Update Linux to v5.4.2

Change-Id: Idf6911045d9d382da2cfe01b1edff026404ac8fd
diff --git a/drivers/clocksource/timer-atmel-tcb.c b/drivers/clocksource/timer-atmel-tcb.c
new file mode 100644
index 0000000..7427b07
--- /dev/null
+++ b/drivers/clocksource/timer-atmel-tcb.c
@@ -0,0 +1,495 @@
+// SPDX-License-Identifier: GPL-2.0
+#include <linux/init.h>
+#include <linux/clocksource.h>
+#include <linux/clockchips.h>
+#include <linux/interrupt.h>
+#include <linux/irq.h>
+
+#include <linux/clk.h>
+#include <linux/delay.h>
+#include <linux/err.h>
+#include <linux/ioport.h>
+#include <linux/io.h>
+#include <linux/of_address.h>
+#include <linux/of_irq.h>
+#include <linux/sched_clock.h>
+#include <linux/syscore_ops.h>
+#include <soc/at91/atmel_tcb.h>
+
+
+/*
+ * We're configured to use a specific TC block, one that's not hooked
+ * up to external hardware, to provide a time solution:
+ *
+ *   - Two channels combine to create a free-running 32 bit counter
+ *     with a base rate of 5+ MHz, packaged as a clocksource (with
+ *     resolution better than 200 nsec).
+ *   - Some chips support 32 bit counter. A single channel is used for
+ *     this 32 bit free-running counter. the second channel is not used.
+ *
+ *   - The third channel may be used to provide a 16-bit clockevent
+ *     source, used in either periodic or oneshot mode.  This runs
+ *     at 32 KiHZ, and can handle delays of up to two seconds.
+ *
+ * REVISIT behavior during system suspend states... we should disable
+ * all clocks and save the power.  Easily done for clockevent devices,
+ * but clocksources won't necessarily get the needed notifications.
+ * For deeper system sleep states, this will be mandatory...
+ */
+
+static void __iomem *tcaddr;
+static struct
+{
+	u32 cmr;
+	u32 imr;
+	u32 rc;
+	bool clken;
+} tcb_cache[3];
+static u32 bmr_cache;
+
+static u64 tc_get_cycles(struct clocksource *cs)
+{
+	unsigned long	flags;
+	u32		lower, upper;
+
+	raw_local_irq_save(flags);
+	do {
+		upper = readl_relaxed(tcaddr + ATMEL_TC_REG(1, CV));
+		lower = readl_relaxed(tcaddr + ATMEL_TC_REG(0, CV));
+	} while (upper != readl_relaxed(tcaddr + ATMEL_TC_REG(1, CV)));
+
+	raw_local_irq_restore(flags);
+	return (upper << 16) | lower;
+}
+
+static u64 tc_get_cycles32(struct clocksource *cs)
+{
+	return readl_relaxed(tcaddr + ATMEL_TC_REG(0, CV));
+}
+
+static void tc_clksrc_suspend(struct clocksource *cs)
+{
+	int i;
+
+	for (i = 0; i < ARRAY_SIZE(tcb_cache); i++) {
+		tcb_cache[i].cmr = readl(tcaddr + ATMEL_TC_REG(i, CMR));
+		tcb_cache[i].imr = readl(tcaddr + ATMEL_TC_REG(i, IMR));
+		tcb_cache[i].rc = readl(tcaddr + ATMEL_TC_REG(i, RC));
+		tcb_cache[i].clken = !!(readl(tcaddr + ATMEL_TC_REG(i, SR)) &
+					ATMEL_TC_CLKSTA);
+	}
+
+	bmr_cache = readl(tcaddr + ATMEL_TC_BMR);
+}
+
+static void tc_clksrc_resume(struct clocksource *cs)
+{
+	int i;
+
+	for (i = 0; i < ARRAY_SIZE(tcb_cache); i++) {
+		/* Restore registers for the channel, RA and RB are not used  */
+		writel(tcb_cache[i].cmr, tcaddr + ATMEL_TC_REG(i, CMR));
+		writel(tcb_cache[i].rc, tcaddr + ATMEL_TC_REG(i, RC));
+		writel(0, tcaddr + ATMEL_TC_REG(i, RA));
+		writel(0, tcaddr + ATMEL_TC_REG(i, RB));
+		/* Disable all the interrupts */
+		writel(0xff, tcaddr + ATMEL_TC_REG(i, IDR));
+		/* Reenable interrupts that were enabled before suspending */
+		writel(tcb_cache[i].imr, tcaddr + ATMEL_TC_REG(i, IER));
+		/* Start the clock if it was used */
+		if (tcb_cache[i].clken)
+			writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(i, CCR));
+	}
+
+	/* Dual channel, chain channels */
+	writel(bmr_cache, tcaddr + ATMEL_TC_BMR);
+	/* Finally, trigger all the channels*/
+	writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
+}
+
+static struct clocksource clksrc = {
+	.rating         = 200,
+	.read           = tc_get_cycles,
+	.mask           = CLOCKSOURCE_MASK(32),
+	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
+	.suspend	= tc_clksrc_suspend,
+	.resume		= tc_clksrc_resume,
+};
+
+static u64 notrace tc_sched_clock_read(void)
+{
+	return tc_get_cycles(&clksrc);
+}
+
+static u64 notrace tc_sched_clock_read32(void)
+{
+	return tc_get_cycles32(&clksrc);
+}
+
+static struct delay_timer tc_delay_timer;
+
+static unsigned long tc_delay_timer_read(void)
+{
+	return tc_get_cycles(&clksrc);
+}
+
+static unsigned long notrace tc_delay_timer_read32(void)
+{
+	return tc_get_cycles32(&clksrc);
+}
+
+#ifdef CONFIG_GENERIC_CLOCKEVENTS
+
+struct tc_clkevt_device {
+	struct clock_event_device	clkevt;
+	struct clk			*clk;
+	void __iomem			*regs;
+};
+
+static struct tc_clkevt_device *to_tc_clkevt(struct clock_event_device *clkevt)
+{
+	return container_of(clkevt, struct tc_clkevt_device, clkevt);
+}
+
+/* For now, we always use the 32K clock ... this optimizes for NO_HZ,
+ * because using one of the divided clocks would usually mean the
+ * tick rate can never be less than several dozen Hz (vs 0.5 Hz).
+ *
+ * A divided clock could be good for high resolution timers, since
+ * 30.5 usec resolution can seem "low".
+ */
+static u32 timer_clock;
+
+static int tc_shutdown(struct clock_event_device *d)
+{
+	struct tc_clkevt_device *tcd = to_tc_clkevt(d);
+	void __iomem		*regs = tcd->regs;
+
+	writel(0xff, regs + ATMEL_TC_REG(2, IDR));
+	writel(ATMEL_TC_CLKDIS, regs + ATMEL_TC_REG(2, CCR));
+	if (!clockevent_state_detached(d))
+		clk_disable(tcd->clk);
+
+	return 0;
+}
+
+static int tc_set_oneshot(struct clock_event_device *d)
+{
+	struct tc_clkevt_device *tcd = to_tc_clkevt(d);
+	void __iomem		*regs = tcd->regs;
+
+	if (clockevent_state_oneshot(d) || clockevent_state_periodic(d))
+		tc_shutdown(d);
+
+	clk_enable(tcd->clk);
+
+	/* slow clock, count up to RC, then irq and stop */
+	writel(timer_clock | ATMEL_TC_CPCSTOP | ATMEL_TC_WAVE |
+		     ATMEL_TC_WAVESEL_UP_AUTO, regs + ATMEL_TC_REG(2, CMR));
+	writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
+
+	/* set_next_event() configures and starts the timer */
+	return 0;
+}
+
+static int tc_set_periodic(struct clock_event_device *d)
+{
+	struct tc_clkevt_device *tcd = to_tc_clkevt(d);
+	void __iomem		*regs = tcd->regs;
+
+	if (clockevent_state_oneshot(d) || clockevent_state_periodic(d))
+		tc_shutdown(d);
+
+	/* By not making the gentime core emulate periodic mode on top
+	 * of oneshot, we get lower overhead and improved accuracy.
+	 */
+	clk_enable(tcd->clk);
+
+	/* slow clock, count up to RC, then irq and restart */
+	writel(timer_clock | ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP_AUTO,
+		     regs + ATMEL_TC_REG(2, CMR));
+	writel((32768 + HZ / 2) / HZ, tcaddr + ATMEL_TC_REG(2, RC));
+
+	/* Enable clock and interrupts on RC compare */
+	writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
+
+	/* go go gadget! */
+	writel(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG, regs +
+		     ATMEL_TC_REG(2, CCR));
+	return 0;
+}
+
+static int tc_next_event(unsigned long delta, struct clock_event_device *d)
+{
+	writel_relaxed(delta, tcaddr + ATMEL_TC_REG(2, RC));
+
+	/* go go gadget! */
+	writel_relaxed(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG,
+			tcaddr + ATMEL_TC_REG(2, CCR));
+	return 0;
+}
+
+static struct tc_clkevt_device clkevt = {
+	.clkevt	= {
+		.features		= CLOCK_EVT_FEAT_PERIODIC |
+					  CLOCK_EVT_FEAT_ONESHOT,
+		/* Should be lower than at91rm9200's system timer */
+		.rating			= 125,
+		.set_next_event		= tc_next_event,
+		.set_state_shutdown	= tc_shutdown,
+		.set_state_periodic	= tc_set_periodic,
+		.set_state_oneshot	= tc_set_oneshot,
+	},
+};
+
+static irqreturn_t ch2_irq(int irq, void *handle)
+{
+	struct tc_clkevt_device	*dev = handle;
+	unsigned int		sr;
+
+	sr = readl_relaxed(dev->regs + ATMEL_TC_REG(2, SR));
+	if (sr & ATMEL_TC_CPCS) {
+		dev->clkevt.event_handler(&dev->clkevt);
+		return IRQ_HANDLED;
+	}
+
+	return IRQ_NONE;
+}
+
+static int __init setup_clkevents(struct atmel_tc *tc, int clk32k_divisor_idx)
+{
+	int ret;
+	struct clk *t2_clk = tc->clk[2];
+	int irq = tc->irq[2];
+
+	ret = clk_prepare_enable(tc->slow_clk);
+	if (ret)
+		return ret;
+
+	/* try to enable t2 clk to avoid future errors in mode change */
+	ret = clk_prepare_enable(t2_clk);
+	if (ret) {
+		clk_disable_unprepare(tc->slow_clk);
+		return ret;
+	}
+
+	clk_disable(t2_clk);
+
+	clkevt.regs = tc->regs;
+	clkevt.clk = t2_clk;
+
+	timer_clock = clk32k_divisor_idx;
+
+	clkevt.clkevt.cpumask = cpumask_of(0);
+
+	ret = request_irq(irq, ch2_irq, IRQF_TIMER, "tc_clkevt", &clkevt);
+	if (ret) {
+		clk_unprepare(t2_clk);
+		clk_disable_unprepare(tc->slow_clk);
+		return ret;
+	}
+
+	clockevents_config_and_register(&clkevt.clkevt, 32768, 1, 0xffff);
+
+	return ret;
+}
+
+#else /* !CONFIG_GENERIC_CLOCKEVENTS */
+
+static int __init setup_clkevents(struct atmel_tc *tc, int clk32k_divisor_idx)
+{
+	/* NOTHING */
+	return 0;
+}
+
+#endif
+
+static void __init tcb_setup_dual_chan(struct atmel_tc *tc, int mck_divisor_idx)
+{
+	/* channel 0:  waveform mode, input mclk/8, clock TIOA0 on overflow */
+	writel(mck_divisor_idx			/* likely divide-by-8 */
+			| ATMEL_TC_WAVE
+			| ATMEL_TC_WAVESEL_UP		/* free-run */
+			| ATMEL_TC_ACPA_SET		/* TIOA0 rises at 0 */
+			| ATMEL_TC_ACPC_CLEAR,		/* (duty cycle 50%) */
+			tcaddr + ATMEL_TC_REG(0, CMR));
+	writel(0x0000, tcaddr + ATMEL_TC_REG(0, RA));
+	writel(0x8000, tcaddr + ATMEL_TC_REG(0, RC));
+	writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR));	/* no irqs */
+	writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR));
+
+	/* channel 1:  waveform mode, input TIOA0 */
+	writel(ATMEL_TC_XC1			/* input: TIOA0 */
+			| ATMEL_TC_WAVE
+			| ATMEL_TC_WAVESEL_UP,		/* free-run */
+			tcaddr + ATMEL_TC_REG(1, CMR));
+	writel(0xff, tcaddr + ATMEL_TC_REG(1, IDR));	/* no irqs */
+	writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(1, CCR));
+
+	/* chain channel 0 to channel 1*/
+	writel(ATMEL_TC_TC1XC1S_TIOA0, tcaddr + ATMEL_TC_BMR);
+	/* then reset all the timers */
+	writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
+}
+
+static void __init tcb_setup_single_chan(struct atmel_tc *tc, int mck_divisor_idx)
+{
+	/* channel 0:  waveform mode, input mclk/8 */
+	writel(mck_divisor_idx			/* likely divide-by-8 */
+			| ATMEL_TC_WAVE
+			| ATMEL_TC_WAVESEL_UP,		/* free-run */
+			tcaddr + ATMEL_TC_REG(0, CMR));
+	writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR));	/* no irqs */
+	writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR));
+
+	/* then reset all the timers */
+	writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
+}
+
+static const u8 atmel_tcb_divisors[5] = { 2, 8, 32, 128, 0, };
+
+static const struct of_device_id atmel_tcb_of_match[] = {
+	{ .compatible = "atmel,at91rm9200-tcb", .data = (void *)16, },
+	{ .compatible = "atmel,at91sam9x5-tcb", .data = (void *)32, },
+	{ /* sentinel */ }
+};
+
+static int __init tcb_clksrc_init(struct device_node *node)
+{
+	struct atmel_tc tc;
+	struct clk *t0_clk;
+	const struct of_device_id *match;
+	u64 (*tc_sched_clock)(void);
+	u32 rate, divided_rate = 0;
+	int best_divisor_idx = -1;
+	int clk32k_divisor_idx = -1;
+	int bits;
+	int i;
+	int ret;
+
+	/* Protect against multiple calls */
+	if (tcaddr)
+		return 0;
+
+	tc.regs = of_iomap(node->parent, 0);
+	if (!tc.regs)
+		return -ENXIO;
+
+	t0_clk = of_clk_get_by_name(node->parent, "t0_clk");
+	if (IS_ERR(t0_clk))
+		return PTR_ERR(t0_clk);
+
+	tc.slow_clk = of_clk_get_by_name(node->parent, "slow_clk");
+	if (IS_ERR(tc.slow_clk))
+		return PTR_ERR(tc.slow_clk);
+
+	tc.clk[0] = t0_clk;
+	tc.clk[1] = of_clk_get_by_name(node->parent, "t1_clk");
+	if (IS_ERR(tc.clk[1]))
+		tc.clk[1] = t0_clk;
+	tc.clk[2] = of_clk_get_by_name(node->parent, "t2_clk");
+	if (IS_ERR(tc.clk[2]))
+		tc.clk[2] = t0_clk;
+
+	tc.irq[2] = of_irq_get(node->parent, 2);
+	if (tc.irq[2] <= 0) {
+		tc.irq[2] = of_irq_get(node->parent, 0);
+		if (tc.irq[2] <= 0)
+			return -EINVAL;
+	}
+
+	match = of_match_node(atmel_tcb_of_match, node->parent);
+	bits = (uintptr_t)match->data;
+
+	for (i = 0; i < ARRAY_SIZE(tc.irq); i++)
+		writel(ATMEL_TC_ALL_IRQ, tc.regs + ATMEL_TC_REG(i, IDR));
+
+	ret = clk_prepare_enable(t0_clk);
+	if (ret) {
+		pr_debug("can't enable T0 clk\n");
+		return ret;
+	}
+
+	/* How fast will we be counting?  Pick something over 5 MHz.  */
+	rate = (u32) clk_get_rate(t0_clk);
+	for (i = 0; i < ARRAY_SIZE(atmel_tcb_divisors); i++) {
+		unsigned divisor = atmel_tcb_divisors[i];
+		unsigned tmp;
+
+		/* remember 32 KiHz clock for later */
+		if (!divisor) {
+			clk32k_divisor_idx = i;
+			continue;
+		}
+
+		tmp = rate / divisor;
+		pr_debug("TC: %u / %-3u [%d] --> %u\n", rate, divisor, i, tmp);
+		if (best_divisor_idx > 0) {
+			if (tmp < 5 * 1000 * 1000)
+				continue;
+		}
+		divided_rate = tmp;
+		best_divisor_idx = i;
+	}
+
+	clksrc.name = kbasename(node->parent->full_name);
+	clkevt.clkevt.name = kbasename(node->parent->full_name);
+	pr_debug("%s at %d.%03d MHz\n", clksrc.name, divided_rate / 1000000,
+			((divided_rate % 1000000) + 500) / 1000);
+
+	tcaddr = tc.regs;
+
+	if (bits == 32) {
+		/* use apropriate function to read 32 bit counter */
+		clksrc.read = tc_get_cycles32;
+		/* setup ony channel 0 */
+		tcb_setup_single_chan(&tc, best_divisor_idx);
+		tc_sched_clock = tc_sched_clock_read32;
+		tc_delay_timer.read_current_timer = tc_delay_timer_read32;
+	} else {
+		/* we have three clocks no matter what the
+		 * underlying platform supports.
+		 */
+		ret = clk_prepare_enable(tc.clk[1]);
+		if (ret) {
+			pr_debug("can't enable T1 clk\n");
+			goto err_disable_t0;
+		}
+		/* setup both channel 0 & 1 */
+		tcb_setup_dual_chan(&tc, best_divisor_idx);
+		tc_sched_clock = tc_sched_clock_read;
+		tc_delay_timer.read_current_timer = tc_delay_timer_read;
+	}
+
+	/* and away we go! */
+	ret = clocksource_register_hz(&clksrc, divided_rate);
+	if (ret)
+		goto err_disable_t1;
+
+	/* channel 2:  periodic and oneshot timer support */
+	ret = setup_clkevents(&tc, clk32k_divisor_idx);
+	if (ret)
+		goto err_unregister_clksrc;
+
+	sched_clock_register(tc_sched_clock, 32, divided_rate);
+
+	tc_delay_timer.freq = divided_rate;
+	register_current_timer_delay(&tc_delay_timer);
+
+	return 0;
+
+err_unregister_clksrc:
+	clocksource_unregister(&clksrc);
+
+err_disable_t1:
+	if (bits != 32)
+		clk_disable_unprepare(tc.clk[1]);
+
+err_disable_t0:
+	clk_disable_unprepare(t0_clk);
+
+	tcaddr = NULL;
+
+	return ret;
+}
+TIMER_OF_DECLARE(atmel_tcb_clksrc, "atmel,tcb-timer", tcb_clksrc_init);