 		case 3:
-			mtd->oobsize = 400;
+			memorg->oobsize = 400;
 			break;
 		case 4:
-			mtd->oobsize = 436;
+			memorg->oobsize = 436;
 			break;
 		case 5:
-			mtd->oobsize = 512;
+			memorg->oobsize = 512;
 			break;
 		case 6:
-			mtd->oobsize = 640;
+			memorg->oobsize = 640;
 			break;
 		default:
 			/*
@@ -62,31 +57,37 @@
 			break;
 		}
 
+		mtd->oobsize = memorg->oobsize;
+
 		/* Get blocksize */
 		extid >>= 2;
+		memorg->pages_per_eraseblock = (128 * 1024) <<
+					       (((extid >> 1) & 0x04) |
+						(extid & 0x03)) /
+					       memorg->pagesize;
 		mtd->erasesize = (128 * 1024) <<
 				 (((extid >> 1) & 0x04) | (extid & 0x03));
 
 		/* Extract ECC requirements from 5th id byte*/
 		extid = (chip->id.data[4] >> 4) & 0x07;
 		if (extid < 5) {
-			chip->ecc_step_ds = 512;
-			chip->ecc_strength_ds = 1 << extid;
+			chip->base.eccreq.step_size = 512;
+			chip->base.eccreq.strength = 1 << extid;
 		} else {
-			chip->ecc_step_ds = 1024;
+			chip->base.eccreq.step_size = 1024;
 			switch (extid) {
 			case 5:
-				chip->ecc_strength_ds = 24;
+				chip->base.eccreq.strength = 24;
 				break;
 			case 6:
-				chip->ecc_strength_ds = 40;
+				chip->base.eccreq.strength = 40;
 				break;
 			case 7:
-				chip->ecc_strength_ds = 60;
+				chip->base.eccreq.strength = 60;
 				break;
 			default:
 				WARN(1, "Could not decode ECC info");
-				chip->ecc_step_ds = 0;
+				chip->base.eccreq.step_size = 0;
 			}
 		}
 	} else {
@@ -96,8 +97,8 @@
 			switch (chip->id.data[1]) {
 			/* K9F4G08U0D-S[I|C]B0(T00) */
 			case 0xDC:
-				chip->ecc_step_ds = 512;
-				chip->ecc_strength_ds = 1;
+				chip->base.eccreq.step_size = 512;
+				chip->base.eccreq.strength = 1;
 				break;
 
 			/* K9F1G08U0E 21nm chips do not support subpage write */
@@ -121,9 +122,9 @@
 		chip->options |= NAND_SAMSUNG_LP_OPTIONS;
 
 	if (!nand_is_slc(chip))
-		chip->bbt_options |= NAND_BBT_SCANLASTPAGE;
+		chip->options |= NAND_BBM_LASTPAGE;
 	else
-		chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
+		chip->options |= NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE;
 
 	return 0;
 }
diff --git a/drivers/mtd/nand/raw/nand_timings.c b/drivers/mtd/nand/raw/nand_timings.c
index ebc7b5f..f64b06a 100644
--- a/drivers/mtd/nand/raw/nand_timings.c
+++ b/drivers/mtd/nand/raw/nand_timings.c
@@ -1,17 +1,14 @@
+// SPDX-License-Identifier: GPL-2.0-only
 /*
  *  Copyright (C) 2014 Free Electrons
  *
  *  Author: Boris BREZILLON <boris.brezillon@free-electrons.com>
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
- *
  */
 #include <linux/kernel.h>
 #include <linux/err.h>
 #include <linux/export.h>
-#include <linux/mtd/rawnand.h>
+
+#include "internals.h"
 
 #define ONFI_DYN_TIMING_MAX U16_MAX
 
@@ -271,20 +268,6 @@
 };
 
 /**
- * onfi_async_timing_mode_to_sdr_timings - [NAND Interface] Retrieve NAND
- * timings according to the given ONFI timing mode
- * @mode: ONFI timing mode
- */
-const struct nand_sdr_timings *onfi_async_timing_mode_to_sdr_timings(int mode)
-{
-	if (mode < 0 || mode >= ARRAY_SIZE(onfi_sdr_timings))
-		return ERR_PTR(-EINVAL);
-
-	return &onfi_sdr_timings[mode].timings.sdr;
-}
-EXPORT_SYMBOL(onfi_async_timing_mode_to_sdr_timings);
-
-/**
  * onfi_fill_data_interface - [NAND Interface] Initialize a data interface from
  * given ONFI mode
  * @mode: The ONFI timing mode
@@ -339,4 +322,3 @@
 
 	return 0;
 }
-EXPORT_SYMBOL(onfi_fill_data_interface);
diff --git a/drivers/mtd/nand/raw/nand_toshiba.c b/drivers/mtd/nand/raw/nand_toshiba.c
index ab43f02..9c03fbb 100644
--- a/drivers/mtd/nand/raw/nand_toshiba.c
+++ b/drivers/mtd/nand/raw/nand_toshiba.c
@@ -1,25 +1,100 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
 /*
  * Copyright (C) 2017 Free Electrons
  * Copyright (C) 2017 NextThing Co
  *
  * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
- * GNU General Public License for more details.
  */
 
-#include <linux/mtd/rawnand.h>
+#include "internals.h"
+
+/* Bit for detecting BENAND */
+#define TOSHIBA_NAND_ID4_IS_BENAND		BIT(7)
+
+/* Recommended to rewrite for BENAND */
+#define TOSHIBA_NAND_STATUS_REWRITE_RECOMMENDED	BIT(3)
+
+static int toshiba_nand_benand_eccstatus(struct nand_chip *chip)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	int ret;
+	unsigned int max_bitflips = 0;
+	u8 status;
+
+	/* Check Status */
+	ret = nand_status_op(chip, &status);
+	if (ret)
+		return ret;
+
+	if (status & NAND_STATUS_FAIL) {
+		/* uncorrected */
+		mtd->ecc_stats.failed++;
+	} else if (status & TOSHIBA_NAND_STATUS_REWRITE_RECOMMENDED) {
+		/* corrected */
+		max_bitflips = mtd->bitflip_threshold;
+		mtd->ecc_stats.corrected += max_bitflips;
+	}
+
+	return max_bitflips;
+}
+
+static int
+toshiba_nand_read_page_benand(struct nand_chip *chip, uint8_t *buf,
+			      int oob_required, int page)
+{
+	int ret;
+
+	ret = nand_read_page_raw(chip, buf, oob_required, page);
+	if (ret)
+		return ret;
+
+	return toshiba_nand_benand_eccstatus(chip);
+}
+
+static int
+toshiba_nand_read_subpage_benand(struct nand_chip *chip, uint32_t data_offs,
+				 uint32_t readlen, uint8_t *bufpoi, int page)
+{
+	int ret;
+
+	ret = nand_read_page_op(chip, page, data_offs,
+				bufpoi + data_offs, readlen);
+	if (ret)
+		return ret;
+
+	return toshiba_nand_benand_eccstatus(chip);
+}
+
+static void toshiba_nand_benand_init(struct nand_chip *chip)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+
+	/*
+	 * On BENAND, the entire OOB region can be used by the MTD user.
+	 * The calculated ECC bytes are stored into other isolated
+	 * area which is not accessible to users.
+	 * This is why chip->ecc.bytes = 0.
+	 */
+	chip->ecc.bytes = 0;
+	chip->ecc.size = 512;
+	chip->ecc.strength = 8;
+	chip->ecc.read_page = toshiba_nand_read_page_benand;
+	chip->ecc.read_subpage = toshiba_nand_read_subpage_benand;
+	chip->ecc.write_page = nand_write_page_raw;
+	chip->ecc.read_page_raw = nand_read_page_raw_notsupp;
+	chip->ecc.write_page_raw = nand_write_page_raw_notsupp;
+
+	chip->options |= NAND_SUBPAGE_READ;
+
+	mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
+}
 
 static void toshiba_nand_decode_id(struct nand_chip *chip)
 {
 	struct mtd_info *mtd = nand_to_mtd(chip);
+	struct nand_memory_organization *memorg;
+
+	memorg = nanddev_get_memorg(&chip->base);
 
 	nand_decode_ext_id(chip);
 
@@ -33,8 +108,10 @@
 	 */
 	if (chip->id.len >= 6 && nand_is_slc(chip) &&
 	    (chip->id.data[5] & 0x7) == 0x6 /* 24nm */ &&
-	    !(chip->id.data[4] & 0x80) /* !BENAND */)
-		mtd->oobsize = 32 * mtd->writesize >> 9;
+	    !(chip->id.data[4] & 0x80) /* !BENAND */) {
+		memorg->oobsize = 32 * memorg->pagesize >> 9;
+		mtd->oobsize = memorg->oobsize;
+	}
 
 	/*
 	 * Extract ECC requirements from 6th id byte.
@@ -44,20 +121,20 @@
 	 *  - 24nm: 8 bit ECC for each 512Byte is required.
 	 */
 	if (chip->id.len >= 6 && nand_is_slc(chip)) {
-		chip->ecc_step_ds = 512;
+		chip->base.eccreq.step_size = 512;
 		switch (chip->id.data[5] & 0x7) {
 		case 0x4:
-			chip->ecc_strength_ds = 1;
+			chip->base.eccreq.strength = 1;
 			break;
 		case 0x5:
-			chip->ecc_strength_ds = 4;
+			chip->base.eccreq.strength = 4;
 			break;
 		case 0x6:
-			chip->ecc_strength_ds = 8;
+			chip->base.eccreq.strength = 8;
 			break;
 		default:
 			WARN(1, "Could not get ECC info");
-			chip->ecc_step_ds = 0;
+			chip->base.eccreq.step_size = 0;
 			break;
 		}
 	}
@@ -66,7 +143,12 @@
 static int toshiba_nand_init(struct nand_chip *chip)
 {
 	if (nand_is_slc(chip))
-		chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
+		chip->options |= NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE;
+
+	/* Check that chip is BENAND and ECC mode is on-die */
+	if (nand_is_slc(chip) && chip->ecc.mode == NAND_ECC_ON_DIE &&
+	    chip->id.data[4] & TOSHIBA_NAND_ID4_IS_BENAND)
+		toshiba_nand_benand_init(chip);
 
 	return 0;
 }
diff --git a/drivers/mtd/nand/raw/nandsim.c b/drivers/mtd/nand/raw/nandsim.c
index 71ac034..9a70754 100644
--- a/drivers/mtd/nand/raw/nandsim.c
+++ b/drivers/mtd/nand/raw/nandsim.c
@@ -1,3 +1,4 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
 /*
  * NAND flash simulator.
  *
@@ -7,20 +8,6 @@
  *
  * Note: NS means "NAND Simulator".
  * Note: Input means input TO flash chip, output means output FROM chip.
- *
- * This program is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License as published by the
- * Free Software Foundation; either version 2, or (at your option) any later
- * version.
- *
- * This program is distributed in the hope that it will be useful, but
- * WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
- * Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
  */
 
 #define pr_fmt(fmt)  "[nandsim]" fmt
@@ -298,6 +285,8 @@
  * The structure which describes all the internal simulator data.
  */
 struct nandsim {
+	struct nand_chip chip;
+	struct nand_controller base;
 	struct mtd_partition partitions[CONFIG_NANDSIM_MAX_PARTS];
 	unsigned int nbparts;
 
@@ -443,7 +432,7 @@
 /* MTD structure for NAND controller */
 static struct mtd_info *nsmtd;
 
-static int nandsim_debugfs_show(struct seq_file *m, void *private)
+static int nandsim_show(struct seq_file *m, void *private)
 {
 	unsigned long wmin = -1, wmax = 0, avg;
 	unsigned long deciles[10], decile_max[10], tot = 0;
@@ -494,18 +483,7 @@
 
 	return 0;
 }
-
-static int nandsim_debugfs_open(struct inode *inode, struct file *file)
-{
-	return single_open(file, nandsim_debugfs_show, inode->i_private);
-}
-
-static const struct file_operations dfs_fops = {
-	.open		= nandsim_debugfs_open,
-	.read		= seq_read,
-	.llseek		= seq_lseek,
-	.release	= single_release,
-};
+DEFINE_SHOW_ATTRIBUTE(nandsim);
 
 /**
  * nandsim_debugfs_create - initialize debugfs
@@ -531,7 +509,7 @@
 	}
 
 	dent = debugfs_create_file("nandsim_wear_report", S_IRUSR,
-				   root, dev, &dfs_fops);
+				   root, dev, &nandsim_fops);
 	if (IS_ERR_OR_NULL(dent)) {
 		NS_ERR("cannot create \"nandsim_wear_report\" debugfs entry\n");
 		return -1;
@@ -655,9 +633,6 @@
 		return -EIO;
 	}
 
-	/* Force mtd to not do delays */
-	chip->chip_delay = 0;
-
 	/* Initialize the NAND flash parameters */
 	ns->busw = chip->options & NAND_BUSWIDTH_16 ? 16 : 8;
 	ns->geom.totsz    = mtd->size;
@@ -1872,9 +1847,8 @@
 	}
 }
 
-static u_char ns_nand_read_byte(struct mtd_info *mtd)
+static u_char ns_nand_read_byte(struct nand_chip *chip)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
 	struct nandsim *ns = nand_get_controller_data(chip);
 	u_char outb = 0x00;
 
@@ -1934,9 +1908,8 @@
 	return outb;
 }
 
-static void ns_nand_write_byte(struct mtd_info *mtd, u_char byte)
+static void ns_nand_write_byte(struct nand_chip *chip, u_char byte)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
 	struct nandsim *ns = nand_get_controller_data(chip);
 
 	/* Sanity and correctness checks */
@@ -2089,37 +2062,9 @@
 	return;
 }
 
-static void ns_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int bitmask)
+static void ns_nand_write_buf(struct nand_chip *chip, const u_char *buf,
+			      int len)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
-	struct nandsim *ns = nand_get_controller_data(chip);
-
-	ns->lines.cle = bitmask & NAND_CLE ? 1 : 0;
-	ns->lines.ale = bitmask & NAND_ALE ? 1 : 0;
-	ns->lines.ce = bitmask & NAND_NCE ? 1 : 0;
-
-	if (cmd != NAND_CMD_NONE)
-		ns_nand_write_byte(mtd, cmd);
-}
-
-static int ns_device_ready(struct mtd_info *mtd)
-{
-	NS_DBG("device_ready\n");
-	return 1;
-}
-
-static uint16_t ns_nand_read_word(struct mtd_info *mtd)
-{
-	struct nand_chip *chip = mtd_to_nand(mtd);
-
-	NS_DBG("read_word\n");
-
-	return chip->read_byte(mtd) | (chip->read_byte(mtd) << 8);
-}
-
-static void ns_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
-{
-	struct nand_chip *chip = mtd_to_nand(mtd);
 	struct nandsim *ns = nand_get_controller_data(chip);
 
 	/* Check that chip is expecting data input */
@@ -2145,9 +2090,8 @@
 	}
 }
 
-static void ns_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
+static void ns_nand_read_buf(struct nand_chip *chip, u_char *buf, int len)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
 	struct nandsim *ns = nand_get_controller_data(chip);
 
 	/* Sanity and correctness checks */
@@ -2169,7 +2113,7 @@
 		int i;
 
 		for (i = 0; i < len; i++)
-			buf[i] = mtd_to_nand(mtd)->read_byte(mtd);
+			buf[i] = ns_nand_read_byte(chip);
 
 		return;
 	}
@@ -2192,6 +2136,46 @@
 	return;
 }
 
+static int ns_exec_op(struct nand_chip *chip, const struct nand_operation *op,
+		      bool check_only)
+{
+	int i;
+	unsigned int op_id;
+	const struct nand_op_instr *instr = NULL;
+	struct nandsim *ns = nand_get_controller_data(chip);
+
+	ns->lines.ce = 1;
+
+	for (op_id = 0; op_id < op->ninstrs; op_id++) {
+		instr = &op->instrs[op_id];
+		ns->lines.cle = 0;
+		ns->lines.ale = 0;
+
+		switch (instr->type) {
+		case NAND_OP_CMD_INSTR:
+			ns->lines.cle = 1;
+			ns_nand_write_byte(chip, instr->ctx.cmd.opcode);
+			break;
+		case NAND_OP_ADDR_INSTR:
+			ns->lines.ale = 1;
+			for (i = 0; i < instr->ctx.addr.naddrs; i++)
+				ns_nand_write_byte(chip, instr->ctx.addr.addrs[i]);
+			break;
+		case NAND_OP_DATA_IN_INSTR:
+			ns_nand_read_buf(chip, instr->ctx.data.buf.in, instr->ctx.data.len);
+			break;
+		case NAND_OP_DATA_OUT_INSTR:
+			ns_nand_write_buf(chip, instr->ctx.data.buf.out, instr->ctx.data.len);
+			break;
+		case NAND_OP_WAITRDY_INSTR:
+			/* we are always ready */
+			break;
+		}
+	}
+
+	return 0;
+}
+
 static int ns_attach_chip(struct nand_chip *chip)
 {
 	unsigned int eccsteps, eccbytes;
@@ -2232,6 +2216,7 @@
 
 static const struct nand_controller_ops ns_controller_ops = {
 	.attach_chip = ns_attach_chip,
+	.exec_op = ns_exec_op,
 };
 
 /*
@@ -2240,7 +2225,7 @@
 static int __init ns_init_module(void)
 {
 	struct nand_chip *chip;
-	struct nandsim *nand;
+	struct nandsim *ns;
 	int retval = -ENOMEM, i;
 
 	if (bus_width != 8 && bus_width != 16) {
@@ -2248,26 +2233,15 @@
 		return -EINVAL;
 	}
 
-	/* Allocate and initialize mtd_info, nand_chip and nandsim structures */
-	chip = kzalloc(sizeof(struct nand_chip) + sizeof(struct nandsim),
-		       GFP_KERNEL);
-	if (!chip) {
+	ns = kzalloc(sizeof(struct nandsim), GFP_KERNEL);
+	if (!ns) {
 		NS_ERR("unable to allocate core structures.\n");
 		return -ENOMEM;
 	}
+	chip	    = &ns->chip;
 	nsmtd       = nand_to_mtd(chip);
-	nand        = (struct nandsim *)(chip + 1);
-	nand_set_controller_data(chip, (void *)nand);
+	nand_set_controller_data(chip, (void *)ns);
 
-	/*
-	 * Register simulator's callbacks.
-	 */
-	chip->cmd_ctrl	 = ns_hwcontrol;
-	chip->read_byte  = ns_nand_read_byte;
-	chip->dev_ready  = ns_device_ready;
-	chip->write_buf  = ns_nand_write_buf;
-	chip->read_buf   = ns_nand_read_buf;
-	chip->read_word  = ns_nand_read_word;
 	chip->ecc.mode   = NAND_ECC_SOFT;
 	chip->ecc.algo   = NAND_ECC_HAMMING;
 	/* The NAND_SKIP_BBTSCAN option is necessary for 'overridesize' */
@@ -2276,9 +2250,11 @@
 
 	switch (bbt) {
 	case 2:
-		 chip->bbt_options |= NAND_BBT_NO_OOB;
+		chip->bbt_options |= NAND_BBT_NO_OOB;
+		/* fall through */
 	case 1:
-		 chip->bbt_options |= NAND_BBT_USE_FLASH;
+		chip->bbt_options |= NAND_BBT_USE_FLASH;
+		/* fall through */
 	case 0:
 		break;
 	default:
@@ -2291,19 +2267,19 @@
 	 * the initial ID read command correctly
 	 */
 	if (id_bytes[6] != 0xFF || id_bytes[7] != 0xFF)
-		nand->geom.idbytes = 8;
+		ns->geom.idbytes = 8;
 	else if (id_bytes[4] != 0xFF || id_bytes[5] != 0xFF)
-		nand->geom.idbytes = 6;
+		ns->geom.idbytes = 6;
 	else if (id_bytes[2] != 0xFF || id_bytes[3] != 0xFF)
-		nand->geom.idbytes = 4;
+		ns->geom.idbytes = 4;
 	else
-		nand->geom.idbytes = 2;
-	nand->regs.status = NS_STATUS_OK(nand);
-	nand->nxstate = STATE_UNKNOWN;
-	nand->options |= OPT_PAGE512; /* temporary value */
-	memcpy(nand->ids, id_bytes, sizeof(nand->ids));
+		ns->geom.idbytes = 2;
+	ns->regs.status = NS_STATUS_OK(ns);
+	ns->nxstate = STATE_UNKNOWN;
+	ns->options |= OPT_PAGE512; /* temporary value */
+	memcpy(ns->ids, id_bytes, sizeof(ns->ids));
 	if (bus_width == 16) {
-		nand->busw = 16;
+		ns->busw = 16;
 		chip->options |= NAND_BUSWIDTH_16;
 	}
 
@@ -2318,8 +2294,11 @@
 	if ((retval = parse_gravepages()) != 0)
 		goto error;
 
-	chip->dummy_controller.ops = &ns_controller_ops;
-	retval = nand_scan(nsmtd, 1);
+	nand_controller_init(&ns->base);
+	ns->base.ops = &ns_controller_ops;
+	chip->controller = &ns->base;
+
+	retval = nand_scan(chip, 1);
 	if (retval) {
 		NS_ERR("Could not scan NAND Simulator device\n");
 		goto error;
@@ -2327,16 +2306,23 @@
 
 	if (overridesize) {
 		uint64_t new_size = (uint64_t)nsmtd->erasesize << overridesize;
+		struct nand_memory_organization *memorg;
+		u64 targetsize;
+
+		memorg = nanddev_get_memorg(&chip->base);
+
 		if (new_size >> overridesize != nsmtd->erasesize) {
 			NS_ERR("overridesize is too big\n");
 			retval = -EINVAL;
 			goto err_exit;
 		}
+
 		/* N.B. This relies on nand_scan not doing anything with the size before we change it */
 		nsmtd->size = new_size;
-		chip->chipsize = new_size;
+		memorg->eraseblocks_per_lun = 1 << overridesize;
+		targetsize = nanddev_target_size(&chip->base);
 		chip->chip_shift = ffs(nsmtd->erasesize) + overridesize - 1;
-		chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
+		chip->pagemask = (targetsize >> chip->page_shift) - 1;
 	}
 
 	if ((retval = setup_wear_reporting(nsmtd)) != 0)
@@ -2348,27 +2334,27 @@
 	if ((retval = nand_create_bbt(chip)) != 0)
 		goto err_exit;
 
-	if ((retval = parse_badblocks(nand, nsmtd)) != 0)
+	if ((retval = parse_badblocks(ns, nsmtd)) != 0)
 		goto err_exit;
 
 	/* Register NAND partitions */
-	retval = mtd_device_register(nsmtd, &nand->partitions[0],
-				     nand->nbparts);
+	retval = mtd_device_register(nsmtd, &ns->partitions[0],
+				     ns->nbparts);
 	if (retval != 0)
 		goto err_exit;
 
-	if ((retval = nandsim_debugfs_create(nand)) != 0)
+	if ((retval = nandsim_debugfs_create(ns)) != 0)
 		goto err_exit;
 
         return 0;
 
 err_exit:
-	free_nandsim(nand);
-	nand_release(nsmtd);
-	for (i = 0;i < ARRAY_SIZE(nand->partitions); ++i)
-		kfree(nand->partitions[i].name);
+	free_nandsim(ns);
+	nand_release(chip);
+	for (i = 0;i < ARRAY_SIZE(ns->partitions); ++i)
+		kfree(ns->partitions[i].name);
 error:
-	kfree(chip);
+	kfree(ns);
 	free_lists();
 
 	return retval;
@@ -2386,10 +2372,10 @@
 	int i;
 
 	free_nandsim(ns);    /* Free nandsim private resources */
-	nand_release(nsmtd); /* Unregister driver */
+	nand_release(chip); /* Unregister driver */
 	for (i = 0;i < ARRAY_SIZE(ns->partitions); ++i)
 		kfree(ns->partitions[i].name);
-	kfree(mtd_to_nand(nsmtd));        /* Free other structures */
+	kfree(ns);        /* Free other structures */
 	free_lists();
 }
 
diff --git a/drivers/mtd/nand/raw/ndfc.c b/drivers/mtd/nand/raw/ndfc.c
index 540fa1a..d324396 100644
--- a/drivers/mtd/nand/raw/ndfc.c
+++ b/drivers/mtd/nand/raw/ndfc.c
@@ -1,3 +1,4 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
 /*
  *  Overview:
  *   Platform independent driver for NDFC (NanD Flash Controller)
@@ -14,12 +15,6 @@
  *  Copyright 2006 IBM
  *  Copyright 2008 PIKA Technologies
  *    Sean MacLennan <smaclennan@pikatech.com>
- *
- *  This program is free software; you can redistribute	 it and/or modify it
- *  under  the terms of	 the GNU General  Public License as published by the
- *  Free Software Foundation;  either version 2 of the	License, or (at your
- *  option) any later version.
- *
  */
 #include <linux/module.h>
 #include <linux/mtd/rawnand.h>
@@ -44,10 +39,9 @@
 
 static struct ndfc_controller ndfc_ctrl[NDFC_MAX_CS];
 
-static void ndfc_select_chip(struct mtd_info *mtd, int chip)
+static void ndfc_select_chip(struct nand_chip *nchip, int chip)
 {
 	uint32_t ccr;
-	struct nand_chip *nchip = mtd_to_nand(mtd);
 	struct ndfc_controller *ndfc = nand_get_controller_data(nchip);
 
 	ccr = in_be32(ndfc->ndfcbase + NDFC_CCR);
@@ -59,9 +53,8 @@
 	out_be32(ndfc->ndfcbase + NDFC_CCR, ccr);
 }
 
-static void ndfc_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
+static void ndfc_hwcontrol(struct nand_chip *chip, int cmd, unsigned int ctrl)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
 	struct ndfc_controller *ndfc = nand_get_controller_data(chip);
 
 	if (cmd == NAND_CMD_NONE)
@@ -73,18 +66,16 @@
 		writel(cmd & 0xFF, ndfc->ndfcbase + NDFC_ALE);
 }
 
-static int ndfc_ready(struct mtd_info *mtd)
+static int ndfc_ready(struct nand_chip *chip)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
 	struct ndfc_controller *ndfc = nand_get_controller_data(chip);
 
 	return in_be32(ndfc->ndfcbase + NDFC_STAT) & NDFC_STAT_IS_READY;
 }
 
-static void ndfc_enable_hwecc(struct mtd_info *mtd, int mode)
+static void ndfc_enable_hwecc(struct nand_chip *chip, int mode)
 {
 	uint32_t ccr;
-	struct nand_chip *chip = mtd_to_nand(mtd);
 	struct ndfc_controller *ndfc = nand_get_controller_data(chip);
 
 	ccr = in_be32(ndfc->ndfcbase + NDFC_CCR);
@@ -93,10 +84,9 @@
 	wmb();
 }
 
-static int ndfc_calculate_ecc(struct mtd_info *mtd,
+static int ndfc_calculate_ecc(struct nand_chip *chip,
 			      const u_char *dat, u_char *ecc_code)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
 	struct ndfc_controller *ndfc = nand_get_controller_data(chip);
 	uint32_t ecc;
 	uint8_t *p = (uint8_t *)&ecc;
@@ -118,9 +108,8 @@
  * functions. No further checking, as nand_base will always read/write
  * page aligned.
  */
-static void ndfc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
+static void ndfc_read_buf(struct nand_chip *chip, uint8_t *buf, int len)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
 	struct ndfc_controller *ndfc = nand_get_controller_data(chip);
 	uint32_t *p = (uint32_t *) buf;
 
@@ -128,9 +117,8 @@
 		*p++ = in_be32(ndfc->ndfcbase + NDFC_DATA);
 }
 
-static void ndfc_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
+static void ndfc_write_buf(struct nand_chip *chip, const uint8_t *buf, int len)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
 	struct ndfc_controller *ndfc = nand_get_controller_data(chip);
 	uint32_t *p = (uint32_t *) buf;
 
@@ -149,15 +137,15 @@
 	struct mtd_info *mtd = nand_to_mtd(chip);
 	int ret;
 
-	chip->IO_ADDR_R = ndfc->ndfcbase + NDFC_DATA;
-	chip->IO_ADDR_W = ndfc->ndfcbase + NDFC_DATA;
-	chip->cmd_ctrl = ndfc_hwcontrol;
-	chip->dev_ready = ndfc_ready;
-	chip->select_chip = ndfc_select_chip;
-	chip->chip_delay = 50;
+	chip->legacy.IO_ADDR_R = ndfc->ndfcbase + NDFC_DATA;
+	chip->legacy.IO_ADDR_W = ndfc->ndfcbase + NDFC_DATA;
+	chip->legacy.cmd_ctrl = ndfc_hwcontrol;
+	chip->legacy.dev_ready = ndfc_ready;
+	chip->legacy.select_chip = ndfc_select_chip;
+	chip->legacy.chip_delay = 50;
 	chip->controller = &ndfc->ndfc_control;
-	chip->read_buf = ndfc_read_buf;
-	chip->write_buf = ndfc_write_buf;
+	chip->legacy.read_buf = ndfc_read_buf;
+	chip->legacy.write_buf = ndfc_write_buf;
 	chip->ecc.correct = nand_correct_data;
 	chip->ecc.hwctl = ndfc_enable_hwecc;
 	chip->ecc.calculate = ndfc_calculate_ecc;
@@ -174,14 +162,14 @@
 		return -ENODEV;
 	nand_set_flash_node(chip, flash_np);
 
-	mtd->name = kasprintf(GFP_KERNEL, "%s.%s", dev_name(&ndfc->ofdev->dev),
-			      flash_np->name);
+	mtd->name = kasprintf(GFP_KERNEL, "%s.%pOFn", dev_name(&ndfc->ofdev->dev),
+			      flash_np);
 	if (!mtd->name) {
 		ret = -ENOMEM;
 		goto err;
 	}
 
-	ret = nand_scan(mtd, 1);
+	ret = nand_scan(chip, 1);
 	if (ret)
 		goto err;
 
@@ -258,7 +246,7 @@
 	struct ndfc_controller *ndfc = dev_get_drvdata(&ofdev->dev);
 	struct mtd_info *mtd = nand_to_mtd(&ndfc->chip);
 
-	nand_release(mtd);
+	nand_release(&ndfc->chip);
 	kfree(mtd->name);
 
 	return 0;
diff --git a/drivers/mtd/nand/raw/nuc900_nand.c b/drivers/mtd/nand/raw/nuc900_nand.c
deleted file mode 100644
index af5b32c..0000000
--- a/drivers/mtd/nand/raw/nuc900_nand.c
+++ /dev/null
@@ -1,306 +0,0 @@
-/*
- * Copyright © 2009 Nuvoton technology corporation.
- *
- * Wan ZongShun <mcuos.com@gmail.com>
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation;version 2 of the License.
- *
- */
-
-#include <linux/slab.h>
-#include <linux/module.h>
-#include <linux/interrupt.h>
-#include <linux/io.h>
-#include <linux/platform_device.h>
-#include <linux/delay.h>
-#include <linux/clk.h>
-#include <linux/err.h>
-
-#include <linux/mtd/mtd.h>
-#include <linux/mtd/rawnand.h>
-#include <linux/mtd/partitions.h>
-
-#define REG_FMICSR   	0x00
-#define REG_SMCSR    	0xa0
-#define REG_SMISR    	0xac
-#define REG_SMCMD    	0xb0
-#define REG_SMADDR   	0xb4
-#define REG_SMDATA   	0xb8
-
-#define RESET_FMI	0x01
-#define NAND_EN		0x08
-#define READYBUSY	(0x01 << 18)
-
-#define SWRST		0x01
-#define PSIZE		(0x01 << 3)
-#define DMARWEN		(0x03 << 1)
-#define BUSWID		(0x01 << 4)
-#define ECC4EN		(0x01 << 5)
-#define WP		(0x01 << 24)
-#define NANDCS		(0x01 << 25)
-#define ENDADDR		(0x01 << 31)
-
-#define read_data_reg(dev)		\
-	__raw_readl((dev)->reg + REG_SMDATA)
-
-#define write_data_reg(dev, val)	\
-	__raw_writel((val), (dev)->reg + REG_SMDATA)
-
-#define write_cmd_reg(dev, val)		\
-	__raw_writel((val), (dev)->reg + REG_SMCMD)
-
-#define write_addr_reg(dev, val)	\
-	__raw_writel((val), (dev)->reg + REG_SMADDR)
-
-struct nuc900_nand {
-	struct nand_chip chip;
-	void __iomem *reg;
-	struct clk *clk;
-	spinlock_t lock;
-};
-
-static inline struct nuc900_nand *mtd_to_nuc900(struct mtd_info *mtd)
-{
-	return container_of(mtd_to_nand(mtd), struct nuc900_nand, chip);
-}
-
-static const struct mtd_partition partitions[] = {
-	{
-	 .name = "NAND FS 0",
-	 .offset = 0,
-	 .size = 8 * 1024 * 1024
-	},
-	{
-	 .name = "NAND FS 1",
-	 .offset = MTDPART_OFS_APPEND,
-	 .size = MTDPART_SIZ_FULL
-	}
-};
-
-static unsigned char nuc900_nand_read_byte(struct mtd_info *mtd)
-{
-	unsigned char ret;
-	struct nuc900_nand *nand = mtd_to_nuc900(mtd);
-
-	ret = (unsigned char)read_data_reg(nand);
-
-	return ret;
-}
-
-static void nuc900_nand_read_buf(struct mtd_info *mtd,
-				 unsigned char *buf, int len)
-{
-	int i;
-	struct nuc900_nand *nand = mtd_to_nuc900(mtd);
-
-	for (i = 0; i < len; i++)
-		buf[i] = (unsigned char)read_data_reg(nand);
-}
-
-static void nuc900_nand_write_buf(struct mtd_info *mtd,
-				  const unsigned char *buf, int len)
-{
-	int i;
-	struct nuc900_nand *nand = mtd_to_nuc900(mtd);
-
-	for (i = 0; i < len; i++)
-		write_data_reg(nand, buf[i]);
-}
-
-static int nuc900_check_rb(struct nuc900_nand *nand)
-{
-	unsigned int val;
-	spin_lock(&nand->lock);
-	val = __raw_readl(nand->reg + REG_SMISR);
-	val &= READYBUSY;
-	spin_unlock(&nand->lock);
-
-	return val;
-}
-
-static int nuc900_nand_devready(struct mtd_info *mtd)
-{
-	struct nuc900_nand *nand = mtd_to_nuc900(mtd);
-	int ready;
-
-	ready = (nuc900_check_rb(nand)) ? 1 : 0;
-	return ready;
-}
-
-static void nuc900_nand_command_lp(struct mtd_info *mtd, unsigned int command,
-				   int column, int page_addr)
-{
-	register struct nand_chip *chip = mtd_to_nand(mtd);
-	struct nuc900_nand *nand = mtd_to_nuc900(mtd);
-
-	if (command == NAND_CMD_READOOB) {
-		column += mtd->writesize;
-		command = NAND_CMD_READ0;
-	}
-
-	write_cmd_reg(nand, command & 0xff);
-
-	if (column != -1 || page_addr != -1) {
-
-		if (column != -1) {
-			if (chip->options & NAND_BUSWIDTH_16 &&
-					!nand_opcode_8bits(command))
-				column >>= 1;
-			write_addr_reg(nand, column);
-			write_addr_reg(nand, column >> 8 | ENDADDR);
-		}
-		if (page_addr != -1) {
-			write_addr_reg(nand, page_addr);
-
-			if (chip->options & NAND_ROW_ADDR_3) {
-				write_addr_reg(nand, page_addr >> 8);
-				write_addr_reg(nand, page_addr >> 16 | ENDADDR);
-			} else {
-				write_addr_reg(nand, page_addr >> 8 | ENDADDR);
-			}
-		}
-	}
-
-	switch (command) {
-	case NAND_CMD_CACHEDPROG:
-	case NAND_CMD_PAGEPROG:
-	case NAND_CMD_ERASE1:
-	case NAND_CMD_ERASE2:
-	case NAND_CMD_SEQIN:
-	case NAND_CMD_RNDIN:
-	case NAND_CMD_STATUS:
-		return;
-
-	case NAND_CMD_RESET:
-		if (chip->dev_ready)
-			break;
-		udelay(chip->chip_delay);
-
-		write_cmd_reg(nand, NAND_CMD_STATUS);
-		write_cmd_reg(nand, command);
-
-		while (!nuc900_check_rb(nand))
-			;
-
-		return;
-
-	case NAND_CMD_RNDOUT:
-		write_cmd_reg(nand, NAND_CMD_RNDOUTSTART);
-		return;
-
-	case NAND_CMD_READ0:
-
-		write_cmd_reg(nand, NAND_CMD_READSTART);
-	default:
-
-		if (!chip->dev_ready) {
-			udelay(chip->chip_delay);
-			return;
-		}
-	}
-
-	/* Apply this short delay always to ensure that we do wait tWB in
-	 * any case on any machine. */
-	ndelay(100);
-
-	while (!chip->dev_ready(mtd))
-		;
-}
-
-
-static void nuc900_nand_enable(struct nuc900_nand *nand)
-{
-	unsigned int val;
-	spin_lock(&nand->lock);
-	__raw_writel(RESET_FMI, (nand->reg + REG_FMICSR));
-
-	val = __raw_readl(nand->reg + REG_FMICSR);
-
-	if (!(val & NAND_EN))
-		__raw_writel(val | NAND_EN, nand->reg + REG_FMICSR);
-
-	val = __raw_readl(nand->reg + REG_SMCSR);
-
-	val &= ~(SWRST|PSIZE|DMARWEN|BUSWID|ECC4EN|NANDCS);
-	val |= WP;
-
-	__raw_writel(val, nand->reg + REG_SMCSR);
-
-	spin_unlock(&nand->lock);
-}
-
-static int nuc900_nand_probe(struct platform_device *pdev)
-{
-	struct nuc900_nand *nuc900_nand;
-	struct nand_chip *chip;
-	struct mtd_info *mtd;
-	struct resource *res;
-
-	nuc900_nand = devm_kzalloc(&pdev->dev, sizeof(struct nuc900_nand),
-				   GFP_KERNEL);
-	if (!nuc900_nand)
-		return -ENOMEM;
-	chip = &(nuc900_nand->chip);
-	mtd = nand_to_mtd(chip);
-
-	mtd->dev.parent		= &pdev->dev;
-	spin_lock_init(&nuc900_nand->lock);
-
-	nuc900_nand->clk = devm_clk_get(&pdev->dev, NULL);
-	if (IS_ERR(nuc900_nand->clk))
-		return -ENOENT;
-	clk_enable(nuc900_nand->clk);
-
-	chip->cmdfunc		= nuc900_nand_command_lp;
-	chip->dev_ready		= nuc900_nand_devready;
-	chip->read_byte		= nuc900_nand_read_byte;
-	chip->write_buf		= nuc900_nand_write_buf;
-	chip->read_buf		= nuc900_nand_read_buf;
-	chip->chip_delay	= 50;
-	chip->options		= 0;
-	chip->ecc.mode		= NAND_ECC_SOFT;
-	chip->ecc.algo		= NAND_ECC_HAMMING;
-
-	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
-	nuc900_nand->reg = devm_ioremap_resource(&pdev->dev, res);
-	if (IS_ERR(nuc900_nand->reg))
-		return PTR_ERR(nuc900_nand->reg);
-
-	nuc900_nand_enable(nuc900_nand);
-
-	if (nand_scan(mtd, 1))
-		return -ENXIO;
-
-	mtd_device_register(mtd, partitions, ARRAY_SIZE(partitions));
-
-	platform_set_drvdata(pdev, nuc900_nand);
-
-	return 0;
-}
-
-static int nuc900_nand_remove(struct platform_device *pdev)
-{
-	struct nuc900_nand *nuc900_nand = platform_get_drvdata(pdev);
-
-	nand_release(nand_to_mtd(&nuc900_nand->chip));
-	clk_disable(nuc900_nand->clk);
-
-	return 0;
-}
-
-static struct platform_driver nuc900_nand_driver = {
-	.probe		= nuc900_nand_probe,
-	.remove		= nuc900_nand_remove,
-	.driver		= {
-		.name	= "nuc900-fmi",
-	},
-};
-
-module_platform_driver(nuc900_nand_driver);
-
-MODULE_AUTHOR("Wan ZongShun <mcuos.com@gmail.com>");
-MODULE_DESCRIPTION("w90p910/NUC9xx nand driver!");
-MODULE_LICENSE("GPL");
-MODULE_ALIAS("platform:nuc900-fmi");
diff --git a/drivers/mtd/nand/raw/omap2.c b/drivers/mtd/nand/raw/omap2.c
index 4546ac0..6ec65f4 100644
--- a/drivers/mtd/nand/raw/omap2.c
+++ b/drivers/mtd/nand/raw/omap2.c
@@ -1,11 +1,8 @@
+// SPDX-License-Identifier: GPL-2.0-only
 /*
  * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
  * Copyright © 2004 Micron Technology Inc.
  * Copyright © 2004 David Brownell
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
  */
 
 #include <linux/platform_device.h>
@@ -240,7 +237,7 @@
 
 /**
  * omap_hwcontrol - hardware specific access to control-lines
- * @mtd: MTD device structure
+ * @chip: NAND chip object
  * @cmd: command to device
  * @ctrl:
  * NAND_NCE: bit 0 -> don't care
@@ -249,9 +246,9 @@
  *
  * NOTE: boards may use different bits for these!!
  */
-static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
+static void omap_hwcontrol(struct nand_chip *chip, int cmd, unsigned int ctrl)
 {
-	struct omap_nand_info *info = mtd_to_omap(mtd);
+	struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
 
 	if (cmd != NAND_CMD_NONE) {
 		if (ctrl & NAND_CLE)
@@ -275,7 +272,7 @@
 {
 	struct nand_chip *nand = mtd_to_nand(mtd);
 
-	ioread8_rep(nand->IO_ADDR_R, buf, len);
+	ioread8_rep(nand->legacy.IO_ADDR_R, buf, len);
 }
 
 /**
@@ -291,7 +288,7 @@
 	bool status;
 
 	while (len--) {
-		iowrite8(*p++, info->nand.IO_ADDR_W);
+		iowrite8(*p++, info->nand.legacy.IO_ADDR_W);
 		/* wait until buffer is available for write */
 		do {
 			status = info->ops->nand_writebuffer_empty();
@@ -309,7 +306,7 @@
 {
 	struct nand_chip *nand = mtd_to_nand(mtd);
 
-	ioread16_rep(nand->IO_ADDR_R, buf, len / 2);
+	ioread16_rep(nand->legacy.IO_ADDR_R, buf, len / 2);
 }
 
 /**
@@ -327,7 +324,7 @@
 	len >>= 1;
 
 	while (len--) {
-		iowrite16(*p++, info->nand.IO_ADDR_W);
+		iowrite16(*p++, info->nand.legacy.IO_ADDR_W);
 		/* wait until buffer is available for write */
 		do {
 			status = info->ops->nand_writebuffer_empty();
@@ -337,12 +334,13 @@
 
 /**
  * omap_read_buf_pref - read data from NAND controller into buffer
- * @mtd: MTD device structure
+ * @chip: NAND chip object
  * @buf: buffer to store date
  * @len: number of bytes to read
  */
-static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len)
+static void omap_read_buf_pref(struct nand_chip *chip, u_char *buf, int len)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	struct omap_nand_info *info = mtd_to_omap(mtd);
 	uint32_t r_count = 0;
 	int ret = 0;
@@ -372,7 +370,7 @@
 			r_count = readl(info->reg.gpmc_prefetch_status);
 			r_count = PREFETCH_STATUS_FIFO_CNT(r_count);
 			r_count = r_count >> 2;
-			ioread32_rep(info->nand.IO_ADDR_R, p, r_count);
+			ioread32_rep(info->nand.legacy.IO_ADDR_R, p, r_count);
 			p += r_count;
 			len -= r_count << 2;
 		} while (len);
@@ -383,13 +381,14 @@
 
 /**
  * omap_write_buf_pref - write buffer to NAND controller
- * @mtd: MTD device structure
+ * @chip: NAND chip object
  * @buf: data buffer
  * @len: number of bytes to write
  */
-static void omap_write_buf_pref(struct mtd_info *mtd,
-					const u_char *buf, int len)
+static void omap_write_buf_pref(struct nand_chip *chip, const u_char *buf,
+				int len)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	struct omap_nand_info *info = mtd_to_omap(mtd);
 	uint32_t w_count = 0;
 	int i = 0, ret = 0;
@@ -399,7 +398,7 @@
 
 	/* take care of subpage writes */
 	if (len % 2 != 0) {
-		writeb(*buf, info->nand.IO_ADDR_W);
+		writeb(*buf, info->nand.legacy.IO_ADDR_W);
 		p = (u16 *)(buf + 1);
 		len--;
 	}
@@ -419,7 +418,7 @@
 			w_count = PREFETCH_STATUS_FIFO_CNT(w_count);
 			w_count = w_count >> 1;
 			for (i = 0; (i < w_count) && len; i++, len -= 2)
-				iowrite16(*p++, info->nand.IO_ADDR_W);
+				iowrite16(*p++, info->nand.legacy.IO_ADDR_W);
 		}
 		/* wait for data to flushed-out before reset the prefetch */
 		tim = 0;
@@ -528,14 +527,17 @@
 
 /**
  * omap_read_buf_dma_pref - read data from NAND controller into buffer
- * @mtd: MTD device structure
+ * @chip: NAND chip object
  * @buf: buffer to store date
  * @len: number of bytes to read
  */
-static void omap_read_buf_dma_pref(struct mtd_info *mtd, u_char *buf, int len)
+static void omap_read_buf_dma_pref(struct nand_chip *chip, u_char *buf,
+				   int len)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
+
 	if (len <= mtd->oobsize)
-		omap_read_buf_pref(mtd, buf, len);
+		omap_read_buf_pref(chip, buf, len);
 	else
 		/* start transfer in DMA mode */
 		omap_nand_dma_transfer(mtd, buf, len, 0x0);
@@ -543,18 +545,20 @@
 
 /**
  * omap_write_buf_dma_pref - write buffer to NAND controller
- * @mtd: MTD device structure
+ * @chip: NAND chip object
  * @buf: data buffer
  * @len: number of bytes to write
  */
-static void omap_write_buf_dma_pref(struct mtd_info *mtd,
-					const u_char *buf, int len)
+static void omap_write_buf_dma_pref(struct nand_chip *chip, const u_char *buf,
+				    int len)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
+
 	if (len <= mtd->oobsize)
-		omap_write_buf_pref(mtd, buf, len);
+		omap_write_buf_pref(chip, buf, len);
 	else
 		/* start transfer in DMA mode */
-		omap_nand_dma_transfer(mtd, (u_char *) buf, len, 0x1);
+		omap_nand_dma_transfer(mtd, (u_char *)buf, len, 0x1);
 }
 
 /*
@@ -578,14 +582,14 @@
 			bytes = info->buf_len;
 		else if (!info->buf_len)
 			bytes = 0;
-		iowrite32_rep(info->nand.IO_ADDR_W,
-						(u32 *)info->buf, bytes >> 2);
+		iowrite32_rep(info->nand.legacy.IO_ADDR_W, (u32 *)info->buf,
+			      bytes >> 2);
 		info->buf = info->buf + bytes;
 		info->buf_len -= bytes;
 
 	} else {
-		ioread32_rep(info->nand.IO_ADDR_R,
-						(u32 *)info->buf, bytes >> 2);
+		ioread32_rep(info->nand.legacy.IO_ADDR_R, (u32 *)info->buf,
+			     bytes >> 2);
 		info->buf = info->buf + bytes;
 
 		if (this_irq == info->gpmc_irq_count)
@@ -605,17 +609,19 @@
 
 /*
  * omap_read_buf_irq_pref - read data from NAND controller into buffer
- * @mtd: MTD device structure
+ * @chip: NAND chip object
  * @buf: buffer to store date
  * @len: number of bytes to read
  */
-static void omap_read_buf_irq_pref(struct mtd_info *mtd, u_char *buf, int len)
+static void omap_read_buf_irq_pref(struct nand_chip *chip, u_char *buf,
+				   int len)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	struct omap_nand_info *info = mtd_to_omap(mtd);
 	int ret = 0;
 
 	if (len <= mtd->oobsize) {
-		omap_read_buf_pref(mtd, buf, len);
+		omap_read_buf_pref(chip, buf, len);
 		return;
 	}
 
@@ -651,20 +657,21 @@
 
 /*
  * omap_write_buf_irq_pref - write buffer to NAND controller
- * @mtd: MTD device structure
+ * @chip: NAND chip object
  * @buf: data buffer
  * @len: number of bytes to write
  */
-static void omap_write_buf_irq_pref(struct mtd_info *mtd,
-					const u_char *buf, int len)
+static void omap_write_buf_irq_pref(struct nand_chip *chip, const u_char *buf,
+				    int len)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	struct omap_nand_info *info = mtd_to_omap(mtd);
 	int ret = 0;
 	unsigned long tim, limit;
 	u32 val;
 
 	if (len <= mtd->oobsize) {
-		omap_write_buf_pref(mtd, buf, len);
+		omap_write_buf_pref(chip, buf, len);
 		return;
 	}
 
@@ -857,7 +864,7 @@
 
 /**
  * omap_correct_data - Compares the ECC read with HW generated ECC
- * @mtd: MTD device structure
+ * @chip: NAND chip object
  * @dat: page data
  * @read_ecc: ecc read from nand flash
  * @calc_ecc: ecc read from HW ECC registers
@@ -869,10 +876,10 @@
  * corrected errors is returned. If uncorrectable errors exist, %-1 is
  * returned.
  */
-static int omap_correct_data(struct mtd_info *mtd, u_char *dat,
-				u_char *read_ecc, u_char *calc_ecc)
+static int omap_correct_data(struct nand_chip *chip, u_char *dat,
+			     u_char *read_ecc, u_char *calc_ecc)
 {
-	struct omap_nand_info *info = mtd_to_omap(mtd);
+	struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
 	int blockCnt = 0, i = 0, ret = 0;
 	int stat = 0;
 
@@ -900,7 +907,7 @@
 
 /**
  * omap_calcuate_ecc - Generate non-inverted ECC bytes.
- * @mtd: MTD device structure
+ * @chip: NAND chip object
  * @dat: The pointer to data on which ecc is computed
  * @ecc_code: The ecc_code buffer
  *
@@ -910,10 +917,10 @@
  * an erased page will produce an ECC mismatch between generated and read
  * ECC bytes that has to be dealt with separately.
  */
-static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
-				u_char *ecc_code)
+static int omap_calculate_ecc(struct nand_chip *chip, const u_char *dat,
+			      u_char *ecc_code)
 {
-	struct omap_nand_info *info = mtd_to_omap(mtd);
+	struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
 	u32 val;
 
 	val = readl(info->reg.gpmc_ecc_config);
@@ -935,10 +942,9 @@
  * @mtd: MTD device structure
  * @mode: Read/Write mode
  */
-static void omap_enable_hwecc(struct mtd_info *mtd, int mode)
+static void omap_enable_hwecc(struct nand_chip *chip, int mode)
 {
-	struct omap_nand_info *info = mtd_to_omap(mtd);
-	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
 	unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
 	u32 val;
 
@@ -972,8 +978,7 @@
 
 /**
  * omap_wait - wait until the command is done
- * @mtd: MTD device structure
- * @chip: NAND Chip structure
+ * @this: NAND Chip structure
  *
  * Wait function is called during Program and erase operations and
  * the way it is called from MTD layer, we should wait till the NAND
@@ -982,17 +987,13 @@
  * Erase can take up to 400ms and program up to 20ms according to
  * general NAND and SmartMedia specs
  */
-static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip)
+static int omap_wait(struct nand_chip *this)
 {
-	struct nand_chip *this = mtd_to_nand(mtd);
-	struct omap_nand_info *info = mtd_to_omap(mtd);
+	struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(this));
 	unsigned long timeo = jiffies;
-	int status, state = this->state;
+	int status;
 
-	if (state == FL_ERASING)
-		timeo += msecs_to_jiffies(400);
-	else
-		timeo += msecs_to_jiffies(20);
+	timeo += msecs_to_jiffies(400);
 
 	writeb(NAND_CMD_STATUS & 0xFF, info->reg.gpmc_nand_command);
 	while (time_before(jiffies, timeo)) {
@@ -1012,9 +1013,9 @@
  *
  * Returns true if ready and false if busy.
  */
-static int omap_dev_ready(struct mtd_info *mtd)
+static int omap_dev_ready(struct nand_chip *chip)
 {
-	struct omap_nand_info *info = mtd_to_omap(mtd);
+	struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
 
 	return gpiod_get_value(info->ready_gpiod);
 }
@@ -1030,13 +1031,13 @@
  * eccsize0 = 0  (no additional protected byte in spare area)
  * eccsize1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area)
  */
-static void __maybe_unused omap_enable_hwecc_bch(struct mtd_info *mtd, int mode)
+static void __maybe_unused omap_enable_hwecc_bch(struct nand_chip *chip,
+						 int mode)
 {
 	unsigned int bch_type;
 	unsigned int dev_width, nsectors;
-	struct omap_nand_info *info = mtd_to_omap(mtd);
+	struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
 	enum omap_ecc ecc_opt = info->ecc_opt;
-	struct nand_chip *chip = mtd_to_nand(mtd);
 	u32 val, wr_mode;
 	unsigned int ecc_size1, ecc_size0;
 
@@ -1256,7 +1257,7 @@
 
 /**
  * omap_calculate_ecc_bch_sw - ECC generator for sector for SW based correction
- * @mtd:	MTD device structure
+ * @chip:	NAND chip object
  * @dat:	The pointer to data on which ecc is computed
  * @ecc_code:	The ecc_code buffer
  *
@@ -1264,10 +1265,10 @@
  * when SW based correction is required as ECC is required for one sector
  * at a time.
  */
-static int omap_calculate_ecc_bch_sw(struct mtd_info *mtd,
+static int omap_calculate_ecc_bch_sw(struct nand_chip *chip,
 				     const u_char *dat, u_char *ecc_calc)
 {
-	return _omap_calculate_ecc_bch(mtd, dat, ecc_calc, 0);
+	return _omap_calculate_ecc_bch(nand_to_mtd(chip), dat, ecc_calc, 0);
 }
 
 /**
@@ -1339,7 +1340,7 @@
 
 /**
  * omap_elm_correct_data - corrects page data area in case error reported
- * @mtd:	MTD device structure
+ * @chip:	NAND chip object
  * @data:	page data
  * @read_ecc:	ecc read from nand flash
  * @calc_ecc:	ecc read from HW ECC registers
@@ -1348,10 +1349,10 @@
  * In case of non-zero ecc vector, first filter out erased-pages, and
  * then process data via ELM to detect bit-flips.
  */
-static int omap_elm_correct_data(struct mtd_info *mtd, u_char *data,
-				u_char *read_ecc, u_char *calc_ecc)
+static int omap_elm_correct_data(struct nand_chip *chip, u_char *data,
+				 u_char *read_ecc, u_char *calc_ecc)
 {
-	struct omap_nand_info *info = mtd_to_omap(mtd);
+	struct omap_nand_info *info = mtd_to_omap(nand_to_mtd(chip));
 	struct nand_ecc_ctrl *ecc = &info->nand.ecc;
 	int eccsteps = info->nand.ecc.steps;
 	int i , j, stat = 0;
@@ -1500,7 +1501,7 @@
 		}
 
 		/* Update number of correctable errors */
-		stat += err_vec[i].error_count;
+		stat = max_t(unsigned int, stat, err_vec[i].error_count);
 
 		/* Update page data with sector size */
 		data += ecc->size;
@@ -1512,7 +1513,6 @@
 
 /**
  * omap_write_page_bch - BCH ecc based write page function for entire page
- * @mtd:		mtd info structure
  * @chip:		nand chip info structure
  * @buf:		data buffer
  * @oob_required:	must write chip->oob_poi to OOB
@@ -1520,19 +1520,20 @@
  *
  * Custom write page method evolved to support multi sector writing in one shot
  */
-static int omap_write_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
-			       const uint8_t *buf, int oob_required, int page)
+static int omap_write_page_bch(struct nand_chip *chip, const uint8_t *buf,
+			       int oob_required, int page)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	int ret;
 	uint8_t *ecc_calc = chip->ecc.calc_buf;
 
 	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
 
 	/* Enable GPMC ecc engine */
-	chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
+	chip->ecc.hwctl(chip, NAND_ECC_WRITE);
 
 	/* Write data */
-	chip->write_buf(mtd, buf, mtd->writesize);
+	chip->legacy.write_buf(chip, buf, mtd->writesize);
 
 	/* Update ecc vector from GPMC result registers */
 	omap_calculate_ecc_bch_multi(mtd, buf, &ecc_calc[0]);
@@ -1543,14 +1544,13 @@
 		return ret;
 
 	/* Write ecc vector to OOB area */
-	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
+	chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize);
 
 	return nand_prog_page_end_op(chip);
 }
 
 /**
  * omap_write_subpage_bch - BCH hardware ECC based subpage write
- * @mtd:	mtd info structure
  * @chip:	nand chip info structure
  * @offset:	column address of subpage within the page
  * @data_len:	data length
@@ -1560,11 +1560,11 @@
  *
  * OMAP optimized subpage write method.
  */
-static int omap_write_subpage_bch(struct mtd_info *mtd,
-				  struct nand_chip *chip, u32 offset,
+static int omap_write_subpage_bch(struct nand_chip *chip, u32 offset,
 				  u32 data_len, const u8 *buf,
 				  int oob_required, int page)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	u8 *ecc_calc = chip->ecc.calc_buf;
 	int ecc_size      = chip->ecc.size;
 	int ecc_bytes     = chip->ecc.bytes;
@@ -1582,10 +1582,10 @@
 	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
 
 	/* Enable GPMC ECC engine */
-	chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
+	chip->ecc.hwctl(chip, NAND_ECC_WRITE);
 
 	/* Write data */
-	chip->write_buf(mtd, buf, mtd->writesize);
+	chip->legacy.write_buf(chip, buf, mtd->writesize);
 
 	for (step = 0; step < ecc_steps; step++) {
 		/* mask ECC of un-touched subpages by padding 0xFF */
@@ -1610,14 +1610,13 @@
 		return ret;
 
 	/* write OOB buffer to NAND device */
-	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
+	chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize);
 
 	return nand_prog_page_end_op(chip);
 }
 
 /**
  * omap_read_page_bch - BCH ecc based page read function for entire page
- * @mtd:		mtd info structure
  * @chip:		nand chip info structure
  * @buf:		buffer to store read data
  * @oob_required:	caller requires OOB data read to chip->oob_poi
@@ -1630,9 +1629,10 @@
  * ecc engine enabled. ecc vector updated after read of OOB data.
  * For non error pages ecc vector reported as zero.
  */
-static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
-				uint8_t *buf, int oob_required, int page)
+static int omap_read_page_bch(struct nand_chip *chip, uint8_t *buf,
+			      int oob_required, int page)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	uint8_t *ecc_calc = chip->ecc.calc_buf;
 	uint8_t *ecc_code = chip->ecc.code_buf;
 	int stat, ret;
@@ -1641,10 +1641,10 @@
 	nand_read_page_op(chip, page, 0, NULL, 0);
 
 	/* Enable GPMC ecc engine */
-	chip->ecc.hwctl(mtd, NAND_ECC_READ);
+	chip->ecc.hwctl(chip, NAND_ECC_READ);
 
 	/* Read data */
-	chip->read_buf(mtd, buf, mtd->writesize);
+	chip->legacy.read_buf(chip, buf, mtd->writesize);
 
 	/* Read oob bytes */
 	nand_change_read_column_op(chip,
@@ -1660,7 +1660,7 @@
 	if (ret)
 		return ret;
 
-	stat = chip->ecc.correct(mtd, buf, ecc_code, ecc_calc);
+	stat = chip->ecc.correct(chip, buf, ecc_code, ecc_calc);
 
 	if (stat < 0) {
 		mtd->ecc_stats.failed++;
@@ -1722,9 +1722,9 @@
 		break;
 	}
 
-	if (ecc_needs_bch && !IS_ENABLED(CONFIG_MTD_NAND_ECC_BCH)) {
+	if (ecc_needs_bch && !IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_BCH)) {
 		dev_err(&info->pdev->dev,
-			"CONFIG_MTD_NAND_ECC_BCH not enabled\n");
+			"CONFIG_MTD_NAND_ECC_SW_BCH not enabled\n");
 		return false;
 	}
 	if (ecc_needs_omap_bch && !IS_ENABLED(CONFIG_MTD_NAND_OMAP_BCH)) {
@@ -1927,8 +1927,8 @@
 	/* Re-populate low-level callbacks based on xfer modes */
 	switch (info->xfer_type) {
 	case NAND_OMAP_PREFETCH_POLLED:
-		chip->read_buf = omap_read_buf_pref;
-		chip->write_buf = omap_write_buf_pref;
+		chip->legacy.read_buf = omap_read_buf_pref;
+		chip->legacy.write_buf = omap_write_buf_pref;
 		break;
 
 	case NAND_OMAP_POLLED:
@@ -1938,7 +1938,7 @@
 	case NAND_OMAP_PREFETCH_DMA:
 		dma_cap_zero(mask);
 		dma_cap_set(DMA_SLAVE, mask);
-		info->dma = dma_request_chan(dev, "rxtx");
+		info->dma = dma_request_chan(dev->parent, "rxtx");
 
 		if (IS_ERR(info->dma)) {
 			dev_err(dev, "DMA engine request failed\n");
@@ -1960,8 +1960,8 @@
 					err);
 				return err;
 			}
-			chip->read_buf = omap_read_buf_dma_pref;
-			chip->write_buf = omap_write_buf_dma_pref;
+			chip->legacy.read_buf = omap_read_buf_dma_pref;
+			chip->legacy.write_buf = omap_write_buf_dma_pref;
 		}
 		break;
 
@@ -1996,8 +1996,8 @@
 			return err;
 		}
 
-		chip->read_buf = omap_read_buf_irq_pref;
-		chip->write_buf = omap_write_buf_irq_pref;
+		chip->legacy.read_buf = omap_read_buf_irq_pref;
+		chip->legacy.write_buf = omap_write_buf_irq_pref;
 
 		break;
 
@@ -2167,11 +2167,8 @@
 };
 
 /* Shared among all NAND instances to synchronize access to the ECC Engine */
-static struct nand_controller omap_gpmc_controller = {
-	.lock = __SPIN_LOCK_UNLOCKED(omap_gpmc_controller.lock),
-	.wq = __WAIT_QUEUE_HEAD_INITIALIZER(omap_gpmc_controller.wq),
-	.ops = &omap_nand_controller_ops,
-};
+static struct nand_controller omap_gpmc_controller;
+static bool omap_gpmc_controller_initialized;
 
 static int omap_nand_probe(struct platform_device *pdev)
 {
@@ -2215,16 +2212,22 @@
 	}
 
 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
-	nand_chip->IO_ADDR_R = devm_ioremap_resource(&pdev->dev, res);
-	if (IS_ERR(nand_chip->IO_ADDR_R))
-		return PTR_ERR(nand_chip->IO_ADDR_R);
+	nand_chip->legacy.IO_ADDR_R = devm_ioremap_resource(&pdev->dev, res);
+	if (IS_ERR(nand_chip->legacy.IO_ADDR_R))
+		return PTR_ERR(nand_chip->legacy.IO_ADDR_R);
 
 	info->phys_base = res->start;
 
+	if (!omap_gpmc_controller_initialized) {
+		omap_gpmc_controller.ops = &omap_nand_controller_ops;
+		nand_controller_init(&omap_gpmc_controller);
+		omap_gpmc_controller_initialized = true;
+	}
+
 	nand_chip->controller = &omap_gpmc_controller;
 
-	nand_chip->IO_ADDR_W = nand_chip->IO_ADDR_R;
-	nand_chip->cmd_ctrl  = omap_hwcontrol;
+	nand_chip->legacy.IO_ADDR_W = nand_chip->legacy.IO_ADDR_R;
+	nand_chip->legacy.cmd_ctrl  = omap_hwcontrol;
 
 	info->ready_gpiod = devm_gpiod_get_optional(&pdev->dev, "rb",
 						    GPIOD_IN);
@@ -2241,11 +2244,11 @@
 	 * device and read status register until you get a failure or success
 	 */
 	if (info->ready_gpiod) {
-		nand_chip->dev_ready = omap_dev_ready;
-		nand_chip->chip_delay = 0;
+		nand_chip->legacy.dev_ready = omap_dev_ready;
+		nand_chip->legacy.chip_delay = 0;
 	} else {
-		nand_chip->waitfunc = omap_wait;
-		nand_chip->chip_delay = 50;
+		nand_chip->legacy.waitfunc = omap_wait;
+		nand_chip->legacy.chip_delay = 50;
 	}
 
 	if (info->flash_bbt)
@@ -2254,7 +2257,7 @@
 	/* scan NAND device connected to chip controller */
 	nand_chip->options |= info->devsize & NAND_BUSWIDTH_16;
 
-	err = nand_scan(mtd, 1);
+	err = nand_scan(nand_chip, 1);
 	if (err)
 		goto return_error;
 
@@ -2290,7 +2293,7 @@
 	}
 	if (info->dma)
 		dma_release_channel(info->dma);
-	nand_release(mtd);
+	nand_release(nand_chip);
 	return 0;
 }
 
diff --git a/drivers/mtd/nand/raw/omap_elm.c b/drivers/mtd/nand/raw/omap_elm.c
index a3f32f9..5502ffb 100644
--- a/drivers/mtd/nand/raw/omap_elm.c
+++ b/drivers/mtd/nand/raw/omap_elm.c
@@ -1,18 +1,8 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
 /*
  * Error Location Module
  *
  * Copyright (C) 2012 Texas Instruments Incorporated - http://www.ti.com/
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
  */
 
 #define DRIVER_NAME	"omap-elm"
@@ -465,11 +455,13 @@
 					ELM_SYNDROME_FRAGMENT_5 + offset);
 			regs->elm_syndrome_fragment_4[i] = elm_read_reg(info,
 					ELM_SYNDROME_FRAGMENT_4 + offset);
+			/* fall through */
 		case BCH8_ECC:
 			regs->elm_syndrome_fragment_3[i] = elm_read_reg(info,
 					ELM_SYNDROME_FRAGMENT_3 + offset);
 			regs->elm_syndrome_fragment_2[i] = elm_read_reg(info,
 					ELM_SYNDROME_FRAGMENT_2 + offset);
+			/* fall through */
 		case BCH4_ECC:
 			regs->elm_syndrome_fragment_1[i] = elm_read_reg(info,
 					ELM_SYNDROME_FRAGMENT_1 + offset);
@@ -511,11 +503,13 @@
 					regs->elm_syndrome_fragment_5[i]);
 			elm_write_reg(info, ELM_SYNDROME_FRAGMENT_4 + offset,
 					regs->elm_syndrome_fragment_4[i]);
+			/* fall through */
 		case BCH8_ECC:
 			elm_write_reg(info, ELM_SYNDROME_FRAGMENT_3 + offset,
 					regs->elm_syndrome_fragment_3[i]);
 			elm_write_reg(info, ELM_SYNDROME_FRAGMENT_2 + offset,
 					regs->elm_syndrome_fragment_2[i]);
+			/* fall through */
 		case BCH4_ECC:
 			elm_write_reg(info, ELM_SYNDROME_FRAGMENT_1 + offset,
 					regs->elm_syndrome_fragment_1[i]);
diff --git a/drivers/mtd/nand/raw/orion_nand.c b/drivers/mtd/nand/raw/orion_nand.c
index 52d4352..d27b39a 100644
--- a/drivers/mtd/nand/raw/orion_nand.c
+++ b/drivers/mtd/nand/raw/orion_nand.c
@@ -26,9 +26,9 @@
 	struct clk *clk;
 };
 
-static void orion_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
+static void orion_nand_cmd_ctrl(struct nand_chip *nc, int cmd,
+				unsigned int ctrl)
 {
-	struct nand_chip *nc = mtd_to_nand(mtd);
 	struct orion_nand_data *board = nand_get_controller_data(nc);
 	u32 offs;
 
@@ -45,13 +45,12 @@
 	if (nc->options & NAND_BUSWIDTH_16)
 		offs <<= 1;
 
-	writeb(cmd, nc->IO_ADDR_W + offs);
+	writeb(cmd, nc->legacy.IO_ADDR_W + offs);
 }
 
-static void orion_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
+static void orion_nand_read_buf(struct nand_chip *chip, uint8_t *buf, int len)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
-	void __iomem *io_base = chip->IO_ADDR_R;
+	void __iomem *io_base = chip->legacy.IO_ADDR_R;
 #if defined(__LINUX_ARM_ARCH__) && __LINUX_ARM_ARCH__ >= 5
 	uint64_t *buf64;
 #endif
@@ -137,14 +136,14 @@
 
 	nand_set_controller_data(nc, board);
 	nand_set_flash_node(nc, pdev->dev.of_node);
-	nc->IO_ADDR_R = nc->IO_ADDR_W = io_base;
-	nc->cmd_ctrl = orion_nand_cmd_ctrl;
-	nc->read_buf = orion_nand_read_buf;
+	nc->legacy.IO_ADDR_R = nc->legacy.IO_ADDR_W = io_base;
+	nc->legacy.cmd_ctrl = orion_nand_cmd_ctrl;
+	nc->legacy.read_buf = orion_nand_read_buf;
 	nc->ecc.mode = NAND_ECC_SOFT;
 	nc->ecc.algo = NAND_ECC_HAMMING;
 
 	if (board->chip_delay)
-		nc->chip_delay = board->chip_delay;
+		nc->legacy.chip_delay = board->chip_delay;
 
 	WARN(board->width > 16,
 		"%d bit bus width out of range",
@@ -174,14 +173,14 @@
 		return ret;
 	}
 
-	ret = nand_scan(mtd, 1);
+	ret = nand_scan(nc, 1);
 	if (ret)
 		goto no_dev;
 
 	mtd->name = "orion_nand";
 	ret = mtd_device_register(mtd, board->parts, board->nr_parts);
 	if (ret) {
-		nand_release(mtd);
+		nand_release(nc);
 		goto no_dev;
 	}
 
@@ -196,9 +195,8 @@
 {
 	struct orion_nand_info *info = platform_get_drvdata(pdev);
 	struct nand_chip *chip = &info->chip;
-	struct mtd_info *mtd = nand_to_mtd(chip);
 
-	nand_release(mtd);
+	nand_release(chip);
 
 	clk_disable_unprepare(info->clk);
 
diff --git a/drivers/mtd/nand/raw/oxnas_nand.c b/drivers/mtd/nand/raw/oxnas_nand.c
index 01b00bb..c43cb4d 100644
--- a/drivers/mtd/nand/raw/oxnas_nand.c
+++ b/drivers/mtd/nand/raw/oxnas_nand.c
@@ -1,3 +1,4 @@
+// SPDX-License-Identifier: GPL-2.0-only
 /*
  * Oxford Semiconductor OXNAS NAND driver
 
@@ -6,11 +7,6 @@
  * Author: Vitaly Wool <vitalywool@gmail.com>
  * Copyright (C) 2013 Ma Haijun <mahaijuns@gmail.com>
  * Copyright (C) 2012 John Crispin <blogic@openwrt.org>
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
- *
  */
 
 #include <linux/err.h>
@@ -38,35 +34,32 @@
 	struct nand_chip *chips[OXNAS_NAND_MAX_CHIPS];
 };
 
-static uint8_t oxnas_nand_read_byte(struct mtd_info *mtd)
+static uint8_t oxnas_nand_read_byte(struct nand_chip *chip)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
 	struct oxnas_nand_ctrl *oxnas = nand_get_controller_data(chip);
 
 	return readb(oxnas->io_base);
 }
 
-static void oxnas_nand_read_buf(struct mtd_info *mtd, u8 *buf, int len)
+static void oxnas_nand_read_buf(struct nand_chip *chip, u8 *buf, int len)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
 	struct oxnas_nand_ctrl *oxnas = nand_get_controller_data(chip);
 
 	ioread8_rep(oxnas->io_base, buf, len);
 }
 
-static void oxnas_nand_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
+static void oxnas_nand_write_buf(struct nand_chip *chip, const u8 *buf,
+				 int len)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
 	struct oxnas_nand_ctrl *oxnas = nand_get_controller_data(chip);
 
 	iowrite8_rep(oxnas->io_base, buf, len);
 }
 
 /* Single CS command control */
-static void oxnas_nand_cmd_ctrl(struct mtd_info *mtd, int cmd,
+static void oxnas_nand_cmd_ctrl(struct nand_chip *chip, int cmd,
 				unsigned int ctrl)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
 	struct oxnas_nand_ctrl *oxnas = nand_get_controller_data(chip);
 
 	if (ctrl & NAND_CLE)
@@ -123,7 +116,7 @@
 				    GFP_KERNEL);
 		if (!chip) {
 			err = -ENOMEM;
-			goto err_clk_unprepare;
+			goto err_release_child;
 		}
 
 		chip->controller = &oxnas->base;
@@ -135,21 +128,21 @@
 		mtd->dev.parent = &pdev->dev;
 		mtd->priv = chip;
 
-		chip->cmd_ctrl = oxnas_nand_cmd_ctrl;
-		chip->read_buf = oxnas_nand_read_buf;
-		chip->read_byte = oxnas_nand_read_byte;
-		chip->write_buf = oxnas_nand_write_buf;
-		chip->chip_delay = 30;
+		chip->legacy.cmd_ctrl = oxnas_nand_cmd_ctrl;
+		chip->legacy.read_buf = oxnas_nand_read_buf;
+		chip->legacy.read_byte = oxnas_nand_read_byte;
+		chip->legacy.write_buf = oxnas_nand_write_buf;
+		chip->legacy.chip_delay = 30;
 
 		/* Scan to find existence of the device */
-		err = nand_scan(mtd, 1);
+		err = nand_scan(chip, 1);
 		if (err)
-			goto err_clk_unprepare;
+			goto err_release_child;
 
 		err = mtd_device_register(mtd, NULL, 0);
 		if (err) {
-			nand_release(mtd);
-			goto err_clk_unprepare;
+			nand_release(chip);
+			goto err_release_child;
 		}
 
 		oxnas->chips[nchips] = chip;
@@ -166,6 +159,8 @@
 
 	return 0;
 
+err_release_child:
+	of_node_put(nand_np);
 err_clk_unprepare:
 	clk_disable_unprepare(oxnas->clk);
 	return err;
@@ -176,7 +171,7 @@
 	struct oxnas_nand_ctrl *oxnas = platform_get_drvdata(pdev);
 
 	if (oxnas->chips[0])
-		nand_release(nand_to_mtd(oxnas->chips[0]));
+		nand_release(oxnas->chips[0]);
 
 	clk_disable_unprepare(oxnas->clk);
 
diff --git a/drivers/mtd/nand/raw/pasemi_nand.c b/drivers/mtd/nand/raw/pasemi_nand.c
index a47a7e4..9cfe739 100644
--- a/drivers/mtd/nand/raw/pasemi_nand.c
+++ b/drivers/mtd/nand/raw/pasemi_nand.c
@@ -1,3 +1,4 @@
+// SPDX-License-Identifier: GPL-2.0-only
 /*
  * Copyright (C) 2006-2007 PA Semi, Inc
  *
@@ -5,19 +6,6 @@
  * Maintained by: Olof Johansson <olof@lixom.net>
  *
  * Driver for the PWRficient onchip NAND flash interface
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
  */
 
 #undef DEBUG
@@ -43,49 +31,44 @@
 static struct mtd_info *pasemi_nand_mtd;
 static const char driver_name[] = "pasemi-nand";
 
-static void pasemi_read_buf(struct mtd_info *mtd, u_char *buf, int len)
+static void pasemi_read_buf(struct nand_chip *chip, u_char *buf, int len)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
-
 	while (len > 0x800) {
-		memcpy_fromio(buf, chip->IO_ADDR_R, 0x800);
+		memcpy_fromio(buf, chip->legacy.IO_ADDR_R, 0x800);
 		buf += 0x800;
 		len -= 0x800;
 	}
-	memcpy_fromio(buf, chip->IO_ADDR_R, len);
+	memcpy_fromio(buf, chip->legacy.IO_ADDR_R, len);
 }
 
-static void pasemi_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
+static void pasemi_write_buf(struct nand_chip *chip, const u_char *buf,
+			     int len)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
-
 	while (len > 0x800) {
-		memcpy_toio(chip->IO_ADDR_R, buf, 0x800);
+		memcpy_toio(chip->legacy.IO_ADDR_R, buf, 0x800);
 		buf += 0x800;
 		len -= 0x800;
 	}
-	memcpy_toio(chip->IO_ADDR_R, buf, len);
+	memcpy_toio(chip->legacy.IO_ADDR_R, buf, len);
 }
 
-static void pasemi_hwcontrol(struct mtd_info *mtd, int cmd,
+static void pasemi_hwcontrol(struct nand_chip *chip, int cmd,
 			     unsigned int ctrl)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
-
 	if (cmd == NAND_CMD_NONE)
 		return;
 
 	if (ctrl & NAND_CLE)
-		out_8(chip->IO_ADDR_W + (1 << CLE_PIN_CTL), cmd);
+		out_8(chip->legacy.IO_ADDR_W + (1 << CLE_PIN_CTL), cmd);
 	else
-		out_8(chip->IO_ADDR_W + (1 << ALE_PIN_CTL), cmd);
+		out_8(chip->legacy.IO_ADDR_W + (1 << ALE_PIN_CTL), cmd);
 
 	/* Push out posted writes */
 	eieio();
 	inl(lpcctl);
 }
 
-int pasemi_device_ready(struct mtd_info *mtd)
+int pasemi_device_ready(struct nand_chip *chip)
 {
 	return !!(inl(lpcctl) & LBICTRL_LPCCTL_NR);
 }
@@ -122,10 +105,10 @@
 	/* Link the private data with the MTD structure */
 	pasemi_nand_mtd->dev.parent = dev;
 
-	chip->IO_ADDR_R = of_iomap(np, 0);
-	chip->IO_ADDR_W = chip->IO_ADDR_R;
+	chip->legacy.IO_ADDR_R = of_iomap(np, 0);
+	chip->legacy.IO_ADDR_W = chip->legacy.IO_ADDR_R;
 
-	if (!chip->IO_ADDR_R) {
+	if (!chip->legacy.IO_ADDR_R) {
 		err = -EIO;
 		goto out_mtd;
 	}
@@ -144,11 +127,11 @@
 		goto out_ior;
 	}
 
-	chip->cmd_ctrl = pasemi_hwcontrol;
-	chip->dev_ready = pasemi_device_ready;
-	chip->read_buf = pasemi_read_buf;
-	chip->write_buf = pasemi_write_buf;
-	chip->chip_delay = 0;
+	chip->legacy.cmd_ctrl = pasemi_hwcontrol;
+	chip->legacy.dev_ready = pasemi_device_ready;
+	chip->legacy.read_buf = pasemi_read_buf;
+	chip->legacy.write_buf = pasemi_write_buf;
+	chip->legacy.chip_delay = 0;
 	chip->ecc.mode = NAND_ECC_SOFT;
 	chip->ecc.algo = NAND_ECC_HAMMING;
 
@@ -156,7 +139,7 @@
 	chip->bbt_options = NAND_BBT_USE_FLASH;
 
 	/* Scan to find existence of the device */
-	err = nand_scan(pasemi_nand_mtd, 1);
+	err = nand_scan(chip, 1);
 	if (err)
 		goto out_lpc;
 
@@ -174,7 +157,7 @@
  out_lpc:
 	release_region(lpcctl, 4);
  out_ior:
-	iounmap(chip->IO_ADDR_R);
+	iounmap(chip->legacy.IO_ADDR_R);
  out_mtd:
 	kfree(chip);
  out:
@@ -191,11 +174,11 @@
 	chip = mtd_to_nand(pasemi_nand_mtd);
 
 	/* Release resources, unregister device */
-	nand_release(pasemi_nand_mtd);
+	nand_release(chip);
 
 	release_region(lpcctl, 4);
 
-	iounmap(chip->IO_ADDR_R);
+	iounmap(chip->legacy.IO_ADDR_R);
 
 	/* Free the MTD device structure */
 	kfree(chip);
diff --git a/drivers/mtd/nand/raw/plat_nand.c b/drivers/mtd/nand/raw/plat_nand.c
index 222626d..dc0f307 100644
--- a/drivers/mtd/nand/raw/plat_nand.c
+++ b/drivers/mtd/nand/raw/plat_nand.c
@@ -1,12 +1,8 @@
+// SPDX-License-Identifier: GPL-2.0-only
 /*
  * Generic NAND driver
  *
  * Author: Vitaly Wool <vitalywool@gmail.com>
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
- *
  */
 
 #include <linux/err.h>
@@ -15,8 +11,7 @@
 #include <linux/platform_device.h>
 #include <linux/slab.h>
 #include <linux/mtd/mtd.h>
-#include <linux/mtd/rawnand.h>
-#include <linux/mtd/partitions.h>
+#include <linux/mtd/platnand.h>
 
 struct plat_nand_data {
 	struct nand_chip	chip;
@@ -60,14 +55,14 @@
 	mtd = nand_to_mtd(&data->chip);
 	mtd->dev.parent = &pdev->dev;
 
-	data->chip.IO_ADDR_R = data->io_base;
-	data->chip.IO_ADDR_W = data->io_base;
-	data->chip.cmd_ctrl = pdata->ctrl.cmd_ctrl;
-	data->chip.dev_ready = pdata->ctrl.dev_ready;
-	data->chip.select_chip = pdata->ctrl.select_chip;
-	data->chip.write_buf = pdata->ctrl.write_buf;
-	data->chip.read_buf = pdata->ctrl.read_buf;
-	data->chip.chip_delay = pdata->chip.chip_delay;
+	data->chip.legacy.IO_ADDR_R = data->io_base;
+	data->chip.legacy.IO_ADDR_W = data->io_base;
+	data->chip.legacy.cmd_ctrl = pdata->ctrl.cmd_ctrl;
+	data->chip.legacy.dev_ready = pdata->ctrl.dev_ready;
+	data->chip.legacy.select_chip = pdata->ctrl.select_chip;
+	data->chip.legacy.write_buf = pdata->ctrl.write_buf;
+	data->chip.legacy.read_buf = pdata->ctrl.read_buf;
+	data->chip.legacy.chip_delay = pdata->chip.chip_delay;
 	data->chip.options |= pdata->chip.options;
 	data->chip.bbt_options |= pdata->chip.bbt_options;
 
@@ -84,7 +79,7 @@
 	}
 
 	/* Scan to find existence of the device */
-	err = nand_scan(mtd, pdata->chip.nr_chips);
+	err = nand_scan(&data->chip, pdata->chip.nr_chips);
 	if (err)
 		goto out;
 
@@ -97,7 +92,7 @@
 	if (!err)
 		return err;
 
-	nand_release(mtd);
+	nand_release(&data->chip);
 out:
 	if (pdata->ctrl.remove)
 		pdata->ctrl.remove(pdev);
@@ -112,7 +107,7 @@
 	struct plat_nand_data *data = platform_get_drvdata(pdev);
 	struct platform_nand_data *pdata = dev_get_platdata(&pdev->dev);
 
-	nand_release(nand_to_mtd(&data->chip));
+	nand_release(&data->chip);
 	if (pdata->ctrl.remove)
 		pdata->ctrl.remove(pdev);
 
diff --git a/drivers/mtd/nand/raw/qcom_nandc.c b/drivers/mtd/nand/raw/qcom_nandc.c
index 8815f3e..7bb9a7e 100644
--- a/drivers/mtd/nand/raw/qcom_nandc.c
+++ b/drivers/mtd/nand/raw/qcom_nandc.c
@@ -1,14 +1,6 @@
+// SPDX-License-Identifier: GPL-2.0-only
 /*
  * Copyright (c) 2016, The Linux Foundation. All rights reserved.
- *
- * This software is licensed under the terms of the GNU General Public
- * License version 2, as published by the Free Software Foundation, and
- * may be copied, distributed, and modified under those terms.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
- * GNU General Public License for more details.
  */
 
 #include <linux/clk.h>
@@ -23,7 +15,6 @@
 #include <linux/of_device.h>
 #include <linux/delay.h>
 #include <linux/dma/qcom_bam_dma.h>
-#include <linux/dma-direct.h> /* XXX: drivers shall never use this directly! */
 
 /* NANDc reg offsets */
 #define	NAND_FLASH_CMD			0x00
@@ -350,7 +341,8 @@
  * @data_buffer:		our local DMA buffer for page read/writes,
  *				used when we can't use the buffer provided
  *				by upper layers directly
- * @buf_size/count/start:	markers for chip->read_buf/write_buf functions
+ * @buf_size/count/start:	markers for chip->legacy.read_buf/write_buf
+ *				functions
  * @reg_read_buf:		local buffer for reading back registers via DMA
  * @reg_read_dma:		contains dma address for register read buffer
  * @reg_read_pos:		marker for data read in reg_read_buf
@@ -1155,8 +1147,8 @@
 }
 
 /*
- * the following functions are used within chip->cmdfunc() to perform different
- * NAND_CMD_* commands
+ * the following functions are used within chip->legacy.cmdfunc() to
+ * perform different NAND_CMD_* commands
  */
 
 /* sets up descriptors for NAND_CMD_PARAM */
@@ -1436,15 +1428,14 @@
 }
 
 /*
- * Implements chip->cmdfunc. It's  only used for a limited set of commands.
- * The rest of the commands wouldn't be called by upper layers. For example,
- * NAND_CMD_READOOB would never be called because we have our own versions
- * of read_oob ops for nand_ecc_ctrl.
+ * Implements chip->legacy.cmdfunc. It's  only used for a limited set of
+ * commands. The rest of the commands wouldn't be called by upper layers.
+ * For example, NAND_CMD_READOOB would never be called because we have our own
+ * versions of read_oob ops for nand_ecc_ctrl.
  */
-static void qcom_nandc_command(struct mtd_info *mtd, unsigned int command,
+static void qcom_nandc_command(struct nand_chip *chip, unsigned int command,
 			       int column, int page_addr)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
 	struct nand_ecc_ctrl *ecc = &chip->ecc;
 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
@@ -1681,14 +1672,12 @@
 	u8 *cw_data_buf, *cw_oob_buf;
 	int cw, data_size, oob_size, ret = 0;
 
-	if (!data_buf) {
-		data_buf = chip->data_buf;
-		chip->pagebuf = -1;
-	}
+	if (!data_buf)
+		data_buf = nand_get_data_buf(chip);
 
 	if (!oob_buf) {
+		nand_get_data_buf(chip);
 		oob_buf = chip->oob_poi;
-		chip->pagebuf = -1;
 	}
 
 	for_each_set_bit(cw, &uncorrectable_cws, ecc->steps) {
@@ -1949,8 +1938,8 @@
 }
 
 /* implements ecc->read_page() */
-static int qcom_nandc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
-				uint8_t *buf, int oob_required, int page)
+static int qcom_nandc_read_page(struct nand_chip *chip, uint8_t *buf,
+				int oob_required, int page)
 {
 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
@@ -1966,10 +1955,10 @@
 }
 
 /* implements ecc->read_page_raw() */
-static int qcom_nandc_read_page_raw(struct mtd_info *mtd,
-				    struct nand_chip *chip, uint8_t *buf,
+static int qcom_nandc_read_page_raw(struct nand_chip *chip, uint8_t *buf,
 				    int oob_required, int page)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
 	struct nand_ecc_ctrl *ecc = &chip->ecc;
 	int cw, ret;
@@ -1989,8 +1978,7 @@
 }
 
 /* implements ecc->read_oob() */
-static int qcom_nandc_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
-			       int page)
+static int qcom_nandc_read_oob(struct nand_chip *chip, int page)
 {
 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
@@ -2007,8 +1995,8 @@
 }
 
 /* implements ecc->write_page() */
-static int qcom_nandc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
-				 const uint8_t *buf, int oob_required, int page)
+static int qcom_nandc_write_page(struct nand_chip *chip, const uint8_t *buf,
+				 int oob_required, int page)
 {
 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
@@ -2077,10 +2065,11 @@
 }
 
 /* implements ecc->write_page_raw() */
-static int qcom_nandc_write_page_raw(struct mtd_info *mtd,
-				     struct nand_chip *chip, const uint8_t *buf,
-				     int oob_required, int page)
+static int qcom_nandc_write_page_raw(struct nand_chip *chip,
+				     const uint8_t *buf, int oob_required,
+				     int page)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
 	struct nand_ecc_ctrl *ecc = &chip->ecc;
@@ -2155,9 +2144,9 @@
  * since ECC is calculated for the combined codeword. So update the OOB from
  * chip->oob_poi, and pad the data area with OxFF before writing.
  */
-static int qcom_nandc_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
-				int page)
+static int qcom_nandc_write_oob(struct nand_chip *chip, int page)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
 	struct nand_ecc_ctrl *ecc = &chip->ecc;
@@ -2197,9 +2186,9 @@
 	return nand_prog_page_end_op(chip);
 }
 
-static int qcom_nandc_block_bad(struct mtd_info *mtd, loff_t ofs)
+static int qcom_nandc_block_bad(struct nand_chip *chip, loff_t ofs)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
 	struct nand_ecc_ctrl *ecc = &chip->ecc;
@@ -2235,9 +2224,8 @@
 	return bad;
 }
 
-static int qcom_nandc_block_markbad(struct mtd_info *mtd, loff_t ofs)
+static int qcom_nandc_block_markbad(struct nand_chip *chip, loff_t ofs)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
 	struct nand_ecc_ctrl *ecc = &chip->ecc;
@@ -2278,14 +2266,13 @@
 }
 
 /*
- * the three functions below implement chip->read_byte(), chip->read_buf()
- * and chip->write_buf() respectively. these aren't used for
- * reading/writing page data, they are used for smaller data like reading
- * id, status etc
+ * the three functions below implement chip->legacy.read_byte(),
+ * chip->legacy.read_buf() and chip->legacy.write_buf() respectively. these
+ * aren't used for reading/writing page data, they are used for smaller data
+ * like reading	id, status etc
  */
-static uint8_t qcom_nandc_read_byte(struct mtd_info *mtd)
+static uint8_t qcom_nandc_read_byte(struct nand_chip *chip)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
 	u8 *buf = nandc->data_buffer;
@@ -2305,9 +2292,8 @@
 	return ret;
 }
 
-static void qcom_nandc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
+static void qcom_nandc_read_buf(struct nand_chip *chip, uint8_t *buf, int len)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
 	int real_len = min_t(size_t, len, nandc->buf_count - nandc->buf_start);
 
@@ -2315,10 +2301,9 @@
 	nandc->buf_start += real_len;
 }
 
-static void qcom_nandc_write_buf(struct mtd_info *mtd, const uint8_t *buf,
+static void qcom_nandc_write_buf(struct nand_chip *chip, const uint8_t *buf,
 				 int len)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
 	int real_len = min_t(size_t, len, nandc->buf_count - nandc->buf_start);
 
@@ -2328,9 +2313,8 @@
 }
 
 /* we support only one external chip for now */
-static void qcom_nandc_select_chip(struct mtd_info *mtd, int chipnr)
+static void qcom_nandc_select_chip(struct nand_chip *chip, int chipnr)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
 
 	if (chipnr <= 0)
@@ -2809,13 +2793,13 @@
 	mtd->owner = THIS_MODULE;
 	mtd->dev.parent = dev;
 
-	chip->cmdfunc		= qcom_nandc_command;
-	chip->select_chip	= qcom_nandc_select_chip;
-	chip->read_byte		= qcom_nandc_read_byte;
-	chip->read_buf		= qcom_nandc_read_buf;
-	chip->write_buf		= qcom_nandc_write_buf;
-	chip->set_features	= nand_get_set_features_notsupp;
-	chip->get_features	= nand_get_set_features_notsupp;
+	chip->legacy.cmdfunc	= qcom_nandc_command;
+	chip->legacy.select_chip	= qcom_nandc_select_chip;
+	chip->legacy.read_byte	= qcom_nandc_read_byte;
+	chip->legacy.read_buf	= qcom_nandc_read_buf;
+	chip->legacy.write_buf	= qcom_nandc_write_buf;
+	chip->legacy.set_features	= nand_get_set_features_notsupp;
+	chip->legacy.get_features	= nand_get_set_features_notsupp;
 
 	/*
 	 * the bad block marker is readable only when we read the last codeword
@@ -2825,8 +2809,8 @@
 	 * and block_markbad helpers until we permanently switch to using
 	 * MTD_OPS_RAW for all drivers (with the help of badblockbits)
 	 */
-	chip->block_bad		= qcom_nandc_block_bad;
-	chip->block_markbad	= qcom_nandc_block_markbad;
+	chip->legacy.block_bad		= qcom_nandc_block_bad;
+	chip->legacy.block_markbad	= qcom_nandc_block_markbad;
 
 	chip->controller = &nandc->controller;
 	chip->options |= NAND_NO_SUBPAGE_WRITE | NAND_USE_BOUNCE_BUFFER |
@@ -2835,10 +2819,20 @@
 	/* set up initial status value */
 	host->status = NAND_STATUS_READY | NAND_STATUS_WP;
 
-	ret = nand_scan(mtd, 1);
+	ret = nand_scan(chip, 1);
 	if (ret)
 		return ret;
 
+	if (nandc->props->is_bam) {
+		free_bam_transaction(nandc);
+		nandc->bam_txn = alloc_bam_transaction(nandc);
+		if (!nandc->bam_txn) {
+			dev_err(nandc->dev,
+				"failed to allocate bam transaction\n");
+			return -ENOMEM;
+		}
+	}
+
 	ret = mtd_device_register(mtd, NULL, 0);
 	if (ret)
 		nand_cleanup(chip);
@@ -2853,16 +2847,6 @@
 	struct qcom_nand_host *host;
 	int ret;
 
-	if (nandc->props->is_bam) {
-		free_bam_transaction(nandc);
-		nandc->bam_txn = alloc_bam_transaction(nandc);
-		if (!nandc->bam_txn) {
-			dev_err(nandc->dev,
-				"failed to allocate bam transaction\n");
-			return -ENOMEM;
-		}
-	}
-
 	for_each_available_child_of_node(dn, child) {
 		host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
 		if (!host) {
@@ -3000,7 +2984,7 @@
 	struct qcom_nand_host *host;
 
 	list_for_each_entry(host, &nandc->host_list, node)
-		nand_release(nand_to_mtd(&host->chip));
+		nand_release(&host->chip);
 
 
 	qcom_nandc_unalloc(nandc);
diff --git a/drivers/mtd/nand/raw/r852.c b/drivers/mtd/nand/raw/r852.c
index dcdeb06..7777425 100644
--- a/drivers/mtd/nand/raw/r852.c
+++ b/drivers/mtd/nand/raw/r852.c
@@ -1,10 +1,7 @@
+// SPDX-License-Identifier: GPL-2.0-only
 /*
  * Copyright © 2009 - Maxim Levitsky
  * driver for Ricoh xD readers
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
  */
 
 #define DRV_NAME "r852"
@@ -45,7 +42,6 @@
 						int address, uint8_t value)
 {
 	writeb(value, dev->mmio + address);
-	mmiowb();
 }
 
 
@@ -61,7 +57,6 @@
 							int address, uint32_t value)
 {
 	writel(cpu_to_le32(value), dev->mmio + address);
-	mmiowb();
 }
 
 /* returns pointer to our private structure */
@@ -151,8 +146,9 @@
 	dev->dma_stage = 0;
 
 	if (dev->phys_dma_addr && dev->phys_dma_addr != dev->phys_bounce_buffer)
-		pci_unmap_single(dev->pci_dev, dev->phys_dma_addr, R852_DMA_LEN,
-			dev->dma_dir ? PCI_DMA_FROMDEVICE : PCI_DMA_TODEVICE);
+		dma_unmap_single(&dev->pci_dev->dev, dev->phys_dma_addr,
+			R852_DMA_LEN,
+			dev->dma_dir ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
 }
 
 /*
@@ -197,11 +193,10 @@
 		bounce = 1;
 
 	if (!bounce) {
-		dev->phys_dma_addr = pci_map_single(dev->pci_dev, (void *)buf,
+		dev->phys_dma_addr = dma_map_single(&dev->pci_dev->dev, buf,
 			R852_DMA_LEN,
-			(do_read ? PCI_DMA_FROMDEVICE : PCI_DMA_TODEVICE));
-
-		if (pci_dma_mapping_error(dev->pci_dev, dev->phys_dma_addr))
+			do_read ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
+		if (dma_mapping_error(&dev->pci_dev->dev, dev->phys_dma_addr))
 			bounce = 1;
 	}
 
@@ -232,9 +227,9 @@
 /*
  * Program data lines of the nand chip to send data to it
  */
-static void r852_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
+static void r852_write_buf(struct nand_chip *chip, const uint8_t *buf, int len)
 {
-	struct r852_device *dev = r852_get_dev(mtd);
+	struct r852_device *dev = r852_get_dev(nand_to_mtd(chip));
 	uint32_t reg;
 
 	/* Don't allow any access to hardware if we suspect card removal */
@@ -266,9 +261,9 @@
 /*
  * Read data lines of the nand chip to retrieve data
  */
-static void r852_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
+static void r852_read_buf(struct nand_chip *chip, uint8_t *buf, int len)
 {
-	struct r852_device *dev = r852_get_dev(mtd);
+	struct r852_device *dev = r852_get_dev(nand_to_mtd(chip));
 	uint32_t reg;
 
 	if (dev->card_unstable) {
@@ -303,9 +298,9 @@
 /*
  * Read one byte from nand chip
  */
-static uint8_t r852_read_byte(struct mtd_info *mtd)
+static uint8_t r852_read_byte(struct nand_chip *chip)
 {
-	struct r852_device *dev = r852_get_dev(mtd);
+	struct r852_device *dev = r852_get_dev(nand_to_mtd(chip));
 
 	/* Same problem as in r852_read_buf.... */
 	if (dev->card_unstable)
@@ -317,9 +312,9 @@
 /*
  * Control several chip lines & send commands
  */
-static void r852_cmdctl(struct mtd_info *mtd, int dat, unsigned int ctrl)
+static void r852_cmdctl(struct nand_chip *chip, int dat, unsigned int ctrl)
 {
-	struct r852_device *dev = r852_get_dev(mtd);
+	struct r852_device *dev = r852_get_dev(nand_to_mtd(chip));
 
 	if (dev->card_unstable)
 		return;
@@ -362,18 +357,17 @@
  * Wait till card is ready.
  * based on nand_wait, but returns errors on DMA error
  */
-static int r852_wait(struct mtd_info *mtd, struct nand_chip *chip)
+static int r852_wait(struct nand_chip *chip)
 {
 	struct r852_device *dev = nand_get_controller_data(chip);
 
 	unsigned long timeout;
 	u8 status;
 
-	timeout = jiffies + (chip->state == FL_ERASING ?
-		msecs_to_jiffies(400) : msecs_to_jiffies(20));
+	timeout = jiffies + msecs_to_jiffies(400);
 
 	while (time_before(jiffies, timeout))
-		if (chip->dev_ready(mtd))
+		if (chip->legacy.dev_ready(chip))
 			break;
 
 	nand_status_op(chip, &status);
@@ -390,9 +384,9 @@
  * Check if card is ready
  */
 
-static int r852_ready(struct mtd_info *mtd)
+static int r852_ready(struct nand_chip *chip)
 {
-	struct r852_device *dev = r852_get_dev(mtd);
+	struct r852_device *dev = r852_get_dev(nand_to_mtd(chip));
 	return !(r852_read_reg(dev, R852_CARD_STA) & R852_CARD_STA_BUSY);
 }
 
@@ -401,9 +395,9 @@
  * Set ECC engine mode
 */
 
-static void r852_ecc_hwctl(struct mtd_info *mtd, int mode)
+static void r852_ecc_hwctl(struct nand_chip *chip, int mode)
 {
-	struct r852_device *dev = r852_get_dev(mtd);
+	struct r852_device *dev = r852_get_dev(nand_to_mtd(chip));
 
 	if (dev->card_unstable)
 		return;
@@ -433,10 +427,10 @@
  * Calculate ECC, only used for writes
  */
 
-static int r852_ecc_calculate(struct mtd_info *mtd, const uint8_t *dat,
-							uint8_t *ecc_code)
+static int r852_ecc_calculate(struct nand_chip *chip, const uint8_t *dat,
+			      uint8_t *ecc_code)
 {
-	struct r852_device *dev = r852_get_dev(mtd);
+	struct r852_device *dev = r852_get_dev(nand_to_mtd(chip));
 	struct sm_oob *oob = (struct sm_oob *)ecc_code;
 	uint32_t ecc1, ecc2;
 
@@ -465,14 +459,14 @@
  * Correct the data using ECC, hw did almost everything for us
  */
 
-static int r852_ecc_correct(struct mtd_info *mtd, uint8_t *dat,
-				uint8_t *read_ecc, uint8_t *calc_ecc)
+static int r852_ecc_correct(struct nand_chip *chip, uint8_t *dat,
+			    uint8_t *read_ecc, uint8_t *calc_ecc)
 {
 	uint32_t ecc_reg;
 	uint8_t ecc_status, err_byte;
 	int i, error = 0;
 
-	struct r852_device *dev = r852_get_dev(mtd);
+	struct r852_device *dev = r852_get_dev(nand_to_mtd(chip));
 
 	if (dev->card_unstable)
 		return 0;
@@ -521,9 +515,10 @@
  * This is copy of nand_read_oob_std
  * nand_read_oob_syndrome assumes we can send column address - we can't
  */
-static int r852_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
-			     int page)
+static int r852_read_oob(struct nand_chip *chip, int page)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
+
 	return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
 }
 
@@ -636,7 +631,7 @@
 {
 	struct mtd_info *mtd = nand_to_mtd(dev->chip);
 
-	WARN_ON(dev->card_registred);
+	WARN_ON(dev->card_registered);
 
 	mtd->dev.parent = &dev->pci_dev->dev;
 
@@ -653,10 +648,10 @@
 		goto error3;
 	}
 
-	dev->card_registred = 1;
+	dev->card_registered = 1;
 	return 0;
 error3:
-	nand_release(mtd);
+	nand_release(dev->chip);
 error1:
 	/* Force card redetect */
 	dev->card_detected = 0;
@@ -671,13 +666,13 @@
 {
 	struct mtd_info *mtd = nand_to_mtd(dev->chip);
 
-	if (!dev->card_registred)
+	if (!dev->card_registered)
 		return;
 
 	device_remove_file(&mtd->dev, &dev_attr_media_type);
-	nand_release(mtd);
+	nand_release(dev->chip);
 	r852_engine_disable(dev);
-	dev->card_registred = 0;
+	dev->card_registered = 0;
 }
 
 /* Card state updater */
@@ -691,7 +686,7 @@
 	dev->card_unstable = 0;
 
 	/* False alarm */
-	if (dev->card_detected == dev->card_registred)
+	if (dev->card_detected == dev->card_registered)
 		goto exit;
 
 	/* Read media properties */
@@ -834,7 +829,7 @@
 
 	pci_set_master(pci_dev);
 
-	error = pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32));
+	error = dma_set_mask(&pci_dev->dev, DMA_BIT_MASK(32));
 	if (error)
 		goto error2;
 
@@ -852,14 +847,14 @@
 		goto error4;
 
 	/* commands */
-	chip->cmd_ctrl = r852_cmdctl;
-	chip->waitfunc = r852_wait;
-	chip->dev_ready = r852_ready;
+	chip->legacy.cmd_ctrl = r852_cmdctl;
+	chip->legacy.waitfunc = r852_wait;
+	chip->legacy.dev_ready = r852_ready;
 
 	/* I/O */
-	chip->read_byte = r852_read_byte;
-	chip->read_buf = r852_read_buf;
-	chip->write_buf = r852_write_buf;
+	chip->legacy.read_byte = r852_read_byte;
+	chip->legacy.read_buf = r852_read_buf;
+	chip->legacy.write_buf = r852_write_buf;
 
 	/* ecc */
 	chip->ecc.mode = NAND_ECC_HW_SYNDROME;
@@ -884,8 +879,8 @@
 	dev->pci_dev = pci_dev;
 	pci_set_drvdata(pci_dev, dev);
 
-	dev->bounce_buffer = pci_alloc_consistent(pci_dev, R852_DMA_LEN,
-		&dev->phys_bounce_buffer);
+	dev->bounce_buffer = dma_alloc_coherent(&pci_dev->dev, R852_DMA_LEN,
+		&dev->phys_bounce_buffer, GFP_KERNEL);
 
 	if (!dev->bounce_buffer)
 		goto error6;
@@ -945,8 +940,8 @@
 error8:
 	pci_iounmap(pci_dev, dev->mmio);
 error7:
-	pci_free_consistent(pci_dev, R852_DMA_LEN,
-		dev->bounce_buffer, dev->phys_bounce_buffer);
+	dma_free_coherent(&pci_dev->dev, R852_DMA_LEN, dev->bounce_buffer,
+			  dev->phys_bounce_buffer);
 error6:
 	kfree(dev);
 error5:
@@ -979,8 +974,8 @@
 	/* Cleanup */
 	kfree(dev->tmp_buffer);
 	pci_iounmap(pci_dev, dev->mmio);
-	pci_free_consistent(pci_dev, R852_DMA_LEN,
-		dev->bounce_buffer, dev->phys_bounce_buffer);
+	dma_free_coherent(&pci_dev->dev, R852_DMA_LEN, dev->bounce_buffer,
+			  dev->phys_bounce_buffer);
 
 	kfree(dev->chip);
 	kfree(dev);
@@ -1003,7 +998,7 @@
 #ifdef CONFIG_PM_SLEEP
 static int r852_suspend(struct device *device)
 {
-	struct r852_device *dev = pci_get_drvdata(to_pci_dev(device));
+	struct r852_device *dev = dev_get_drvdata(device);
 
 	if (dev->ctlreg & R852_CTL_CARDENABLE)
 		return -EBUSY;
@@ -1024,8 +1019,7 @@
 
 static int r852_resume(struct device *device)
 {
-	struct r852_device *dev = pci_get_drvdata(to_pci_dev(device));
-	struct mtd_info *mtd = nand_to_mtd(dev->chip);
+	struct r852_device *dev = dev_get_drvdata(device);
 
 	r852_disable_irqs(dev);
 	r852_card_update_present(dev);
@@ -1033,7 +1027,7 @@
 
 
 	/* If card status changed, just do the work */
-	if (dev->card_detected != dev->card_registred) {
+	if (dev->card_detected != dev->card_registered) {
 		dbg("card was %s during low power state",
 			dev->card_detected ? "added" : "removed");
 
@@ -1043,11 +1037,11 @@
 	}
 
 	/* Otherwise, initialize the card */
-	if (dev->card_registred) {
+	if (dev->card_registered) {
 		r852_engine_enable(dev);
-		dev->chip->select_chip(mtd, 0);
+		nand_select_target(dev->chip, 0);
 		nand_reset_op(dev->chip);
-		dev->chip->select_chip(mtd, -1);
+		nand_deselect_target(dev->chip);
 	}
 
 	/* Program card detection IRQ */
diff --git a/drivers/mtd/nand/raw/r852.h b/drivers/mtd/nand/raw/r852.h
index 1eed2fc..e9ce299 100644
--- a/drivers/mtd/nand/raw/r852.h
+++ b/drivers/mtd/nand/raw/r852.h
@@ -1,10 +1,7 @@
+/* SPDX-License-Identifier: GPL-2.0-only */
 /*
  * Copyright © 2009 - Maxim Levitsky
  * driver for Ricoh xD readers
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
  */
 
 #include <linux/pci.h>
@@ -129,7 +126,7 @@
 	/* card status area */
 	struct delayed_work card_detect_work;
 	struct workqueue_struct *card_workqueue;
-	int card_registred;		/* card registered with mtd */
+	int card_registered;		/* card registered with mtd */
 	int card_detected;		/* card detected in slot */
 	int card_unstable;		/* whenever the card is inserted,
 					   is not known yet */
diff --git a/drivers/mtd/nand/raw/s3c2410.c b/drivers/mtd/nand/raw/s3c2410.c
index c21e889..0009c18 100644
--- a/drivers/mtd/nand/raw/s3c2410.c
+++ b/drivers/mtd/nand/raw/s3c2410.c
@@ -1,23 +1,10 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
 /*
  * Copyright © 2004-2008 Simtec Electronics
  *	http://armlinux.simtec.co.uk/
  *	Ben Dooks <ben@simtec.co.uk>
  *
  * Samsung S3C2410/S3C2440/S3C2412 NAND driver
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */
 
 #define pr_fmt(fmt) "nand-s3c2410: " fmt
@@ -404,7 +391,7 @@
 
 /**
  * s3c2410_nand_select_chip - select the given nand chip
- * @mtd: The MTD instance for this chip.
+ * @this: NAND chip object.
  * @chip: The chip number.
  *
  * This is called by the MTD layer to either select a given chip for the
@@ -415,11 +402,10 @@
  * platform specific selection code is called to route nFCE to the specific
  * chip.
  */
-static void s3c2410_nand_select_chip(struct mtd_info *mtd, int chip)
+static void s3c2410_nand_select_chip(struct nand_chip *this, int chip)
 {
 	struct s3c2410_nand_info *info;
 	struct s3c2410_nand_mtd *nmtd;
-	struct nand_chip *this = mtd_to_nand(mtd);
 	unsigned long cur;
 
 	nmtd = nand_get_controller_data(this);
@@ -457,9 +443,10 @@
  * Issue command and address cycles to the chip
 */
 
-static void s3c2410_nand_hwcontrol(struct mtd_info *mtd, int cmd,
+static void s3c2410_nand_hwcontrol(struct nand_chip *chip, int cmd,
 				   unsigned int ctrl)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
 
 	if (cmd == NAND_CMD_NONE)
@@ -473,9 +460,10 @@
 
 /* command and control functions */
 
-static void s3c2440_nand_hwcontrol(struct mtd_info *mtd, int cmd,
+static void s3c2440_nand_hwcontrol(struct nand_chip *chip, int cmd,
 				   unsigned int ctrl)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
 
 	if (cmd == NAND_CMD_NONE)
@@ -492,29 +480,33 @@
  * returns 0 if the nand is busy, 1 if it is ready
 */
 
-static int s3c2410_nand_devready(struct mtd_info *mtd)
+static int s3c2410_nand_devready(struct nand_chip *chip)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
 	return readb(info->regs + S3C2410_NFSTAT) & S3C2410_NFSTAT_BUSY;
 }
 
-static int s3c2440_nand_devready(struct mtd_info *mtd)
+static int s3c2440_nand_devready(struct nand_chip *chip)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
 	return readb(info->regs + S3C2440_NFSTAT) & S3C2440_NFSTAT_READY;
 }
 
-static int s3c2412_nand_devready(struct mtd_info *mtd)
+static int s3c2412_nand_devready(struct nand_chip *chip)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
 	return readb(info->regs + S3C2412_NFSTAT) & S3C2412_NFSTAT_READY;
 }
 
 /* ECC handling functions */
 
-static int s3c2410_nand_correct_data(struct mtd_info *mtd, u_char *dat,
+static int s3c2410_nand_correct_data(struct nand_chip *chip, u_char *dat,
 				     u_char *read_ecc, u_char *calc_ecc)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
 	unsigned int diff0, diff1, diff2;
 	unsigned int bit, byte;
@@ -591,38 +583,42 @@
  * generator block to ECC the data as it passes through]
 */
 
-static void s3c2410_nand_enable_hwecc(struct mtd_info *mtd, int mode)
+static void s3c2410_nand_enable_hwecc(struct nand_chip *chip, int mode)
 {
-	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
+	struct s3c2410_nand_info *info;
 	unsigned long ctrl;
 
+	info = s3c2410_nand_mtd_toinfo(nand_to_mtd(chip));
 	ctrl = readl(info->regs + S3C2410_NFCONF);
 	ctrl |= S3C2410_NFCONF_INITECC;
 	writel(ctrl, info->regs + S3C2410_NFCONF);
 }
 
-static void s3c2412_nand_enable_hwecc(struct mtd_info *mtd, int mode)
+static void s3c2412_nand_enable_hwecc(struct nand_chip *chip, int mode)
 {
-	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
+	struct s3c2410_nand_info *info;
 	unsigned long ctrl;
 
+	info = s3c2410_nand_mtd_toinfo(nand_to_mtd(chip));
 	ctrl = readl(info->regs + S3C2440_NFCONT);
 	writel(ctrl | S3C2412_NFCONT_INIT_MAIN_ECC,
 	       info->regs + S3C2440_NFCONT);
 }
 
-static void s3c2440_nand_enable_hwecc(struct mtd_info *mtd, int mode)
+static void s3c2440_nand_enable_hwecc(struct nand_chip *chip, int mode)
 {
-	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
+	struct s3c2410_nand_info *info;
 	unsigned long ctrl;
 
+	info = s3c2410_nand_mtd_toinfo(nand_to_mtd(chip));
 	ctrl = readl(info->regs + S3C2440_NFCONT);
 	writel(ctrl | S3C2440_NFCONT_INITECC, info->regs + S3C2440_NFCONT);
 }
 
-static int s3c2410_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
-				      u_char *ecc_code)
+static int s3c2410_nand_calculate_ecc(struct nand_chip *chip,
+				      const u_char *dat, u_char *ecc_code)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
 
 	ecc_code[0] = readb(info->regs + S3C2410_NFECC + 0);
@@ -634,9 +630,10 @@
 	return 0;
 }
 
-static int s3c2412_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
-				      u_char *ecc_code)
+static int s3c2412_nand_calculate_ecc(struct nand_chip *chip,
+				      const u_char *dat, u_char *ecc_code)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
 	unsigned long ecc = readl(info->regs + S3C2412_NFMECC0);
 
@@ -649,9 +646,10 @@
 	return 0;
 }
 
-static int s3c2440_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
-				      u_char *ecc_code)
+static int s3c2440_nand_calculate_ecc(struct nand_chip *chip,
+				      const u_char *dat, u_char *ecc_code)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
 	unsigned long ecc = readl(info->regs + S3C2440_NFMECC0);
 
@@ -668,14 +666,14 @@
  * use read/write block to move the data buffers to/from the controller
 */
 
-static void s3c2410_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
+static void s3c2410_nand_read_buf(struct nand_chip *this, u_char *buf, int len)
 {
-	struct nand_chip *this = mtd_to_nand(mtd);
-	readsb(this->IO_ADDR_R, buf, len);
+	readsb(this->legacy.IO_ADDR_R, buf, len);
 }
 
-static void s3c2440_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
+static void s3c2440_nand_read_buf(struct nand_chip *this, u_char *buf, int len)
 {
+	struct mtd_info *mtd = nand_to_mtd(this);
 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
 
 	readsl(info->regs + S3C2440_NFDATA, buf, len >> 2);
@@ -689,16 +687,16 @@
 	}
 }
 
-static void s3c2410_nand_write_buf(struct mtd_info *mtd, const u_char *buf,
+static void s3c2410_nand_write_buf(struct nand_chip *this, const u_char *buf,
 				   int len)
 {
-	struct nand_chip *this = mtd_to_nand(mtd);
-	writesb(this->IO_ADDR_W, buf, len);
+	writesb(this->legacy.IO_ADDR_W, buf, len);
 }
 
-static void s3c2440_nand_write_buf(struct mtd_info *mtd, const u_char *buf,
+static void s3c2440_nand_write_buf(struct nand_chip *this, const u_char *buf,
 				   int len)
 {
+	struct mtd_info *mtd = nand_to_mtd(this);
 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
 
 	writesl(info->regs + S3C2440_NFDATA, buf, len >> 2);
@@ -781,7 +779,7 @@
 
 		for (mtdno = 0; mtdno < info->mtd_count; mtdno++, ptr++) {
 			pr_debug("releasing mtd %d (%p)\n", mtdno, ptr);
-			nand_release(nand_to_mtd(&ptr->chip));
+			nand_release(&ptr->chip);
 		}
 	}
 
@@ -809,9 +807,10 @@
 	return -ENODEV;
 }
 
-static int s3c2410_nand_setup_data_interface(struct mtd_info *mtd, int csline,
+static int s3c2410_nand_setup_data_interface(struct nand_chip *chip, int csline,
 					const struct nand_data_interface *conf)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
 	struct s3c2410_platform_nand *pdata = info->platform;
 	const struct nand_sdr_timings *timings;
@@ -852,10 +851,10 @@
 
 	nand_set_flash_node(chip, set->of_node);
 
-	chip->write_buf    = s3c2410_nand_write_buf;
-	chip->read_buf     = s3c2410_nand_read_buf;
-	chip->select_chip  = s3c2410_nand_select_chip;
-	chip->chip_delay   = 50;
+	chip->legacy.write_buf    = s3c2410_nand_write_buf;
+	chip->legacy.read_buf     = s3c2410_nand_read_buf;
+	chip->legacy.select_chip  = s3c2410_nand_select_chip;
+	chip->legacy.chip_delay   = 50;
 	nand_set_controller_data(chip, nmtd);
 	chip->options	   = set->options;
 	chip->controller   = &info->controller;
@@ -864,34 +863,34 @@
 	 * let's keep behavior unchanged for legacy boards booting via pdata and
 	 * auto-detect timings only when booting with a device tree.
 	 */
-	if (np)
-		chip->setup_data_interface = s3c2410_nand_setup_data_interface;
+	if (!np)
+		chip->options |= NAND_KEEP_TIMINGS;
 
 	switch (info->cpu_type) {
 	case TYPE_S3C2410:
-		chip->IO_ADDR_W = regs + S3C2410_NFDATA;
+		chip->legacy.IO_ADDR_W = regs + S3C2410_NFDATA;
 		info->sel_reg   = regs + S3C2410_NFCONF;
 		info->sel_bit	= S3C2410_NFCONF_nFCE;
-		chip->cmd_ctrl  = s3c2410_nand_hwcontrol;
-		chip->dev_ready = s3c2410_nand_devready;
+		chip->legacy.cmd_ctrl  = s3c2410_nand_hwcontrol;
+		chip->legacy.dev_ready = s3c2410_nand_devready;
 		break;
 
 	case TYPE_S3C2440:
-		chip->IO_ADDR_W = regs + S3C2440_NFDATA;
+		chip->legacy.IO_ADDR_W = regs + S3C2440_NFDATA;
 		info->sel_reg   = regs + S3C2440_NFCONT;
 		info->sel_bit	= S3C2440_NFCONT_nFCE;
-		chip->cmd_ctrl  = s3c2440_nand_hwcontrol;
-		chip->dev_ready = s3c2440_nand_devready;
-		chip->read_buf  = s3c2440_nand_read_buf;
-		chip->write_buf	= s3c2440_nand_write_buf;
+		chip->legacy.cmd_ctrl  = s3c2440_nand_hwcontrol;
+		chip->legacy.dev_ready = s3c2440_nand_devready;
+		chip->legacy.read_buf  = s3c2440_nand_read_buf;
+		chip->legacy.write_buf	= s3c2440_nand_write_buf;
 		break;
 
 	case TYPE_S3C2412:
-		chip->IO_ADDR_W = regs + S3C2440_NFDATA;
+		chip->legacy.IO_ADDR_W = regs + S3C2440_NFDATA;
 		info->sel_reg   = regs + S3C2440_NFCONT;
 		info->sel_bit	= S3C2412_NFCONT_nFCE0;
-		chip->cmd_ctrl  = s3c2440_nand_hwcontrol;
-		chip->dev_ready = s3c2412_nand_devready;
+		chip->legacy.cmd_ctrl  = s3c2440_nand_hwcontrol;
+		chip->legacy.dev_ready = s3c2412_nand_devready;
 
 		if (readl(regs + S3C2410_NFCONF) & S3C2412_NFCONF_NANDBOOT)
 			dev_info(info->device, "System booted from NAND\n");
@@ -899,7 +898,7 @@
 		break;
 	}
 
-	chip->IO_ADDR_R = chip->IO_ADDR_W;
+	chip->legacy.IO_ADDR_R = chip->legacy.IO_ADDR_W;
 
 	nmtd->info	   = info;
 	nmtd->set	   = set;
@@ -999,6 +998,7 @@
 
 static const struct nand_controller_ops s3c24xx_nand_controller_ops = {
 	.attach_chip = s3c2410_nand_attach_chip,
+	.setup_data_interface = s3c2410_nand_setup_data_interface,
 };
 
 static const struct of_device_id s3c24xx_nand_dt_ids[] = {
@@ -1170,7 +1170,7 @@
 		mtd->dev.parent = &pdev->dev;
 		s3c2410_nand_init_chip(info, nmtd, sets);
 
-		err = nand_scan(mtd, sets ? sets->nr_chips : 1);
+		err = nand_scan(&nmtd->chip, sets ? sets->nr_chips : 1);
 		if (err)
 			goto exit_error;
 
diff --git a/drivers/mtd/nand/raw/sh_flctl.c b/drivers/mtd/nand/raw/sh_flctl.c
index bb8866e..e509c93 100644
--- a/drivers/mtd/nand/raw/sh_flctl.c
+++ b/drivers/mtd/nand/raw/sh_flctl.c
@@ -1,3 +1,4 @@
+// SPDX-License-Identifier: GPL-2.0
 /*
  * SuperH FLCTL nand controller
  *
@@ -5,20 +6,6 @@
  * Copyright (c) 2008 Atom Create Engineering Co., Ltd.
  *
  * Based on fsl_elbc_nand.c, Copyright (c) 2006-2007 Freescale Semiconductor
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; version 2 of the License.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
- *
  */
 
 #include <linux/module.h>
@@ -114,14 +101,12 @@
 static uint8_t scan_ff_pattern[] = { 0xff, 0xff };
 
 static struct nand_bbt_descr flctl_4secc_smallpage = {
-	.options = NAND_BBT_SCAN2NDPAGE,
 	.offs = 11,
 	.len = 1,
 	.pattern = scan_ff_pattern,
 };
 
 static struct nand_bbt_descr flctl_4secc_largepage = {
-	.options = NAND_BBT_SCAN2NDPAGE,
 	.offs = 0,
 	.len = 2,
 	.pattern = scan_ff_pattern,
@@ -480,7 +465,7 @@
 
 	/* initiate DMA transfer */
 	if (flctl->chan_fifo0_rx && rlen >= 32 &&
-		flctl_dma_fifo0_transfer(flctl, buf, rlen, DMA_DEV_TO_MEM) > 0)
+		flctl_dma_fifo0_transfer(flctl, buf, rlen, DMA_FROM_DEVICE) > 0)
 			goto convert;	/* DMA success */
 
 	/* do polling transfer */
@@ -539,7 +524,7 @@
 
 	/* initiate DMA transfer */
 	if (flctl->chan_fifo0_tx && rlen >= 32 &&
-		flctl_dma_fifo0_transfer(flctl, buf, rlen, DMA_MEM_TO_DEV) > 0)
+		flctl_dma_fifo0_transfer(flctl, buf, rlen, DMA_TO_DEVICE) > 0)
 			return;	/* DMA success */
 
 	/* do polling transfer */
@@ -611,21 +596,24 @@
 	writel(flcmcdr_val, FLCMCDR(flctl));
 }
 
-static int flctl_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
-				uint8_t *buf, int oob_required, int page)
+static int flctl_read_page_hwecc(struct nand_chip *chip, uint8_t *buf,
+				 int oob_required, int page)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
+
 	nand_read_page_op(chip, page, 0, buf, mtd->writesize);
 	if (oob_required)
-		chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
+		chip->legacy.read_buf(chip, chip->oob_poi, mtd->oobsize);
 	return 0;
 }
 
-static int flctl_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
-				  const uint8_t *buf, int oob_required,
-				  int page)
+static int flctl_write_page_hwecc(struct nand_chip *chip, const uint8_t *buf,
+				  int oob_required, int page)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
+
 	nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
-	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
+	chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize);
 	return nand_prog_page_end_op(chip);
 }
 
@@ -747,9 +735,10 @@
 	}
 }
 
-static void flctl_cmdfunc(struct mtd_info *mtd, unsigned int command,
+static void flctl_cmdfunc(struct nand_chip *chip, unsigned int command,
 			int column, int page_addr)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	struct sh_flctl *flctl = mtd_to_flctl(mtd);
 	uint32_t read_cmd = 0;
 
@@ -923,9 +912,9 @@
 	return;
 }
 
-static void flctl_select_chip(struct mtd_info *mtd, int chipnr)
+static void flctl_select_chip(struct nand_chip *chip, int chipnr)
 {
-	struct sh_flctl *flctl = mtd_to_flctl(mtd);
+	struct sh_flctl *flctl = mtd_to_flctl(nand_to_mtd(chip));
 	int ret;
 
 	switch (chipnr) {
@@ -967,17 +956,17 @@
 	}
 }
 
-static void flctl_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
+static void flctl_write_buf(struct nand_chip *chip, const uint8_t *buf, int len)
 {
-	struct sh_flctl *flctl = mtd_to_flctl(mtd);
+	struct sh_flctl *flctl = mtd_to_flctl(nand_to_mtd(chip));
 
 	memcpy(&flctl->done_buff[flctl->index], buf, len);
 	flctl->index += len;
 }
 
-static uint8_t flctl_read_byte(struct mtd_info *mtd)
+static uint8_t flctl_read_byte(struct nand_chip *chip)
 {
-	struct sh_flctl *flctl = mtd_to_flctl(mtd);
+	struct sh_flctl *flctl = mtd_to_flctl(nand_to_mtd(chip));
 	uint8_t data;
 
 	data = flctl->done_buff[flctl->index];
@@ -985,18 +974,9 @@
 	return data;
 }
 
-static uint16_t flctl_read_word(struct mtd_info *mtd)
+static void flctl_read_buf(struct nand_chip *chip, uint8_t *buf, int len)
 {
-	struct sh_flctl *flctl = mtd_to_flctl(mtd);
-	uint16_t *buf = (uint16_t *)&flctl->done_buff[flctl->index];
-
-	flctl->index += 2;
-	return *buf;
-}
-
-static void flctl_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
-{
-	struct sh_flctl *flctl = mtd_to_flctl(mtd);
+	struct sh_flctl *flctl = mtd_to_flctl(nand_to_mtd(chip));
 
 	memcpy(buf, &flctl->done_buff[flctl->index], len);
 	flctl->index += len;
@@ -1004,6 +984,7 @@
 
 static int flctl_chip_attach_chip(struct nand_chip *chip)
 {
+	u64 targetsize = nanddev_target_size(&chip->base);
 	struct mtd_info *mtd = nand_to_mtd(chip);
 	struct sh_flctl *flctl = mtd_to_flctl(mtd);
 
@@ -1016,11 +997,11 @@
 
 	if (mtd->writesize == 512) {
 		flctl->page_size = 0;
-		if (chip->chipsize > (32 << 20)) {
+		if (targetsize > (32 << 20)) {
 			/* big than 32MB */
 			flctl->rw_ADRCNT = ADRCNT_4;
 			flctl->erase_ADRCNT = ADRCNT_3;
-		} else if (chip->chipsize > (2 << 16)) {
+		} else if (targetsize > (2 << 16)) {
 			/* big than 128KB */
 			flctl->rw_ADRCNT = ADRCNT_3;
 			flctl->erase_ADRCNT = ADRCNT_2;
@@ -1030,11 +1011,11 @@
 		}
 	} else {
 		flctl->page_size = 1;
-		if (chip->chipsize > (128 << 20)) {
+		if (targetsize > (128 << 20)) {
 			/* big than 128MB */
 			flctl->rw_ADRCNT = ADRCNT2_E;
 			flctl->erase_ADRCNT = ADRCNT_3;
-		} else if (chip->chipsize > (8 << 16)) {
+		} else if (targetsize > (8 << 16)) {
 			/* big than 512KB */
 			flctl->rw_ADRCNT = ADRCNT_4;
 			flctl->erase_ADRCNT = ADRCNT_2;
@@ -1183,27 +1164,28 @@
 
 	/* Set address of hardware control function */
 	/* 20 us command delay time */
-	nand->chip_delay = 20;
+	nand->legacy.chip_delay = 20;
 
-	nand->read_byte = flctl_read_byte;
-	nand->read_word = flctl_read_word;
-	nand->write_buf = flctl_write_buf;
-	nand->read_buf = flctl_read_buf;
-	nand->select_chip = flctl_select_chip;
-	nand->cmdfunc = flctl_cmdfunc;
-	nand->set_features = nand_get_set_features_notsupp;
-	nand->get_features = nand_get_set_features_notsupp;
+	nand->legacy.read_byte = flctl_read_byte;
+	nand->legacy.write_buf = flctl_write_buf;
+	nand->legacy.read_buf = flctl_read_buf;
+	nand->legacy.select_chip = flctl_select_chip;
+	nand->legacy.cmdfunc = flctl_cmdfunc;
+	nand->legacy.set_features = nand_get_set_features_notsupp;
+	nand->legacy.get_features = nand_get_set_features_notsupp;
 
 	if (pdata->flcmncr_val & SEL_16BIT)
 		nand->options |= NAND_BUSWIDTH_16;
 
+	nand->options |= NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE;
+
 	pm_runtime_enable(&pdev->dev);
 	pm_runtime_resume(&pdev->dev);
 
 	flctl_setup_dma(flctl);
 
-	nand->dummy_controller.ops = &flctl_nand_controller_ops;
-	ret = nand_scan(flctl_mtd, 1);
+	nand->legacy.dummy_controller.ops = &flctl_nand_controller_ops;
+	ret = nand_scan(nand, 1);
 	if (ret)
 		goto err_chip;
 
@@ -1226,7 +1208,7 @@
 	struct sh_flctl *flctl = platform_get_drvdata(pdev);
 
 	flctl_release_dma(flctl);
-	nand_release(nand_to_mtd(&flctl->chip));
+	nand_release(&flctl->chip);
 	pm_runtime_disable(&pdev->dev);
 
 	return 0;
@@ -1242,7 +1224,7 @@
 
 module_platform_driver_probe(flctl_driver, flctl_probe);
 
-MODULE_LICENSE("GPL");
+MODULE_LICENSE("GPL v2");
 MODULE_AUTHOR("Yoshihiro Shimoda");
 MODULE_DESCRIPTION("SuperH FLCTL driver");
 MODULE_ALIAS("platform:sh_flctl");
diff --git a/drivers/mtd/nand/raw/sharpsl.c b/drivers/mtd/nand/raw/sharpsl.c
index fc171b1..b47a9ea 100644
--- a/drivers/mtd/nand/raw/sharpsl.c
+++ b/drivers/mtd/nand/raw/sharpsl.c
@@ -1,13 +1,9 @@
+// SPDX-License-Identifier: GPL-2.0-only
 /*
  *  Copyright (C) 2004 Richard Purdie
  *  Copyright (C) 2008 Dmitry Baryshkov
  *
  *  Based on Sharp's NAND driver sharp_sl.c
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
- *
  */
 
 #include <linux/genhd.h>
@@ -59,11 +55,10 @@
  *	NAND_ALE: bit 2 -> bit 2
  *
  */
-static void sharpsl_nand_hwcontrol(struct mtd_info *mtd, int cmd,
+static void sharpsl_nand_hwcontrol(struct nand_chip *chip, int cmd,
 				   unsigned int ctrl)
 {
-	struct sharpsl_nand *sharpsl = mtd_to_sharpsl(mtd);
-	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct sharpsl_nand *sharpsl = mtd_to_sharpsl(nand_to_mtd(chip));
 
 	if (ctrl & NAND_CTRL_CHANGE) {
 		unsigned char bits = ctrl & 0x07;
@@ -76,24 +71,25 @@
 	}
 
 	if (cmd != NAND_CMD_NONE)
-		writeb(cmd, chip->IO_ADDR_W);
+		writeb(cmd, chip->legacy.IO_ADDR_W);
 }
 
-static int sharpsl_nand_dev_ready(struct mtd_info *mtd)
+static int sharpsl_nand_dev_ready(struct nand_chip *chip)
 {
-	struct sharpsl_nand *sharpsl = mtd_to_sharpsl(mtd);
+	struct sharpsl_nand *sharpsl = mtd_to_sharpsl(nand_to_mtd(chip));
 	return !((readb(sharpsl->io + FLASHCTL) & FLRYBY) == 0);
 }
 
-static void sharpsl_nand_enable_hwecc(struct mtd_info *mtd, int mode)
+static void sharpsl_nand_enable_hwecc(struct nand_chip *chip, int mode)
 {
-	struct sharpsl_nand *sharpsl = mtd_to_sharpsl(mtd);
+	struct sharpsl_nand *sharpsl = mtd_to_sharpsl(nand_to_mtd(chip));
 	writeb(0, sharpsl->io + ECCCLRR);
 }
 
-static int sharpsl_nand_calculate_ecc(struct mtd_info *mtd, const u_char * dat, u_char * ecc_code)
+static int sharpsl_nand_calculate_ecc(struct nand_chip *chip,
+				      const u_char * dat, u_char * ecc_code)
 {
-	struct sharpsl_nand *sharpsl = mtd_to_sharpsl(mtd);
+	struct sharpsl_nand *sharpsl = mtd_to_sharpsl(nand_to_mtd(chip));
 	ecc_code[0] = ~readb(sharpsl->io + ECCLPUB);
 	ecc_code[1] = ~readb(sharpsl->io + ECCLPLB);
 	ecc_code[2] = (~readb(sharpsl->io + ECCCP) << 2) | 0x03;
@@ -153,13 +149,13 @@
 	writeb(readb(sharpsl->io + FLASHCTL) | FLWP, sharpsl->io + FLASHCTL);
 
 	/* Set address of NAND IO lines */
-	this->IO_ADDR_R = sharpsl->io + FLASHIO;
-	this->IO_ADDR_W = sharpsl->io + FLASHIO;
+	this->legacy.IO_ADDR_R = sharpsl->io + FLASHIO;
+	this->legacy.IO_ADDR_W = sharpsl->io + FLASHIO;
 	/* Set address of hardware control function */
-	this->cmd_ctrl = sharpsl_nand_hwcontrol;
-	this->dev_ready = sharpsl_nand_dev_ready;
+	this->legacy.cmd_ctrl = sharpsl_nand_hwcontrol;
+	this->legacy.dev_ready = sharpsl_nand_dev_ready;
 	/* 15 us command delay time */
-	this->chip_delay = 15;
+	this->legacy.chip_delay = 15;
 	/* set eccmode using hardware ECC */
 	this->ecc.mode = NAND_ECC_HW;
 	this->ecc.size = 256;
@@ -171,7 +167,7 @@
 	this->ecc.correct = nand_correct_data;
 
 	/* Scan to find existence of the device */
-	err = nand_scan(mtd, 1);
+	err = nand_scan(this, 1);
 	if (err)
 		goto err_scan;
 
@@ -187,7 +183,7 @@
 	return 0;
 
 err_add:
-	nand_release(mtd);
+	nand_release(this);
 
 err_scan:
 	iounmap(sharpsl->io);
@@ -205,7 +201,7 @@
 	struct sharpsl_nand *sharpsl = platform_get_drvdata(pdev);
 
 	/* Release resources, unregister device */
-	nand_release(nand_to_mtd(&sharpsl->chip));
+	nand_release(&sharpsl->chip);
 
 	iounmap(sharpsl->io);
 
diff --git a/drivers/mtd/nand/raw/sm_common.c b/drivers/mtd/nand/raw/sm_common.c
index 73aafe8..ba24cb3 100644
--- a/drivers/mtd/nand/raw/sm_common.c
+++ b/drivers/mtd/nand/raw/sm_common.c
@@ -1,10 +1,7 @@
+// SPDX-License-Identifier: GPL-2.0-only
 /*
  * Copyright © 2009 - Maxim Levitsky
  * Common routines & support for xD format
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
  */
 #include <linux/kernel.h>
 #include <linux/mtd/rawnand.h>
@@ -99,8 +96,9 @@
 	.free = oob_sm_small_ooblayout_free,
 };
 
-static int sm_block_markbad(struct mtd_info *mtd, loff_t ofs)
+static int sm_block_markbad(struct nand_chip *chip, loff_t ofs)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	struct mtd_oob_ops ops;
 	struct sm_oob oob;
 	int ret;
@@ -167,7 +165,7 @@
 	/* Bad block marker position */
 	chip->badblockpos = 0x05;
 	chip->badblockbits = 7;
-	chip->block_markbad = sm_block_markbad;
+	chip->legacy.block_markbad = sm_block_markbad;
 
 	/* ECC layout */
 	if (mtd->writesize == SM_SECTOR_SIZE)
@@ -193,9 +191,9 @@
 	chip->options |= NAND_SKIP_BBTSCAN;
 
 	/* Scan for card properties */
-	chip->dummy_controller.ops = &sm_controller_ops;
+	chip->legacy.dummy_controller.ops = &sm_controller_ops;
 	flash_ids = smartmedia ? nand_smartmedia_flash_ids : nand_xd_flash_ids;
-	ret = nand_scan_with_ids(mtd, 1, flash_ids);
+	ret = nand_scan_with_ids(chip, 1, flash_ids);
 	if (ret)
 		return ret;
 
diff --git a/drivers/mtd/nand/raw/sm_common.h b/drivers/mtd/nand/raw/sm_common.h
index 1581671..57fc9f8 100644
--- a/drivers/mtd/nand/raw/sm_common.h
+++ b/drivers/mtd/nand/raw/sm_common.h
@@ -1,10 +1,7 @@
+/* SPDX-License-Identifier: GPL-2.0-only */
 /*
  * Copyright © 2009 - Maxim Levitsky
  * Common routines & support for SmartMedia/xD format
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
  */
 #include <linux/bitops.h>
 #include <linux/mtd/mtd.h>
diff --git a/drivers/mtd/nand/raw/socrates_nand.c b/drivers/mtd/nand/raw/socrates_nand.c
index 9824a99..20f40c0 100644
--- a/drivers/mtd/nand/raw/socrates_nand.c
+++ b/drivers/mtd/nand/raw/socrates_nand.c
@@ -1,11 +1,6 @@
+// SPDX-License-Identifier: GPL-2.0-only
 /*
  *  Copyright © 2008 Ilya Yanok, Emcraft Systems
- *
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
- *
  */
 
 #include <linux/slab.h>
@@ -34,15 +29,14 @@
 
 /**
  * socrates_nand_write_buf -  write buffer to chip
- * @mtd:	MTD device structure
+ * @this:	NAND chip object
  * @buf:	data buffer
  * @len:	number of bytes to write
  */
-static void socrates_nand_write_buf(struct mtd_info *mtd,
-		const uint8_t *buf, int len)
+static void socrates_nand_write_buf(struct nand_chip *this, const uint8_t *buf,
+				    int len)
 {
 	int i;
-	struct nand_chip *this = mtd_to_nand(mtd);
 	struct socrates_nand_host *host = nand_get_controller_data(this);
 
 	for (i = 0; i < len; i++) {
@@ -54,14 +48,14 @@
 
 /**
  * socrates_nand_read_buf -  read chip data into buffer
- * @mtd:	MTD device structure
+ * @this:	NAND chip object
  * @buf:	buffer to store date
  * @len:	number of bytes to read
  */
-static void socrates_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
+static void socrates_nand_read_buf(struct nand_chip *this, uint8_t *buf,
+				   int len)
 {
 	int i;
-	struct nand_chip *this = mtd_to_nand(mtd);
 	struct socrates_nand_host *host = nand_get_controller_data(this);
 	uint32_t val;
 
@@ -78,31 +72,19 @@
  * socrates_nand_read_byte -  read one byte from the chip
  * @mtd:	MTD device structure
  */
-static uint8_t socrates_nand_read_byte(struct mtd_info *mtd)
+static uint8_t socrates_nand_read_byte(struct nand_chip *this)
 {
 	uint8_t byte;
-	socrates_nand_read_buf(mtd, &byte, sizeof(byte));
+	socrates_nand_read_buf(this, &byte, sizeof(byte));
 	return byte;
 }
 
-/**
- * socrates_nand_read_word -  read one word from the chip
- * @mtd:	MTD device structure
- */
-static uint16_t socrates_nand_read_word(struct mtd_info *mtd)
-{
-	uint16_t word;
-	socrates_nand_read_buf(mtd, (uint8_t *)&word, sizeof(word));
-	return word;
-}
-
 /*
  * Hardware specific access to control-lines
  */
-static void socrates_nand_cmd_ctrl(struct mtd_info *mtd, int cmd,
-		unsigned int ctrl)
+static void socrates_nand_cmd_ctrl(struct nand_chip *nand_chip, int cmd,
+				   unsigned int ctrl)
 {
-	struct nand_chip *nand_chip = mtd_to_nand(mtd);
 	struct socrates_nand_host *host = nand_get_controller_data(nand_chip);
 	uint32_t val;
 
@@ -125,9 +107,8 @@
 /*
  * Read the Device Ready pin.
  */
-static int socrates_nand_device_ready(struct mtd_info *mtd)
+static int socrates_nand_device_ready(struct nand_chip *nand_chip)
 {
-	struct nand_chip *nand_chip = mtd_to_nand(mtd);
 	struct socrates_nand_host *host = nand_get_controller_data(nand_chip);
 
 	if (in_be32(host->io_base) & FPGA_NAND_BUSY)
@@ -166,26 +147,21 @@
 	mtd->name = "socrates_nand";
 	mtd->dev.parent = &ofdev->dev;
 
-	/*should never be accessed directly */
-	nand_chip->IO_ADDR_R = (void *)0xdeadbeef;
-	nand_chip->IO_ADDR_W = (void *)0xdeadbeef;
-
-	nand_chip->cmd_ctrl = socrates_nand_cmd_ctrl;
-	nand_chip->read_byte = socrates_nand_read_byte;
-	nand_chip->read_word = socrates_nand_read_word;
-	nand_chip->write_buf = socrates_nand_write_buf;
-	nand_chip->read_buf = socrates_nand_read_buf;
-	nand_chip->dev_ready = socrates_nand_device_ready;
+	nand_chip->legacy.cmd_ctrl = socrates_nand_cmd_ctrl;
+	nand_chip->legacy.read_byte = socrates_nand_read_byte;
+	nand_chip->legacy.write_buf = socrates_nand_write_buf;
+	nand_chip->legacy.read_buf = socrates_nand_read_buf;
+	nand_chip->legacy.dev_ready = socrates_nand_device_ready;
 
 	nand_chip->ecc.mode = NAND_ECC_SOFT;	/* enable ECC */
 	nand_chip->ecc.algo = NAND_ECC_HAMMING;
 
 	/* TODO: I have no idea what real delay is. */
-	nand_chip->chip_delay = 20;		/* 20us command delay time */
+	nand_chip->legacy.chip_delay = 20;	/* 20us command delay time */
 
 	dev_set_drvdata(&ofdev->dev, host);
 
-	res = nand_scan(mtd, 1);
+	res = nand_scan(nand_chip, 1);
 	if (res)
 		goto out;
 
@@ -193,7 +169,7 @@
 	if (!res)
 		return res;
 
-	nand_release(mtd);
+	nand_release(nand_chip);
 
 out:
 	iounmap(host->io_base);
@@ -206,9 +182,8 @@
 static int socrates_nand_remove(struct platform_device *ofdev)
 {
 	struct socrates_nand_host *host = dev_get_drvdata(&ofdev->dev);
-	struct mtd_info *mtd = nand_to_mtd(&host->nand_chip);
 
-	nand_release(mtd);
+	nand_release(&host->nand_chip);
 
 	iounmap(host->io_base);
 
diff --git a/drivers/mtd/nand/raw/stm32_fmc2_nand.c b/drivers/mtd/nand/raw/stm32_fmc2_nand.c
new file mode 100644
index 0000000..8cc852d
--- /dev/null
+++ b/drivers/mtd/nand/raw/stm32_fmc2_nand.c
@@ -0,0 +1,2050 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (C) STMicroelectronics 2018
+ * Author: Christophe Kerello <christophe.kerello@st.com>
+ */
+
+#include <linux/clk.h>
+#include <linux/dmaengine.h>
+#include <linux/dma-mapping.h>
+#include <linux/errno.h>
+#include <linux/interrupt.h>
+#include <linux/iopoll.h>
+#include <linux/module.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/pinctrl/consumer.h>
+#include <linux/platform_device.h>
+#include <linux/reset.h>
+
+/* Bad block marker length */
+#define FMC2_BBM_LEN			2
+
+/* ECC step size */
+#define FMC2_ECC_STEP_SIZE		512
+
+/* BCHDSRx registers length */
+#define FMC2_BCHDSRS_LEN		20
+
+/* HECCR length */
+#define FMC2_HECCR_LEN			4
+
+/* Max requests done for a 8k nand page size */
+#define FMC2_MAX_SG			16
+
+/* Max chip enable */
+#define FMC2_MAX_CE			2
+
+/* Max ECC buffer length */
+#define FMC2_MAX_ECC_BUF_LEN		(FMC2_BCHDSRS_LEN * FMC2_MAX_SG)
+
+#define FMC2_TIMEOUT_MS			1000
+
+/* Timings */
+#define FMC2_THIZ			1
+#define FMC2_TIO			8000
+#define FMC2_TSYNC			3000
+#define FMC2_PCR_TIMING_MASK		0xf
+#define FMC2_PMEM_PATT_TIMING_MASK	0xff
+
+/* FMC2 Controller Registers */
+#define FMC2_BCR1			0x0
+#define FMC2_PCR			0x80
+#define FMC2_SR				0x84
+#define FMC2_PMEM			0x88
+#define FMC2_PATT			0x8c
+#define FMC2_HECCR			0x94
+#define FMC2_CSQCR			0x200
+#define FMC2_CSQCFGR1			0x204
+#define FMC2_CSQCFGR2			0x208
+#define FMC2_CSQCFGR3			0x20c
+#define FMC2_CSQAR1			0x210
+#define FMC2_CSQAR2			0x214
+#define FMC2_CSQIER			0x220
+#define FMC2_CSQISR			0x224
+#define FMC2_CSQICR			0x228
+#define FMC2_CSQEMSR			0x230
+#define FMC2_BCHIER			0x250
+#define FMC2_BCHISR			0x254
+#define FMC2_BCHICR			0x258
+#define FMC2_BCHPBR1			0x260
+#define FMC2_BCHPBR2			0x264
+#define FMC2_BCHPBR3			0x268
+#define FMC2_BCHPBR4			0x26c
+#define FMC2_BCHDSR0			0x27c
+#define FMC2_BCHDSR1			0x280
+#define FMC2_BCHDSR2			0x284
+#define FMC2_BCHDSR3			0x288
+#define FMC2_BCHDSR4			0x28c
+
+/* Register: FMC2_BCR1 */
+#define FMC2_BCR1_FMC2EN		BIT(31)
+
+/* Register: FMC2_PCR */
+#define FMC2_PCR_PWAITEN		BIT(1)
+#define FMC2_PCR_PBKEN			BIT(2)
+#define FMC2_PCR_PWID_MASK		GENMASK(5, 4)
+#define FMC2_PCR_PWID(x)		(((x) & 0x3) << 4)
+#define FMC2_PCR_PWID_BUSWIDTH_8	0
+#define FMC2_PCR_PWID_BUSWIDTH_16	1
+#define FMC2_PCR_ECCEN			BIT(6)
+#define FMC2_PCR_ECCALG			BIT(8)
+#define FMC2_PCR_TCLR_MASK		GENMASK(12, 9)
+#define FMC2_PCR_TCLR(x)		(((x) & 0xf) << 9)
+#define FMC2_PCR_TCLR_DEFAULT		0xf
+#define FMC2_PCR_TAR_MASK		GENMASK(16, 13)
+#define FMC2_PCR_TAR(x)			(((x) & 0xf) << 13)
+#define FMC2_PCR_TAR_DEFAULT		0xf
+#define FMC2_PCR_ECCSS_MASK		GENMASK(19, 17)
+#define FMC2_PCR_ECCSS(x)		(((x) & 0x7) << 17)
+#define FMC2_PCR_ECCSS_512		1
+#define FMC2_PCR_ECCSS_2048		3
+#define FMC2_PCR_BCHECC			BIT(24)
+#define FMC2_PCR_WEN			BIT(25)
+
+/* Register: FMC2_SR */
+#define FMC2_SR_NWRF			BIT(6)
+
+/* Register: FMC2_PMEM */
+#define FMC2_PMEM_MEMSET(x)		(((x) & 0xff) << 0)
+#define FMC2_PMEM_MEMWAIT(x)		(((x) & 0xff) << 8)
+#define FMC2_PMEM_MEMHOLD(x)		(((x) & 0xff) << 16)
+#define FMC2_PMEM_MEMHIZ(x)		(((x) & 0xff) << 24)
+#define FMC2_PMEM_DEFAULT		0x0a0a0a0a
+
+/* Register: FMC2_PATT */
+#define FMC2_PATT_ATTSET(x)		(((x) & 0xff) << 0)
+#define FMC2_PATT_ATTWAIT(x)		(((x) & 0xff) << 8)
+#define FMC2_PATT_ATTHOLD(x)		(((x) & 0xff) << 16)
+#define FMC2_PATT_ATTHIZ(x)		(((x) & 0xff) << 24)
+#define FMC2_PATT_DEFAULT		0x0a0a0a0a
+
+/* Register: FMC2_CSQCR */
+#define FMC2_CSQCR_CSQSTART		BIT(0)
+
+/* Register: FMC2_CSQCFGR1 */
+#define FMC2_CSQCFGR1_CMD2EN		BIT(1)
+#define FMC2_CSQCFGR1_DMADEN		BIT(2)
+#define FMC2_CSQCFGR1_ACYNBR(x)		(((x) & 0x7) << 4)
+#define FMC2_CSQCFGR1_CMD1(x)		(((x) & 0xff) << 8)
+#define FMC2_CSQCFGR1_CMD2(x)		(((x) & 0xff) << 16)
+#define FMC2_CSQCFGR1_CMD1T		BIT(24)
+#define FMC2_CSQCFGR1_CMD2T		BIT(25)
+
+/* Register: FMC2_CSQCFGR2 */
+#define FMC2_CSQCFGR2_SQSDTEN		BIT(0)
+#define FMC2_CSQCFGR2_RCMD2EN		BIT(1)
+#define FMC2_CSQCFGR2_DMASEN		BIT(2)
+#define FMC2_CSQCFGR2_RCMD1(x)		(((x) & 0xff) << 8)
+#define FMC2_CSQCFGR2_RCMD2(x)		(((x) & 0xff) << 16)
+#define FMC2_CSQCFGR2_RCMD1T		BIT(24)
+#define FMC2_CSQCFGR2_RCMD2T		BIT(25)
+
+/* Register: FMC2_CSQCFGR3 */
+#define FMC2_CSQCFGR3_SNBR(x)		(((x) & 0x1f) << 8)
+#define FMC2_CSQCFGR3_AC1T		BIT(16)
+#define FMC2_CSQCFGR3_AC2T		BIT(17)
+#define FMC2_CSQCFGR3_AC3T		BIT(18)
+#define FMC2_CSQCFGR3_AC4T		BIT(19)
+#define FMC2_CSQCFGR3_AC5T		BIT(20)
+#define FMC2_CSQCFGR3_SDT		BIT(21)
+#define FMC2_CSQCFGR3_RAC1T		BIT(22)
+#define FMC2_CSQCFGR3_RAC2T		BIT(23)
+
+/* Register: FMC2_CSQCAR1 */
+#define FMC2_CSQCAR1_ADDC1(x)		(((x) & 0xff) << 0)
+#define FMC2_CSQCAR1_ADDC2(x)		(((x) & 0xff) << 8)
+#define FMC2_CSQCAR1_ADDC3(x)		(((x) & 0xff) << 16)
+#define FMC2_CSQCAR1_ADDC4(x)		(((x) & 0xff) << 24)
+
+/* Register: FMC2_CSQCAR2 */
+#define FMC2_CSQCAR2_ADDC5(x)		(((x) & 0xff) << 0)
+#define FMC2_CSQCAR2_NANDCEN(x)		(((x) & 0x3) << 10)
+#define FMC2_CSQCAR2_SAO(x)		(((x) & 0xffff) << 16)
+
+/* Register: FMC2_CSQIER */
+#define FMC2_CSQIER_TCIE		BIT(0)
+
+/* Register: FMC2_CSQICR */
+#define FMC2_CSQICR_CLEAR_IRQ		GENMASK(4, 0)
+
+/* Register: FMC2_CSQEMSR */
+#define FMC2_CSQEMSR_SEM		GENMASK(15, 0)
+
+/* Register: FMC2_BCHIER */
+#define FMC2_BCHIER_DERIE		BIT(1)
+#define FMC2_BCHIER_EPBRIE		BIT(4)
+
+/* Register: FMC2_BCHICR */
+#define FMC2_BCHICR_CLEAR_IRQ		GENMASK(4, 0)
+
+/* Register: FMC2_BCHDSR0 */
+#define FMC2_BCHDSR0_DUE		BIT(0)
+#define FMC2_BCHDSR0_DEF		BIT(1)
+#define FMC2_BCHDSR0_DEN_MASK		GENMASK(7, 4)
+#define FMC2_BCHDSR0_DEN_SHIFT		4
+
+/* Register: FMC2_BCHDSR1 */
+#define FMC2_BCHDSR1_EBP1_MASK		GENMASK(12, 0)
+#define FMC2_BCHDSR1_EBP2_MASK		GENMASK(28, 16)
+#define FMC2_BCHDSR1_EBP2_SHIFT		16
+
+/* Register: FMC2_BCHDSR2 */
+#define FMC2_BCHDSR2_EBP3_MASK		GENMASK(12, 0)
+#define FMC2_BCHDSR2_EBP4_MASK		GENMASK(28, 16)
+#define FMC2_BCHDSR2_EBP4_SHIFT		16
+
+/* Register: FMC2_BCHDSR3 */
+#define FMC2_BCHDSR3_EBP5_MASK		GENMASK(12, 0)
+#define FMC2_BCHDSR3_EBP6_MASK		GENMASK(28, 16)
+#define FMC2_BCHDSR3_EBP6_SHIFT		16
+
+/* Register: FMC2_BCHDSR4 */
+#define FMC2_BCHDSR4_EBP7_MASK		GENMASK(12, 0)
+#define FMC2_BCHDSR4_EBP8_MASK		GENMASK(28, 16)
+#define FMC2_BCHDSR4_EBP8_SHIFT		16
+
+enum stm32_fmc2_ecc {
+	FMC2_ECC_HAM = 1,
+	FMC2_ECC_BCH4 = 4,
+	FMC2_ECC_BCH8 = 8
+};
+
+enum stm32_fmc2_irq_state {
+	FMC2_IRQ_UNKNOWN = 0,
+	FMC2_IRQ_BCH,
+	FMC2_IRQ_SEQ
+};
+
+struct stm32_fmc2_timings {
+	u8 tclr;
+	u8 tar;
+	u8 thiz;
+	u8 twait;
+	u8 thold_mem;
+	u8 tset_mem;
+	u8 thold_att;
+	u8 tset_att;
+};
+
+struct stm32_fmc2_nand {
+	struct nand_chip chip;
+	struct stm32_fmc2_timings timings;
+	int ncs;
+	int cs_used[FMC2_MAX_CE];
+};
+
+static inline struct stm32_fmc2_nand *to_fmc2_nand(struct nand_chip *chip)
+{
+	return container_of(chip, struct stm32_fmc2_nand, chip);
+}
+
+struct stm32_fmc2_nfc {
+	struct nand_controller base;
+	struct stm32_fmc2_nand nand;
+	struct device *dev;
+	void __iomem *io_base;
+	void __iomem *data_base[FMC2_MAX_CE];
+	void __iomem *cmd_base[FMC2_MAX_CE];
+	void __iomem *addr_base[FMC2_MAX_CE];
+	phys_addr_t io_phys_addr;
+	phys_addr_t data_phys_addr[FMC2_MAX_CE];
+	struct clk *clk;
+	u8 irq_state;
+
+	struct dma_chan *dma_tx_ch;
+	struct dma_chan *dma_rx_ch;
+	struct dma_chan *dma_ecc_ch;
+	struct sg_table dma_data_sg;
+	struct sg_table dma_ecc_sg;
+	u8 *ecc_buf;
+	int dma_ecc_len;
+
+	struct completion complete;
+	struct completion dma_data_complete;
+	struct completion dma_ecc_complete;
+
+	u8 cs_assigned;
+	int cs_sel;
+};
+
+static inline struct stm32_fmc2_nfc *to_stm32_nfc(struct nand_controller *base)
+{
+	return container_of(base, struct stm32_fmc2_nfc, base);
+}
+
+/* Timings configuration */
+static void stm32_fmc2_timings_init(struct nand_chip *chip)
+{
+	struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
+	struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
+	struct stm32_fmc2_timings *timings = &nand->timings;
+	u32 pcr = readl_relaxed(fmc2->io_base + FMC2_PCR);
+	u32 pmem, patt;
+
+	/* Set tclr/tar timings */
+	pcr &= ~FMC2_PCR_TCLR_MASK;
+	pcr |= FMC2_PCR_TCLR(timings->tclr);
+	pcr &= ~FMC2_PCR_TAR_MASK;
+	pcr |= FMC2_PCR_TAR(timings->tar);
+
+	/* Set tset/twait/thold/thiz timings in common bank */
+	pmem = FMC2_PMEM_MEMSET(timings->tset_mem);
+	pmem |= FMC2_PMEM_MEMWAIT(timings->twait);
+	pmem |= FMC2_PMEM_MEMHOLD(timings->thold_mem);
+	pmem |= FMC2_PMEM_MEMHIZ(timings->thiz);
+
+	/* Set tset/twait/thold/thiz timings in attribut bank */
+	patt = FMC2_PATT_ATTSET(timings->tset_att);
+	patt |= FMC2_PATT_ATTWAIT(timings->twait);
+	patt |= FMC2_PATT_ATTHOLD(timings->thold_att);
+	patt |= FMC2_PATT_ATTHIZ(timings->thiz);
+
+	writel_relaxed(pcr, fmc2->io_base + FMC2_PCR);
+	writel_relaxed(pmem, fmc2->io_base + FMC2_PMEM);
+	writel_relaxed(patt, fmc2->io_base + FMC2_PATT);
+}
+
+/* Controller configuration */
+static void stm32_fmc2_setup(struct nand_chip *chip)
+{
+	struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
+	u32 pcr = readl_relaxed(fmc2->io_base + FMC2_PCR);
+
+	/* Configure ECC algorithm (default configuration is Hamming) */
+	pcr &= ~FMC2_PCR_ECCALG;
+	pcr &= ~FMC2_PCR_BCHECC;
+	if (chip->ecc.strength == FMC2_ECC_BCH8) {
+		pcr |= FMC2_PCR_ECCALG;
+		pcr |= FMC2_PCR_BCHECC;
+	} else if (chip->ecc.strength == FMC2_ECC_BCH4) {
+		pcr |= FMC2_PCR_ECCALG;
+	}
+
+	/* Set buswidth */
+	pcr &= ~FMC2_PCR_PWID_MASK;
+	if (chip->options & NAND_BUSWIDTH_16)
+		pcr |= FMC2_PCR_PWID(FMC2_PCR_PWID_BUSWIDTH_16);
+
+	/* Set ECC sector size */
+	pcr &= ~FMC2_PCR_ECCSS_MASK;
+	pcr |= FMC2_PCR_ECCSS(FMC2_PCR_ECCSS_512);
+
+	writel_relaxed(pcr, fmc2->io_base + FMC2_PCR);
+}
+
+/* Select target */
+static int stm32_fmc2_select_chip(struct nand_chip *chip, int chipnr)
+{
+	struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
+	struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
+	struct dma_slave_config dma_cfg;
+	int ret;
+
+	if (nand->cs_used[chipnr] == fmc2->cs_sel)
+		return 0;
+
+	fmc2->cs_sel = nand->cs_used[chipnr];
+
+	/* FMC2 setup routine */
+	stm32_fmc2_setup(chip);
+
+	/* Apply timings */
+	stm32_fmc2_timings_init(chip);
+
+	if (fmc2->dma_tx_ch && fmc2->dma_rx_ch) {
+		memset(&dma_cfg, 0, sizeof(dma_cfg));
+		dma_cfg.src_addr = fmc2->data_phys_addr[fmc2->cs_sel];
+		dma_cfg.dst_addr = fmc2->data_phys_addr[fmc2->cs_sel];
+		dma_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
+		dma_cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
+		dma_cfg.src_maxburst = 32;
+		dma_cfg.dst_maxburst = 32;
+
+		ret = dmaengine_slave_config(fmc2->dma_tx_ch, &dma_cfg);
+		if (ret) {
+			dev_err(fmc2->dev, "tx DMA engine slave config failed\n");
+			return ret;
+		}
+
+		ret = dmaengine_slave_config(fmc2->dma_rx_ch, &dma_cfg);
+		if (ret) {
+			dev_err(fmc2->dev, "rx DMA engine slave config failed\n");
+			return ret;
+		}
+	}
+
+	if (fmc2->dma_ecc_ch) {
+		/*
+		 * Hamming: we read HECCR register
+		 * BCH4/BCH8: we read BCHDSRSx registers
+		 */
+		memset(&dma_cfg, 0, sizeof(dma_cfg));
+		dma_cfg.src_addr = fmc2->io_phys_addr;
+		dma_cfg.src_addr += chip->ecc.strength == FMC2_ECC_HAM ?
+				    FMC2_HECCR : FMC2_BCHDSR0;
+		dma_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
+
+		ret = dmaengine_slave_config(fmc2->dma_ecc_ch, &dma_cfg);
+		if (ret) {
+			dev_err(fmc2->dev, "ECC DMA engine slave config failed\n");
+			return ret;
+		}
+
+		/* Calculate ECC length needed for one sector */
+		fmc2->dma_ecc_len = chip->ecc.strength == FMC2_ECC_HAM ?
+				    FMC2_HECCR_LEN : FMC2_BCHDSRS_LEN;
+	}
+
+	return 0;
+}
+
+/* Set bus width to 16-bit or 8-bit */
+static void stm32_fmc2_set_buswidth_16(struct stm32_fmc2_nfc *fmc2, bool set)
+{
+	u32 pcr = readl_relaxed(fmc2->io_base + FMC2_PCR);
+
+	pcr &= ~FMC2_PCR_PWID_MASK;
+	if (set)
+		pcr |= FMC2_PCR_PWID(FMC2_PCR_PWID_BUSWIDTH_16);
+	writel_relaxed(pcr, fmc2->io_base + FMC2_PCR);
+}
+
+/* Enable/disable ECC */
+static void stm32_fmc2_set_ecc(struct stm32_fmc2_nfc *fmc2, bool enable)
+{
+	u32 pcr = readl(fmc2->io_base + FMC2_PCR);
+
+	pcr &= ~FMC2_PCR_ECCEN;
+	if (enable)
+		pcr |= FMC2_PCR_ECCEN;
+	writel(pcr, fmc2->io_base + FMC2_PCR);
+}
+
+/* Enable irq sources in case of the sequencer is used */
+static inline void stm32_fmc2_enable_seq_irq(struct stm32_fmc2_nfc *fmc2)
+{
+	u32 csqier = readl_relaxed(fmc2->io_base + FMC2_CSQIER);
+
+	csqier |= FMC2_CSQIER_TCIE;
+
+	fmc2->irq_state = FMC2_IRQ_SEQ;
+
+	writel_relaxed(csqier, fmc2->io_base + FMC2_CSQIER);
+}
+
+/* Disable irq sources in case of the sequencer is used */
+static inline void stm32_fmc2_disable_seq_irq(struct stm32_fmc2_nfc *fmc2)
+{
+	u32 csqier = readl_relaxed(fmc2->io_base + FMC2_CSQIER);
+
+	csqier &= ~FMC2_CSQIER_TCIE;
+
+	writel_relaxed(csqier, fmc2->io_base + FMC2_CSQIER);
+
+	fmc2->irq_state = FMC2_IRQ_UNKNOWN;
+}
+
+/* Clear irq sources in case of the sequencer is used */
+static inline void stm32_fmc2_clear_seq_irq(struct stm32_fmc2_nfc *fmc2)
+{
+	writel_relaxed(FMC2_CSQICR_CLEAR_IRQ, fmc2->io_base + FMC2_CSQICR);
+}
+
+/* Enable irq sources in case of bch is used */
+static inline void stm32_fmc2_enable_bch_irq(struct stm32_fmc2_nfc *fmc2,
+					     int mode)
+{
+	u32 bchier = readl_relaxed(fmc2->io_base + FMC2_BCHIER);
+
+	if (mode == NAND_ECC_WRITE)
+		bchier |= FMC2_BCHIER_EPBRIE;
+	else
+		bchier |= FMC2_BCHIER_DERIE;
+
+	fmc2->irq_state = FMC2_IRQ_BCH;
+
+	writel_relaxed(bchier, fmc2->io_base + FMC2_BCHIER);
+}
+
+/* Disable irq sources in case of bch is used */
+static inline void stm32_fmc2_disable_bch_irq(struct stm32_fmc2_nfc *fmc2)
+{
+	u32 bchier = readl_relaxed(fmc2->io_base + FMC2_BCHIER);
+
+	bchier &= ~FMC2_BCHIER_DERIE;
+	bchier &= ~FMC2_BCHIER_EPBRIE;
+
+	writel_relaxed(bchier, fmc2->io_base + FMC2_BCHIER);
+
+	fmc2->irq_state = FMC2_IRQ_UNKNOWN;
+}
+
+/* Clear irq sources in case of bch is used */
+static inline void stm32_fmc2_clear_bch_irq(struct stm32_fmc2_nfc *fmc2)
+{
+	writel_relaxed(FMC2_BCHICR_CLEAR_IRQ, fmc2->io_base + FMC2_BCHICR);
+}
+
+/*
+ * Enable ECC logic and reset syndrome/parity bits previously calculated
+ * Syndrome/parity bits is cleared by setting the ECCEN bit to 0
+ */
+static void stm32_fmc2_hwctl(struct nand_chip *chip, int mode)
+{
+	struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
+
+	stm32_fmc2_set_ecc(fmc2, false);
+
+	if (chip->ecc.strength != FMC2_ECC_HAM) {
+		u32 pcr = readl_relaxed(fmc2->io_base + FMC2_PCR);
+
+		if (mode == NAND_ECC_WRITE)
+			pcr |= FMC2_PCR_WEN;
+		else
+			pcr &= ~FMC2_PCR_WEN;
+		writel_relaxed(pcr, fmc2->io_base + FMC2_PCR);
+
+		reinit_completion(&fmc2->complete);
+		stm32_fmc2_clear_bch_irq(fmc2);
+		stm32_fmc2_enable_bch_irq(fmc2, mode);
+	}
+
+	stm32_fmc2_set_ecc(fmc2, true);
+}
+
+/*
+ * ECC Hamming calculation
+ * ECC is 3 bytes for 512 bytes of data (supports error correction up to
+ * max of 1-bit)
+ */
+static inline void stm32_fmc2_ham_set_ecc(const u32 ecc_sta, u8 *ecc)
+{
+	ecc[0] = ecc_sta;
+	ecc[1] = ecc_sta >> 8;
+	ecc[2] = ecc_sta >> 16;
+}
+
+static int stm32_fmc2_ham_calculate(struct nand_chip *chip, const u8 *data,
+				    u8 *ecc)
+{
+	struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
+	u32 sr, heccr;
+	int ret;
+
+	ret = readl_relaxed_poll_timeout(fmc2->io_base + FMC2_SR,
+					 sr, sr & FMC2_SR_NWRF, 10,
+					 FMC2_TIMEOUT_MS);
+	if (ret) {
+		dev_err(fmc2->dev, "ham timeout\n");
+		return ret;
+	}
+
+	heccr = readl_relaxed(fmc2->io_base + FMC2_HECCR);
+
+	stm32_fmc2_ham_set_ecc(heccr, ecc);
+
+	/* Disable ECC */
+	stm32_fmc2_set_ecc(fmc2, false);
+
+	return 0;
+}
+
+static int stm32_fmc2_ham_correct(struct nand_chip *chip, u8 *dat,
+				  u8 *read_ecc, u8 *calc_ecc)
+{
+	u8 bit_position = 0, b0, b1, b2;
+	u32 byte_addr = 0, b;
+	u32 i, shifting = 1;
+
+	/* Indicate which bit and byte is faulty (if any) */
+	b0 = read_ecc[0] ^ calc_ecc[0];
+	b1 = read_ecc[1] ^ calc_ecc[1];
+	b2 = read_ecc[2] ^ calc_ecc[2];
+	b = b0 | (b1 << 8) | (b2 << 16);
+
+	/* No errors */
+	if (likely(!b))
+		return 0;
+
+	/* Calculate bit position */
+	for (i = 0; i < 3; i++) {
+		switch (b % 4) {
+		case 2:
+			bit_position += shifting;
+		case 1:
+			break;
+		default:
+			return -EBADMSG;
+		}
+		shifting <<= 1;
+		b >>= 2;
+	}
+
+	/* Calculate byte position */
+	shifting = 1;
+	for (i = 0; i < 9; i++) {
+		switch (b % 4) {
+		case 2:
+			byte_addr += shifting;
+		case 1:
+			break;
+		default:
+			return -EBADMSG;
+		}
+		shifting <<= 1;
+		b >>= 2;
+	}
+
+	/* Flip the bit */
+	dat[byte_addr] ^= (1 << bit_position);
+
+	return 1;
+}
+
+/*
+ * ECC BCH calculation and correction
+ * ECC is 7/13 bytes for 512 bytes of data (supports error correction up to
+ * max of 4-bit/8-bit)
+ */
+static int stm32_fmc2_bch_calculate(struct nand_chip *chip, const u8 *data,
+				    u8 *ecc)
+{
+	struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
+	u32 bchpbr;
+
+	/* Wait until the BCH code is ready */
+	if (!wait_for_completion_timeout(&fmc2->complete,
+					 msecs_to_jiffies(FMC2_TIMEOUT_MS))) {
+		dev_err(fmc2->dev, "bch timeout\n");
+		stm32_fmc2_disable_bch_irq(fmc2);
+		return -ETIMEDOUT;
+	}
+
+	/* Read parity bits */
+	bchpbr = readl_relaxed(fmc2->io_base + FMC2_BCHPBR1);
+	ecc[0] = bchpbr;
+	ecc[1] = bchpbr >> 8;
+	ecc[2] = bchpbr >> 16;
+	ecc[3] = bchpbr >> 24;
+
+	bchpbr = readl_relaxed(fmc2->io_base + FMC2_BCHPBR2);
+	ecc[4] = bchpbr;
+	ecc[5] = bchpbr >> 8;
+	ecc[6] = bchpbr >> 16;
+
+	if (chip->ecc.strength == FMC2_ECC_BCH8) {
+		ecc[7] = bchpbr >> 24;
+
+		bchpbr = readl_relaxed(fmc2->io_base + FMC2_BCHPBR3);
+		ecc[8] = bchpbr;
+		ecc[9] = bchpbr >> 8;
+		ecc[10] = bchpbr >> 16;
+		ecc[11] = bchpbr >> 24;
+
+		bchpbr = readl_relaxed(fmc2->io_base + FMC2_BCHPBR4);
+		ecc[12] = bchpbr;
+	}
+
+	/* Disable ECC */
+	stm32_fmc2_set_ecc(fmc2, false);
+
+	return 0;
+}
+
+/* BCH algorithm correction */
+static int stm32_fmc2_bch_decode(int eccsize, u8 *dat, u32 *ecc_sta)
+{
+	u32 bchdsr0 = ecc_sta[0];
+	u32 bchdsr1 = ecc_sta[1];
+	u32 bchdsr2 = ecc_sta[2];
+	u32 bchdsr3 = ecc_sta[3];
+	u32 bchdsr4 = ecc_sta[4];
+	u16 pos[8];
+	int i, den;
+	unsigned int nb_errs = 0;
+
+	/* No errors found */
+	if (likely(!(bchdsr0 & FMC2_BCHDSR0_DEF)))
+		return 0;
+
+	/* Too many errors detected */
+	if (unlikely(bchdsr0 & FMC2_BCHDSR0_DUE))
+		return -EBADMSG;
+
+	pos[0] = bchdsr1 & FMC2_BCHDSR1_EBP1_MASK;
+	pos[1] = (bchdsr1 & FMC2_BCHDSR1_EBP2_MASK) >> FMC2_BCHDSR1_EBP2_SHIFT;
+	pos[2] = bchdsr2 & FMC2_BCHDSR2_EBP3_MASK;
+	pos[3] = (bchdsr2 & FMC2_BCHDSR2_EBP4_MASK) >> FMC2_BCHDSR2_EBP4_SHIFT;
+	pos[4] = bchdsr3 & FMC2_BCHDSR3_EBP5_MASK;
+	pos[5] = (bchdsr3 & FMC2_BCHDSR3_EBP6_MASK) >> FMC2_BCHDSR3_EBP6_SHIFT;
+	pos[6] = bchdsr4 & FMC2_BCHDSR4_EBP7_MASK;
+	pos[7] = (bchdsr4 & FMC2_BCHDSR4_EBP8_MASK) >> FMC2_BCHDSR4_EBP8_SHIFT;
+
+	den = (bchdsr0 & FMC2_BCHDSR0_DEN_MASK) >> FMC2_BCHDSR0_DEN_SHIFT;
+	for (i = 0; i < den; i++) {
+		if (pos[i] < eccsize * 8) {
+			change_bit(pos[i], (unsigned long *)dat);
+			nb_errs++;
+		}
+	}
+
+	return nb_errs;
+}
+
+static int stm32_fmc2_bch_correct(struct nand_chip *chip, u8 *dat,
+				  u8 *read_ecc, u8 *calc_ecc)
+{
+	struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
+	u32 ecc_sta[5];
+
+	/* Wait until the decoding error is ready */
+	if (!wait_for_completion_timeout(&fmc2->complete,
+					 msecs_to_jiffies(FMC2_TIMEOUT_MS))) {
+		dev_err(fmc2->dev, "bch timeout\n");
+		stm32_fmc2_disable_bch_irq(fmc2);
+		return -ETIMEDOUT;
+	}
+
+	ecc_sta[0] = readl_relaxed(fmc2->io_base + FMC2_BCHDSR0);
+	ecc_sta[1] = readl_relaxed(fmc2->io_base + FMC2_BCHDSR1);
+	ecc_sta[2] = readl_relaxed(fmc2->io_base + FMC2_BCHDSR2);
+	ecc_sta[3] = readl_relaxed(fmc2->io_base + FMC2_BCHDSR3);
+	ecc_sta[4] = readl_relaxed(fmc2->io_base + FMC2_BCHDSR4);
+
+	/* Disable ECC */
+	stm32_fmc2_set_ecc(fmc2, false);
+
+	return stm32_fmc2_bch_decode(chip->ecc.size, dat, ecc_sta);
+}
+
+static int stm32_fmc2_read_page(struct nand_chip *chip, u8 *buf,
+				int oob_required, int page)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	int ret, i, s, stat, eccsize = chip->ecc.size;
+	int eccbytes = chip->ecc.bytes;
+	int eccsteps = chip->ecc.steps;
+	int eccstrength = chip->ecc.strength;
+	u8 *p = buf;
+	u8 *ecc_calc = chip->ecc.calc_buf;
+	u8 *ecc_code = chip->ecc.code_buf;
+	unsigned int max_bitflips = 0;
+
+	ret = nand_read_page_op(chip, page, 0, NULL, 0);
+	if (ret)
+		return ret;
+
+	for (i = mtd->writesize + FMC2_BBM_LEN, s = 0; s < eccsteps;
+	     s++, i += eccbytes, p += eccsize) {
+		chip->ecc.hwctl(chip, NAND_ECC_READ);
+
+		/* Read the nand page sector (512 bytes) */
+		ret = nand_change_read_column_op(chip, s * eccsize, p,
+						 eccsize, false);
+		if (ret)
+			return ret;
+
+		/* Read the corresponding ECC bytes */
+		ret = nand_change_read_column_op(chip, i, ecc_code,
+						 eccbytes, false);
+		if (ret)
+			return ret;
+
+		/* Correct the data */
+		stat = chip->ecc.correct(chip, p, ecc_code, ecc_calc);
+		if (stat == -EBADMSG)
+			/* Check for empty pages with bitflips */
+			stat = nand_check_erased_ecc_chunk(p, eccsize,
+							   ecc_code, eccbytes,
+							   NULL, 0,
+							   eccstrength);
+
+		if (stat < 0) {
+			mtd->ecc_stats.failed++;
+		} else {
+			mtd->ecc_stats.corrected += stat;
+			max_bitflips = max_t(unsigned int, max_bitflips, stat);
+		}
+	}
+
+	/* Read oob */
+	if (oob_required) {
+		ret = nand_change_read_column_op(chip, mtd->writesize,
+						 chip->oob_poi, mtd->oobsize,
+						 false);
+		if (ret)
+			return ret;
+	}
+
+	return max_bitflips;
+}
+
+/* Sequencer read/write configuration */
+static void stm32_fmc2_rw_page_init(struct nand_chip *chip, int page,
+				    int raw, bool write_data)
+{
+	struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	u32 csqcfgr1, csqcfgr2, csqcfgr3;
+	u32 csqar1, csqar2;
+	u32 ecc_offset = mtd->writesize + FMC2_BBM_LEN;
+	u32 pcr = readl_relaxed(fmc2->io_base + FMC2_PCR);
+
+	if (write_data)
+		pcr |= FMC2_PCR_WEN;
+	else
+		pcr &= ~FMC2_PCR_WEN;
+	writel_relaxed(pcr, fmc2->io_base + FMC2_PCR);
+
+	/*
+	 * - Set Program Page/Page Read command
+	 * - Enable DMA request data
+	 * - Set timings
+	 */
+	csqcfgr1 = FMC2_CSQCFGR1_DMADEN | FMC2_CSQCFGR1_CMD1T;
+	if (write_data)
+		csqcfgr1 |= FMC2_CSQCFGR1_CMD1(NAND_CMD_SEQIN);
+	else
+		csqcfgr1 |= FMC2_CSQCFGR1_CMD1(NAND_CMD_READ0) |
+			    FMC2_CSQCFGR1_CMD2EN |
+			    FMC2_CSQCFGR1_CMD2(NAND_CMD_READSTART) |
+			    FMC2_CSQCFGR1_CMD2T;
+
+	/*
+	 * - Set Random Data Input/Random Data Read command
+	 * - Enable the sequencer to access the Spare data area
+	 * - Enable  DMA request status decoding for read
+	 * - Set timings
+	 */
+	if (write_data)
+		csqcfgr2 = FMC2_CSQCFGR2_RCMD1(NAND_CMD_RNDIN);
+	else
+		csqcfgr2 = FMC2_CSQCFGR2_RCMD1(NAND_CMD_RNDOUT) |
+			   FMC2_CSQCFGR2_RCMD2EN |
+			   FMC2_CSQCFGR2_RCMD2(NAND_CMD_RNDOUTSTART) |
+			   FMC2_CSQCFGR2_RCMD1T |
+			   FMC2_CSQCFGR2_RCMD2T;
+	if (!raw) {
+		csqcfgr2 |= write_data ? 0 : FMC2_CSQCFGR2_DMASEN;
+		csqcfgr2 |= FMC2_CSQCFGR2_SQSDTEN;
+	}
+
+	/*
+	 * - Set the number of sectors to be written
+	 * - Set timings
+	 */
+	csqcfgr3 = FMC2_CSQCFGR3_SNBR(chip->ecc.steps - 1);
+	if (write_data) {
+		csqcfgr3 |= FMC2_CSQCFGR3_RAC2T;
+		if (chip->options & NAND_ROW_ADDR_3)
+			csqcfgr3 |= FMC2_CSQCFGR3_AC5T;
+		else
+			csqcfgr3 |= FMC2_CSQCFGR3_AC4T;
+	}
+
+	/*
+	 * Set the fourth first address cycles
+	 * Byte 1 and byte 2 => column, we start at 0x0
+	 * Byte 3 and byte 4 => page
+	 */
+	csqar1 = FMC2_CSQCAR1_ADDC3(page);
+	csqar1 |= FMC2_CSQCAR1_ADDC4(page >> 8);
+
+	/*
+	 * - Set chip enable number
+	 * - Set ECC byte offset in the spare area
+	 * - Calculate the number of address cycles to be issued
+	 * - Set byte 5 of address cycle if needed
+	 */
+	csqar2 = FMC2_CSQCAR2_NANDCEN(fmc2->cs_sel);
+	if (chip->options & NAND_BUSWIDTH_16)
+		csqar2 |= FMC2_CSQCAR2_SAO(ecc_offset >> 1);
+	else
+		csqar2 |= FMC2_CSQCAR2_SAO(ecc_offset);
+	if (chip->options & NAND_ROW_ADDR_3) {
+		csqcfgr1 |= FMC2_CSQCFGR1_ACYNBR(5);
+		csqar2 |= FMC2_CSQCAR2_ADDC5(page >> 16);
+	} else {
+		csqcfgr1 |= FMC2_CSQCFGR1_ACYNBR(4);
+	}
+
+	writel_relaxed(csqcfgr1, fmc2->io_base + FMC2_CSQCFGR1);
+	writel_relaxed(csqcfgr2, fmc2->io_base + FMC2_CSQCFGR2);
+	writel_relaxed(csqcfgr3, fmc2->io_base + FMC2_CSQCFGR3);
+	writel_relaxed(csqar1, fmc2->io_base + FMC2_CSQAR1);
+	writel_relaxed(csqar2, fmc2->io_base + FMC2_CSQAR2);
+}
+
+static void stm32_fmc2_dma_callback(void *arg)
+{
+	complete((struct completion *)arg);
+}
+
+/* Read/write data from/to a page */
+static int stm32_fmc2_xfer(struct nand_chip *chip, const u8 *buf,
+			   int raw, bool write_data)
+{
+	struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
+	struct dma_async_tx_descriptor *desc_data, *desc_ecc;
+	struct scatterlist *sg;
+	struct dma_chan *dma_ch = fmc2->dma_rx_ch;
+	enum dma_data_direction dma_data_dir = DMA_FROM_DEVICE;
+	enum dma_transfer_direction dma_transfer_dir = DMA_DEV_TO_MEM;
+	u32 csqcr = readl_relaxed(fmc2->io_base + FMC2_CSQCR);
+	int eccsteps = chip->ecc.steps;
+	int eccsize = chip->ecc.size;
+	const u8 *p = buf;
+	int s, ret;
+
+	/* Configure DMA data */
+	if (write_data) {
+		dma_data_dir = DMA_TO_DEVICE;
+		dma_transfer_dir = DMA_MEM_TO_DEV;
+		dma_ch = fmc2->dma_tx_ch;
+	}
+
+	for_each_sg(fmc2->dma_data_sg.sgl, sg, eccsteps, s) {
+		sg_set_buf(sg, p, eccsize);
+		p += eccsize;
+	}
+
+	ret = dma_map_sg(fmc2->dev, fmc2->dma_data_sg.sgl,
+			 eccsteps, dma_data_dir);
+	if (ret < 0)
+		return ret;
+
+	desc_data = dmaengine_prep_slave_sg(dma_ch, fmc2->dma_data_sg.sgl,
+					    eccsteps, dma_transfer_dir,
+					    DMA_PREP_INTERRUPT);
+	if (!desc_data) {
+		ret = -ENOMEM;
+		goto err_unmap_data;
+	}
+
+	reinit_completion(&fmc2->dma_data_complete);
+	reinit_completion(&fmc2->complete);
+	desc_data->callback = stm32_fmc2_dma_callback;
+	desc_data->callback_param = &fmc2->dma_data_complete;
+	ret = dma_submit_error(dmaengine_submit(desc_data));
+	if (ret)
+		goto err_unmap_data;
+
+	dma_async_issue_pending(dma_ch);
+
+	if (!write_data && !raw) {
+		/* Configure DMA ECC status */
+		p = fmc2->ecc_buf;
+		for_each_sg(fmc2->dma_ecc_sg.sgl, sg, eccsteps, s) {
+			sg_set_buf(sg, p, fmc2->dma_ecc_len);
+			p += fmc2->dma_ecc_len;
+		}
+
+		ret = dma_map_sg(fmc2->dev, fmc2->dma_ecc_sg.sgl,
+				 eccsteps, dma_data_dir);
+		if (ret < 0)
+			goto err_unmap_data;
+
+		desc_ecc = dmaengine_prep_slave_sg(fmc2->dma_ecc_ch,
+						   fmc2->dma_ecc_sg.sgl,
+						   eccsteps, dma_transfer_dir,
+						   DMA_PREP_INTERRUPT);
+		if (!desc_ecc) {
+			ret = -ENOMEM;
+			goto err_unmap_ecc;
+		}
+
+		reinit_completion(&fmc2->dma_ecc_complete);
+		desc_ecc->callback = stm32_fmc2_dma_callback;
+		desc_ecc->callback_param = &fmc2->dma_ecc_complete;
+		ret = dma_submit_error(dmaengine_submit(desc_ecc));
+		if (ret)
+			goto err_unmap_ecc;
+
+		dma_async_issue_pending(fmc2->dma_ecc_ch);
+	}
+
+	stm32_fmc2_clear_seq_irq(fmc2);
+	stm32_fmc2_enable_seq_irq(fmc2);
+
+	/* Start the transfer */
+	csqcr |= FMC2_CSQCR_CSQSTART;
+	writel_relaxed(csqcr, fmc2->io_base + FMC2_CSQCR);
+
+	/* Wait end of sequencer transfer */
+	if (!wait_for_completion_timeout(&fmc2->complete,
+					 msecs_to_jiffies(FMC2_TIMEOUT_MS))) {
+		dev_err(fmc2->dev, "seq timeout\n");
+		stm32_fmc2_disable_seq_irq(fmc2);
+		dmaengine_terminate_all(dma_ch);
+		if (!write_data && !raw)
+			dmaengine_terminate_all(fmc2->dma_ecc_ch);
+		ret = -ETIMEDOUT;
+		goto err_unmap_ecc;
+	}
+
+	/* Wait DMA data transfer completion */
+	if (!wait_for_completion_timeout(&fmc2->dma_data_complete,
+					 msecs_to_jiffies(FMC2_TIMEOUT_MS))) {
+		dev_err(fmc2->dev, "data DMA timeout\n");
+		dmaengine_terminate_all(dma_ch);
+		ret = -ETIMEDOUT;
+	}
+
+	/* Wait DMA ECC transfer completion */
+	if (!write_data && !raw) {
+		if (!wait_for_completion_timeout(&fmc2->dma_ecc_complete,
+					msecs_to_jiffies(FMC2_TIMEOUT_MS))) {
+			dev_err(fmc2->dev, "ECC DMA timeout\n");
+			dmaengine_terminate_all(fmc2->dma_ecc_ch);
+			ret = -ETIMEDOUT;
+		}
+	}
+
+err_unmap_ecc:
+	if (!write_data && !raw)
+		dma_unmap_sg(fmc2->dev, fmc2->dma_ecc_sg.sgl,
+			     eccsteps, dma_data_dir);
+
+err_unmap_data:
+	dma_unmap_sg(fmc2->dev, fmc2->dma_data_sg.sgl, eccsteps, dma_data_dir);
+
+	return ret;
+}
+
+static int stm32_fmc2_sequencer_write(struct nand_chip *chip,
+				      const u8 *buf, int oob_required,
+				      int page, int raw)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	int ret;
+
+	/* Configure the sequencer */
+	stm32_fmc2_rw_page_init(chip, page, raw, true);
+
+	/* Write the page */
+	ret = stm32_fmc2_xfer(chip, buf, raw, true);
+	if (ret)
+		return ret;
+
+	/* Write oob */
+	if (oob_required) {
+		ret = nand_change_write_column_op(chip, mtd->writesize,
+						  chip->oob_poi, mtd->oobsize,
+						  false);
+		if (ret)
+			return ret;
+	}
+
+	return nand_prog_page_end_op(chip);
+}
+
+static int stm32_fmc2_sequencer_write_page(struct nand_chip *chip,
+					   const u8 *buf,
+					   int oob_required,
+					   int page)
+{
+	int ret;
+
+	/* Select the target */
+	ret = stm32_fmc2_select_chip(chip, chip->cur_cs);
+	if (ret)
+		return ret;
+
+	return stm32_fmc2_sequencer_write(chip, buf, oob_required, page, false);
+}
+
+static int stm32_fmc2_sequencer_write_page_raw(struct nand_chip *chip,
+					       const u8 *buf,
+					       int oob_required,
+					       int page)
+{
+	int ret;
+
+	/* Select the target */
+	ret = stm32_fmc2_select_chip(chip, chip->cur_cs);
+	if (ret)
+		return ret;
+
+	return stm32_fmc2_sequencer_write(chip, buf, oob_required, page, true);
+}
+
+/* Get a status indicating which sectors have errors */
+static inline u16 stm32_fmc2_get_mapping_status(struct stm32_fmc2_nfc *fmc2)
+{
+	u32 csqemsr = readl_relaxed(fmc2->io_base + FMC2_CSQEMSR);
+
+	return csqemsr & FMC2_CSQEMSR_SEM;
+}
+
+static int stm32_fmc2_sequencer_correct(struct nand_chip *chip, u8 *dat,
+					u8 *read_ecc, u8 *calc_ecc)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
+	int eccbytes = chip->ecc.bytes;
+	int eccsteps = chip->ecc.steps;
+	int eccstrength = chip->ecc.strength;
+	int i, s, eccsize = chip->ecc.size;
+	u32 *ecc_sta = (u32 *)fmc2->ecc_buf;
+	u16 sta_map = stm32_fmc2_get_mapping_status(fmc2);
+	unsigned int max_bitflips = 0;
+
+	for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, dat += eccsize) {
+		int stat = 0;
+
+		if (eccstrength == FMC2_ECC_HAM) {
+			/* Ecc_sta = FMC2_HECCR */
+			if (sta_map & BIT(s)) {
+				stm32_fmc2_ham_set_ecc(*ecc_sta, &calc_ecc[i]);
+				stat = stm32_fmc2_ham_correct(chip, dat,
+							      &read_ecc[i],
+							      &calc_ecc[i]);
+			}
+			ecc_sta++;
+		} else {
+			/*
+			 * Ecc_sta[0] = FMC2_BCHDSR0
+			 * Ecc_sta[1] = FMC2_BCHDSR1
+			 * Ecc_sta[2] = FMC2_BCHDSR2
+			 * Ecc_sta[3] = FMC2_BCHDSR3
+			 * Ecc_sta[4] = FMC2_BCHDSR4
+			 */
+			if (sta_map & BIT(s))
+				stat = stm32_fmc2_bch_decode(eccsize, dat,
+							     ecc_sta);
+			ecc_sta += 5;
+		}
+
+		if (stat == -EBADMSG)
+			/* Check for empty pages with bitflips */
+			stat = nand_check_erased_ecc_chunk(dat, eccsize,
+							   &read_ecc[i],
+							   eccbytes,
+							   NULL, 0,
+							   eccstrength);
+
+		if (stat < 0) {
+			mtd->ecc_stats.failed++;
+		} else {
+			mtd->ecc_stats.corrected += stat;
+			max_bitflips = max_t(unsigned int, max_bitflips, stat);
+		}
+	}
+
+	return max_bitflips;
+}
+
+static int stm32_fmc2_sequencer_read_page(struct nand_chip *chip, u8 *buf,
+					  int oob_required, int page)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
+	u8 *ecc_calc = chip->ecc.calc_buf;
+	u8 *ecc_code = chip->ecc.code_buf;
+	u16 sta_map;
+	int ret;
+
+	/* Select the target */
+	ret = stm32_fmc2_select_chip(chip, chip->cur_cs);
+	if (ret)
+		return ret;
+
+	/* Configure the sequencer */
+	stm32_fmc2_rw_page_init(chip, page, 0, false);
+
+	/* Read the page */
+	ret = stm32_fmc2_xfer(chip, buf, 0, false);
+	if (ret)
+		return ret;
+
+	sta_map = stm32_fmc2_get_mapping_status(fmc2);
+
+	/* Check if errors happen */
+	if (likely(!sta_map)) {
+		if (oob_required)
+			return nand_change_read_column_op(chip, mtd->writesize,
+							  chip->oob_poi,
+							  mtd->oobsize, false);
+
+		return 0;
+	}
+
+	/* Read oob */
+	ret = nand_change_read_column_op(chip, mtd->writesize,
+					 chip->oob_poi, mtd->oobsize, false);
+	if (ret)
+		return ret;
+
+	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
+					 chip->ecc.total);
+	if (ret)
+		return ret;
+
+	/* Correct data */
+	return chip->ecc.correct(chip, buf, ecc_code, ecc_calc);
+}
+
+static int stm32_fmc2_sequencer_read_page_raw(struct nand_chip *chip, u8 *buf,
+					      int oob_required, int page)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	int ret;
+
+	/* Select the target */
+	ret = stm32_fmc2_select_chip(chip, chip->cur_cs);
+	if (ret)
+		return ret;
+
+	/* Configure the sequencer */
+	stm32_fmc2_rw_page_init(chip, page, 1, false);
+
+	/* Read the page */
+	ret = stm32_fmc2_xfer(chip, buf, 1, false);
+	if (ret)
+		return ret;
+
+	/* Read oob */
+	if (oob_required)
+		return nand_change_read_column_op(chip, mtd->writesize,
+						  chip->oob_poi, mtd->oobsize,
+						  false);
+
+	return 0;
+}
+
+static irqreturn_t stm32_fmc2_irq(int irq, void *dev_id)
+{
+	struct stm32_fmc2_nfc *fmc2 = (struct stm32_fmc2_nfc *)dev_id;
+
+	if (fmc2->irq_state == FMC2_IRQ_SEQ)
+		/* Sequencer is used */
+		stm32_fmc2_disable_seq_irq(fmc2);
+	else if (fmc2->irq_state == FMC2_IRQ_BCH)
+		/* BCH is used */
+		stm32_fmc2_disable_bch_irq(fmc2);
+
+	complete(&fmc2->complete);
+
+	return IRQ_HANDLED;
+}
+
+static void stm32_fmc2_read_data(struct nand_chip *chip, void *buf,
+				 unsigned int len, bool force_8bit)
+{
+	struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
+	void __iomem *io_addr_r = fmc2->data_base[fmc2->cs_sel];
+
+	if (force_8bit && chip->options & NAND_BUSWIDTH_16)
+		/* Reconfigure bus width to 8-bit */
+		stm32_fmc2_set_buswidth_16(fmc2, false);
+
+	if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32))) {
+		if (!IS_ALIGNED((uintptr_t)buf, sizeof(u16)) && len) {
+			*(u8 *)buf = readb_relaxed(io_addr_r);
+			buf += sizeof(u8);
+			len -= sizeof(u8);
+		}
+
+		if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32)) &&
+		    len >= sizeof(u16)) {
+			*(u16 *)buf = readw_relaxed(io_addr_r);
+			buf += sizeof(u16);
+			len -= sizeof(u16);
+		}
+	}
+
+	/* Buf is aligned */
+	while (len >= sizeof(u32)) {
+		*(u32 *)buf = readl_relaxed(io_addr_r);
+		buf += sizeof(u32);
+		len -= sizeof(u32);
+	}
+
+	/* Read remaining bytes */
+	if (len >= sizeof(u16)) {
+		*(u16 *)buf = readw_relaxed(io_addr_r);
+		buf += sizeof(u16);
+		len -= sizeof(u16);
+	}
+
+	if (len)
+		*(u8 *)buf = readb_relaxed(io_addr_r);
+
+	if (force_8bit && chip->options & NAND_BUSWIDTH_16)
+		/* Reconfigure bus width to 16-bit */
+		stm32_fmc2_set_buswidth_16(fmc2, true);
+}
+
+static void stm32_fmc2_write_data(struct nand_chip *chip, const void *buf,
+				  unsigned int len, bool force_8bit)
+{
+	struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
+	void __iomem *io_addr_w = fmc2->data_base[fmc2->cs_sel];
+
+	if (force_8bit && chip->options & NAND_BUSWIDTH_16)
+		/* Reconfigure bus width to 8-bit */
+		stm32_fmc2_set_buswidth_16(fmc2, false);
+
+	if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32))) {
+		if (!IS_ALIGNED((uintptr_t)buf, sizeof(u16)) && len) {
+			writeb_relaxed(*(u8 *)buf, io_addr_w);
+			buf += sizeof(u8);
+			len -= sizeof(u8);
+		}
+
+		if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32)) &&
+		    len >= sizeof(u16)) {
+			writew_relaxed(*(u16 *)buf, io_addr_w);
+			buf += sizeof(u16);
+			len -= sizeof(u16);
+		}
+	}
+
+	/* Buf is aligned */
+	while (len >= sizeof(u32)) {
+		writel_relaxed(*(u32 *)buf, io_addr_w);
+		buf += sizeof(u32);
+		len -= sizeof(u32);
+	}
+
+	/* Write remaining bytes */
+	if (len >= sizeof(u16)) {
+		writew_relaxed(*(u16 *)buf, io_addr_w);
+		buf += sizeof(u16);
+		len -= sizeof(u16);
+	}
+
+	if (len)
+		writeb_relaxed(*(u8 *)buf, io_addr_w);
+
+	if (force_8bit && chip->options & NAND_BUSWIDTH_16)
+		/* Reconfigure bus width to 16-bit */
+		stm32_fmc2_set_buswidth_16(fmc2, true);
+}
+
+static int stm32_fmc2_exec_op(struct nand_chip *chip,
+			      const struct nand_operation *op,
+			      bool check_only)
+{
+	struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
+	const struct nand_op_instr *instr = NULL;
+	unsigned int op_id, i;
+	int ret;
+
+	ret = stm32_fmc2_select_chip(chip, op->cs);
+	if (ret)
+		return ret;
+
+	if (check_only)
+		return ret;
+
+	for (op_id = 0; op_id < op->ninstrs; op_id++) {
+		instr = &op->instrs[op_id];
+
+		switch (instr->type) {
+		case NAND_OP_CMD_INSTR:
+			writeb_relaxed(instr->ctx.cmd.opcode,
+				       fmc2->cmd_base[fmc2->cs_sel]);
+			break;
+
+		case NAND_OP_ADDR_INSTR:
+			for (i = 0; i < instr->ctx.addr.naddrs; i++)
+				writeb_relaxed(instr->ctx.addr.addrs[i],
+					       fmc2->addr_base[fmc2->cs_sel]);
+			break;
+
+		case NAND_OP_DATA_IN_INSTR:
+			stm32_fmc2_read_data(chip, instr->ctx.data.buf.in,
+					     instr->ctx.data.len,
+					     instr->ctx.data.force_8bit);
+			break;
+
+		case NAND_OP_DATA_OUT_INSTR:
+			stm32_fmc2_write_data(chip, instr->ctx.data.buf.out,
+					      instr->ctx.data.len,
+					      instr->ctx.data.force_8bit);
+			break;
+
+		case NAND_OP_WAITRDY_INSTR:
+			ret = nand_soft_waitrdy(chip,
+						instr->ctx.waitrdy.timeout_ms);
+			break;
+		}
+	}
+
+	return ret;
+}
+
+/* Controller initialization */
+static void stm32_fmc2_init(struct stm32_fmc2_nfc *fmc2)
+{
+	u32 pcr = readl_relaxed(fmc2->io_base + FMC2_PCR);
+	u32 bcr1 = readl_relaxed(fmc2->io_base + FMC2_BCR1);
+
+	/* Set CS used to undefined */
+	fmc2->cs_sel = -1;
+
+	/* Enable wait feature and nand flash memory bank */
+	pcr |= FMC2_PCR_PWAITEN;
+	pcr |= FMC2_PCR_PBKEN;
+
+	/* Set buswidth to 8 bits mode for identification */
+	pcr &= ~FMC2_PCR_PWID_MASK;
+
+	/* ECC logic is disabled */
+	pcr &= ~FMC2_PCR_ECCEN;
+
+	/* Default mode */
+	pcr &= ~FMC2_PCR_ECCALG;
+	pcr &= ~FMC2_PCR_BCHECC;
+	pcr &= ~FMC2_PCR_WEN;
+
+	/* Set default ECC sector size */
+	pcr &= ~FMC2_PCR_ECCSS_MASK;
+	pcr |= FMC2_PCR_ECCSS(FMC2_PCR_ECCSS_2048);
+
+	/* Set default tclr/tar timings */
+	pcr &= ~FMC2_PCR_TCLR_MASK;
+	pcr |= FMC2_PCR_TCLR(FMC2_PCR_TCLR_DEFAULT);
+	pcr &= ~FMC2_PCR_TAR_MASK;
+	pcr |= FMC2_PCR_TAR(FMC2_PCR_TAR_DEFAULT);
+
+	/* Enable FMC2 controller */
+	bcr1 |= FMC2_BCR1_FMC2EN;
+
+	writel_relaxed(bcr1, fmc2->io_base + FMC2_BCR1);
+	writel_relaxed(pcr, fmc2->io_base + FMC2_PCR);
+	writel_relaxed(FMC2_PMEM_DEFAULT, fmc2->io_base + FMC2_PMEM);
+	writel_relaxed(FMC2_PATT_DEFAULT, fmc2->io_base + FMC2_PATT);
+}
+
+/* Controller timings */
+static void stm32_fmc2_calc_timings(struct nand_chip *chip,
+				    const struct nand_sdr_timings *sdrt)
+{
+	struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
+	struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
+	struct stm32_fmc2_timings *tims = &nand->timings;
+	unsigned long hclk = clk_get_rate(fmc2->clk);
+	unsigned long hclkp = NSEC_PER_SEC / (hclk / 1000);
+	unsigned long timing, tar, tclr, thiz, twait;
+	unsigned long tset_mem, tset_att, thold_mem, thold_att;
+
+	tar = max_t(unsigned long, hclkp, sdrt->tAR_min);
+	timing = DIV_ROUND_UP(tar, hclkp) - 1;
+	tims->tar = min_t(unsigned long, timing, FMC2_PCR_TIMING_MASK);
+
+	tclr = max_t(unsigned long, hclkp, sdrt->tCLR_min);
+	timing = DIV_ROUND_UP(tclr, hclkp) - 1;
+	tims->tclr = min_t(unsigned long, timing, FMC2_PCR_TIMING_MASK);
+
+	tims->thiz = FMC2_THIZ;
+	thiz = (tims->thiz + 1) * hclkp;
+
+	/*
+	 * tWAIT > tRP
+	 * tWAIT > tWP
+	 * tWAIT > tREA + tIO
+	 */
+	twait = max_t(unsigned long, hclkp, sdrt->tRP_min);
+	twait = max_t(unsigned long, twait, sdrt->tWP_min);
+	twait = max_t(unsigned long, twait, sdrt->tREA_max + FMC2_TIO);
+	timing = DIV_ROUND_UP(twait, hclkp);
+	tims->twait = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
+
+	/*
+	 * tSETUP_MEM > tCS - tWAIT
+	 * tSETUP_MEM > tALS - tWAIT
+	 * tSETUP_MEM > tDS - (tWAIT - tHIZ)
+	 */
+	tset_mem = hclkp;
+	if (sdrt->tCS_min > twait && (tset_mem < sdrt->tCS_min - twait))
+		tset_mem = sdrt->tCS_min - twait;
+	if (sdrt->tALS_min > twait && (tset_mem < sdrt->tALS_min - twait))
+		tset_mem = sdrt->tALS_min - twait;
+	if (twait > thiz && (sdrt->tDS_min > twait - thiz) &&
+	    (tset_mem < sdrt->tDS_min - (twait - thiz)))
+		tset_mem = sdrt->tDS_min - (twait - thiz);
+	timing = DIV_ROUND_UP(tset_mem, hclkp);
+	tims->tset_mem = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
+
+	/*
+	 * tHOLD_MEM > tCH
+	 * tHOLD_MEM > tREH - tSETUP_MEM
+	 * tHOLD_MEM > max(tRC, tWC) - (tSETUP_MEM + tWAIT)
+	 */
+	thold_mem = max_t(unsigned long, hclkp, sdrt->tCH_min);
+	if (sdrt->tREH_min > tset_mem &&
+	    (thold_mem < sdrt->tREH_min - tset_mem))
+		thold_mem = sdrt->tREH_min - tset_mem;
+	if ((sdrt->tRC_min > tset_mem + twait) &&
+	    (thold_mem < sdrt->tRC_min - (tset_mem + twait)))
+		thold_mem = sdrt->tRC_min - (tset_mem + twait);
+	if ((sdrt->tWC_min > tset_mem + twait) &&
+	    (thold_mem < sdrt->tWC_min - (tset_mem + twait)))
+		thold_mem = sdrt->tWC_min - (tset_mem + twait);
+	timing = DIV_ROUND_UP(thold_mem, hclkp);
+	tims->thold_mem = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
+
+	/*
+	 * tSETUP_ATT > tCS - tWAIT
+	 * tSETUP_ATT > tCLS - tWAIT
+	 * tSETUP_ATT > tALS - tWAIT
+	 * tSETUP_ATT > tRHW - tHOLD_MEM
+	 * tSETUP_ATT > tDS - (tWAIT - tHIZ)
+	 */
+	tset_att = hclkp;
+	if (sdrt->tCS_min > twait && (tset_att < sdrt->tCS_min - twait))
+		tset_att = sdrt->tCS_min - twait;
+	if (sdrt->tCLS_min > twait && (tset_att < sdrt->tCLS_min - twait))
+		tset_att = sdrt->tCLS_min - twait;
+	if (sdrt->tALS_min > twait && (tset_att < sdrt->tALS_min - twait))
+		tset_att = sdrt->tALS_min - twait;
+	if (sdrt->tRHW_min > thold_mem &&
+	    (tset_att < sdrt->tRHW_min - thold_mem))
+		tset_att = sdrt->tRHW_min - thold_mem;
+	if (twait > thiz && (sdrt->tDS_min > twait - thiz) &&
+	    (tset_att < sdrt->tDS_min - (twait - thiz)))
+		tset_att = sdrt->tDS_min - (twait - thiz);
+	timing = DIV_ROUND_UP(tset_att, hclkp);
+	tims->tset_att = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
+
+	/*
+	 * tHOLD_ATT > tALH
+	 * tHOLD_ATT > tCH
+	 * tHOLD_ATT > tCLH
+	 * tHOLD_ATT > tCOH
+	 * tHOLD_ATT > tDH
+	 * tHOLD_ATT > tWB + tIO + tSYNC - tSETUP_MEM
+	 * tHOLD_ATT > tADL - tSETUP_MEM
+	 * tHOLD_ATT > tWH - tSETUP_MEM
+	 * tHOLD_ATT > tWHR - tSETUP_MEM
+	 * tHOLD_ATT > tRC - (tSETUP_ATT + tWAIT)
+	 * tHOLD_ATT > tWC - (tSETUP_ATT + tWAIT)
+	 */
+	thold_att = max_t(unsigned long, hclkp, sdrt->tALH_min);
+	thold_att = max_t(unsigned long, thold_att, sdrt->tCH_min);
+	thold_att = max_t(unsigned long, thold_att, sdrt->tCLH_min);
+	thold_att = max_t(unsigned long, thold_att, sdrt->tCOH_min);
+	thold_att = max_t(unsigned long, thold_att, sdrt->tDH_min);
+	if ((sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC > tset_mem) &&
+	    (thold_att < sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC - tset_mem))
+		thold_att = sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC - tset_mem;
+	if (sdrt->tADL_min > tset_mem &&
+	    (thold_att < sdrt->tADL_min - tset_mem))
+		thold_att = sdrt->tADL_min - tset_mem;
+	if (sdrt->tWH_min > tset_mem &&
+	    (thold_att < sdrt->tWH_min - tset_mem))
+		thold_att = sdrt->tWH_min - tset_mem;
+	if (sdrt->tWHR_min > tset_mem &&
+	    (thold_att < sdrt->tWHR_min - tset_mem))
+		thold_att = sdrt->tWHR_min - tset_mem;
+	if ((sdrt->tRC_min > tset_att + twait) &&
+	    (thold_att < sdrt->tRC_min - (tset_att + twait)))
+		thold_att = sdrt->tRC_min - (tset_att + twait);
+	if ((sdrt->tWC_min > tset_att + twait) &&
+	    (thold_att < sdrt->tWC_min - (tset_att + twait)))
+		thold_att = sdrt->tWC_min - (tset_att + twait);
+	timing = DIV_ROUND_UP(thold_att, hclkp);
+	tims->thold_att = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
+}
+
+static int stm32_fmc2_setup_interface(struct nand_chip *chip, int chipnr,
+				      const struct nand_data_interface *conf)
+{
+	const struct nand_sdr_timings *sdrt;
+
+	sdrt = nand_get_sdr_timings(conf);
+	if (IS_ERR(sdrt))
+		return PTR_ERR(sdrt);
+
+	if (chipnr == NAND_DATA_IFACE_CHECK_ONLY)
+		return 0;
+
+	stm32_fmc2_calc_timings(chip, sdrt);
+
+	/* Apply timings */
+	stm32_fmc2_timings_init(chip);
+
+	return 0;
+}
+
+/* DMA configuration */
+static int stm32_fmc2_dma_setup(struct stm32_fmc2_nfc *fmc2)
+{
+	int ret;
+
+	fmc2->dma_tx_ch = dma_request_slave_channel(fmc2->dev, "tx");
+	fmc2->dma_rx_ch = dma_request_slave_channel(fmc2->dev, "rx");
+	fmc2->dma_ecc_ch = dma_request_slave_channel(fmc2->dev, "ecc");
+
+	if (!fmc2->dma_tx_ch || !fmc2->dma_rx_ch || !fmc2->dma_ecc_ch) {
+		dev_warn(fmc2->dev, "DMAs not defined in the device tree, polling mode is used\n");
+		return 0;
+	}
+
+	ret = sg_alloc_table(&fmc2->dma_ecc_sg, FMC2_MAX_SG, GFP_KERNEL);
+	if (ret)
+		return ret;
+
+	/* Allocate a buffer to store ECC status registers */
+	fmc2->ecc_buf = devm_kzalloc(fmc2->dev, FMC2_MAX_ECC_BUF_LEN,
+				     GFP_KERNEL);
+	if (!fmc2->ecc_buf)
+		return -ENOMEM;
+
+	ret = sg_alloc_table(&fmc2->dma_data_sg, FMC2_MAX_SG, GFP_KERNEL);
+	if (ret)
+		return ret;
+
+	init_completion(&fmc2->dma_data_complete);
+	init_completion(&fmc2->dma_ecc_complete);
+
+	return 0;
+}
+
+/* NAND callbacks setup */
+static void stm32_fmc2_nand_callbacks_setup(struct nand_chip *chip)
+{
+	struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
+
+	/*
+	 * Specific callbacks to read/write a page depending on
+	 * the mode (polling/sequencer) and the algo used (Hamming, BCH).
+	 */
+	if (fmc2->dma_tx_ch && fmc2->dma_rx_ch && fmc2->dma_ecc_ch) {
+		/* DMA => use sequencer mode callbacks */
+		chip->ecc.correct = stm32_fmc2_sequencer_correct;
+		chip->ecc.write_page = stm32_fmc2_sequencer_write_page;
+		chip->ecc.read_page = stm32_fmc2_sequencer_read_page;
+		chip->ecc.write_page_raw = stm32_fmc2_sequencer_write_page_raw;
+		chip->ecc.read_page_raw = stm32_fmc2_sequencer_read_page_raw;
+	} else {
+		/* No DMA => use polling mode callbacks */
+		chip->ecc.hwctl = stm32_fmc2_hwctl;
+		if (chip->ecc.strength == FMC2_ECC_HAM) {
+			/* Hamming is used */
+			chip->ecc.calculate = stm32_fmc2_ham_calculate;
+			chip->ecc.correct = stm32_fmc2_ham_correct;
+			chip->ecc.options |= NAND_ECC_GENERIC_ERASED_CHECK;
+		} else {
+			/* BCH is used */
+			chip->ecc.calculate = stm32_fmc2_bch_calculate;
+			chip->ecc.correct = stm32_fmc2_bch_correct;
+			chip->ecc.read_page = stm32_fmc2_read_page;
+		}
+	}
+
+	/* Specific configurations depending on the algo used */
+	if (chip->ecc.strength == FMC2_ECC_HAM)
+		chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 4 : 3;
+	else if (chip->ecc.strength == FMC2_ECC_BCH8)
+		chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 14 : 13;
+	else
+		chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 8 : 7;
+}
+
+/* FMC2 layout */
+static int stm32_fmc2_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
+					 struct mtd_oob_region *oobregion)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct nand_ecc_ctrl *ecc = &chip->ecc;
+
+	if (section)
+		return -ERANGE;
+
+	oobregion->length = ecc->total;
+	oobregion->offset = FMC2_BBM_LEN;
+
+	return 0;
+}
+
+static int stm32_fmc2_nand_ooblayout_free(struct mtd_info *mtd, int section,
+					  struct mtd_oob_region *oobregion)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct nand_ecc_ctrl *ecc = &chip->ecc;
+
+	if (section)
+		return -ERANGE;
+
+	oobregion->length = mtd->oobsize - ecc->total - FMC2_BBM_LEN;
+	oobregion->offset = ecc->total + FMC2_BBM_LEN;
+
+	return 0;
+}
+
+static const struct mtd_ooblayout_ops stm32_fmc2_nand_ooblayout_ops = {
+	.ecc = stm32_fmc2_nand_ooblayout_ecc,
+	.free = stm32_fmc2_nand_ooblayout_free,
+};
+
+/* FMC2 caps */
+static int stm32_fmc2_calc_ecc_bytes(int step_size, int strength)
+{
+	/* Hamming */
+	if (strength == FMC2_ECC_HAM)
+		return 4;
+
+	/* BCH8 */
+	if (strength == FMC2_ECC_BCH8)
+		return 14;
+
+	/* BCH4 */
+	return 8;
+}
+
+NAND_ECC_CAPS_SINGLE(stm32_fmc2_ecc_caps, stm32_fmc2_calc_ecc_bytes,
+		     FMC2_ECC_STEP_SIZE,
+		     FMC2_ECC_HAM, FMC2_ECC_BCH4, FMC2_ECC_BCH8);
+
+/* FMC2 controller ops */
+static int stm32_fmc2_attach_chip(struct nand_chip *chip)
+{
+	struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	int ret;
+
+	/*
+	 * Only NAND_ECC_HW mode is actually supported
+	 * Hamming => ecc.strength = 1
+	 * BCH4 => ecc.strength = 4
+	 * BCH8 => ecc.strength = 8
+	 * ECC sector size = 512
+	 */
+	if (chip->ecc.mode != NAND_ECC_HW) {
+		dev_err(fmc2->dev, "nand_ecc_mode is not well defined in the DT\n");
+		return -EINVAL;
+	}
+
+	ret = nand_ecc_choose_conf(chip, &stm32_fmc2_ecc_caps,
+				   mtd->oobsize - FMC2_BBM_LEN);
+	if (ret) {
+		dev_err(fmc2->dev, "no valid ECC settings set\n");
+		return ret;
+	}
+
+	if (mtd->writesize / chip->ecc.size > FMC2_MAX_SG) {
+		dev_err(fmc2->dev, "nand page size is not supported\n");
+		return -EINVAL;
+	}
+
+	if (chip->bbt_options & NAND_BBT_USE_FLASH)
+		chip->bbt_options |= NAND_BBT_NO_OOB;
+
+	/* NAND callbacks setup */
+	stm32_fmc2_nand_callbacks_setup(chip);
+
+	/* Define ECC layout */
+	mtd_set_ooblayout(mtd, &stm32_fmc2_nand_ooblayout_ops);
+
+	/* Configure bus width to 16-bit */
+	if (chip->options & NAND_BUSWIDTH_16)
+		stm32_fmc2_set_buswidth_16(fmc2, true);
+
+	return 0;
+}
+
+static const struct nand_controller_ops stm32_fmc2_nand_controller_ops = {
+	.attach_chip = stm32_fmc2_attach_chip,
+	.exec_op = stm32_fmc2_exec_op,
+	.setup_data_interface = stm32_fmc2_setup_interface,
+};
+
+/* FMC2 probe */
+static int stm32_fmc2_parse_child(struct stm32_fmc2_nfc *fmc2,
+				  struct device_node *dn)
+{
+	struct stm32_fmc2_nand *nand = &fmc2->nand;
+	u32 cs;
+	int ret, i;
+
+	if (!of_get_property(dn, "reg", &nand->ncs))
+		return -EINVAL;
+
+	nand->ncs /= sizeof(u32);
+	if (!nand->ncs) {
+		dev_err(fmc2->dev, "invalid reg property size\n");
+		return -EINVAL;
+	}
+
+	for (i = 0; i < nand->ncs; i++) {
+		ret = of_property_read_u32_index(dn, "reg", i, &cs);
+		if (ret) {
+			dev_err(fmc2->dev, "could not retrieve reg property: %d\n",
+				ret);
+			return ret;
+		}
+
+		if (cs > FMC2_MAX_CE) {
+			dev_err(fmc2->dev, "invalid reg value: %d\n", cs);
+			return -EINVAL;
+		}
+
+		if (fmc2->cs_assigned & BIT(cs)) {
+			dev_err(fmc2->dev, "cs already assigned: %d\n", cs);
+			return -EINVAL;
+		}
+
+		fmc2->cs_assigned |= BIT(cs);
+		nand->cs_used[i] = cs;
+	}
+
+	nand_set_flash_node(&nand->chip, dn);
+
+	return 0;
+}
+
+static int stm32_fmc2_parse_dt(struct stm32_fmc2_nfc *fmc2)
+{
+	struct device_node *dn = fmc2->dev->of_node;
+	struct device_node *child;
+	int nchips = of_get_child_count(dn);
+	int ret = 0;
+
+	if (!nchips) {
+		dev_err(fmc2->dev, "NAND chip not defined\n");
+		return -EINVAL;
+	}
+
+	if (nchips > 1) {
+		dev_err(fmc2->dev, "too many NAND chips defined\n");
+		return -EINVAL;
+	}
+
+	for_each_child_of_node(dn, child) {
+		ret = stm32_fmc2_parse_child(fmc2, child);
+		if (ret < 0) {
+			of_node_put(child);
+			return ret;
+		}
+	}
+
+	return ret;
+}
+
+static int stm32_fmc2_probe(struct platform_device *pdev)
+{
+	struct device *dev = &pdev->dev;
+	struct reset_control *rstc;
+	struct stm32_fmc2_nfc *fmc2;
+	struct stm32_fmc2_nand *nand;
+	struct resource *res;
+	struct mtd_info *mtd;
+	struct nand_chip *chip;
+	int chip_cs, mem_region, ret, irq;
+
+	fmc2 = devm_kzalloc(dev, sizeof(*fmc2), GFP_KERNEL);
+	if (!fmc2)
+		return -ENOMEM;
+
+	fmc2->dev = dev;
+	nand_controller_init(&fmc2->base);
+	fmc2->base.ops = &stm32_fmc2_nand_controller_ops;
+
+	ret = stm32_fmc2_parse_dt(fmc2);
+	if (ret)
+		return ret;
+
+	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+	fmc2->io_base = devm_ioremap_resource(dev, res);
+	if (IS_ERR(fmc2->io_base))
+		return PTR_ERR(fmc2->io_base);
+
+	fmc2->io_phys_addr = res->start;
+
+	for (chip_cs = 0, mem_region = 1; chip_cs < FMC2_MAX_CE;
+	     chip_cs++, mem_region += 3) {
+		if (!(fmc2->cs_assigned & BIT(chip_cs)))
+			continue;
+
+		res = platform_get_resource(pdev, IORESOURCE_MEM, mem_region);
+		fmc2->data_base[chip_cs] = devm_ioremap_resource(dev, res);
+		if (IS_ERR(fmc2->data_base[chip_cs]))
+			return PTR_ERR(fmc2->data_base[chip_cs]);
+
+		fmc2->data_phys_addr[chip_cs] = res->start;
+
+		res = platform_get_resource(pdev, IORESOURCE_MEM,
+					    mem_region + 1);
+		fmc2->cmd_base[chip_cs] = devm_ioremap_resource(dev, res);
+		if (IS_ERR(fmc2->cmd_base[chip_cs]))
+			return PTR_ERR(fmc2->cmd_base[chip_cs]);
+
+		res = platform_get_resource(pdev, IORESOURCE_MEM,
+					    mem_region + 2);
+		fmc2->addr_base[chip_cs] = devm_ioremap_resource(dev, res);
+		if (IS_ERR(fmc2->addr_base[chip_cs]))
+			return PTR_ERR(fmc2->addr_base[chip_cs]);
+	}
+
+	irq = platform_get_irq(pdev, 0);
+	if (irq < 0) {
+		if (irq != -EPROBE_DEFER)
+			dev_err(dev, "IRQ error missing or invalid\n");
+		return irq;
+	}
+
+	ret = devm_request_irq(dev, irq, stm32_fmc2_irq, 0,
+			       dev_name(dev), fmc2);
+	if (ret) {
+		dev_err(dev, "failed to request irq\n");
+		return ret;
+	}
+
+	init_completion(&fmc2->complete);
+
+	fmc2->clk = devm_clk_get(dev, NULL);
+	if (IS_ERR(fmc2->clk))
+		return PTR_ERR(fmc2->clk);
+
+	ret = clk_prepare_enable(fmc2->clk);
+	if (ret) {
+		dev_err(dev, "can not enable the clock\n");
+		return ret;
+	}
+
+	rstc = devm_reset_control_get(dev, NULL);
+	if (!IS_ERR(rstc)) {
+		reset_control_assert(rstc);
+		reset_control_deassert(rstc);
+	}
+
+	/* DMA setup */
+	ret = stm32_fmc2_dma_setup(fmc2);
+	if (ret)
+		return ret;
+
+	/* FMC2 init routine */
+	stm32_fmc2_init(fmc2);
+
+	nand = &fmc2->nand;
+	chip = &nand->chip;
+	mtd = nand_to_mtd(chip);
+	mtd->dev.parent = dev;
+
+	chip->controller = &fmc2->base;
+	chip->options |= NAND_BUSWIDTH_AUTO | NAND_NO_SUBPAGE_WRITE |
+			 NAND_USE_BOUNCE_BUFFER;
+
+	/* Default ECC settings */
+	chip->ecc.mode = NAND_ECC_HW;
+	chip->ecc.size = FMC2_ECC_STEP_SIZE;
+	chip->ecc.strength = FMC2_ECC_BCH8;
+
+	/* Scan to find existence of the device */
+	ret = nand_scan(chip, nand->ncs);
+	if (ret)
+		goto err_scan;
+
+	ret = mtd_device_register(mtd, NULL, 0);
+	if (ret)
+		goto err_device_register;
+
+	platform_set_drvdata(pdev, fmc2);
+
+	return 0;
+
+err_device_register:
+	nand_cleanup(chip);
+
+err_scan:
+	if (fmc2->dma_ecc_ch)
+		dma_release_channel(fmc2->dma_ecc_ch);
+	if (fmc2->dma_tx_ch)
+		dma_release_channel(fmc2->dma_tx_ch);
+	if (fmc2->dma_rx_ch)
+		dma_release_channel(fmc2->dma_rx_ch);
+
+	sg_free_table(&fmc2->dma_data_sg);
+	sg_free_table(&fmc2->dma_ecc_sg);
+
+	clk_disable_unprepare(fmc2->clk);
+
+	return ret;
+}
+
+static int stm32_fmc2_remove(struct platform_device *pdev)
+{
+	struct stm32_fmc2_nfc *fmc2 = platform_get_drvdata(pdev);
+	struct stm32_fmc2_nand *nand = &fmc2->nand;
+
+	nand_release(&nand->chip);
+
+	if (fmc2->dma_ecc_ch)
+		dma_release_channel(fmc2->dma_ecc_ch);
+	if (fmc2->dma_tx_ch)
+		dma_release_channel(fmc2->dma_tx_ch);
+	if (fmc2->dma_rx_ch)
+		dma_release_channel(fmc2->dma_rx_ch);
+
+	sg_free_table(&fmc2->dma_data_sg);
+	sg_free_table(&fmc2->dma_ecc_sg);
+
+	clk_disable_unprepare(fmc2->clk);
+
+	return 0;
+}
+
+static int __maybe_unused stm32_fmc2_suspend(struct device *dev)
+{
+	struct stm32_fmc2_nfc *fmc2 = dev_get_drvdata(dev);
+
+	clk_disable_unprepare(fmc2->clk);
+
+	pinctrl_pm_select_sleep_state(dev);
+
+	return 0;
+}
+
+static int __maybe_unused stm32_fmc2_resume(struct device *dev)
+{
+	struct stm32_fmc2_nfc *fmc2 = dev_get_drvdata(dev);
+	struct stm32_fmc2_nand *nand = &fmc2->nand;
+	int chip_cs, ret;
+
+	pinctrl_pm_select_default_state(dev);
+
+	ret = clk_prepare_enable(fmc2->clk);
+	if (ret) {
+		dev_err(dev, "can not enable the clock\n");
+		return ret;
+	}
+
+	stm32_fmc2_init(fmc2);
+
+	for (chip_cs = 0; chip_cs < FMC2_MAX_CE; chip_cs++) {
+		if (!(fmc2->cs_assigned & BIT(chip_cs)))
+			continue;
+
+		nand_reset(&nand->chip, chip_cs);
+	}
+
+	return 0;
+}
+
+static SIMPLE_DEV_PM_OPS(stm32_fmc2_pm_ops, stm32_fmc2_suspend,
+			 stm32_fmc2_resume);
+
+static const struct of_device_id stm32_fmc2_match[] = {
+	{.compatible = "st,stm32mp15-fmc2"},
+	{}
+};
+MODULE_DEVICE_TABLE(of, stm32_fmc2_match);
+
+static struct platform_driver stm32_fmc2_driver = {
+	.probe	= stm32_fmc2_probe,
+	.remove	= stm32_fmc2_remove,
+	.driver	= {
+		.name = "stm32_fmc2_nand",
+		.of_match_table = stm32_fmc2_match,
+		.pm = &stm32_fmc2_pm_ops,
+	},
+};
+module_platform_driver(stm32_fmc2_driver);
+
+MODULE_ALIAS("platform:stm32_fmc2_nand");
+MODULE_AUTHOR("Christophe Kerello <christophe.kerello@st.com>");
+MODULE_DESCRIPTION("STMicroelectronics STM32 FMC2 nand driver");
+MODULE_LICENSE("GPL v2");
diff --git a/drivers/mtd/nand/raw/sunxi_nand.c b/drivers/mtd/nand/raw/sunxi_nand.c
index 1f0b7ee..8977329 100644
--- a/drivers/mtd/nand/raw/sunxi_nand.c
+++ b/drivers/mtd/nand/raw/sunxi_nand.c
@@ -1,3 +1,4 @@
+// SPDX-License-Identifier: GPL-2.0+
 /*
  * Copyright (C) 2013 Boris BREZILLON <b.brezillon.dev@gmail.com>
  *
@@ -10,16 +11,6 @@
  *
  *	Copyright (C) 2013 Dmitriy B. <rzk333@gmail.com>
  *	Copyright (C) 2013 Sergey Lapin <slapin@ossfans.org>
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
- * GNU General Public License for more details.
  */
 
 #include <linux/dma-mapping.h>
@@ -51,7 +42,8 @@
 #define NFC_REG_CMD		0x0024
 #define NFC_REG_RCMD_SET	0x0028
 #define NFC_REG_WCMD_SET	0x002C
-#define NFC_REG_IO_DATA		0x0030
+#define NFC_REG_A10_IO_DATA	0x0030
+#define NFC_REG_A23_IO_DATA	0x0300
 #define NFC_REG_ECC_CTL		0x0034
 #define NFC_REG_ECC_ST		0x0038
 #define NFC_REG_DEBUG		0x003C
@@ -59,6 +51,7 @@
 #define NFC_REG_USER_DATA(x)	(0x0050 + ((x) * 4))
 #define NFC_REG_SPARE_AREA	0x00A0
 #define NFC_REG_PAT_ID		0x00A4
+#define NFC_REG_MDMA_CNT	0x00C4
 #define NFC_RAM0_BASE		0x0400
 #define NFC_RAM1_BASE		0x0800
 
@@ -77,6 +70,7 @@
 #define NFC_PAGE_SHIFT(x)	(((x) < 10 ? 0 : (x) - 10) << 8)
 #define NFC_SAM			BIT(12)
 #define NFC_RAM_METHOD		BIT(14)
+#define NFC_DMA_TYPE_NORMAL	BIT(15)
 #define NFC_DEBUG_CTL		BIT(31)
 
 /* define bit use in NFC_ST */
@@ -163,38 +157,36 @@
 
 #define NFC_MAX_CS		7
 
-/*
- * Chip Select structure: stores information related to NAND Chip Select
+/**
+ * struct sunxi_nand_chip_sel - stores information related to NAND Chip Select
  *
- * @cs:		the NAND CS id used to communicate with a NAND Chip
- * @rb:		the Ready/Busy pin ID. -1 means no R/B pin connected to the
- *		NFC
+ * @cs: the NAND CS id used to communicate with a NAND Chip
+ * @rb: the Ready/Busy pin ID. -1 means no R/B pin connected to the NFC
  */
 struct sunxi_nand_chip_sel {
 	u8 cs;
 	s8 rb;
 };
 
-/*
- * sunxi HW ECC infos: stores information related to HW ECC support
+/**
+ * struct sunxi_nand_hw_ecc - stores information related to HW ECC support
  *
- * @mode:	the sunxi ECC mode field deduced from ECC requirements
+ * @mode: the sunxi ECC mode field deduced from ECC requirements
  */
 struct sunxi_nand_hw_ecc {
 	int mode;
 };
 
-/*
- * NAND chip structure: stores NAND chip device related information
+/**
+ * struct sunxi_nand_chip - stores NAND chip device related information
  *
- * @node:		used to store NAND chips into a list
- * @nand:		base NAND chip structure
- * @mtd:		base MTD structure
- * @clk_rate:		clk_rate required for this NAND chip
- * @timing_cfg		TIMING_CFG register value for this NAND chip
- * @selected:		current active CS
- * @nsels:		number of CS lines required by the NAND chip
- * @sels:		array of CS lines descriptions
+ * @node: used to store NAND chips into a list
+ * @nand: base NAND chip structure
+ * @clk_rate: clk_rate required for this NAND chip
+ * @timing_cfg: TIMING_CFG register value for this NAND chip
+ * @timing_ctl: TIMING_CTL register value for this NAND chip
+ * @nsels: number of CS lines required by the NAND chip
+ * @sels: array of CS lines descriptions
  */
 struct sunxi_nand_chip {
 	struct list_head node;
@@ -202,11 +194,6 @@
 	unsigned long clk_rate;
 	u32 timing_cfg;
 	u32 timing_ctl;
-	int selected;
-	int addr_cycles;
-	u32 addr[2];
-	int cmd_cycles;
-	u8 cmd[2];
 	int nsels;
 	struct sunxi_nand_chip_sel sels[0];
 };
@@ -217,19 +204,35 @@
 }
 
 /*
- * NAND Controller structure: stores sunxi NAND controller information
+ * NAND Controller capabilities structure: stores NAND controller capabilities
+ * for distinction between compatible strings.
  *
- * @controller:		base controller structure
- * @dev:		parent device (used to print error messages)
- * @regs:		NAND controller registers
- * @ahb_clk:		NAND Controller AHB clock
- * @mod_clk:		NAND Controller mod clock
- * @assigned_cs:	bitmask describing already assigned CS lines
- * @clk_rate:		NAND controller current clock rate
- * @chips:		a list containing all the NAND chips attached to
- *			this NAND controller
- * @complete:		a completion object used to wait for NAND
- *			controller events
+ * @extra_mbus_conf:	Contrary to A10, A10s and A13, accessing internal RAM
+ *			through MBUS on A23/A33 needs extra configuration.
+ * @reg_io_data:	I/O data register
+ * @dma_maxburst:	DMA maxburst
+ */
+struct sunxi_nfc_caps {
+	bool extra_mbus_conf;
+	unsigned int reg_io_data;
+	unsigned int dma_maxburst;
+};
+
+/**
+ * struct sunxi_nfc - stores sunxi NAND controller information
+ *
+ * @controller: base controller structure
+ * @dev: parent device (used to print error messages)
+ * @regs: NAND controller registers
+ * @ahb_clk: NAND controller AHB clock
+ * @mod_clk: NAND controller mod clock
+ * @reset: NAND controller reset line
+ * @assigned_cs: bitmask describing already assigned CS lines
+ * @clk_rate: NAND controller current clock rate
+ * @chips: a list containing all the NAND chips attached to this NAND
+ *	   controller
+ * @complete: a completion object used to wait for NAND controller events
+ * @dmac: the DMA channel attached to the NAND controller
  */
 struct sunxi_nfc {
 	struct nand_controller controller;
@@ -243,6 +246,7 @@
 	struct list_head chips;
 	struct completion complete;
 	struct dma_chan *dmac;
+	const struct sunxi_nfc_caps *caps;
 };
 
 static inline struct sunxi_nfc *to_sunxi_nfc(struct nand_controller *ctrl)
@@ -339,13 +343,11 @@
 	return ret;
 }
 
-static int sunxi_nfc_dma_op_prepare(struct mtd_info *mtd, const void *buf,
+static int sunxi_nfc_dma_op_prepare(struct sunxi_nfc *nfc, const void *buf,
 				    int chunksize, int nchunks,
 				    enum dma_data_direction ddir,
 				    struct scatterlist *sg)
 {
-	struct nand_chip *nand = mtd_to_nand(mtd);
-	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
 	struct dma_async_tx_descriptor *dmad;
 	enum dma_transfer_direction tdir;
 	dma_cookie_t dmat;
@@ -371,6 +373,9 @@
 	       nfc->regs + NFC_REG_CTL);
 	writel(nchunks, nfc->regs + NFC_REG_SECTOR_NUM);
 	writel(chunksize, nfc->regs + NFC_REG_CNT);
+	if (nfc->caps->extra_mbus_conf)
+		writel(chunksize * nchunks, nfc->regs + NFC_REG_MDMA_CNT);
+
 	dmat = dmaengine_submit(dmad);
 
 	ret = dma_submit_error(dmat);
@@ -388,85 +393,48 @@
 	return ret;
 }
 
-static void sunxi_nfc_dma_op_cleanup(struct mtd_info *mtd,
+static void sunxi_nfc_dma_op_cleanup(struct sunxi_nfc *nfc,
 				     enum dma_data_direction ddir,
 				     struct scatterlist *sg)
 {
-	struct nand_chip *nand = mtd_to_nand(mtd);
-	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
-
 	dma_unmap_sg(nfc->dev, sg, 1, ddir);
 	writel(readl(nfc->regs + NFC_REG_CTL) & ~NFC_RAM_METHOD,
 	       nfc->regs + NFC_REG_CTL);
 }
 
-static int sunxi_nfc_dev_ready(struct mtd_info *mtd)
+static void sunxi_nfc_select_chip(struct nand_chip *nand, unsigned int cs)
 {
-	struct nand_chip *nand = mtd_to_nand(mtd);
-	struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
-	struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
-	u32 mask;
-
-	if (sunxi_nand->selected < 0)
-		return 0;
-
-	if (sunxi_nand->sels[sunxi_nand->selected].rb < 0) {
-		dev_err(nfc->dev, "cannot check R/B NAND status!\n");
-		return 0;
-	}
-
-	mask = NFC_RB_STATE(sunxi_nand->sels[sunxi_nand->selected].rb);
-
-	return !!(readl(nfc->regs + NFC_REG_ST) & mask);
-}
-
-static void sunxi_nfc_select_chip(struct mtd_info *mtd, int chip)
-{
-	struct nand_chip *nand = mtd_to_nand(mtd);
+	struct mtd_info *mtd = nand_to_mtd(nand);
 	struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
 	struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
 	struct sunxi_nand_chip_sel *sel;
 	u32 ctl;
 
-	if (chip > 0 && chip >= sunxi_nand->nsels)
-		return;
-
-	if (chip == sunxi_nand->selected)
+	if (cs > 0 && cs >= sunxi_nand->nsels)
 		return;
 
 	ctl = readl(nfc->regs + NFC_REG_CTL) &
 	      ~(NFC_PAGE_SHIFT_MSK | NFC_CE_SEL_MSK | NFC_RB_SEL_MSK | NFC_EN);
 
-	if (chip >= 0) {
-		sel = &sunxi_nand->sels[chip];
+	sel = &sunxi_nand->sels[cs];
+	ctl |= NFC_CE_SEL(sel->cs) | NFC_EN | NFC_PAGE_SHIFT(nand->page_shift);
+	if (sel->rb >= 0)
+		ctl |= NFC_RB_SEL(sel->rb);
 
-		ctl |= NFC_CE_SEL(sel->cs) | NFC_EN |
-		       NFC_PAGE_SHIFT(nand->page_shift);
-		if (sel->rb < 0) {
-			nand->dev_ready = NULL;
-		} else {
-			nand->dev_ready = sunxi_nfc_dev_ready;
-			ctl |= NFC_RB_SEL(sel->rb);
-		}
+	writel(mtd->writesize, nfc->regs + NFC_REG_SPARE_AREA);
 
-		writel(mtd->writesize, nfc->regs + NFC_REG_SPARE_AREA);
-
-		if (nfc->clk_rate != sunxi_nand->clk_rate) {
-			clk_set_rate(nfc->mod_clk, sunxi_nand->clk_rate);
-			nfc->clk_rate = sunxi_nand->clk_rate;
-		}
+	if (nfc->clk_rate != sunxi_nand->clk_rate) {
+		clk_set_rate(nfc->mod_clk, sunxi_nand->clk_rate);
+		nfc->clk_rate = sunxi_nand->clk_rate;
 	}
 
 	writel(sunxi_nand->timing_ctl, nfc->regs + NFC_REG_TIMING_CTL);
 	writel(sunxi_nand->timing_cfg, nfc->regs + NFC_REG_TIMING_CFG);
 	writel(ctl, nfc->regs + NFC_REG_CTL);
-
-	sunxi_nand->selected = chip;
 }
 
-static void sunxi_nfc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
+static void sunxi_nfc_read_buf(struct nand_chip *nand, uint8_t *buf, int len)
 {
-	struct nand_chip *nand = mtd_to_nand(mtd);
 	struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
 	struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
 	int ret;
@@ -502,10 +470,9 @@
 	}
 }
 
-static void sunxi_nfc_write_buf(struct mtd_info *mtd, const uint8_t *buf,
+static void sunxi_nfc_write_buf(struct nand_chip *nand, const uint8_t *buf,
 				int len)
 {
-	struct nand_chip *nand = mtd_to_nand(mtd);
 	struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
 	struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
 	int ret;
@@ -540,72 +507,6 @@
 	}
 }
 
-static uint8_t sunxi_nfc_read_byte(struct mtd_info *mtd)
-{
-	uint8_t ret = 0;
-
-	sunxi_nfc_read_buf(mtd, &ret, 1);
-
-	return ret;
-}
-
-static void sunxi_nfc_cmd_ctrl(struct mtd_info *mtd, int dat,
-			       unsigned int ctrl)
-{
-	struct nand_chip *nand = mtd_to_nand(mtd);
-	struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
-	struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
-	int ret;
-
-	if (dat == NAND_CMD_NONE && (ctrl & NAND_NCE) &&
-	    !(ctrl & (NAND_CLE | NAND_ALE))) {
-		u32 cmd = 0;
-
-		if (!sunxi_nand->addr_cycles && !sunxi_nand->cmd_cycles)
-			return;
-
-		if (sunxi_nand->cmd_cycles--)
-			cmd |= NFC_SEND_CMD1 | sunxi_nand->cmd[0];
-
-		if (sunxi_nand->cmd_cycles--) {
-			cmd |= NFC_SEND_CMD2;
-			writel(sunxi_nand->cmd[1],
-			       nfc->regs + NFC_REG_RCMD_SET);
-		}
-
-		sunxi_nand->cmd_cycles = 0;
-
-		if (sunxi_nand->addr_cycles) {
-			cmd |= NFC_SEND_ADR |
-			       NFC_ADR_NUM(sunxi_nand->addr_cycles);
-			writel(sunxi_nand->addr[0],
-			       nfc->regs + NFC_REG_ADDR_LOW);
-		}
-
-		if (sunxi_nand->addr_cycles > 4)
-			writel(sunxi_nand->addr[1],
-			       nfc->regs + NFC_REG_ADDR_HIGH);
-
-		ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
-		if (ret)
-			return;
-
-		writel(cmd, nfc->regs + NFC_REG_CMD);
-		sunxi_nand->addr[0] = 0;
-		sunxi_nand->addr[1] = 0;
-		sunxi_nand->addr_cycles = 0;
-		sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, true, 0);
-	}
-
-	if (ctrl & NAND_CLE) {
-		sunxi_nand->cmd[sunxi_nand->cmd_cycles++] = dat;
-	} else if (ctrl & NAND_ALE) {
-		sunxi_nand->addr[sunxi_nand->addr_cycles / 4] |=
-				dat << ((sunxi_nand->addr_cycles % 4) * 8);
-		sunxi_nand->addr_cycles++;
-	}
-}
-
 /* These seed values have been extracted from Allwinner's BSP */
 static const u16 sunxi_nfc_randomizer_page_seeds[] = {
 	0x2b75, 0x0bd0, 0x5ca3, 0x62d1, 0x1c93, 0x07e9, 0x2162, 0x3a72,
@@ -688,8 +589,10 @@
 	return state;
 }
 
-static u16 sunxi_nfc_randomizer_state(struct mtd_info *mtd, int page, bool ecc)
+static u16 sunxi_nfc_randomizer_state(struct nand_chip *nand, int page,
+				      bool ecc)
 {
+	struct mtd_info *mtd = nand_to_mtd(nand);
 	const u16 *seeds = sunxi_nfc_randomizer_page_seeds;
 	int mod = mtd_div_by_ws(mtd->erasesize, mtd);
 
@@ -706,10 +609,9 @@
 	return seeds[page % mod];
 }
 
-static void sunxi_nfc_randomizer_config(struct mtd_info *mtd,
-					int page, bool ecc)
+static void sunxi_nfc_randomizer_config(struct nand_chip *nand, int page,
+					bool ecc)
 {
-	struct nand_chip *nand = mtd_to_nand(mtd);
 	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
 	u32 ecc_ctl = readl(nfc->regs + NFC_REG_ECC_CTL);
 	u16 state;
@@ -718,14 +620,13 @@
 		return;
 
 	ecc_ctl = readl(nfc->regs + NFC_REG_ECC_CTL);
-	state = sunxi_nfc_randomizer_state(mtd, page, ecc);
+	state = sunxi_nfc_randomizer_state(nand, page, ecc);
 	ecc_ctl = readl(nfc->regs + NFC_REG_ECC_CTL) & ~NFC_RANDOM_SEED_MSK;
 	writel(ecc_ctl | NFC_RANDOM_SEED(state), nfc->regs + NFC_REG_ECC_CTL);
 }
 
-static void sunxi_nfc_randomizer_enable(struct mtd_info *mtd)
+static void sunxi_nfc_randomizer_enable(struct nand_chip *nand)
 {
-	struct nand_chip *nand = mtd_to_nand(mtd);
 	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
 
 	if (!(nand->options & NAND_NEED_SCRAMBLING))
@@ -735,9 +636,8 @@
 	       nfc->regs + NFC_REG_ECC_CTL);
 }
 
-static void sunxi_nfc_randomizer_disable(struct mtd_info *mtd)
+static void sunxi_nfc_randomizer_disable(struct nand_chip *nand)
 {
-	struct nand_chip *nand = mtd_to_nand(mtd);
 	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
 
 	if (!(nand->options & NAND_NEED_SCRAMBLING))
@@ -747,36 +647,35 @@
 	       nfc->regs + NFC_REG_ECC_CTL);
 }
 
-static void sunxi_nfc_randomize_bbm(struct mtd_info *mtd, int page, u8 *bbm)
+static void sunxi_nfc_randomize_bbm(struct nand_chip *nand, int page, u8 *bbm)
 {
-	u16 state = sunxi_nfc_randomizer_state(mtd, page, true);
+	u16 state = sunxi_nfc_randomizer_state(nand, page, true);
 
 	bbm[0] ^= state;
 	bbm[1] ^= sunxi_nfc_randomizer_step(state, 8);
 }
 
-static void sunxi_nfc_randomizer_write_buf(struct mtd_info *mtd,
+static void sunxi_nfc_randomizer_write_buf(struct nand_chip *nand,
 					   const uint8_t *buf, int len,
 					   bool ecc, int page)
 {
-	sunxi_nfc_randomizer_config(mtd, page, ecc);
-	sunxi_nfc_randomizer_enable(mtd);
-	sunxi_nfc_write_buf(mtd, buf, len);
-	sunxi_nfc_randomizer_disable(mtd);
+	sunxi_nfc_randomizer_config(nand, page, ecc);
+	sunxi_nfc_randomizer_enable(nand);
+	sunxi_nfc_write_buf(nand, buf, len);
+	sunxi_nfc_randomizer_disable(nand);
 }
 
-static void sunxi_nfc_randomizer_read_buf(struct mtd_info *mtd, uint8_t *buf,
+static void sunxi_nfc_randomizer_read_buf(struct nand_chip *nand, uint8_t *buf,
 					  int len, bool ecc, int page)
 {
-	sunxi_nfc_randomizer_config(mtd, page, ecc);
-	sunxi_nfc_randomizer_enable(mtd);
-	sunxi_nfc_read_buf(mtd, buf, len);
-	sunxi_nfc_randomizer_disable(mtd);
+	sunxi_nfc_randomizer_config(nand, page, ecc);
+	sunxi_nfc_randomizer_enable(nand);
+	sunxi_nfc_read_buf(nand, buf, len);
+	sunxi_nfc_randomizer_disable(nand);
 }
 
-static void sunxi_nfc_hw_ecc_enable(struct mtd_info *mtd)
+static void sunxi_nfc_hw_ecc_enable(struct nand_chip *nand)
 {
-	struct nand_chip *nand = mtd_to_nand(mtd);
 	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
 	struct sunxi_nand_hw_ecc *data = nand->ecc.priv;
 	u32 ecc_ctl;
@@ -793,9 +692,8 @@
 	writel(ecc_ctl, nfc->regs + NFC_REG_ECC_CTL);
 }
 
-static void sunxi_nfc_hw_ecc_disable(struct mtd_info *mtd)
+static void sunxi_nfc_hw_ecc_disable(struct nand_chip *nand)
 {
-	struct nand_chip *nand = mtd_to_nand(mtd);
 	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
 
 	writel(readl(nfc->regs + NFC_REG_ECC_CTL) & ~NFC_ECC_EN,
@@ -815,10 +713,9 @@
 	return buf[0] | (buf[1] << 8) | (buf[2] << 16) | (buf[3] << 24);
 }
 
-static void sunxi_nfc_hw_ecc_get_prot_oob_bytes(struct mtd_info *mtd, u8 *oob,
+static void sunxi_nfc_hw_ecc_get_prot_oob_bytes(struct nand_chip *nand, u8 *oob,
 						int step, bool bbm, int page)
 {
-	struct nand_chip *nand = mtd_to_nand(mtd);
 	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
 
 	sunxi_nfc_user_data_to_buf(readl(nfc->regs + NFC_REG_USER_DATA(step)),
@@ -826,21 +723,20 @@
 
 	/* De-randomize the Bad Block Marker. */
 	if (bbm && (nand->options & NAND_NEED_SCRAMBLING))
-		sunxi_nfc_randomize_bbm(mtd, page, oob);
+		sunxi_nfc_randomize_bbm(nand, page, oob);
 }
 
-static void sunxi_nfc_hw_ecc_set_prot_oob_bytes(struct mtd_info *mtd,
+static void sunxi_nfc_hw_ecc_set_prot_oob_bytes(struct nand_chip *nand,
 						const u8 *oob, int step,
 						bool bbm, int page)
 {
-	struct nand_chip *nand = mtd_to_nand(mtd);
 	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
 	u8 user_data[4];
 
 	/* Randomize the Bad Block Marker. */
 	if (bbm && (nand->options & NAND_NEED_SCRAMBLING)) {
 		memcpy(user_data, oob, sizeof(user_data));
-		sunxi_nfc_randomize_bbm(mtd, page, user_data);
+		sunxi_nfc_randomize_bbm(nand, page, user_data);
 		oob = user_data;
 	}
 
@@ -848,9 +744,11 @@
 	       nfc->regs + NFC_REG_USER_DATA(step));
 }
 
-static void sunxi_nfc_hw_ecc_update_stats(struct mtd_info *mtd,
+static void sunxi_nfc_hw_ecc_update_stats(struct nand_chip *nand,
 					  unsigned int *max_bitflips, int ret)
 {
+	struct mtd_info *mtd = nand_to_mtd(nand);
+
 	if (ret < 0) {
 		mtd->ecc_stats.failed++;
 	} else {
@@ -859,10 +757,9 @@
 	}
 }
 
-static int sunxi_nfc_hw_ecc_correct(struct mtd_info *mtd, u8 *data, u8 *oob,
+static int sunxi_nfc_hw_ecc_correct(struct nand_chip *nand, u8 *data, u8 *oob,
 				    int step, u32 status, bool *erased)
 {
-	struct nand_chip *nand = mtd_to_nand(mtd);
 	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
 	struct nand_ecc_ctrl *ecc = &nand->ecc;
 	u32 tmp;
@@ -896,14 +793,13 @@
 	return NFC_ECC_ERR_CNT(step, tmp);
 }
 
-static int sunxi_nfc_hw_ecc_read_chunk(struct mtd_info *mtd,
+static int sunxi_nfc_hw_ecc_read_chunk(struct nand_chip *nand,
 				       u8 *data, int data_off,
 				       u8 *oob, int oob_off,
 				       int *cur_off,
 				       unsigned int *max_bitflips,
 				       bool bbm, bool oob_required, int page)
 {
-	struct nand_chip *nand = mtd_to_nand(mtd);
 	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
 	struct nand_ecc_ctrl *ecc = &nand->ecc;
 	int raw_mode = 0;
@@ -913,7 +809,7 @@
 	if (*cur_off != data_off)
 		nand_change_read_column_op(nand, data_off, NULL, 0, false);
 
-	sunxi_nfc_randomizer_read_buf(mtd, NULL, ecc->size, false, page);
+	sunxi_nfc_randomizer_read_buf(nand, NULL, ecc->size, false, page);
 
 	if (data_off + ecc->size != oob_off)
 		nand_change_read_column_op(nand, oob_off, NULL, 0, false);
@@ -922,18 +818,18 @@
 	if (ret)
 		return ret;
 
-	sunxi_nfc_randomizer_enable(mtd);
+	sunxi_nfc_randomizer_enable(nand);
 	writel(NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | NFC_ECC_OP,
 	       nfc->regs + NFC_REG_CMD);
 
 	ret = sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, false, 0);
-	sunxi_nfc_randomizer_disable(mtd);
+	sunxi_nfc_randomizer_disable(nand);
 	if (ret)
 		return ret;
 
 	*cur_off = oob_off + ecc->bytes + 4;
 
-	ret = sunxi_nfc_hw_ecc_correct(mtd, data, oob_required ? oob : NULL, 0,
+	ret = sunxi_nfc_hw_ecc_correct(nand, data, oob_required ? oob : NULL, 0,
 				       readl(nfc->regs + NFC_REG_ECC_ST),
 				       &erased);
 	if (erased)
@@ -965,24 +861,24 @@
 		if (oob_required) {
 			nand_change_read_column_op(nand, oob_off, NULL, 0,
 						   false);
-			sunxi_nfc_randomizer_read_buf(mtd, oob, ecc->bytes + 4,
+			sunxi_nfc_randomizer_read_buf(nand, oob, ecc->bytes + 4,
 						      true, page);
 
-			sunxi_nfc_hw_ecc_get_prot_oob_bytes(mtd, oob, 0,
+			sunxi_nfc_hw_ecc_get_prot_oob_bytes(nand, oob, 0,
 							    bbm, page);
 		}
 	}
 
-	sunxi_nfc_hw_ecc_update_stats(mtd, max_bitflips, ret);
+	sunxi_nfc_hw_ecc_update_stats(nand, max_bitflips, ret);
 
 	return raw_mode;
 }
 
-static void sunxi_nfc_hw_ecc_read_extra_oob(struct mtd_info *mtd,
+static void sunxi_nfc_hw_ecc_read_extra_oob(struct nand_chip *nand,
 					    u8 *oob, int *cur_off,
 					    bool randomize, int page)
 {
-	struct nand_chip *nand = mtd_to_nand(mtd);
+	struct mtd_info *mtd = nand_to_mtd(nand);
 	struct nand_ecc_ctrl *ecc = &nand->ecc;
 	int offset = ((ecc->bytes + 4) * ecc->steps);
 	int len = mtd->oobsize - offset;
@@ -995,22 +891,22 @@
 					   false);
 
 	if (!randomize)
-		sunxi_nfc_read_buf(mtd, oob + offset, len);
+		sunxi_nfc_read_buf(nand, oob + offset, len);
 	else
-		sunxi_nfc_randomizer_read_buf(mtd, oob + offset, len,
+		sunxi_nfc_randomizer_read_buf(nand, oob + offset, len,
 					      false, page);
 
 	if (cur_off)
 		*cur_off = mtd->oobsize + mtd->writesize;
 }
 
-static int sunxi_nfc_hw_ecc_read_chunks_dma(struct mtd_info *mtd, uint8_t *buf,
+static int sunxi_nfc_hw_ecc_read_chunks_dma(struct nand_chip *nand, uint8_t *buf,
 					    int oob_required, int page,
 					    int nchunks)
 {
-	struct nand_chip *nand = mtd_to_nand(mtd);
 	bool randomized = nand->options & NAND_NEED_SCRAMBLING;
 	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
+	struct mtd_info *mtd = nand_to_mtd(nand);
 	struct nand_ecc_ctrl *ecc = &nand->ecc;
 	unsigned int max_bitflips = 0;
 	int ret, i, raw_mode = 0;
@@ -1021,14 +917,14 @@
 	if (ret)
 		return ret;
 
-	ret = sunxi_nfc_dma_op_prepare(mtd, buf, ecc->size, nchunks,
+	ret = sunxi_nfc_dma_op_prepare(nfc, buf, ecc->size, nchunks,
 				       DMA_FROM_DEVICE, &sg);
 	if (ret)
 		return ret;
 
-	sunxi_nfc_hw_ecc_enable(mtd);
-	sunxi_nfc_randomizer_config(mtd, page, false);
-	sunxi_nfc_randomizer_enable(mtd);
+	sunxi_nfc_hw_ecc_enable(nand);
+	sunxi_nfc_randomizer_config(nand, page, false);
+	sunxi_nfc_randomizer_enable(nand);
 
 	writel((NAND_CMD_RNDOUTSTART << 16) | (NAND_CMD_RNDOUT << 8) |
 	       NAND_CMD_READSTART, nfc->regs + NFC_REG_RCMD_SET);
@@ -1042,10 +938,10 @@
 	if (ret)
 		dmaengine_terminate_all(nfc->dmac);
 
-	sunxi_nfc_randomizer_disable(mtd);
-	sunxi_nfc_hw_ecc_disable(mtd);
+	sunxi_nfc_randomizer_disable(nand);
+	sunxi_nfc_hw_ecc_disable(nand);
 
-	sunxi_nfc_dma_op_cleanup(mtd, DMA_FROM_DEVICE, &sg);
+	sunxi_nfc_dma_op_cleanup(nfc, DMA_FROM_DEVICE, &sg);
 
 	if (ret)
 		return ret;
@@ -1059,7 +955,7 @@
 		u8 *oob = nand->oob_poi + oob_off;
 		bool erased;
 
-		ret = sunxi_nfc_hw_ecc_correct(mtd, randomized ? data : NULL,
+		ret = sunxi_nfc_hw_ecc_correct(nand, randomized ? data : NULL,
 					       oob_required ? oob : NULL,
 					       i, status, &erased);
 
@@ -1073,14 +969,14 @@
 						   mtd->writesize + oob_off,
 						   oob, ecc->bytes + 4, false);
 
-			sunxi_nfc_hw_ecc_get_prot_oob_bytes(mtd, oob, i,
+			sunxi_nfc_hw_ecc_get_prot_oob_bytes(nand, oob, i,
 							    !i, page);
 		}
 
 		if (erased)
 			raw_mode = 1;
 
-		sunxi_nfc_hw_ecc_update_stats(mtd, &max_bitflips, ret);
+		sunxi_nfc_hw_ecc_update_stats(nand, &max_bitflips, ret);
 	}
 
 	if (status & NFC_ECC_ERR_MSK) {
@@ -1115,25 +1011,24 @@
 			if (ret >= 0)
 				raw_mode = 1;
 
-			sunxi_nfc_hw_ecc_update_stats(mtd, &max_bitflips, ret);
+			sunxi_nfc_hw_ecc_update_stats(nand, &max_bitflips, ret);
 		}
 	}
 
 	if (oob_required)
-		sunxi_nfc_hw_ecc_read_extra_oob(mtd, nand->oob_poi,
+		sunxi_nfc_hw_ecc_read_extra_oob(nand, nand->oob_poi,
 						NULL, !raw_mode,
 						page);
 
 	return max_bitflips;
 }
 
-static int sunxi_nfc_hw_ecc_write_chunk(struct mtd_info *mtd,
+static int sunxi_nfc_hw_ecc_write_chunk(struct nand_chip *nand,
 					const u8 *data, int data_off,
 					const u8 *oob, int oob_off,
 					int *cur_off, bool bbm,
 					int page)
 {
-	struct nand_chip *nand = mtd_to_nand(mtd);
 	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
 	struct nand_ecc_ctrl *ecc = &nand->ecc;
 	int ret;
@@ -1141,7 +1036,7 @@
 	if (data_off != *cur_off)
 		nand_change_write_column_op(nand, data_off, NULL, 0, false);
 
-	sunxi_nfc_randomizer_write_buf(mtd, data, ecc->size, false, page);
+	sunxi_nfc_randomizer_write_buf(nand, data, ecc->size, false, page);
 
 	if (data_off + ecc->size != oob_off)
 		nand_change_write_column_op(nand, oob_off, NULL, 0, false);
@@ -1150,15 +1045,15 @@
 	if (ret)
 		return ret;
 
-	sunxi_nfc_randomizer_enable(mtd);
-	sunxi_nfc_hw_ecc_set_prot_oob_bytes(mtd, oob, 0, bbm, page);
+	sunxi_nfc_randomizer_enable(nand);
+	sunxi_nfc_hw_ecc_set_prot_oob_bytes(nand, oob, 0, bbm, page);
 
 	writel(NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD |
 	       NFC_ACCESS_DIR | NFC_ECC_OP,
 	       nfc->regs + NFC_REG_CMD);
 
 	ret = sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, false, 0);
-	sunxi_nfc_randomizer_disable(mtd);
+	sunxi_nfc_randomizer_disable(nand);
 	if (ret)
 		return ret;
 
@@ -1167,11 +1062,11 @@
 	return 0;
 }
 
-static void sunxi_nfc_hw_ecc_write_extra_oob(struct mtd_info *mtd,
+static void sunxi_nfc_hw_ecc_write_extra_oob(struct nand_chip *nand,
 					     u8 *oob, int *cur_off,
 					     int page)
 {
-	struct nand_chip *nand = mtd_to_nand(mtd);
+	struct mtd_info *mtd = nand_to_mtd(nand);
 	struct nand_ecc_ctrl *ecc = &nand->ecc;
 	int offset = ((ecc->bytes + 4) * ecc->steps);
 	int len = mtd->oobsize - offset;
@@ -1183,32 +1078,34 @@
 		nand_change_write_column_op(nand, offset + mtd->writesize,
 					    NULL, 0, false);
 
-	sunxi_nfc_randomizer_write_buf(mtd, oob + offset, len, false, page);
+	sunxi_nfc_randomizer_write_buf(nand, oob + offset, len, false, page);
 
 	if (cur_off)
 		*cur_off = mtd->oobsize + mtd->writesize;
 }
 
-static int sunxi_nfc_hw_ecc_read_page(struct mtd_info *mtd,
-				      struct nand_chip *chip, uint8_t *buf,
+static int sunxi_nfc_hw_ecc_read_page(struct nand_chip *nand, uint8_t *buf,
 				      int oob_required, int page)
 {
-	struct nand_ecc_ctrl *ecc = &chip->ecc;
+	struct mtd_info *mtd = nand_to_mtd(nand);
+	struct nand_ecc_ctrl *ecc = &nand->ecc;
 	unsigned int max_bitflips = 0;
 	int ret, i, cur_off = 0;
 	bool raw_mode = false;
 
-	nand_read_page_op(chip, page, 0, NULL, 0);
+	sunxi_nfc_select_chip(nand, nand->cur_cs);
 
-	sunxi_nfc_hw_ecc_enable(mtd);
+	nand_read_page_op(nand, page, 0, NULL, 0);
+
+	sunxi_nfc_hw_ecc_enable(nand);
 
 	for (i = 0; i < ecc->steps; i++) {
 		int data_off = i * ecc->size;
 		int oob_off = i * (ecc->bytes + 4);
 		u8 *data = buf + data_off;
-		u8 *oob = chip->oob_poi + oob_off;
+		u8 *oob = nand->oob_poi + oob_off;
 
-		ret = sunxi_nfc_hw_ecc_read_chunk(mtd, data, data_off, oob,
+		ret = sunxi_nfc_hw_ecc_read_chunk(nand, data, data_off, oob,
 						  oob_off + mtd->writesize,
 						  &cur_off, &max_bitflips,
 						  !i, oob_required, page);
@@ -1219,52 +1116,55 @@
 	}
 
 	if (oob_required)
-		sunxi_nfc_hw_ecc_read_extra_oob(mtd, chip->oob_poi, &cur_off,
+		sunxi_nfc_hw_ecc_read_extra_oob(nand, nand->oob_poi, &cur_off,
 						!raw_mode, page);
 
-	sunxi_nfc_hw_ecc_disable(mtd);
+	sunxi_nfc_hw_ecc_disable(nand);
 
 	return max_bitflips;
 }
 
-static int sunxi_nfc_hw_ecc_read_page_dma(struct mtd_info *mtd,
-					  struct nand_chip *chip, u8 *buf,
+static int sunxi_nfc_hw_ecc_read_page_dma(struct nand_chip *nand, u8 *buf,
 					  int oob_required, int page)
 {
 	int ret;
 
-	nand_read_page_op(chip, page, 0, NULL, 0);
+	sunxi_nfc_select_chip(nand, nand->cur_cs);
 
-	ret = sunxi_nfc_hw_ecc_read_chunks_dma(mtd, buf, oob_required, page,
-					       chip->ecc.steps);
+	nand_read_page_op(nand, page, 0, NULL, 0);
+
+	ret = sunxi_nfc_hw_ecc_read_chunks_dma(nand, buf, oob_required, page,
+					       nand->ecc.steps);
 	if (ret >= 0)
 		return ret;
 
 	/* Fallback to PIO mode */
-	return sunxi_nfc_hw_ecc_read_page(mtd, chip, buf, oob_required, page);
+	return sunxi_nfc_hw_ecc_read_page(nand, buf, oob_required, page);
 }
 
-static int sunxi_nfc_hw_ecc_read_subpage(struct mtd_info *mtd,
-					 struct nand_chip *chip,
+static int sunxi_nfc_hw_ecc_read_subpage(struct nand_chip *nand,
 					 u32 data_offs, u32 readlen,
 					 u8 *bufpoi, int page)
 {
-	struct nand_ecc_ctrl *ecc = &chip->ecc;
+	struct mtd_info *mtd = nand_to_mtd(nand);
+	struct nand_ecc_ctrl *ecc = &nand->ecc;
 	int ret, i, cur_off = 0;
 	unsigned int max_bitflips = 0;
 
-	nand_read_page_op(chip, page, 0, NULL, 0);
+	sunxi_nfc_select_chip(nand, nand->cur_cs);
 
-	sunxi_nfc_hw_ecc_enable(mtd);
+	nand_read_page_op(nand, page, 0, NULL, 0);
+
+	sunxi_nfc_hw_ecc_enable(nand);
 
 	for (i = data_offs / ecc->size;
 	     i < DIV_ROUND_UP(data_offs + readlen, ecc->size); i++) {
 		int data_off = i * ecc->size;
 		int oob_off = i * (ecc->bytes + 4);
 		u8 *data = bufpoi + data_off;
-		u8 *oob = chip->oob_poi + oob_off;
+		u8 *oob = nand->oob_poi + oob_off;
 
-		ret = sunxi_nfc_hw_ecc_read_chunk(mtd, data, data_off,
+		ret = sunxi_nfc_hw_ecc_read_chunk(nand, data, data_off,
 						  oob,
 						  oob_off + mtd->writesize,
 						  &cur_off, &max_bitflips, !i,
@@ -1273,113 +1173,118 @@
 			return ret;
 	}
 
-	sunxi_nfc_hw_ecc_disable(mtd);
+	sunxi_nfc_hw_ecc_disable(nand);
 
 	return max_bitflips;
 }
 
-static int sunxi_nfc_hw_ecc_read_subpage_dma(struct mtd_info *mtd,
-					     struct nand_chip *chip,
+static int sunxi_nfc_hw_ecc_read_subpage_dma(struct nand_chip *nand,
 					     u32 data_offs, u32 readlen,
 					     u8 *buf, int page)
 {
-	int nchunks = DIV_ROUND_UP(data_offs + readlen, chip->ecc.size);
+	int nchunks = DIV_ROUND_UP(data_offs + readlen, nand->ecc.size);
 	int ret;
 
-	nand_read_page_op(chip, page, 0, NULL, 0);
+	sunxi_nfc_select_chip(nand, nand->cur_cs);
 
-	ret = sunxi_nfc_hw_ecc_read_chunks_dma(mtd, buf, false, page, nchunks);
+	nand_read_page_op(nand, page, 0, NULL, 0);
+
+	ret = sunxi_nfc_hw_ecc_read_chunks_dma(nand, buf, false, page, nchunks);
 	if (ret >= 0)
 		return ret;
 
 	/* Fallback to PIO mode */
-	return sunxi_nfc_hw_ecc_read_subpage(mtd, chip, data_offs, readlen,
+	return sunxi_nfc_hw_ecc_read_subpage(nand, data_offs, readlen,
 					     buf, page);
 }
 
-static int sunxi_nfc_hw_ecc_write_page(struct mtd_info *mtd,
-				       struct nand_chip *chip,
+static int sunxi_nfc_hw_ecc_write_page(struct nand_chip *nand,
 				       const uint8_t *buf, int oob_required,
 				       int page)
 {
-	struct nand_ecc_ctrl *ecc = &chip->ecc;
+	struct mtd_info *mtd = nand_to_mtd(nand);
+	struct nand_ecc_ctrl *ecc = &nand->ecc;
 	int ret, i, cur_off = 0;
 
-	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
+	sunxi_nfc_select_chip(nand, nand->cur_cs);
 
-	sunxi_nfc_hw_ecc_enable(mtd);
+	nand_prog_page_begin_op(nand, page, 0, NULL, 0);
+
+	sunxi_nfc_hw_ecc_enable(nand);
 
 	for (i = 0; i < ecc->steps; i++) {
 		int data_off = i * ecc->size;
 		int oob_off = i * (ecc->bytes + 4);
 		const u8 *data = buf + data_off;
-		const u8 *oob = chip->oob_poi + oob_off;
+		const u8 *oob = nand->oob_poi + oob_off;
 
-		ret = sunxi_nfc_hw_ecc_write_chunk(mtd, data, data_off, oob,
+		ret = sunxi_nfc_hw_ecc_write_chunk(nand, data, data_off, oob,
 						   oob_off + mtd->writesize,
 						   &cur_off, !i, page);
 		if (ret)
 			return ret;
 	}
 
-	if (oob_required || (chip->options & NAND_NEED_SCRAMBLING))
-		sunxi_nfc_hw_ecc_write_extra_oob(mtd, chip->oob_poi,
+	if (oob_required || (nand->options & NAND_NEED_SCRAMBLING))
+		sunxi_nfc_hw_ecc_write_extra_oob(nand, nand->oob_poi,
 						 &cur_off, page);
 
-	sunxi_nfc_hw_ecc_disable(mtd);
+	sunxi_nfc_hw_ecc_disable(nand);
 
-	return nand_prog_page_end_op(chip);
+	return nand_prog_page_end_op(nand);
 }
 
-static int sunxi_nfc_hw_ecc_write_subpage(struct mtd_info *mtd,
-					  struct nand_chip *chip,
+static int sunxi_nfc_hw_ecc_write_subpage(struct nand_chip *nand,
 					  u32 data_offs, u32 data_len,
 					  const u8 *buf, int oob_required,
 					  int page)
 {
-	struct nand_ecc_ctrl *ecc = &chip->ecc;
+	struct mtd_info *mtd = nand_to_mtd(nand);
+	struct nand_ecc_ctrl *ecc = &nand->ecc;
 	int ret, i, cur_off = 0;
 
-	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
+	sunxi_nfc_select_chip(nand, nand->cur_cs);
 
-	sunxi_nfc_hw_ecc_enable(mtd);
+	nand_prog_page_begin_op(nand, page, 0, NULL, 0);
+
+	sunxi_nfc_hw_ecc_enable(nand);
 
 	for (i = data_offs / ecc->size;
 	     i < DIV_ROUND_UP(data_offs + data_len, ecc->size); i++) {
 		int data_off = i * ecc->size;
 		int oob_off = i * (ecc->bytes + 4);
 		const u8 *data = buf + data_off;
-		const u8 *oob = chip->oob_poi + oob_off;
+		const u8 *oob = nand->oob_poi + oob_off;
 
-		ret = sunxi_nfc_hw_ecc_write_chunk(mtd, data, data_off, oob,
+		ret = sunxi_nfc_hw_ecc_write_chunk(nand, data, data_off, oob,
 						   oob_off + mtd->writesize,
 						   &cur_off, !i, page);
 		if (ret)
 			return ret;
 	}
 
-	sunxi_nfc_hw_ecc_disable(mtd);
+	sunxi_nfc_hw_ecc_disable(nand);
 
-	return nand_prog_page_end_op(chip);
+	return nand_prog_page_end_op(nand);
 }
 
-static int sunxi_nfc_hw_ecc_write_page_dma(struct mtd_info *mtd,
-					   struct nand_chip *chip,
+static int sunxi_nfc_hw_ecc_write_page_dma(struct nand_chip *nand,
 					   const u8 *buf,
 					   int oob_required,
 					   int page)
 {
-	struct nand_chip *nand = mtd_to_nand(mtd);
 	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
 	struct nand_ecc_ctrl *ecc = &nand->ecc;
 	struct scatterlist sg;
 	int ret, i;
 
+	sunxi_nfc_select_chip(nand, nand->cur_cs);
+
 	ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
 	if (ret)
 		return ret;
 
-	ret = sunxi_nfc_dma_op_prepare(mtd, buf, ecc->size, ecc->steps,
+	ret = sunxi_nfc_dma_op_prepare(nfc, buf, ecc->size, ecc->steps,
 				       DMA_TO_DEVICE, &sg);
 	if (ret)
 		goto pio_fallback;
@@ -1387,17 +1292,17 @@
 	for (i = 0; i < ecc->steps; i++) {
 		const u8 *oob = nand->oob_poi + (i * (ecc->bytes + 4));
 
-		sunxi_nfc_hw_ecc_set_prot_oob_bytes(mtd, oob, i, !i, page);
+		sunxi_nfc_hw_ecc_set_prot_oob_bytes(nand, oob, i, !i, page);
 	}
 
-	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
+	nand_prog_page_begin_op(nand, page, 0, NULL, 0);
 
-	sunxi_nfc_hw_ecc_enable(mtd);
-	sunxi_nfc_randomizer_config(mtd, page, false);
-	sunxi_nfc_randomizer_enable(mtd);
+	sunxi_nfc_hw_ecc_enable(nand);
+	sunxi_nfc_randomizer_config(nand, page, false);
+	sunxi_nfc_randomizer_enable(nand);
 
 	writel((NAND_CMD_RNDIN << 8) | NAND_CMD_PAGEPROG,
-	       nfc->regs + NFC_REG_RCMD_SET);
+	       nfc->regs + NFC_REG_WCMD_SET);
 
 	dma_async_issue_pending(nfc->dmac);
 
@@ -1409,49 +1314,45 @@
 	if (ret)
 		dmaengine_terminate_all(nfc->dmac);
 
-	sunxi_nfc_randomizer_disable(mtd);
-	sunxi_nfc_hw_ecc_disable(mtd);
+	sunxi_nfc_randomizer_disable(nand);
+	sunxi_nfc_hw_ecc_disable(nand);
 
-	sunxi_nfc_dma_op_cleanup(mtd, DMA_TO_DEVICE, &sg);
+	sunxi_nfc_dma_op_cleanup(nfc, DMA_TO_DEVICE, &sg);
 
 	if (ret)
 		return ret;
 
-	if (oob_required || (chip->options & NAND_NEED_SCRAMBLING))
+	if (oob_required || (nand->options & NAND_NEED_SCRAMBLING))
 		/* TODO: use DMA to transfer extra OOB bytes ? */
-		sunxi_nfc_hw_ecc_write_extra_oob(mtd, chip->oob_poi,
+		sunxi_nfc_hw_ecc_write_extra_oob(nand, nand->oob_poi,
 						 NULL, page);
 
-	return nand_prog_page_end_op(chip);
+	return nand_prog_page_end_op(nand);
 
 pio_fallback:
-	return sunxi_nfc_hw_ecc_write_page(mtd, chip, buf, oob_required, page);
+	return sunxi_nfc_hw_ecc_write_page(nand, buf, oob_required, page);
 }
 
-static int sunxi_nfc_hw_ecc_read_oob(struct mtd_info *mtd,
-				     struct nand_chip *chip,
-				     int page)
+static int sunxi_nfc_hw_ecc_read_oob(struct nand_chip *nand, int page)
 {
-	chip->pagebuf = -1;
+	u8 *buf = nand_get_data_buf(nand);
 
-	return chip->ecc.read_page(mtd, chip, chip->data_buf, 1, page);
+	return nand->ecc.read_page(nand, buf, 1, page);
 }
 
-static int sunxi_nfc_hw_ecc_write_oob(struct mtd_info *mtd,
-				      struct nand_chip *chip,
-				      int page)
+static int sunxi_nfc_hw_ecc_write_oob(struct nand_chip *nand, int page)
 {
+	struct mtd_info *mtd = nand_to_mtd(nand);
+	u8 *buf = nand_get_data_buf(nand);
 	int ret;
 
-	chip->pagebuf = -1;
-
-	memset(chip->data_buf, 0xff, mtd->writesize);
-	ret = chip->ecc.write_page(mtd, chip, chip->data_buf, 1, page);
+	memset(buf, 0xff, mtd->writesize);
+	ret = nand->ecc.write_page(nand, buf, 1, page);
 	if (ret)
 		return ret;
 
 	/* Send command to program the OOB data */
-	return nand_prog_page_end_op(chip);
+	return nand_prog_page_end_op(nand);
 }
 
 static const s32 tWB_lut[] = {6, 12, 16, 20};
@@ -1475,12 +1376,11 @@
 #define sunxi_nand_lookup_timing(l, p, c) \
 			_sunxi_nand_lookup_timing(l, ARRAY_SIZE(l), p, c)
 
-static int sunxi_nfc_setup_data_interface(struct mtd_info *mtd, int csline,
+static int sunxi_nfc_setup_data_interface(struct nand_chip *nand, int csline,
 					const struct nand_data_interface *conf)
 {
-	struct nand_chip *nand = mtd_to_nand(mtd);
-	struct sunxi_nand_chip *chip = to_sunxi_nand(nand);
-	struct sunxi_nfc *nfc = to_sunxi_nfc(chip->nand.controller);
+	struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
+	struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
 	const struct nand_sdr_timings *timings;
 	u32 min_clk_period = 0;
 	s32 tWB, tADL, tWHR, tRHW, tCAD;
@@ -1563,6 +1463,20 @@
 	if (timings->tRHW_min > (min_clk_period * 20))
 		min_clk_period = DIV_ROUND_UP(timings->tRHW_min, 20);
 
+	/*
+	 * In non-EDO, tREA should be less than tRP to guarantee that the
+	 * controller does not sample the IO lines too early. Unfortunately,
+	 * the sunxi NAND controller does not allow us to have different
+	 * values for tRP and tREH (tRP = tREH = tRW / 2).
+	 *
+	 * We have 2 options to overcome this limitation:
+	 *
+	 * 1/ Extend tRC to fulfil the tREA <= tRC / 2 constraint
+	 * 2/ Use EDO mode (only works if timings->tRLOH > 0)
+	 */
+	if (timings->tREA_max > min_clk_period && !timings->tRLOH_min)
+		min_clk_period = timings->tREA_max;
+
 	tWB  = sunxi_nand_lookup_timing(tWB_lut, timings->tWB_max,
 					min_clk_period);
 	if (tWB < 0) {
@@ -1599,7 +1513,7 @@
 	tCAD = 0x7;
 
 	/* TODO: A83 has some more bits for CDQSS, CS, CLHZ, CCS, WC */
-	chip->timing_cfg = NFC_TIMING_CFG(tWB, tADL, tWHR, tRHW, tCAD);
+	sunxi_nand->timing_cfg = NFC_TIMING_CFG(tWB, tADL, tWHR, tRHW, tCAD);
 
 	/* Convert min_clk_period from picoseconds to nanoseconds */
 	min_clk_period = DIV_ROUND_UP(min_clk_period, 1000);
@@ -1610,21 +1524,24 @@
 	 * This new formula was verified with a scope and validated by
 	 * Allwinner engineers.
 	 */
-	chip->clk_rate = NSEC_PER_SEC / min_clk_period;
-	real_clk_rate = clk_round_rate(nfc->mod_clk, chip->clk_rate);
+	sunxi_nand->clk_rate = NSEC_PER_SEC / min_clk_period;
+	real_clk_rate = clk_round_rate(nfc->mod_clk, sunxi_nand->clk_rate);
 	if (real_clk_rate <= 0) {
-		dev_err(nfc->dev, "Unable to round clk %lu\n", chip->clk_rate);
+		dev_err(nfc->dev, "Unable to round clk %lu\n",
+			sunxi_nand->clk_rate);
 		return -EINVAL;
 	}
 
+	sunxi_nand->timing_ctl = 0;
+
 	/*
 	 * ONFI specification 3.1, paragraph 4.15.2 dictates that EDO data
 	 * output cycle timings shall be used if the host drives tRC less than
-	 * 30 ns.
+	 * 30 ns. We should also use EDO mode if tREA is bigger than tRP.
 	 */
 	min_clk_period = NSEC_PER_SEC / real_clk_rate;
-	chip->timing_ctl = ((min_clk_period * 2) < 30) ?
-			   NFC_TIMING_CTL_EDO : 0;
+	if (min_clk_period * 2 < 30 || min_clk_period * 1000 < timings->tREA_max)
+		sunxi_nand->timing_ctl = NFC_TIMING_CTL_EDO;
 
 	return 0;
 }
@@ -1685,14 +1602,13 @@
 	kfree(ecc->priv);
 }
 
-static int sunxi_nand_hw_ecc_ctrl_init(struct mtd_info *mtd,
+static int sunxi_nand_hw_ecc_ctrl_init(struct nand_chip *nand,
 				       struct nand_ecc_ctrl *ecc,
 				       struct device_node *np)
 {
 	static const u8 strengths[] = { 16, 24, 28, 32, 40, 48, 56, 60, 64 };
-	struct nand_chip *nand = mtd_to_nand(mtd);
-	struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
-	struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
+	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
+	struct mtd_info *mtd = nand_to_mtd(nand);
 	struct sunxi_nand_hw_ecc *data;
 	int nsectors;
 	int ret;
@@ -1816,7 +1732,6 @@
 
 static int sunxi_nand_attach_chip(struct nand_chip *nand)
 {
-	struct mtd_info *mtd = nand_to_mtd(nand);
 	struct nand_ecc_ctrl *ecc = &nand->ecc;
 	struct device_node *np = nand_get_flash_node(nand);
 	int ret;
@@ -1830,8 +1745,8 @@
 	nand->options |= NAND_SUBPAGE_READ;
 
 	if (!ecc->size) {
-		ecc->size = nand->ecc_step_ds;
-		ecc->strength = nand->ecc_strength_ds;
+		ecc->size = nand->base.eccreq.step_size;
+		ecc->strength = nand->base.eccreq.strength;
 	}
 
 	if (!ecc->size || !ecc->strength)
@@ -1839,7 +1754,7 @@
 
 	switch (ecc->mode) {
 	case NAND_ECC_HW:
-		ret = sunxi_nand_hw_ecc_ctrl_init(mtd, ecc, np);
+		ret = sunxi_nand_hw_ecc_ctrl_init(nand, ecc, np);
 		if (ret)
 			return ret;
 		break;
@@ -1853,14 +1768,165 @@
 	return 0;
 }
 
+static int sunxi_nfc_exec_subop(struct nand_chip *nand,
+				const struct nand_subop *subop)
+{
+	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
+	u32 cmd = 0, extcmd = 0, cnt = 0, addrs[2] = { };
+	unsigned int i, j, remaining, start;
+	void *inbuf = NULL;
+	int ret;
+
+	for (i = 0; i < subop->ninstrs; i++) {
+		const struct nand_op_instr *instr = &subop->instrs[i];
+
+		switch (instr->type) {
+		case NAND_OP_CMD_INSTR:
+			if (cmd & NFC_SEND_CMD1) {
+				if (WARN_ON(cmd & NFC_SEND_CMD2))
+					return -EINVAL;
+
+				cmd |= NFC_SEND_CMD2;
+				extcmd |= instr->ctx.cmd.opcode;
+			} else {
+				cmd |= NFC_SEND_CMD1 |
+				       NFC_CMD(instr->ctx.cmd.opcode);
+			}
+			break;
+
+		case NAND_OP_ADDR_INSTR:
+			remaining = nand_subop_get_num_addr_cyc(subop, i);
+			start = nand_subop_get_addr_start_off(subop, i);
+			for (j = 0; j < 8 && j + start < remaining; j++) {
+				u32 addr = instr->ctx.addr.addrs[j + start];
+
+				addrs[j / 4] |= addr << (j % 4) * 8;
+			}
+
+			if (j)
+				cmd |= NFC_SEND_ADR | NFC_ADR_NUM(j);
+
+			break;
+
+		case NAND_OP_DATA_IN_INSTR:
+		case NAND_OP_DATA_OUT_INSTR:
+			start = nand_subop_get_data_start_off(subop, i);
+			remaining = nand_subop_get_data_len(subop, i);
+			cnt = min_t(u32, remaining, NFC_SRAM_SIZE);
+			cmd |= NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD;
+
+			if (instr->type == NAND_OP_DATA_OUT_INSTR) {
+				cmd |= NFC_ACCESS_DIR;
+				memcpy_toio(nfc->regs + NFC_RAM0_BASE,
+					    instr->ctx.data.buf.out + start,
+					    cnt);
+			} else {
+				inbuf = instr->ctx.data.buf.in + start;
+			}
+
+			break;
+
+		case NAND_OP_WAITRDY_INSTR:
+			cmd |= NFC_WAIT_FLAG;
+			break;
+		}
+	}
+
+	ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
+	if (ret)
+		return ret;
+
+	if (cmd & NFC_SEND_ADR) {
+		writel(addrs[0], nfc->regs + NFC_REG_ADDR_LOW);
+		writel(addrs[1], nfc->regs + NFC_REG_ADDR_HIGH);
+	}
+
+	if (cmd & NFC_SEND_CMD2)
+		writel(extcmd,
+		       nfc->regs +
+		       (cmd & NFC_ACCESS_DIR ?
+			NFC_REG_WCMD_SET : NFC_REG_RCMD_SET));
+
+	if (cmd & NFC_DATA_TRANS)
+		writel(cnt, nfc->regs + NFC_REG_CNT);
+
+	writel(cmd, nfc->regs + NFC_REG_CMD);
+
+	ret = sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG,
+				    !(cmd & NFC_WAIT_FLAG) && cnt < 64,
+				    0);
+	if (ret)
+		return ret;
+
+	if (inbuf)
+		memcpy_fromio(inbuf, nfc->regs + NFC_RAM0_BASE, cnt);
+
+	return 0;
+}
+
+static int sunxi_nfc_soft_waitrdy(struct nand_chip *nand,
+				  const struct nand_subop *subop)
+{
+	return nand_soft_waitrdy(nand,
+				 subop->instrs[0].ctx.waitrdy.timeout_ms);
+}
+
+static const struct nand_op_parser sunxi_nfc_op_parser = NAND_OP_PARSER(
+	NAND_OP_PARSER_PATTERN(sunxi_nfc_exec_subop,
+			       NAND_OP_PARSER_PAT_CMD_ELEM(true),
+			       NAND_OP_PARSER_PAT_ADDR_ELEM(true, 8),
+			       NAND_OP_PARSER_PAT_CMD_ELEM(true),
+			       NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
+			       NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, 1024)),
+	NAND_OP_PARSER_PATTERN(sunxi_nfc_exec_subop,
+			       NAND_OP_PARSER_PAT_CMD_ELEM(true),
+			       NAND_OP_PARSER_PAT_ADDR_ELEM(true, 8),
+			       NAND_OP_PARSER_PAT_DATA_OUT_ELEM(true, 1024),
+			       NAND_OP_PARSER_PAT_CMD_ELEM(true),
+			       NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
+);
+
+static const struct nand_op_parser sunxi_nfc_norb_op_parser = NAND_OP_PARSER(
+	NAND_OP_PARSER_PATTERN(sunxi_nfc_exec_subop,
+			       NAND_OP_PARSER_PAT_CMD_ELEM(true),
+			       NAND_OP_PARSER_PAT_ADDR_ELEM(true, 8),
+			       NAND_OP_PARSER_PAT_CMD_ELEM(true),
+			       NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, 1024)),
+	NAND_OP_PARSER_PATTERN(sunxi_nfc_exec_subop,
+			       NAND_OP_PARSER_PAT_CMD_ELEM(true),
+			       NAND_OP_PARSER_PAT_ADDR_ELEM(true, 8),
+			       NAND_OP_PARSER_PAT_DATA_OUT_ELEM(true, 1024),
+			       NAND_OP_PARSER_PAT_CMD_ELEM(true)),
+	NAND_OP_PARSER_PATTERN(sunxi_nfc_soft_waitrdy,
+			       NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
+);
+
+static int sunxi_nfc_exec_op(struct nand_chip *nand,
+			     const struct nand_operation *op, bool check_only)
+{
+	struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
+	const struct nand_op_parser *parser;
+
+	sunxi_nfc_select_chip(nand, op->cs);
+
+	if (sunxi_nand->sels[op->cs].rb >= 0)
+		parser = &sunxi_nfc_op_parser;
+	else
+		parser = &sunxi_nfc_norb_op_parser;
+
+	return nand_op_parser_exec_op(nand, parser, op, check_only);
+}
+
 static const struct nand_controller_ops sunxi_nand_controller_ops = {
 	.attach_chip = sunxi_nand_attach_chip,
+	.setup_data_interface = sunxi_nfc_setup_data_interface,
+	.exec_op = sunxi_nfc_exec_op,
 };
 
 static int sunxi_nand_chip_init(struct device *dev, struct sunxi_nfc *nfc,
 				struct device_node *np)
 {
-	struct sunxi_nand_chip *chip;
+	struct sunxi_nand_chip *sunxi_nand;
 	struct mtd_info *mtd;
 	struct nand_chip *nand;
 	int nsels;
@@ -1877,17 +1943,14 @@
 		return -EINVAL;
 	}
 
-	chip = devm_kzalloc(dev,
-			    sizeof(*chip) +
-			    (nsels * sizeof(struct sunxi_nand_chip_sel)),
-			    GFP_KERNEL);
-	if (!chip) {
+	sunxi_nand = devm_kzalloc(dev, struct_size(sunxi_nand, sels, nsels),
+				  GFP_KERNEL);
+	if (!sunxi_nand) {
 		dev_err(dev, "could not allocate chip\n");
 		return -ENOMEM;
 	}
 
-	chip->nsels = nsels;
-	chip->selected = -1;
+	sunxi_nand->nsels = nsels;
 
 	for (i = 0; i < nsels; i++) {
 		ret = of_property_read_u32_index(np, "reg", i, &tmp);
@@ -1909,18 +1972,17 @@
 			return -EINVAL;
 		}
 
-		chip->sels[i].cs = tmp;
+		sunxi_nand->sels[i].cs = tmp;
 
 		if (!of_property_read_u32_index(np, "allwinner,rb", i, &tmp) &&
 		    tmp < 2)
-			chip->sels[i].rb = tmp;
+			sunxi_nand->sels[i].rb = tmp;
 		else
-			chip->sels[i].rb = -1;
+			sunxi_nand->sels[i].rb = -1;
 	}
 
-	nand = &chip->nand;
+	nand = &sunxi_nand->nand;
 	/* Default tR value specified in the ONFI spec (chapter 4.15.1) */
-	nand->chip_delay = 200;
 	nand->controller = &nfc->controller;
 	nand->controller->ops = &sunxi_nand_controller_ops;
 
@@ -1930,28 +1992,22 @@
 	 */
 	nand->ecc.mode = NAND_ECC_HW;
 	nand_set_flash_node(nand, np);
-	nand->select_chip = sunxi_nfc_select_chip;
-	nand->cmd_ctrl = sunxi_nfc_cmd_ctrl;
-	nand->read_buf = sunxi_nfc_read_buf;
-	nand->write_buf = sunxi_nfc_write_buf;
-	nand->read_byte = sunxi_nfc_read_byte;
-	nand->setup_data_interface = sunxi_nfc_setup_data_interface;
 
 	mtd = nand_to_mtd(nand);
 	mtd->dev.parent = dev;
 
-	ret = nand_scan(mtd, nsels);
+	ret = nand_scan(nand, nsels);
 	if (ret)
 		return ret;
 
 	ret = mtd_device_register(mtd, NULL, 0);
 	if (ret) {
 		dev_err(dev, "failed to register mtd device: %d\n", ret);
-		nand_release(mtd);
+		nand_release(nand);
 		return ret;
 	}
 
-	list_add_tail(&chip->node, &nfc->chips);
+	list_add_tail(&sunxi_nand->node, &nfc->chips);
 
 	return 0;
 }
@@ -1981,14 +2037,15 @@
 
 static void sunxi_nand_chips_cleanup(struct sunxi_nfc *nfc)
 {
-	struct sunxi_nand_chip *chip;
+	struct sunxi_nand_chip *sunxi_nand;
 
 	while (!list_empty(&nfc->chips)) {
-		chip = list_first_entry(&nfc->chips, struct sunxi_nand_chip,
-					node);
-		nand_release(nand_to_mtd(&chip->nand));
-		sunxi_nand_ecc_cleanup(&chip->nand.ecc);
-		list_del(&chip->node);
+		sunxi_nand = list_first_entry(&nfc->chips,
+					      struct sunxi_nand_chip,
+					      node);
+		nand_release(&sunxi_nand->nand);
+		sunxi_nand_ecc_cleanup(&sunxi_nand->nand.ecc);
+		list_del(&sunxi_nand->node);
 	}
 }
 
@@ -2052,6 +2109,12 @@
 		goto out_mod_clk_unprepare;
 	}
 
+	nfc->caps = of_device_get_match_data(&pdev->dev);
+	if (!nfc->caps) {
+		ret = -EINVAL;
+		goto out_ahb_reset_reassert;
+	}
+
 	ret = sunxi_nfc_rst(nfc);
 	if (ret)
 		goto out_ahb_reset_reassert;
@@ -2066,13 +2129,18 @@
 	if (nfc->dmac) {
 		struct dma_slave_config dmac_cfg = { };
 
-		dmac_cfg.src_addr = r->start + NFC_REG_IO_DATA;
+		dmac_cfg.src_addr = r->start + nfc->caps->reg_io_data;
 		dmac_cfg.dst_addr = dmac_cfg.src_addr;
 		dmac_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 		dmac_cfg.dst_addr_width = dmac_cfg.src_addr_width;
-		dmac_cfg.src_maxburst = 4;
-		dmac_cfg.dst_maxburst = 4;
+		dmac_cfg.src_maxburst = nfc->caps->dma_maxburst;
+		dmac_cfg.dst_maxburst = nfc->caps->dma_maxburst;
 		dmaengine_slave_config(nfc->dmac, &dmac_cfg);
+
+		if (nfc->caps->extra_mbus_conf)
+			writel(readl(nfc->regs + NFC_REG_CTL) |
+			       NFC_DMA_TYPE_NORMAL, nfc->regs + NFC_REG_CTL);
+
 	} else {
 		dev_warn(dev, "failed to request rxtx DMA channel\n");
 	}
@@ -2116,8 +2184,26 @@
 	return 0;
 }
 
+static const struct sunxi_nfc_caps sunxi_nfc_a10_caps = {
+	.reg_io_data = NFC_REG_A10_IO_DATA,
+	.dma_maxburst = 4,
+};
+
+static const struct sunxi_nfc_caps sunxi_nfc_a23_caps = {
+	.extra_mbus_conf = true,
+	.reg_io_data = NFC_REG_A23_IO_DATA,
+	.dma_maxburst = 8,
+};
+
 static const struct of_device_id sunxi_nfc_ids[] = {
-	{ .compatible = "allwinner,sun4i-a10-nand" },
+	{
+		.compatible = "allwinner,sun4i-a10-nand",
+		.data = &sunxi_nfc_a10_caps,
+	},
+	{
+		.compatible = "allwinner,sun8i-a23-nand-controller",
+		.data = &sunxi_nfc_a23_caps,
+	},
 	{ /* sentinel */ }
 };
 MODULE_DEVICE_TABLE(of, sunxi_nfc_ids);
@@ -2132,7 +2218,7 @@
 };
 module_platform_driver(sunxi_nfc_driver);
 
-MODULE_LICENSE("GPL v2");
+MODULE_LICENSE("GPL");
 MODULE_AUTHOR("Boris BREZILLON");
 MODULE_DESCRIPTION("Allwinner NAND Flash Controller driver");
 MODULE_ALIAS("platform:sunxi_nand");
diff --git a/drivers/mtd/nand/raw/tango_nand.c b/drivers/mtd/nand/raw/tango_nand.c
index 7269869..9acf2de 100644
--- a/drivers/mtd/nand/raw/tango_nand.c
+++ b/drivers/mtd/nand/raw/tango_nand.c
@@ -1,9 +1,6 @@
+// SPDX-License-Identifier: GPL-2.0-only
 /*
  * Copyright (C) 2016 Sigma Designs
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public License
- * version 2 as published by the Free Software Foundation.
  */
 
 #include <linux/io.h>
@@ -116,9 +113,9 @@
 
 #define TIMING(t0, t1, t2, t3) ((t0) << 24 | (t1) << 16 | (t2) << 8 | (t3))
 
-static void tango_cmd_ctrl(struct mtd_info *mtd, int dat, unsigned int ctrl)
+static void tango_cmd_ctrl(struct nand_chip *chip, int dat, unsigned int ctrl)
 {
-	struct tango_chip *tchip = to_tango_chip(mtd_to_nand(mtd));
+	struct tango_chip *tchip = to_tango_chip(chip);
 
 	if (ctrl & NAND_CLE)
 		writeb_relaxed(dat, tchip->base + PBUS_CMD);
@@ -127,38 +124,36 @@
 		writeb_relaxed(dat, tchip->base + PBUS_ADDR);
 }
 
-static int tango_dev_ready(struct mtd_info *mtd)
+static int tango_dev_ready(struct nand_chip *chip)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
 	struct tango_nfc *nfc = to_tango_nfc(chip->controller);
 
 	return readl_relaxed(nfc->pbus_base + PBUS_CS_CTRL) & PBUS_IORDY;
 }
 
-static u8 tango_read_byte(struct mtd_info *mtd)
+static u8 tango_read_byte(struct nand_chip *chip)
 {
-	struct tango_chip *tchip = to_tango_chip(mtd_to_nand(mtd));
+	struct tango_chip *tchip = to_tango_chip(chip);
 
 	return readb_relaxed(tchip->base + PBUS_DATA);
 }
 
-static void tango_read_buf(struct mtd_info *mtd, u8 *buf, int len)
+static void tango_read_buf(struct nand_chip *chip, u8 *buf, int len)
 {
-	struct tango_chip *tchip = to_tango_chip(mtd_to_nand(mtd));
+	struct tango_chip *tchip = to_tango_chip(chip);
 
 	ioread8_rep(tchip->base + PBUS_DATA, buf, len);
 }
 
-static void tango_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
+static void tango_write_buf(struct nand_chip *chip, const u8 *buf, int len)
 {
-	struct tango_chip *tchip = to_tango_chip(mtd_to_nand(mtd));
+	struct tango_chip *tchip = to_tango_chip(chip);
 
 	iowrite8_rep(tchip->base + PBUS_DATA, buf, len);
 }
 
-static void tango_select_chip(struct mtd_info *mtd, int idx)
+static void tango_select_chip(struct nand_chip *chip, int idx)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
 	struct tango_nfc *nfc = to_tango_nfc(chip->controller);
 	struct tango_chip *tchip = to_tango_chip(chip);
 
@@ -277,14 +272,15 @@
 	return err;
 }
 
-static int tango_read_page(struct mtd_info *mtd, struct nand_chip *chip,
-			   u8 *buf, int oob_required, int page)
+static int tango_read_page(struct nand_chip *chip, u8 *buf,
+			   int oob_required, int page)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	struct tango_nfc *nfc = to_tango_nfc(chip->controller);
 	int err, res, len = mtd->writesize;
 
 	if (oob_required)
-		chip->ecc.read_oob(mtd, chip, page);
+		chip->ecc.read_oob(chip, page);
 
 	err = do_dma(nfc, DMA_FROM_DEVICE, NFC_READ, buf, len, page);
 	if (err)
@@ -292,16 +288,17 @@
 
 	res = decode_error_report(chip);
 	if (res < 0) {
-		chip->ecc.read_oob_raw(mtd, chip, page);
+		chip->ecc.read_oob_raw(chip, page);
 		res = check_erased_page(chip, buf);
 	}
 
 	return res;
 }
 
-static int tango_write_page(struct mtd_info *mtd, struct nand_chip *chip,
-			    const u8 *buf, int oob_required, int page)
+static int tango_write_page(struct nand_chip *chip, const u8 *buf,
+			    int oob_required, int page)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	struct tango_nfc *nfc = to_tango_nfc(chip->controller);
 	int err, status, len = mtd->writesize;
 
@@ -314,7 +311,7 @@
 	if (err)
 		return err;
 
-	status = chip->waitfunc(mtd, chip);
+	status = chip->legacy.waitfunc(chip);
 	if (status & NAND_STATUS_FAIL)
 		return -EIO;
 
@@ -323,30 +320,26 @@
 
 static void aux_read(struct nand_chip *chip, u8 **buf, int len, int *pos)
 {
-	struct mtd_info *mtd = nand_to_mtd(chip);
-
 	*pos += len;
 
 	if (!*buf) {
 		/* skip over "len" bytes */
 		nand_change_read_column_op(chip, *pos, NULL, 0, false);
 	} else {
-		tango_read_buf(mtd, *buf, len);
+		tango_read_buf(chip, *buf, len);
 		*buf += len;
 	}
 }
 
 static void aux_write(struct nand_chip *chip, const u8 **buf, int len, int *pos)
 {
-	struct mtd_info *mtd = nand_to_mtd(chip);
-
 	*pos += len;
 
 	if (!*buf) {
 		/* skip over "len" bytes */
 		nand_change_write_column_op(chip, *pos, NULL, 0, false);
 	} else {
-		tango_write_buf(mtd, *buf, len);
+		tango_write_buf(chip, *buf, len);
 		*buf += len;
 	}
 }
@@ -424,32 +417,30 @@
 	aux_write(chip, &oob, ecc_size, &pos);
 }
 
-static int tango_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
-			       u8 *buf, int oob_required, int page)
+static int tango_read_page_raw(struct nand_chip *chip, u8 *buf,
+			       int oob_required, int page)
 {
 	nand_read_page_op(chip, page, 0, NULL, 0);
 	raw_read(chip, buf, chip->oob_poi);
 	return 0;
 }
 
-static int tango_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
-				const u8 *buf, int oob_required, int page)
+static int tango_write_page_raw(struct nand_chip *chip, const u8 *buf,
+				int oob_required, int page)
 {
 	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
 	raw_write(chip, buf, chip->oob_poi);
 	return nand_prog_page_end_op(chip);
 }
 
-static int tango_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
-			  int page)
+static int tango_read_oob(struct nand_chip *chip, int page)
 {
 	nand_read_page_op(chip, page, 0, NULL, 0);
 	raw_read(chip, NULL, chip->oob_poi);
 	return 0;
 }
 
-static int tango_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
-			   int page)
+static int tango_write_oob(struct nand_chip *chip, int page)
 {
 	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
 	raw_write(chip, NULL, chip->oob_poi);
@@ -485,11 +476,10 @@
 	return DIV_ROUND_UP_ULL((u64)kHz * ps, NSEC_PER_SEC);
 }
 
-static int tango_set_timings(struct mtd_info *mtd, int csline,
+static int tango_set_timings(struct nand_chip *chip, int csline,
 			     const struct nand_data_interface *conf)
 {
 	const struct nand_sdr_timings *sdr = nand_get_sdr_timings(conf);
-	struct nand_chip *chip = mtd_to_nand(mtd);
 	struct tango_nfc *nfc = to_tango_nfc(chip->controller);
 	struct tango_chip *tchip = to_tango_chip(chip);
 	u32 Trdy, Textw, Twc, Twpw, Tacc, Thold, Trpw, Textr;
@@ -537,6 +527,7 @@
 
 static const struct nand_controller_ops tango_controller_ops = {
 	.attach_chip = tango_attach_chip,
+	.setup_data_interface = tango_set_timings,
 };
 
 static int chip_init(struct device *dev, struct device_node *np)
@@ -571,13 +562,12 @@
 	ecc = &chip->ecc;
 	mtd = nand_to_mtd(chip);
 
-	chip->read_byte = tango_read_byte;
-	chip->write_buf = tango_write_buf;
-	chip->read_buf = tango_read_buf;
-	chip->select_chip = tango_select_chip;
-	chip->cmd_ctrl = tango_cmd_ctrl;
-	chip->dev_ready = tango_dev_ready;
-	chip->setup_data_interface = tango_set_timings;
+	chip->legacy.read_byte = tango_read_byte;
+	chip->legacy.write_buf = tango_write_buf;
+	chip->legacy.read_buf = tango_read_buf;
+	chip->legacy.select_chip = tango_select_chip;
+	chip->legacy.cmd_ctrl = tango_cmd_ctrl;
+	chip->legacy.dev_ready = tango_dev_ready;
 	chip->options = NAND_USE_BOUNCE_BUFFER |
 			NAND_NO_SUBPAGE_WRITE |
 			NAND_WAIT_TCCS;
@@ -588,7 +578,7 @@
 	mtd_set_ooblayout(mtd, &tango_nand_ooblayout_ops);
 	mtd->dev.parent = dev;
 
-	err = nand_scan(mtd, 1);
+	err = nand_scan(chip, 1);
 	if (err)
 		return err;
 
@@ -617,7 +607,7 @@
 
 	for (cs = 0; cs < MAX_CS; ++cs) {
 		if (nfc->chips[cs])
-			nand_release(nand_to_mtd(&nfc->chips[cs]->nand_chip));
+			nand_release(&nfc->chips[cs]->nand_chip);
 	}
 
 	return 0;
@@ -669,6 +659,7 @@
 		err = chip_init(&pdev->dev, np);
 		if (err) {
 			tango_nand_remove(pdev);
+			of_node_put(np);
 			return err;
 		}
 	}
diff --git a/drivers/mtd/nand/raw/tegra_nand.c b/drivers/mtd/nand/raw/tegra_nand.c
index 79da1ef..3cc9a4c 100644
--- a/drivers/mtd/nand/raw/tegra_nand.c
+++ b/drivers/mtd/nand/raw/tegra_nand.c
@@ -454,30 +454,24 @@
 		NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, 4)),
 	);
 
+static void tegra_nand_select_target(struct nand_chip *chip,
+				     unsigned int die_nr)
+{
+	struct tegra_nand_chip *nand = to_tegra_chip(chip);
+	struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
+
+	ctrl->cur_cs = nand->cs[die_nr];
+}
+
 static int tegra_nand_exec_op(struct nand_chip *chip,
 			      const struct nand_operation *op,
 			      bool check_only)
 {
+	tegra_nand_select_target(chip, op->cs);
 	return nand_op_parser_exec_op(chip, &tegra_nand_op_parser, op,
 				      check_only);
 }
 
-static void tegra_nand_select_chip(struct mtd_info *mtd, int die_nr)
-{
-	struct nand_chip *chip = mtd_to_nand(mtd);
-	struct tegra_nand_chip *nand = to_tegra_chip(chip);
-	struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
-
-	WARN_ON(die_nr >= (int)ARRAY_SIZE(nand->cs));
-
-	if (die_nr < 0 || die_nr > 0) {
-		ctrl->cur_cs = -1;
-		return;
-	}
-
-	ctrl->cur_cs = nand->cs[die_nr];
-}
-
 static void tegra_nand_hw_ecc(struct tegra_nand_controller *ctrl,
 			      struct nand_chip *chip, bool enable)
 {
@@ -504,6 +498,8 @@
 	u32 addr1, cmd, dma_ctrl;
 	int ret;
 
+	tegra_nand_select_target(chip, chip->cur_cs);
+
 	if (read) {
 		writel_relaxed(NAND_CMD_READ0, ctrl->regs + CMD_REG1);
 		writel_relaxed(NAND_CMD_READSTART, ctrl->regs + CMD_REG2);
@@ -615,44 +611,46 @@
 	return ret;
 }
 
-static int tegra_nand_read_page_raw(struct mtd_info *mtd,
-				    struct nand_chip *chip, u8 *buf,
+static int tegra_nand_read_page_raw(struct nand_chip *chip, u8 *buf,
 				    int oob_required, int page)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	void *oob_buf = oob_required ? chip->oob_poi : NULL;
 
 	return tegra_nand_page_xfer(mtd, chip, buf, oob_buf,
 				    mtd->oobsize, page, true);
 }
 
-static int tegra_nand_write_page_raw(struct mtd_info *mtd,
-				     struct nand_chip *chip, const u8 *buf,
+static int tegra_nand_write_page_raw(struct nand_chip *chip, const u8 *buf,
 				     int oob_required, int page)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	void *oob_buf = oob_required ? chip->oob_poi : NULL;
 
 	return tegra_nand_page_xfer(mtd, chip, (void *)buf, oob_buf,
 				     mtd->oobsize, page, false);
 }
 
-static int tegra_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
-			       int page)
+static int tegra_nand_read_oob(struct nand_chip *chip, int page)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
+
 	return tegra_nand_page_xfer(mtd, chip, NULL, chip->oob_poi,
 				    mtd->oobsize, page, true);
 }
 
-static int tegra_nand_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
-				int page)
+static int tegra_nand_write_oob(struct nand_chip *chip, int page)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
+
 	return tegra_nand_page_xfer(mtd, chip, NULL, chip->oob_poi,
 				    mtd->oobsize, page, false);
 }
 
-static int tegra_nand_read_page_hwecc(struct mtd_info *mtd,
-				      struct nand_chip *chip, u8 *buf,
+static int tegra_nand_read_page_hwecc(struct nand_chip *chip, u8 *buf,
 				      int oob_required, int page)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
 	struct tegra_nand_chip *nand = to_tegra_chip(chip);
 	void *oob_buf = oob_required ? chip->oob_poi : NULL;
@@ -716,7 +714,7 @@
 		 * erased or if error correction just failed for all sub-
 		 * pages.
 		 */
-		ret = tegra_nand_read_oob(mtd, chip, page);
+		ret = tegra_nand_read_oob(chip, page);
 		if (ret < 0)
 			return ret;
 
@@ -759,10 +757,10 @@
 	}
 }
 
-static int tegra_nand_write_page_hwecc(struct mtd_info *mtd,
-				       struct nand_chip *chip, const u8 *buf,
+static int tegra_nand_write_page_hwecc(struct nand_chip *chip, const u8 *buf,
 				       int oob_required, int page)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
 	void *oob_buf = oob_required ? chip->oob_poi : NULL;
 	int ret;
@@ -813,10 +811,9 @@
 	writel_relaxed(reg, ctrl->regs + TIMING_2);
 }
 
-static int tegra_nand_setup_data_interface(struct mtd_info *mtd, int csline,
+static int tegra_nand_setup_data_interface(struct nand_chip *chip, int csline,
 					const struct nand_data_interface *conf)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
 	struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
 	const struct nand_sdr_timings *timings;
 
@@ -856,7 +853,7 @@
 		} else {
 			strength_sel = strength[i];
 
-			if (strength_sel < chip->ecc_strength_ds)
+			if (strength_sel < chip->base.eccreq.strength)
 				continue;
 		}
 
@@ -920,9 +917,9 @@
 	chip->ecc.mode = NAND_ECC_HW;
 	chip->ecc.size = 512;
 	chip->ecc.steps = mtd->writesize / chip->ecc.size;
-	if (chip->ecc_step_ds != 512) {
+	if (chip->base.eccreq.step_size != 512) {
 		dev_err(ctrl->dev, "Unsupported step size %d\n",
-			chip->ecc_step_ds);
+			chip->base.eccreq.step_size);
 		return -EINVAL;
 	}
 
@@ -953,7 +950,7 @@
 		if (ret < 0) {
 			dev_err(ctrl->dev,
 				"No valid strength found, minimum %d\n",
-				chip->ecc_strength_ds);
+				chip->base.eccreq.strength);
 			return ret;
 		}
 
@@ -1053,6 +1050,8 @@
 
 static const struct nand_controller_ops tegra_nand_controller_ops = {
 	.attach_chip = &tegra_nand_attach_chip,
+	.exec_op = tegra_nand_exec_op,
+	.setup_data_interface = tegra_nand_setup_data_interface,
 };
 
 static int tegra_nand_chips_init(struct device *dev,
@@ -1115,11 +1114,8 @@
 		mtd->name = "tegra_nand";
 
 	chip->options = NAND_NO_SUBPAGE_WRITE | NAND_USE_BOUNCE_BUFFER;
-	chip->exec_op = tegra_nand_exec_op;
-	chip->select_chip = tegra_nand_select_chip;
-	chip->setup_data_interface = tegra_nand_setup_data_interface;
 
-	ret = nand_scan(mtd, 1);
+	ret = nand_scan(chip, 1);
 	if (ret)
 		return ret;
 
diff --git a/drivers/mtd/nand/raw/tmio_nand.c b/drivers/mtd/nand/raw/tmio_nand.c
index dcaa924..db030f1 100644
--- a/drivers/mtd/nand/raw/tmio_nand.c
+++ b/drivers/mtd/nand/raw/tmio_nand.c
@@ -104,6 +104,7 @@
 
 struct tmio_nand {
 	struct nand_chip chip;
+	struct completion comp;
 
 	struct platform_device *dev;
 
@@ -126,11 +127,10 @@
 
 /*--------------------------------------------------------------------------*/
 
-static void tmio_nand_hwcontrol(struct mtd_info *mtd, int cmd,
-				   unsigned int ctrl)
+static void tmio_nand_hwcontrol(struct nand_chip *chip, int cmd,
+				unsigned int ctrl)
 {
-	struct tmio_nand *tmio = mtd_to_tmio(mtd);
-	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct tmio_nand *tmio = mtd_to_tmio(nand_to_mtd(chip));
 
 	if (ctrl & NAND_CTRL_CHANGE) {
 		u8 mode;
@@ -156,12 +156,12 @@
 	}
 
 	if (cmd != NAND_CMD_NONE)
-		tmio_iowrite8(cmd, chip->IO_ADDR_W);
+		tmio_iowrite8(cmd, chip->legacy.IO_ADDR_W);
 }
 
-static int tmio_nand_dev_ready(struct mtd_info *mtd)
+static int tmio_nand_dev_ready(struct nand_chip *chip)
 {
-	struct tmio_nand *tmio = mtd_to_tmio(mtd);
+	struct tmio_nand *tmio = mtd_to_tmio(nand_to_mtd(chip));
 
 	return !(tmio_ioread8(tmio->fcr + FCR_STATUS) & FCR_STATUS_BUSY);
 }
@@ -169,15 +169,11 @@
 static irqreturn_t tmio_irq(int irq, void *__tmio)
 {
 	struct tmio_nand *tmio = __tmio;
-	struct nand_chip *nand_chip = &tmio->chip;
 
 	/* disable RDYREQ interrupt */
 	tmio_iowrite8(0x00, tmio->fcr + FCR_IMR);
+	complete(&tmio->comp);
 
-	if (unlikely(!waitqueue_active(&nand_chip->controller->wq)))
-		dev_warn(&tmio->dev->dev, "spurious interrupt\n");
-
-	wake_up(&nand_chip->controller->wq);
 	return IRQ_HANDLED;
 }
 
@@ -187,26 +183,25 @@
   *erase and write, we enable it to wake us up.  The irq handler
   *disables the interrupt.
  */
-static int
-tmio_nand_wait(struct mtd_info *mtd, struct nand_chip *nand_chip)
+static int tmio_nand_wait(struct nand_chip *nand_chip)
 {
-	struct tmio_nand *tmio = mtd_to_tmio(mtd);
+	struct tmio_nand *tmio = mtd_to_tmio(nand_to_mtd(nand_chip));
 	long timeout;
 	u8 status;
 
 	/* enable RDYREQ interrupt */
+
 	tmio_iowrite8(0x0f, tmio->fcr + FCR_ISR);
+	reinit_completion(&tmio->comp);
 	tmio_iowrite8(0x81, tmio->fcr + FCR_IMR);
 
-	timeout = wait_event_timeout(nand_chip->controller->wq,
-		tmio_nand_dev_ready(mtd),
-		msecs_to_jiffies(nand_chip->state == FL_ERASING ? 400 : 20));
+	timeout = 400;
+	timeout = wait_for_completion_timeout(&tmio->comp,
+					      msecs_to_jiffies(timeout));
 
-	if (unlikely(!tmio_nand_dev_ready(mtd))) {
+	if (unlikely(!tmio_nand_dev_ready(nand_chip))) {
 		tmio_iowrite8(0x00, tmio->fcr + FCR_IMR);
-		dev_warn(&tmio->dev->dev, "still busy with %s after %d ms\n",
-			nand_chip->state == FL_ERASING ? "erase" : "program",
-			nand_chip->state == FL_ERASING ? 400 : 20);
+		dev_warn(&tmio->dev->dev, "still busy after 400 ms\n");
 
 	} else if (unlikely(!timeout)) {
 		tmio_iowrite8(0x00, tmio->fcr + FCR_IMR);
@@ -225,9 +220,9 @@
   *To prevent stale data from being read, tmio_nand_hwcontrol() clears
   *tmio->read_good.
  */
-static u_char tmio_nand_read_byte(struct mtd_info *mtd)
+static u_char tmio_nand_read_byte(struct nand_chip *chip)
 {
-	struct tmio_nand *tmio = mtd_to_tmio(mtd);
+	struct tmio_nand *tmio = mtd_to_tmio(nand_to_mtd(chip));
 	unsigned int data;
 
 	if (tmio->read_good--)
@@ -245,33 +240,33 @@
   *buffer functions.
  */
 static void
-tmio_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
+tmio_nand_write_buf(struct nand_chip *chip, const u_char *buf, int len)
 {
-	struct tmio_nand *tmio = mtd_to_tmio(mtd);
+	struct tmio_nand *tmio = mtd_to_tmio(nand_to_mtd(chip));
 
 	tmio_iowrite16_rep(tmio->fcr + FCR_DATA, buf, len >> 1);
 }
 
-static void tmio_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
+static void tmio_nand_read_buf(struct nand_chip *chip, u_char *buf, int len)
 {
-	struct tmio_nand *tmio = mtd_to_tmio(mtd);
+	struct tmio_nand *tmio = mtd_to_tmio(nand_to_mtd(chip));
 
 	tmio_ioread16_rep(tmio->fcr + FCR_DATA, buf, len >> 1);
 }
 
-static void tmio_nand_enable_hwecc(struct mtd_info *mtd, int mode)
+static void tmio_nand_enable_hwecc(struct nand_chip *chip, int mode)
 {
-	struct tmio_nand *tmio = mtd_to_tmio(mtd);
+	struct tmio_nand *tmio = mtd_to_tmio(nand_to_mtd(chip));
 
 	tmio_iowrite8(FCR_MODE_HWECC_RESET, tmio->fcr + FCR_MODE);
 	tmio_ioread8(tmio->fcr + FCR_DATA);	/* dummy read */
 	tmio_iowrite8(FCR_MODE_HWECC_CALC, tmio->fcr + FCR_MODE);
 }
 
-static int tmio_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
-							u_char *ecc_code)
+static int tmio_nand_calculate_ecc(struct nand_chip *chip, const u_char *dat,
+				   u_char *ecc_code)
 {
-	struct tmio_nand *tmio = mtd_to_tmio(mtd);
+	struct tmio_nand *tmio = mtd_to_tmio(nand_to_mtd(chip));
 	unsigned int ecc;
 
 	tmio_iowrite8(FCR_MODE_HWECC_RESULT, tmio->fcr + FCR_MODE);
@@ -290,16 +285,18 @@
 	return 0;
 }
 
-static int tmio_nand_correct_data(struct mtd_info *mtd, unsigned char *buf,
-		unsigned char *read_ecc, unsigned char *calc_ecc)
+static int tmio_nand_correct_data(struct nand_chip *chip, unsigned char *buf,
+				  unsigned char *read_ecc,
+				  unsigned char *calc_ecc)
 {
 	int r0, r1;
 
 	/* assume ecc.size = 512 and ecc.bytes = 6 */
-	r0 = __nand_correct_data(buf, read_ecc, calc_ecc, 256);
+	r0 = __nand_correct_data(buf, read_ecc, calc_ecc, 256, false);
 	if (r0 < 0)
 		return r0;
-	r1 = __nand_correct_data(buf + 256, read_ecc + 3, calc_ecc + 3, 256);
+	r1 = __nand_correct_data(buf + 256, read_ecc + 3, calc_ecc + 3, 256,
+				 false);
 	if (r1 < 0)
 		return r1;
 	return r0 + r1;
@@ -378,6 +375,8 @@
 	if (!tmio)
 		return -ENOMEM;
 
+	init_completion(&tmio->comp);
+
 	tmio->dev = dev;
 
 	platform_set_drvdata(dev, tmio);
@@ -400,15 +399,15 @@
 		return retval;
 
 	/* Set address of NAND IO lines */
-	nand_chip->IO_ADDR_R = tmio->fcr;
-	nand_chip->IO_ADDR_W = tmio->fcr;
+	nand_chip->legacy.IO_ADDR_R = tmio->fcr;
+	nand_chip->legacy.IO_ADDR_W = tmio->fcr;
 
 	/* Set address of hardware control function */
-	nand_chip->cmd_ctrl = tmio_nand_hwcontrol;
-	nand_chip->dev_ready = tmio_nand_dev_ready;
-	nand_chip->read_byte = tmio_nand_read_byte;
-	nand_chip->write_buf = tmio_nand_write_buf;
-	nand_chip->read_buf = tmio_nand_read_buf;
+	nand_chip->legacy.cmd_ctrl = tmio_nand_hwcontrol;
+	nand_chip->legacy.dev_ready = tmio_nand_dev_ready;
+	nand_chip->legacy.read_byte = tmio_nand_read_byte;
+	nand_chip->legacy.write_buf = tmio_nand_write_buf;
+	nand_chip->legacy.read_buf = tmio_nand_read_buf;
 
 	/* set eccmode using hardware ECC */
 	nand_chip->ecc.mode = NAND_ECC_HW;
@@ -423,7 +422,7 @@
 		nand_chip->badblock_pattern = data->badblock_pattern;
 
 	/* 15 us command delay time */
-	nand_chip->chip_delay = 15;
+	nand_chip->legacy.chip_delay = 15;
 
 	retval = devm_request_irq(&dev->dev, irq, &tmio_irq, 0,
 				  dev_name(&dev->dev), tmio);
@@ -433,10 +432,10 @@
 	}
 
 	tmio->irq = irq;
-	nand_chip->waitfunc = tmio_nand_wait;
+	nand_chip->legacy.waitfunc = tmio_nand_wait;
 
 	/* Scan to find existence of the device */
-	retval = nand_scan(mtd, 1);
+	retval = nand_scan(nand_chip, 1);
 	if (retval)
 		goto err_irq;
 
@@ -449,7 +448,7 @@
 	if (!retval)
 		return retval;
 
-	nand_release(mtd);
+	nand_release(nand_chip);
 
 err_irq:
 	tmio_hw_stop(dev, tmio);
@@ -460,7 +459,7 @@
 {
 	struct tmio_nand *tmio = platform_get_drvdata(dev);
 
-	nand_release(nand_to_mtd(&tmio->chip));
+	nand_release(&tmio->chip);
 	tmio_hw_stop(dev, tmio);
 	return 0;
 }
diff --git a/drivers/mtd/nand/raw/txx9ndfmc.c b/drivers/mtd/nand/raw/txx9ndfmc.c
index 4d61a14..2642d5b 100644
--- a/drivers/mtd/nand/raw/txx9ndfmc.c
+++ b/drivers/mtd/nand/raw/txx9ndfmc.c
@@ -1,11 +1,8 @@
+// SPDX-License-Identifier: GPL-2.0-only
 /*
  * TXx9 NAND flash memory controller driver
  * Based on RBTX49xx patch from CELF patch archive.
  *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
- *
  * (C) Copyright TOSHIBA CORPORATION 2004-2007
  * All Rights Reserved.
  */
@@ -102,17 +99,17 @@
 	__raw_writel(val, ndregaddr(dev, reg));
 }
 
-static uint8_t txx9ndfmc_read_byte(struct mtd_info *mtd)
+static uint8_t txx9ndfmc_read_byte(struct nand_chip *chip)
 {
-	struct platform_device *dev = mtd_to_platdev(mtd);
+	struct platform_device *dev = mtd_to_platdev(nand_to_mtd(chip));
 
 	return txx9ndfmc_read(dev, TXX9_NDFDTR);
 }
 
-static void txx9ndfmc_write_buf(struct mtd_info *mtd, const uint8_t *buf,
+static void txx9ndfmc_write_buf(struct nand_chip *chip, const uint8_t *buf,
 				int len)
 {
-	struct platform_device *dev = mtd_to_platdev(mtd);
+	struct platform_device *dev = mtd_to_platdev(nand_to_mtd(chip));
 	void __iomem *ndfdtr = ndregaddr(dev, TXX9_NDFDTR);
 	u32 mcr = txx9ndfmc_read(dev, TXX9_NDFMCR);
 
@@ -122,19 +119,18 @@
 	txx9ndfmc_write(dev, mcr, TXX9_NDFMCR);
 }
 
-static void txx9ndfmc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
+static void txx9ndfmc_read_buf(struct nand_chip *chip, uint8_t *buf, int len)
 {
-	struct platform_device *dev = mtd_to_platdev(mtd);
+	struct platform_device *dev = mtd_to_platdev(nand_to_mtd(chip));
 	void __iomem *ndfdtr = ndregaddr(dev, TXX9_NDFDTR);
 
 	while (len--)
 		*buf++ = __raw_readl(ndfdtr);
 }
 
-static void txx9ndfmc_cmd_ctrl(struct mtd_info *mtd, int cmd,
+static void txx9ndfmc_cmd_ctrl(struct nand_chip *chip, int cmd,
 			       unsigned int ctrl)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
 	struct txx9ndfmc_priv *txx9_priv = nand_get_controller_data(chip);
 	struct platform_device *dev = txx9_priv->dev;
 	struct txx9ndfmc_platform_data *plat = dev_get_platdata(&dev->dev);
@@ -160,21 +156,19 @@
 		if ((ctrl & NAND_CTRL_CHANGE) && cmd == NAND_CMD_NONE)
 			txx9ndfmc_write(dev, 0, TXX9_NDFDTR);
 	}
-	mmiowb();
 }
 
-static int txx9ndfmc_dev_ready(struct mtd_info *mtd)
+static int txx9ndfmc_dev_ready(struct nand_chip *chip)
 {
-	struct platform_device *dev = mtd_to_platdev(mtd);
+	struct platform_device *dev = mtd_to_platdev(nand_to_mtd(chip));
 
 	return !(txx9ndfmc_read(dev, TXX9_NDFSR) & TXX9_NDFSR_BUSY);
 }
 
-static int txx9ndfmc_calculate_ecc(struct mtd_info *mtd, const uint8_t *dat,
+static int txx9ndfmc_calculate_ecc(struct nand_chip *chip, const uint8_t *dat,
 				   uint8_t *ecc_code)
 {
-	struct platform_device *dev = mtd_to_platdev(mtd);
-	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct platform_device *dev = mtd_to_platdev(nand_to_mtd(chip));
 	int eccbytes;
 	u32 mcr = txx9ndfmc_read(dev, TXX9_NDFMCR);
 
@@ -191,16 +185,17 @@
 	return 0;
 }
 
-static int txx9ndfmc_correct_data(struct mtd_info *mtd, unsigned char *buf,
-		unsigned char *read_ecc, unsigned char *calc_ecc)
+static int txx9ndfmc_correct_data(struct nand_chip *chip, unsigned char *buf,
+				  unsigned char *read_ecc,
+				  unsigned char *calc_ecc)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
 	int eccsize;
 	int corrected = 0;
 	int stat;
 
 	for (eccsize = chip->ecc.size; eccsize > 0; eccsize -= 256) {
-		stat = __nand_correct_data(buf, read_ecc, calc_ecc, 256);
+		stat = __nand_correct_data(buf, read_ecc, calc_ecc, 256,
+					   false);
 		if (stat < 0)
 			return stat;
 		corrected += stat;
@@ -211,9 +206,9 @@
 	return corrected;
 }
 
-static void txx9ndfmc_enable_hwecc(struct mtd_info *mtd, int mode)
+static void txx9ndfmc_enable_hwecc(struct nand_chip *chip, int mode)
 {
-	struct platform_device *dev = mtd_to_platdev(mtd);
+	struct platform_device *dev = mtd_to_platdev(nand_to_mtd(chip));
 	u32 mcr = txx9ndfmc_read(dev, TXX9_NDFMCR);
 
 	mcr &= ~TXX9_NDFMCR_ECC_ALL;
@@ -326,17 +321,17 @@
 		mtd = nand_to_mtd(chip);
 		mtd->dev.parent = &dev->dev;
 
-		chip->read_byte = txx9ndfmc_read_byte;
-		chip->read_buf = txx9ndfmc_read_buf;
-		chip->write_buf = txx9ndfmc_write_buf;
-		chip->cmd_ctrl = txx9ndfmc_cmd_ctrl;
-		chip->dev_ready = txx9ndfmc_dev_ready;
+		chip->legacy.read_byte = txx9ndfmc_read_byte;
+		chip->legacy.read_buf = txx9ndfmc_read_buf;
+		chip->legacy.write_buf = txx9ndfmc_write_buf;
+		chip->legacy.cmd_ctrl = txx9ndfmc_cmd_ctrl;
+		chip->legacy.dev_ready = txx9ndfmc_dev_ready;
 		chip->ecc.calculate = txx9ndfmc_calculate_ecc;
 		chip->ecc.correct = txx9ndfmc_correct_data;
 		chip->ecc.hwctl = txx9ndfmc_enable_hwecc;
 		chip->ecc.mode = NAND_ECC_HW;
 		chip->ecc.strength = 1;
-		chip->chip_delay = 100;
+		chip->legacy.chip_delay = 100;
 		chip->controller = &drvdata->controller;
 
 		nand_set_controller_data(chip, txx9_priv);
@@ -359,7 +354,7 @@
 		if (plat->wide_mask & (1 << i))
 			chip->options |= NAND_BUSWIDTH_16;
 
-		if (nand_scan(mtd, 1)) {
+		if (nand_scan(chip, 1)) {
 			kfree(txx9_priv->mtdname);
 			kfree(txx9_priv);
 			continue;
@@ -390,7 +385,7 @@
 		chip = mtd_to_nand(mtd);
 		txx9_priv = nand_get_controller_data(chip);
 
-		nand_release(mtd);
+		nand_release(chip);
 		kfree(txx9_priv->mtdname);
 		kfree(txx9_priv);
 	}
diff --git a/drivers/mtd/nand/raw/vf610_nfc.c b/drivers/mtd/nand/raw/vf610_nfc.c
index 6f6dcbf..6b399a7 100644
--- a/drivers/mtd/nand/raw/vf610_nfc.c
+++ b/drivers/mtd/nand/raw/vf610_nfc.c
@@ -1,3 +1,4 @@
+// SPDX-License-Identifier: GPL-2.0+
 /*
  * Copyright 2009-2015 Freescale Semiconductor, Inc. and others
  *
@@ -10,11 +11,6 @@
  *
  * Based on original driver mpc5121_nfc.c.
  *
- * This is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
  * Limitations:
  * - Untested on MPC5125 and M54418.
  * - DMA and pipelining not used.
@@ -152,6 +148,7 @@
 };
 
 struct vf610_nfc {
+	struct nand_controller base;
 	struct nand_chip chip;
 	struct device *dev;
 	void __iomem *regs;
@@ -168,11 +165,6 @@
 	u32 ecc_mode;
 };
 
-static inline struct vf610_nfc *mtd_to_nfc(struct mtd_info *mtd)
-{
-	return container_of(mtd_to_nand(mtd), struct vf610_nfc, chip);
-}
-
 static inline struct vf610_nfc *chip_to_nfc(struct nand_chip *chip)
 {
 	return container_of(chip, struct vf610_nfc, chip);
@@ -316,8 +308,7 @@
 
 static irqreturn_t vf610_nfc_irq(int irq, void *data)
 {
-	struct mtd_info *mtd = data;
-	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
+	struct vf610_nfc *nfc = data;
 
 	vf610_nfc_clear(nfc, NFC_IRQ_STATUS, IDLE_EN_BIT);
 	complete(&nfc->cmd_done);
@@ -373,7 +364,7 @@
 {
 	const struct nand_op_instr *instr;
 	struct vf610_nfc *nfc = chip_to_nfc(chip);
-	int op_id = -1, trfr_sz = 0, offset;
+	int op_id = -1, trfr_sz = 0, offset = 0;
 	u32 col = 0, row = 0, cmd1 = 0, cmd2 = 0, code = 0;
 	bool force8bit = false;
 
@@ -487,40 +478,40 @@
 		NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, PAGE_2K + OOB_MAX)),
 	);
 
-static int vf610_nfc_exec_op(struct nand_chip *chip,
-			     const struct nand_operation *op,
-			     bool check_only)
-{
-	return nand_op_parser_exec_op(chip, &vf610_nfc_op_parser, op,
-				      check_only);
-}
-
 /*
  * This function supports Vybrid only (MPC5125 would have full RB and four CS)
  */
-static void vf610_nfc_select_chip(struct mtd_info *mtd, int chip)
+static void vf610_nfc_select_target(struct nand_chip *chip, unsigned int cs)
 {
-	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
-	u32 tmp = vf610_nfc_read(nfc, NFC_ROW_ADDR);
+	struct vf610_nfc *nfc = chip_to_nfc(chip);
+	u32 tmp;
 
 	/* Vybrid only (MPC5125 would have full RB and four CS) */
 	if (nfc->variant != NFC_VFC610)
 		return;
 
+	tmp = vf610_nfc_read(nfc, NFC_ROW_ADDR);
 	tmp &= ~(ROW_ADDR_CHIP_SEL_RB_MASK | ROW_ADDR_CHIP_SEL_MASK);
-
-	if (chip >= 0) {
-		tmp |= 1 << ROW_ADDR_CHIP_SEL_RB_SHIFT;
-		tmp |= BIT(chip) << ROW_ADDR_CHIP_SEL_SHIFT;
-	}
+	tmp |= 1 << ROW_ADDR_CHIP_SEL_RB_SHIFT;
+	tmp |= BIT(cs) << ROW_ADDR_CHIP_SEL_SHIFT;
 
 	vf610_nfc_write(nfc, NFC_ROW_ADDR, tmp);
 }
 
-static inline int vf610_nfc_correct_data(struct mtd_info *mtd, uint8_t *dat,
+static int vf610_nfc_exec_op(struct nand_chip *chip,
+			     const struct nand_operation *op,
+			     bool check_only)
+{
+	vf610_nfc_select_target(chip, op->cs);
+	return nand_op_parser_exec_op(chip, &vf610_nfc_op_parser, op,
+				      check_only);
+}
+
+static inline int vf610_nfc_correct_data(struct nand_chip *chip, uint8_t *dat,
 					 uint8_t *oob, int page)
 {
-	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
+	struct vf610_nfc *nfc = chip_to_nfc(chip);
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	u32 ecc_status_off = NFC_MAIN_AREA(0) + ECC_SRAM_ADDR + ECC_STATUS;
 	u8 ecc_status;
 	u8 ecc_count;
@@ -557,14 +548,17 @@
 	}
 }
 
-static int vf610_nfc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
-				uint8_t *buf, int oob_required, int page)
+static int vf610_nfc_read_page(struct nand_chip *chip, uint8_t *buf,
+			       int oob_required, int page)
 {
-	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
+	struct vf610_nfc *nfc = chip_to_nfc(chip);
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	int trfr_sz = mtd->writesize + mtd->oobsize;
 	u32 row = 0, cmd1 = 0, cmd2 = 0, code = 0;
 	int stat;
 
+	vf610_nfc_select_target(chip, chip->cur_cs);
+
 	cmd2 |= NAND_CMD_READ0 << CMD_BYTE1_SHIFT;
 	code |= COMMAND_CMD_BYTE1 | COMMAND_CAR_BYTE1 | COMMAND_CAR_BYTE2;
 
@@ -591,7 +585,7 @@
 						   mtd->writesize,
 				       mtd->oobsize, false);
 
-	stat = vf610_nfc_correct_data(mtd, buf, chip->oob_poi, page);
+	stat = vf610_nfc_correct_data(chip, buf, chip->oob_poi, page);
 
 	if (stat < 0) {
 		mtd->ecc_stats.failed++;
@@ -602,15 +596,18 @@
 	}
 }
 
-static int vf610_nfc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
-				const uint8_t *buf, int oob_required, int page)
+static int vf610_nfc_write_page(struct nand_chip *chip, const uint8_t *buf,
+				int oob_required, int page)
 {
-	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
+	struct vf610_nfc *nfc = chip_to_nfc(chip);
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	int trfr_sz = mtd->writesize + mtd->oobsize;
 	u32 row = 0, cmd1 = 0, cmd2 = 0, code = 0;
 	u8 status;
 	int ret;
 
+	vf610_nfc_select_target(chip, chip->cur_cs);
+
 	cmd2 |= NAND_CMD_SEQIN << CMD_BYTE1_SHIFT;
 	code |= COMMAND_CMD_BYTE1 | COMMAND_CAR_BYTE1 | COMMAND_CAR_BYTE2;
 
@@ -643,25 +640,24 @@
 	return 0;
 }
 
-static int vf610_nfc_read_page_raw(struct mtd_info *mtd,
-				   struct nand_chip *chip, u8 *buf,
+static int vf610_nfc_read_page_raw(struct nand_chip *chip, u8 *buf,
 				   int oob_required, int page)
 {
-	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
+	struct vf610_nfc *nfc = chip_to_nfc(chip);
 	int ret;
 
 	nfc->data_access = true;
-	ret = nand_read_page_raw(mtd, chip, buf, oob_required, page);
+	ret = nand_read_page_raw(chip, buf, oob_required, page);
 	nfc->data_access = false;
 
 	return ret;
 }
 
-static int vf610_nfc_write_page_raw(struct mtd_info *mtd,
-				    struct nand_chip *chip, const u8 *buf,
+static int vf610_nfc_write_page_raw(struct nand_chip *chip, const u8 *buf,
 				    int oob_required, int page)
 {
-	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
+	struct vf610_nfc *nfc = chip_to_nfc(chip);
+	struct mtd_info *mtd = nand_to_mtd(chip);
 	int ret;
 
 	nfc->data_access = true;
@@ -677,23 +673,22 @@
 	return nand_prog_page_end_op(chip);
 }
 
-static int vf610_nfc_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
-			      int page)
+static int vf610_nfc_read_oob(struct nand_chip *chip, int page)
 {
-	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
+	struct vf610_nfc *nfc = chip_to_nfc(chip);
 	int ret;
 
 	nfc->data_access = true;
-	ret = nand_read_oob_std(mtd, chip, page);
+	ret = nand_read_oob_std(chip, page);
 	nfc->data_access = false;
 
 	return ret;
 }
 
-static int vf610_nfc_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
-			       int page)
+static int vf610_nfc_write_oob(struct nand_chip *chip, int page)
 {
-	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	struct vf610_nfc *nfc = chip_to_nfc(chip);
 	int ret;
 
 	nfc->data_access = true;
@@ -750,7 +745,7 @@
 static int vf610_nfc_attach_chip(struct nand_chip *chip)
 {
 	struct mtd_info *mtd = nand_to_mtd(chip);
-	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
+	struct vf610_nfc *nfc = chip_to_nfc(chip);
 
 	vf610_nfc_init_controller(nfc);
 
@@ -808,6 +803,8 @@
 
 static const struct nand_controller_ops vf610_nfc_controller_ops = {
 	.attach_chip = vf610_nfc_attach_chip,
+	.exec_op = vf610_nfc_exec_op,
+
 };
 
 static int vf610_nfc_probe(struct platform_device *pdev)
@@ -853,6 +850,9 @@
 	}
 
 	of_id = of_match_device(vf610_nfc_dt_ids, &pdev->dev);
+	if (!of_id)
+		return -ENODEV;
+
 	nfc->variant = (enum vf610_nfc_variant)of_id->data;
 
 	for_each_available_child_of_node(nfc->dev->of_node, child) {
@@ -862,6 +862,7 @@
 				dev_err(nfc->dev,
 					"Only one NAND chip supported!\n");
 				err = -EINVAL;
+				of_node_put(child);
 				goto err_disable_clk;
 			}
 
@@ -875,14 +876,11 @@
 		goto err_disable_clk;
 	}
 
-	chip->exec_op = vf610_nfc_exec_op;
-	chip->select_chip = vf610_nfc_select_chip;
-
 	chip->options |= NAND_NO_SUBPAGE_WRITE;
 
 	init_completion(&nfc->cmd_done);
 
-	err = devm_request_irq(nfc->dev, irq, vf610_nfc_irq, 0, DRV_NAME, mtd);
+	err = devm_request_irq(nfc->dev, irq, vf610_nfc_irq, 0, DRV_NAME, nfc);
 	if (err) {
 		dev_err(nfc->dev, "Error requesting IRQ!\n");
 		goto err_disable_clk;
@@ -890,13 +888,16 @@
 
 	vf610_nfc_preinit_controller(nfc);
 
+	nand_controller_init(&nfc->base);
+	nfc->base.ops = &vf610_nfc_controller_ops;
+	chip->controller = &nfc->base;
+
 	/* Scan the NAND chip */
-	chip->dummy_controller.ops = &vf610_nfc_controller_ops;
-	err = nand_scan(mtd, 1);
+	err = nand_scan(chip, 1);
 	if (err)
 		goto err_disable_clk;
 
-	platform_set_drvdata(pdev, mtd);
+	platform_set_drvdata(pdev, nfc);
 
 	/* Register device in MTD */
 	err = mtd_device_register(mtd, NULL, 0);
@@ -913,10 +914,9 @@
 
 static int vf610_nfc_remove(struct platform_device *pdev)
 {
-	struct mtd_info *mtd = platform_get_drvdata(pdev);
-	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
+	struct vf610_nfc *nfc = platform_get_drvdata(pdev);
 
-	nand_release(mtd);
+	nand_release(&nfc->chip);
 	clk_disable_unprepare(nfc->clk);
 	return 0;
 }
@@ -924,8 +924,7 @@
 #ifdef CONFIG_PM_SLEEP
 static int vf610_nfc_suspend(struct device *dev)
 {
-	struct mtd_info *mtd = dev_get_drvdata(dev);
-	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
+	struct vf610_nfc *nfc = dev_get_drvdata(dev);
 
 	clk_disable_unprepare(nfc->clk);
 	return 0;
@@ -933,11 +932,9 @@
 
 static int vf610_nfc_resume(struct device *dev)
 {
+	struct vf610_nfc *nfc = dev_get_drvdata(dev);
 	int err;
 
-	struct mtd_info *mtd = dev_get_drvdata(dev);
-	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
-
 	err = clk_prepare_enable(nfc->clk);
 	if (err)
 		return err;
diff --git a/drivers/mtd/nand/raw/xway_nand.c b/drivers/mtd/nand/raw/xway_nand.c
index 9926b4e..834f794 100644
--- a/drivers/mtd/nand/raw/xway_nand.c
+++ b/drivers/mtd/nand/raw/xway_nand.c
@@ -1,7 +1,5 @@
+// SPDX-License-Identifier: GPL-2.0-only
 /*
- *  This program is free software; you can redistribute it and/or modify it
- *  under the terms of the GNU General Public License version 2 as published
- *  by the Free Software Foundation.
  *
  *  Copyright © 2012 John Crispin <john@phrozen.org>
  *  Copyright © 2016 Hauke Mehrtens <hauke@hauke-m.de>
@@ -85,9 +83,8 @@
 	writeb(value, data->nandaddr + op);
 }
 
-static void xway_select_chip(struct mtd_info *mtd, int select)
+static void xway_select_chip(struct nand_chip *chip, int select)
 {
-	struct nand_chip *chip = mtd_to_nand(mtd);
 	struct xway_nand_data *data = nand_get_controller_data(chip);
 
 	switch (select) {
@@ -106,8 +103,10 @@
 	}
 }
 
-static void xway_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
+static void xway_cmd_ctrl(struct nand_chip *chip, int cmd, unsigned int ctrl)
 {
+	struct mtd_info *mtd = nand_to_mtd(chip);
+
 	if (cmd == NAND_CMD_NONE)
 		return;
 
@@ -120,30 +119,30 @@
 		;
 }
 
-static int xway_dev_ready(struct mtd_info *mtd)
+static int xway_dev_ready(struct nand_chip *chip)
 {
 	return ltq_ebu_r32(EBU_NAND_WAIT) & NAND_WAIT_RD;
 }
 
-static unsigned char xway_read_byte(struct mtd_info *mtd)
+static unsigned char xway_read_byte(struct nand_chip *chip)
 {
-	return xway_readb(mtd, NAND_READ_DATA);
+	return xway_readb(nand_to_mtd(chip), NAND_READ_DATA);
 }
 
-static void xway_read_buf(struct mtd_info *mtd, u_char *buf, int len)
+static void xway_read_buf(struct nand_chip *chip, u_char *buf, int len)
 {
 	int i;
 
 	for (i = 0; i < len; i++)
-		buf[i] = xway_readb(mtd, NAND_WRITE_DATA);
+		buf[i] = xway_readb(nand_to_mtd(chip), NAND_WRITE_DATA);
 }
 
-static void xway_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
+static void xway_write_buf(struct nand_chip *chip, const u_char *buf, int len)
 {
 	int i;
 
 	for (i = 0; i < len; i++)
-		xway_writeb(mtd, NAND_WRITE_DATA, buf[i]);
+		xway_writeb(nand_to_mtd(chip), NAND_WRITE_DATA, buf[i]);
 }
 
 /*
@@ -173,13 +172,13 @@
 	mtd = nand_to_mtd(&data->chip);
 	mtd->dev.parent = &pdev->dev;
 
-	data->chip.cmd_ctrl = xway_cmd_ctrl;
-	data->chip.dev_ready = xway_dev_ready;
-	data->chip.select_chip = xway_select_chip;
-	data->chip.write_buf = xway_write_buf;
-	data->chip.read_buf = xway_read_buf;
-	data->chip.read_byte = xway_read_byte;
-	data->chip.chip_delay = 30;
+	data->chip.legacy.cmd_ctrl = xway_cmd_ctrl;
+	data->chip.legacy.dev_ready = xway_dev_ready;
+	data->chip.legacy.select_chip = xway_select_chip;
+	data->chip.legacy.write_buf = xway_write_buf;
+	data->chip.legacy.read_buf = xway_read_buf;
+	data->chip.legacy.read_byte = xway_read_byte;
+	data->chip.legacy.chip_delay = 30;
 
 	data->chip.ecc.mode = NAND_ECC_SOFT;
 	data->chip.ecc.algo = NAND_ECC_HAMMING;
@@ -205,13 +204,13 @@
 		    | cs_flag, EBU_NAND_CON);
 
 	/* Scan to find existence of the device */
-	err = nand_scan(mtd, 1);
+	err = nand_scan(&data->chip, 1);
 	if (err)
 		return err;
 
 	err = mtd_device_register(mtd, NULL, 0);
 	if (err)
-		nand_release(mtd);
+		nand_release(&data->chip);
 
 	return err;
 }
@@ -223,7 +222,7 @@
 {
 	struct xway_nand_data *data = platform_get_drvdata(pdev);
 
-	nand_release(nand_to_mtd(&data->chip));
+	nand_release(&data->chip);
 
 	return 0;
 }
diff --git a/drivers/mtd/nand/spi/Kconfig b/drivers/mtd/nand/spi/Kconfig
index 7c37d29..da89b25 100644
--- a/drivers/mtd/nand/spi/Kconfig
+++ b/drivers/mtd/nand/spi/Kconfig
@@ -1,3 +1,4 @@
+# SPDX-License-Identifier: GPL-2.0-only
 menuconfig MTD_SPI_NAND
 	tristate "SPI NAND device Support"
 	select MTD_NAND_CORE
diff --git a/drivers/mtd/nand/spi/Makefile b/drivers/mtd/nand/spi/Makefile
index b74e074..9662b9c 100644
--- a/drivers/mtd/nand/spi/Makefile
+++ b/drivers/mtd/nand/spi/Makefile
@@ -1,3 +1,3 @@
 # SPDX-License-Identifier: GPL-2.0
-spinand-objs := core.o macronix.o micron.o winbond.o
+spinand-objs := core.o gigadevice.o macronix.o micron.o paragon.o toshiba.o winbond.o
 obj-$(CONFIG_MTD_SPI_NAND) += spinand.o
diff --git a/drivers/mtd/nand/spi/core.c b/drivers/mtd/nand/spi/core.c
index 30f8364..89f6bee 100644
--- a/drivers/mtd/nand/spi/core.c
+++ b/drivers/mtd/nand/spi/core.c
@@ -19,21 +19,6 @@
 #include <linux/spi/spi.h>
 #include <linux/spi/spi-mem.h>
 
-static void spinand_cache_op_adjust_colum(struct spinand_device *spinand,
-					  const struct nand_page_io_req *req,
-					  u16 *column)
-{
-	struct nand_device *nand = spinand_to_nand(spinand);
-	unsigned int shift;
-
-	if (nand->memorg.planes_per_lun < 2)
-		return;
-
-	/* The plane number is passed in MSB just above the column address */
-	shift = fls(nand->memorg.pagesize);
-	*column |= req->pos.plane << shift;
-}
-
 static int spinand_read_reg_op(struct spinand_device *spinand, u8 reg, u8 *val)
 {
 	struct spi_mem_op op = SPINAND_GET_FEATURE_OP(reg,
@@ -227,27 +212,21 @@
 static int spinand_read_from_cache_op(struct spinand_device *spinand,
 				      const struct nand_page_io_req *req)
 {
-	struct spi_mem_op op = *spinand->op_templates.read_cache;
 	struct nand_device *nand = spinand_to_nand(spinand);
 	struct mtd_info *mtd = nanddev_to_mtd(nand);
-	struct nand_page_io_req adjreq = *req;
+	struct spi_mem_dirmap_desc *rdesc;
 	unsigned int nbytes = 0;
 	void *buf = NULL;
 	u16 column = 0;
-	int ret;
+	ssize_t ret;
 
 	if (req->datalen) {
-		adjreq.datalen = nanddev_page_size(nand);
-		adjreq.dataoffs = 0;
-		adjreq.databuf.in = spinand->databuf;
 		buf = spinand->databuf;
-		nbytes = adjreq.datalen;
+		nbytes = nanddev_page_size(nand);
+		column = 0;
 	}
 
 	if (req->ooblen) {
-		adjreq.ooblen = nanddev_per_page_oobsize(nand);
-		adjreq.ooboffs = 0;
-		adjreq.oobbuf.in = spinand->oobbuf;
 		nbytes += nanddev_per_page_oobsize(nand);
 		if (!buf) {
 			buf = spinand->oobbuf;
@@ -255,28 +234,19 @@
 		}
 	}
 
-	spinand_cache_op_adjust_colum(spinand, &adjreq, &column);
-	op.addr.val = column;
+	rdesc = spinand->dirmaps[req->pos.plane].rdesc;
 
-	/*
-	 * Some controllers are limited in term of max RX data size. In this
-	 * case, just repeat the READ_CACHE operation after updating the
-	 * column.
-	 */
 	while (nbytes) {
-		op.data.buf.in = buf;
-		op.data.nbytes = nbytes;
-		ret = spi_mem_adjust_op_size(spinand->spimem, &op);
-		if (ret)
+		ret = spi_mem_dirmap_read(rdesc, column, nbytes, buf);
+		if (ret < 0)
 			return ret;
 
-		ret = spi_mem_exec_op(spinand->spimem, &op);
-		if (ret)
-			return ret;
+		if (!ret || ret > nbytes)
+			return -EIO;
 
-		buf += op.data.nbytes;
-		nbytes -= op.data.nbytes;
-		op.addr.val += op.data.nbytes;
+		nbytes -= ret;
+		column += ret;
+		buf += ret;
 	}
 
 	if (req->datalen)
@@ -300,28 +270,26 @@
 static int spinand_write_to_cache_op(struct spinand_device *spinand,
 				     const struct nand_page_io_req *req)
 {
-	struct spi_mem_op op = *spinand->op_templates.write_cache;
 	struct nand_device *nand = spinand_to_nand(spinand);
 	struct mtd_info *mtd = nanddev_to_mtd(nand);
-	struct nand_page_io_req adjreq = *req;
-	unsigned int nbytes = 0;
-	void *buf = NULL;
-	u16 column = 0;
-	int ret;
+	struct spi_mem_dirmap_desc *wdesc;
+	unsigned int nbytes, column = 0;
+	void *buf = spinand->databuf;
+	ssize_t ret;
 
-	memset(spinand->databuf, 0xff,
-	       nanddev_page_size(nand) +
-	       nanddev_per_page_oobsize(nand));
+	/*
+	 * Looks like PROGRAM LOAD (AKA write cache) does not necessarily reset
+	 * the cache content to 0xFF (depends on vendor implementation), so we
+	 * must fill the page cache entirely even if we only want to program
+	 * the data portion of the page, otherwise we might corrupt the BBM or
+	 * user data previously programmed in OOB area.
+	 */
+	nbytes = nanddev_page_size(nand) + nanddev_per_page_oobsize(nand);
+	memset(spinand->databuf, 0xff, nbytes);
 
-	if (req->datalen) {
+	if (req->datalen)
 		memcpy(spinand->databuf + req->dataoffs, req->databuf.out,
 		       req->datalen);
-		adjreq.dataoffs = 0;
-		adjreq.datalen = nanddev_page_size(nand);
-		adjreq.databuf.out = spinand->databuf;
-		nbytes = adjreq.datalen;
-		buf = spinand->databuf;
-	}
 
 	if (req->ooblen) {
 		if (req->mode == MTD_OPS_AUTO_OOB)
@@ -332,52 +300,21 @@
 		else
 			memcpy(spinand->oobbuf + req->ooboffs, req->oobbuf.out,
 			       req->ooblen);
-
-		adjreq.ooblen = nanddev_per_page_oobsize(nand);
-		adjreq.ooboffs = 0;
-		nbytes += nanddev_per_page_oobsize(nand);
-		if (!buf) {
-			buf = spinand->oobbuf;
-			column = nanddev_page_size(nand);
-		}
 	}
 
-	spinand_cache_op_adjust_colum(spinand, &adjreq, &column);
+	wdesc = spinand->dirmaps[req->pos.plane].wdesc;
 
-	op = *spinand->op_templates.write_cache;
-	op.addr.val = column;
-
-	/*
-	 * Some controllers are limited in term of max TX data size. In this
-	 * case, split the operation into one LOAD CACHE and one or more
-	 * LOAD RANDOM CACHE.
-	 */
 	while (nbytes) {
-		op.data.buf.out = buf;
-		op.data.nbytes = nbytes;
-
-		ret = spi_mem_adjust_op_size(spinand->spimem, &op);
-		if (ret)
+		ret = spi_mem_dirmap_write(wdesc, column, nbytes, buf);
+		if (ret < 0)
 			return ret;
 
-		ret = spi_mem_exec_op(spinand->spimem, &op);
-		if (ret)
-			return ret;
+		if (!ret || ret > nbytes)
+			return -EIO;
 
-		buf += op.data.nbytes;
-		nbytes -= op.data.nbytes;
-		op.addr.val += op.data.nbytes;
-
-		/*
-		 * We need to use the RANDOM LOAD CACHE operation if there's
-		 * more than one iteration, because the LOAD operation resets
-		 * the cache to 0xff.
-		 */
-		if (nbytes) {
-			column = op.addr.val;
-			op = *spinand->op_templates.update_cache;
-			op.addr.val = column;
-		}
+		nbytes -= ret;
+		column += ret;
+		buf += ret;
 	}
 
 	return 0;
@@ -574,12 +511,12 @@
 		if (ret == -EBADMSG) {
 			ecc_failed = true;
 			mtd->ecc_stats.failed++;
-			ret = 0;
 		} else {
 			mtd->ecc_stats.corrected += ret;
 			max_bitflips = max_t(unsigned int, max_bitflips, ret);
 		}
 
+		ret = 0;
 		ops->retlen += iter.req.datalen;
 		ops->oobretlen += iter.req.ooblen;
 	}
@@ -757,6 +694,59 @@
 	return ret;
 }
 
+static int spinand_create_dirmap(struct spinand_device *spinand,
+				 unsigned int plane)
+{
+	struct nand_device *nand = spinand_to_nand(spinand);
+	struct spi_mem_dirmap_info info = {
+		.length = nanddev_page_size(nand) +
+			  nanddev_per_page_oobsize(nand),
+	};
+	struct spi_mem_dirmap_desc *desc;
+
+	/* The plane number is passed in MSB just above the column address */
+	info.offset = plane << fls(nand->memorg.pagesize);
+
+	info.op_tmpl = *spinand->op_templates.update_cache;
+	desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev,
+					  spinand->spimem, &info);
+	if (IS_ERR(desc))
+		return PTR_ERR(desc);
+
+	spinand->dirmaps[plane].wdesc = desc;
+
+	info.op_tmpl = *spinand->op_templates.read_cache;
+	desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev,
+					  spinand->spimem, &info);
+	if (IS_ERR(desc))
+		return PTR_ERR(desc);
+
+	spinand->dirmaps[plane].rdesc = desc;
+
+	return 0;
+}
+
+static int spinand_create_dirmaps(struct spinand_device *spinand)
+{
+	struct nand_device *nand = spinand_to_nand(spinand);
+	int i, ret;
+
+	spinand->dirmaps = devm_kzalloc(&spinand->spimem->spi->dev,
+					sizeof(*spinand->dirmaps) *
+					nand->memorg.planes_per_lun,
+					GFP_KERNEL);
+	if (!spinand->dirmaps)
+		return -ENOMEM;
+
+	for (i = 0; i < nand->memorg.planes_per_lun; i++) {
+		ret = spinand_create_dirmap(spinand, i);
+		if (ret)
+			return ret;
+	}
+
+	return 0;
+}
+
 static const struct nand_ops spinand_ops = {
 	.erase = spinand_erase,
 	.markbad = spinand_markbad,
@@ -764,8 +754,11 @@
 };
 
 static const struct spinand_manufacturer *spinand_manufacturers[] = {
+	&gigadevice_spinand_manufacturer,
 	&macronix_spinand_manufacturer,
 	&micron_spinand_manufacturer,
+	&paragon_spinand_manufacturer,
+	&toshiba_spinand_manufacturer,
 	&winbond_spinand_manufacturer,
 };
 
@@ -853,7 +846,7 @@
  */
 int spinand_match_and_init(struct spinand_device *spinand,
 			   const struct spinand_info *table,
-			   unsigned int table_size, u8 devid)
+			   unsigned int table_size, u16 devid)
 {
 	struct nand_device *nand = spinand_to_nand(spinand);
 	unsigned int i;
@@ -1012,15 +1005,23 @@
 		goto err_free_bufs;
 	}
 
+	ret = spinand_create_dirmaps(spinand);
+	if (ret) {
+		dev_err(dev,
+			"Failed to create direct mappings for read/write operations (err = %d)\n",
+			ret);
+		goto err_manuf_cleanup;
+	}
+
 	/* After power up, all blocks are locked, so unlock them here. */
 	for (i = 0; i < nand->memorg.ntargets; i++) {
 		ret = spinand_select_target(spinand, i);
 		if (ret)
-			goto err_free_bufs;
+			goto err_manuf_cleanup;
 
 		ret = spinand_lock_block(spinand, BL_ALL_UNLOCKED);
 		if (ret)
-			goto err_free_bufs;
+			goto err_manuf_cleanup;
 	}
 
 	ret = nanddev_init(nand, &spinand_ops, THIS_MODULE);
@@ -1037,6 +1038,7 @@
 	mtd->_block_markbad = spinand_mtd_block_markbad;
 	mtd->_block_isreserved = spinand_mtd_block_isreserved;
 	mtd->_erase = spinand_mtd_erase;
+	mtd->_max_bad_blocks = nanddev_mtd_max_bad_blocks;
 
 	if (spinand->eccinfo.ooblayout)
 		mtd_set_ooblayout(mtd, spinand->eccinfo.ooblayout);
diff --git a/drivers/mtd/nand/spi/gigadevice.c b/drivers/mtd/nand/spi/gigadevice.c
new file mode 100644
index 0000000..e99d425
--- /dev/null
+++ b/drivers/mtd/nand/spi/gigadevice.c
@@ -0,0 +1,280 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Author:
+ *	Chuanhong Guo <gch981213@gmail.com>
+ */
+
+#include <linux/device.h>
+#include <linux/kernel.h>
+#include <linux/mtd/spinand.h>
+
+#define SPINAND_MFR_GIGADEVICE			0xC8
+
+#define GD5FXGQ4XA_STATUS_ECC_1_7_BITFLIPS	(1 << 4)
+#define GD5FXGQ4XA_STATUS_ECC_8_BITFLIPS	(3 << 4)
+
+#define GD5FXGQ4UEXXG_REG_STATUS2		0xf0
+
+#define GD5FXGQ4UXFXXG_STATUS_ECC_MASK		(7 << 4)
+#define GD5FXGQ4UXFXXG_STATUS_ECC_NO_BITFLIPS	(0 << 4)
+#define GD5FXGQ4UXFXXG_STATUS_ECC_1_3_BITFLIPS	(1 << 4)
+#define GD5FXGQ4UXFXXG_STATUS_ECC_UNCOR_ERROR	(7 << 4)
+
+static SPINAND_OP_VARIANTS(read_cache_variants,
+		SPINAND_PAGE_READ_FROM_CACHE_QUADIO_OP(0, 2, NULL, 0),
+		SPINAND_PAGE_READ_FROM_CACHE_X4_OP(0, 1, NULL, 0),
+		SPINAND_PAGE_READ_FROM_CACHE_DUALIO_OP(0, 1, NULL, 0),
+		SPINAND_PAGE_READ_FROM_CACHE_X2_OP(0, 1, NULL, 0),
+		SPINAND_PAGE_READ_FROM_CACHE_OP(true, 0, 1, NULL, 0),
+		SPINAND_PAGE_READ_FROM_CACHE_OP(false, 0, 1, NULL, 0));
+
+static SPINAND_OP_VARIANTS(read_cache_variants_f,
+		SPINAND_PAGE_READ_FROM_CACHE_QUADIO_OP(0, 2, NULL, 0),
+		SPINAND_PAGE_READ_FROM_CACHE_X4_OP_3A(0, 1, NULL, 0),
+		SPINAND_PAGE_READ_FROM_CACHE_DUALIO_OP(0, 1, NULL, 0),
+		SPINAND_PAGE_READ_FROM_CACHE_X2_OP_3A(0, 1, NULL, 0),
+		SPINAND_PAGE_READ_FROM_CACHE_OP_3A(true, 0, 1, NULL, 0),
+		SPINAND_PAGE_READ_FROM_CACHE_OP_3A(false, 0, 0, NULL, 0));
+
+static SPINAND_OP_VARIANTS(write_cache_variants,
+		SPINAND_PROG_LOAD_X4(true, 0, NULL, 0),
+		SPINAND_PROG_LOAD(true, 0, NULL, 0));
+
+static SPINAND_OP_VARIANTS(update_cache_variants,
+		SPINAND_PROG_LOAD_X4(false, 0, NULL, 0),
+		SPINAND_PROG_LOAD(false, 0, NULL, 0));
+
+static int gd5fxgq4xa_ooblayout_ecc(struct mtd_info *mtd, int section,
+				  struct mtd_oob_region *region)
+{
+	if (section > 3)
+		return -ERANGE;
+
+	region->offset = (16 * section) + 8;
+	region->length = 8;
+
+	return 0;
+}
+
+static int gd5fxgq4xa_ooblayout_free(struct mtd_info *mtd, int section,
+				   struct mtd_oob_region *region)
+{
+	if (section > 3)
+		return -ERANGE;
+
+	if (section) {
+		region->offset = 16 * section;
+		region->length = 8;
+	} else {
+		/* section 0 has one byte reserved for bad block mark */
+		region->offset = 1;
+		region->length = 7;
+	}
+	return 0;
+}
+
+static const struct mtd_ooblayout_ops gd5fxgq4xa_ooblayout = {
+	.ecc = gd5fxgq4xa_ooblayout_ecc,
+	.free = gd5fxgq4xa_ooblayout_free,
+};
+
+static int gd5fxgq4xa_ecc_get_status(struct spinand_device *spinand,
+					 u8 status)
+{
+	switch (status & STATUS_ECC_MASK) {
+	case STATUS_ECC_NO_BITFLIPS:
+		return 0;
+
+	case GD5FXGQ4XA_STATUS_ECC_1_7_BITFLIPS:
+		/* 1-7 bits are flipped. return the maximum. */
+		return 7;
+
+	case GD5FXGQ4XA_STATUS_ECC_8_BITFLIPS:
+		return 8;
+
+	case STATUS_ECC_UNCOR_ERROR:
+		return -EBADMSG;
+
+	default:
+		break;
+	}
+
+	return -EINVAL;
+}
+
+static int gd5fxgq4_variant2_ooblayout_ecc(struct mtd_info *mtd, int section,
+				       struct mtd_oob_region *region)
+{
+	if (section)
+		return -ERANGE;
+
+	region->offset = 64;
+	region->length = 64;
+
+	return 0;
+}
+
+static int gd5fxgq4_variant2_ooblayout_free(struct mtd_info *mtd, int section,
+					struct mtd_oob_region *region)
+{
+	if (section)
+		return -ERANGE;
+
+	/* Reserve 1 bytes for the BBM. */
+	region->offset = 1;
+	region->length = 63;
+
+	return 0;
+}
+
+static const struct mtd_ooblayout_ops gd5fxgq4_variant2_ooblayout = {
+	.ecc = gd5fxgq4_variant2_ooblayout_ecc,
+	.free = gd5fxgq4_variant2_ooblayout_free,
+};
+
+static int gd5fxgq4uexxg_ecc_get_status(struct spinand_device *spinand,
+					u8 status)
+{
+	u8 status2;
+	struct spi_mem_op op = SPINAND_GET_FEATURE_OP(GD5FXGQ4UEXXG_REG_STATUS2,
+						      &status2);
+	int ret;
+
+	switch (status & STATUS_ECC_MASK) {
+	case STATUS_ECC_NO_BITFLIPS:
+		return 0;
+
+	case GD5FXGQ4XA_STATUS_ECC_1_7_BITFLIPS:
+		/*
+		 * Read status2 register to determine a more fine grained
+		 * bit error status
+		 */
+		ret = spi_mem_exec_op(spinand->spimem, &op);
+		if (ret)
+			return ret;
+
+		/*
+		 * 4 ... 7 bits are flipped (1..4 can't be detected, so
+		 * report the maximum of 4 in this case
+		 */
+		/* bits sorted this way (3...0): ECCS1,ECCS0,ECCSE1,ECCSE0 */
+		return ((status & STATUS_ECC_MASK) >> 2) |
+			((status2 & STATUS_ECC_MASK) >> 4);
+
+	case GD5FXGQ4XA_STATUS_ECC_8_BITFLIPS:
+		return 8;
+
+	case STATUS_ECC_UNCOR_ERROR:
+		return -EBADMSG;
+
+	default:
+		break;
+	}
+
+	return -EINVAL;
+}
+
+static int gd5fxgq4ufxxg_ecc_get_status(struct spinand_device *spinand,
+					u8 status)
+{
+	switch (status & GD5FXGQ4UXFXXG_STATUS_ECC_MASK) {
+	case GD5FXGQ4UXFXXG_STATUS_ECC_NO_BITFLIPS:
+		return 0;
+
+	case GD5FXGQ4UXFXXG_STATUS_ECC_1_3_BITFLIPS:
+		return 3;
+
+	case GD5FXGQ4UXFXXG_STATUS_ECC_UNCOR_ERROR:
+		return -EBADMSG;
+
+	default: /* (2 << 4) through (6 << 4) are 4-8 corrected errors */
+		return ((status & GD5FXGQ4UXFXXG_STATUS_ECC_MASK) >> 4) + 2;
+	}
+
+	return -EINVAL;
+}
+
+static const struct spinand_info gigadevice_spinand_table[] = {
+	SPINAND_INFO("GD5F1GQ4xA", 0xF1,
+		     NAND_MEMORG(1, 2048, 64, 64, 1024, 20, 1, 1, 1),
+		     NAND_ECCREQ(8, 512),
+		     SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
+					      &write_cache_variants,
+					      &update_cache_variants),
+		     0,
+		     SPINAND_ECCINFO(&gd5fxgq4xa_ooblayout,
+				     gd5fxgq4xa_ecc_get_status)),
+	SPINAND_INFO("GD5F2GQ4xA", 0xF2,
+		     NAND_MEMORG(1, 2048, 64, 64, 2048, 40, 1, 1, 1),
+		     NAND_ECCREQ(8, 512),
+		     SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
+					      &write_cache_variants,
+					      &update_cache_variants),
+		     0,
+		     SPINAND_ECCINFO(&gd5fxgq4xa_ooblayout,
+				     gd5fxgq4xa_ecc_get_status)),
+	SPINAND_INFO("GD5F4GQ4xA", 0xF4,
+		     NAND_MEMORG(1, 2048, 64, 64, 4096, 80, 1, 1, 1),
+		     NAND_ECCREQ(8, 512),
+		     SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
+					      &write_cache_variants,
+					      &update_cache_variants),
+		     0,
+		     SPINAND_ECCINFO(&gd5fxgq4xa_ooblayout,
+				     gd5fxgq4xa_ecc_get_status)),
+	SPINAND_INFO("GD5F1GQ4UExxG", 0xd1,
+		     NAND_MEMORG(1, 2048, 128, 64, 1024, 20, 1, 1, 1),
+		     NAND_ECCREQ(8, 512),
+		     SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
+					      &write_cache_variants,
+					      &update_cache_variants),
+		     0,
+		     SPINAND_ECCINFO(&gd5fxgq4_variant2_ooblayout,
+				     gd5fxgq4uexxg_ecc_get_status)),
+	SPINAND_INFO("GD5F1GQ4UFxxG", 0xb148,
+		     NAND_MEMORG(1, 2048, 128, 64, 1024, 20, 1, 1, 1),
+		     NAND_ECCREQ(8, 512),
+		     SPINAND_INFO_OP_VARIANTS(&read_cache_variants_f,
+					      &write_cache_variants,
+					      &update_cache_variants),
+		     0,
+		     SPINAND_ECCINFO(&gd5fxgq4_variant2_ooblayout,
+				     gd5fxgq4ufxxg_ecc_get_status)),
+};
+
+static int gigadevice_spinand_detect(struct spinand_device *spinand)
+{
+	u8 *id = spinand->id.data;
+	u16 did;
+	int ret;
+
+	/*
+	 * Earlier GDF5-series devices (A,E) return [0][MID][DID]
+	 * Later (F) devices return [MID][DID1][DID2]
+	 */
+
+	if (id[0] == SPINAND_MFR_GIGADEVICE)
+		did = (id[1] << 8) + id[2];
+	else if (id[0] == 0 && id[1] == SPINAND_MFR_GIGADEVICE)
+		did = id[2];
+	else
+		return 0;
+
+	ret = spinand_match_and_init(spinand, gigadevice_spinand_table,
+				     ARRAY_SIZE(gigadevice_spinand_table),
+				     did);
+	if (ret)
+		return ret;
+
+	return 1;
+}
+
+static const struct spinand_manufacturer_ops gigadevice_spinand_manuf_ops = {
+	.detect = gigadevice_spinand_detect,
+};
+
+const struct spinand_manufacturer gigadevice_spinand_manufacturer = {
+	.id = SPINAND_MFR_GIGADEVICE,
+	.name = "GigaDevice",
+	.ops = &gigadevice_spinand_manuf_ops,
+};
diff --git a/drivers/mtd/nand/spi/macronix.c b/drivers/mtd/nand/spi/macronix.c
index 98f6b9c..21def3f 100644
--- a/drivers/mtd/nand/spi/macronix.c
+++ b/drivers/mtd/nand/spi/macronix.c
@@ -10,6 +10,7 @@
 #include <linux/mtd/spinand.h>
 
 #define SPINAND_MFR_MACRONIX		0xC2
+#define MACRONIX_ECCSR_MASK		0x0F
 
 static SPINAND_OP_VARIANTS(read_cache_variants,
 		SPINAND_PAGE_READ_FROM_CACHE_X4_OP(0, 1, NULL, 0),
@@ -55,7 +56,12 @@
 					  SPI_MEM_OP_DUMMY(1, 1),
 					  SPI_MEM_OP_DATA_IN(1, eccsr, 1));
 
-	return spi_mem_exec_op(spinand->spimem, &op);
+	int ret = spi_mem_exec_op(spinand->spimem, &op);
+	if (ret)
+		return ret;
+
+	*eccsr &= MACRONIX_ECCSR_MASK;
+	return 0;
 }
 
 static int mx35lf1ge4ab_ecc_get_status(struct spinand_device *spinand,
@@ -94,7 +100,7 @@
 
 static const struct spinand_info macronix_spinand_table[] = {
 	SPINAND_INFO("MX35LF1GE4AB", 0x12,
-		     NAND_MEMORG(1, 2048, 64, 64, 1024, 1, 1, 1),
+		     NAND_MEMORG(1, 2048, 64, 64, 1024, 20, 1, 1, 1),
 		     NAND_ECCREQ(4, 512),
 		     SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
 					      &write_cache_variants,
@@ -103,7 +109,7 @@
 		     SPINAND_ECCINFO(&mx35lfxge4ab_ooblayout,
 				     mx35lf1ge4ab_ecc_get_status)),
 	SPINAND_INFO("MX35LF2GE4AB", 0x22,
-		     NAND_MEMORG(1, 2048, 64, 64, 2048, 2, 1, 1),
+		     NAND_MEMORG(1, 2048, 64, 64, 2048, 40, 2, 1, 1),
 		     NAND_ECCREQ(4, 512),
 		     SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
 					      &write_cache_variants,
diff --git a/drivers/mtd/nand/spi/micron.c b/drivers/mtd/nand/spi/micron.c
index 9c4381d..7d7b1f7 100644
--- a/drivers/mtd/nand/spi/micron.c
+++ b/drivers/mtd/nand/spi/micron.c
@@ -92,7 +92,7 @@
 
 static const struct spinand_info micron_spinand_table[] = {
 	SPINAND_INFO("MT29F2G01ABAGD", 0x24,
-		     NAND_MEMORG(1, 2048, 128, 64, 2048, 2, 1, 1),
+		     NAND_MEMORG(1, 2048, 128, 64, 2048, 40, 2, 1, 1),
 		     NAND_ECCREQ(8, 512),
 		     SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
 					      &write_cache_variants,
diff --git a/drivers/mtd/nand/spi/paragon.c b/drivers/mtd/nand/spi/paragon.c
new file mode 100644
index 0000000..5230768
--- /dev/null
+++ b/drivers/mtd/nand/spi/paragon.c
@@ -0,0 +1,147 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (C) 2019 Jeff Kletsky
+ *
+ * Author: Jeff Kletsky <git-commits@allycomm.com>
+ */
+
+#include <linux/device.h>
+#include <linux/kernel.h>
+#include <linux/mtd/spinand.h>
+
+
+#define SPINAND_MFR_PARAGON	0xa1
+
+
+#define PN26G0XA_STATUS_ECC_BITMASK		(3 << 4)
+
+#define PN26G0XA_STATUS_ECC_NONE_DETECTED	(0 << 4)
+#define PN26G0XA_STATUS_ECC_1_7_CORRECTED	(1 << 4)
+#define PN26G0XA_STATUS_ECC_ERRORED		(2 << 4)
+#define PN26G0XA_STATUS_ECC_8_CORRECTED		(3 << 4)
+
+
+static SPINAND_OP_VARIANTS(read_cache_variants,
+		SPINAND_PAGE_READ_FROM_CACHE_QUADIO_OP(0, 2, NULL, 0),
+		SPINAND_PAGE_READ_FROM_CACHE_X4_OP(0, 1, NULL, 0),
+		SPINAND_PAGE_READ_FROM_CACHE_DUALIO_OP(0, 1, NULL, 0),
+		SPINAND_PAGE_READ_FROM_CACHE_X2_OP(0, 1, NULL, 0),
+		SPINAND_PAGE_READ_FROM_CACHE_OP(true, 0, 1, NULL, 0),
+		SPINAND_PAGE_READ_FROM_CACHE_OP(false, 0, 1, NULL, 0));
+
+static SPINAND_OP_VARIANTS(write_cache_variants,
+		SPINAND_PROG_LOAD_X4(true, 0, NULL, 0),
+		SPINAND_PROG_LOAD(true, 0, NULL, 0));
+
+static SPINAND_OP_VARIANTS(update_cache_variants,
+		SPINAND_PROG_LOAD_X4(false, 0, NULL, 0),
+		SPINAND_PROG_LOAD(false, 0, NULL, 0));
+
+
+static int pn26g0xa_ooblayout_ecc(struct mtd_info *mtd, int section,
+				   struct mtd_oob_region *region)
+{
+	if (section > 3)
+		return -ERANGE;
+
+	region->offset = 6 + (15 * section); /* 4 BBM + 2 user bytes */
+	region->length = 13;
+
+	return 0;
+}
+
+static int pn26g0xa_ooblayout_free(struct mtd_info *mtd, int section,
+				   struct mtd_oob_region *region)
+{
+	if (section > 4)
+		return -ERANGE;
+
+	if (section == 4) {
+		region->offset = 64;
+		region->length = 64;
+	} else {
+		region->offset = 4 + (15 * section);
+		region->length = 2;
+	}
+
+	return 0;
+}
+
+static int pn26g0xa_ecc_get_status(struct spinand_device *spinand,
+				   u8 status)
+{
+	switch (status & PN26G0XA_STATUS_ECC_BITMASK) {
+	case PN26G0XA_STATUS_ECC_NONE_DETECTED:
+		return 0;
+
+	case PN26G0XA_STATUS_ECC_1_7_CORRECTED:
+		return 7;	/* Return upper limit by convention */
+
+	case PN26G0XA_STATUS_ECC_8_CORRECTED:
+		return 8;
+
+	case PN26G0XA_STATUS_ECC_ERRORED:
+		return -EBADMSG;
+
+	default:
+		break;
+	}
+
+	return -EINVAL;
+}
+
+static const struct mtd_ooblayout_ops pn26g0xa_ooblayout = {
+	.ecc = pn26g0xa_ooblayout_ecc,
+	.free = pn26g0xa_ooblayout_free,
+};
+
+
+static const struct spinand_info paragon_spinand_table[] = {
+	SPINAND_INFO("PN26G01A", 0xe1,
+		     NAND_MEMORG(1, 2048, 128, 64, 1024, 21, 1, 1, 1),
+		     NAND_ECCREQ(8, 512),
+		     SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
+					      &write_cache_variants,
+					      &update_cache_variants),
+		     0,
+		     SPINAND_ECCINFO(&pn26g0xa_ooblayout,
+				     pn26g0xa_ecc_get_status)),
+	SPINAND_INFO("PN26G02A", 0xe2,
+		     NAND_MEMORG(1, 2048, 128, 64, 2048, 41, 1, 1, 1),
+		     NAND_ECCREQ(8, 512),
+		     SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
+					      &write_cache_variants,
+					      &update_cache_variants),
+		     0,
+		     SPINAND_ECCINFO(&pn26g0xa_ooblayout,
+				     pn26g0xa_ecc_get_status)),
+};
+
+static int paragon_spinand_detect(struct spinand_device *spinand)
+{
+	u8 *id = spinand->id.data;
+	int ret;
+
+	/* Read ID returns [0][MID][DID] */
+
+	if (id[1] != SPINAND_MFR_PARAGON)
+		return 0;
+
+	ret = spinand_match_and_init(spinand, paragon_spinand_table,
+				     ARRAY_SIZE(paragon_spinand_table),
+				     id[2]);
+	if (ret)
+		return ret;
+
+	return 1;
+}
+
+static const struct spinand_manufacturer_ops paragon_spinand_manuf_ops = {
+	.detect = paragon_spinand_detect,
+};
+
+const struct spinand_manufacturer paragon_spinand_manufacturer = {
+	.id = SPINAND_MFR_PARAGON,
+	.name = "Paragon",
+	.ops = &paragon_spinand_manuf_ops,
+};
diff --git a/drivers/mtd/nand/spi/toshiba.c b/drivers/mtd/nand/spi/toshiba.c
new file mode 100644
index 0000000..1cb3760
--- /dev/null
+++ b/drivers/mtd/nand/spi/toshiba.c
@@ -0,0 +1,188 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (c) 2018 exceet electronics GmbH
+ * Copyright (c) 2018 Kontron Electronics GmbH
+ *
+ * Author: Frieder Schrempf <frieder.schrempf@kontron.de>
+ */
+
+#include <linux/device.h>
+#include <linux/kernel.h>
+#include <linux/mtd/spinand.h>
+
+#define SPINAND_MFR_TOSHIBA		0x98
+#define TOSH_STATUS_ECC_HAS_BITFLIPS_T	(3 << 4)
+
+static SPINAND_OP_VARIANTS(read_cache_variants,
+		SPINAND_PAGE_READ_FROM_CACHE_X4_OP(0, 1, NULL, 0),
+		SPINAND_PAGE_READ_FROM_CACHE_X2_OP(0, 1, NULL, 0),
+		SPINAND_PAGE_READ_FROM_CACHE_OP(true, 0, 1, NULL, 0),
+		SPINAND_PAGE_READ_FROM_CACHE_OP(false, 0, 1, NULL, 0));
+
+static SPINAND_OP_VARIANTS(write_cache_variants,
+		SPINAND_PROG_LOAD(true, 0, NULL, 0));
+
+static SPINAND_OP_VARIANTS(update_cache_variants,
+		SPINAND_PROG_LOAD(false, 0, NULL, 0));
+
+static int tc58cxgxsx_ooblayout_ecc(struct mtd_info *mtd, int section,
+				     struct mtd_oob_region *region)
+{
+	if (section > 0)
+		return -ERANGE;
+
+	region->offset = mtd->oobsize / 2;
+	region->length = mtd->oobsize / 2;
+
+	return 0;
+}
+
+static int tc58cxgxsx_ooblayout_free(struct mtd_info *mtd, int section,
+				      struct mtd_oob_region *region)
+{
+	if (section > 0)
+		return -ERANGE;
+
+	/* 2 bytes reserved for BBM */
+	region->offset = 2;
+	region->length = (mtd->oobsize / 2) - 2;
+
+	return 0;
+}
+
+static const struct mtd_ooblayout_ops tc58cxgxsx_ooblayout = {
+	.ecc = tc58cxgxsx_ooblayout_ecc,
+	.free = tc58cxgxsx_ooblayout_free,
+};
+
+static int tc58cxgxsx_ecc_get_status(struct spinand_device *spinand,
+				      u8 status)
+{
+	struct nand_device *nand = spinand_to_nand(spinand);
+	u8 mbf = 0;
+	struct spi_mem_op op = SPINAND_GET_FEATURE_OP(0x30, &mbf);
+
+	switch (status & STATUS_ECC_MASK) {
+	case STATUS_ECC_NO_BITFLIPS:
+		return 0;
+
+	case STATUS_ECC_UNCOR_ERROR:
+		return -EBADMSG;
+
+	case STATUS_ECC_HAS_BITFLIPS:
+	case TOSH_STATUS_ECC_HAS_BITFLIPS_T:
+		/*
+		 * Let's try to retrieve the real maximum number of bitflips
+		 * in order to avoid forcing the wear-leveling layer to move
+		 * data around if it's not necessary.
+		 */
+		if (spi_mem_exec_op(spinand->spimem, &op))
+			return nand->eccreq.strength;
+
+		mbf >>= 4;
+
+		if (WARN_ON(mbf > nand->eccreq.strength || !mbf))
+			return nand->eccreq.strength;
+
+		return mbf;
+
+	default:
+		break;
+	}
+
+	return -EINVAL;
+}
+
+static const struct spinand_info toshiba_spinand_table[] = {
+	/* 3.3V 1Gb */
+	SPINAND_INFO("TC58CVG0S3", 0xC2,
+		     NAND_MEMORG(1, 2048, 128, 64, 1024, 20, 1, 1, 1),
+		     NAND_ECCREQ(8, 512),
+		     SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
+					      &write_cache_variants,
+					      &update_cache_variants),
+		     0,
+		     SPINAND_ECCINFO(&tc58cxgxsx_ooblayout,
+				     tc58cxgxsx_ecc_get_status)),
+	/* 3.3V 2Gb */
+	SPINAND_INFO("TC58CVG1S3", 0xCB,
+		     NAND_MEMORG(1, 2048, 128, 64, 2048, 40, 1, 1, 1),
+		     NAND_ECCREQ(8, 512),
+		     SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
+					      &write_cache_variants,
+					      &update_cache_variants),
+		     0,
+		     SPINAND_ECCINFO(&tc58cxgxsx_ooblayout,
+				     tc58cxgxsx_ecc_get_status)),
+	/* 3.3V 4Gb */
+	SPINAND_INFO("TC58CVG2S0", 0xCD,
+		     NAND_MEMORG(1, 4096, 256, 64, 2048, 40, 1, 1, 1),
+		     NAND_ECCREQ(8, 512),
+		     SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
+					      &write_cache_variants,
+					      &update_cache_variants),
+		     0,
+		     SPINAND_ECCINFO(&tc58cxgxsx_ooblayout,
+				     tc58cxgxsx_ecc_get_status)),
+	/* 1.8V 1Gb */
+	SPINAND_INFO("TC58CYG0S3", 0xB2,
+		     NAND_MEMORG(1, 2048, 128, 64, 1024, 20, 1, 1, 1),
+		     NAND_ECCREQ(8, 512),
+		     SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
+					      &write_cache_variants,
+					      &update_cache_variants),
+		     0,
+		     SPINAND_ECCINFO(&tc58cxgxsx_ooblayout,
+				     tc58cxgxsx_ecc_get_status)),
+	/* 1.8V 2Gb */
+	SPINAND_INFO("TC58CYG1S3", 0xBB,
+		     NAND_MEMORG(1, 2048, 128, 64, 2048, 40, 1, 1, 1),
+		     NAND_ECCREQ(8, 512),
+		     SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
+					      &write_cache_variants,
+					      &update_cache_variants),
+		     0,
+		     SPINAND_ECCINFO(&tc58cxgxsx_ooblayout,
+				     tc58cxgxsx_ecc_get_status)),
+	/* 1.8V 4Gb */
+	SPINAND_INFO("TC58CYG2S0", 0xBD,
+		     NAND_MEMORG(1, 4096, 256, 64, 2048, 40, 1, 1, 1),
+		     NAND_ECCREQ(8, 512),
+		     SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
+					      &write_cache_variants,
+					      &update_cache_variants),
+		     0,
+		     SPINAND_ECCINFO(&tc58cxgxsx_ooblayout,
+				     tc58cxgxsx_ecc_get_status)),
+};
+
+static int toshiba_spinand_detect(struct spinand_device *spinand)
+{
+	u8 *id = spinand->id.data;
+	int ret;
+
+	/*
+	 * Toshiba SPI NAND read ID needs a dummy byte,
+	 * so the first byte in id is garbage.
+	 */
+	if (id[1] != SPINAND_MFR_TOSHIBA)
+		return 0;
+
+	ret = spinand_match_and_init(spinand, toshiba_spinand_table,
+				     ARRAY_SIZE(toshiba_spinand_table),
+				     id[2]);
+	if (ret)
+		return ret;
+
+	return 1;
+}
+
+static const struct spinand_manufacturer_ops toshiba_spinand_manuf_ops = {
+	.detect = toshiba_spinand_detect,
+};
+
+const struct spinand_manufacturer toshiba_spinand_manufacturer = {
+	.id = SPINAND_MFR_TOSHIBA,
+	.name = "Toshiba",
+	.ops = &toshiba_spinand_manuf_ops,
+};
diff --git a/drivers/mtd/nand/spi/winbond.c b/drivers/mtd/nand/spi/winbond.c
index 67baa1b..a6c17e0 100644
--- a/drivers/mtd/nand/spi/winbond.c
+++ b/drivers/mtd/nand/spi/winbond.c
@@ -76,7 +76,7 @@
 
 static const struct spinand_info winbond_spinand_table[] = {
 	SPINAND_INFO("W25M02GV", 0xAB,
-		     NAND_MEMORG(1, 2048, 64, 64, 1024, 1, 1, 2),
+		     NAND_MEMORG(1, 2048, 64, 64, 1024, 20, 1, 1, 2),
 		     NAND_ECCREQ(1, 512),
 		     SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
 					      &write_cache_variants,
@@ -84,6 +84,14 @@
 		     0,
 		     SPINAND_ECCINFO(&w25m02gv_ooblayout, NULL),
 		     SPINAND_SELECT_TARGET(w25m02gv_select_target)),
+	SPINAND_INFO("W25N01GV", 0xAA,
+		     NAND_MEMORG(1, 2048, 64, 64, 1024, 20, 1, 1, 1),
+		     NAND_ECCREQ(1, 512),
+		     SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
+					      &write_cache_variants,
+					      &update_cache_variants),
+		     0,
+		     SPINAND_ECCINFO(&w25m02gv_ooblayout, NULL)),
 };
 
 /**