Update Linux to v5.4.2

Change-Id: Idf6911045d9d382da2cfe01b1edff026404ac8fd
diff --git a/arch/powerpc/mm/book3s64/Makefile b/arch/powerpc/mm/book3s64/Makefile
new file mode 100644
index 0000000..fd393b8
--- /dev/null
+++ b/arch/powerpc/mm/book3s64/Makefile
@@ -0,0 +1,23 @@
+# SPDX-License-Identifier: GPL-2.0
+
+ccflags-y	:= $(NO_MINIMAL_TOC)
+
+CFLAGS_REMOVE_slb.o = $(CC_FLAGS_FTRACE)
+
+obj-y				+= hash_pgtable.o hash_utils.o slb.o \
+				   mmu_context.o pgtable.o hash_tlb.o
+obj-$(CONFIG_PPC_NATIVE)	+= hash_native.o
+obj-$(CONFIG_PPC_RADIX_MMU)	+= radix_pgtable.o radix_tlb.o
+obj-$(CONFIG_PPC_4K_PAGES)	+= hash_4k.o
+obj-$(CONFIG_PPC_64K_PAGES)	+= hash_64k.o
+obj-$(CONFIG_HUGETLB_PAGE)	+= hash_hugetlbpage.o
+ifdef CONFIG_HUGETLB_PAGE
+obj-$(CONFIG_PPC_RADIX_MMU)	+= radix_hugetlbpage.o
+endif
+obj-$(CONFIG_TRANSPARENT_HUGEPAGE) += hash_hugepage.o
+obj-$(CONFIG_PPC_SUBPAGE_PROT)	+= subpage_prot.o
+obj-$(CONFIG_SPAPR_TCE_IOMMU)	+= iommu_api.o
+obj-$(CONFIG_PPC_MEM_KEYS)	+= pkeys.o
+
+# Instrumenting the SLB fault path can lead to duplicate SLB entries
+KCOV_INSTRUMENT_slb.o := n
diff --git a/arch/powerpc/mm/book3s64/hash_4k.c b/arch/powerpc/mm/book3s64/hash_4k.c
new file mode 100644
index 0000000..22e7871
--- /dev/null
+++ b/arch/powerpc/mm/book3s64/hash_4k.c
@@ -0,0 +1,124 @@
+/*
+ * Copyright IBM Corporation, 2015
+ * Author Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms of version 2 of the GNU Lesser General Public License
+ * as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it would be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
+ *
+ */
+
+#include <linux/mm.h>
+#include <asm/machdep.h>
+#include <asm/mmu.h>
+
+int __hash_page_4K(unsigned long ea, unsigned long access, unsigned long vsid,
+		   pte_t *ptep, unsigned long trap, unsigned long flags,
+		   int ssize, int subpg_prot)
+{
+	real_pte_t rpte;
+	unsigned long hpte_group;
+	unsigned long rflags, pa;
+	unsigned long old_pte, new_pte;
+	unsigned long vpn, hash, slot;
+	unsigned long shift = mmu_psize_defs[MMU_PAGE_4K].shift;
+
+	/*
+	 * atomically mark the linux large page PTE busy and dirty
+	 */
+	do {
+		pte_t pte = READ_ONCE(*ptep);
+
+		old_pte = pte_val(pte);
+		/* If PTE busy, retry the access */
+		if (unlikely(old_pte & H_PAGE_BUSY))
+			return 0;
+		/* If PTE permissions don't match, take page fault */
+		if (unlikely(!check_pte_access(access, old_pte)))
+			return 1;
+		/*
+		 * Try to lock the PTE, add ACCESSED and DIRTY if it was
+		 * a write access. Since this is 4K insert of 64K page size
+		 * also add H_PAGE_COMBO
+		 */
+		new_pte = old_pte | H_PAGE_BUSY | _PAGE_ACCESSED;
+		if (access & _PAGE_WRITE)
+			new_pte |= _PAGE_DIRTY;
+	} while (!pte_xchg(ptep, __pte(old_pte), __pte(new_pte)));
+
+	/*
+	 * PP bits. _PAGE_USER is already PP bit 0x2, so we only
+	 * need to add in 0x1 if it's a read-only user page
+	 */
+	rflags = htab_convert_pte_flags(new_pte);
+	rpte = __real_pte(__pte(old_pte), ptep, PTRS_PER_PTE);
+
+	if (cpu_has_feature(CPU_FTR_NOEXECUTE) &&
+	    !cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
+		rflags = hash_page_do_lazy_icache(rflags, __pte(old_pte), trap);
+
+	vpn  = hpt_vpn(ea, vsid, ssize);
+	if (unlikely(old_pte & H_PAGE_HASHPTE)) {
+		/*
+		 * There MIGHT be an HPTE for this pte
+		 */
+		unsigned long gslot = pte_get_hash_gslot(vpn, shift, ssize,
+							 rpte, 0);
+
+		if (mmu_hash_ops.hpte_updatepp(gslot, rflags, vpn, MMU_PAGE_4K,
+					       MMU_PAGE_4K, ssize, flags) == -1)
+			old_pte &= ~_PAGE_HPTEFLAGS;
+	}
+
+	if (likely(!(old_pte & H_PAGE_HASHPTE))) {
+
+		pa = pte_pfn(__pte(old_pte)) << PAGE_SHIFT;
+		hash = hpt_hash(vpn, shift, ssize);
+
+repeat:
+		hpte_group = (hash & htab_hash_mask) * HPTES_PER_GROUP;
+
+		/* Insert into the hash table, primary slot */
+		slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags, 0,
+						MMU_PAGE_4K, MMU_PAGE_4K, ssize);
+		/*
+		 * Primary is full, try the secondary
+		 */
+		if (unlikely(slot == -1)) {
+			hpte_group = (~hash & htab_hash_mask) * HPTES_PER_GROUP;
+			slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa,
+							rflags,
+							HPTE_V_SECONDARY,
+							MMU_PAGE_4K,
+							MMU_PAGE_4K, ssize);
+			if (slot == -1) {
+				if (mftb() & 0x1)
+					hpte_group = (hash & htab_hash_mask) *
+							HPTES_PER_GROUP;
+				mmu_hash_ops.hpte_remove(hpte_group);
+				/*
+				 * FIXME!! Should be try the group from which we removed ?
+				 */
+				goto repeat;
+			}
+		}
+		/*
+		 * Hypervisor failure. Restore old pte and return -1
+		 * similar to __hash_page_*
+		 */
+		if (unlikely(slot == -2)) {
+			*ptep = __pte(old_pte);
+			hash_failure_debug(ea, access, vsid, trap, ssize,
+					   MMU_PAGE_4K, MMU_PAGE_4K, old_pte);
+			return -1;
+		}
+		new_pte = (new_pte & ~_PAGE_HPTEFLAGS) | H_PAGE_HASHPTE;
+		new_pte |= pte_set_hidx(ptep, rpte, 0, slot, PTRS_PER_PTE);
+	}
+	*ptep = __pte(new_pte & ~H_PAGE_BUSY);
+	return 0;
+}
diff --git a/arch/powerpc/mm/book3s64/hash_64k.c b/arch/powerpc/mm/book3s64/hash_64k.c
new file mode 100644
index 0000000..7084ce2
--- /dev/null
+++ b/arch/powerpc/mm/book3s64/hash_64k.c
@@ -0,0 +1,333 @@
+/*
+ * Copyright IBM Corporation, 2015
+ * Author Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms of version 2 of the GNU Lesser General Public License
+ * as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it would be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
+ *
+ */
+
+#include <linux/mm.h>
+#include <asm/machdep.h>
+#include <asm/mmu.h>
+
+/*
+ * Return true, if the entry has a slot value which
+ * the software considers as invalid.
+ */
+static inline bool hpte_soft_invalid(unsigned long hidx)
+{
+	return ((hidx & 0xfUL) == 0xfUL);
+}
+
+/*
+ * index from 0 - 15
+ */
+bool __rpte_sub_valid(real_pte_t rpte, unsigned long index)
+{
+	return !(hpte_soft_invalid(__rpte_to_hidx(rpte, index)));
+}
+
+int __hash_page_4K(unsigned long ea, unsigned long access, unsigned long vsid,
+		   pte_t *ptep, unsigned long trap, unsigned long flags,
+		   int ssize, int subpg_prot)
+{
+	real_pte_t rpte;
+	unsigned long hpte_group;
+	unsigned int subpg_index;
+	unsigned long rflags, pa;
+	unsigned long old_pte, new_pte, subpg_pte;
+	unsigned long vpn, hash, slot, gslot;
+	unsigned long shift = mmu_psize_defs[MMU_PAGE_4K].shift;
+
+	/*
+	 * atomically mark the linux large page PTE busy and dirty
+	 */
+	do {
+		pte_t pte = READ_ONCE(*ptep);
+
+		old_pte = pte_val(pte);
+		/* If PTE busy, retry the access */
+		if (unlikely(old_pte & H_PAGE_BUSY))
+			return 0;
+		/* If PTE permissions don't match, take page fault */
+		if (unlikely(!check_pte_access(access, old_pte)))
+			return 1;
+		/*
+		 * Try to lock the PTE, add ACCESSED and DIRTY if it was
+		 * a write access. Since this is 4K insert of 64K page size
+		 * also add H_PAGE_COMBO
+		 */
+		new_pte = old_pte | H_PAGE_BUSY | _PAGE_ACCESSED | H_PAGE_COMBO;
+		if (access & _PAGE_WRITE)
+			new_pte |= _PAGE_DIRTY;
+	} while (!pte_xchg(ptep, __pte(old_pte), __pte(new_pte)));
+
+	/*
+	 * Handle the subpage protection bits
+	 */
+	subpg_pte = new_pte & ~subpg_prot;
+	rflags = htab_convert_pte_flags(subpg_pte);
+
+	if (cpu_has_feature(CPU_FTR_NOEXECUTE) &&
+	    !cpu_has_feature(CPU_FTR_COHERENT_ICACHE)) {
+
+		/*
+		 * No CPU has hugepages but lacks no execute, so we
+		 * don't need to worry about that case
+		 */
+		rflags = hash_page_do_lazy_icache(rflags, __pte(old_pte), trap);
+	}
+
+	subpg_index = (ea & (PAGE_SIZE - 1)) >> shift;
+	vpn  = hpt_vpn(ea, vsid, ssize);
+	rpte = __real_pte(__pte(old_pte), ptep, PTRS_PER_PTE);
+	/*
+	 *None of the sub 4k page is hashed
+	 */
+	if (!(old_pte & H_PAGE_HASHPTE))
+		goto htab_insert_hpte;
+	/*
+	 * Check if the pte was already inserted into the hash table
+	 * as a 64k HW page, and invalidate the 64k HPTE if so.
+	 */
+	if (!(old_pte & H_PAGE_COMBO)) {
+		flush_hash_page(vpn, rpte, MMU_PAGE_64K, ssize, flags);
+		/*
+		 * clear the old slot details from the old and new pte.
+		 * On hash insert failure we use old pte value and we don't
+		 * want slot information there if we have a insert failure.
+		 */
+		old_pte &= ~H_PAGE_HASHPTE;
+		new_pte &= ~H_PAGE_HASHPTE;
+		goto htab_insert_hpte;
+	}
+	/*
+	 * Check for sub page valid and update
+	 */
+	if (__rpte_sub_valid(rpte, subpg_index)) {
+		int ret;
+
+		gslot = pte_get_hash_gslot(vpn, shift, ssize, rpte,
+					   subpg_index);
+		ret = mmu_hash_ops.hpte_updatepp(gslot, rflags, vpn,
+						 MMU_PAGE_4K, MMU_PAGE_4K,
+						 ssize, flags);
+
+		/*
+		 * If we failed because typically the HPTE wasn't really here
+		 * we try an insertion.
+		 */
+		if (ret == -1)
+			goto htab_insert_hpte;
+
+		*ptep = __pte(new_pte & ~H_PAGE_BUSY);
+		return 0;
+	}
+
+htab_insert_hpte:
+
+	/*
+	 * Initialize all hidx entries to invalid value, the first time
+	 * the PTE is about to allocate a 4K HPTE.
+	 */
+	if (!(old_pte & H_PAGE_COMBO))
+		rpte.hidx = INVALID_RPTE_HIDX;
+
+	/*
+	 * handle H_PAGE_4K_PFN case
+	 */
+	if (old_pte & H_PAGE_4K_PFN) {
+		/*
+		 * All the sub 4k page have the same
+		 * physical address.
+		 */
+		pa = pte_pfn(__pte(old_pte)) << HW_PAGE_SHIFT;
+	} else {
+		pa = pte_pfn(__pte(old_pte)) << PAGE_SHIFT;
+		pa += (subpg_index << shift);
+	}
+	hash = hpt_hash(vpn, shift, ssize);
+repeat:
+	hpte_group = (hash & htab_hash_mask) * HPTES_PER_GROUP;
+
+	/* Insert into the hash table, primary slot */
+	slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags, 0,
+					MMU_PAGE_4K, MMU_PAGE_4K, ssize);
+	/*
+	 * Primary is full, try the secondary
+	 */
+	if (unlikely(slot == -1)) {
+		bool soft_invalid;
+
+		hpte_group = (~hash & htab_hash_mask) * HPTES_PER_GROUP;
+		slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa,
+						rflags, HPTE_V_SECONDARY,
+						MMU_PAGE_4K, MMU_PAGE_4K,
+						ssize);
+
+		soft_invalid = hpte_soft_invalid(slot);
+		if (unlikely(soft_invalid)) {
+			/*
+			 * We got a valid slot from a hardware point of view.
+			 * but we cannot use it, because we use this special
+			 * value; as defined by hpte_soft_invalid(), to track
+			 * invalid slots. We cannot use it. So invalidate it.
+			 */
+			gslot = slot & _PTEIDX_GROUP_IX;
+			mmu_hash_ops.hpte_invalidate(hpte_group + gslot, vpn,
+						     MMU_PAGE_4K, MMU_PAGE_4K,
+						     ssize, 0);
+		}
+
+		if (unlikely(slot == -1 || soft_invalid)) {
+			/*
+			 * For soft invalid slot, let's ensure that we release a
+			 * slot from the primary, with the hope that we will
+			 * acquire that slot next time we try. This will ensure
+			 * that we do not get the same soft-invalid slot.
+			 */
+			if (soft_invalid || (mftb() & 0x1))
+				hpte_group = (hash & htab_hash_mask) * HPTES_PER_GROUP;
+
+			mmu_hash_ops.hpte_remove(hpte_group);
+			/*
+			 * FIXME!! Should be try the group from which we removed ?
+			 */
+			goto repeat;
+		}
+	}
+	/*
+	 * Hypervisor failure. Restore old pte and return -1
+	 * similar to __hash_page_*
+	 */
+	if (unlikely(slot == -2)) {
+		*ptep = __pte(old_pte);
+		hash_failure_debug(ea, access, vsid, trap, ssize,
+				   MMU_PAGE_4K, MMU_PAGE_4K, old_pte);
+		return -1;
+	}
+
+	new_pte |= pte_set_hidx(ptep, rpte, subpg_index, slot, PTRS_PER_PTE);
+	new_pte |= H_PAGE_HASHPTE;
+
+	*ptep = __pte(new_pte & ~H_PAGE_BUSY);
+	return 0;
+}
+
+int __hash_page_64K(unsigned long ea, unsigned long access,
+		    unsigned long vsid, pte_t *ptep, unsigned long trap,
+		    unsigned long flags, int ssize)
+{
+	real_pte_t rpte;
+	unsigned long hpte_group;
+	unsigned long rflags, pa;
+	unsigned long old_pte, new_pte;
+	unsigned long vpn, hash, slot;
+	unsigned long shift = mmu_psize_defs[MMU_PAGE_64K].shift;
+
+	/*
+	 * atomically mark the linux large page PTE busy and dirty
+	 */
+	do {
+		pte_t pte = READ_ONCE(*ptep);
+
+		old_pte = pte_val(pte);
+		/* If PTE busy, retry the access */
+		if (unlikely(old_pte & H_PAGE_BUSY))
+			return 0;
+		/* If PTE permissions don't match, take page fault */
+		if (unlikely(!check_pte_access(access, old_pte)))
+			return 1;
+		/*
+		 * Check if PTE has the cache-inhibit bit set
+		 * If so, bail out and refault as a 4k page
+		 */
+		if (!mmu_has_feature(MMU_FTR_CI_LARGE_PAGE) &&
+		    unlikely(pte_ci(pte)))
+			return 0;
+		/*
+		 * Try to lock the PTE, add ACCESSED and DIRTY if it was
+		 * a write access.
+		 */
+		new_pte = old_pte | H_PAGE_BUSY | _PAGE_ACCESSED;
+		if (access & _PAGE_WRITE)
+			new_pte |= _PAGE_DIRTY;
+	} while (!pte_xchg(ptep, __pte(old_pte), __pte(new_pte)));
+
+	rflags = htab_convert_pte_flags(new_pte);
+	rpte = __real_pte(__pte(old_pte), ptep, PTRS_PER_PTE);
+
+	if (cpu_has_feature(CPU_FTR_NOEXECUTE) &&
+	    !cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
+		rflags = hash_page_do_lazy_icache(rflags, __pte(old_pte), trap);
+
+	vpn  = hpt_vpn(ea, vsid, ssize);
+	if (unlikely(old_pte & H_PAGE_HASHPTE)) {
+		unsigned long gslot;
+
+		/*
+		 * There MIGHT be an HPTE for this pte
+		 */
+		gslot = pte_get_hash_gslot(vpn, shift, ssize, rpte, 0);
+		if (mmu_hash_ops.hpte_updatepp(gslot, rflags, vpn, MMU_PAGE_64K,
+					       MMU_PAGE_64K, ssize,
+					       flags) == -1)
+			old_pte &= ~_PAGE_HPTEFLAGS;
+	}
+
+	if (likely(!(old_pte & H_PAGE_HASHPTE))) {
+
+		pa = pte_pfn(__pte(old_pte)) << PAGE_SHIFT;
+		hash = hpt_hash(vpn, shift, ssize);
+
+repeat:
+		hpte_group = (hash & htab_hash_mask) * HPTES_PER_GROUP;
+
+		/* Insert into the hash table, primary slot */
+		slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags, 0,
+						MMU_PAGE_64K, MMU_PAGE_64K,
+						ssize);
+		/*
+		 * Primary is full, try the secondary
+		 */
+		if (unlikely(slot == -1)) {
+			hpte_group = (~hash & htab_hash_mask) * HPTES_PER_GROUP;
+			slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa,
+							rflags,
+							HPTE_V_SECONDARY,
+							MMU_PAGE_64K,
+							MMU_PAGE_64K, ssize);
+			if (slot == -1) {
+				if (mftb() & 0x1)
+					hpte_group = (hash & htab_hash_mask) *
+							HPTES_PER_GROUP;
+				mmu_hash_ops.hpte_remove(hpte_group);
+				/*
+				 * FIXME!! Should be try the group from which we removed ?
+				 */
+				goto repeat;
+			}
+		}
+		/*
+		 * Hypervisor failure. Restore old pte and return -1
+		 * similar to __hash_page_*
+		 */
+		if (unlikely(slot == -2)) {
+			*ptep = __pte(old_pte);
+			hash_failure_debug(ea, access, vsid, trap, ssize,
+					   MMU_PAGE_64K, MMU_PAGE_64K, old_pte);
+			return -1;
+		}
+
+		new_pte = (new_pte & ~_PAGE_HPTEFLAGS) | H_PAGE_HASHPTE;
+		new_pte |= pte_set_hidx(ptep, rpte, 0, slot, PTRS_PER_PTE);
+	}
+	*ptep = __pte(new_pte & ~H_PAGE_BUSY);
+	return 0;
+}
diff --git a/arch/powerpc/mm/book3s64/hash_hugepage.c b/arch/powerpc/mm/book3s64/hash_hugepage.c
new file mode 100644
index 0000000..4408237
--- /dev/null
+++ b/arch/powerpc/mm/book3s64/hash_hugepage.c
@@ -0,0 +1,191 @@
+/*
+ * Copyright IBM Corporation, 2013
+ * Author Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms of version 2.1 of the GNU Lesser General Public License
+ * as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it would be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
+ *
+ */
+
+/*
+ * PPC64 THP Support for hash based MMUs
+ */
+#include <linux/mm.h>
+#include <asm/machdep.h>
+
+int __hash_page_thp(unsigned long ea, unsigned long access, unsigned long vsid,
+		    pmd_t *pmdp, unsigned long trap, unsigned long flags,
+		    int ssize, unsigned int psize)
+{
+	unsigned int index, valid;
+	unsigned char *hpte_slot_array;
+	unsigned long rflags, pa, hidx;
+	unsigned long old_pmd, new_pmd;
+	int ret, lpsize = MMU_PAGE_16M;
+	unsigned long vpn, hash, shift, slot;
+
+	/*
+	 * atomically mark the linux large page PMD busy and dirty
+	 */
+	do {
+		pmd_t pmd = READ_ONCE(*pmdp);
+
+		old_pmd = pmd_val(pmd);
+		/* If PMD busy, retry the access */
+		if (unlikely(old_pmd & H_PAGE_BUSY))
+			return 0;
+		/* If PMD permissions don't match, take page fault */
+		if (unlikely(!check_pte_access(access, old_pmd)))
+			return 1;
+		/*
+		 * Try to lock the PTE, add ACCESSED and DIRTY if it was
+		 * a write access
+		 */
+		new_pmd = old_pmd | H_PAGE_BUSY | _PAGE_ACCESSED;
+		if (access & _PAGE_WRITE)
+			new_pmd |= _PAGE_DIRTY;
+	} while (!pmd_xchg(pmdp, __pmd(old_pmd), __pmd(new_pmd)));
+
+	/*
+	 * Make sure this is thp or devmap entry
+	 */
+	if (!(old_pmd & (H_PAGE_THP_HUGE | _PAGE_DEVMAP)))
+		return 0;
+
+	rflags = htab_convert_pte_flags(new_pmd);
+
+#if 0
+	if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE)) {
+
+		/*
+		 * No CPU has hugepages but lacks no execute, so we
+		 * don't need to worry about that case
+		 */
+		rflags = hash_page_do_lazy_icache(rflags, __pte(old_pte), trap);
+	}
+#endif
+	/*
+	 * Find the slot index details for this ea, using base page size.
+	 */
+	shift = mmu_psize_defs[psize].shift;
+	index = (ea & ~HPAGE_PMD_MASK) >> shift;
+	BUG_ON(index >= PTE_FRAG_SIZE);
+
+	vpn = hpt_vpn(ea, vsid, ssize);
+	hpte_slot_array = get_hpte_slot_array(pmdp);
+	if (psize == MMU_PAGE_4K) {
+		/*
+		 * invalidate the old hpte entry if we have that mapped via 64K
+		 * base page size. This is because demote_segment won't flush
+		 * hash page table entries.
+		 */
+		if ((old_pmd & H_PAGE_HASHPTE) && !(old_pmd & H_PAGE_COMBO)) {
+			flush_hash_hugepage(vsid, ea, pmdp, MMU_PAGE_64K,
+					    ssize, flags);
+			/*
+			 * With THP, we also clear the slot information with
+			 * respect to all the 64K hash pte mapping the 16MB
+			 * page. They are all invalid now. This make sure we
+			 * don't find the slot valid when we fault with 4k
+			 * base page size.
+			 *
+			 */
+			memset(hpte_slot_array, 0, PTE_FRAG_SIZE);
+		}
+	}
+
+	valid = hpte_valid(hpte_slot_array, index);
+	if (valid) {
+		/* update the hpte bits */
+		hash = hpt_hash(vpn, shift, ssize);
+		hidx =  hpte_hash_index(hpte_slot_array, index);
+		if (hidx & _PTEIDX_SECONDARY)
+			hash = ~hash;
+		slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
+		slot += hidx & _PTEIDX_GROUP_IX;
+
+		ret = mmu_hash_ops.hpte_updatepp(slot, rflags, vpn,
+						 psize, lpsize, ssize, flags);
+		/*
+		 * We failed to update, try to insert a new entry.
+		 */
+		if (ret == -1) {
+			/*
+			 * large pte is marked busy, so we can be sure
+			 * nobody is looking at hpte_slot_array. hence we can
+			 * safely update this here.
+			 */
+			valid = 0;
+			hpte_slot_array[index] = 0;
+		}
+	}
+
+	if (!valid) {
+		unsigned long hpte_group;
+
+		hash = hpt_hash(vpn, shift, ssize);
+		/* insert new entry */
+		pa = pmd_pfn(__pmd(old_pmd)) << PAGE_SHIFT;
+		new_pmd |= H_PAGE_HASHPTE;
+
+repeat:
+		hpte_group = (hash & htab_hash_mask) * HPTES_PER_GROUP;
+
+		/* Insert into the hash table, primary slot */
+		slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags, 0,
+						psize, lpsize, ssize);
+		/*
+		 * Primary is full, try the secondary
+		 */
+		if (unlikely(slot == -1)) {
+			hpte_group = (~hash & htab_hash_mask) * HPTES_PER_GROUP;
+			slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa,
+							rflags,
+							HPTE_V_SECONDARY,
+							psize, lpsize, ssize);
+			if (slot == -1) {
+				if (mftb() & 0x1)
+					hpte_group = (hash & htab_hash_mask) *
+							HPTES_PER_GROUP;
+
+				mmu_hash_ops.hpte_remove(hpte_group);
+				goto repeat;
+			}
+		}
+		/*
+		 * Hypervisor failure. Restore old pmd and return -1
+		 * similar to __hash_page_*
+		 */
+		if (unlikely(slot == -2)) {
+			*pmdp = __pmd(old_pmd);
+			hash_failure_debug(ea, access, vsid, trap, ssize,
+					   psize, lpsize, old_pmd);
+			return -1;
+		}
+		/*
+		 * large pte is marked busy, so we can be sure
+		 * nobody is looking at hpte_slot_array. hence we can
+		 * safely update this here.
+		 */
+		mark_hpte_slot_valid(hpte_slot_array, index, slot);
+	}
+	/*
+	 * Mark the pte with H_PAGE_COMBO, if we are trying to hash it with
+	 * base page size 4k.
+	 */
+	if (psize == MMU_PAGE_4K)
+		new_pmd |= H_PAGE_COMBO;
+	/*
+	 * The hpte valid is stored in the pgtable whose address is in the
+	 * second half of the PMD. Order this against clearing of the busy bit in
+	 * huge pmd.
+	 */
+	smp_wmb();
+	*pmdp = __pmd(new_pmd & ~H_PAGE_BUSY);
+	return 0;
+}
diff --git a/arch/powerpc/mm/book3s64/hash_hugetlbpage.c b/arch/powerpc/mm/book3s64/hash_hugetlbpage.c
new file mode 100644
index 0000000..eefa89c
--- /dev/null
+++ b/arch/powerpc/mm/book3s64/hash_hugetlbpage.c
@@ -0,0 +1,168 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * PPC64 Huge TLB Page Support for hash based MMUs (POWER4 and later)
+ *
+ * Copyright (C) 2003 David Gibson, IBM Corporation.
+ *
+ * Based on the IA-32 version:
+ * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
+ */
+
+#include <linux/mm.h>
+#include <linux/hugetlb.h>
+#include <asm/pgtable.h>
+#include <asm/pgalloc.h>
+#include <asm/cacheflush.h>
+#include <asm/machdep.h>
+
+unsigned int hpage_shift;
+EXPORT_SYMBOL(hpage_shift);
+
+extern long hpte_insert_repeating(unsigned long hash, unsigned long vpn,
+				  unsigned long pa, unsigned long rlags,
+				  unsigned long vflags, int psize, int ssize);
+
+int __hash_page_huge(unsigned long ea, unsigned long access, unsigned long vsid,
+		     pte_t *ptep, unsigned long trap, unsigned long flags,
+		     int ssize, unsigned int shift, unsigned int mmu_psize)
+{
+	real_pte_t rpte;
+	unsigned long vpn;
+	unsigned long old_pte, new_pte;
+	unsigned long rflags, pa;
+	long slot, offset;
+
+	BUG_ON(shift != mmu_psize_defs[mmu_psize].shift);
+
+	/* Search the Linux page table for a match with va */
+	vpn = hpt_vpn(ea, vsid, ssize);
+
+	/*
+	 * At this point, we have a pte (old_pte) which can be used to build
+	 * or update an HPTE. There are 2 cases:
+	 *
+	 * 1. There is a valid (present) pte with no associated HPTE (this is
+	 *	the most common case)
+	 * 2. There is a valid (present) pte with an associated HPTE. The
+	 *	current values of the pp bits in the HPTE prevent access
+	 *	because we are doing software DIRTY bit management and the
+	 *	page is currently not DIRTY.
+	 */
+
+
+	do {
+		old_pte = pte_val(*ptep);
+		/* If PTE busy, retry the access */
+		if (unlikely(old_pte & H_PAGE_BUSY))
+			return 0;
+		/* If PTE permissions don't match, take page fault */
+		if (unlikely(!check_pte_access(access, old_pte)))
+			return 1;
+
+		/*
+		 * Try to lock the PTE, add ACCESSED and DIRTY if it was
+		 * a write access
+		 */
+		new_pte = old_pte | H_PAGE_BUSY | _PAGE_ACCESSED;
+		if (access & _PAGE_WRITE)
+			new_pte |= _PAGE_DIRTY;
+	} while(!pte_xchg(ptep, __pte(old_pte), __pte(new_pte)));
+
+	/* Make sure this is a hugetlb entry */
+	if (old_pte & (H_PAGE_THP_HUGE | _PAGE_DEVMAP))
+		return 0;
+
+	rflags = htab_convert_pte_flags(new_pte);
+	if (unlikely(mmu_psize == MMU_PAGE_16G))
+		offset = PTRS_PER_PUD;
+	else
+		offset = PTRS_PER_PMD;
+	rpte = __real_pte(__pte(old_pte), ptep, offset);
+
+	if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
+		/*
+		 * No CPU has hugepages but lacks no execute, so we
+		 * don't need to worry about that case
+		 */
+		rflags = hash_page_do_lazy_icache(rflags, __pte(old_pte), trap);
+
+	/* Check if pte already has an hpte (case 2) */
+	if (unlikely(old_pte & H_PAGE_HASHPTE)) {
+		/* There MIGHT be an HPTE for this pte */
+		unsigned long gslot;
+
+		gslot = pte_get_hash_gslot(vpn, shift, ssize, rpte, 0);
+		if (mmu_hash_ops.hpte_updatepp(gslot, rflags, vpn, mmu_psize,
+					       mmu_psize, ssize, flags) == -1)
+			old_pte &= ~_PAGE_HPTEFLAGS;
+	}
+
+	if (likely(!(old_pte & H_PAGE_HASHPTE))) {
+		unsigned long hash = hpt_hash(vpn, shift, ssize);
+
+		pa = pte_pfn(__pte(old_pte)) << PAGE_SHIFT;
+
+		/* clear HPTE slot informations in new PTE */
+		new_pte = (new_pte & ~_PAGE_HPTEFLAGS) | H_PAGE_HASHPTE;
+
+		slot = hpte_insert_repeating(hash, vpn, pa, rflags, 0,
+					     mmu_psize, ssize);
+
+		/*
+		 * Hypervisor failure. Restore old pte and return -1
+		 * similar to __hash_page_*
+		 */
+		if (unlikely(slot == -2)) {
+			*ptep = __pte(old_pte);
+			hash_failure_debug(ea, access, vsid, trap, ssize,
+					   mmu_psize, mmu_psize, old_pte);
+			return -1;
+		}
+
+		new_pte |= pte_set_hidx(ptep, rpte, 0, slot, offset);
+	}
+
+	/*
+	 * No need to use ldarx/stdcx here
+	 */
+	*ptep = __pte(new_pte & ~H_PAGE_BUSY);
+	return 0;
+}
+
+pte_t huge_ptep_modify_prot_start(struct vm_area_struct *vma,
+				  unsigned long addr, pte_t *ptep)
+{
+	unsigned long pte_val;
+	/*
+	 * Clear the _PAGE_PRESENT so that no hardware parallel update is
+	 * possible. Also keep the pte_present true so that we don't take
+	 * wrong fault.
+	 */
+	pte_val = pte_update(vma->vm_mm, addr, ptep,
+			     _PAGE_PRESENT, _PAGE_INVALID, 1);
+
+	return __pte(pte_val);
+}
+
+void huge_ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr,
+				  pte_t *ptep, pte_t old_pte, pte_t pte)
+{
+
+	if (radix_enabled())
+		return radix__huge_ptep_modify_prot_commit(vma, addr, ptep,
+							   old_pte, pte);
+	set_huge_pte_at(vma->vm_mm, addr, ptep, pte);
+}
+
+void hugetlbpage_init_default(void)
+{
+	/* Set default large page size. Currently, we pick 16M or 1M
+	 * depending on what is available
+	 */
+	if (mmu_psize_defs[MMU_PAGE_16M].shift)
+		hpage_shift = mmu_psize_defs[MMU_PAGE_16M].shift;
+	else if (mmu_psize_defs[MMU_PAGE_1M].shift)
+		hpage_shift = mmu_psize_defs[MMU_PAGE_1M].shift;
+	else if (mmu_psize_defs[MMU_PAGE_2M].shift)
+		hpage_shift = mmu_psize_defs[MMU_PAGE_2M].shift;
+}
diff --git a/arch/powerpc/mm/book3s64/hash_native.c b/arch/powerpc/mm/book3s64/hash_native.c
new file mode 100644
index 0000000..523e42e
--- /dev/null
+++ b/arch/powerpc/mm/book3s64/hash_native.c
@@ -0,0 +1,903 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * native hashtable management.
+ *
+ * SMP scalability work:
+ *    Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
+ */
+
+#undef DEBUG_LOW
+
+#include <linux/spinlock.h>
+#include <linux/bitops.h>
+#include <linux/of.h>
+#include <linux/processor.h>
+#include <linux/threads.h>
+#include <linux/smp.h>
+
+#include <asm/machdep.h>
+#include <asm/mmu.h>
+#include <asm/mmu_context.h>
+#include <asm/pgtable.h>
+#include <asm/trace.h>
+#include <asm/tlb.h>
+#include <asm/cputable.h>
+#include <asm/udbg.h>
+#include <asm/kexec.h>
+#include <asm/ppc-opcode.h>
+#include <asm/feature-fixups.h>
+
+#include <misc/cxl-base.h>
+
+#ifdef DEBUG_LOW
+#define DBG_LOW(fmt...) udbg_printf(fmt)
+#else
+#define DBG_LOW(fmt...)
+#endif
+
+#ifdef __BIG_ENDIAN__
+#define HPTE_LOCK_BIT 3
+#else
+#define HPTE_LOCK_BIT (56+3)
+#endif
+
+static DEFINE_RAW_SPINLOCK(native_tlbie_lock);
+
+static inline void tlbiel_hash_set_isa206(unsigned int set, unsigned int is)
+{
+	unsigned long rb;
+
+	rb = (set << PPC_BITLSHIFT(51)) | (is << PPC_BITLSHIFT(53));
+
+	asm volatile("tlbiel %0" : : "r" (rb));
+}
+
+/*
+ * tlbiel instruction for hash, set invalidation
+ * i.e., r=1 and is=01 or is=10 or is=11
+ */
+static __always_inline void tlbiel_hash_set_isa300(unsigned int set, unsigned int is,
+					unsigned int pid,
+					unsigned int ric, unsigned int prs)
+{
+	unsigned long rb;
+	unsigned long rs;
+	unsigned int r = 0; /* hash format */
+
+	rb = (set << PPC_BITLSHIFT(51)) | (is << PPC_BITLSHIFT(53));
+	rs = ((unsigned long)pid << PPC_BITLSHIFT(31));
+
+	asm volatile(PPC_TLBIEL(%0, %1, %2, %3, %4)
+		     : : "r"(rb), "r"(rs), "i"(ric), "i"(prs), "r"(r)
+		     : "memory");
+}
+
+
+static void tlbiel_all_isa206(unsigned int num_sets, unsigned int is)
+{
+	unsigned int set;
+
+	asm volatile("ptesync": : :"memory");
+
+	for (set = 0; set < num_sets; set++)
+		tlbiel_hash_set_isa206(set, is);
+
+	asm volatile("ptesync": : :"memory");
+}
+
+static void tlbiel_all_isa300(unsigned int num_sets, unsigned int is)
+{
+	unsigned int set;
+
+	asm volatile("ptesync": : :"memory");
+
+	/*
+	 * Flush the first set of the TLB, and any caching of partition table
+	 * entries. Then flush the remaining sets of the TLB. Hash mode uses
+	 * partition scoped TLB translations.
+	 */
+	tlbiel_hash_set_isa300(0, is, 0, 2, 0);
+	for (set = 1; set < num_sets; set++)
+		tlbiel_hash_set_isa300(set, is, 0, 0, 0);
+
+	/*
+	 * Now invalidate the process table cache.
+	 *
+	 * From ISA v3.0B p. 1078:
+	 *     The following forms are invalid.
+	 *      * PRS=1, R=0, and RIC!=2 (The only process-scoped
+	 *        HPT caching is of the Process Table.)
+	 */
+	tlbiel_hash_set_isa300(0, is, 0, 2, 1);
+
+	asm volatile("ptesync": : :"memory");
+
+	asm volatile(PPC_ISA_3_0_INVALIDATE_ERAT "; isync" : : :"memory");
+}
+
+void hash__tlbiel_all(unsigned int action)
+{
+	unsigned int is;
+
+	switch (action) {
+	case TLB_INVAL_SCOPE_GLOBAL:
+		is = 3;
+		break;
+	case TLB_INVAL_SCOPE_LPID:
+		is = 2;
+		break;
+	default:
+		BUG();
+	}
+
+	if (early_cpu_has_feature(CPU_FTR_ARCH_300))
+		tlbiel_all_isa300(POWER9_TLB_SETS_HASH, is);
+	else if (early_cpu_has_feature(CPU_FTR_ARCH_207S))
+		tlbiel_all_isa206(POWER8_TLB_SETS, is);
+	else if (early_cpu_has_feature(CPU_FTR_ARCH_206))
+		tlbiel_all_isa206(POWER7_TLB_SETS, is);
+	else
+		WARN(1, "%s called on pre-POWER7 CPU\n", __func__);
+}
+
+static inline unsigned long  ___tlbie(unsigned long vpn, int psize,
+						int apsize, int ssize)
+{
+	unsigned long va;
+	unsigned int penc;
+	unsigned long sllp;
+
+	/*
+	 * We need 14 to 65 bits of va for a tlibe of 4K page
+	 * With vpn we ignore the lower VPN_SHIFT bits already.
+	 * And top two bits are already ignored because we can
+	 * only accomodate 76 bits in a 64 bit vpn with a VPN_SHIFT
+	 * of 12.
+	 */
+	va = vpn << VPN_SHIFT;
+	/*
+	 * clear top 16 bits of 64bit va, non SLS segment
+	 * Older versions of the architecture (2.02 and earler) require the
+	 * masking of the top 16 bits.
+	 */
+	if (mmu_has_feature(MMU_FTR_TLBIE_CROP_VA))
+		va &= ~(0xffffULL << 48);
+
+	switch (psize) {
+	case MMU_PAGE_4K:
+		/* clear out bits after (52) [0....52.....63] */
+		va &= ~((1ul << (64 - 52)) - 1);
+		va |= ssize << 8;
+		sllp = get_sllp_encoding(apsize);
+		va |= sllp << 5;
+		asm volatile(ASM_FTR_IFCLR("tlbie %0,0", PPC_TLBIE(%1,%0), %2)
+			     : : "r" (va), "r"(0), "i" (CPU_FTR_ARCH_206)
+			     : "memory");
+		break;
+	default:
+		/* We need 14 to 14 + i bits of va */
+		penc = mmu_psize_defs[psize].penc[apsize];
+		va &= ~((1ul << mmu_psize_defs[apsize].shift) - 1);
+		va |= penc << 12;
+		va |= ssize << 8;
+		/*
+		 * AVAL bits:
+		 * We don't need all the bits, but rest of the bits
+		 * must be ignored by the processor.
+		 * vpn cover upto 65 bits of va. (0...65) and we need
+		 * 58..64 bits of va.
+		 */
+		va |= (vpn & 0xfe); /* AVAL */
+		va |= 1; /* L */
+		asm volatile(ASM_FTR_IFCLR("tlbie %0,1", PPC_TLBIE(%1,%0), %2)
+			     : : "r" (va), "r"(0), "i" (CPU_FTR_ARCH_206)
+			     : "memory");
+		break;
+	}
+	return va;
+}
+
+static inline void fixup_tlbie_vpn(unsigned long vpn, int psize,
+				   int apsize, int ssize)
+{
+	if (cpu_has_feature(CPU_FTR_P9_TLBIE_ERAT_BUG)) {
+		/* Radix flush for a hash guest */
+
+		unsigned long rb,rs,prs,r,ric;
+
+		rb = PPC_BIT(52); /* IS = 2 */
+		rs = 0;  /* lpid = 0 */
+		prs = 0; /* partition scoped */
+		r = 1;   /* radix format */
+		ric = 0; /* RIC_FLSUH_TLB */
+
+		/*
+		 * Need the extra ptesync to make sure we don't
+		 * re-order the tlbie
+		 */
+		asm volatile("ptesync": : :"memory");
+		asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1)
+			     : : "r"(rb), "i"(r), "i"(prs),
+			       "i"(ric), "r"(rs) : "memory");
+	}
+
+
+	if (cpu_has_feature(CPU_FTR_P9_TLBIE_STQ_BUG)) {
+		/* Need the extra ptesync to ensure we don't reorder tlbie*/
+		asm volatile("ptesync": : :"memory");
+		___tlbie(vpn, psize, apsize, ssize);
+	}
+}
+
+static inline void __tlbie(unsigned long vpn, int psize, int apsize, int ssize)
+{
+	unsigned long rb;
+
+	rb = ___tlbie(vpn, psize, apsize, ssize);
+	trace_tlbie(0, 0, rb, 0, 0, 0, 0);
+}
+
+static inline void __tlbiel(unsigned long vpn, int psize, int apsize, int ssize)
+{
+	unsigned long va;
+	unsigned int penc;
+	unsigned long sllp;
+
+	/* VPN_SHIFT can be atmost 12 */
+	va = vpn << VPN_SHIFT;
+	/*
+	 * clear top 16 bits of 64 bit va, non SLS segment
+	 * Older versions of the architecture (2.02 and earler) require the
+	 * masking of the top 16 bits.
+	 */
+	if (mmu_has_feature(MMU_FTR_TLBIE_CROP_VA))
+		va &= ~(0xffffULL << 48);
+
+	switch (psize) {
+	case MMU_PAGE_4K:
+		/* clear out bits after(52) [0....52.....63] */
+		va &= ~((1ul << (64 - 52)) - 1);
+		va |= ssize << 8;
+		sllp = get_sllp_encoding(apsize);
+		va |= sllp << 5;
+		asm volatile(ASM_FTR_IFSET("tlbiel %0", "tlbiel %0,0", %1)
+			     : : "r" (va), "i" (CPU_FTR_ARCH_206)
+			     : "memory");
+		break;
+	default:
+		/* We need 14 to 14 + i bits of va */
+		penc = mmu_psize_defs[psize].penc[apsize];
+		va &= ~((1ul << mmu_psize_defs[apsize].shift) - 1);
+		va |= penc << 12;
+		va |= ssize << 8;
+		/*
+		 * AVAL bits:
+		 * We don't need all the bits, but rest of the bits
+		 * must be ignored by the processor.
+		 * vpn cover upto 65 bits of va. (0...65) and we need
+		 * 58..64 bits of va.
+		 */
+		va |= (vpn & 0xfe);
+		va |= 1; /* L */
+		asm volatile(ASM_FTR_IFSET("tlbiel %0", "tlbiel %0,1", %1)
+			     : : "r" (va), "i" (CPU_FTR_ARCH_206)
+			     : "memory");
+		break;
+	}
+	trace_tlbie(0, 1, va, 0, 0, 0, 0);
+
+}
+
+static inline void tlbie(unsigned long vpn, int psize, int apsize,
+			 int ssize, int local)
+{
+	unsigned int use_local;
+	int lock_tlbie = !mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE);
+
+	use_local = local && mmu_has_feature(MMU_FTR_TLBIEL) && !cxl_ctx_in_use();
+
+	if (use_local)
+		use_local = mmu_psize_defs[psize].tlbiel;
+	if (lock_tlbie && !use_local)
+		raw_spin_lock(&native_tlbie_lock);
+	asm volatile("ptesync": : :"memory");
+	if (use_local) {
+		__tlbiel(vpn, psize, apsize, ssize);
+		asm volatile("ptesync": : :"memory");
+	} else {
+		__tlbie(vpn, psize, apsize, ssize);
+		fixup_tlbie_vpn(vpn, psize, apsize, ssize);
+		asm volatile("eieio; tlbsync; ptesync": : :"memory");
+	}
+	if (lock_tlbie && !use_local)
+		raw_spin_unlock(&native_tlbie_lock);
+}
+
+static inline void native_lock_hpte(struct hash_pte *hptep)
+{
+	unsigned long *word = (unsigned long *)&hptep->v;
+
+	while (1) {
+		if (!test_and_set_bit_lock(HPTE_LOCK_BIT, word))
+			break;
+		spin_begin();
+		while(test_bit(HPTE_LOCK_BIT, word))
+			spin_cpu_relax();
+		spin_end();
+	}
+}
+
+static inline void native_unlock_hpte(struct hash_pte *hptep)
+{
+	unsigned long *word = (unsigned long *)&hptep->v;
+
+	clear_bit_unlock(HPTE_LOCK_BIT, word);
+}
+
+static long native_hpte_insert(unsigned long hpte_group, unsigned long vpn,
+			unsigned long pa, unsigned long rflags,
+			unsigned long vflags, int psize, int apsize, int ssize)
+{
+	struct hash_pte *hptep = htab_address + hpte_group;
+	unsigned long hpte_v, hpte_r;
+	int i;
+
+	if (!(vflags & HPTE_V_BOLTED)) {
+		DBG_LOW("    insert(group=%lx, vpn=%016lx, pa=%016lx,"
+			" rflags=%lx, vflags=%lx, psize=%d)\n",
+			hpte_group, vpn, pa, rflags, vflags, psize);
+	}
+
+	for (i = 0; i < HPTES_PER_GROUP; i++) {
+		if (! (be64_to_cpu(hptep->v) & HPTE_V_VALID)) {
+			/* retry with lock held */
+			native_lock_hpte(hptep);
+			if (! (be64_to_cpu(hptep->v) & HPTE_V_VALID))
+				break;
+			native_unlock_hpte(hptep);
+		}
+
+		hptep++;
+	}
+
+	if (i == HPTES_PER_GROUP)
+		return -1;
+
+	hpte_v = hpte_encode_v(vpn, psize, apsize, ssize) | vflags | HPTE_V_VALID;
+	hpte_r = hpte_encode_r(pa, psize, apsize) | rflags;
+
+	if (!(vflags & HPTE_V_BOLTED)) {
+		DBG_LOW(" i=%x hpte_v=%016lx, hpte_r=%016lx\n",
+			i, hpte_v, hpte_r);
+	}
+
+	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
+		hpte_r = hpte_old_to_new_r(hpte_v, hpte_r);
+		hpte_v = hpte_old_to_new_v(hpte_v);
+	}
+
+	hptep->r = cpu_to_be64(hpte_r);
+	/* Guarantee the second dword is visible before the valid bit */
+	eieio();
+	/*
+	 * Now set the first dword including the valid bit
+	 * NOTE: this also unlocks the hpte
+	 */
+	hptep->v = cpu_to_be64(hpte_v);
+
+	__asm__ __volatile__ ("ptesync" : : : "memory");
+
+	return i | (!!(vflags & HPTE_V_SECONDARY) << 3);
+}
+
+static long native_hpte_remove(unsigned long hpte_group)
+{
+	struct hash_pte *hptep;
+	int i;
+	int slot_offset;
+	unsigned long hpte_v;
+
+	DBG_LOW("    remove(group=%lx)\n", hpte_group);
+
+	/* pick a random entry to start at */
+	slot_offset = mftb() & 0x7;
+
+	for (i = 0; i < HPTES_PER_GROUP; i++) {
+		hptep = htab_address + hpte_group + slot_offset;
+		hpte_v = be64_to_cpu(hptep->v);
+
+		if ((hpte_v & HPTE_V_VALID) && !(hpte_v & HPTE_V_BOLTED)) {
+			/* retry with lock held */
+			native_lock_hpte(hptep);
+			hpte_v = be64_to_cpu(hptep->v);
+			if ((hpte_v & HPTE_V_VALID)
+			    && !(hpte_v & HPTE_V_BOLTED))
+				break;
+			native_unlock_hpte(hptep);
+		}
+
+		slot_offset++;
+		slot_offset &= 0x7;
+	}
+
+	if (i == HPTES_PER_GROUP)
+		return -1;
+
+	/* Invalidate the hpte. NOTE: this also unlocks it */
+	hptep->v = 0;
+
+	return i;
+}
+
+static long native_hpte_updatepp(unsigned long slot, unsigned long newpp,
+				 unsigned long vpn, int bpsize,
+				 int apsize, int ssize, unsigned long flags)
+{
+	struct hash_pte *hptep = htab_address + slot;
+	unsigned long hpte_v, want_v;
+	int ret = 0, local = 0;
+
+	want_v = hpte_encode_avpn(vpn, bpsize, ssize);
+
+	DBG_LOW("    update(vpn=%016lx, avpnv=%016lx, group=%lx, newpp=%lx)",
+		vpn, want_v & HPTE_V_AVPN, slot, newpp);
+
+	hpte_v = hpte_get_old_v(hptep);
+	/*
+	 * We need to invalidate the TLB always because hpte_remove doesn't do
+	 * a tlb invalidate. If a hash bucket gets full, we "evict" a more/less
+	 * random entry from it. When we do that we don't invalidate the TLB
+	 * (hpte_remove) because we assume the old translation is still
+	 * technically "valid".
+	 */
+	if (!HPTE_V_COMPARE(hpte_v, want_v) || !(hpte_v & HPTE_V_VALID)) {
+		DBG_LOW(" -> miss\n");
+		ret = -1;
+	} else {
+		native_lock_hpte(hptep);
+		/* recheck with locks held */
+		hpte_v = hpte_get_old_v(hptep);
+		if (unlikely(!HPTE_V_COMPARE(hpte_v, want_v) ||
+			     !(hpte_v & HPTE_V_VALID))) {
+			ret = -1;
+		} else {
+			DBG_LOW(" -> hit\n");
+			/* Update the HPTE */
+			hptep->r = cpu_to_be64((be64_to_cpu(hptep->r) &
+						~(HPTE_R_PPP | HPTE_R_N)) |
+					       (newpp & (HPTE_R_PPP | HPTE_R_N |
+							 HPTE_R_C)));
+		}
+		native_unlock_hpte(hptep);
+	}
+
+	if (flags & HPTE_LOCAL_UPDATE)
+		local = 1;
+	/*
+	 * Ensure it is out of the tlb too if it is not a nohpte fault
+	 */
+	if (!(flags & HPTE_NOHPTE_UPDATE))
+		tlbie(vpn, bpsize, apsize, ssize, local);
+
+	return ret;
+}
+
+static long native_hpte_find(unsigned long vpn, int psize, int ssize)
+{
+	struct hash_pte *hptep;
+	unsigned long hash;
+	unsigned long i;
+	long slot;
+	unsigned long want_v, hpte_v;
+
+	hash = hpt_hash(vpn, mmu_psize_defs[psize].shift, ssize);
+	want_v = hpte_encode_avpn(vpn, psize, ssize);
+
+	/* Bolted mappings are only ever in the primary group */
+	slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
+	for (i = 0; i < HPTES_PER_GROUP; i++) {
+
+		hptep = htab_address + slot;
+		hpte_v = hpte_get_old_v(hptep);
+		if (HPTE_V_COMPARE(hpte_v, want_v) && (hpte_v & HPTE_V_VALID))
+			/* HPTE matches */
+			return slot;
+		++slot;
+	}
+
+	return -1;
+}
+
+/*
+ * Update the page protection bits. Intended to be used to create
+ * guard pages for kernel data structures on pages which are bolted
+ * in the HPT. Assumes pages being operated on will not be stolen.
+ *
+ * No need to lock here because we should be the only user.
+ */
+static void native_hpte_updateboltedpp(unsigned long newpp, unsigned long ea,
+				       int psize, int ssize)
+{
+	unsigned long vpn;
+	unsigned long vsid;
+	long slot;
+	struct hash_pte *hptep;
+
+	vsid = get_kernel_vsid(ea, ssize);
+	vpn = hpt_vpn(ea, vsid, ssize);
+
+	slot = native_hpte_find(vpn, psize, ssize);
+	if (slot == -1)
+		panic("could not find page to bolt\n");
+	hptep = htab_address + slot;
+
+	/* Update the HPTE */
+	hptep->r = cpu_to_be64((be64_to_cpu(hptep->r) &
+				~(HPTE_R_PPP | HPTE_R_N)) |
+			       (newpp & (HPTE_R_PPP | HPTE_R_N)));
+	/*
+	 * Ensure it is out of the tlb too. Bolted entries base and
+	 * actual page size will be same.
+	 */
+	tlbie(vpn, psize, psize, ssize, 0);
+}
+
+/*
+ * Remove a bolted kernel entry. Memory hotplug uses this.
+ *
+ * No need to lock here because we should be the only user.
+ */
+static int native_hpte_removebolted(unsigned long ea, int psize, int ssize)
+{
+	unsigned long vpn;
+	unsigned long vsid;
+	long slot;
+	struct hash_pte *hptep;
+
+	vsid = get_kernel_vsid(ea, ssize);
+	vpn = hpt_vpn(ea, vsid, ssize);
+
+	slot = native_hpte_find(vpn, psize, ssize);
+	if (slot == -1)
+		return -ENOENT;
+
+	hptep = htab_address + slot;
+
+	VM_WARN_ON(!(be64_to_cpu(hptep->v) & HPTE_V_BOLTED));
+
+	/* Invalidate the hpte */
+	hptep->v = 0;
+
+	/* Invalidate the TLB */
+	tlbie(vpn, psize, psize, ssize, 0);
+	return 0;
+}
+
+
+static void native_hpte_invalidate(unsigned long slot, unsigned long vpn,
+				   int bpsize, int apsize, int ssize, int local)
+{
+	struct hash_pte *hptep = htab_address + slot;
+	unsigned long hpte_v;
+	unsigned long want_v;
+	unsigned long flags;
+
+	local_irq_save(flags);
+
+	DBG_LOW("    invalidate(vpn=%016lx, hash: %lx)\n", vpn, slot);
+
+	want_v = hpte_encode_avpn(vpn, bpsize, ssize);
+	hpte_v = hpte_get_old_v(hptep);
+
+	if (HPTE_V_COMPARE(hpte_v, want_v) && (hpte_v & HPTE_V_VALID)) {
+		native_lock_hpte(hptep);
+		/* recheck with locks held */
+		hpte_v = hpte_get_old_v(hptep);
+
+		if (HPTE_V_COMPARE(hpte_v, want_v) && (hpte_v & HPTE_V_VALID))
+			/* Invalidate the hpte. NOTE: this also unlocks it */
+			hptep->v = 0;
+		else
+			native_unlock_hpte(hptep);
+	}
+	/*
+	 * We need to invalidate the TLB always because hpte_remove doesn't do
+	 * a tlb invalidate. If a hash bucket gets full, we "evict" a more/less
+	 * random entry from it. When we do that we don't invalidate the TLB
+	 * (hpte_remove) because we assume the old translation is still
+	 * technically "valid".
+	 */
+	tlbie(vpn, bpsize, apsize, ssize, local);
+
+	local_irq_restore(flags);
+}
+
+#ifdef CONFIG_TRANSPARENT_HUGEPAGE
+static void native_hugepage_invalidate(unsigned long vsid,
+				       unsigned long addr,
+				       unsigned char *hpte_slot_array,
+				       int psize, int ssize, int local)
+{
+	int i;
+	struct hash_pte *hptep;
+	int actual_psize = MMU_PAGE_16M;
+	unsigned int max_hpte_count, valid;
+	unsigned long flags, s_addr = addr;
+	unsigned long hpte_v, want_v, shift;
+	unsigned long hidx, vpn = 0, hash, slot;
+
+	shift = mmu_psize_defs[psize].shift;
+	max_hpte_count = 1U << (PMD_SHIFT - shift);
+
+	local_irq_save(flags);
+	for (i = 0; i < max_hpte_count; i++) {
+		valid = hpte_valid(hpte_slot_array, i);
+		if (!valid)
+			continue;
+		hidx =  hpte_hash_index(hpte_slot_array, i);
+
+		/* get the vpn */
+		addr = s_addr + (i * (1ul << shift));
+		vpn = hpt_vpn(addr, vsid, ssize);
+		hash = hpt_hash(vpn, shift, ssize);
+		if (hidx & _PTEIDX_SECONDARY)
+			hash = ~hash;
+
+		slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
+		slot += hidx & _PTEIDX_GROUP_IX;
+
+		hptep = htab_address + slot;
+		want_v = hpte_encode_avpn(vpn, psize, ssize);
+		hpte_v = hpte_get_old_v(hptep);
+
+		/* Even if we miss, we need to invalidate the TLB */
+		if (HPTE_V_COMPARE(hpte_v, want_v) && (hpte_v & HPTE_V_VALID)) {
+			/* recheck with locks held */
+			native_lock_hpte(hptep);
+			hpte_v = hpte_get_old_v(hptep);
+
+			if (HPTE_V_COMPARE(hpte_v, want_v) && (hpte_v & HPTE_V_VALID)) {
+				/*
+				 * Invalidate the hpte. NOTE: this also unlocks it
+				 */
+
+				hptep->v = 0;
+			} else
+				native_unlock_hpte(hptep);
+		}
+		/*
+		 * We need to do tlb invalidate for all the address, tlbie
+		 * instruction compares entry_VA in tlb with the VA specified
+		 * here
+		 */
+		tlbie(vpn, psize, actual_psize, ssize, local);
+	}
+	local_irq_restore(flags);
+}
+#else
+static void native_hugepage_invalidate(unsigned long vsid,
+				       unsigned long addr,
+				       unsigned char *hpte_slot_array,
+				       int psize, int ssize, int local)
+{
+	WARN(1, "%s called without THP support\n", __func__);
+}
+#endif
+
+static void hpte_decode(struct hash_pte *hpte, unsigned long slot,
+			int *psize, int *apsize, int *ssize, unsigned long *vpn)
+{
+	unsigned long avpn, pteg, vpi;
+	unsigned long hpte_v = be64_to_cpu(hpte->v);
+	unsigned long hpte_r = be64_to_cpu(hpte->r);
+	unsigned long vsid, seg_off;
+	int size, a_size, shift;
+	/* Look at the 8 bit LP value */
+	unsigned int lp = (hpte_r >> LP_SHIFT) & ((1 << LP_BITS) - 1);
+
+	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
+		hpte_v = hpte_new_to_old_v(hpte_v, hpte_r);
+		hpte_r = hpte_new_to_old_r(hpte_r);
+	}
+	if (!(hpte_v & HPTE_V_LARGE)) {
+		size   = MMU_PAGE_4K;
+		a_size = MMU_PAGE_4K;
+	} else {
+		size = hpte_page_sizes[lp] & 0xf;
+		a_size = hpte_page_sizes[lp] >> 4;
+	}
+	/* This works for all page sizes, and for 256M and 1T segments */
+	*ssize = hpte_v >> HPTE_V_SSIZE_SHIFT;
+	shift = mmu_psize_defs[size].shift;
+
+	avpn = (HPTE_V_AVPN_VAL(hpte_v) & ~mmu_psize_defs[size].avpnm);
+	pteg = slot / HPTES_PER_GROUP;
+	if (hpte_v & HPTE_V_SECONDARY)
+		pteg = ~pteg;
+
+	switch (*ssize) {
+	case MMU_SEGSIZE_256M:
+		/* We only have 28 - 23 bits of seg_off in avpn */
+		seg_off = (avpn & 0x1f) << 23;
+		vsid    =  avpn >> 5;
+		/* We can find more bits from the pteg value */
+		if (shift < 23) {
+			vpi = (vsid ^ pteg) & htab_hash_mask;
+			seg_off |= vpi << shift;
+		}
+		*vpn = vsid << (SID_SHIFT - VPN_SHIFT) | seg_off >> VPN_SHIFT;
+		break;
+	case MMU_SEGSIZE_1T:
+		/* We only have 40 - 23 bits of seg_off in avpn */
+		seg_off = (avpn & 0x1ffff) << 23;
+		vsid    = avpn >> 17;
+		if (shift < 23) {
+			vpi = (vsid ^ (vsid << 25) ^ pteg) & htab_hash_mask;
+			seg_off |= vpi << shift;
+		}
+		*vpn = vsid << (SID_SHIFT_1T - VPN_SHIFT) | seg_off >> VPN_SHIFT;
+		break;
+	default:
+		*vpn = size = 0;
+	}
+	*psize  = size;
+	*apsize = a_size;
+}
+
+/*
+ * clear all mappings on kexec.  All cpus are in real mode (or they will
+ * be when they isi), and we are the only one left.  We rely on our kernel
+ * mapping being 0xC0's and the hardware ignoring those two real bits.
+ *
+ * This must be called with interrupts disabled.
+ *
+ * Taking the native_tlbie_lock is unsafe here due to the possibility of
+ * lockdep being on. On pre POWER5 hardware, not taking the lock could
+ * cause deadlock. POWER5 and newer not taking the lock is fine. This only
+ * gets called during boot before secondary CPUs have come up and during
+ * crashdump and all bets are off anyway.
+ *
+ * TODO: add batching support when enabled.  remember, no dynamic memory here,
+ * although there is the control page available...
+ */
+static void native_hpte_clear(void)
+{
+	unsigned long vpn = 0;
+	unsigned long slot, slots;
+	struct hash_pte *hptep = htab_address;
+	unsigned long hpte_v;
+	unsigned long pteg_count;
+	int psize, apsize, ssize;
+
+	pteg_count = htab_hash_mask + 1;
+
+	slots = pteg_count * HPTES_PER_GROUP;
+
+	for (slot = 0; slot < slots; slot++, hptep++) {
+		/*
+		 * we could lock the pte here, but we are the only cpu
+		 * running,  right?  and for crash dump, we probably
+		 * don't want to wait for a maybe bad cpu.
+		 */
+		hpte_v = be64_to_cpu(hptep->v);
+
+		/*
+		 * Call __tlbie() here rather than tlbie() since we can't take the
+		 * native_tlbie_lock.
+		 */
+		if (hpte_v & HPTE_V_VALID) {
+			hpte_decode(hptep, slot, &psize, &apsize, &ssize, &vpn);
+			hptep->v = 0;
+			___tlbie(vpn, psize, apsize, ssize);
+		}
+	}
+
+	asm volatile("eieio; tlbsync; ptesync":::"memory");
+}
+
+/*
+ * Batched hash table flush, we batch the tlbie's to avoid taking/releasing
+ * the lock all the time
+ */
+static void native_flush_hash_range(unsigned long number, int local)
+{
+	unsigned long vpn = 0;
+	unsigned long hash, index, hidx, shift, slot;
+	struct hash_pte *hptep;
+	unsigned long hpte_v;
+	unsigned long want_v;
+	unsigned long flags;
+	real_pte_t pte;
+	struct ppc64_tlb_batch *batch = this_cpu_ptr(&ppc64_tlb_batch);
+	unsigned long psize = batch->psize;
+	int ssize = batch->ssize;
+	int i;
+	unsigned int use_local;
+
+	use_local = local && mmu_has_feature(MMU_FTR_TLBIEL) &&
+		mmu_psize_defs[psize].tlbiel && !cxl_ctx_in_use();
+
+	local_irq_save(flags);
+
+	for (i = 0; i < number; i++) {
+		vpn = batch->vpn[i];
+		pte = batch->pte[i];
+
+		pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
+			hash = hpt_hash(vpn, shift, ssize);
+			hidx = __rpte_to_hidx(pte, index);
+			if (hidx & _PTEIDX_SECONDARY)
+				hash = ~hash;
+			slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
+			slot += hidx & _PTEIDX_GROUP_IX;
+			hptep = htab_address + slot;
+			want_v = hpte_encode_avpn(vpn, psize, ssize);
+			hpte_v = hpte_get_old_v(hptep);
+
+			if (!HPTE_V_COMPARE(hpte_v, want_v) || !(hpte_v & HPTE_V_VALID))
+				continue;
+			/* lock and try again */
+			native_lock_hpte(hptep);
+			hpte_v = hpte_get_old_v(hptep);
+
+			if (!HPTE_V_COMPARE(hpte_v, want_v) || !(hpte_v & HPTE_V_VALID))
+				native_unlock_hpte(hptep);
+			else
+				hptep->v = 0;
+
+		} pte_iterate_hashed_end();
+	}
+
+	if (use_local) {
+		asm volatile("ptesync":::"memory");
+		for (i = 0; i < number; i++) {
+			vpn = batch->vpn[i];
+			pte = batch->pte[i];
+
+			pte_iterate_hashed_subpages(pte, psize,
+						    vpn, index, shift) {
+				__tlbiel(vpn, psize, psize, ssize);
+			} pte_iterate_hashed_end();
+		}
+		asm volatile("ptesync":::"memory");
+	} else {
+		int lock_tlbie = !mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE);
+
+		if (lock_tlbie)
+			raw_spin_lock(&native_tlbie_lock);
+
+		asm volatile("ptesync":::"memory");
+		for (i = 0; i < number; i++) {
+			vpn = batch->vpn[i];
+			pte = batch->pte[i];
+
+			pte_iterate_hashed_subpages(pte, psize,
+						    vpn, index, shift) {
+				__tlbie(vpn, psize, psize, ssize);
+			} pte_iterate_hashed_end();
+		}
+		/*
+		 * Just do one more with the last used values.
+		 */
+		fixup_tlbie_vpn(vpn, psize, psize, ssize);
+		asm volatile("eieio; tlbsync; ptesync":::"memory");
+
+		if (lock_tlbie)
+			raw_spin_unlock(&native_tlbie_lock);
+	}
+
+	local_irq_restore(flags);
+}
+
+void __init hpte_init_native(void)
+{
+	mmu_hash_ops.hpte_invalidate	= native_hpte_invalidate;
+	mmu_hash_ops.hpte_updatepp	= native_hpte_updatepp;
+	mmu_hash_ops.hpte_updateboltedpp = native_hpte_updateboltedpp;
+	mmu_hash_ops.hpte_removebolted = native_hpte_removebolted;
+	mmu_hash_ops.hpte_insert	= native_hpte_insert;
+	mmu_hash_ops.hpte_remove	= native_hpte_remove;
+	mmu_hash_ops.hpte_clear_all	= native_hpte_clear;
+	mmu_hash_ops.flush_hash_range = native_flush_hash_range;
+	mmu_hash_ops.hugepage_invalidate   = native_hugepage_invalidate;
+}
diff --git a/arch/powerpc/mm/book3s64/hash_pgtable.c b/arch/powerpc/mm/book3s64/hash_pgtable.c
new file mode 100644
index 0000000..64733b9
--- /dev/null
+++ b/arch/powerpc/mm/book3s64/hash_pgtable.c
@@ -0,0 +1,461 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * Copyright 2005, Paul Mackerras, IBM Corporation.
+ * Copyright 2009, Benjamin Herrenschmidt, IBM Corporation.
+ * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
+ */
+
+#include <linux/sched.h>
+#include <linux/mm_types.h>
+#include <linux/mm.h>
+
+#include <asm/pgalloc.h>
+#include <asm/pgtable.h>
+#include <asm/sections.h>
+#include <asm/mmu.h>
+#include <asm/tlb.h>
+
+#include <mm/mmu_decl.h>
+
+#define CREATE_TRACE_POINTS
+#include <trace/events/thp.h>
+
+#if H_PGTABLE_RANGE > (USER_VSID_RANGE * (TASK_SIZE_USER64 / TASK_CONTEXT_SIZE))
+#warning Limited user VSID range means pagetable space is wasted
+#endif
+
+#ifdef CONFIG_SPARSEMEM_VMEMMAP
+/*
+ * vmemmap is the starting address of the virtual address space where
+ * struct pages are allocated for all possible PFNs present on the system
+ * including holes and bad memory (hence sparse). These virtual struct
+ * pages are stored in sequence in this virtual address space irrespective
+ * of the fact whether the corresponding PFN is valid or not. This achieves
+ * constant relationship between address of struct page and its PFN.
+ *
+ * During boot or memory hotplug operation when a new memory section is
+ * added, physical memory allocation (including hash table bolting) will
+ * be performed for the set of struct pages which are part of the memory
+ * section. This saves memory by not allocating struct pages for PFNs
+ * which are not valid.
+ *
+ *		----------------------------------------------
+ *		| PHYSICAL ALLOCATION OF VIRTUAL STRUCT PAGES|
+ *		----------------------------------------------
+ *
+ *	   f000000000000000                  c000000000000000
+ * vmemmap +--------------+                  +--------------+
+ *  +      |  page struct | +--------------> |  page struct |
+ *  |      +--------------+                  +--------------+
+ *  |      |  page struct | +--------------> |  page struct |
+ *  |      +--------------+ |                +--------------+
+ *  |      |  page struct | +       +------> |  page struct |
+ *  |      +--------------+         |        +--------------+
+ *  |      |  page struct |         |   +--> |  page struct |
+ *  |      +--------------+         |   |    +--------------+
+ *  |      |  page struct |         |   |
+ *  |      +--------------+         |   |
+ *  |      |  page struct |         |   |
+ *  |      +--------------+         |   |
+ *  |      |  page struct |         |   |
+ *  |      +--------------+         |   |
+ *  |      |  page struct |         |   |
+ *  |      +--------------+         |   |
+ *  |      |  page struct | +-------+   |
+ *  |      +--------------+             |
+ *  |      |  page struct | +-----------+
+ *  |      +--------------+
+ *  |      |  page struct | No mapping
+ *  |      +--------------+
+ *  |      |  page struct | No mapping
+ *  v      +--------------+
+ *
+ *		-----------------------------------------
+ *		| RELATION BETWEEN STRUCT PAGES AND PFNS|
+ *		-----------------------------------------
+ *
+ * vmemmap +--------------+                 +---------------+
+ *  +      |  page struct | +-------------> |      PFN      |
+ *  |      +--------------+                 +---------------+
+ *  |      |  page struct | +-------------> |      PFN      |
+ *  |      +--------------+                 +---------------+
+ *  |      |  page struct | +-------------> |      PFN      |
+ *  |      +--------------+                 +---------------+
+ *  |      |  page struct | +-------------> |      PFN      |
+ *  |      +--------------+                 +---------------+
+ *  |      |              |
+ *  |      +--------------+
+ *  |      |              |
+ *  |      +--------------+
+ *  |      |              |
+ *  |      +--------------+                 +---------------+
+ *  |      |  page struct | +-------------> |      PFN      |
+ *  |      +--------------+                 +---------------+
+ *  |      |              |
+ *  |      +--------------+
+ *  |      |              |
+ *  |      +--------------+                 +---------------+
+ *  |      |  page struct | +-------------> |      PFN      |
+ *  |      +--------------+                 +---------------+
+ *  |      |  page struct | +-------------> |      PFN      |
+ *  v      +--------------+                 +---------------+
+ */
+/*
+ * On hash-based CPUs, the vmemmap is bolted in the hash table.
+ *
+ */
+int __meminit hash__vmemmap_create_mapping(unsigned long start,
+				       unsigned long page_size,
+				       unsigned long phys)
+{
+	int rc;
+
+	if ((start + page_size) >= H_VMEMMAP_END) {
+		pr_warn("Outside the supported range\n");
+		return -1;
+	}
+
+	rc = htab_bolt_mapping(start, start + page_size, phys,
+			       pgprot_val(PAGE_KERNEL),
+			       mmu_vmemmap_psize, mmu_kernel_ssize);
+	if (rc < 0) {
+		int rc2 = htab_remove_mapping(start, start + page_size,
+					      mmu_vmemmap_psize,
+					      mmu_kernel_ssize);
+		BUG_ON(rc2 && (rc2 != -ENOENT));
+	}
+	return rc;
+}
+
+#ifdef CONFIG_MEMORY_HOTPLUG
+void hash__vmemmap_remove_mapping(unsigned long start,
+			      unsigned long page_size)
+{
+	int rc = htab_remove_mapping(start, start + page_size,
+				     mmu_vmemmap_psize,
+				     mmu_kernel_ssize);
+	BUG_ON((rc < 0) && (rc != -ENOENT));
+	WARN_ON(rc == -ENOENT);
+}
+#endif
+#endif /* CONFIG_SPARSEMEM_VMEMMAP */
+
+/*
+ * map_kernel_page currently only called by __ioremap
+ * map_kernel_page adds an entry to the ioremap page table
+ * and adds an entry to the HPT, possibly bolting it
+ */
+int hash__map_kernel_page(unsigned long ea, unsigned long pa, pgprot_t prot)
+{
+	pgd_t *pgdp;
+	pud_t *pudp;
+	pmd_t *pmdp;
+	pte_t *ptep;
+
+	BUILD_BUG_ON(TASK_SIZE_USER64 > H_PGTABLE_RANGE);
+	if (slab_is_available()) {
+		pgdp = pgd_offset_k(ea);
+		pudp = pud_alloc(&init_mm, pgdp, ea);
+		if (!pudp)
+			return -ENOMEM;
+		pmdp = pmd_alloc(&init_mm, pudp, ea);
+		if (!pmdp)
+			return -ENOMEM;
+		ptep = pte_alloc_kernel(pmdp, ea);
+		if (!ptep)
+			return -ENOMEM;
+		set_pte_at(&init_mm, ea, ptep, pfn_pte(pa >> PAGE_SHIFT, prot));
+	} else {
+		/*
+		 * If the mm subsystem is not fully up, we cannot create a
+		 * linux page table entry for this mapping.  Simply bolt an
+		 * entry in the hardware page table.
+		 *
+		 */
+		if (htab_bolt_mapping(ea, ea + PAGE_SIZE, pa, pgprot_val(prot),
+				      mmu_io_psize, mmu_kernel_ssize)) {
+			printk(KERN_ERR "Failed to do bolted mapping IO "
+			       "memory at %016lx !\n", pa);
+			return -ENOMEM;
+		}
+	}
+
+	smp_wmb();
+	return 0;
+}
+
+#ifdef CONFIG_TRANSPARENT_HUGEPAGE
+
+unsigned long hash__pmd_hugepage_update(struct mm_struct *mm, unsigned long addr,
+				    pmd_t *pmdp, unsigned long clr,
+				    unsigned long set)
+{
+	__be64 old_be, tmp;
+	unsigned long old;
+
+#ifdef CONFIG_DEBUG_VM
+	WARN_ON(!hash__pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
+	assert_spin_locked(pmd_lockptr(mm, pmdp));
+#endif
+
+	__asm__ __volatile__(
+	"1:	ldarx	%0,0,%3\n\
+		and.	%1,%0,%6\n\
+		bne-	1b \n\
+		andc	%1,%0,%4 \n\
+		or	%1,%1,%7\n\
+		stdcx.	%1,0,%3 \n\
+		bne-	1b"
+	: "=&r" (old_be), "=&r" (tmp), "=m" (*pmdp)
+	: "r" (pmdp), "r" (cpu_to_be64(clr)), "m" (*pmdp),
+	  "r" (cpu_to_be64(H_PAGE_BUSY)), "r" (cpu_to_be64(set))
+	: "cc" );
+
+	old = be64_to_cpu(old_be);
+
+	trace_hugepage_update(addr, old, clr, set);
+	if (old & H_PAGE_HASHPTE)
+		hpte_do_hugepage_flush(mm, addr, pmdp, old);
+	return old;
+}
+
+pmd_t hash__pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address,
+			    pmd_t *pmdp)
+{
+	pmd_t pmd;
+
+	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
+	VM_BUG_ON(pmd_trans_huge(*pmdp));
+	VM_BUG_ON(pmd_devmap(*pmdp));
+
+	pmd = *pmdp;
+	pmd_clear(pmdp);
+	/*
+	 * Wait for all pending hash_page to finish. This is needed
+	 * in case of subpage collapse. When we collapse normal pages
+	 * to hugepage, we first clear the pmd, then invalidate all
+	 * the PTE entries. The assumption here is that any low level
+	 * page fault will see a none pmd and take the slow path that
+	 * will wait on mmap_sem. But we could very well be in a
+	 * hash_page with local ptep pointer value. Such a hash page
+	 * can result in adding new HPTE entries for normal subpages.
+	 * That means we could be modifying the page content as we
+	 * copy them to a huge page. So wait for parallel hash_page
+	 * to finish before invalidating HPTE entries. We can do this
+	 * by sending an IPI to all the cpus and executing a dummy
+	 * function there.
+	 */
+	serialize_against_pte_lookup(vma->vm_mm);
+	/*
+	 * Now invalidate the hpte entries in the range
+	 * covered by pmd. This make sure we take a
+	 * fault and will find the pmd as none, which will
+	 * result in a major fault which takes mmap_sem and
+	 * hence wait for collapse to complete. Without this
+	 * the __collapse_huge_page_copy can result in copying
+	 * the old content.
+	 */
+	flush_tlb_pmd_range(vma->vm_mm, &pmd, address);
+	return pmd;
+}
+
+/*
+ * We want to put the pgtable in pmd and use pgtable for tracking
+ * the base page size hptes
+ */
+void hash__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
+				  pgtable_t pgtable)
+{
+	pgtable_t *pgtable_slot;
+
+	assert_spin_locked(pmd_lockptr(mm, pmdp));
+	/*
+	 * we store the pgtable in the second half of PMD
+	 */
+	pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
+	*pgtable_slot = pgtable;
+	/*
+	 * expose the deposited pgtable to other cpus.
+	 * before we set the hugepage PTE at pmd level
+	 * hash fault code looks at the deposted pgtable
+	 * to store hash index values.
+	 */
+	smp_wmb();
+}
+
+pgtable_t hash__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
+{
+	pgtable_t pgtable;
+	pgtable_t *pgtable_slot;
+
+	assert_spin_locked(pmd_lockptr(mm, pmdp));
+
+	pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
+	pgtable = *pgtable_slot;
+	/*
+	 * Once we withdraw, mark the entry NULL.
+	 */
+	*pgtable_slot = NULL;
+	/*
+	 * We store HPTE information in the deposited PTE fragment.
+	 * zero out the content on withdraw.
+	 */
+	memset(pgtable, 0, PTE_FRAG_SIZE);
+	return pgtable;
+}
+
+/*
+ * A linux hugepage PMD was changed and the corresponding hash table entries
+ * neesd to be flushed.
+ */
+void hpte_do_hugepage_flush(struct mm_struct *mm, unsigned long addr,
+			    pmd_t *pmdp, unsigned long old_pmd)
+{
+	int ssize;
+	unsigned int psize;
+	unsigned long vsid;
+	unsigned long flags = 0;
+
+	/* get the base page size,vsid and segment size */
+#ifdef CONFIG_DEBUG_VM
+	psize = get_slice_psize(mm, addr);
+	BUG_ON(psize == MMU_PAGE_16M);
+#endif
+	if (old_pmd & H_PAGE_COMBO)
+		psize = MMU_PAGE_4K;
+	else
+		psize = MMU_PAGE_64K;
+
+	if (!is_kernel_addr(addr)) {
+		ssize = user_segment_size(addr);
+		vsid = get_user_vsid(&mm->context, addr, ssize);
+		WARN_ON(vsid == 0);
+	} else {
+		vsid = get_kernel_vsid(addr, mmu_kernel_ssize);
+		ssize = mmu_kernel_ssize;
+	}
+
+	if (mm_is_thread_local(mm))
+		flags |= HPTE_LOCAL_UPDATE;
+
+	return flush_hash_hugepage(vsid, addr, pmdp, psize, ssize, flags);
+}
+
+pmd_t hash__pmdp_huge_get_and_clear(struct mm_struct *mm,
+				unsigned long addr, pmd_t *pmdp)
+{
+	pmd_t old_pmd;
+	pgtable_t pgtable;
+	unsigned long old;
+	pgtable_t *pgtable_slot;
+
+	old = pmd_hugepage_update(mm, addr, pmdp, ~0UL, 0);
+	old_pmd = __pmd(old);
+	/*
+	 * We have pmd == none and we are holding page_table_lock.
+	 * So we can safely go and clear the pgtable hash
+	 * index info.
+	 */
+	pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
+	pgtable = *pgtable_slot;
+	/*
+	 * Let's zero out old valid and hash index details
+	 * hash fault look at them.
+	 */
+	memset(pgtable, 0, PTE_FRAG_SIZE);
+	/*
+	 * Serialize against find_current_mm_pte variants which does lock-less
+	 * lookup in page tables with local interrupts disabled. For huge pages
+	 * it casts pmd_t to pte_t. Since format of pte_t is different from
+	 * pmd_t we want to prevent transit from pmd pointing to page table
+	 * to pmd pointing to huge page (and back) while interrupts are disabled.
+	 * We clear pmd to possibly replace it with page table pointer in
+	 * different code paths. So make sure we wait for the parallel
+	 * find_curren_mm_pte to finish.
+	 */
+	serialize_against_pte_lookup(mm);
+	return old_pmd;
+}
+
+int hash__has_transparent_hugepage(void)
+{
+
+	if (!mmu_has_feature(MMU_FTR_16M_PAGE))
+		return 0;
+	/*
+	 * We support THP only if PMD_SIZE is 16MB.
+	 */
+	if (mmu_psize_defs[MMU_PAGE_16M].shift != PMD_SHIFT)
+		return 0;
+	/*
+	 * We need to make sure that we support 16MB hugepage in a segement
+	 * with base page size 64K or 4K. We only enable THP with a PAGE_SIZE
+	 * of 64K.
+	 */
+	/*
+	 * If we have 64K HPTE, we will be using that by default
+	 */
+	if (mmu_psize_defs[MMU_PAGE_64K].shift &&
+	    (mmu_psize_defs[MMU_PAGE_64K].penc[MMU_PAGE_16M] == -1))
+		return 0;
+	/*
+	 * Ok we only have 4K HPTE
+	 */
+	if (mmu_psize_defs[MMU_PAGE_4K].penc[MMU_PAGE_16M] == -1)
+		return 0;
+
+	return 1;
+}
+EXPORT_SYMBOL_GPL(hash__has_transparent_hugepage);
+
+#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
+
+#ifdef CONFIG_STRICT_KERNEL_RWX
+static bool hash__change_memory_range(unsigned long start, unsigned long end,
+				      unsigned long newpp)
+{
+	unsigned long idx;
+	unsigned int step, shift;
+
+	shift = mmu_psize_defs[mmu_linear_psize].shift;
+	step = 1 << shift;
+
+	start = ALIGN_DOWN(start, step);
+	end = ALIGN(end, step); // aligns up
+
+	if (start >= end)
+		return false;
+
+	pr_debug("Changing page protection on range 0x%lx-0x%lx, to 0x%lx, step 0x%x\n",
+		 start, end, newpp, step);
+
+	for (idx = start; idx < end; idx += step)
+		/* Not sure if we can do much with the return value */
+		mmu_hash_ops.hpte_updateboltedpp(newpp, idx, mmu_linear_psize,
+							mmu_kernel_ssize);
+
+	return true;
+}
+
+void hash__mark_rodata_ro(void)
+{
+	unsigned long start, end;
+
+	start = (unsigned long)_stext;
+	end = (unsigned long)__init_begin;
+
+	WARN_ON(!hash__change_memory_range(start, end, PP_RXXX));
+}
+
+void hash__mark_initmem_nx(void)
+{
+	unsigned long start, end, pp;
+
+	start = (unsigned long)__init_begin;
+	end = (unsigned long)__init_end;
+
+	pp = htab_convert_pte_flags(pgprot_val(PAGE_KERNEL));
+
+	WARN_ON(!hash__change_memory_range(start, end, pp));
+}
+#endif
diff --git a/arch/powerpc/mm/book3s64/hash_tlb.c b/arch/powerpc/mm/book3s64/hash_tlb.c
new file mode 100644
index 0000000..4a70d8d
--- /dev/null
+++ b/arch/powerpc/mm/book3s64/hash_tlb.c
@@ -0,0 +1,261 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * This file contains the routines for flushing entries from the
+ * TLB and MMU hash table.
+ *
+ *  Derived from arch/ppc64/mm/init.c:
+ *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
+ *
+ *  Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
+ *  and Cort Dougan (PReP) (cort@cs.nmt.edu)
+ *    Copyright (C) 1996 Paul Mackerras
+ *
+ *  Derived from "arch/i386/mm/init.c"
+ *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
+ *
+ *  Dave Engebretsen <engebret@us.ibm.com>
+ *      Rework for PPC64 port.
+ */
+
+#include <linux/kernel.h>
+#include <linux/mm.h>
+#include <linux/percpu.h>
+#include <linux/hardirq.h>
+#include <asm/pgalloc.h>
+#include <asm/tlbflush.h>
+#include <asm/tlb.h>
+#include <asm/bug.h>
+#include <asm/pte-walk.h>
+
+
+#include <trace/events/thp.h>
+
+DEFINE_PER_CPU(struct ppc64_tlb_batch, ppc64_tlb_batch);
+
+/*
+ * A linux PTE was changed and the corresponding hash table entry
+ * neesd to be flushed. This function will either perform the flush
+ * immediately or will batch it up if the current CPU has an active
+ * batch on it.
+ */
+void hpte_need_flush(struct mm_struct *mm, unsigned long addr,
+		     pte_t *ptep, unsigned long pte, int huge)
+{
+	unsigned long vpn;
+	struct ppc64_tlb_batch *batch = &get_cpu_var(ppc64_tlb_batch);
+	unsigned long vsid;
+	unsigned int psize;
+	int ssize;
+	real_pte_t rpte;
+	int i, offset;
+
+	i = batch->index;
+
+	/*
+	 * Get page size (maybe move back to caller).
+	 *
+	 * NOTE: when using special 64K mappings in 4K environment like
+	 * for SPEs, we obtain the page size from the slice, which thus
+	 * must still exist (and thus the VMA not reused) at the time
+	 * of this call
+	 */
+	if (huge) {
+#ifdef CONFIG_HUGETLB_PAGE
+		psize = get_slice_psize(mm, addr);
+		/* Mask the address for the correct page size */
+		addr &= ~((1UL << mmu_psize_defs[psize].shift) - 1);
+		if (unlikely(psize == MMU_PAGE_16G))
+			offset = PTRS_PER_PUD;
+		else
+			offset = PTRS_PER_PMD;
+#else
+		BUG();
+		psize = pte_pagesize_index(mm, addr, pte); /* shutup gcc */
+#endif
+	} else {
+		psize = pte_pagesize_index(mm, addr, pte);
+		/*
+		 * Mask the address for the standard page size.  If we
+		 * have a 64k page kernel, but the hardware does not
+		 * support 64k pages, this might be different from the
+		 * hardware page size encoded in the slice table.
+		 */
+		addr &= PAGE_MASK;
+		offset = PTRS_PER_PTE;
+	}
+
+
+	/* Build full vaddr */
+	if (!is_kernel_addr(addr)) {
+		ssize = user_segment_size(addr);
+		vsid = get_user_vsid(&mm->context, addr, ssize);
+	} else {
+		vsid = get_kernel_vsid(addr, mmu_kernel_ssize);
+		ssize = mmu_kernel_ssize;
+	}
+	WARN_ON(vsid == 0);
+	vpn = hpt_vpn(addr, vsid, ssize);
+	rpte = __real_pte(__pte(pte), ptep, offset);
+
+	/*
+	 * Check if we have an active batch on this CPU. If not, just
+	 * flush now and return.
+	 */
+	if (!batch->active) {
+		flush_hash_page(vpn, rpte, psize, ssize, mm_is_thread_local(mm));
+		put_cpu_var(ppc64_tlb_batch);
+		return;
+	}
+
+	/*
+	 * This can happen when we are in the middle of a TLB batch and
+	 * we encounter memory pressure (eg copy_page_range when it tries
+	 * to allocate a new pte). If we have to reclaim memory and end
+	 * up scanning and resetting referenced bits then our batch context
+	 * will change mid stream.
+	 *
+	 * We also need to ensure only one page size is present in a given
+	 * batch
+	 */
+	if (i != 0 && (mm != batch->mm || batch->psize != psize ||
+		       batch->ssize != ssize)) {
+		__flush_tlb_pending(batch);
+		i = 0;
+	}
+	if (i == 0) {
+		batch->mm = mm;
+		batch->psize = psize;
+		batch->ssize = ssize;
+	}
+	batch->pte[i] = rpte;
+	batch->vpn[i] = vpn;
+	batch->index = ++i;
+	if (i >= PPC64_TLB_BATCH_NR)
+		__flush_tlb_pending(batch);
+	put_cpu_var(ppc64_tlb_batch);
+}
+
+/*
+ * This function is called when terminating an mmu batch or when a batch
+ * is full. It will perform the flush of all the entries currently stored
+ * in a batch.
+ *
+ * Must be called from within some kind of spinlock/non-preempt region...
+ */
+void __flush_tlb_pending(struct ppc64_tlb_batch *batch)
+{
+	int i, local;
+
+	i = batch->index;
+	local = mm_is_thread_local(batch->mm);
+	if (i == 1)
+		flush_hash_page(batch->vpn[0], batch->pte[0],
+				batch->psize, batch->ssize, local);
+	else
+		flush_hash_range(i, local);
+	batch->index = 0;
+}
+
+void hash__tlb_flush(struct mmu_gather *tlb)
+{
+	struct ppc64_tlb_batch *tlbbatch = &get_cpu_var(ppc64_tlb_batch);
+
+	/*
+	 * If there's a TLB batch pending, then we must flush it because the
+	 * pages are going to be freed and we really don't want to have a CPU
+	 * access a freed page because it has a stale TLB
+	 */
+	if (tlbbatch->index)
+		__flush_tlb_pending(tlbbatch);
+
+	put_cpu_var(ppc64_tlb_batch);
+}
+
+/**
+ * __flush_hash_table_range - Flush all HPTEs for a given address range
+ *                            from the hash table (and the TLB). But keeps
+ *                            the linux PTEs intact.
+ *
+ * @mm		: mm_struct of the target address space (generally init_mm)
+ * @start	: starting address
+ * @end         : ending address (not included in the flush)
+ *
+ * This function is mostly to be used by some IO hotplug code in order
+ * to remove all hash entries from a given address range used to map IO
+ * space on a removed PCI-PCI bidge without tearing down the full mapping
+ * since 64K pages may overlap with other bridges when using 64K pages
+ * with 4K HW pages on IO space.
+ *
+ * Because of that usage pattern, it is implemented for small size rather
+ * than speed.
+ */
+void __flush_hash_table_range(struct mm_struct *mm, unsigned long start,
+			      unsigned long end)
+{
+	bool is_thp;
+	int hugepage_shift;
+	unsigned long flags;
+
+	start = _ALIGN_DOWN(start, PAGE_SIZE);
+	end = _ALIGN_UP(end, PAGE_SIZE);
+
+	BUG_ON(!mm->pgd);
+
+	/*
+	 * Note: Normally, we should only ever use a batch within a
+	 * PTE locked section. This violates the rule, but will work
+	 * since we don't actually modify the PTEs, we just flush the
+	 * hash while leaving the PTEs intact (including their reference
+	 * to being hashed). This is not the most performance oriented
+	 * way to do things but is fine for our needs here.
+	 */
+	local_irq_save(flags);
+	arch_enter_lazy_mmu_mode();
+	for (; start < end; start += PAGE_SIZE) {
+		pte_t *ptep = find_current_mm_pte(mm->pgd, start, &is_thp,
+						  &hugepage_shift);
+		unsigned long pte;
+
+		if (ptep == NULL)
+			continue;
+		pte = pte_val(*ptep);
+		if (is_thp)
+			trace_hugepage_invalidate(start, pte);
+		if (!(pte & H_PAGE_HASHPTE))
+			continue;
+		if (unlikely(is_thp))
+			hpte_do_hugepage_flush(mm, start, (pmd_t *)ptep, pte);
+		else
+			hpte_need_flush(mm, start, ptep, pte, hugepage_shift);
+	}
+	arch_leave_lazy_mmu_mode();
+	local_irq_restore(flags);
+}
+
+void flush_tlb_pmd_range(struct mm_struct *mm, pmd_t *pmd, unsigned long addr)
+{
+	pte_t *pte;
+	pte_t *start_pte;
+	unsigned long flags;
+
+	addr = _ALIGN_DOWN(addr, PMD_SIZE);
+	/*
+	 * Note: Normally, we should only ever use a batch within a
+	 * PTE locked section. This violates the rule, but will work
+	 * since we don't actually modify the PTEs, we just flush the
+	 * hash while leaving the PTEs intact (including their reference
+	 * to being hashed). This is not the most performance oriented
+	 * way to do things but is fine for our needs here.
+	 */
+	local_irq_save(flags);
+	arch_enter_lazy_mmu_mode();
+	start_pte = pte_offset_map(pmd, addr);
+	for (pte = start_pte; pte < start_pte + PTRS_PER_PTE; pte++) {
+		unsigned long pteval = pte_val(*pte);
+		if (pteval & H_PAGE_HASHPTE)
+			hpte_need_flush(mm, addr, pte, pteval, 0);
+		addr += PAGE_SIZE;
+	}
+	arch_leave_lazy_mmu_mode();
+	local_irq_restore(flags);
+}
diff --git a/arch/powerpc/mm/book3s64/hash_utils.c b/arch/powerpc/mm/book3s64/hash_utils.c
new file mode 100644
index 0000000..6c12376
--- /dev/null
+++ b/arch/powerpc/mm/book3s64/hash_utils.c
@@ -0,0 +1,2009 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * PowerPC64 port by Mike Corrigan and Dave Engebretsen
+ *   {mikejc|engebret}@us.ibm.com
+ *
+ *    Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
+ *
+ * SMP scalability work:
+ *    Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
+ * 
+ *    Module name: htab.c
+ *
+ *    Description:
+ *      PowerPC Hashed Page Table functions
+ */
+
+#undef DEBUG
+#undef DEBUG_LOW
+
+#define pr_fmt(fmt) "hash-mmu: " fmt
+#include <linux/spinlock.h>
+#include <linux/errno.h>
+#include <linux/sched/mm.h>
+#include <linux/proc_fs.h>
+#include <linux/stat.h>
+#include <linux/sysctl.h>
+#include <linux/export.h>
+#include <linux/ctype.h>
+#include <linux/cache.h>
+#include <linux/init.h>
+#include <linux/signal.h>
+#include <linux/memblock.h>
+#include <linux/context_tracking.h>
+#include <linux/libfdt.h>
+#include <linux/pkeys.h>
+#include <linux/hugetlb.h>
+#include <linux/cpu.h>
+
+#include <asm/debugfs.h>
+#include <asm/processor.h>
+#include <asm/pgtable.h>
+#include <asm/mmu.h>
+#include <asm/mmu_context.h>
+#include <asm/page.h>
+#include <asm/types.h>
+#include <linux/uaccess.h>
+#include <asm/machdep.h>
+#include <asm/prom.h>
+#include <asm/io.h>
+#include <asm/eeh.h>
+#include <asm/tlb.h>
+#include <asm/cacheflush.h>
+#include <asm/cputable.h>
+#include <asm/sections.h>
+#include <asm/copro.h>
+#include <asm/udbg.h>
+#include <asm/code-patching.h>
+#include <asm/fadump.h>
+#include <asm/firmware.h>
+#include <asm/tm.h>
+#include <asm/trace.h>
+#include <asm/ps3.h>
+#include <asm/pte-walk.h>
+#include <asm/asm-prototypes.h>
+#include <asm/ultravisor.h>
+
+#include <mm/mmu_decl.h>
+
+#ifdef DEBUG
+#define DBG(fmt...) udbg_printf(fmt)
+#else
+#define DBG(fmt...)
+#endif
+
+#ifdef DEBUG_LOW
+#define DBG_LOW(fmt...) udbg_printf(fmt)
+#else
+#define DBG_LOW(fmt...)
+#endif
+
+#define KB (1024)
+#define MB (1024*KB)
+#define GB (1024L*MB)
+
+/*
+ * Note:  pte   --> Linux PTE
+ *        HPTE  --> PowerPC Hashed Page Table Entry
+ *
+ * Execution context:
+ *   htab_initialize is called with the MMU off (of course), but
+ *   the kernel has been copied down to zero so it can directly
+ *   reference global data.  At this point it is very difficult
+ *   to print debug info.
+ *
+ */
+
+static unsigned long _SDR1;
+struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
+EXPORT_SYMBOL_GPL(mmu_psize_defs);
+
+u8 hpte_page_sizes[1 << LP_BITS];
+EXPORT_SYMBOL_GPL(hpte_page_sizes);
+
+struct hash_pte *htab_address;
+unsigned long htab_size_bytes;
+unsigned long htab_hash_mask;
+EXPORT_SYMBOL_GPL(htab_hash_mask);
+int mmu_linear_psize = MMU_PAGE_4K;
+EXPORT_SYMBOL_GPL(mmu_linear_psize);
+int mmu_virtual_psize = MMU_PAGE_4K;
+int mmu_vmalloc_psize = MMU_PAGE_4K;
+#ifdef CONFIG_SPARSEMEM_VMEMMAP
+int mmu_vmemmap_psize = MMU_PAGE_4K;
+#endif
+int mmu_io_psize = MMU_PAGE_4K;
+int mmu_kernel_ssize = MMU_SEGSIZE_256M;
+EXPORT_SYMBOL_GPL(mmu_kernel_ssize);
+int mmu_highuser_ssize = MMU_SEGSIZE_256M;
+u16 mmu_slb_size = 64;
+EXPORT_SYMBOL_GPL(mmu_slb_size);
+#ifdef CONFIG_PPC_64K_PAGES
+int mmu_ci_restrictions;
+#endif
+#ifdef CONFIG_DEBUG_PAGEALLOC
+static u8 *linear_map_hash_slots;
+static unsigned long linear_map_hash_count;
+static DEFINE_SPINLOCK(linear_map_hash_lock);
+#endif /* CONFIG_DEBUG_PAGEALLOC */
+struct mmu_hash_ops mmu_hash_ops;
+EXPORT_SYMBOL(mmu_hash_ops);
+
+/*
+ * These are definitions of page sizes arrays to be used when none
+ * is provided by the firmware.
+ */
+
+/*
+ * Fallback (4k pages only)
+ */
+static struct mmu_psize_def mmu_psize_defaults[] = {
+	[MMU_PAGE_4K] = {
+		.shift	= 12,
+		.sllp	= 0,
+		.penc   = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
+		.avpnm	= 0,
+		.tlbiel = 0,
+	},
+};
+
+/*
+ * POWER4, GPUL, POWER5
+ *
+ * Support for 16Mb large pages
+ */
+static struct mmu_psize_def mmu_psize_defaults_gp[] = {
+	[MMU_PAGE_4K] = {
+		.shift	= 12,
+		.sllp	= 0,
+		.penc   = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
+		.avpnm	= 0,
+		.tlbiel = 1,
+	},
+	[MMU_PAGE_16M] = {
+		.shift	= 24,
+		.sllp	= SLB_VSID_L,
+		.penc   = {[0 ... MMU_PAGE_16M - 1] = -1, [MMU_PAGE_16M] = 0,
+			    [MMU_PAGE_16M + 1 ... MMU_PAGE_COUNT - 1] = -1 },
+		.avpnm	= 0x1UL,
+		.tlbiel = 0,
+	},
+};
+
+/*
+ * 'R' and 'C' update notes:
+ *  - Under pHyp or KVM, the updatepp path will not set C, thus it *will*
+ *     create writeable HPTEs without C set, because the hcall H_PROTECT
+ *     that we use in that case will not update C
+ *  - The above is however not a problem, because we also don't do that
+ *     fancy "no flush" variant of eviction and we use H_REMOVE which will
+ *     do the right thing and thus we don't have the race I described earlier
+ *
+ *    - Under bare metal,  we do have the race, so we need R and C set
+ *    - We make sure R is always set and never lost
+ *    - C is _PAGE_DIRTY, and *should* always be set for a writeable mapping
+ */
+unsigned long htab_convert_pte_flags(unsigned long pteflags)
+{
+	unsigned long rflags = 0;
+
+	/* _PAGE_EXEC -> NOEXEC */
+	if ((pteflags & _PAGE_EXEC) == 0)
+		rflags |= HPTE_R_N;
+	/*
+	 * PPP bits:
+	 * Linux uses slb key 0 for kernel and 1 for user.
+	 * kernel RW areas are mapped with PPP=0b000
+	 * User area is mapped with PPP=0b010 for read/write
+	 * or PPP=0b011 for read-only (including writeable but clean pages).
+	 */
+	if (pteflags & _PAGE_PRIVILEGED) {
+		/*
+		 * Kernel read only mapped with ppp bits 0b110
+		 */
+		if (!(pteflags & _PAGE_WRITE)) {
+			if (mmu_has_feature(MMU_FTR_KERNEL_RO))
+				rflags |= (HPTE_R_PP0 | 0x2);
+			else
+				rflags |= 0x3;
+		}
+	} else {
+		if (pteflags & _PAGE_RWX)
+			rflags |= 0x2;
+		if (!((pteflags & _PAGE_WRITE) && (pteflags & _PAGE_DIRTY)))
+			rflags |= 0x1;
+	}
+	/*
+	 * We can't allow hardware to update hpte bits. Hence always
+	 * set 'R' bit and set 'C' if it is a write fault
+	 */
+	rflags |=  HPTE_R_R;
+
+	if (pteflags & _PAGE_DIRTY)
+		rflags |= HPTE_R_C;
+	/*
+	 * Add in WIG bits
+	 */
+
+	if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_TOLERANT)
+		rflags |= HPTE_R_I;
+	else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_NON_IDEMPOTENT)
+		rflags |= (HPTE_R_I | HPTE_R_G);
+	else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_SAO)
+		rflags |= (HPTE_R_W | HPTE_R_I | HPTE_R_M);
+	else
+		/*
+		 * Add memory coherence if cache inhibited is not set
+		 */
+		rflags |= HPTE_R_M;
+
+	rflags |= pte_to_hpte_pkey_bits(pteflags);
+	return rflags;
+}
+
+int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
+		      unsigned long pstart, unsigned long prot,
+		      int psize, int ssize)
+{
+	unsigned long vaddr, paddr;
+	unsigned int step, shift;
+	int ret = 0;
+
+	shift = mmu_psize_defs[psize].shift;
+	step = 1 << shift;
+
+	prot = htab_convert_pte_flags(prot);
+
+	DBG("htab_bolt_mapping(%lx..%lx -> %lx (%lx,%d,%d)\n",
+	    vstart, vend, pstart, prot, psize, ssize);
+
+	for (vaddr = vstart, paddr = pstart; vaddr < vend;
+	     vaddr += step, paddr += step) {
+		unsigned long hash, hpteg;
+		unsigned long vsid = get_kernel_vsid(vaddr, ssize);
+		unsigned long vpn  = hpt_vpn(vaddr, vsid, ssize);
+		unsigned long tprot = prot;
+
+		/*
+		 * If we hit a bad address return error.
+		 */
+		if (!vsid)
+			return -1;
+		/* Make kernel text executable */
+		if (overlaps_kernel_text(vaddr, vaddr + step))
+			tprot &= ~HPTE_R_N;
+
+		/*
+		 * If relocatable, check if it overlaps interrupt vectors that
+		 * are copied down to real 0. For relocatable kernel
+		 * (e.g. kdump case) we copy interrupt vectors down to real
+		 * address 0. Mark that region as executable. This is
+		 * because on p8 system with relocation on exception feature
+		 * enabled, exceptions are raised with MMU (IR=DR=1) ON. Hence
+		 * in order to execute the interrupt handlers in virtual
+		 * mode the vector region need to be marked as executable.
+		 */
+		if ((PHYSICAL_START > MEMORY_START) &&
+			overlaps_interrupt_vector_text(vaddr, vaddr + step))
+				tprot &= ~HPTE_R_N;
+
+		hash = hpt_hash(vpn, shift, ssize);
+		hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
+
+		BUG_ON(!mmu_hash_ops.hpte_insert);
+		ret = mmu_hash_ops.hpte_insert(hpteg, vpn, paddr, tprot,
+					       HPTE_V_BOLTED, psize, psize,
+					       ssize);
+
+		if (ret < 0)
+			break;
+
+#ifdef CONFIG_DEBUG_PAGEALLOC
+		if (debug_pagealloc_enabled() &&
+			(paddr >> PAGE_SHIFT) < linear_map_hash_count)
+			linear_map_hash_slots[paddr >> PAGE_SHIFT] = ret | 0x80;
+#endif /* CONFIG_DEBUG_PAGEALLOC */
+	}
+	return ret < 0 ? ret : 0;
+}
+
+int htab_remove_mapping(unsigned long vstart, unsigned long vend,
+		      int psize, int ssize)
+{
+	unsigned long vaddr;
+	unsigned int step, shift;
+	int rc;
+	int ret = 0;
+
+	shift = mmu_psize_defs[psize].shift;
+	step = 1 << shift;
+
+	if (!mmu_hash_ops.hpte_removebolted)
+		return -ENODEV;
+
+	for (vaddr = vstart; vaddr < vend; vaddr += step) {
+		rc = mmu_hash_ops.hpte_removebolted(vaddr, psize, ssize);
+		if (rc == -ENOENT) {
+			ret = -ENOENT;
+			continue;
+		}
+		if (rc < 0)
+			return rc;
+	}
+
+	return ret;
+}
+
+static bool disable_1tb_segments = false;
+
+static int __init parse_disable_1tb_segments(char *p)
+{
+	disable_1tb_segments = true;
+	return 0;
+}
+early_param("disable_1tb_segments", parse_disable_1tb_segments);
+
+static int __init htab_dt_scan_seg_sizes(unsigned long node,
+					 const char *uname, int depth,
+					 void *data)
+{
+	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
+	const __be32 *prop;
+	int size = 0;
+
+	/* We are scanning "cpu" nodes only */
+	if (type == NULL || strcmp(type, "cpu") != 0)
+		return 0;
+
+	prop = of_get_flat_dt_prop(node, "ibm,processor-segment-sizes", &size);
+	if (prop == NULL)
+		return 0;
+	for (; size >= 4; size -= 4, ++prop) {
+		if (be32_to_cpu(prop[0]) == 40) {
+			DBG("1T segment support detected\n");
+
+			if (disable_1tb_segments) {
+				DBG("1T segments disabled by command line\n");
+				break;
+			}
+
+			cur_cpu_spec->mmu_features |= MMU_FTR_1T_SEGMENT;
+			return 1;
+		}
+	}
+	cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
+	return 0;
+}
+
+static int __init get_idx_from_shift(unsigned int shift)
+{
+	int idx = -1;
+
+	switch (shift) {
+	case 0xc:
+		idx = MMU_PAGE_4K;
+		break;
+	case 0x10:
+		idx = MMU_PAGE_64K;
+		break;
+	case 0x14:
+		idx = MMU_PAGE_1M;
+		break;
+	case 0x18:
+		idx = MMU_PAGE_16M;
+		break;
+	case 0x22:
+		idx = MMU_PAGE_16G;
+		break;
+	}
+	return idx;
+}
+
+static int __init htab_dt_scan_page_sizes(unsigned long node,
+					  const char *uname, int depth,
+					  void *data)
+{
+	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
+	const __be32 *prop;
+	int size = 0;
+
+	/* We are scanning "cpu" nodes only */
+	if (type == NULL || strcmp(type, "cpu") != 0)
+		return 0;
+
+	prop = of_get_flat_dt_prop(node, "ibm,segment-page-sizes", &size);
+	if (!prop)
+		return 0;
+
+	pr_info("Page sizes from device-tree:\n");
+	size /= 4;
+	cur_cpu_spec->mmu_features &= ~(MMU_FTR_16M_PAGE);
+	while(size > 0) {
+		unsigned int base_shift = be32_to_cpu(prop[0]);
+		unsigned int slbenc = be32_to_cpu(prop[1]);
+		unsigned int lpnum = be32_to_cpu(prop[2]);
+		struct mmu_psize_def *def;
+		int idx, base_idx;
+
+		size -= 3; prop += 3;
+		base_idx = get_idx_from_shift(base_shift);
+		if (base_idx < 0) {
+			/* skip the pte encoding also */
+			prop += lpnum * 2; size -= lpnum * 2;
+			continue;
+		}
+		def = &mmu_psize_defs[base_idx];
+		if (base_idx == MMU_PAGE_16M)
+			cur_cpu_spec->mmu_features |= MMU_FTR_16M_PAGE;
+
+		def->shift = base_shift;
+		if (base_shift <= 23)
+			def->avpnm = 0;
+		else
+			def->avpnm = (1 << (base_shift - 23)) - 1;
+		def->sllp = slbenc;
+		/*
+		 * We don't know for sure what's up with tlbiel, so
+		 * for now we only set it for 4K and 64K pages
+		 */
+		if (base_idx == MMU_PAGE_4K || base_idx == MMU_PAGE_64K)
+			def->tlbiel = 1;
+		else
+			def->tlbiel = 0;
+
+		while (size > 0 && lpnum) {
+			unsigned int shift = be32_to_cpu(prop[0]);
+			int penc  = be32_to_cpu(prop[1]);
+
+			prop += 2; size -= 2;
+			lpnum--;
+
+			idx = get_idx_from_shift(shift);
+			if (idx < 0)
+				continue;
+
+			if (penc == -1)
+				pr_err("Invalid penc for base_shift=%d "
+				       "shift=%d\n", base_shift, shift);
+
+			def->penc[idx] = penc;
+			pr_info("base_shift=%d: shift=%d, sllp=0x%04lx,"
+				" avpnm=0x%08lx, tlbiel=%d, penc=%d\n",
+				base_shift, shift, def->sllp,
+				def->avpnm, def->tlbiel, def->penc[idx]);
+		}
+	}
+
+	return 1;
+}
+
+#ifdef CONFIG_HUGETLB_PAGE
+/*
+ * Scan for 16G memory blocks that have been set aside for huge pages
+ * and reserve those blocks for 16G huge pages.
+ */
+static int __init htab_dt_scan_hugepage_blocks(unsigned long node,
+					const char *uname, int depth,
+					void *data) {
+	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
+	const __be64 *addr_prop;
+	const __be32 *page_count_prop;
+	unsigned int expected_pages;
+	long unsigned int phys_addr;
+	long unsigned int block_size;
+
+	/* We are scanning "memory" nodes only */
+	if (type == NULL || strcmp(type, "memory") != 0)
+		return 0;
+
+	/*
+	 * This property is the log base 2 of the number of virtual pages that
+	 * will represent this memory block.
+	 */
+	page_count_prop = of_get_flat_dt_prop(node, "ibm,expected#pages", NULL);
+	if (page_count_prop == NULL)
+		return 0;
+	expected_pages = (1 << be32_to_cpu(page_count_prop[0]));
+	addr_prop = of_get_flat_dt_prop(node, "reg", NULL);
+	if (addr_prop == NULL)
+		return 0;
+	phys_addr = be64_to_cpu(addr_prop[0]);
+	block_size = be64_to_cpu(addr_prop[1]);
+	if (block_size != (16 * GB))
+		return 0;
+	printk(KERN_INFO "Huge page(16GB) memory: "
+			"addr = 0x%lX size = 0x%lX pages = %d\n",
+			phys_addr, block_size, expected_pages);
+	if (phys_addr + block_size * expected_pages <= memblock_end_of_DRAM()) {
+		memblock_reserve(phys_addr, block_size * expected_pages);
+		pseries_add_gpage(phys_addr, block_size, expected_pages);
+	}
+	return 0;
+}
+#endif /* CONFIG_HUGETLB_PAGE */
+
+static void mmu_psize_set_default_penc(void)
+{
+	int bpsize, apsize;
+	for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++)
+		for (apsize = 0; apsize < MMU_PAGE_COUNT; apsize++)
+			mmu_psize_defs[bpsize].penc[apsize] = -1;
+}
+
+#ifdef CONFIG_PPC_64K_PAGES
+
+static bool might_have_hea(void)
+{
+	/*
+	 * The HEA ethernet adapter requires awareness of the
+	 * GX bus. Without that awareness we can easily assume
+	 * we will never see an HEA ethernet device.
+	 */
+#ifdef CONFIG_IBMEBUS
+	return !cpu_has_feature(CPU_FTR_ARCH_207S) &&
+		firmware_has_feature(FW_FEATURE_SPLPAR);
+#else
+	return false;
+#endif
+}
+
+#endif /* #ifdef CONFIG_PPC_64K_PAGES */
+
+static void __init htab_scan_page_sizes(void)
+{
+	int rc;
+
+	/* se the invalid penc to -1 */
+	mmu_psize_set_default_penc();
+
+	/* Default to 4K pages only */
+	memcpy(mmu_psize_defs, mmu_psize_defaults,
+	       sizeof(mmu_psize_defaults));
+
+	/*
+	 * Try to find the available page sizes in the device-tree
+	 */
+	rc = of_scan_flat_dt(htab_dt_scan_page_sizes, NULL);
+	if (rc == 0 && early_mmu_has_feature(MMU_FTR_16M_PAGE)) {
+		/*
+		 * Nothing in the device-tree, but the CPU supports 16M pages,
+		 * so let's fallback on a known size list for 16M capable CPUs.
+		 */
+		memcpy(mmu_psize_defs, mmu_psize_defaults_gp,
+		       sizeof(mmu_psize_defaults_gp));
+	}
+
+#ifdef CONFIG_HUGETLB_PAGE
+	if (!hugetlb_disabled) {
+		/* Reserve 16G huge page memory sections for huge pages */
+		of_scan_flat_dt(htab_dt_scan_hugepage_blocks, NULL);
+	}
+#endif /* CONFIG_HUGETLB_PAGE */
+}
+
+/*
+ * Fill in the hpte_page_sizes[] array.
+ * We go through the mmu_psize_defs[] array looking for all the
+ * supported base/actual page size combinations.  Each combination
+ * has a unique pagesize encoding (penc) value in the low bits of
+ * the LP field of the HPTE.  For actual page sizes less than 1MB,
+ * some of the upper LP bits are used for RPN bits, meaning that
+ * we need to fill in several entries in hpte_page_sizes[].
+ *
+ * In diagrammatic form, with r = RPN bits and z = page size bits:
+ *        PTE LP     actual page size
+ *    rrrr rrrz		>=8KB
+ *    rrrr rrzz		>=16KB
+ *    rrrr rzzz		>=32KB
+ *    rrrr zzzz		>=64KB
+ *    ...
+ *
+ * The zzzz bits are implementation-specific but are chosen so that
+ * no encoding for a larger page size uses the same value in its
+ * low-order N bits as the encoding for the 2^(12+N) byte page size
+ * (if it exists).
+ */
+static void init_hpte_page_sizes(void)
+{
+	long int ap, bp;
+	long int shift, penc;
+
+	for (bp = 0; bp < MMU_PAGE_COUNT; ++bp) {
+		if (!mmu_psize_defs[bp].shift)
+			continue;	/* not a supported page size */
+		for (ap = bp; ap < MMU_PAGE_COUNT; ++ap) {
+			penc = mmu_psize_defs[bp].penc[ap];
+			if (penc == -1 || !mmu_psize_defs[ap].shift)
+				continue;
+			shift = mmu_psize_defs[ap].shift - LP_SHIFT;
+			if (shift <= 0)
+				continue;	/* should never happen */
+			/*
+			 * For page sizes less than 1MB, this loop
+			 * replicates the entry for all possible values
+			 * of the rrrr bits.
+			 */
+			while (penc < (1 << LP_BITS)) {
+				hpte_page_sizes[penc] = (ap << 4) | bp;
+				penc += 1 << shift;
+			}
+		}
+	}
+}
+
+static void __init htab_init_page_sizes(void)
+{
+	init_hpte_page_sizes();
+
+	if (!debug_pagealloc_enabled()) {
+		/*
+		 * Pick a size for the linear mapping. Currently, we only
+		 * support 16M, 1M and 4K which is the default
+		 */
+		if (mmu_psize_defs[MMU_PAGE_16M].shift)
+			mmu_linear_psize = MMU_PAGE_16M;
+		else if (mmu_psize_defs[MMU_PAGE_1M].shift)
+			mmu_linear_psize = MMU_PAGE_1M;
+	}
+
+#ifdef CONFIG_PPC_64K_PAGES
+	/*
+	 * Pick a size for the ordinary pages. Default is 4K, we support
+	 * 64K for user mappings and vmalloc if supported by the processor.
+	 * We only use 64k for ioremap if the processor
+	 * (and firmware) support cache-inhibited large pages.
+	 * If not, we use 4k and set mmu_ci_restrictions so that
+	 * hash_page knows to switch processes that use cache-inhibited
+	 * mappings to 4k pages.
+	 */
+	if (mmu_psize_defs[MMU_PAGE_64K].shift) {
+		mmu_virtual_psize = MMU_PAGE_64K;
+		mmu_vmalloc_psize = MMU_PAGE_64K;
+		if (mmu_linear_psize == MMU_PAGE_4K)
+			mmu_linear_psize = MMU_PAGE_64K;
+		if (mmu_has_feature(MMU_FTR_CI_LARGE_PAGE)) {
+			/*
+			 * When running on pSeries using 64k pages for ioremap
+			 * would stop us accessing the HEA ethernet. So if we
+			 * have the chance of ever seeing one, stay at 4k.
+			 */
+			if (!might_have_hea())
+				mmu_io_psize = MMU_PAGE_64K;
+		} else
+			mmu_ci_restrictions = 1;
+	}
+#endif /* CONFIG_PPC_64K_PAGES */
+
+#ifdef CONFIG_SPARSEMEM_VMEMMAP
+	/*
+	 * We try to use 16M pages for vmemmap if that is supported
+	 * and we have at least 1G of RAM at boot
+	 */
+	if (mmu_psize_defs[MMU_PAGE_16M].shift &&
+	    memblock_phys_mem_size() >= 0x40000000)
+		mmu_vmemmap_psize = MMU_PAGE_16M;
+	else
+		mmu_vmemmap_psize = mmu_virtual_psize;
+#endif /* CONFIG_SPARSEMEM_VMEMMAP */
+
+	printk(KERN_DEBUG "Page orders: linear mapping = %d, "
+	       "virtual = %d, io = %d"
+#ifdef CONFIG_SPARSEMEM_VMEMMAP
+	       ", vmemmap = %d"
+#endif
+	       "\n",
+	       mmu_psize_defs[mmu_linear_psize].shift,
+	       mmu_psize_defs[mmu_virtual_psize].shift,
+	       mmu_psize_defs[mmu_io_psize].shift
+#ifdef CONFIG_SPARSEMEM_VMEMMAP
+	       ,mmu_psize_defs[mmu_vmemmap_psize].shift
+#endif
+	       );
+}
+
+static int __init htab_dt_scan_pftsize(unsigned long node,
+				       const char *uname, int depth,
+				       void *data)
+{
+	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
+	const __be32 *prop;
+
+	/* We are scanning "cpu" nodes only */
+	if (type == NULL || strcmp(type, "cpu") != 0)
+		return 0;
+
+	prop = of_get_flat_dt_prop(node, "ibm,pft-size", NULL);
+	if (prop != NULL) {
+		/* pft_size[0] is the NUMA CEC cookie */
+		ppc64_pft_size = be32_to_cpu(prop[1]);
+		return 1;
+	}
+	return 0;
+}
+
+unsigned htab_shift_for_mem_size(unsigned long mem_size)
+{
+	unsigned memshift = __ilog2(mem_size);
+	unsigned pshift = mmu_psize_defs[mmu_virtual_psize].shift;
+	unsigned pteg_shift;
+
+	/* round mem_size up to next power of 2 */
+	if ((1UL << memshift) < mem_size)
+		memshift += 1;
+
+	/* aim for 2 pages / pteg */
+	pteg_shift = memshift - (pshift + 1);
+
+	/*
+	 * 2^11 PTEGS of 128 bytes each, ie. 2^18 bytes is the minimum htab
+	 * size permitted by the architecture.
+	 */
+	return max(pteg_shift + 7, 18U);
+}
+
+static unsigned long __init htab_get_table_size(void)
+{
+	/*
+	 * If hash size isn't already provided by the platform, we try to
+	 * retrieve it from the device-tree. If it's not there neither, we
+	 * calculate it now based on the total RAM size
+	 */
+	if (ppc64_pft_size == 0)
+		of_scan_flat_dt(htab_dt_scan_pftsize, NULL);
+	if (ppc64_pft_size)
+		return 1UL << ppc64_pft_size;
+
+	return 1UL << htab_shift_for_mem_size(memblock_phys_mem_size());
+}
+
+#ifdef CONFIG_MEMORY_HOTPLUG
+int resize_hpt_for_hotplug(unsigned long new_mem_size)
+{
+	unsigned target_hpt_shift;
+
+	if (!mmu_hash_ops.resize_hpt)
+		return 0;
+
+	target_hpt_shift = htab_shift_for_mem_size(new_mem_size);
+
+	/*
+	 * To avoid lots of HPT resizes if memory size is fluctuating
+	 * across a boundary, we deliberately have some hysterisis
+	 * here: we immediately increase the HPT size if the target
+	 * shift exceeds the current shift, but we won't attempt to
+	 * reduce unless the target shift is at least 2 below the
+	 * current shift
+	 */
+	if (target_hpt_shift > ppc64_pft_size ||
+	    target_hpt_shift < ppc64_pft_size - 1)
+		return mmu_hash_ops.resize_hpt(target_hpt_shift);
+
+	return 0;
+}
+
+int hash__create_section_mapping(unsigned long start, unsigned long end, int nid)
+{
+	int rc;
+
+	if (end >= H_VMALLOC_START) {
+		pr_warn("Outside the supported range\n");
+		return -1;
+	}
+
+	rc = htab_bolt_mapping(start, end, __pa(start),
+			       pgprot_val(PAGE_KERNEL), mmu_linear_psize,
+			       mmu_kernel_ssize);
+
+	if (rc < 0) {
+		int rc2 = htab_remove_mapping(start, end, mmu_linear_psize,
+					      mmu_kernel_ssize);
+		BUG_ON(rc2 && (rc2 != -ENOENT));
+	}
+	return rc;
+}
+
+int hash__remove_section_mapping(unsigned long start, unsigned long end)
+{
+	int rc = htab_remove_mapping(start, end, mmu_linear_psize,
+				     mmu_kernel_ssize);
+	WARN_ON(rc < 0);
+	return rc;
+}
+#endif /* CONFIG_MEMORY_HOTPLUG */
+
+static void __init hash_init_partition_table(phys_addr_t hash_table,
+					     unsigned long htab_size)
+{
+	mmu_partition_table_init();
+
+	/*
+	 * PS field (VRMA page size) is not used for LPID 0, hence set to 0.
+	 * For now, UPRT is 0 and we have no segment table.
+	 */
+	htab_size =  __ilog2(htab_size) - 18;
+	mmu_partition_table_set_entry(0, hash_table | htab_size, 0, false);
+	pr_info("Partition table %p\n", partition_tb);
+}
+
+static void __init htab_initialize(void)
+{
+	unsigned long table;
+	unsigned long pteg_count;
+	unsigned long prot;
+	unsigned long base = 0, size = 0;
+	struct memblock_region *reg;
+
+	DBG(" -> htab_initialize()\n");
+
+	if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) {
+		mmu_kernel_ssize = MMU_SEGSIZE_1T;
+		mmu_highuser_ssize = MMU_SEGSIZE_1T;
+		printk(KERN_INFO "Using 1TB segments\n");
+	}
+
+	/*
+	 * Calculate the required size of the htab.  We want the number of
+	 * PTEGs to equal one half the number of real pages.
+	 */ 
+	htab_size_bytes = htab_get_table_size();
+	pteg_count = htab_size_bytes >> 7;
+
+	htab_hash_mask = pteg_count - 1;
+
+	if (firmware_has_feature(FW_FEATURE_LPAR) ||
+	    firmware_has_feature(FW_FEATURE_PS3_LV1)) {
+		/* Using a hypervisor which owns the htab */
+		htab_address = NULL;
+		_SDR1 = 0; 
+#ifdef CONFIG_FA_DUMP
+		/*
+		 * If firmware assisted dump is active firmware preserves
+		 * the contents of htab along with entire partition memory.
+		 * Clear the htab if firmware assisted dump is active so
+		 * that we dont end up using old mappings.
+		 */
+		if (is_fadump_active() && mmu_hash_ops.hpte_clear_all)
+			mmu_hash_ops.hpte_clear_all();
+#endif
+	} else {
+		unsigned long limit = MEMBLOCK_ALLOC_ANYWHERE;
+
+#ifdef CONFIG_PPC_CELL
+		/*
+		 * Cell may require the hash table down low when using the
+		 * Axon IOMMU in order to fit the dynamic region over it, see
+		 * comments in cell/iommu.c
+		 */
+		if (fdt_subnode_offset(initial_boot_params, 0, "axon") > 0) {
+			limit = 0x80000000;
+			pr_info("Hash table forced below 2G for Axon IOMMU\n");
+		}
+#endif /* CONFIG_PPC_CELL */
+
+		table = memblock_phys_alloc_range(htab_size_bytes,
+						  htab_size_bytes,
+						  0, limit);
+		if (!table)
+			panic("ERROR: Failed to allocate %pa bytes below %pa\n",
+			      &htab_size_bytes, &limit);
+
+		DBG("Hash table allocated at %lx, size: %lx\n", table,
+		    htab_size_bytes);
+
+		htab_address = __va(table);
+
+		/* htab absolute addr + encoded htabsize */
+		_SDR1 = table + __ilog2(htab_size_bytes) - 18;
+
+		/* Initialize the HPT with no entries */
+		memset((void *)table, 0, htab_size_bytes);
+
+		if (!cpu_has_feature(CPU_FTR_ARCH_300))
+			/* Set SDR1 */
+			mtspr(SPRN_SDR1, _SDR1);
+		else
+			hash_init_partition_table(table, htab_size_bytes);
+	}
+
+	prot = pgprot_val(PAGE_KERNEL);
+
+#ifdef CONFIG_DEBUG_PAGEALLOC
+	if (debug_pagealloc_enabled()) {
+		linear_map_hash_count = memblock_end_of_DRAM() >> PAGE_SHIFT;
+		linear_map_hash_slots = memblock_alloc_try_nid(
+				linear_map_hash_count, 1, MEMBLOCK_LOW_LIMIT,
+				ppc64_rma_size,	NUMA_NO_NODE);
+		if (!linear_map_hash_slots)
+			panic("%s: Failed to allocate %lu bytes max_addr=%pa\n",
+			      __func__, linear_map_hash_count, &ppc64_rma_size);
+	}
+#endif /* CONFIG_DEBUG_PAGEALLOC */
+
+	/* create bolted the linear mapping in the hash table */
+	for_each_memblock(memory, reg) {
+		base = (unsigned long)__va(reg->base);
+		size = reg->size;
+
+		DBG("creating mapping for region: %lx..%lx (prot: %lx)\n",
+		    base, size, prot);
+
+		if ((base + size) >= H_VMALLOC_START) {
+			pr_warn("Outside the supported range\n");
+			continue;
+		}
+
+		BUG_ON(htab_bolt_mapping(base, base + size, __pa(base),
+				prot, mmu_linear_psize, mmu_kernel_ssize));
+	}
+	memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
+
+	/*
+	 * If we have a memory_limit and we've allocated TCEs then we need to
+	 * explicitly map the TCE area at the top of RAM. We also cope with the
+	 * case that the TCEs start below memory_limit.
+	 * tce_alloc_start/end are 16MB aligned so the mapping should work
+	 * for either 4K or 16MB pages.
+	 */
+	if (tce_alloc_start) {
+		tce_alloc_start = (unsigned long)__va(tce_alloc_start);
+		tce_alloc_end = (unsigned long)__va(tce_alloc_end);
+
+		if (base + size >= tce_alloc_start)
+			tce_alloc_start = base + size + 1;
+
+		BUG_ON(htab_bolt_mapping(tce_alloc_start, tce_alloc_end,
+					 __pa(tce_alloc_start), prot,
+					 mmu_linear_psize, mmu_kernel_ssize));
+	}
+
+
+	DBG(" <- htab_initialize()\n");
+}
+#undef KB
+#undef MB
+
+void __init hash__early_init_devtree(void)
+{
+	/* Initialize segment sizes */
+	of_scan_flat_dt(htab_dt_scan_seg_sizes, NULL);
+
+	/* Initialize page sizes */
+	htab_scan_page_sizes();
+}
+
+static struct hash_mm_context init_hash_mm_context;
+void __init hash__early_init_mmu(void)
+{
+#ifndef CONFIG_PPC_64K_PAGES
+	/*
+	 * We have code in __hash_page_4K() and elsewhere, which assumes it can
+	 * do the following:
+	 *   new_pte |= (slot << H_PAGE_F_GIX_SHIFT) & (H_PAGE_F_SECOND | H_PAGE_F_GIX);
+	 *
+	 * Where the slot number is between 0-15, and values of 8-15 indicate
+	 * the secondary bucket. For that code to work H_PAGE_F_SECOND and
+	 * H_PAGE_F_GIX must occupy four contiguous bits in the PTE, and
+	 * H_PAGE_F_SECOND must be placed above H_PAGE_F_GIX. Assert that here
+	 * with a BUILD_BUG_ON().
+	 */
+	BUILD_BUG_ON(H_PAGE_F_SECOND != (1ul  << (H_PAGE_F_GIX_SHIFT + 3)));
+#endif /* CONFIG_PPC_64K_PAGES */
+
+	htab_init_page_sizes();
+
+	/*
+	 * initialize page table size
+	 */
+	__pte_frag_nr = H_PTE_FRAG_NR;
+	__pte_frag_size_shift = H_PTE_FRAG_SIZE_SHIFT;
+	__pmd_frag_nr = H_PMD_FRAG_NR;
+	__pmd_frag_size_shift = H_PMD_FRAG_SIZE_SHIFT;
+
+	__pte_index_size = H_PTE_INDEX_SIZE;
+	__pmd_index_size = H_PMD_INDEX_SIZE;
+	__pud_index_size = H_PUD_INDEX_SIZE;
+	__pgd_index_size = H_PGD_INDEX_SIZE;
+	__pud_cache_index = H_PUD_CACHE_INDEX;
+	__pte_table_size = H_PTE_TABLE_SIZE;
+	__pmd_table_size = H_PMD_TABLE_SIZE;
+	__pud_table_size = H_PUD_TABLE_SIZE;
+	__pgd_table_size = H_PGD_TABLE_SIZE;
+	/*
+	 * 4k use hugepd format, so for hash set then to
+	 * zero
+	 */
+	__pmd_val_bits = HASH_PMD_VAL_BITS;
+	__pud_val_bits = HASH_PUD_VAL_BITS;
+	__pgd_val_bits = HASH_PGD_VAL_BITS;
+
+	__kernel_virt_start = H_KERN_VIRT_START;
+	__vmalloc_start = H_VMALLOC_START;
+	__vmalloc_end = H_VMALLOC_END;
+	__kernel_io_start = H_KERN_IO_START;
+	__kernel_io_end = H_KERN_IO_END;
+	vmemmap = (struct page *)H_VMEMMAP_START;
+	ioremap_bot = IOREMAP_BASE;
+
+#ifdef CONFIG_PCI
+	pci_io_base = ISA_IO_BASE;
+#endif
+
+	/* Select appropriate backend */
+	if (firmware_has_feature(FW_FEATURE_PS3_LV1))
+		ps3_early_mm_init();
+	else if (firmware_has_feature(FW_FEATURE_LPAR))
+		hpte_init_pseries();
+	else if (IS_ENABLED(CONFIG_PPC_NATIVE))
+		hpte_init_native();
+
+	if (!mmu_hash_ops.hpte_insert)
+		panic("hash__early_init_mmu: No MMU hash ops defined!\n");
+
+	/*
+	 * Initialize the MMU Hash table and create the linear mapping
+	 * of memory. Has to be done before SLB initialization as this is
+	 * currently where the page size encoding is obtained.
+	 */
+	htab_initialize();
+
+	init_mm.context.hash_context = &init_hash_mm_context;
+	mm_ctx_set_slb_addr_limit(&init_mm.context, SLB_ADDR_LIMIT_DEFAULT);
+
+	pr_info("Initializing hash mmu with SLB\n");
+	/* Initialize SLB management */
+	slb_initialize();
+
+	if (cpu_has_feature(CPU_FTR_ARCH_206)
+			&& cpu_has_feature(CPU_FTR_HVMODE))
+		tlbiel_all();
+}
+
+#ifdef CONFIG_SMP
+void hash__early_init_mmu_secondary(void)
+{
+	/* Initialize hash table for that CPU */
+	if (!firmware_has_feature(FW_FEATURE_LPAR)) {
+
+		if (!cpu_has_feature(CPU_FTR_ARCH_300))
+			mtspr(SPRN_SDR1, _SDR1);
+		else
+			set_ptcr_when_no_uv(__pa(partition_tb) |
+					    (PATB_SIZE_SHIFT - 12));
+	}
+	/* Initialize SLB */
+	slb_initialize();
+
+	if (cpu_has_feature(CPU_FTR_ARCH_206)
+			&& cpu_has_feature(CPU_FTR_HVMODE))
+		tlbiel_all();
+}
+#endif /* CONFIG_SMP */
+
+/*
+ * Called by asm hashtable.S for doing lazy icache flush
+ */
+unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap)
+{
+	struct page *page;
+
+	if (!pfn_valid(pte_pfn(pte)))
+		return pp;
+
+	page = pte_page(pte);
+
+	/* page is dirty */
+	if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) {
+		if (trap == 0x400) {
+			flush_dcache_icache_page(page);
+			set_bit(PG_arch_1, &page->flags);
+		} else
+			pp |= HPTE_R_N;
+	}
+	return pp;
+}
+
+#ifdef CONFIG_PPC_MM_SLICES
+static unsigned int get_paca_psize(unsigned long addr)
+{
+	unsigned char *psizes;
+	unsigned long index, mask_index;
+
+	if (addr < SLICE_LOW_TOP) {
+		psizes = get_paca()->mm_ctx_low_slices_psize;
+		index = GET_LOW_SLICE_INDEX(addr);
+	} else {
+		psizes = get_paca()->mm_ctx_high_slices_psize;
+		index = GET_HIGH_SLICE_INDEX(addr);
+	}
+	mask_index = index & 0x1;
+	return (psizes[index >> 1] >> (mask_index * 4)) & 0xF;
+}
+
+#else
+unsigned int get_paca_psize(unsigned long addr)
+{
+	return get_paca()->mm_ctx_user_psize;
+}
+#endif
+
+/*
+ * Demote a segment to using 4k pages.
+ * For now this makes the whole process use 4k pages.
+ */
+#ifdef CONFIG_PPC_64K_PAGES
+void demote_segment_4k(struct mm_struct *mm, unsigned long addr)
+{
+	if (get_slice_psize(mm, addr) == MMU_PAGE_4K)
+		return;
+	slice_set_range_psize(mm, addr, 1, MMU_PAGE_4K);
+	copro_flush_all_slbs(mm);
+	if ((get_paca_psize(addr) != MMU_PAGE_4K) && (current->mm == mm)) {
+
+		copy_mm_to_paca(mm);
+		slb_flush_and_restore_bolted();
+	}
+}
+#endif /* CONFIG_PPC_64K_PAGES */
+
+#ifdef CONFIG_PPC_SUBPAGE_PROT
+/*
+ * This looks up a 2-bit protection code for a 4k subpage of a 64k page.
+ * Userspace sets the subpage permissions using the subpage_prot system call.
+ *
+ * Result is 0: full permissions, _PAGE_RW: read-only,
+ * _PAGE_RWX: no access.
+ */
+static int subpage_protection(struct mm_struct *mm, unsigned long ea)
+{
+	struct subpage_prot_table *spt = mm_ctx_subpage_prot(&mm->context);
+	u32 spp = 0;
+	u32 **sbpm, *sbpp;
+
+	if (!spt)
+		return 0;
+
+	if (ea >= spt->maxaddr)
+		return 0;
+	if (ea < 0x100000000UL) {
+		/* addresses below 4GB use spt->low_prot */
+		sbpm = spt->low_prot;
+	} else {
+		sbpm = spt->protptrs[ea >> SBP_L3_SHIFT];
+		if (!sbpm)
+			return 0;
+	}
+	sbpp = sbpm[(ea >> SBP_L2_SHIFT) & (SBP_L2_COUNT - 1)];
+	if (!sbpp)
+		return 0;
+	spp = sbpp[(ea >> PAGE_SHIFT) & (SBP_L1_COUNT - 1)];
+
+	/* extract 2-bit bitfield for this 4k subpage */
+	spp >>= 30 - 2 * ((ea >> 12) & 0xf);
+
+	/*
+	 * 0 -> full premission
+	 * 1 -> Read only
+	 * 2 -> no access.
+	 * We return the flag that need to be cleared.
+	 */
+	spp = ((spp & 2) ? _PAGE_RWX : 0) | ((spp & 1) ? _PAGE_WRITE : 0);
+	return spp;
+}
+
+#else /* CONFIG_PPC_SUBPAGE_PROT */
+static inline int subpage_protection(struct mm_struct *mm, unsigned long ea)
+{
+	return 0;
+}
+#endif
+
+void hash_failure_debug(unsigned long ea, unsigned long access,
+			unsigned long vsid, unsigned long trap,
+			int ssize, int psize, int lpsize, unsigned long pte)
+{
+	if (!printk_ratelimit())
+		return;
+	pr_info("mm: Hashing failure ! EA=0x%lx access=0x%lx current=%s\n",
+		ea, access, current->comm);
+	pr_info("    trap=0x%lx vsid=0x%lx ssize=%d base psize=%d psize %d pte=0x%lx\n",
+		trap, vsid, ssize, psize, lpsize, pte);
+}
+
+static void check_paca_psize(unsigned long ea, struct mm_struct *mm,
+			     int psize, bool user_region)
+{
+	if (user_region) {
+		if (psize != get_paca_psize(ea)) {
+			copy_mm_to_paca(mm);
+			slb_flush_and_restore_bolted();
+		}
+	} else if (get_paca()->vmalloc_sllp !=
+		   mmu_psize_defs[mmu_vmalloc_psize].sllp) {
+		get_paca()->vmalloc_sllp =
+			mmu_psize_defs[mmu_vmalloc_psize].sllp;
+		slb_vmalloc_update();
+	}
+}
+
+/*
+ * Result code is:
+ *  0 - handled
+ *  1 - normal page fault
+ * -1 - critical hash insertion error
+ * -2 - access not permitted by subpage protection mechanism
+ */
+int hash_page_mm(struct mm_struct *mm, unsigned long ea,
+		 unsigned long access, unsigned long trap,
+		 unsigned long flags)
+{
+	bool is_thp;
+	enum ctx_state prev_state = exception_enter();
+	pgd_t *pgdir;
+	unsigned long vsid;
+	pte_t *ptep;
+	unsigned hugeshift;
+	int rc, user_region = 0;
+	int psize, ssize;
+
+	DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
+		ea, access, trap);
+	trace_hash_fault(ea, access, trap);
+
+	/* Get region & vsid */
+	switch (get_region_id(ea)) {
+	case USER_REGION_ID:
+		user_region = 1;
+		if (! mm) {
+			DBG_LOW(" user region with no mm !\n");
+			rc = 1;
+			goto bail;
+		}
+		psize = get_slice_psize(mm, ea);
+		ssize = user_segment_size(ea);
+		vsid = get_user_vsid(&mm->context, ea, ssize);
+		break;
+	case VMALLOC_REGION_ID:
+		vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
+		psize = mmu_vmalloc_psize;
+		ssize = mmu_kernel_ssize;
+		break;
+
+	case IO_REGION_ID:
+		vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
+		psize = mmu_io_psize;
+		ssize = mmu_kernel_ssize;
+		break;
+	default:
+		/*
+		 * Not a valid range
+		 * Send the problem up to do_page_fault()
+		 */
+		rc = 1;
+		goto bail;
+	}
+	DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm, mm->pgd, vsid);
+
+	/* Bad address. */
+	if (!vsid) {
+		DBG_LOW("Bad address!\n");
+		rc = 1;
+		goto bail;
+	}
+	/* Get pgdir */
+	pgdir = mm->pgd;
+	if (pgdir == NULL) {
+		rc = 1;
+		goto bail;
+	}
+
+	/* Check CPU locality */
+	if (user_region && mm_is_thread_local(mm))
+		flags |= HPTE_LOCAL_UPDATE;
+
+#ifndef CONFIG_PPC_64K_PAGES
+	/*
+	 * If we use 4K pages and our psize is not 4K, then we might
+	 * be hitting a special driver mapping, and need to align the
+	 * address before we fetch the PTE.
+	 *
+	 * It could also be a hugepage mapping, in which case this is
+	 * not necessary, but it's not harmful, either.
+	 */
+	if (psize != MMU_PAGE_4K)
+		ea &= ~((1ul << mmu_psize_defs[psize].shift) - 1);
+#endif /* CONFIG_PPC_64K_PAGES */
+
+	/* Get PTE and page size from page tables */
+	ptep = find_linux_pte(pgdir, ea, &is_thp, &hugeshift);
+	if (ptep == NULL || !pte_present(*ptep)) {
+		DBG_LOW(" no PTE !\n");
+		rc = 1;
+		goto bail;
+	}
+
+	/* Add _PAGE_PRESENT to the required access perm */
+	access |= _PAGE_PRESENT;
+
+	/*
+	 * Pre-check access permissions (will be re-checked atomically
+	 * in __hash_page_XX but this pre-check is a fast path
+	 */
+	if (!check_pte_access(access, pte_val(*ptep))) {
+		DBG_LOW(" no access !\n");
+		rc = 1;
+		goto bail;
+	}
+
+	if (hugeshift) {
+		if (is_thp)
+			rc = __hash_page_thp(ea, access, vsid, (pmd_t *)ptep,
+					     trap, flags, ssize, psize);
+#ifdef CONFIG_HUGETLB_PAGE
+		else
+			rc = __hash_page_huge(ea, access, vsid, ptep, trap,
+					      flags, ssize, hugeshift, psize);
+#else
+		else {
+			/*
+			 * if we have hugeshift, and is not transhuge with
+			 * hugetlb disabled, something is really wrong.
+			 */
+			rc = 1;
+			WARN_ON(1);
+		}
+#endif
+		if (current->mm == mm)
+			check_paca_psize(ea, mm, psize, user_region);
+
+		goto bail;
+	}
+
+#ifndef CONFIG_PPC_64K_PAGES
+	DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep));
+#else
+	DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep),
+		pte_val(*(ptep + PTRS_PER_PTE)));
+#endif
+	/* Do actual hashing */
+#ifdef CONFIG_PPC_64K_PAGES
+	/* If H_PAGE_4K_PFN is set, make sure this is a 4k segment */
+	if ((pte_val(*ptep) & H_PAGE_4K_PFN) && psize == MMU_PAGE_64K) {
+		demote_segment_4k(mm, ea);
+		psize = MMU_PAGE_4K;
+	}
+
+	/*
+	 * If this PTE is non-cacheable and we have restrictions on
+	 * using non cacheable large pages, then we switch to 4k
+	 */
+	if (mmu_ci_restrictions && psize == MMU_PAGE_64K && pte_ci(*ptep)) {
+		if (user_region) {
+			demote_segment_4k(mm, ea);
+			psize = MMU_PAGE_4K;
+		} else if (ea < VMALLOC_END) {
+			/*
+			 * some driver did a non-cacheable mapping
+			 * in vmalloc space, so switch vmalloc
+			 * to 4k pages
+			 */
+			printk(KERN_ALERT "Reducing vmalloc segment "
+			       "to 4kB pages because of "
+			       "non-cacheable mapping\n");
+			psize = mmu_vmalloc_psize = MMU_PAGE_4K;
+			copro_flush_all_slbs(mm);
+		}
+	}
+
+#endif /* CONFIG_PPC_64K_PAGES */
+
+	if (current->mm == mm)
+		check_paca_psize(ea, mm, psize, user_region);
+
+#ifdef CONFIG_PPC_64K_PAGES
+	if (psize == MMU_PAGE_64K)
+		rc = __hash_page_64K(ea, access, vsid, ptep, trap,
+				     flags, ssize);
+	else
+#endif /* CONFIG_PPC_64K_PAGES */
+	{
+		int spp = subpage_protection(mm, ea);
+		if (access & spp)
+			rc = -2;
+		else
+			rc = __hash_page_4K(ea, access, vsid, ptep, trap,
+					    flags, ssize, spp);
+	}
+
+	/*
+	 * Dump some info in case of hash insertion failure, they should
+	 * never happen so it is really useful to know if/when they do
+	 */
+	if (rc == -1)
+		hash_failure_debug(ea, access, vsid, trap, ssize, psize,
+				   psize, pte_val(*ptep));
+#ifndef CONFIG_PPC_64K_PAGES
+	DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep));
+#else
+	DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep),
+		pte_val(*(ptep + PTRS_PER_PTE)));
+#endif
+	DBG_LOW(" -> rc=%d\n", rc);
+
+bail:
+	exception_exit(prev_state);
+	return rc;
+}
+EXPORT_SYMBOL_GPL(hash_page_mm);
+
+int hash_page(unsigned long ea, unsigned long access, unsigned long trap,
+	      unsigned long dsisr)
+{
+	unsigned long flags = 0;
+	struct mm_struct *mm = current->mm;
+
+	if ((get_region_id(ea) == VMALLOC_REGION_ID) ||
+	    (get_region_id(ea) == IO_REGION_ID))
+		mm = &init_mm;
+
+	if (dsisr & DSISR_NOHPTE)
+		flags |= HPTE_NOHPTE_UPDATE;
+
+	return hash_page_mm(mm, ea, access, trap, flags);
+}
+EXPORT_SYMBOL_GPL(hash_page);
+
+int __hash_page(unsigned long trap, unsigned long ea, unsigned long dsisr,
+		unsigned long msr)
+{
+	unsigned long access = _PAGE_PRESENT | _PAGE_READ;
+	unsigned long flags = 0;
+	struct mm_struct *mm = current->mm;
+	unsigned int region_id = get_region_id(ea);
+
+	if ((region_id == VMALLOC_REGION_ID) || (region_id == IO_REGION_ID))
+		mm = &init_mm;
+
+	if (dsisr & DSISR_NOHPTE)
+		flags |= HPTE_NOHPTE_UPDATE;
+
+	if (dsisr & DSISR_ISSTORE)
+		access |= _PAGE_WRITE;
+	/*
+	 * We set _PAGE_PRIVILEGED only when
+	 * kernel mode access kernel space.
+	 *
+	 * _PAGE_PRIVILEGED is NOT set
+	 * 1) when kernel mode access user space
+	 * 2) user space access kernel space.
+	 */
+	access |= _PAGE_PRIVILEGED;
+	if ((msr & MSR_PR) || (region_id == USER_REGION_ID))
+		access &= ~_PAGE_PRIVILEGED;
+
+	if (trap == 0x400)
+		access |= _PAGE_EXEC;
+
+	return hash_page_mm(mm, ea, access, trap, flags);
+}
+
+#ifdef CONFIG_PPC_MM_SLICES
+static bool should_hash_preload(struct mm_struct *mm, unsigned long ea)
+{
+	int psize = get_slice_psize(mm, ea);
+
+	/* We only prefault standard pages for now */
+	if (unlikely(psize != mm_ctx_user_psize(&mm->context)))
+		return false;
+
+	/*
+	 * Don't prefault if subpage protection is enabled for the EA.
+	 */
+	if (unlikely((psize == MMU_PAGE_4K) && subpage_protection(mm, ea)))
+		return false;
+
+	return true;
+}
+#else
+static bool should_hash_preload(struct mm_struct *mm, unsigned long ea)
+{
+	return true;
+}
+#endif
+
+static void hash_preload(struct mm_struct *mm, unsigned long ea,
+			 bool is_exec, unsigned long trap)
+{
+	int hugepage_shift;
+	unsigned long vsid;
+	pgd_t *pgdir;
+	pte_t *ptep;
+	unsigned long flags;
+	int rc, ssize, update_flags = 0;
+	unsigned long access = _PAGE_PRESENT | _PAGE_READ | (is_exec ? _PAGE_EXEC : 0);
+
+	BUG_ON(get_region_id(ea) != USER_REGION_ID);
+
+	if (!should_hash_preload(mm, ea))
+		return;
+
+	DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx,"
+		" trap=%lx\n", mm, mm->pgd, ea, access, trap);
+
+	/* Get Linux PTE if available */
+	pgdir = mm->pgd;
+	if (pgdir == NULL)
+		return;
+
+	/* Get VSID */
+	ssize = user_segment_size(ea);
+	vsid = get_user_vsid(&mm->context, ea, ssize);
+	if (!vsid)
+		return;
+	/*
+	 * Hash doesn't like irqs. Walking linux page table with irq disabled
+	 * saves us from holding multiple locks.
+	 */
+	local_irq_save(flags);
+
+	/*
+	 * THP pages use update_mmu_cache_pmd. We don't do
+	 * hash preload there. Hence can ignore THP here
+	 */
+	ptep = find_current_mm_pte(pgdir, ea, NULL, &hugepage_shift);
+	if (!ptep)
+		goto out_exit;
+
+	WARN_ON(hugepage_shift);
+#ifdef CONFIG_PPC_64K_PAGES
+	/* If either H_PAGE_4K_PFN or cache inhibited is set (and we are on
+	 * a 64K kernel), then we don't preload, hash_page() will take
+	 * care of it once we actually try to access the page.
+	 * That way we don't have to duplicate all of the logic for segment
+	 * page size demotion here
+	 */
+	if ((pte_val(*ptep) & H_PAGE_4K_PFN) || pte_ci(*ptep))
+		goto out_exit;
+#endif /* CONFIG_PPC_64K_PAGES */
+
+	/* Is that local to this CPU ? */
+	if (mm_is_thread_local(mm))
+		update_flags |= HPTE_LOCAL_UPDATE;
+
+	/* Hash it in */
+#ifdef CONFIG_PPC_64K_PAGES
+	if (mm_ctx_user_psize(&mm->context) == MMU_PAGE_64K)
+		rc = __hash_page_64K(ea, access, vsid, ptep, trap,
+				     update_flags, ssize);
+	else
+#endif /* CONFIG_PPC_64K_PAGES */
+		rc = __hash_page_4K(ea, access, vsid, ptep, trap, update_flags,
+				    ssize, subpage_protection(mm, ea));
+
+	/* Dump some info in case of hash insertion failure, they should
+	 * never happen so it is really useful to know if/when they do
+	 */
+	if (rc == -1)
+		hash_failure_debug(ea, access, vsid, trap, ssize,
+				   mm_ctx_user_psize(&mm->context),
+				   mm_ctx_user_psize(&mm->context),
+				   pte_val(*ptep));
+out_exit:
+	local_irq_restore(flags);
+}
+
+/*
+ * This is called at the end of handling a user page fault, when the
+ * fault has been handled by updating a PTE in the linux page tables.
+ * We use it to preload an HPTE into the hash table corresponding to
+ * the updated linux PTE.
+ *
+ * This must always be called with the pte lock held.
+ */
+void update_mmu_cache(struct vm_area_struct *vma, unsigned long address,
+		      pte_t *ptep)
+{
+	/*
+	 * We don't need to worry about _PAGE_PRESENT here because we are
+	 * called with either mm->page_table_lock held or ptl lock held
+	 */
+	unsigned long trap;
+	bool is_exec;
+
+	if (radix_enabled()) {
+		prefetch((void *)address);
+		return;
+	}
+
+	/* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */
+	if (!pte_young(*ptep) || address >= TASK_SIZE)
+		return;
+
+	/*
+	 * We try to figure out if we are coming from an instruction
+	 * access fault and pass that down to __hash_page so we avoid
+	 * double-faulting on execution of fresh text. We have to test
+	 * for regs NULL since init will get here first thing at boot.
+	 *
+	 * We also avoid filling the hash if not coming from a fault.
+	 */
+
+	trap = current->thread.regs ? TRAP(current->thread.regs) : 0UL;
+	switch (trap) {
+	case 0x300:
+		is_exec = false;
+		break;
+	case 0x400:
+		is_exec = true;
+		break;
+	default:
+		return;
+	}
+
+	hash_preload(vma->vm_mm, address, is_exec, trap);
+}
+
+#ifdef CONFIG_PPC_MEM_KEYS
+/*
+ * Return the protection key associated with the given address and the
+ * mm_struct.
+ */
+u16 get_mm_addr_key(struct mm_struct *mm, unsigned long address)
+{
+	pte_t *ptep;
+	u16 pkey = 0;
+	unsigned long flags;
+
+	if (!mm || !mm->pgd)
+		return 0;
+
+	local_irq_save(flags);
+	ptep = find_linux_pte(mm->pgd, address, NULL, NULL);
+	if (ptep)
+		pkey = pte_to_pkey_bits(pte_val(READ_ONCE(*ptep)));
+	local_irq_restore(flags);
+
+	return pkey;
+}
+#endif /* CONFIG_PPC_MEM_KEYS */
+
+#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
+static inline void tm_flush_hash_page(int local)
+{
+	/*
+	 * Transactions are not aborted by tlbiel, only tlbie. Without, syncing a
+	 * page back to a block device w/PIO could pick up transactional data
+	 * (bad!) so we force an abort here. Before the sync the page will be
+	 * made read-only, which will flush_hash_page. BIG ISSUE here: if the
+	 * kernel uses a page from userspace without unmapping it first, it may
+	 * see the speculated version.
+	 */
+	if (local && cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
+	    MSR_TM_ACTIVE(current->thread.regs->msr)) {
+		tm_enable();
+		tm_abort(TM_CAUSE_TLBI);
+	}
+}
+#else
+static inline void tm_flush_hash_page(int local)
+{
+}
+#endif
+
+/*
+ * Return the global hash slot, corresponding to the given PTE, which contains
+ * the HPTE.
+ */
+unsigned long pte_get_hash_gslot(unsigned long vpn, unsigned long shift,
+		int ssize, real_pte_t rpte, unsigned int subpg_index)
+{
+	unsigned long hash, gslot, hidx;
+
+	hash = hpt_hash(vpn, shift, ssize);
+	hidx = __rpte_to_hidx(rpte, subpg_index);
+	if (hidx & _PTEIDX_SECONDARY)
+		hash = ~hash;
+	gslot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
+	gslot += hidx & _PTEIDX_GROUP_IX;
+	return gslot;
+}
+
+/*
+ * WARNING: This is called from hash_low_64.S, if you change this prototype,
+ *          do not forget to update the assembly call site !
+ */
+void flush_hash_page(unsigned long vpn, real_pte_t pte, int psize, int ssize,
+		     unsigned long flags)
+{
+	unsigned long index, shift, gslot;
+	int local = flags & HPTE_LOCAL_UPDATE;
+
+	DBG_LOW("flush_hash_page(vpn=%016lx)\n", vpn);
+	pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
+		gslot = pte_get_hash_gslot(vpn, shift, ssize, pte, index);
+		DBG_LOW(" sub %ld: gslot=%lx\n", index, gslot);
+		/*
+		 * We use same base page size and actual psize, because we don't
+		 * use these functions for hugepage
+		 */
+		mmu_hash_ops.hpte_invalidate(gslot, vpn, psize, psize,
+					     ssize, local);
+	} pte_iterate_hashed_end();
+
+	tm_flush_hash_page(local);
+}
+
+#ifdef CONFIG_TRANSPARENT_HUGEPAGE
+void flush_hash_hugepage(unsigned long vsid, unsigned long addr,
+			 pmd_t *pmdp, unsigned int psize, int ssize,
+			 unsigned long flags)
+{
+	int i, max_hpte_count, valid;
+	unsigned long s_addr;
+	unsigned char *hpte_slot_array;
+	unsigned long hidx, shift, vpn, hash, slot;
+	int local = flags & HPTE_LOCAL_UPDATE;
+
+	s_addr = addr & HPAGE_PMD_MASK;
+	hpte_slot_array = get_hpte_slot_array(pmdp);
+	/*
+	 * IF we try to do a HUGE PTE update after a withdraw is done.
+	 * we will find the below NULL. This happens when we do
+	 * split_huge_pmd
+	 */
+	if (!hpte_slot_array)
+		return;
+
+	if (mmu_hash_ops.hugepage_invalidate) {
+		mmu_hash_ops.hugepage_invalidate(vsid, s_addr, hpte_slot_array,
+						 psize, ssize, local);
+		goto tm_abort;
+	}
+	/*
+	 * No bluk hpte removal support, invalidate each entry
+	 */
+	shift = mmu_psize_defs[psize].shift;
+	max_hpte_count = HPAGE_PMD_SIZE >> shift;
+	for (i = 0; i < max_hpte_count; i++) {
+		/*
+		 * 8 bits per each hpte entries
+		 * 000| [ secondary group (one bit) | hidx (3 bits) | valid bit]
+		 */
+		valid = hpte_valid(hpte_slot_array, i);
+		if (!valid)
+			continue;
+		hidx =  hpte_hash_index(hpte_slot_array, i);
+
+		/* get the vpn */
+		addr = s_addr + (i * (1ul << shift));
+		vpn = hpt_vpn(addr, vsid, ssize);
+		hash = hpt_hash(vpn, shift, ssize);
+		if (hidx & _PTEIDX_SECONDARY)
+			hash = ~hash;
+
+		slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
+		slot += hidx & _PTEIDX_GROUP_IX;
+		mmu_hash_ops.hpte_invalidate(slot, vpn, psize,
+					     MMU_PAGE_16M, ssize, local);
+	}
+tm_abort:
+	tm_flush_hash_page(local);
+}
+#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
+
+void flush_hash_range(unsigned long number, int local)
+{
+	if (mmu_hash_ops.flush_hash_range)
+		mmu_hash_ops.flush_hash_range(number, local);
+	else {
+		int i;
+		struct ppc64_tlb_batch *batch =
+			this_cpu_ptr(&ppc64_tlb_batch);
+
+		for (i = 0; i < number; i++)
+			flush_hash_page(batch->vpn[i], batch->pte[i],
+					batch->psize, batch->ssize, local);
+	}
+}
+
+/*
+ * low_hash_fault is called when we the low level hash code failed
+ * to instert a PTE due to an hypervisor error
+ */
+void low_hash_fault(struct pt_regs *regs, unsigned long address, int rc)
+{
+	enum ctx_state prev_state = exception_enter();
+
+	if (user_mode(regs)) {
+#ifdef CONFIG_PPC_SUBPAGE_PROT
+		if (rc == -2)
+			_exception(SIGSEGV, regs, SEGV_ACCERR, address);
+		else
+#endif
+			_exception(SIGBUS, regs, BUS_ADRERR, address);
+	} else
+		bad_page_fault(regs, address, SIGBUS);
+
+	exception_exit(prev_state);
+}
+
+long hpte_insert_repeating(unsigned long hash, unsigned long vpn,
+			   unsigned long pa, unsigned long rflags,
+			   unsigned long vflags, int psize, int ssize)
+{
+	unsigned long hpte_group;
+	long slot;
+
+repeat:
+	hpte_group = (hash & htab_hash_mask) * HPTES_PER_GROUP;
+
+	/* Insert into the hash table, primary slot */
+	slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags, vflags,
+					psize, psize, ssize);
+
+	/* Primary is full, try the secondary */
+	if (unlikely(slot == -1)) {
+		hpte_group = (~hash & htab_hash_mask) * HPTES_PER_GROUP;
+		slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags,
+						vflags | HPTE_V_SECONDARY,
+						psize, psize, ssize);
+		if (slot == -1) {
+			if (mftb() & 0x1)
+				hpte_group = (hash & htab_hash_mask) *
+						HPTES_PER_GROUP;
+
+			mmu_hash_ops.hpte_remove(hpte_group);
+			goto repeat;
+		}
+	}
+
+	return slot;
+}
+
+#ifdef CONFIG_DEBUG_PAGEALLOC
+static void kernel_map_linear_page(unsigned long vaddr, unsigned long lmi)
+{
+	unsigned long hash;
+	unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
+	unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
+	unsigned long mode = htab_convert_pte_flags(pgprot_val(PAGE_KERNEL));
+	long ret;
+
+	hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
+
+	/* Don't create HPTE entries for bad address */
+	if (!vsid)
+		return;
+
+	ret = hpte_insert_repeating(hash, vpn, __pa(vaddr), mode,
+				    HPTE_V_BOLTED,
+				    mmu_linear_psize, mmu_kernel_ssize);
+
+	BUG_ON (ret < 0);
+	spin_lock(&linear_map_hash_lock);
+	BUG_ON(linear_map_hash_slots[lmi] & 0x80);
+	linear_map_hash_slots[lmi] = ret | 0x80;
+	spin_unlock(&linear_map_hash_lock);
+}
+
+static void kernel_unmap_linear_page(unsigned long vaddr, unsigned long lmi)
+{
+	unsigned long hash, hidx, slot;
+	unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
+	unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
+
+	hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
+	spin_lock(&linear_map_hash_lock);
+	BUG_ON(!(linear_map_hash_slots[lmi] & 0x80));
+	hidx = linear_map_hash_slots[lmi] & 0x7f;
+	linear_map_hash_slots[lmi] = 0;
+	spin_unlock(&linear_map_hash_lock);
+	if (hidx & _PTEIDX_SECONDARY)
+		hash = ~hash;
+	slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
+	slot += hidx & _PTEIDX_GROUP_IX;
+	mmu_hash_ops.hpte_invalidate(slot, vpn, mmu_linear_psize,
+				     mmu_linear_psize,
+				     mmu_kernel_ssize, 0);
+}
+
+void __kernel_map_pages(struct page *page, int numpages, int enable)
+{
+	unsigned long flags, vaddr, lmi;
+	int i;
+
+	local_irq_save(flags);
+	for (i = 0; i < numpages; i++, page++) {
+		vaddr = (unsigned long)page_address(page);
+		lmi = __pa(vaddr) >> PAGE_SHIFT;
+		if (lmi >= linear_map_hash_count)
+			continue;
+		if (enable)
+			kernel_map_linear_page(vaddr, lmi);
+		else
+			kernel_unmap_linear_page(vaddr, lmi);
+	}
+	local_irq_restore(flags);
+}
+#endif /* CONFIG_DEBUG_PAGEALLOC */
+
+void hash__setup_initial_memory_limit(phys_addr_t first_memblock_base,
+				phys_addr_t first_memblock_size)
+{
+	/*
+	 * We don't currently support the first MEMBLOCK not mapping 0
+	 * physical on those processors
+	 */
+	BUG_ON(first_memblock_base != 0);
+
+	/*
+	 * On virtualized systems the first entry is our RMA region aka VRMA,
+	 * non-virtualized 64-bit hash MMU systems don't have a limitation
+	 * on real mode access.
+	 *
+	 * For guests on platforms before POWER9, we clamp the it limit to 1G
+	 * to avoid some funky things such as RTAS bugs etc...
+	 *
+	 * On POWER9 we limit to 1TB in case the host erroneously told us that
+	 * the RMA was >1TB. Effective address bits 0:23 are treated as zero
+	 * (meaning the access is aliased to zero i.e. addr = addr % 1TB)
+	 * for virtual real mode addressing and so it doesn't make sense to
+	 * have an area larger than 1TB as it can't be addressed.
+	 */
+	if (!early_cpu_has_feature(CPU_FTR_HVMODE)) {
+		ppc64_rma_size = first_memblock_size;
+		if (!early_cpu_has_feature(CPU_FTR_ARCH_300))
+			ppc64_rma_size = min_t(u64, ppc64_rma_size, 0x40000000);
+		else
+			ppc64_rma_size = min_t(u64, ppc64_rma_size,
+					       1UL << SID_SHIFT_1T);
+
+		/* Finally limit subsequent allocations */
+		memblock_set_current_limit(ppc64_rma_size);
+	} else {
+		ppc64_rma_size = ULONG_MAX;
+	}
+}
+
+#ifdef CONFIG_DEBUG_FS
+
+static int hpt_order_get(void *data, u64 *val)
+{
+	*val = ppc64_pft_size;
+	return 0;
+}
+
+static int hpt_order_set(void *data, u64 val)
+{
+	int ret;
+
+	if (!mmu_hash_ops.resize_hpt)
+		return -ENODEV;
+
+	cpus_read_lock();
+	ret = mmu_hash_ops.resize_hpt(val);
+	cpus_read_unlock();
+
+	return ret;
+}
+
+DEFINE_DEBUGFS_ATTRIBUTE(fops_hpt_order, hpt_order_get, hpt_order_set, "%llu\n");
+
+static int __init hash64_debugfs(void)
+{
+	if (!debugfs_create_file_unsafe("hpt_order", 0600, powerpc_debugfs_root,
+					NULL, &fops_hpt_order)) {
+		pr_err("lpar: unable to create hpt_order debugsfs file\n");
+	}
+
+	return 0;
+}
+machine_device_initcall(pseries, hash64_debugfs);
+#endif /* CONFIG_DEBUG_FS */
+
+void __init print_system_hash_info(void)
+{
+	pr_info("ppc64_pft_size    = 0x%llx\n", ppc64_pft_size);
+
+	if (htab_hash_mask)
+		pr_info("htab_hash_mask    = 0x%lx\n", htab_hash_mask);
+}
diff --git a/arch/powerpc/mm/book3s64/iommu_api.c b/arch/powerpc/mm/book3s64/iommu_api.c
new file mode 100644
index 0000000..56cc845
--- /dev/null
+++ b/arch/powerpc/mm/book3s64/iommu_api.c
@@ -0,0 +1,461 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ *  IOMMU helpers in MMU context.
+ *
+ *  Copyright (C) 2015 IBM Corp. <aik@ozlabs.ru>
+ */
+
+#include <linux/sched/signal.h>
+#include <linux/slab.h>
+#include <linux/rculist.h>
+#include <linux/vmalloc.h>
+#include <linux/mutex.h>
+#include <linux/migrate.h>
+#include <linux/hugetlb.h>
+#include <linux/swap.h>
+#include <linux/sizes.h>
+#include <linux/mm.h>
+#include <asm/mmu_context.h>
+#include <asm/pte-walk.h>
+#include <linux/mm_inline.h>
+
+static DEFINE_MUTEX(mem_list_mutex);
+
+#define MM_IOMMU_TABLE_GROUP_PAGE_DIRTY	0x1
+#define MM_IOMMU_TABLE_GROUP_PAGE_MASK	~(SZ_4K - 1)
+
+struct mm_iommu_table_group_mem_t {
+	struct list_head next;
+	struct rcu_head rcu;
+	unsigned long used;
+	atomic64_t mapped;
+	unsigned int pageshift;
+	u64 ua;			/* userspace address */
+	u64 entries;		/* number of entries in hpas/hpages[] */
+	/*
+	 * in mm_iommu_get we temporarily use this to store
+	 * struct page address.
+	 *
+	 * We need to convert ua to hpa in real mode. Make it
+	 * simpler by storing physical address.
+	 */
+	union {
+		struct page **hpages;	/* vmalloc'ed */
+		phys_addr_t *hpas;
+	};
+#define MM_IOMMU_TABLE_INVALID_HPA	((uint64_t)-1)
+	u64 dev_hpa;		/* Device memory base address */
+};
+
+bool mm_iommu_preregistered(struct mm_struct *mm)
+{
+	return !list_empty(&mm->context.iommu_group_mem_list);
+}
+EXPORT_SYMBOL_GPL(mm_iommu_preregistered);
+
+static long mm_iommu_do_alloc(struct mm_struct *mm, unsigned long ua,
+			      unsigned long entries, unsigned long dev_hpa,
+			      struct mm_iommu_table_group_mem_t **pmem)
+{
+	struct mm_iommu_table_group_mem_t *mem, *mem2;
+	long i, ret, locked_entries = 0, pinned = 0;
+	unsigned int pageshift;
+	unsigned long entry, chunk;
+
+	if (dev_hpa == MM_IOMMU_TABLE_INVALID_HPA) {
+		ret = account_locked_vm(mm, entries, true);
+		if (ret)
+			return ret;
+
+		locked_entries = entries;
+	}
+
+	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
+	if (!mem) {
+		ret = -ENOMEM;
+		goto unlock_exit;
+	}
+
+	if (dev_hpa != MM_IOMMU_TABLE_INVALID_HPA) {
+		mem->pageshift = __ffs(dev_hpa | (entries << PAGE_SHIFT));
+		mem->dev_hpa = dev_hpa;
+		goto good_exit;
+	}
+	mem->dev_hpa = MM_IOMMU_TABLE_INVALID_HPA;
+
+	/*
+	 * For a starting point for a maximum page size calculation
+	 * we use @ua and @entries natural alignment to allow IOMMU pages
+	 * smaller than huge pages but still bigger than PAGE_SIZE.
+	 */
+	mem->pageshift = __ffs(ua | (entries << PAGE_SHIFT));
+	mem->hpas = vzalloc(array_size(entries, sizeof(mem->hpas[0])));
+	if (!mem->hpas) {
+		kfree(mem);
+		ret = -ENOMEM;
+		goto unlock_exit;
+	}
+
+	down_read(&mm->mmap_sem);
+	chunk = (1UL << (PAGE_SHIFT + MAX_ORDER - 1)) /
+			sizeof(struct vm_area_struct *);
+	chunk = min(chunk, entries);
+	for (entry = 0; entry < entries; entry += chunk) {
+		unsigned long n = min(entries - entry, chunk);
+
+		ret = get_user_pages(ua + (entry << PAGE_SHIFT), n,
+				FOLL_WRITE | FOLL_LONGTERM,
+				mem->hpages + entry, NULL);
+		if (ret == n) {
+			pinned += n;
+			continue;
+		}
+		if (ret > 0)
+			pinned += ret;
+		break;
+	}
+	up_read(&mm->mmap_sem);
+	if (pinned != entries) {
+		if (!ret)
+			ret = -EFAULT;
+		goto free_exit;
+	}
+
+	pageshift = PAGE_SHIFT;
+	for (i = 0; i < entries; ++i) {
+		struct page *page = mem->hpages[i];
+
+		/*
+		 * Allow to use larger than 64k IOMMU pages. Only do that
+		 * if we are backed by hugetlb.
+		 */
+		if ((mem->pageshift > PAGE_SHIFT) && PageHuge(page))
+			pageshift = page_shift(compound_head(page));
+		mem->pageshift = min(mem->pageshift, pageshift);
+		/*
+		 * We don't need struct page reference any more, switch
+		 * to physical address.
+		 */
+		mem->hpas[i] = page_to_pfn(page) << PAGE_SHIFT;
+	}
+
+good_exit:
+	atomic64_set(&mem->mapped, 1);
+	mem->used = 1;
+	mem->ua = ua;
+	mem->entries = entries;
+
+	mutex_lock(&mem_list_mutex);
+
+	list_for_each_entry_rcu(mem2, &mm->context.iommu_group_mem_list, next) {
+		/* Overlap? */
+		if ((mem2->ua < (ua + (entries << PAGE_SHIFT))) &&
+				(ua < (mem2->ua +
+				       (mem2->entries << PAGE_SHIFT)))) {
+			ret = -EINVAL;
+			mutex_unlock(&mem_list_mutex);
+			goto free_exit;
+		}
+	}
+
+	list_add_rcu(&mem->next, &mm->context.iommu_group_mem_list);
+
+	mutex_unlock(&mem_list_mutex);
+
+	*pmem = mem;
+
+	return 0;
+
+free_exit:
+	/* free the reference taken */
+	for (i = 0; i < pinned; i++)
+		put_page(mem->hpages[i]);
+
+	vfree(mem->hpas);
+	kfree(mem);
+
+unlock_exit:
+	account_locked_vm(mm, locked_entries, false);
+
+	return ret;
+}
+
+long mm_iommu_new(struct mm_struct *mm, unsigned long ua, unsigned long entries,
+		struct mm_iommu_table_group_mem_t **pmem)
+{
+	return mm_iommu_do_alloc(mm, ua, entries, MM_IOMMU_TABLE_INVALID_HPA,
+			pmem);
+}
+EXPORT_SYMBOL_GPL(mm_iommu_new);
+
+long mm_iommu_newdev(struct mm_struct *mm, unsigned long ua,
+		unsigned long entries, unsigned long dev_hpa,
+		struct mm_iommu_table_group_mem_t **pmem)
+{
+	return mm_iommu_do_alloc(mm, ua, entries, dev_hpa, pmem);
+}
+EXPORT_SYMBOL_GPL(mm_iommu_newdev);
+
+static void mm_iommu_unpin(struct mm_iommu_table_group_mem_t *mem)
+{
+	long i;
+	struct page *page = NULL;
+
+	if (!mem->hpas)
+		return;
+
+	for (i = 0; i < mem->entries; ++i) {
+		if (!mem->hpas[i])
+			continue;
+
+		page = pfn_to_page(mem->hpas[i] >> PAGE_SHIFT);
+		if (!page)
+			continue;
+
+		if (mem->hpas[i] & MM_IOMMU_TABLE_GROUP_PAGE_DIRTY)
+			SetPageDirty(page);
+
+		put_page(page);
+		mem->hpas[i] = 0;
+	}
+}
+
+static void mm_iommu_do_free(struct mm_iommu_table_group_mem_t *mem)
+{
+
+	mm_iommu_unpin(mem);
+	vfree(mem->hpas);
+	kfree(mem);
+}
+
+static void mm_iommu_free(struct rcu_head *head)
+{
+	struct mm_iommu_table_group_mem_t *mem = container_of(head,
+			struct mm_iommu_table_group_mem_t, rcu);
+
+	mm_iommu_do_free(mem);
+}
+
+static void mm_iommu_release(struct mm_iommu_table_group_mem_t *mem)
+{
+	list_del_rcu(&mem->next);
+	call_rcu(&mem->rcu, mm_iommu_free);
+}
+
+long mm_iommu_put(struct mm_struct *mm, struct mm_iommu_table_group_mem_t *mem)
+{
+	long ret = 0;
+	unsigned long unlock_entries = 0;
+
+	mutex_lock(&mem_list_mutex);
+
+	if (mem->used == 0) {
+		ret = -ENOENT;
+		goto unlock_exit;
+	}
+
+	--mem->used;
+	/* There are still users, exit */
+	if (mem->used)
+		goto unlock_exit;
+
+	/* Are there still mappings? */
+	if (atomic_cmpxchg(&mem->mapped, 1, 0) != 1) {
+		++mem->used;
+		ret = -EBUSY;
+		goto unlock_exit;
+	}
+
+	if (mem->dev_hpa == MM_IOMMU_TABLE_INVALID_HPA)
+		unlock_entries = mem->entries;
+
+	/* @mapped became 0 so now mappings are disabled, release the region */
+	mm_iommu_release(mem);
+
+unlock_exit:
+	mutex_unlock(&mem_list_mutex);
+
+	account_locked_vm(mm, unlock_entries, false);
+
+	return ret;
+}
+EXPORT_SYMBOL_GPL(mm_iommu_put);
+
+struct mm_iommu_table_group_mem_t *mm_iommu_lookup(struct mm_struct *mm,
+		unsigned long ua, unsigned long size)
+{
+	struct mm_iommu_table_group_mem_t *mem, *ret = NULL;
+
+	list_for_each_entry_rcu(mem, &mm->context.iommu_group_mem_list, next) {
+		if ((mem->ua <= ua) &&
+				(ua + size <= mem->ua +
+				 (mem->entries << PAGE_SHIFT))) {
+			ret = mem;
+			break;
+		}
+	}
+
+	return ret;
+}
+EXPORT_SYMBOL_GPL(mm_iommu_lookup);
+
+struct mm_iommu_table_group_mem_t *mm_iommu_lookup_rm(struct mm_struct *mm,
+		unsigned long ua, unsigned long size)
+{
+	struct mm_iommu_table_group_mem_t *mem, *ret = NULL;
+
+	list_for_each_entry_lockless(mem, &mm->context.iommu_group_mem_list,
+			next) {
+		if ((mem->ua <= ua) &&
+				(ua + size <= mem->ua +
+				 (mem->entries << PAGE_SHIFT))) {
+			ret = mem;
+			break;
+		}
+	}
+
+	return ret;
+}
+
+struct mm_iommu_table_group_mem_t *mm_iommu_get(struct mm_struct *mm,
+		unsigned long ua, unsigned long entries)
+{
+	struct mm_iommu_table_group_mem_t *mem, *ret = NULL;
+
+	mutex_lock(&mem_list_mutex);
+
+	list_for_each_entry_rcu(mem, &mm->context.iommu_group_mem_list, next) {
+		if ((mem->ua == ua) && (mem->entries == entries)) {
+			ret = mem;
+			++mem->used;
+			break;
+		}
+	}
+
+	mutex_unlock(&mem_list_mutex);
+
+	return ret;
+}
+EXPORT_SYMBOL_GPL(mm_iommu_get);
+
+long mm_iommu_ua_to_hpa(struct mm_iommu_table_group_mem_t *mem,
+		unsigned long ua, unsigned int pageshift, unsigned long *hpa)
+{
+	const long entry = (ua - mem->ua) >> PAGE_SHIFT;
+	u64 *va;
+
+	if (entry >= mem->entries)
+		return -EFAULT;
+
+	if (pageshift > mem->pageshift)
+		return -EFAULT;
+
+	if (!mem->hpas) {
+		*hpa = mem->dev_hpa + (ua - mem->ua);
+		return 0;
+	}
+
+	va = &mem->hpas[entry];
+	*hpa = (*va & MM_IOMMU_TABLE_GROUP_PAGE_MASK) | (ua & ~PAGE_MASK);
+
+	return 0;
+}
+EXPORT_SYMBOL_GPL(mm_iommu_ua_to_hpa);
+
+long mm_iommu_ua_to_hpa_rm(struct mm_iommu_table_group_mem_t *mem,
+		unsigned long ua, unsigned int pageshift, unsigned long *hpa)
+{
+	const long entry = (ua - mem->ua) >> PAGE_SHIFT;
+	unsigned long *pa;
+
+	if (entry >= mem->entries)
+		return -EFAULT;
+
+	if (pageshift > mem->pageshift)
+		return -EFAULT;
+
+	if (!mem->hpas) {
+		*hpa = mem->dev_hpa + (ua - mem->ua);
+		return 0;
+	}
+
+	pa = (void *) vmalloc_to_phys(&mem->hpas[entry]);
+	if (!pa)
+		return -EFAULT;
+
+	*hpa = (*pa & MM_IOMMU_TABLE_GROUP_PAGE_MASK) | (ua & ~PAGE_MASK);
+
+	return 0;
+}
+
+extern void mm_iommu_ua_mark_dirty_rm(struct mm_struct *mm, unsigned long ua)
+{
+	struct mm_iommu_table_group_mem_t *mem;
+	long entry;
+	void *va;
+	unsigned long *pa;
+
+	mem = mm_iommu_lookup_rm(mm, ua, PAGE_SIZE);
+	if (!mem)
+		return;
+
+	if (mem->dev_hpa != MM_IOMMU_TABLE_INVALID_HPA)
+		return;
+
+	entry = (ua - mem->ua) >> PAGE_SHIFT;
+	va = &mem->hpas[entry];
+
+	pa = (void *) vmalloc_to_phys(va);
+	if (!pa)
+		return;
+
+	*pa |= MM_IOMMU_TABLE_GROUP_PAGE_DIRTY;
+}
+
+bool mm_iommu_is_devmem(struct mm_struct *mm, unsigned long hpa,
+		unsigned int pageshift, unsigned long *size)
+{
+	struct mm_iommu_table_group_mem_t *mem;
+	unsigned long end;
+
+	list_for_each_entry_rcu(mem, &mm->context.iommu_group_mem_list, next) {
+		if (mem->dev_hpa == MM_IOMMU_TABLE_INVALID_HPA)
+			continue;
+
+		end = mem->dev_hpa + (mem->entries << PAGE_SHIFT);
+		if ((mem->dev_hpa <= hpa) && (hpa < end)) {
+			/*
+			 * Since the IOMMU page size might be bigger than
+			 * PAGE_SIZE, the amount of preregistered memory
+			 * starting from @hpa might be smaller than 1<<pageshift
+			 * and the caller needs to distinguish this situation.
+			 */
+			*size = min(1UL << pageshift, end - hpa);
+			return true;
+		}
+	}
+
+	return false;
+}
+EXPORT_SYMBOL_GPL(mm_iommu_is_devmem);
+
+long mm_iommu_mapped_inc(struct mm_iommu_table_group_mem_t *mem)
+{
+	if (atomic64_inc_not_zero(&mem->mapped))
+		return 0;
+
+	/* Last mm_iommu_put() has been called, no more mappings allowed() */
+	return -ENXIO;
+}
+EXPORT_SYMBOL_GPL(mm_iommu_mapped_inc);
+
+void mm_iommu_mapped_dec(struct mm_iommu_table_group_mem_t *mem)
+{
+	atomic64_add_unless(&mem->mapped, -1, 1);
+}
+EXPORT_SYMBOL_GPL(mm_iommu_mapped_dec);
+
+void mm_iommu_init(struct mm_struct *mm)
+{
+	INIT_LIST_HEAD_RCU(&mm->context.iommu_group_mem_list);
+}
diff --git a/arch/powerpc/mm/book3s64/mmu_context.c b/arch/powerpc/mm/book3s64/mmu_context.c
new file mode 100644
index 0000000..0ba30b8
--- /dev/null
+++ b/arch/powerpc/mm/book3s64/mmu_context.c
@@ -0,0 +1,309 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ *  MMU context allocation for 64-bit kernels.
+ *
+ *  Copyright (C) 2004 Anton Blanchard, IBM Corp. <anton@samba.org>
+ */
+
+#include <linux/sched.h>
+#include <linux/kernel.h>
+#include <linux/errno.h>
+#include <linux/string.h>
+#include <linux/types.h>
+#include <linux/mm.h>
+#include <linux/pkeys.h>
+#include <linux/spinlock.h>
+#include <linux/idr.h>
+#include <linux/export.h>
+#include <linux/gfp.h>
+#include <linux/slab.h>
+
+#include <asm/mmu_context.h>
+#include <asm/pgalloc.h>
+
+static DEFINE_IDA(mmu_context_ida);
+
+static int alloc_context_id(int min_id, int max_id)
+{
+	return ida_alloc_range(&mmu_context_ida, min_id, max_id, GFP_KERNEL);
+}
+
+void hash__reserve_context_id(int id)
+{
+	int result = ida_alloc_range(&mmu_context_ida, id, id, GFP_KERNEL);
+
+	WARN(result != id, "mmu: Failed to reserve context id %d (rc %d)\n", id, result);
+}
+
+int hash__alloc_context_id(void)
+{
+	unsigned long max;
+
+	if (mmu_has_feature(MMU_FTR_68_BIT_VA))
+		max = MAX_USER_CONTEXT;
+	else
+		max = MAX_USER_CONTEXT_65BIT_VA;
+
+	return alloc_context_id(MIN_USER_CONTEXT, max);
+}
+EXPORT_SYMBOL_GPL(hash__alloc_context_id);
+
+void slb_setup_new_exec(void);
+
+static int realloc_context_ids(mm_context_t *ctx)
+{
+	int i, id;
+
+	/*
+	 * id 0 (aka. ctx->id) is special, we always allocate a new one, even if
+	 * there wasn't one allocated previously (which happens in the exec
+	 * case where ctx is newly allocated).
+	 *
+	 * We have to be a bit careful here. We must keep the existing ids in
+	 * the array, so that we can test if they're non-zero to decide if we
+	 * need to allocate a new one. However in case of error we must free the
+	 * ids we've allocated but *not* any of the existing ones (or risk a
+	 * UAF). That's why we decrement i at the start of the error handling
+	 * loop, to skip the id that we just tested but couldn't reallocate.
+	 */
+	for (i = 0; i < ARRAY_SIZE(ctx->extended_id); i++) {
+		if (i == 0 || ctx->extended_id[i]) {
+			id = hash__alloc_context_id();
+			if (id < 0)
+				goto error;
+
+			ctx->extended_id[i] = id;
+		}
+	}
+
+	/* The caller expects us to return id */
+	return ctx->id;
+
+error:
+	for (i--; i >= 0; i--) {
+		if (ctx->extended_id[i])
+			ida_free(&mmu_context_ida, ctx->extended_id[i]);
+	}
+
+	return id;
+}
+
+static int hash__init_new_context(struct mm_struct *mm)
+{
+	int index;
+
+	mm->context.hash_context = kmalloc(sizeof(struct hash_mm_context),
+					   GFP_KERNEL);
+	if (!mm->context.hash_context)
+		return -ENOMEM;
+
+	/*
+	 * The old code would re-promote on fork, we don't do that when using
+	 * slices as it could cause problem promoting slices that have been
+	 * forced down to 4K.
+	 *
+	 * For book3s we have MMU_NO_CONTEXT set to be ~0. Hence check
+	 * explicitly against context.id == 0. This ensures that we properly
+	 * initialize context slice details for newly allocated mm's (which will
+	 * have id == 0) and don't alter context slice inherited via fork (which
+	 * will have id != 0).
+	 *
+	 * We should not be calling init_new_context() on init_mm. Hence a
+	 * check against 0 is OK.
+	 */
+	if (mm->context.id == 0) {
+		memset(mm->context.hash_context, 0, sizeof(struct hash_mm_context));
+		slice_init_new_context_exec(mm);
+	} else {
+		/* This is fork. Copy hash_context details from current->mm */
+		memcpy(mm->context.hash_context, current->mm->context.hash_context, sizeof(struct hash_mm_context));
+#ifdef CONFIG_PPC_SUBPAGE_PROT
+		/* inherit subpage prot detalis if we have one. */
+		if (current->mm->context.hash_context->spt) {
+			mm->context.hash_context->spt = kmalloc(sizeof(struct subpage_prot_table),
+								GFP_KERNEL);
+			if (!mm->context.hash_context->spt) {
+				kfree(mm->context.hash_context);
+				return -ENOMEM;
+			}
+		}
+#endif
+	}
+
+	index = realloc_context_ids(&mm->context);
+	if (index < 0) {
+#ifdef CONFIG_PPC_SUBPAGE_PROT
+		kfree(mm->context.hash_context->spt);
+#endif
+		kfree(mm->context.hash_context);
+		return index;
+	}
+
+	pkey_mm_init(mm);
+	return index;
+}
+
+void hash__setup_new_exec(void)
+{
+	slice_setup_new_exec();
+
+	slb_setup_new_exec();
+}
+
+static int radix__init_new_context(struct mm_struct *mm)
+{
+	unsigned long rts_field;
+	int index, max_id;
+
+	max_id = (1 << mmu_pid_bits) - 1;
+	index = alloc_context_id(mmu_base_pid, max_id);
+	if (index < 0)
+		return index;
+
+	/*
+	 * set the process table entry,
+	 */
+	rts_field = radix__get_tree_size();
+	process_tb[index].prtb0 = cpu_to_be64(rts_field | __pa(mm->pgd) | RADIX_PGD_INDEX_SIZE);
+
+	/*
+	 * Order the above store with subsequent update of the PID
+	 * register (at which point HW can start loading/caching
+	 * the entry) and the corresponding load by the MMU from
+	 * the L2 cache.
+	 */
+	asm volatile("ptesync;isync" : : : "memory");
+
+	mm->context.hash_context = NULL;
+
+	return index;
+}
+
+int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
+{
+	int index;
+
+	if (radix_enabled())
+		index = radix__init_new_context(mm);
+	else
+		index = hash__init_new_context(mm);
+
+	if (index < 0)
+		return index;
+
+	mm->context.id = index;
+
+	mm->context.pte_frag = NULL;
+	mm->context.pmd_frag = NULL;
+#ifdef CONFIG_SPAPR_TCE_IOMMU
+	mm_iommu_init(mm);
+#endif
+	atomic_set(&mm->context.active_cpus, 0);
+	atomic_set(&mm->context.copros, 0);
+
+	return 0;
+}
+
+void __destroy_context(int context_id)
+{
+	ida_free(&mmu_context_ida, context_id);
+}
+EXPORT_SYMBOL_GPL(__destroy_context);
+
+static void destroy_contexts(mm_context_t *ctx)
+{
+	int index, context_id;
+
+	for (index = 0; index < ARRAY_SIZE(ctx->extended_id); index++) {
+		context_id = ctx->extended_id[index];
+		if (context_id)
+			ida_free(&mmu_context_ida, context_id);
+	}
+	kfree(ctx->hash_context);
+}
+
+static void pmd_frag_destroy(void *pmd_frag)
+{
+	int count;
+	struct page *page;
+
+	page = virt_to_page(pmd_frag);
+	/* drop all the pending references */
+	count = ((unsigned long)pmd_frag & ~PAGE_MASK) >> PMD_FRAG_SIZE_SHIFT;
+	/* We allow PTE_FRAG_NR fragments from a PTE page */
+	if (atomic_sub_and_test(PMD_FRAG_NR - count, &page->pt_frag_refcount)) {
+		pgtable_pmd_page_dtor(page);
+		__free_page(page);
+	}
+}
+
+static void destroy_pagetable_cache(struct mm_struct *mm)
+{
+	void *frag;
+
+	frag = mm->context.pte_frag;
+	if (frag)
+		pte_frag_destroy(frag);
+
+	frag = mm->context.pmd_frag;
+	if (frag)
+		pmd_frag_destroy(frag);
+	return;
+}
+
+void destroy_context(struct mm_struct *mm)
+{
+#ifdef CONFIG_SPAPR_TCE_IOMMU
+	WARN_ON_ONCE(!list_empty(&mm->context.iommu_group_mem_list));
+#endif
+	/*
+	 * For tasks which were successfully initialized we end up calling
+	 * arch_exit_mmap() which clears the process table entry. And
+	 * arch_exit_mmap() is called before the required fullmm TLB flush
+	 * which does a RIC=2 flush. Hence for an initialized task, we do clear
+	 * any cached process table entries.
+	 *
+	 * The condition below handles the error case during task init. We have
+	 * set the process table entry early and if we fail a task
+	 * initialization, we need to ensure the process table entry is zeroed.
+	 * We need not worry about process table entry caches because the task
+	 * never ran with the PID value.
+	 */
+	if (radix_enabled())
+		process_tb[mm->context.id].prtb0 = 0;
+	else
+		subpage_prot_free(mm);
+	destroy_contexts(&mm->context);
+	mm->context.id = MMU_NO_CONTEXT;
+}
+
+void arch_exit_mmap(struct mm_struct *mm)
+{
+	destroy_pagetable_cache(mm);
+
+	if (radix_enabled()) {
+		/*
+		 * Radix doesn't have a valid bit in the process table
+		 * entries. However we know that at least P9 implementation
+		 * will avoid caching an entry with an invalid RTS field,
+		 * and 0 is invalid. So this will do.
+		 *
+		 * This runs before the "fullmm" tlb flush in exit_mmap,
+		 * which does a RIC=2 tlbie to clear the process table
+		 * entry. See the "fullmm" comments in tlb-radix.c.
+		 *
+		 * No barrier required here after the store because
+		 * this process will do the invalidate, which starts with
+		 * ptesync.
+		 */
+		process_tb[mm->context.id].prtb0 = 0;
+	}
+}
+
+#ifdef CONFIG_PPC_RADIX_MMU
+void radix__switch_mmu_context(struct mm_struct *prev, struct mm_struct *next)
+{
+	mtspr(SPRN_PID, next->context.id);
+	isync();
+}
+#endif
diff --git a/arch/powerpc/mm/book3s64/pgtable.c b/arch/powerpc/mm/book3s64/pgtable.c
new file mode 100644
index 0000000..75483b4
--- /dev/null
+++ b/arch/powerpc/mm/book3s64/pgtable.c
@@ -0,0 +1,518 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
+ */
+
+#include <linux/sched.h>
+#include <linux/mm_types.h>
+#include <linux/memblock.h>
+#include <misc/cxl-base.h>
+
+#include <asm/debugfs.h>
+#include <asm/pgalloc.h>
+#include <asm/tlb.h>
+#include <asm/trace.h>
+#include <asm/powernv.h>
+#include <asm/firmware.h>
+#include <asm/ultravisor.h>
+
+#include <mm/mmu_decl.h>
+#include <trace/events/thp.h>
+
+unsigned long __pmd_frag_nr;
+EXPORT_SYMBOL(__pmd_frag_nr);
+unsigned long __pmd_frag_size_shift;
+EXPORT_SYMBOL(__pmd_frag_size_shift);
+
+#ifdef CONFIG_TRANSPARENT_HUGEPAGE
+/*
+ * This is called when relaxing access to a hugepage. It's also called in the page
+ * fault path when we don't hit any of the major fault cases, ie, a minor
+ * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have
+ * handled those two for us, we additionally deal with missing execute
+ * permission here on some processors
+ */
+int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
+			  pmd_t *pmdp, pmd_t entry, int dirty)
+{
+	int changed;
+#ifdef CONFIG_DEBUG_VM
+	WARN_ON(!pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
+	assert_spin_locked(pmd_lockptr(vma->vm_mm, pmdp));
+#endif
+	changed = !pmd_same(*(pmdp), entry);
+	if (changed) {
+		/*
+		 * We can use MMU_PAGE_2M here, because only radix
+		 * path look at the psize.
+		 */
+		__ptep_set_access_flags(vma, pmdp_ptep(pmdp),
+					pmd_pte(entry), address, MMU_PAGE_2M);
+	}
+	return changed;
+}
+
+int pmdp_test_and_clear_young(struct vm_area_struct *vma,
+			      unsigned long address, pmd_t *pmdp)
+{
+	return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp);
+}
+/*
+ * set a new huge pmd. We should not be called for updating
+ * an existing pmd entry. That should go via pmd_hugepage_update.
+ */
+void set_pmd_at(struct mm_struct *mm, unsigned long addr,
+		pmd_t *pmdp, pmd_t pmd)
+{
+#ifdef CONFIG_DEBUG_VM
+	/*
+	 * Make sure hardware valid bit is not set. We don't do
+	 * tlb flush for this update.
+	 */
+
+	WARN_ON(pte_hw_valid(pmd_pte(*pmdp)) && !pte_protnone(pmd_pte(*pmdp)));
+	assert_spin_locked(pmd_lockptr(mm, pmdp));
+	WARN_ON(!(pmd_large(pmd)));
+#endif
+	trace_hugepage_set_pmd(addr, pmd_val(pmd));
+	return set_pte_at(mm, addr, pmdp_ptep(pmdp), pmd_pte(pmd));
+}
+
+static void do_nothing(void *unused)
+{
+
+}
+/*
+ * Serialize against find_current_mm_pte which does lock-less
+ * lookup in page tables with local interrupts disabled. For huge pages
+ * it casts pmd_t to pte_t. Since format of pte_t is different from
+ * pmd_t we want to prevent transit from pmd pointing to page table
+ * to pmd pointing to huge page (and back) while interrupts are disabled.
+ * We clear pmd to possibly replace it with page table pointer in
+ * different code paths. So make sure we wait for the parallel
+ * find_current_mm_pte to finish.
+ */
+void serialize_against_pte_lookup(struct mm_struct *mm)
+{
+	smp_mb();
+	smp_call_function_many(mm_cpumask(mm), do_nothing, NULL, 1);
+}
+
+/*
+ * We use this to invalidate a pmdp entry before switching from a
+ * hugepte to regular pmd entry.
+ */
+pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
+		     pmd_t *pmdp)
+{
+	unsigned long old_pmd;
+
+	old_pmd = pmd_hugepage_update(vma->vm_mm, address, pmdp, _PAGE_PRESENT, _PAGE_INVALID);
+	flush_pmd_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
+	/*
+	 * This ensures that generic code that rely on IRQ disabling
+	 * to prevent a parallel THP split work as expected.
+	 *
+	 * Marking the entry with _PAGE_INVALID && ~_PAGE_PRESENT requires
+	 * a special case check in pmd_access_permitted.
+	 */
+	serialize_against_pte_lookup(vma->vm_mm);
+	return __pmd(old_pmd);
+}
+
+static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot)
+{
+	return __pmd(pmd_val(pmd) | pgprot_val(pgprot));
+}
+
+pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot)
+{
+	unsigned long pmdv;
+
+	pmdv = (pfn << PAGE_SHIFT) & PTE_RPN_MASK;
+	return pmd_set_protbits(__pmd(pmdv), pgprot);
+}
+
+pmd_t mk_pmd(struct page *page, pgprot_t pgprot)
+{
+	return pfn_pmd(page_to_pfn(page), pgprot);
+}
+
+pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
+{
+	unsigned long pmdv;
+
+	pmdv = pmd_val(pmd);
+	pmdv &= _HPAGE_CHG_MASK;
+	return pmd_set_protbits(__pmd(pmdv), newprot);
+}
+
+/*
+ * This is called at the end of handling a user page fault, when the
+ * fault has been handled by updating a HUGE PMD entry in the linux page tables.
+ * We use it to preload an HPTE into the hash table corresponding to
+ * the updated linux HUGE PMD entry.
+ */
+void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
+			  pmd_t *pmd)
+{
+	if (radix_enabled())
+		prefetch((void *)addr);
+}
+#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
+
+/* For use by kexec */
+void mmu_cleanup_all(void)
+{
+	if (radix_enabled())
+		radix__mmu_cleanup_all();
+	else if (mmu_hash_ops.hpte_clear_all)
+		mmu_hash_ops.hpte_clear_all();
+}
+
+#ifdef CONFIG_MEMORY_HOTPLUG
+int __meminit create_section_mapping(unsigned long start, unsigned long end, int nid)
+{
+	if (radix_enabled())
+		return radix__create_section_mapping(start, end, nid);
+
+	return hash__create_section_mapping(start, end, nid);
+}
+
+int __meminit remove_section_mapping(unsigned long start, unsigned long end)
+{
+	if (radix_enabled())
+		return radix__remove_section_mapping(start, end);
+
+	return hash__remove_section_mapping(start, end);
+}
+#endif /* CONFIG_MEMORY_HOTPLUG */
+
+void __init mmu_partition_table_init(void)
+{
+	unsigned long patb_size = 1UL << PATB_SIZE_SHIFT;
+	unsigned long ptcr;
+
+	BUILD_BUG_ON_MSG((PATB_SIZE_SHIFT > 36), "Partition table size too large.");
+	/* Initialize the Partition Table with no entries */
+	partition_tb = memblock_alloc(patb_size, patb_size);
+	if (!partition_tb)
+		panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
+		      __func__, patb_size, patb_size);
+
+	/*
+	 * update partition table control register,
+	 * 64 K size.
+	 */
+	ptcr = __pa(partition_tb) | (PATB_SIZE_SHIFT - 12);
+	set_ptcr_when_no_uv(ptcr);
+	powernv_set_nmmu_ptcr(ptcr);
+}
+
+static void flush_partition(unsigned int lpid, bool radix)
+{
+	if (radix) {
+		radix__flush_all_lpid(lpid);
+		radix__flush_all_lpid_guest(lpid);
+	} else {
+		asm volatile("ptesync" : : : "memory");
+		asm volatile(PPC_TLBIE_5(%0,%1,2,0,0) : :
+			     "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
+		/* do we need fixup here ?*/
+		asm volatile("eieio; tlbsync; ptesync" : : : "memory");
+		trace_tlbie(lpid, 0, TLBIEL_INVAL_SET_LPID, lpid, 2, 0, 0);
+	}
+}
+
+void mmu_partition_table_set_entry(unsigned int lpid, unsigned long dw0,
+				  unsigned long dw1, bool flush)
+{
+	unsigned long old = be64_to_cpu(partition_tb[lpid].patb0);
+
+	/*
+	 * When ultravisor is enabled, the partition table is stored in secure
+	 * memory and can only be accessed doing an ultravisor call. However, we
+	 * maintain a copy of the partition table in normal memory to allow Nest
+	 * MMU translations to occur (for normal VMs).
+	 *
+	 * Therefore, here we always update partition_tb, regardless of whether
+	 * we are running under an ultravisor or not.
+	 */
+	partition_tb[lpid].patb0 = cpu_to_be64(dw0);
+	partition_tb[lpid].patb1 = cpu_to_be64(dw1);
+
+	/*
+	 * If ultravisor is enabled, we do an ultravisor call to register the
+	 * partition table entry (PATE), which also do a global flush of TLBs
+	 * and partition table caches for the lpid. Otherwise, just do the
+	 * flush. The type of flush (hash or radix) depends on what the previous
+	 * use of the partition ID was, not the new use.
+	 */
+	if (firmware_has_feature(FW_FEATURE_ULTRAVISOR)) {
+		uv_register_pate(lpid, dw0, dw1);
+		pr_info("PATE registered by ultravisor: dw0 = 0x%lx, dw1 = 0x%lx\n",
+			dw0, dw1);
+	} else if (flush) {
+		/*
+		 * Boot does not need to flush, because MMU is off and each
+		 * CPU does a tlbiel_all() before switching them on, which
+		 * flushes everything.
+		 */
+		flush_partition(lpid, (old & PATB_HR));
+	}
+}
+EXPORT_SYMBOL_GPL(mmu_partition_table_set_entry);
+
+static pmd_t *get_pmd_from_cache(struct mm_struct *mm)
+{
+	void *pmd_frag, *ret;
+
+	if (PMD_FRAG_NR == 1)
+		return NULL;
+
+	spin_lock(&mm->page_table_lock);
+	ret = mm->context.pmd_frag;
+	if (ret) {
+		pmd_frag = ret + PMD_FRAG_SIZE;
+		/*
+		 * If we have taken up all the fragments mark PTE page NULL
+		 */
+		if (((unsigned long)pmd_frag & ~PAGE_MASK) == 0)
+			pmd_frag = NULL;
+		mm->context.pmd_frag = pmd_frag;
+	}
+	spin_unlock(&mm->page_table_lock);
+	return (pmd_t *)ret;
+}
+
+static pmd_t *__alloc_for_pmdcache(struct mm_struct *mm)
+{
+	void *ret = NULL;
+	struct page *page;
+	gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO;
+
+	if (mm == &init_mm)
+		gfp &= ~__GFP_ACCOUNT;
+	page = alloc_page(gfp);
+	if (!page)
+		return NULL;
+	if (!pgtable_pmd_page_ctor(page)) {
+		__free_pages(page, 0);
+		return NULL;
+	}
+
+	atomic_set(&page->pt_frag_refcount, 1);
+
+	ret = page_address(page);
+	/*
+	 * if we support only one fragment just return the
+	 * allocated page.
+	 */
+	if (PMD_FRAG_NR == 1)
+		return ret;
+
+	spin_lock(&mm->page_table_lock);
+	/*
+	 * If we find pgtable_page set, we return
+	 * the allocated page with single fragement
+	 * count.
+	 */
+	if (likely(!mm->context.pmd_frag)) {
+		atomic_set(&page->pt_frag_refcount, PMD_FRAG_NR);
+		mm->context.pmd_frag = ret + PMD_FRAG_SIZE;
+	}
+	spin_unlock(&mm->page_table_lock);
+
+	return (pmd_t *)ret;
+}
+
+pmd_t *pmd_fragment_alloc(struct mm_struct *mm, unsigned long vmaddr)
+{
+	pmd_t *pmd;
+
+	pmd = get_pmd_from_cache(mm);
+	if (pmd)
+		return pmd;
+
+	return __alloc_for_pmdcache(mm);
+}
+
+void pmd_fragment_free(unsigned long *pmd)
+{
+	struct page *page = virt_to_page(pmd);
+
+	BUG_ON(atomic_read(&page->pt_frag_refcount) <= 0);
+	if (atomic_dec_and_test(&page->pt_frag_refcount)) {
+		pgtable_pmd_page_dtor(page);
+		__free_page(page);
+	}
+}
+
+static inline void pgtable_free(void *table, int index)
+{
+	switch (index) {
+	case PTE_INDEX:
+		pte_fragment_free(table, 0);
+		break;
+	case PMD_INDEX:
+		pmd_fragment_free(table);
+		break;
+	case PUD_INDEX:
+		kmem_cache_free(PGT_CACHE(PUD_CACHE_INDEX), table);
+		break;
+#if defined(CONFIG_PPC_4K_PAGES) && defined(CONFIG_HUGETLB_PAGE)
+		/* 16M hugepd directory at pud level */
+	case HTLB_16M_INDEX:
+		BUILD_BUG_ON(H_16M_CACHE_INDEX <= 0);
+		kmem_cache_free(PGT_CACHE(H_16M_CACHE_INDEX), table);
+		break;
+		/* 16G hugepd directory at the pgd level */
+	case HTLB_16G_INDEX:
+		BUILD_BUG_ON(H_16G_CACHE_INDEX <= 0);
+		kmem_cache_free(PGT_CACHE(H_16G_CACHE_INDEX), table);
+		break;
+#endif
+		/* We don't free pgd table via RCU callback */
+	default:
+		BUG();
+	}
+}
+
+#ifdef CONFIG_SMP
+void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int index)
+{
+	unsigned long pgf = (unsigned long)table;
+
+	BUG_ON(index > MAX_PGTABLE_INDEX_SIZE);
+	pgf |= index;
+	tlb_remove_table(tlb, (void *)pgf);
+}
+
+void __tlb_remove_table(void *_table)
+{
+	void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE);
+	unsigned int index = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE;
+
+	return pgtable_free(table, index);
+}
+#else
+void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int index)
+{
+	return pgtable_free(table, index);
+}
+#endif
+
+#ifdef CONFIG_PROC_FS
+atomic_long_t direct_pages_count[MMU_PAGE_COUNT];
+
+void arch_report_meminfo(struct seq_file *m)
+{
+	/*
+	 * Hash maps the memory with one size mmu_linear_psize.
+	 * So don't bother to print these on hash
+	 */
+	if (!radix_enabled())
+		return;
+	seq_printf(m, "DirectMap4k:    %8lu kB\n",
+		   atomic_long_read(&direct_pages_count[MMU_PAGE_4K]) << 2);
+	seq_printf(m, "DirectMap64k:    %8lu kB\n",
+		   atomic_long_read(&direct_pages_count[MMU_PAGE_64K]) << 6);
+	seq_printf(m, "DirectMap2M:    %8lu kB\n",
+		   atomic_long_read(&direct_pages_count[MMU_PAGE_2M]) << 11);
+	seq_printf(m, "DirectMap1G:    %8lu kB\n",
+		   atomic_long_read(&direct_pages_count[MMU_PAGE_1G]) << 20);
+}
+#endif /* CONFIG_PROC_FS */
+
+pte_t ptep_modify_prot_start(struct vm_area_struct *vma, unsigned long addr,
+			     pte_t *ptep)
+{
+	unsigned long pte_val;
+
+	/*
+	 * Clear the _PAGE_PRESENT so that no hardware parallel update is
+	 * possible. Also keep the pte_present true so that we don't take
+	 * wrong fault.
+	 */
+	pte_val = pte_update(vma->vm_mm, addr, ptep, _PAGE_PRESENT, _PAGE_INVALID, 0);
+
+	return __pte(pte_val);
+
+}
+
+void ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr,
+			     pte_t *ptep, pte_t old_pte, pte_t pte)
+{
+	if (radix_enabled())
+		return radix__ptep_modify_prot_commit(vma, addr,
+						      ptep, old_pte, pte);
+	set_pte_at(vma->vm_mm, addr, ptep, pte);
+}
+
+/*
+ * For hash translation mode, we use the deposited table to store hash slot
+ * information and they are stored at PTRS_PER_PMD offset from related pmd
+ * location. Hence a pmd move requires deposit and withdraw.
+ *
+ * For radix translation with split pmd ptl, we store the deposited table in the
+ * pmd page. Hence if we have different pmd page we need to withdraw during pmd
+ * move.
+ *
+ * With hash we use deposited table always irrespective of anon or not.
+ * With radix we use deposited table only for anonymous mapping.
+ */
+int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
+			   struct spinlock *old_pmd_ptl,
+			   struct vm_area_struct *vma)
+{
+	if (radix_enabled())
+		return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
+
+	return true;
+}
+
+/*
+ * Does the CPU support tlbie?
+ */
+bool tlbie_capable __read_mostly = true;
+EXPORT_SYMBOL(tlbie_capable);
+
+/*
+ * Should tlbie be used for management of CPU TLBs, for kernel and process
+ * address spaces? tlbie may still be used for nMMU accelerators, and for KVM
+ * guest address spaces.
+ */
+bool tlbie_enabled __read_mostly = true;
+
+static int __init setup_disable_tlbie(char *str)
+{
+	if (!radix_enabled()) {
+		pr_err("disable_tlbie: Unable to disable TLBIE with Hash MMU.\n");
+		return 1;
+	}
+
+	tlbie_capable = false;
+	tlbie_enabled = false;
+
+        return 1;
+}
+__setup("disable_tlbie", setup_disable_tlbie);
+
+static int __init pgtable_debugfs_setup(void)
+{
+	if (!tlbie_capable)
+		return 0;
+
+	/*
+	 * There is no locking vs tlb flushing when changing this value.
+	 * The tlb flushers will see one value or another, and use either
+	 * tlbie or tlbiel with IPIs. In both cases the TLBs will be
+	 * invalidated as expected.
+	 */
+	debugfs_create_bool("tlbie_enabled", 0600,
+			powerpc_debugfs_root,
+			&tlbie_enabled);
+
+	return 0;
+}
+arch_initcall(pgtable_debugfs_setup);
diff --git a/arch/powerpc/mm/book3s64/pkeys.c b/arch/powerpc/mm/book3s64/pkeys.c
new file mode 100644
index 0000000..ae7fca4
--- /dev/null
+++ b/arch/powerpc/mm/book3s64/pkeys.c
@@ -0,0 +1,428 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * PowerPC Memory Protection Keys management
+ *
+ * Copyright 2017, Ram Pai, IBM Corporation.
+ */
+
+#include <asm/mman.h>
+#include <asm/mmu_context.h>
+#include <asm/mmu.h>
+#include <asm/setup.h>
+#include <linux/pkeys.h>
+#include <linux/of_device.h>
+
+DEFINE_STATIC_KEY_TRUE(pkey_disabled);
+int  pkeys_total;		/* Total pkeys as per device tree */
+u32  initial_allocation_mask;   /* Bits set for the initially allocated keys */
+u32  reserved_allocation_mask;  /* Bits set for reserved keys */
+static bool pkey_execute_disable_supported;
+static bool pkeys_devtree_defined;	/* property exported by device tree */
+static u64 pkey_amr_mask;		/* Bits in AMR not to be touched */
+static u64 pkey_iamr_mask;		/* Bits in AMR not to be touched */
+static u64 pkey_uamor_mask;		/* Bits in UMOR not to be touched */
+static int execute_only_key = 2;
+
+#define AMR_BITS_PER_PKEY 2
+#define AMR_RD_BIT 0x1UL
+#define AMR_WR_BIT 0x2UL
+#define IAMR_EX_BIT 0x1UL
+#define PKEY_REG_BITS (sizeof(u64)*8)
+#define pkeyshift(pkey) (PKEY_REG_BITS - ((pkey+1) * AMR_BITS_PER_PKEY))
+
+static void scan_pkey_feature(void)
+{
+	u32 vals[2];
+	struct device_node *cpu;
+
+	cpu = of_find_node_by_type(NULL, "cpu");
+	if (!cpu)
+		return;
+
+	if (of_property_read_u32_array(cpu,
+			"ibm,processor-storage-keys", vals, 2))
+		return;
+
+	/*
+	 * Since any pkey can be used for data or execute, we will just treat
+	 * all keys as equal and track them as one entity.
+	 */
+	pkeys_total = vals[0];
+	pkeys_devtree_defined = true;
+}
+
+static inline bool pkey_mmu_enabled(void)
+{
+	if (firmware_has_feature(FW_FEATURE_LPAR))
+		return pkeys_total;
+	else
+		return cpu_has_feature(CPU_FTR_PKEY);
+}
+
+static int pkey_initialize(void)
+{
+	int os_reserved, i;
+
+	/*
+	 * We define PKEY_DISABLE_EXECUTE in addition to the arch-neutral
+	 * generic defines for PKEY_DISABLE_ACCESS and PKEY_DISABLE_WRITE.
+	 * Ensure that the bits a distinct.
+	 */
+	BUILD_BUG_ON(PKEY_DISABLE_EXECUTE &
+		     (PKEY_DISABLE_ACCESS | PKEY_DISABLE_WRITE));
+
+	/*
+	 * pkey_to_vmflag_bits() assumes that the pkey bits are contiguous
+	 * in the vmaflag. Make sure that is really the case.
+	 */
+	BUILD_BUG_ON(__builtin_clzl(ARCH_VM_PKEY_FLAGS >> VM_PKEY_SHIFT) +
+		     __builtin_popcountl(ARCH_VM_PKEY_FLAGS >> VM_PKEY_SHIFT)
+				!= (sizeof(u64) * BITS_PER_BYTE));
+
+	/* scan the device tree for pkey feature */
+	scan_pkey_feature();
+
+	/*
+	 * Let's assume 32 pkeys on P8 bare metal, if its not defined by device
+	 * tree. We make this exception since skiboot forgot to expose this
+	 * property on power8.
+	 */
+	if (!pkeys_devtree_defined && !firmware_has_feature(FW_FEATURE_LPAR) &&
+			cpu_has_feature(CPU_FTRS_POWER8))
+		pkeys_total = 32;
+
+	/*
+	 * Adjust the upper limit, based on the number of bits supported by
+	 * arch-neutral code.
+	 */
+	pkeys_total = min_t(int, pkeys_total,
+			((ARCH_VM_PKEY_FLAGS >> VM_PKEY_SHIFT)+1));
+
+	if (!pkey_mmu_enabled() || radix_enabled() || !pkeys_total)
+		static_branch_enable(&pkey_disabled);
+	else
+		static_branch_disable(&pkey_disabled);
+
+	if (static_branch_likely(&pkey_disabled))
+		return 0;
+
+	/*
+	 * The device tree cannot be relied to indicate support for
+	 * execute_disable support. Instead we use a PVR check.
+	 */
+	if (pvr_version_is(PVR_POWER7) || pvr_version_is(PVR_POWER7p))
+		pkey_execute_disable_supported = false;
+	else
+		pkey_execute_disable_supported = true;
+
+#ifdef CONFIG_PPC_4K_PAGES
+	/*
+	 * The OS can manage only 8 pkeys due to its inability to represent them
+	 * in the Linux 4K PTE.
+	 */
+	os_reserved = pkeys_total - 8;
+#else
+	os_reserved = 0;
+#endif
+	/* Bits are in LE format. */
+	reserved_allocation_mask = (0x1 << 1) | (0x1 << execute_only_key);
+
+	/* register mask is in BE format */
+	pkey_amr_mask = ~0x0ul;
+	pkey_amr_mask &= ~(0x3ul << pkeyshift(0));
+
+	pkey_iamr_mask = ~0x0ul;
+	pkey_iamr_mask &= ~(0x3ul << pkeyshift(0));
+	pkey_iamr_mask &= ~(0x3ul << pkeyshift(execute_only_key));
+
+	pkey_uamor_mask = ~0x0ul;
+	pkey_uamor_mask &= ~(0x3ul << pkeyshift(0));
+	pkey_uamor_mask &= ~(0x3ul << pkeyshift(execute_only_key));
+
+	/* mark the rest of the keys as reserved and hence unavailable */
+	for (i = (pkeys_total - os_reserved); i < pkeys_total; i++) {
+		reserved_allocation_mask |= (0x1 << i);
+		pkey_uamor_mask &= ~(0x3ul << pkeyshift(i));
+	}
+	initial_allocation_mask = reserved_allocation_mask | (0x1 << 0);
+
+	if (unlikely((pkeys_total - os_reserved) <= execute_only_key)) {
+		/*
+		 * Insufficient number of keys to support
+		 * execute only key. Mark it unavailable.
+		 * Any AMR, UAMOR, IAMR bit set for
+		 * this key is irrelevant since this key
+		 * can never be allocated.
+		 */
+		execute_only_key = -1;
+	}
+
+	return 0;
+}
+
+arch_initcall(pkey_initialize);
+
+void pkey_mm_init(struct mm_struct *mm)
+{
+	if (static_branch_likely(&pkey_disabled))
+		return;
+	mm_pkey_allocation_map(mm) = initial_allocation_mask;
+	mm->context.execute_only_pkey = execute_only_key;
+}
+
+static inline u64 read_amr(void)
+{
+	return mfspr(SPRN_AMR);
+}
+
+static inline void write_amr(u64 value)
+{
+	mtspr(SPRN_AMR, value);
+}
+
+static inline u64 read_iamr(void)
+{
+	if (!likely(pkey_execute_disable_supported))
+		return 0x0UL;
+
+	return mfspr(SPRN_IAMR);
+}
+
+static inline void write_iamr(u64 value)
+{
+	if (!likely(pkey_execute_disable_supported))
+		return;
+
+	mtspr(SPRN_IAMR, value);
+}
+
+static inline u64 read_uamor(void)
+{
+	return mfspr(SPRN_UAMOR);
+}
+
+static inline void write_uamor(u64 value)
+{
+	mtspr(SPRN_UAMOR, value);
+}
+
+static bool is_pkey_enabled(int pkey)
+{
+	u64 uamor = read_uamor();
+	u64 pkey_bits = 0x3ul << pkeyshift(pkey);
+	u64 uamor_pkey_bits = (uamor & pkey_bits);
+
+	/*
+	 * Both the bits in UAMOR corresponding to the key should be set or
+	 * reset.
+	 */
+	WARN_ON(uamor_pkey_bits && (uamor_pkey_bits != pkey_bits));
+	return !!(uamor_pkey_bits);
+}
+
+static inline void init_amr(int pkey, u8 init_bits)
+{
+	u64 new_amr_bits = (((u64)init_bits & 0x3UL) << pkeyshift(pkey));
+	u64 old_amr = read_amr() & ~((u64)(0x3ul) << pkeyshift(pkey));
+
+	write_amr(old_amr | new_amr_bits);
+}
+
+static inline void init_iamr(int pkey, u8 init_bits)
+{
+	u64 new_iamr_bits = (((u64)init_bits & 0x1UL) << pkeyshift(pkey));
+	u64 old_iamr = read_iamr() & ~((u64)(0x1ul) << pkeyshift(pkey));
+
+	write_iamr(old_iamr | new_iamr_bits);
+}
+
+/*
+ * Set the access rights in AMR IAMR and UAMOR registers for @pkey to that
+ * specified in @init_val.
+ */
+int __arch_set_user_pkey_access(struct task_struct *tsk, int pkey,
+				unsigned long init_val)
+{
+	u64 new_amr_bits = 0x0ul;
+	u64 new_iamr_bits = 0x0ul;
+
+	if (!is_pkey_enabled(pkey))
+		return -EINVAL;
+
+	if (init_val & PKEY_DISABLE_EXECUTE) {
+		if (!pkey_execute_disable_supported)
+			return -EINVAL;
+		new_iamr_bits |= IAMR_EX_BIT;
+	}
+	init_iamr(pkey, new_iamr_bits);
+
+	/* Set the bits we need in AMR: */
+	if (init_val & PKEY_DISABLE_ACCESS)
+		new_amr_bits |= AMR_RD_BIT | AMR_WR_BIT;
+	else if (init_val & PKEY_DISABLE_WRITE)
+		new_amr_bits |= AMR_WR_BIT;
+
+	init_amr(pkey, new_amr_bits);
+	return 0;
+}
+
+void thread_pkey_regs_save(struct thread_struct *thread)
+{
+	if (static_branch_likely(&pkey_disabled))
+		return;
+
+	/*
+	 * TODO: Skip saving registers if @thread hasn't used any keys yet.
+	 */
+	thread->amr = read_amr();
+	thread->iamr = read_iamr();
+	thread->uamor = read_uamor();
+}
+
+void thread_pkey_regs_restore(struct thread_struct *new_thread,
+			      struct thread_struct *old_thread)
+{
+	if (static_branch_likely(&pkey_disabled))
+		return;
+
+	if (old_thread->amr != new_thread->amr)
+		write_amr(new_thread->amr);
+	if (old_thread->iamr != new_thread->iamr)
+		write_iamr(new_thread->iamr);
+	if (old_thread->uamor != new_thread->uamor)
+		write_uamor(new_thread->uamor);
+}
+
+void thread_pkey_regs_init(struct thread_struct *thread)
+{
+	if (static_branch_likely(&pkey_disabled))
+		return;
+
+	thread->amr = pkey_amr_mask;
+	thread->iamr = pkey_iamr_mask;
+	thread->uamor = pkey_uamor_mask;
+
+	write_uamor(pkey_uamor_mask);
+	write_amr(pkey_amr_mask);
+	write_iamr(pkey_iamr_mask);
+}
+
+static inline bool pkey_allows_readwrite(int pkey)
+{
+	int pkey_shift = pkeyshift(pkey);
+
+	if (!is_pkey_enabled(pkey))
+		return true;
+
+	return !(read_amr() & ((AMR_RD_BIT|AMR_WR_BIT) << pkey_shift));
+}
+
+int __execute_only_pkey(struct mm_struct *mm)
+{
+	return mm->context.execute_only_pkey;
+}
+
+static inline bool vma_is_pkey_exec_only(struct vm_area_struct *vma)
+{
+	/* Do this check first since the vm_flags should be hot */
+	if ((vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC)) != VM_EXEC)
+		return false;
+
+	return (vma_pkey(vma) == vma->vm_mm->context.execute_only_pkey);
+}
+
+/*
+ * This should only be called for *plain* mprotect calls.
+ */
+int __arch_override_mprotect_pkey(struct vm_area_struct *vma, int prot,
+				  int pkey)
+{
+	/*
+	 * If the currently associated pkey is execute-only, but the requested
+	 * protection is not execute-only, move it back to the default pkey.
+	 */
+	if (vma_is_pkey_exec_only(vma) && (prot != PROT_EXEC))
+		return 0;
+
+	/*
+	 * The requested protection is execute-only. Hence let's use an
+	 * execute-only pkey.
+	 */
+	if (prot == PROT_EXEC) {
+		pkey = execute_only_pkey(vma->vm_mm);
+		if (pkey > 0)
+			return pkey;
+	}
+
+	/* Nothing to override. */
+	return vma_pkey(vma);
+}
+
+static bool pkey_access_permitted(int pkey, bool write, bool execute)
+{
+	int pkey_shift;
+	u64 amr;
+
+	if (!is_pkey_enabled(pkey))
+		return true;
+
+	pkey_shift = pkeyshift(pkey);
+	if (execute && !(read_iamr() & (IAMR_EX_BIT << pkey_shift)))
+		return true;
+
+	amr = read_amr(); /* Delay reading amr until absolutely needed */
+	return ((!write && !(amr & (AMR_RD_BIT << pkey_shift))) ||
+		(write &&  !(amr & (AMR_WR_BIT << pkey_shift))));
+}
+
+bool arch_pte_access_permitted(u64 pte, bool write, bool execute)
+{
+	if (static_branch_likely(&pkey_disabled))
+		return true;
+
+	return pkey_access_permitted(pte_to_pkey_bits(pte), write, execute);
+}
+
+/*
+ * We only want to enforce protection keys on the current thread because we
+ * effectively have no access to AMR/IAMR for other threads or any way to tell
+ * which AMR/IAMR in a threaded process we could use.
+ *
+ * So do not enforce things if the VMA is not from the current mm, or if we are
+ * in a kernel thread.
+ */
+static inline bool vma_is_foreign(struct vm_area_struct *vma)
+{
+	if (!current->mm)
+		return true;
+
+	/* if it is not our ->mm, it has to be foreign */
+	if (current->mm != vma->vm_mm)
+		return true;
+
+	return false;
+}
+
+bool arch_vma_access_permitted(struct vm_area_struct *vma, bool write,
+			       bool execute, bool foreign)
+{
+	if (static_branch_likely(&pkey_disabled))
+		return true;
+	/*
+	 * Do not enforce our key-permissions on a foreign vma.
+	 */
+	if (foreign || vma_is_foreign(vma))
+		return true;
+
+	return pkey_access_permitted(vma_pkey(vma), write, execute);
+}
+
+void arch_dup_pkeys(struct mm_struct *oldmm, struct mm_struct *mm)
+{
+	if (static_branch_likely(&pkey_disabled))
+		return;
+
+	/* Duplicate the oldmm pkey state in mm: */
+	mm_pkey_allocation_map(mm) = mm_pkey_allocation_map(oldmm);
+	mm->context.execute_only_pkey = oldmm->context.execute_only_pkey;
+}
diff --git a/arch/powerpc/mm/book3s64/radix_hugetlbpage.c b/arch/powerpc/mm/book3s64/radix_hugetlbpage.c
new file mode 100644
index 0000000..cab0633
--- /dev/null
+++ b/arch/powerpc/mm/book3s64/radix_hugetlbpage.c
@@ -0,0 +1,110 @@
+// SPDX-License-Identifier: GPL-2.0
+#include <linux/mm.h>
+#include <linux/hugetlb.h>
+#include <linux/security.h>
+#include <asm/pgtable.h>
+#include <asm/pgalloc.h>
+#include <asm/cacheflush.h>
+#include <asm/machdep.h>
+#include <asm/mman.h>
+#include <asm/tlb.h>
+
+void radix__flush_hugetlb_page(struct vm_area_struct *vma, unsigned long vmaddr)
+{
+	int psize;
+	struct hstate *hstate = hstate_file(vma->vm_file);
+
+	psize = hstate_get_psize(hstate);
+	radix__flush_tlb_page_psize(vma->vm_mm, vmaddr, psize);
+}
+
+void radix__local_flush_hugetlb_page(struct vm_area_struct *vma, unsigned long vmaddr)
+{
+	int psize;
+	struct hstate *hstate = hstate_file(vma->vm_file);
+
+	psize = hstate_get_psize(hstate);
+	radix__local_flush_tlb_page_psize(vma->vm_mm, vmaddr, psize);
+}
+
+void radix__flush_hugetlb_tlb_range(struct vm_area_struct *vma, unsigned long start,
+				   unsigned long end)
+{
+	int psize;
+	struct hstate *hstate = hstate_file(vma->vm_file);
+
+	psize = hstate_get_psize(hstate);
+	radix__flush_tlb_range_psize(vma->vm_mm, start, end, psize);
+}
+
+/*
+ * A vairant of hugetlb_get_unmapped_area doing topdown search
+ * FIXME!! should we do as x86 does or non hugetlb area does ?
+ * ie, use topdown or not based on mmap_is_legacy check ?
+ */
+unsigned long
+radix__hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
+				unsigned long len, unsigned long pgoff,
+				unsigned long flags)
+{
+	struct mm_struct *mm = current->mm;
+	struct vm_area_struct *vma;
+	struct hstate *h = hstate_file(file);
+	int fixed = (flags & MAP_FIXED);
+	unsigned long high_limit;
+	struct vm_unmapped_area_info info;
+
+	high_limit = DEFAULT_MAP_WINDOW;
+	if (addr >= high_limit || (fixed && (addr + len > high_limit)))
+		high_limit = TASK_SIZE;
+
+	if (len & ~huge_page_mask(h))
+		return -EINVAL;
+	if (len > high_limit)
+		return -ENOMEM;
+
+	if (fixed) {
+		if (addr > high_limit - len)
+			return -ENOMEM;
+		if (prepare_hugepage_range(file, addr, len))
+			return -EINVAL;
+		return addr;
+	}
+
+	if (addr) {
+		addr = ALIGN(addr, huge_page_size(h));
+		vma = find_vma(mm, addr);
+		if (high_limit - len >= addr && addr >= mmap_min_addr &&
+		    (!vma || addr + len <= vm_start_gap(vma)))
+			return addr;
+	}
+	/*
+	 * We are always doing an topdown search here. Slice code
+	 * does that too.
+	 */
+	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
+	info.length = len;
+	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
+	info.high_limit = mm->mmap_base + (high_limit - DEFAULT_MAP_WINDOW);
+	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
+	info.align_offset = 0;
+
+	return vm_unmapped_area(&info);
+}
+
+void radix__huge_ptep_modify_prot_commit(struct vm_area_struct *vma,
+					 unsigned long addr, pte_t *ptep,
+					 pte_t old_pte, pte_t pte)
+{
+	struct mm_struct *mm = vma->vm_mm;
+
+	/*
+	 * To avoid NMMU hang while relaxing access we need to flush the tlb before
+	 * we set the new value.
+	 */
+	if (is_pte_rw_upgrade(pte_val(old_pte), pte_val(pte)) &&
+	    (atomic_read(&mm->context.copros) > 0))
+		radix__flush_hugetlb_page(vma, addr);
+
+	set_huge_pte_at(vma->vm_mm, addr, ptep, pte);
+}
diff --git a/arch/powerpc/mm/book3s64/radix_pgtable.c b/arch/powerpc/mm/book3s64/radix_pgtable.c
new file mode 100644
index 0000000..6ee17d0
--- /dev/null
+++ b/arch/powerpc/mm/book3s64/radix_pgtable.c
@@ -0,0 +1,1187 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * Page table handling routines for radix page table.
+ *
+ * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
+ */
+
+#define pr_fmt(fmt) "radix-mmu: " fmt
+
+#include <linux/io.h>
+#include <linux/kernel.h>
+#include <linux/sched/mm.h>
+#include <linux/memblock.h>
+#include <linux/of_fdt.h>
+#include <linux/mm.h>
+#include <linux/string_helpers.h>
+#include <linux/stop_machine.h>
+
+#include <asm/pgtable.h>
+#include <asm/pgalloc.h>
+#include <asm/mmu_context.h>
+#include <asm/dma.h>
+#include <asm/machdep.h>
+#include <asm/mmu.h>
+#include <asm/firmware.h>
+#include <asm/powernv.h>
+#include <asm/sections.h>
+#include <asm/trace.h>
+#include <asm/uaccess.h>
+#include <asm/ultravisor.h>
+
+#include <trace/events/thp.h>
+
+unsigned int mmu_pid_bits;
+unsigned int mmu_base_pid;
+
+static __ref void *early_alloc_pgtable(unsigned long size, int nid,
+			unsigned long region_start, unsigned long region_end)
+{
+	phys_addr_t min_addr = MEMBLOCK_LOW_LIMIT;
+	phys_addr_t max_addr = MEMBLOCK_ALLOC_ANYWHERE;
+	void *ptr;
+
+	if (region_start)
+		min_addr = region_start;
+	if (region_end)
+		max_addr = region_end;
+
+	ptr = memblock_alloc_try_nid(size, size, min_addr, max_addr, nid);
+
+	if (!ptr)
+		panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa max_addr=%pa\n",
+		      __func__, size, size, nid, &min_addr, &max_addr);
+
+	return ptr;
+}
+
+static int early_map_kernel_page(unsigned long ea, unsigned long pa,
+			  pgprot_t flags,
+			  unsigned int map_page_size,
+			  int nid,
+			  unsigned long region_start, unsigned long region_end)
+{
+	unsigned long pfn = pa >> PAGE_SHIFT;
+	pgd_t *pgdp;
+	pud_t *pudp;
+	pmd_t *pmdp;
+	pte_t *ptep;
+
+	pgdp = pgd_offset_k(ea);
+	if (pgd_none(*pgdp)) {
+		pudp = early_alloc_pgtable(PUD_TABLE_SIZE, nid,
+						region_start, region_end);
+		pgd_populate(&init_mm, pgdp, pudp);
+	}
+	pudp = pud_offset(pgdp, ea);
+	if (map_page_size == PUD_SIZE) {
+		ptep = (pte_t *)pudp;
+		goto set_the_pte;
+	}
+	if (pud_none(*pudp)) {
+		pmdp = early_alloc_pgtable(PMD_TABLE_SIZE, nid,
+						region_start, region_end);
+		pud_populate(&init_mm, pudp, pmdp);
+	}
+	pmdp = pmd_offset(pudp, ea);
+	if (map_page_size == PMD_SIZE) {
+		ptep = pmdp_ptep(pmdp);
+		goto set_the_pte;
+	}
+	if (!pmd_present(*pmdp)) {
+		ptep = early_alloc_pgtable(PAGE_SIZE, nid,
+						region_start, region_end);
+		pmd_populate_kernel(&init_mm, pmdp, ptep);
+	}
+	ptep = pte_offset_kernel(pmdp, ea);
+
+set_the_pte:
+	set_pte_at(&init_mm, ea, ptep, pfn_pte(pfn, flags));
+	smp_wmb();
+	return 0;
+}
+
+/*
+ * nid, region_start, and region_end are hints to try to place the page
+ * table memory in the same node or region.
+ */
+static int __map_kernel_page(unsigned long ea, unsigned long pa,
+			  pgprot_t flags,
+			  unsigned int map_page_size,
+			  int nid,
+			  unsigned long region_start, unsigned long region_end)
+{
+	unsigned long pfn = pa >> PAGE_SHIFT;
+	pgd_t *pgdp;
+	pud_t *pudp;
+	pmd_t *pmdp;
+	pte_t *ptep;
+	/*
+	 * Make sure task size is correct as per the max adddr
+	 */
+	BUILD_BUG_ON(TASK_SIZE_USER64 > RADIX_PGTABLE_RANGE);
+
+#ifdef CONFIG_PPC_64K_PAGES
+	BUILD_BUG_ON(RADIX_KERN_MAP_SIZE != (1UL << MAX_EA_BITS_PER_CONTEXT));
+#endif
+
+	if (unlikely(!slab_is_available()))
+		return early_map_kernel_page(ea, pa, flags, map_page_size,
+						nid, region_start, region_end);
+
+	/*
+	 * Should make page table allocation functions be able to take a
+	 * node, so we can place kernel page tables on the right nodes after
+	 * boot.
+	 */
+	pgdp = pgd_offset_k(ea);
+	pudp = pud_alloc(&init_mm, pgdp, ea);
+	if (!pudp)
+		return -ENOMEM;
+	if (map_page_size == PUD_SIZE) {
+		ptep = (pte_t *)pudp;
+		goto set_the_pte;
+	}
+	pmdp = pmd_alloc(&init_mm, pudp, ea);
+	if (!pmdp)
+		return -ENOMEM;
+	if (map_page_size == PMD_SIZE) {
+		ptep = pmdp_ptep(pmdp);
+		goto set_the_pte;
+	}
+	ptep = pte_alloc_kernel(pmdp, ea);
+	if (!ptep)
+		return -ENOMEM;
+
+set_the_pte:
+	set_pte_at(&init_mm, ea, ptep, pfn_pte(pfn, flags));
+	smp_wmb();
+	return 0;
+}
+
+int radix__map_kernel_page(unsigned long ea, unsigned long pa,
+			  pgprot_t flags,
+			  unsigned int map_page_size)
+{
+	return __map_kernel_page(ea, pa, flags, map_page_size, -1, 0, 0);
+}
+
+#ifdef CONFIG_STRICT_KERNEL_RWX
+void radix__change_memory_range(unsigned long start, unsigned long end,
+				unsigned long clear)
+{
+	unsigned long idx;
+	pgd_t *pgdp;
+	pud_t *pudp;
+	pmd_t *pmdp;
+	pte_t *ptep;
+
+	start = ALIGN_DOWN(start, PAGE_SIZE);
+	end = PAGE_ALIGN(end); // aligns up
+
+	pr_debug("Changing flags on range %lx-%lx removing 0x%lx\n",
+		 start, end, clear);
+
+	for (idx = start; idx < end; idx += PAGE_SIZE) {
+		pgdp = pgd_offset_k(idx);
+		pudp = pud_alloc(&init_mm, pgdp, idx);
+		if (!pudp)
+			continue;
+		if (pud_is_leaf(*pudp)) {
+			ptep = (pte_t *)pudp;
+			goto update_the_pte;
+		}
+		pmdp = pmd_alloc(&init_mm, pudp, idx);
+		if (!pmdp)
+			continue;
+		if (pmd_is_leaf(*pmdp)) {
+			ptep = pmdp_ptep(pmdp);
+			goto update_the_pte;
+		}
+		ptep = pte_alloc_kernel(pmdp, idx);
+		if (!ptep)
+			continue;
+update_the_pte:
+		radix__pte_update(&init_mm, idx, ptep, clear, 0, 0);
+	}
+
+	radix__flush_tlb_kernel_range(start, end);
+}
+
+void radix__mark_rodata_ro(void)
+{
+	unsigned long start, end;
+
+	start = (unsigned long)_stext;
+	end = (unsigned long)__init_begin;
+
+	radix__change_memory_range(start, end, _PAGE_WRITE);
+}
+
+void radix__mark_initmem_nx(void)
+{
+	unsigned long start = (unsigned long)__init_begin;
+	unsigned long end = (unsigned long)__init_end;
+
+	radix__change_memory_range(start, end, _PAGE_EXEC);
+}
+#endif /* CONFIG_STRICT_KERNEL_RWX */
+
+static inline void __meminit
+print_mapping(unsigned long start, unsigned long end, unsigned long size, bool exec)
+{
+	char buf[10];
+
+	if (end <= start)
+		return;
+
+	string_get_size(size, 1, STRING_UNITS_2, buf, sizeof(buf));
+
+	pr_info("Mapped 0x%016lx-0x%016lx with %s pages%s\n", start, end, buf,
+		exec ? " (exec)" : "");
+}
+
+static unsigned long next_boundary(unsigned long addr, unsigned long end)
+{
+#ifdef CONFIG_STRICT_KERNEL_RWX
+	if (addr < __pa_symbol(__init_begin))
+		return __pa_symbol(__init_begin);
+#endif
+	return end;
+}
+
+static int __meminit create_physical_mapping(unsigned long start,
+					     unsigned long end,
+					     int nid)
+{
+	unsigned long vaddr, addr, mapping_size = 0;
+	bool prev_exec, exec = false;
+	pgprot_t prot;
+	int psize;
+
+	start = _ALIGN_UP(start, PAGE_SIZE);
+	for (addr = start; addr < end; addr += mapping_size) {
+		unsigned long gap, previous_size;
+		int rc;
+
+		gap = next_boundary(addr, end) - addr;
+		previous_size = mapping_size;
+		prev_exec = exec;
+
+		if (IS_ALIGNED(addr, PUD_SIZE) && gap >= PUD_SIZE &&
+		    mmu_psize_defs[MMU_PAGE_1G].shift) {
+			mapping_size = PUD_SIZE;
+			psize = MMU_PAGE_1G;
+		} else if (IS_ALIGNED(addr, PMD_SIZE) && gap >= PMD_SIZE &&
+			   mmu_psize_defs[MMU_PAGE_2M].shift) {
+			mapping_size = PMD_SIZE;
+			psize = MMU_PAGE_2M;
+		} else {
+			mapping_size = PAGE_SIZE;
+			psize = mmu_virtual_psize;
+		}
+
+		vaddr = (unsigned long)__va(addr);
+
+		if (overlaps_kernel_text(vaddr, vaddr + mapping_size) ||
+		    overlaps_interrupt_vector_text(vaddr, vaddr + mapping_size)) {
+			prot = PAGE_KERNEL_X;
+			exec = true;
+		} else {
+			prot = PAGE_KERNEL;
+			exec = false;
+		}
+
+		if (mapping_size != previous_size || exec != prev_exec) {
+			print_mapping(start, addr, previous_size, prev_exec);
+			start = addr;
+		}
+
+		rc = __map_kernel_page(vaddr, addr, prot, mapping_size, nid, start, end);
+		if (rc)
+			return rc;
+
+		update_page_count(psize, 1);
+	}
+
+	print_mapping(start, addr, mapping_size, exec);
+	return 0;
+}
+
+static void __init radix_init_pgtable(void)
+{
+	unsigned long rts_field;
+	struct memblock_region *reg;
+
+	/* We don't support slb for radix */
+	mmu_slb_size = 0;
+	/*
+	 * Create the linear mapping, using standard page size for now
+	 */
+	for_each_memblock(memory, reg) {
+		/*
+		 * The memblock allocator  is up at this point, so the
+		 * page tables will be allocated within the range. No
+		 * need or a node (which we don't have yet).
+		 */
+
+		if ((reg->base + reg->size) >= RADIX_VMALLOC_START) {
+			pr_warn("Outside the supported range\n");
+			continue;
+		}
+
+		WARN_ON(create_physical_mapping(reg->base,
+						reg->base + reg->size,
+						-1));
+	}
+
+	/* Find out how many PID bits are supported */
+	if (cpu_has_feature(CPU_FTR_HVMODE)) {
+		if (!mmu_pid_bits)
+			mmu_pid_bits = 20;
+#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
+		/*
+		 * When KVM is possible, we only use the top half of the
+		 * PID space to avoid collisions between host and guest PIDs
+		 * which can cause problems due to prefetch when exiting the
+		 * guest with AIL=3
+		 */
+		mmu_base_pid = 1 << (mmu_pid_bits - 1);
+#else
+		mmu_base_pid = 1;
+#endif
+	} else {
+		/* The guest uses the bottom half of the PID space */
+		if (!mmu_pid_bits)
+			mmu_pid_bits = 19;
+		mmu_base_pid = 1;
+	}
+
+	/*
+	 * Allocate Partition table and process table for the
+	 * host.
+	 */
+	BUG_ON(PRTB_SIZE_SHIFT > 36);
+	process_tb = early_alloc_pgtable(1UL << PRTB_SIZE_SHIFT, -1, 0, 0);
+	/*
+	 * Fill in the process table.
+	 */
+	rts_field = radix__get_tree_size();
+	process_tb->prtb0 = cpu_to_be64(rts_field | __pa(init_mm.pgd) | RADIX_PGD_INDEX_SIZE);
+
+	/*
+	 * The init_mm context is given the first available (non-zero) PID,
+	 * which is the "guard PID" and contains no page table. PIDR should
+	 * never be set to zero because that duplicates the kernel address
+	 * space at the 0x0... offset (quadrant 0)!
+	 *
+	 * An arbitrary PID that may later be allocated by the PID allocator
+	 * for userspace processes must not be used either, because that
+	 * would cause stale user mappings for that PID on CPUs outside of
+	 * the TLB invalidation scheme (because it won't be in mm_cpumask).
+	 *
+	 * So permanently carve out one PID for the purpose of a guard PID.
+	 */
+	init_mm.context.id = mmu_base_pid;
+	mmu_base_pid++;
+}
+
+static void __init radix_init_partition_table(void)
+{
+	unsigned long rts_field, dw0, dw1;
+
+	mmu_partition_table_init();
+	rts_field = radix__get_tree_size();
+	dw0 = rts_field | __pa(init_mm.pgd) | RADIX_PGD_INDEX_SIZE | PATB_HR;
+	dw1 = __pa(process_tb) | (PRTB_SIZE_SHIFT - 12) | PATB_GR;
+	mmu_partition_table_set_entry(0, dw0, dw1, false);
+
+	pr_info("Initializing Radix MMU\n");
+}
+
+static int __init get_idx_from_shift(unsigned int shift)
+{
+	int idx = -1;
+
+	switch (shift) {
+	case 0xc:
+		idx = MMU_PAGE_4K;
+		break;
+	case 0x10:
+		idx = MMU_PAGE_64K;
+		break;
+	case 0x15:
+		idx = MMU_PAGE_2M;
+		break;
+	case 0x1e:
+		idx = MMU_PAGE_1G;
+		break;
+	}
+	return idx;
+}
+
+static int __init radix_dt_scan_page_sizes(unsigned long node,
+					   const char *uname, int depth,
+					   void *data)
+{
+	int size = 0;
+	int shift, idx;
+	unsigned int ap;
+	const __be32 *prop;
+	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
+
+	/* We are scanning "cpu" nodes only */
+	if (type == NULL || strcmp(type, "cpu") != 0)
+		return 0;
+
+	/* Find MMU PID size */
+	prop = of_get_flat_dt_prop(node, "ibm,mmu-pid-bits", &size);
+	if (prop && size == 4)
+		mmu_pid_bits = be32_to_cpup(prop);
+
+	/* Grab page size encodings */
+	prop = of_get_flat_dt_prop(node, "ibm,processor-radix-AP-encodings", &size);
+	if (!prop)
+		return 0;
+
+	pr_info("Page sizes from device-tree:\n");
+	for (; size >= 4; size -= 4, ++prop) {
+
+		struct mmu_psize_def *def;
+
+		/* top 3 bit is AP encoding */
+		shift = be32_to_cpu(prop[0]) & ~(0xe << 28);
+		ap = be32_to_cpu(prop[0]) >> 29;
+		pr_info("Page size shift = %d AP=0x%x\n", shift, ap);
+
+		idx = get_idx_from_shift(shift);
+		if (idx < 0)
+			continue;
+
+		def = &mmu_psize_defs[idx];
+		def->shift = shift;
+		def->ap  = ap;
+	}
+
+	/* needed ? */
+	cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
+	return 1;
+}
+
+void __init radix__early_init_devtree(void)
+{
+	int rc;
+
+	/*
+	 * Try to find the available page sizes in the device-tree
+	 */
+	rc = of_scan_flat_dt(radix_dt_scan_page_sizes, NULL);
+	if (rc != 0)  /* Found */
+		goto found;
+	/*
+	 * let's assume we have page 4k and 64k support
+	 */
+	mmu_psize_defs[MMU_PAGE_4K].shift = 12;
+	mmu_psize_defs[MMU_PAGE_4K].ap = 0x0;
+
+	mmu_psize_defs[MMU_PAGE_64K].shift = 16;
+	mmu_psize_defs[MMU_PAGE_64K].ap = 0x5;
+found:
+	return;
+}
+
+static void radix_init_amor(void)
+{
+	/*
+	* In HV mode, we init AMOR (Authority Mask Override Register) so that
+	* the hypervisor and guest can setup IAMR (Instruction Authority Mask
+	* Register), enable key 0 and set it to 1.
+	*
+	* AMOR = 0b1100 .... 0000 (Mask for key 0 is 11)
+	*/
+	mtspr(SPRN_AMOR, (3ul << 62));
+}
+
+#ifdef CONFIG_PPC_KUEP
+void setup_kuep(bool disabled)
+{
+	if (disabled || !early_radix_enabled())
+		return;
+
+	if (smp_processor_id() == boot_cpuid)
+		pr_info("Activating Kernel Userspace Execution Prevention\n");
+
+	/*
+	 * Radix always uses key0 of the IAMR to determine if an access is
+	 * allowed. We set bit 0 (IBM bit 1) of key0, to prevent instruction
+	 * fetch.
+	 */
+	mtspr(SPRN_IAMR, (1ul << 62));
+}
+#endif
+
+#ifdef CONFIG_PPC_KUAP
+void setup_kuap(bool disabled)
+{
+	if (disabled || !early_radix_enabled())
+		return;
+
+	if (smp_processor_id() == boot_cpuid) {
+		pr_info("Activating Kernel Userspace Access Prevention\n");
+		cur_cpu_spec->mmu_features |= MMU_FTR_RADIX_KUAP;
+	}
+
+	/* Make sure userspace can't change the AMR */
+	mtspr(SPRN_UAMOR, 0);
+	mtspr(SPRN_AMR, AMR_KUAP_BLOCKED);
+	isync();
+}
+#endif
+
+void __init radix__early_init_mmu(void)
+{
+	unsigned long lpcr;
+
+#ifdef CONFIG_PPC_64K_PAGES
+	/* PAGE_SIZE mappings */
+	mmu_virtual_psize = MMU_PAGE_64K;
+#else
+	mmu_virtual_psize = MMU_PAGE_4K;
+#endif
+
+#ifdef CONFIG_SPARSEMEM_VMEMMAP
+	/* vmemmap mapping */
+	if (mmu_psize_defs[MMU_PAGE_2M].shift) {
+		/*
+		 * map vmemmap using 2M if available
+		 */
+		mmu_vmemmap_psize = MMU_PAGE_2M;
+	} else
+		mmu_vmemmap_psize = mmu_virtual_psize;
+#endif
+	/*
+	 * initialize page table size
+	 */
+	__pte_index_size = RADIX_PTE_INDEX_SIZE;
+	__pmd_index_size = RADIX_PMD_INDEX_SIZE;
+	__pud_index_size = RADIX_PUD_INDEX_SIZE;
+	__pgd_index_size = RADIX_PGD_INDEX_SIZE;
+	__pud_cache_index = RADIX_PUD_INDEX_SIZE;
+	__pte_table_size = RADIX_PTE_TABLE_SIZE;
+	__pmd_table_size = RADIX_PMD_TABLE_SIZE;
+	__pud_table_size = RADIX_PUD_TABLE_SIZE;
+	__pgd_table_size = RADIX_PGD_TABLE_SIZE;
+
+	__pmd_val_bits = RADIX_PMD_VAL_BITS;
+	__pud_val_bits = RADIX_PUD_VAL_BITS;
+	__pgd_val_bits = RADIX_PGD_VAL_BITS;
+
+	__kernel_virt_start = RADIX_KERN_VIRT_START;
+	__vmalloc_start = RADIX_VMALLOC_START;
+	__vmalloc_end = RADIX_VMALLOC_END;
+	__kernel_io_start = RADIX_KERN_IO_START;
+	__kernel_io_end = RADIX_KERN_IO_END;
+	vmemmap = (struct page *)RADIX_VMEMMAP_START;
+	ioremap_bot = IOREMAP_BASE;
+
+#ifdef CONFIG_PCI
+	pci_io_base = ISA_IO_BASE;
+#endif
+	__pte_frag_nr = RADIX_PTE_FRAG_NR;
+	__pte_frag_size_shift = RADIX_PTE_FRAG_SIZE_SHIFT;
+	__pmd_frag_nr = RADIX_PMD_FRAG_NR;
+	__pmd_frag_size_shift = RADIX_PMD_FRAG_SIZE_SHIFT;
+
+	radix_init_pgtable();
+
+	if (!firmware_has_feature(FW_FEATURE_LPAR)) {
+		lpcr = mfspr(SPRN_LPCR);
+		mtspr(SPRN_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
+		radix_init_partition_table();
+		radix_init_amor();
+	} else {
+		radix_init_pseries();
+	}
+
+	memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
+
+	/* Switch to the guard PID before turning on MMU */
+	radix__switch_mmu_context(NULL, &init_mm);
+	tlbiel_all();
+}
+
+void radix__early_init_mmu_secondary(void)
+{
+	unsigned long lpcr;
+	/*
+	 * update partition table control register and UPRT
+	 */
+	if (!firmware_has_feature(FW_FEATURE_LPAR)) {
+		lpcr = mfspr(SPRN_LPCR);
+		mtspr(SPRN_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
+
+		set_ptcr_when_no_uv(__pa(partition_tb) |
+				    (PATB_SIZE_SHIFT - 12));
+
+		radix_init_amor();
+	}
+
+	radix__switch_mmu_context(NULL, &init_mm);
+	tlbiel_all();
+}
+
+void radix__mmu_cleanup_all(void)
+{
+	unsigned long lpcr;
+
+	if (!firmware_has_feature(FW_FEATURE_LPAR)) {
+		lpcr = mfspr(SPRN_LPCR);
+		mtspr(SPRN_LPCR, lpcr & ~LPCR_UPRT);
+		set_ptcr_when_no_uv(0);
+		powernv_set_nmmu_ptcr(0);
+		radix__flush_tlb_all();
+	}
+}
+
+void radix__setup_initial_memory_limit(phys_addr_t first_memblock_base,
+				phys_addr_t first_memblock_size)
+{
+	/*
+	 * We don't currently support the first MEMBLOCK not mapping 0
+	 * physical on those processors
+	 */
+	BUG_ON(first_memblock_base != 0);
+
+	/*
+	 * Radix mode is not limited by RMA / VRMA addressing.
+	 */
+	ppc64_rma_size = ULONG_MAX;
+}
+
+#ifdef CONFIG_MEMORY_HOTPLUG
+static void free_pte_table(pte_t *pte_start, pmd_t *pmd)
+{
+	pte_t *pte;
+	int i;
+
+	for (i = 0; i < PTRS_PER_PTE; i++) {
+		pte = pte_start + i;
+		if (!pte_none(*pte))
+			return;
+	}
+
+	pte_free_kernel(&init_mm, pte_start);
+	pmd_clear(pmd);
+}
+
+static void free_pmd_table(pmd_t *pmd_start, pud_t *pud)
+{
+	pmd_t *pmd;
+	int i;
+
+	for (i = 0; i < PTRS_PER_PMD; i++) {
+		pmd = pmd_start + i;
+		if (!pmd_none(*pmd))
+			return;
+	}
+
+	pmd_free(&init_mm, pmd_start);
+	pud_clear(pud);
+}
+
+struct change_mapping_params {
+	pte_t *pte;
+	unsigned long start;
+	unsigned long end;
+	unsigned long aligned_start;
+	unsigned long aligned_end;
+};
+
+static int __meminit stop_machine_change_mapping(void *data)
+{
+	struct change_mapping_params *params =
+			(struct change_mapping_params *)data;
+
+	if (!data)
+		return -1;
+
+	spin_unlock(&init_mm.page_table_lock);
+	pte_clear(&init_mm, params->aligned_start, params->pte);
+	create_physical_mapping(__pa(params->aligned_start), __pa(params->start), -1);
+	create_physical_mapping(__pa(params->end), __pa(params->aligned_end), -1);
+	spin_lock(&init_mm.page_table_lock);
+	return 0;
+}
+
+static void remove_pte_table(pte_t *pte_start, unsigned long addr,
+			     unsigned long end)
+{
+	unsigned long next;
+	pte_t *pte;
+
+	pte = pte_start + pte_index(addr);
+	for (; addr < end; addr = next, pte++) {
+		next = (addr + PAGE_SIZE) & PAGE_MASK;
+		if (next > end)
+			next = end;
+
+		if (!pte_present(*pte))
+			continue;
+
+		if (!PAGE_ALIGNED(addr) || !PAGE_ALIGNED(next)) {
+			/*
+			 * The vmemmap_free() and remove_section_mapping()
+			 * codepaths call us with aligned addresses.
+			 */
+			WARN_ONCE(1, "%s: unaligned range\n", __func__);
+			continue;
+		}
+
+		pte_clear(&init_mm, addr, pte);
+	}
+}
+
+/*
+ * clear the pte and potentially split the mapping helper
+ */
+static void __meminit split_kernel_mapping(unsigned long addr, unsigned long end,
+				unsigned long size, pte_t *pte)
+{
+	unsigned long mask = ~(size - 1);
+	unsigned long aligned_start = addr & mask;
+	unsigned long aligned_end = addr + size;
+	struct change_mapping_params params;
+	bool split_region = false;
+
+	if ((end - addr) < size) {
+		/*
+		 * We're going to clear the PTE, but not flushed
+		 * the mapping, time to remap and flush. The
+		 * effects if visible outside the processor or
+		 * if we are running in code close to the
+		 * mapping we cleared, we are in trouble.
+		 */
+		if (overlaps_kernel_text(aligned_start, addr) ||
+			overlaps_kernel_text(end, aligned_end)) {
+			/*
+			 * Hack, just return, don't pte_clear
+			 */
+			WARN_ONCE(1, "Linear mapping %lx->%lx overlaps kernel "
+				  "text, not splitting\n", addr, end);
+			return;
+		}
+		split_region = true;
+	}
+
+	if (split_region) {
+		params.pte = pte;
+		params.start = addr;
+		params.end = end;
+		params.aligned_start = addr & ~(size - 1);
+		params.aligned_end = min_t(unsigned long, aligned_end,
+				(unsigned long)__va(memblock_end_of_DRAM()));
+		stop_machine(stop_machine_change_mapping, &params, NULL);
+		return;
+	}
+
+	pte_clear(&init_mm, addr, pte);
+}
+
+static void remove_pmd_table(pmd_t *pmd_start, unsigned long addr,
+			     unsigned long end)
+{
+	unsigned long next;
+	pte_t *pte_base;
+	pmd_t *pmd;
+
+	pmd = pmd_start + pmd_index(addr);
+	for (; addr < end; addr = next, pmd++) {
+		next = pmd_addr_end(addr, end);
+
+		if (!pmd_present(*pmd))
+			continue;
+
+		if (pmd_is_leaf(*pmd)) {
+			split_kernel_mapping(addr, end, PMD_SIZE, (pte_t *)pmd);
+			continue;
+		}
+
+		pte_base = (pte_t *)pmd_page_vaddr(*pmd);
+		remove_pte_table(pte_base, addr, next);
+		free_pte_table(pte_base, pmd);
+	}
+}
+
+static void remove_pud_table(pud_t *pud_start, unsigned long addr,
+			     unsigned long end)
+{
+	unsigned long next;
+	pmd_t *pmd_base;
+	pud_t *pud;
+
+	pud = pud_start + pud_index(addr);
+	for (; addr < end; addr = next, pud++) {
+		next = pud_addr_end(addr, end);
+
+		if (!pud_present(*pud))
+			continue;
+
+		if (pud_is_leaf(*pud)) {
+			split_kernel_mapping(addr, end, PUD_SIZE, (pte_t *)pud);
+			continue;
+		}
+
+		pmd_base = (pmd_t *)pud_page_vaddr(*pud);
+		remove_pmd_table(pmd_base, addr, next);
+		free_pmd_table(pmd_base, pud);
+	}
+}
+
+static void __meminit remove_pagetable(unsigned long start, unsigned long end)
+{
+	unsigned long addr, next;
+	pud_t *pud_base;
+	pgd_t *pgd;
+
+	spin_lock(&init_mm.page_table_lock);
+
+	for (addr = start; addr < end; addr = next) {
+		next = pgd_addr_end(addr, end);
+
+		pgd = pgd_offset_k(addr);
+		if (!pgd_present(*pgd))
+			continue;
+
+		if (pgd_is_leaf(*pgd)) {
+			split_kernel_mapping(addr, end, PGDIR_SIZE, (pte_t *)pgd);
+			continue;
+		}
+
+		pud_base = (pud_t *)pgd_page_vaddr(*pgd);
+		remove_pud_table(pud_base, addr, next);
+	}
+
+	spin_unlock(&init_mm.page_table_lock);
+	radix__flush_tlb_kernel_range(start, end);
+}
+
+int __meminit radix__create_section_mapping(unsigned long start, unsigned long end, int nid)
+{
+	if (end >= RADIX_VMALLOC_START) {
+		pr_warn("Outside the supported range\n");
+		return -1;
+	}
+
+	return create_physical_mapping(__pa(start), __pa(end), nid);
+}
+
+int __meminit radix__remove_section_mapping(unsigned long start, unsigned long end)
+{
+	remove_pagetable(start, end);
+	return 0;
+}
+#endif /* CONFIG_MEMORY_HOTPLUG */
+
+#ifdef CONFIG_SPARSEMEM_VMEMMAP
+static int __map_kernel_page_nid(unsigned long ea, unsigned long pa,
+				 pgprot_t flags, unsigned int map_page_size,
+				 int nid)
+{
+	return __map_kernel_page(ea, pa, flags, map_page_size, nid, 0, 0);
+}
+
+int __meminit radix__vmemmap_create_mapping(unsigned long start,
+				      unsigned long page_size,
+				      unsigned long phys)
+{
+	/* Create a PTE encoding */
+	unsigned long flags = _PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_KERNEL_RW;
+	int nid = early_pfn_to_nid(phys >> PAGE_SHIFT);
+	int ret;
+
+	if ((start + page_size) >= RADIX_VMEMMAP_END) {
+		pr_warn("Outside the supported range\n");
+		return -1;
+	}
+
+	ret = __map_kernel_page_nid(start, phys, __pgprot(flags), page_size, nid);
+	BUG_ON(ret);
+
+	return 0;
+}
+
+#ifdef CONFIG_MEMORY_HOTPLUG
+void __meminit radix__vmemmap_remove_mapping(unsigned long start, unsigned long page_size)
+{
+	remove_pagetable(start, start + page_size);
+}
+#endif
+#endif
+
+#ifdef CONFIG_TRANSPARENT_HUGEPAGE
+
+unsigned long radix__pmd_hugepage_update(struct mm_struct *mm, unsigned long addr,
+				  pmd_t *pmdp, unsigned long clr,
+				  unsigned long set)
+{
+	unsigned long old;
+
+#ifdef CONFIG_DEBUG_VM
+	WARN_ON(!radix__pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
+	assert_spin_locked(pmd_lockptr(mm, pmdp));
+#endif
+
+	old = radix__pte_update(mm, addr, (pte_t *)pmdp, clr, set, 1);
+	trace_hugepage_update(addr, old, clr, set);
+
+	return old;
+}
+
+pmd_t radix__pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address,
+			pmd_t *pmdp)
+
+{
+	pmd_t pmd;
+
+	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
+	VM_BUG_ON(radix__pmd_trans_huge(*pmdp));
+	VM_BUG_ON(pmd_devmap(*pmdp));
+	/*
+	 * khugepaged calls this for normal pmd
+	 */
+	pmd = *pmdp;
+	pmd_clear(pmdp);
+
+	/*FIXME!!  Verify whether we need this kick below */
+	serialize_against_pte_lookup(vma->vm_mm);
+
+	radix__flush_tlb_collapsed_pmd(vma->vm_mm, address);
+
+	return pmd;
+}
+
+/*
+ * For us pgtable_t is pte_t *. Inorder to save the deposisted
+ * page table, we consider the allocated page table as a list
+ * head. On withdraw we need to make sure we zero out the used
+ * list_head memory area.
+ */
+void radix__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
+				 pgtable_t pgtable)
+{
+	struct list_head *lh = (struct list_head *) pgtable;
+
+	assert_spin_locked(pmd_lockptr(mm, pmdp));
+
+	/* FIFO */
+	if (!pmd_huge_pte(mm, pmdp))
+		INIT_LIST_HEAD(lh);
+	else
+		list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp));
+	pmd_huge_pte(mm, pmdp) = pgtable;
+}
+
+pgtable_t radix__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
+{
+	pte_t *ptep;
+	pgtable_t pgtable;
+	struct list_head *lh;
+
+	assert_spin_locked(pmd_lockptr(mm, pmdp));
+
+	/* FIFO */
+	pgtable = pmd_huge_pte(mm, pmdp);
+	lh = (struct list_head *) pgtable;
+	if (list_empty(lh))
+		pmd_huge_pte(mm, pmdp) = NULL;
+	else {
+		pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next;
+		list_del(lh);
+	}
+	ptep = (pte_t *) pgtable;
+	*ptep = __pte(0);
+	ptep++;
+	*ptep = __pte(0);
+	return pgtable;
+}
+
+pmd_t radix__pmdp_huge_get_and_clear(struct mm_struct *mm,
+				     unsigned long addr, pmd_t *pmdp)
+{
+	pmd_t old_pmd;
+	unsigned long old;
+
+	old = radix__pmd_hugepage_update(mm, addr, pmdp, ~0UL, 0);
+	old_pmd = __pmd(old);
+	/*
+	 * Serialize against find_current_mm_pte which does lock-less
+	 * lookup in page tables with local interrupts disabled. For huge pages
+	 * it casts pmd_t to pte_t. Since format of pte_t is different from
+	 * pmd_t we want to prevent transit from pmd pointing to page table
+	 * to pmd pointing to huge page (and back) while interrupts are disabled.
+	 * We clear pmd to possibly replace it with page table pointer in
+	 * different code paths. So make sure we wait for the parallel
+	 * find_current_mm_pte to finish.
+	 */
+	serialize_against_pte_lookup(mm);
+	return old_pmd;
+}
+
+#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
+
+void radix__ptep_set_access_flags(struct vm_area_struct *vma, pte_t *ptep,
+				  pte_t entry, unsigned long address, int psize)
+{
+	struct mm_struct *mm = vma->vm_mm;
+	unsigned long set = pte_val(entry) & (_PAGE_DIRTY | _PAGE_ACCESSED |
+					      _PAGE_RW | _PAGE_EXEC);
+
+	unsigned long change = pte_val(entry) ^ pte_val(*ptep);
+	/*
+	 * To avoid NMMU hang while relaxing access, we need mark
+	 * the pte invalid in between.
+	 */
+	if ((change & _PAGE_RW) && atomic_read(&mm->context.copros) > 0) {
+		unsigned long old_pte, new_pte;
+
+		old_pte = __radix_pte_update(ptep, _PAGE_PRESENT, _PAGE_INVALID);
+		/*
+		 * new value of pte
+		 */
+		new_pte = old_pte | set;
+		radix__flush_tlb_page_psize(mm, address, psize);
+		__radix_pte_update(ptep, _PAGE_INVALID, new_pte);
+	} else {
+		__radix_pte_update(ptep, 0, set);
+		/*
+		 * Book3S does not require a TLB flush when relaxing access
+		 * restrictions when the address space is not attached to a
+		 * NMMU, because the core MMU will reload the pte after taking
+		 * an access fault, which is defined by the architectue.
+		 */
+	}
+	/* See ptesync comment in radix__set_pte_at */
+}
+
+void radix__ptep_modify_prot_commit(struct vm_area_struct *vma,
+				    unsigned long addr, pte_t *ptep,
+				    pte_t old_pte, pte_t pte)
+{
+	struct mm_struct *mm = vma->vm_mm;
+
+	/*
+	 * To avoid NMMU hang while relaxing access we need to flush the tlb before
+	 * we set the new value. We need to do this only for radix, because hash
+	 * translation does flush when updating the linux pte.
+	 */
+	if (is_pte_rw_upgrade(pte_val(old_pte), pte_val(pte)) &&
+	    (atomic_read(&mm->context.copros) > 0))
+		radix__flush_tlb_page(vma, addr);
+
+	set_pte_at(mm, addr, ptep, pte);
+}
+
+int __init arch_ioremap_pud_supported(void)
+{
+	/* HPT does not cope with large pages in the vmalloc area */
+	return radix_enabled();
+}
+
+int __init arch_ioremap_pmd_supported(void)
+{
+	return radix_enabled();
+}
+
+int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
+{
+	return 0;
+}
+
+int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
+{
+	pte_t *ptep = (pte_t *)pud;
+	pte_t new_pud = pfn_pte(__phys_to_pfn(addr), prot);
+
+	if (!radix_enabled())
+		return 0;
+
+	set_pte_at(&init_mm, 0 /* radix unused */, ptep, new_pud);
+
+	return 1;
+}
+
+int pud_clear_huge(pud_t *pud)
+{
+	if (pud_huge(*pud)) {
+		pud_clear(pud);
+		return 1;
+	}
+
+	return 0;
+}
+
+int pud_free_pmd_page(pud_t *pud, unsigned long addr)
+{
+	pmd_t *pmd;
+	int i;
+
+	pmd = (pmd_t *)pud_page_vaddr(*pud);
+	pud_clear(pud);
+
+	flush_tlb_kernel_range(addr, addr + PUD_SIZE);
+
+	for (i = 0; i < PTRS_PER_PMD; i++) {
+		if (!pmd_none(pmd[i])) {
+			pte_t *pte;
+			pte = (pte_t *)pmd_page_vaddr(pmd[i]);
+
+			pte_free_kernel(&init_mm, pte);
+		}
+	}
+
+	pmd_free(&init_mm, pmd);
+
+	return 1;
+}
+
+int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
+{
+	pte_t *ptep = (pte_t *)pmd;
+	pte_t new_pmd = pfn_pte(__phys_to_pfn(addr), prot);
+
+	if (!radix_enabled())
+		return 0;
+
+	set_pte_at(&init_mm, 0 /* radix unused */, ptep, new_pmd);
+
+	return 1;
+}
+
+int pmd_clear_huge(pmd_t *pmd)
+{
+	if (pmd_huge(*pmd)) {
+		pmd_clear(pmd);
+		return 1;
+	}
+
+	return 0;
+}
+
+int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
+{
+	pte_t *pte;
+
+	pte = (pte_t *)pmd_page_vaddr(*pmd);
+	pmd_clear(pmd);
+
+	flush_tlb_kernel_range(addr, addr + PMD_SIZE);
+
+	pte_free_kernel(&init_mm, pte);
+
+	return 1;
+}
+
+int __init arch_ioremap_p4d_supported(void)
+{
+	return 0;
+}
diff --git a/arch/powerpc/mm/book3s64/radix_tlb.c b/arch/powerpc/mm/book3s64/radix_tlb.c
new file mode 100644
index 0000000..67af871
--- /dev/null
+++ b/arch/powerpc/mm/book3s64/radix_tlb.c
@@ -0,0 +1,1257 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * TLB flush routines for radix kernels.
+ *
+ * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
+ */
+
+#include <linux/mm.h>
+#include <linux/hugetlb.h>
+#include <linux/memblock.h>
+#include <linux/mmu_context.h>
+#include <linux/sched/mm.h>
+
+#include <asm/ppc-opcode.h>
+#include <asm/tlb.h>
+#include <asm/tlbflush.h>
+#include <asm/trace.h>
+#include <asm/cputhreads.h>
+
+#define RIC_FLUSH_TLB 0
+#define RIC_FLUSH_PWC 1
+#define RIC_FLUSH_ALL 2
+
+/*
+ * tlbiel instruction for radix, set invalidation
+ * i.e., r=1 and is=01 or is=10 or is=11
+ */
+static __always_inline void tlbiel_radix_set_isa300(unsigned int set, unsigned int is,
+					unsigned int pid,
+					unsigned int ric, unsigned int prs)
+{
+	unsigned long rb;
+	unsigned long rs;
+
+	rb = (set << PPC_BITLSHIFT(51)) | (is << PPC_BITLSHIFT(53));
+	rs = ((unsigned long)pid << PPC_BITLSHIFT(31));
+
+	asm volatile(PPC_TLBIEL(%0, %1, %2, %3, 1)
+		     : : "r"(rb), "r"(rs), "i"(ric), "i"(prs)
+		     : "memory");
+}
+
+static void tlbiel_all_isa300(unsigned int num_sets, unsigned int is)
+{
+	unsigned int set;
+
+	asm volatile("ptesync": : :"memory");
+
+	/*
+	 * Flush the first set of the TLB, and the entire Page Walk Cache
+	 * and partition table entries. Then flush the remaining sets of the
+	 * TLB.
+	 */
+
+	if (early_cpu_has_feature(CPU_FTR_HVMODE)) {
+		/* MSR[HV] should flush partition scope translations first. */
+		tlbiel_radix_set_isa300(0, is, 0, RIC_FLUSH_ALL, 0);
+		for (set = 1; set < num_sets; set++)
+			tlbiel_radix_set_isa300(set, is, 0, RIC_FLUSH_TLB, 0);
+	}
+
+	/* Flush process scoped entries. */
+	tlbiel_radix_set_isa300(0, is, 0, RIC_FLUSH_ALL, 1);
+	for (set = 1; set < num_sets; set++)
+		tlbiel_radix_set_isa300(set, is, 0, RIC_FLUSH_TLB, 1);
+
+	asm volatile("ptesync": : :"memory");
+}
+
+void radix__tlbiel_all(unsigned int action)
+{
+	unsigned int is;
+
+	switch (action) {
+	case TLB_INVAL_SCOPE_GLOBAL:
+		is = 3;
+		break;
+	case TLB_INVAL_SCOPE_LPID:
+		is = 2;
+		break;
+	default:
+		BUG();
+	}
+
+	if (early_cpu_has_feature(CPU_FTR_ARCH_300))
+		tlbiel_all_isa300(POWER9_TLB_SETS_RADIX, is);
+	else
+		WARN(1, "%s called on pre-POWER9 CPU\n", __func__);
+
+	asm volatile(PPC_ISA_3_0_INVALIDATE_ERAT "; isync" : : :"memory");
+}
+
+static __always_inline void __tlbiel_pid(unsigned long pid, int set,
+				unsigned long ric)
+{
+	unsigned long rb,rs,prs,r;
+
+	rb = PPC_BIT(53); /* IS = 1 */
+	rb |= set << PPC_BITLSHIFT(51);
+	rs = ((unsigned long)pid) << PPC_BITLSHIFT(31);
+	prs = 1; /* process scoped */
+	r = 1;   /* radix format */
+
+	asm volatile(PPC_TLBIEL(%0, %4, %3, %2, %1)
+		     : : "r"(rb), "i"(r), "i"(prs), "i"(ric), "r"(rs) : "memory");
+	trace_tlbie(0, 1, rb, rs, ric, prs, r);
+}
+
+static __always_inline void __tlbie_pid(unsigned long pid, unsigned long ric)
+{
+	unsigned long rb,rs,prs,r;
+
+	rb = PPC_BIT(53); /* IS = 1 */
+	rs = pid << PPC_BITLSHIFT(31);
+	prs = 1; /* process scoped */
+	r = 1;   /* radix format */
+
+	asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1)
+		     : : "r"(rb), "i"(r), "i"(prs), "i"(ric), "r"(rs) : "memory");
+	trace_tlbie(0, 0, rb, rs, ric, prs, r);
+}
+
+static __always_inline void __tlbie_lpid(unsigned long lpid, unsigned long ric)
+{
+	unsigned long rb,rs,prs,r;
+
+	rb = PPC_BIT(52); /* IS = 2 */
+	rs = lpid;
+	prs = 0; /* partition scoped */
+	r = 1;   /* radix format */
+
+	asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1)
+		     : : "r"(rb), "i"(r), "i"(prs), "i"(ric), "r"(rs) : "memory");
+	trace_tlbie(lpid, 0, rb, rs, ric, prs, r);
+}
+
+static __always_inline void __tlbie_lpid_guest(unsigned long lpid, unsigned long ric)
+{
+	unsigned long rb,rs,prs,r;
+
+	rb = PPC_BIT(52); /* IS = 2 */
+	rs = lpid;
+	prs = 1; /* process scoped */
+	r = 1;   /* radix format */
+
+	asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1)
+		     : : "r"(rb), "i"(r), "i"(prs), "i"(ric), "r"(rs) : "memory");
+	trace_tlbie(lpid, 0, rb, rs, ric, prs, r);
+}
+
+static __always_inline void __tlbiel_va(unsigned long va, unsigned long pid,
+					unsigned long ap, unsigned long ric)
+{
+	unsigned long rb,rs,prs,r;
+
+	rb = va & ~(PPC_BITMASK(52, 63));
+	rb |= ap << PPC_BITLSHIFT(58);
+	rs = pid << PPC_BITLSHIFT(31);
+	prs = 1; /* process scoped */
+	r = 1;   /* radix format */
+
+	asm volatile(PPC_TLBIEL(%0, %4, %3, %2, %1)
+		     : : "r"(rb), "i"(r), "i"(prs), "i"(ric), "r"(rs) : "memory");
+	trace_tlbie(0, 1, rb, rs, ric, prs, r);
+}
+
+static __always_inline void __tlbie_va(unsigned long va, unsigned long pid,
+				       unsigned long ap, unsigned long ric)
+{
+	unsigned long rb,rs,prs,r;
+
+	rb = va & ~(PPC_BITMASK(52, 63));
+	rb |= ap << PPC_BITLSHIFT(58);
+	rs = pid << PPC_BITLSHIFT(31);
+	prs = 1; /* process scoped */
+	r = 1;   /* radix format */
+
+	asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1)
+		     : : "r"(rb), "i"(r), "i"(prs), "i"(ric), "r"(rs) : "memory");
+	trace_tlbie(0, 0, rb, rs, ric, prs, r);
+}
+
+static __always_inline void __tlbie_lpid_va(unsigned long va, unsigned long lpid,
+					    unsigned long ap, unsigned long ric)
+{
+	unsigned long rb,rs,prs,r;
+
+	rb = va & ~(PPC_BITMASK(52, 63));
+	rb |= ap << PPC_BITLSHIFT(58);
+	rs = lpid;
+	prs = 0; /* partition scoped */
+	r = 1;   /* radix format */
+
+	asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1)
+		     : : "r"(rb), "i"(r), "i"(prs), "i"(ric), "r"(rs) : "memory");
+	trace_tlbie(lpid, 0, rb, rs, ric, prs, r);
+}
+
+
+static inline void fixup_tlbie_va(unsigned long va, unsigned long pid,
+				  unsigned long ap)
+{
+	if (cpu_has_feature(CPU_FTR_P9_TLBIE_ERAT_BUG)) {
+		asm volatile("ptesync": : :"memory");
+		__tlbie_va(va, 0, ap, RIC_FLUSH_TLB);
+	}
+
+	if (cpu_has_feature(CPU_FTR_P9_TLBIE_STQ_BUG)) {
+		asm volatile("ptesync": : :"memory");
+		__tlbie_va(va, pid, ap, RIC_FLUSH_TLB);
+	}
+}
+
+static inline void fixup_tlbie_va_range(unsigned long va, unsigned long pid,
+					unsigned long ap)
+{
+	if (cpu_has_feature(CPU_FTR_P9_TLBIE_ERAT_BUG)) {
+		asm volatile("ptesync": : :"memory");
+		__tlbie_pid(0, RIC_FLUSH_TLB);
+	}
+
+	if (cpu_has_feature(CPU_FTR_P9_TLBIE_STQ_BUG)) {
+		asm volatile("ptesync": : :"memory");
+		__tlbie_va(va, pid, ap, RIC_FLUSH_TLB);
+	}
+}
+
+static inline void fixup_tlbie_pid(unsigned long pid)
+{
+	/*
+	 * We can use any address for the invalidation, pick one which is
+	 * probably unused as an optimisation.
+	 */
+	unsigned long va = ((1UL << 52) - 1);
+
+	if (cpu_has_feature(CPU_FTR_P9_TLBIE_ERAT_BUG)) {
+		asm volatile("ptesync": : :"memory");
+		__tlbie_pid(0, RIC_FLUSH_TLB);
+	}
+
+	if (cpu_has_feature(CPU_FTR_P9_TLBIE_STQ_BUG)) {
+		asm volatile("ptesync": : :"memory");
+		__tlbie_va(va, pid, mmu_get_ap(MMU_PAGE_64K), RIC_FLUSH_TLB);
+	}
+}
+
+
+static inline void fixup_tlbie_lpid_va(unsigned long va, unsigned long lpid,
+				       unsigned long ap)
+{
+	if (cpu_has_feature(CPU_FTR_P9_TLBIE_ERAT_BUG)) {
+		asm volatile("ptesync": : :"memory");
+		__tlbie_lpid_va(va, 0, ap, RIC_FLUSH_TLB);
+	}
+
+	if (cpu_has_feature(CPU_FTR_P9_TLBIE_STQ_BUG)) {
+		asm volatile("ptesync": : :"memory");
+		__tlbie_lpid_va(va, lpid, ap, RIC_FLUSH_TLB);
+	}
+}
+
+static inline void fixup_tlbie_lpid(unsigned long lpid)
+{
+	/*
+	 * We can use any address for the invalidation, pick one which is
+	 * probably unused as an optimisation.
+	 */
+	unsigned long va = ((1UL << 52) - 1);
+
+	if (cpu_has_feature(CPU_FTR_P9_TLBIE_ERAT_BUG)) {
+		asm volatile("ptesync": : :"memory");
+		__tlbie_lpid(0, RIC_FLUSH_TLB);
+	}
+
+	if (cpu_has_feature(CPU_FTR_P9_TLBIE_STQ_BUG)) {
+		asm volatile("ptesync": : :"memory");
+		__tlbie_lpid_va(va, lpid, mmu_get_ap(MMU_PAGE_64K), RIC_FLUSH_TLB);
+	}
+}
+
+/*
+ * We use 128 set in radix mode and 256 set in hpt mode.
+ */
+static __always_inline void _tlbiel_pid(unsigned long pid, unsigned long ric)
+{
+	int set;
+
+	asm volatile("ptesync": : :"memory");
+
+	/*
+	 * Flush the first set of the TLB, and if we're doing a RIC_FLUSH_ALL,
+	 * also flush the entire Page Walk Cache.
+	 */
+	__tlbiel_pid(pid, 0, ric);
+
+	/* For PWC, only one flush is needed */
+	if (ric == RIC_FLUSH_PWC) {
+		asm volatile("ptesync": : :"memory");
+		return;
+	}
+
+	/* For the remaining sets, just flush the TLB */
+	for (set = 1; set < POWER9_TLB_SETS_RADIX ; set++)
+		__tlbiel_pid(pid, set, RIC_FLUSH_TLB);
+
+	asm volatile("ptesync": : :"memory");
+	asm volatile(PPC_RADIX_INVALIDATE_ERAT_USER "; isync" : : :"memory");
+}
+
+static inline void _tlbie_pid(unsigned long pid, unsigned long ric)
+{
+	asm volatile("ptesync": : :"memory");
+
+	/*
+	 * Workaround the fact that the "ric" argument to __tlbie_pid
+	 * must be a compile-time contraint to match the "i" constraint
+	 * in the asm statement.
+	 */
+	switch (ric) {
+	case RIC_FLUSH_TLB:
+		__tlbie_pid(pid, RIC_FLUSH_TLB);
+		fixup_tlbie_pid(pid);
+		break;
+	case RIC_FLUSH_PWC:
+		__tlbie_pid(pid, RIC_FLUSH_PWC);
+		break;
+	case RIC_FLUSH_ALL:
+	default:
+		__tlbie_pid(pid, RIC_FLUSH_ALL);
+		fixup_tlbie_pid(pid);
+	}
+	asm volatile("eieio; tlbsync; ptesync": : :"memory");
+}
+
+struct tlbiel_pid {
+	unsigned long pid;
+	unsigned long ric;
+};
+
+static void do_tlbiel_pid(void *info)
+{
+	struct tlbiel_pid *t = info;
+
+	if (t->ric == RIC_FLUSH_TLB)
+		_tlbiel_pid(t->pid, RIC_FLUSH_TLB);
+	else if (t->ric == RIC_FLUSH_PWC)
+		_tlbiel_pid(t->pid, RIC_FLUSH_PWC);
+	else
+		_tlbiel_pid(t->pid, RIC_FLUSH_ALL);
+}
+
+static inline void _tlbiel_pid_multicast(struct mm_struct *mm,
+				unsigned long pid, unsigned long ric)
+{
+	struct cpumask *cpus = mm_cpumask(mm);
+	struct tlbiel_pid t = { .pid = pid, .ric = ric };
+
+	on_each_cpu_mask(cpus, do_tlbiel_pid, &t, 1);
+	/*
+	 * Always want the CPU translations to be invalidated with tlbiel in
+	 * these paths, so while coprocessors must use tlbie, we can not
+	 * optimise away the tlbiel component.
+	 */
+	if (atomic_read(&mm->context.copros) > 0)
+		_tlbie_pid(pid, RIC_FLUSH_ALL);
+}
+
+static inline void _tlbie_lpid(unsigned long lpid, unsigned long ric)
+{
+	asm volatile("ptesync": : :"memory");
+
+	/*
+	 * Workaround the fact that the "ric" argument to __tlbie_pid
+	 * must be a compile-time contraint to match the "i" constraint
+	 * in the asm statement.
+	 */
+	switch (ric) {
+	case RIC_FLUSH_TLB:
+		__tlbie_lpid(lpid, RIC_FLUSH_TLB);
+		fixup_tlbie_lpid(lpid);
+		break;
+	case RIC_FLUSH_PWC:
+		__tlbie_lpid(lpid, RIC_FLUSH_PWC);
+		break;
+	case RIC_FLUSH_ALL:
+	default:
+		__tlbie_lpid(lpid, RIC_FLUSH_ALL);
+		fixup_tlbie_lpid(lpid);
+	}
+	asm volatile("eieio; tlbsync; ptesync": : :"memory");
+}
+
+static __always_inline void _tlbie_lpid_guest(unsigned long lpid, unsigned long ric)
+{
+	/*
+	 * Workaround the fact that the "ric" argument to __tlbie_pid
+	 * must be a compile-time contraint to match the "i" constraint
+	 * in the asm statement.
+	 */
+	switch (ric) {
+	case RIC_FLUSH_TLB:
+		__tlbie_lpid_guest(lpid, RIC_FLUSH_TLB);
+		break;
+	case RIC_FLUSH_PWC:
+		__tlbie_lpid_guest(lpid, RIC_FLUSH_PWC);
+		break;
+	case RIC_FLUSH_ALL:
+	default:
+		__tlbie_lpid_guest(lpid, RIC_FLUSH_ALL);
+	}
+	fixup_tlbie_lpid(lpid);
+	asm volatile("eieio; tlbsync; ptesync": : :"memory");
+}
+
+static inline void __tlbiel_va_range(unsigned long start, unsigned long end,
+				    unsigned long pid, unsigned long page_size,
+				    unsigned long psize)
+{
+	unsigned long addr;
+	unsigned long ap = mmu_get_ap(psize);
+
+	for (addr = start; addr < end; addr += page_size)
+		__tlbiel_va(addr, pid, ap, RIC_FLUSH_TLB);
+}
+
+static __always_inline void _tlbiel_va(unsigned long va, unsigned long pid,
+				       unsigned long psize, unsigned long ric)
+{
+	unsigned long ap = mmu_get_ap(psize);
+
+	asm volatile("ptesync": : :"memory");
+	__tlbiel_va(va, pid, ap, ric);
+	asm volatile("ptesync": : :"memory");
+}
+
+static inline void _tlbiel_va_range(unsigned long start, unsigned long end,
+				    unsigned long pid, unsigned long page_size,
+				    unsigned long psize, bool also_pwc)
+{
+	asm volatile("ptesync": : :"memory");
+	if (also_pwc)
+		__tlbiel_pid(pid, 0, RIC_FLUSH_PWC);
+	__tlbiel_va_range(start, end, pid, page_size, psize);
+	asm volatile("ptesync": : :"memory");
+}
+
+static inline void __tlbie_va_range(unsigned long start, unsigned long end,
+				    unsigned long pid, unsigned long page_size,
+				    unsigned long psize)
+{
+	unsigned long addr;
+	unsigned long ap = mmu_get_ap(psize);
+
+	for (addr = start; addr < end; addr += page_size)
+		__tlbie_va(addr, pid, ap, RIC_FLUSH_TLB);
+
+	fixup_tlbie_va_range(addr - page_size, pid, ap);
+}
+
+static __always_inline void _tlbie_va(unsigned long va, unsigned long pid,
+				      unsigned long psize, unsigned long ric)
+{
+	unsigned long ap = mmu_get_ap(psize);
+
+	asm volatile("ptesync": : :"memory");
+	__tlbie_va(va, pid, ap, ric);
+	fixup_tlbie_va(va, pid, ap);
+	asm volatile("eieio; tlbsync; ptesync": : :"memory");
+}
+
+struct tlbiel_va {
+	unsigned long pid;
+	unsigned long va;
+	unsigned long psize;
+	unsigned long ric;
+};
+
+static void do_tlbiel_va(void *info)
+{
+	struct tlbiel_va *t = info;
+
+	if (t->ric == RIC_FLUSH_TLB)
+		_tlbiel_va(t->va, t->pid, t->psize, RIC_FLUSH_TLB);
+	else if (t->ric == RIC_FLUSH_PWC)
+		_tlbiel_va(t->va, t->pid, t->psize, RIC_FLUSH_PWC);
+	else
+		_tlbiel_va(t->va, t->pid, t->psize, RIC_FLUSH_ALL);
+}
+
+static inline void _tlbiel_va_multicast(struct mm_struct *mm,
+				unsigned long va, unsigned long pid,
+				unsigned long psize, unsigned long ric)
+{
+	struct cpumask *cpus = mm_cpumask(mm);
+	struct tlbiel_va t = { .va = va, .pid = pid, .psize = psize, .ric = ric };
+	on_each_cpu_mask(cpus, do_tlbiel_va, &t, 1);
+	if (atomic_read(&mm->context.copros) > 0)
+		_tlbie_va(va, pid, psize, RIC_FLUSH_TLB);
+}
+
+struct tlbiel_va_range {
+	unsigned long pid;
+	unsigned long start;
+	unsigned long end;
+	unsigned long page_size;
+	unsigned long psize;
+	bool also_pwc;
+};
+
+static void do_tlbiel_va_range(void *info)
+{
+	struct tlbiel_va_range *t = info;
+
+	_tlbiel_va_range(t->start, t->end, t->pid, t->page_size,
+				    t->psize, t->also_pwc);
+}
+
+static __always_inline void _tlbie_lpid_va(unsigned long va, unsigned long lpid,
+			      unsigned long psize, unsigned long ric)
+{
+	unsigned long ap = mmu_get_ap(psize);
+
+	asm volatile("ptesync": : :"memory");
+	__tlbie_lpid_va(va, lpid, ap, ric);
+	fixup_tlbie_lpid_va(va, lpid, ap);
+	asm volatile("eieio; tlbsync; ptesync": : :"memory");
+}
+
+static inline void _tlbie_va_range(unsigned long start, unsigned long end,
+				    unsigned long pid, unsigned long page_size,
+				    unsigned long psize, bool also_pwc)
+{
+	asm volatile("ptesync": : :"memory");
+	if (also_pwc)
+		__tlbie_pid(pid, RIC_FLUSH_PWC);
+	__tlbie_va_range(start, end, pid, page_size, psize);
+	asm volatile("eieio; tlbsync; ptesync": : :"memory");
+}
+
+static inline void _tlbiel_va_range_multicast(struct mm_struct *mm,
+				unsigned long start, unsigned long end,
+				unsigned long pid, unsigned long page_size,
+				unsigned long psize, bool also_pwc)
+{
+	struct cpumask *cpus = mm_cpumask(mm);
+	struct tlbiel_va_range t = { .start = start, .end = end,
+				.pid = pid, .page_size = page_size,
+				.psize = psize, .also_pwc = also_pwc };
+
+	on_each_cpu_mask(cpus, do_tlbiel_va_range, &t, 1);
+	if (atomic_read(&mm->context.copros) > 0)
+		_tlbie_va_range(start, end, pid, page_size, psize, also_pwc);
+}
+
+/*
+ * Base TLB flushing operations:
+ *
+ *  - flush_tlb_mm(mm) flushes the specified mm context TLB's
+ *  - flush_tlb_page(vma, vmaddr) flushes one page
+ *  - flush_tlb_range(vma, start, end) flushes a range of pages
+ *  - flush_tlb_kernel_range(start, end) flushes kernel pages
+ *
+ *  - local_* variants of page and mm only apply to the current
+ *    processor
+ */
+void radix__local_flush_tlb_mm(struct mm_struct *mm)
+{
+	unsigned long pid;
+
+	preempt_disable();
+	pid = mm->context.id;
+	if (pid != MMU_NO_CONTEXT)
+		_tlbiel_pid(pid, RIC_FLUSH_TLB);
+	preempt_enable();
+}
+EXPORT_SYMBOL(radix__local_flush_tlb_mm);
+
+#ifndef CONFIG_SMP
+void radix__local_flush_all_mm(struct mm_struct *mm)
+{
+	unsigned long pid;
+
+	preempt_disable();
+	pid = mm->context.id;
+	if (pid != MMU_NO_CONTEXT)
+		_tlbiel_pid(pid, RIC_FLUSH_ALL);
+	preempt_enable();
+}
+EXPORT_SYMBOL(radix__local_flush_all_mm);
+#endif /* CONFIG_SMP */
+
+void radix__local_flush_tlb_page_psize(struct mm_struct *mm, unsigned long vmaddr,
+				       int psize)
+{
+	unsigned long pid;
+
+	preempt_disable();
+	pid = mm->context.id;
+	if (pid != MMU_NO_CONTEXT)
+		_tlbiel_va(vmaddr, pid, psize, RIC_FLUSH_TLB);
+	preempt_enable();
+}
+
+void radix__local_flush_tlb_page(struct vm_area_struct *vma, unsigned long vmaddr)
+{
+#ifdef CONFIG_HUGETLB_PAGE
+	/* need the return fix for nohash.c */
+	if (is_vm_hugetlb_page(vma))
+		return radix__local_flush_hugetlb_page(vma, vmaddr);
+#endif
+	radix__local_flush_tlb_page_psize(vma->vm_mm, vmaddr, mmu_virtual_psize);
+}
+EXPORT_SYMBOL(radix__local_flush_tlb_page);
+
+static bool mm_is_singlethreaded(struct mm_struct *mm)
+{
+	if (atomic_read(&mm->context.copros) > 0)
+		return false;
+	if (atomic_read(&mm->mm_users) <= 1 && current->mm == mm)
+		return true;
+	return false;
+}
+
+static bool mm_needs_flush_escalation(struct mm_struct *mm)
+{
+	/*
+	 * P9 nest MMU has issues with the page walk cache
+	 * caching PTEs and not flushing them properly when
+	 * RIC = 0 for a PID/LPID invalidate
+	 */
+	if (atomic_read(&mm->context.copros) > 0)
+		return true;
+	return false;
+}
+
+#ifdef CONFIG_SMP
+static void do_exit_flush_lazy_tlb(void *arg)
+{
+	struct mm_struct *mm = arg;
+	unsigned long pid = mm->context.id;
+
+	if (current->mm == mm)
+		return; /* Local CPU */
+
+	if (current->active_mm == mm) {
+		/*
+		 * Must be a kernel thread because sender is single-threaded.
+		 */
+		BUG_ON(current->mm);
+		mmgrab(&init_mm);
+		switch_mm(mm, &init_mm, current);
+		current->active_mm = &init_mm;
+		mmdrop(mm);
+	}
+	_tlbiel_pid(pid, RIC_FLUSH_ALL);
+}
+
+static void exit_flush_lazy_tlbs(struct mm_struct *mm)
+{
+	/*
+	 * Would be nice if this was async so it could be run in
+	 * parallel with our local flush, but generic code does not
+	 * give a good API for it. Could extend the generic code or
+	 * make a special powerpc IPI for flushing TLBs.
+	 * For now it's not too performance critical.
+	 */
+	smp_call_function_many(mm_cpumask(mm), do_exit_flush_lazy_tlb,
+				(void *)mm, 1);
+	mm_reset_thread_local(mm);
+}
+
+void radix__flush_tlb_mm(struct mm_struct *mm)
+{
+	unsigned long pid;
+
+	pid = mm->context.id;
+	if (unlikely(pid == MMU_NO_CONTEXT))
+		return;
+
+	preempt_disable();
+	/*
+	 * Order loads of mm_cpumask vs previous stores to clear ptes before
+	 * the invalidate. See barrier in switch_mm_irqs_off
+	 */
+	smp_mb();
+	if (!mm_is_thread_local(mm)) {
+		if (unlikely(mm_is_singlethreaded(mm))) {
+			exit_flush_lazy_tlbs(mm);
+			goto local;
+		}
+
+		if (cputlb_use_tlbie()) {
+			if (mm_needs_flush_escalation(mm))
+				_tlbie_pid(pid, RIC_FLUSH_ALL);
+			else
+				_tlbie_pid(pid, RIC_FLUSH_TLB);
+		} else {
+			_tlbiel_pid_multicast(mm, pid, RIC_FLUSH_TLB);
+		}
+	} else {
+local:
+		_tlbiel_pid(pid, RIC_FLUSH_TLB);
+	}
+	preempt_enable();
+}
+EXPORT_SYMBOL(radix__flush_tlb_mm);
+
+static void __flush_all_mm(struct mm_struct *mm, bool fullmm)
+{
+	unsigned long pid;
+
+	pid = mm->context.id;
+	if (unlikely(pid == MMU_NO_CONTEXT))
+		return;
+
+	preempt_disable();
+	smp_mb(); /* see radix__flush_tlb_mm */
+	if (!mm_is_thread_local(mm)) {
+		if (unlikely(mm_is_singlethreaded(mm))) {
+			if (!fullmm) {
+				exit_flush_lazy_tlbs(mm);
+				goto local;
+			}
+		}
+		if (cputlb_use_tlbie())
+			_tlbie_pid(pid, RIC_FLUSH_ALL);
+		else
+			_tlbiel_pid_multicast(mm, pid, RIC_FLUSH_ALL);
+	} else {
+local:
+		_tlbiel_pid(pid, RIC_FLUSH_ALL);
+	}
+	preempt_enable();
+}
+void radix__flush_all_mm(struct mm_struct *mm)
+{
+	__flush_all_mm(mm, false);
+}
+EXPORT_SYMBOL(radix__flush_all_mm);
+
+void radix__flush_tlb_pwc(struct mmu_gather *tlb, unsigned long addr)
+{
+	tlb->need_flush_all = 1;
+}
+EXPORT_SYMBOL(radix__flush_tlb_pwc);
+
+void radix__flush_tlb_page_psize(struct mm_struct *mm, unsigned long vmaddr,
+				 int psize)
+{
+	unsigned long pid;
+
+	pid = mm->context.id;
+	if (unlikely(pid == MMU_NO_CONTEXT))
+		return;
+
+	preempt_disable();
+	smp_mb(); /* see radix__flush_tlb_mm */
+	if (!mm_is_thread_local(mm)) {
+		if (unlikely(mm_is_singlethreaded(mm))) {
+			exit_flush_lazy_tlbs(mm);
+			goto local;
+		}
+		if (cputlb_use_tlbie())
+			_tlbie_va(vmaddr, pid, psize, RIC_FLUSH_TLB);
+		else
+			_tlbiel_va_multicast(mm, vmaddr, pid, psize, RIC_FLUSH_TLB);
+	} else {
+local:
+		_tlbiel_va(vmaddr, pid, psize, RIC_FLUSH_TLB);
+	}
+	preempt_enable();
+}
+
+void radix__flush_tlb_page(struct vm_area_struct *vma, unsigned long vmaddr)
+{
+#ifdef CONFIG_HUGETLB_PAGE
+	if (is_vm_hugetlb_page(vma))
+		return radix__flush_hugetlb_page(vma, vmaddr);
+#endif
+	radix__flush_tlb_page_psize(vma->vm_mm, vmaddr, mmu_virtual_psize);
+}
+EXPORT_SYMBOL(radix__flush_tlb_page);
+
+#else /* CONFIG_SMP */
+#define radix__flush_all_mm radix__local_flush_all_mm
+#endif /* CONFIG_SMP */
+
+static void do_tlbiel_kernel(void *info)
+{
+	_tlbiel_pid(0, RIC_FLUSH_ALL);
+}
+
+static inline void _tlbiel_kernel_broadcast(void)
+{
+	on_each_cpu(do_tlbiel_kernel, NULL, 1);
+	if (tlbie_capable) {
+		/*
+		 * Coherent accelerators don't refcount kernel memory mappings,
+		 * so have to always issue a tlbie for them. This is quite a
+		 * slow path anyway.
+		 */
+		_tlbie_pid(0, RIC_FLUSH_ALL);
+	}
+}
+
+/*
+ * If kernel TLBIs ever become local rather than global, then
+ * drivers/misc/ocxl/link.c:ocxl_link_add_pe will need some work, as it
+ * assumes kernel TLBIs are global.
+ */
+void radix__flush_tlb_kernel_range(unsigned long start, unsigned long end)
+{
+	if (cputlb_use_tlbie())
+		_tlbie_pid(0, RIC_FLUSH_ALL);
+	else
+		_tlbiel_kernel_broadcast();
+}
+EXPORT_SYMBOL(radix__flush_tlb_kernel_range);
+
+#define TLB_FLUSH_ALL -1UL
+
+/*
+ * Number of pages above which we invalidate the entire PID rather than
+ * flush individual pages, for local and global flushes respectively.
+ *
+ * tlbie goes out to the interconnect and individual ops are more costly.
+ * It also does not iterate over sets like the local tlbiel variant when
+ * invalidating a full PID, so it has a far lower threshold to change from
+ * individual page flushes to full-pid flushes.
+ */
+static unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
+static unsigned long tlb_local_single_page_flush_ceiling __read_mostly = POWER9_TLB_SETS_RADIX * 2;
+
+static inline void __radix__flush_tlb_range(struct mm_struct *mm,
+					unsigned long start, unsigned long end,
+					bool flush_all_sizes)
+
+{
+	unsigned long pid;
+	unsigned int page_shift = mmu_psize_defs[mmu_virtual_psize].shift;
+	unsigned long page_size = 1UL << page_shift;
+	unsigned long nr_pages = (end - start) >> page_shift;
+	bool local, full;
+
+	pid = mm->context.id;
+	if (unlikely(pid == MMU_NO_CONTEXT))
+		return;
+
+	preempt_disable();
+	smp_mb(); /* see radix__flush_tlb_mm */
+	if (!mm_is_thread_local(mm)) {
+		if (unlikely(mm_is_singlethreaded(mm))) {
+			if (end != TLB_FLUSH_ALL) {
+				exit_flush_lazy_tlbs(mm);
+				goto is_local;
+			}
+		}
+		local = false;
+		full = (end == TLB_FLUSH_ALL ||
+				nr_pages > tlb_single_page_flush_ceiling);
+	} else {
+is_local:
+		local = true;
+		full = (end == TLB_FLUSH_ALL ||
+				nr_pages > tlb_local_single_page_flush_ceiling);
+	}
+
+	if (full) {
+		if (local) {
+			_tlbiel_pid(pid, RIC_FLUSH_TLB);
+		} else {
+			if (cputlb_use_tlbie()) {
+				if (mm_needs_flush_escalation(mm))
+					_tlbie_pid(pid, RIC_FLUSH_ALL);
+				else
+					_tlbie_pid(pid, RIC_FLUSH_TLB);
+			} else {
+				_tlbiel_pid_multicast(mm, pid, RIC_FLUSH_TLB);
+			}
+		}
+	} else {
+		bool hflush = flush_all_sizes;
+		bool gflush = flush_all_sizes;
+		unsigned long hstart, hend;
+		unsigned long gstart, gend;
+
+		if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
+			hflush = true;
+
+		if (hflush) {
+			hstart = (start + PMD_SIZE - 1) & PMD_MASK;
+			hend = end & PMD_MASK;
+			if (hstart == hend)
+				hflush = false;
+		}
+
+		if (gflush) {
+			gstart = (start + PUD_SIZE - 1) & PUD_MASK;
+			gend = end & PUD_MASK;
+			if (gstart == gend)
+				gflush = false;
+		}
+
+		if (local) {
+			asm volatile("ptesync": : :"memory");
+			__tlbiel_va_range(start, end, pid, page_size, mmu_virtual_psize);
+			if (hflush)
+				__tlbiel_va_range(hstart, hend, pid,
+						PMD_SIZE, MMU_PAGE_2M);
+			if (gflush)
+				__tlbiel_va_range(gstart, gend, pid,
+						PUD_SIZE, MMU_PAGE_1G);
+			asm volatile("ptesync": : :"memory");
+		} else if (cputlb_use_tlbie()) {
+			asm volatile("ptesync": : :"memory");
+			__tlbie_va_range(start, end, pid, page_size, mmu_virtual_psize);
+			if (hflush)
+				__tlbie_va_range(hstart, hend, pid,
+						PMD_SIZE, MMU_PAGE_2M);
+			if (gflush)
+				__tlbie_va_range(gstart, gend, pid,
+						PUD_SIZE, MMU_PAGE_1G);
+
+			asm volatile("eieio; tlbsync; ptesync": : :"memory");
+		} else {
+			_tlbiel_va_range_multicast(mm,
+					start, end, pid, page_size, mmu_virtual_psize, false);
+			if (hflush)
+				_tlbiel_va_range_multicast(mm,
+					hstart, hend, pid, PMD_SIZE, MMU_PAGE_2M, false);
+			if (gflush)
+				_tlbiel_va_range_multicast(mm,
+					gstart, gend, pid, PUD_SIZE, MMU_PAGE_1G, false);
+		}
+	}
+	preempt_enable();
+}
+
+void radix__flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
+		     unsigned long end)
+
+{
+#ifdef CONFIG_HUGETLB_PAGE
+	if (is_vm_hugetlb_page(vma))
+		return radix__flush_hugetlb_tlb_range(vma, start, end);
+#endif
+
+	__radix__flush_tlb_range(vma->vm_mm, start, end, false);
+}
+EXPORT_SYMBOL(radix__flush_tlb_range);
+
+static int radix_get_mmu_psize(int page_size)
+{
+	int psize;
+
+	if (page_size == (1UL << mmu_psize_defs[mmu_virtual_psize].shift))
+		psize = mmu_virtual_psize;
+	else if (page_size == (1UL << mmu_psize_defs[MMU_PAGE_2M].shift))
+		psize = MMU_PAGE_2M;
+	else if (page_size == (1UL << mmu_psize_defs[MMU_PAGE_1G].shift))
+		psize = MMU_PAGE_1G;
+	else
+		return -1;
+	return psize;
+}
+
+/*
+ * Flush partition scoped LPID address translation for all CPUs.
+ */
+void radix__flush_tlb_lpid_page(unsigned int lpid,
+					unsigned long addr,
+					unsigned long page_size)
+{
+	int psize = radix_get_mmu_psize(page_size);
+
+	_tlbie_lpid_va(addr, lpid, psize, RIC_FLUSH_TLB);
+}
+EXPORT_SYMBOL_GPL(radix__flush_tlb_lpid_page);
+
+/*
+ * Flush partition scoped PWC from LPID for all CPUs.
+ */
+void radix__flush_pwc_lpid(unsigned int lpid)
+{
+	_tlbie_lpid(lpid, RIC_FLUSH_PWC);
+}
+EXPORT_SYMBOL_GPL(radix__flush_pwc_lpid);
+
+/*
+ * Flush partition scoped translations from LPID (=LPIDR)
+ */
+void radix__flush_all_lpid(unsigned int lpid)
+{
+	_tlbie_lpid(lpid, RIC_FLUSH_ALL);
+}
+EXPORT_SYMBOL_GPL(radix__flush_all_lpid);
+
+/*
+ * Flush process scoped translations from LPID (=LPIDR)
+ */
+void radix__flush_all_lpid_guest(unsigned int lpid)
+{
+	_tlbie_lpid_guest(lpid, RIC_FLUSH_ALL);
+}
+
+static void radix__flush_tlb_pwc_range_psize(struct mm_struct *mm, unsigned long start,
+				  unsigned long end, int psize);
+
+void radix__tlb_flush(struct mmu_gather *tlb)
+{
+	int psize = 0;
+	struct mm_struct *mm = tlb->mm;
+	int page_size = tlb->page_size;
+	unsigned long start = tlb->start;
+	unsigned long end = tlb->end;
+
+	/*
+	 * if page size is not something we understand, do a full mm flush
+	 *
+	 * A "fullmm" flush must always do a flush_all_mm (RIC=2) flush
+	 * that flushes the process table entry cache upon process teardown.
+	 * See the comment for radix in arch_exit_mmap().
+	 */
+	if (tlb->fullmm) {
+		__flush_all_mm(mm, true);
+#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
+	} else if (mm_tlb_flush_nested(mm)) {
+		/*
+		 * If there is a concurrent invalidation that is clearing ptes,
+		 * then it's possible this invalidation will miss one of those
+		 * cleared ptes and miss flushing the TLB. If this invalidate
+		 * returns before the other one flushes TLBs, that can result
+		 * in it returning while there are still valid TLBs inside the
+		 * range to be invalidated.
+		 *
+		 * See mm/memory.c:tlb_finish_mmu() for more details.
+		 *
+		 * The solution to this is ensure the entire range is always
+		 * flushed here. The problem for powerpc is that the flushes
+		 * are page size specific, so this "forced flush" would not
+		 * do the right thing if there are a mix of page sizes in
+		 * the range to be invalidated. So use __flush_tlb_range
+		 * which invalidates all possible page sizes in the range.
+		 *
+		 * PWC flush probably is not be required because the core code
+		 * shouldn't free page tables in this path, but accounting
+		 * for the possibility makes us a bit more robust.
+		 *
+		 * need_flush_all is an uncommon case because page table
+		 * teardown should be done with exclusive locks held (but
+		 * after locks are dropped another invalidate could come
+		 * in), it could be optimized further if necessary.
+		 */
+		if (!tlb->need_flush_all)
+			__radix__flush_tlb_range(mm, start, end, true);
+		else
+			radix__flush_all_mm(mm);
+#endif
+	} else if ( (psize = radix_get_mmu_psize(page_size)) == -1) {
+		if (!tlb->need_flush_all)
+			radix__flush_tlb_mm(mm);
+		else
+			radix__flush_all_mm(mm);
+	} else {
+		if (!tlb->need_flush_all)
+			radix__flush_tlb_range_psize(mm, start, end, psize);
+		else
+			radix__flush_tlb_pwc_range_psize(mm, start, end, psize);
+	}
+	tlb->need_flush_all = 0;
+}
+
+static __always_inline void __radix__flush_tlb_range_psize(struct mm_struct *mm,
+				unsigned long start, unsigned long end,
+				int psize, bool also_pwc)
+{
+	unsigned long pid;
+	unsigned int page_shift = mmu_psize_defs[psize].shift;
+	unsigned long page_size = 1UL << page_shift;
+	unsigned long nr_pages = (end - start) >> page_shift;
+	bool local, full;
+
+	pid = mm->context.id;
+	if (unlikely(pid == MMU_NO_CONTEXT))
+		return;
+
+	preempt_disable();
+	smp_mb(); /* see radix__flush_tlb_mm */
+	if (!mm_is_thread_local(mm)) {
+		if (unlikely(mm_is_singlethreaded(mm))) {
+			if (end != TLB_FLUSH_ALL) {
+				exit_flush_lazy_tlbs(mm);
+				goto is_local;
+			}
+		}
+		local = false;
+		full = (end == TLB_FLUSH_ALL ||
+				nr_pages > tlb_single_page_flush_ceiling);
+	} else {
+is_local:
+		local = true;
+		full = (end == TLB_FLUSH_ALL ||
+				nr_pages > tlb_local_single_page_flush_ceiling);
+	}
+
+	if (full) {
+		if (local) {
+			_tlbiel_pid(pid, also_pwc ? RIC_FLUSH_ALL : RIC_FLUSH_TLB);
+		} else {
+			if (cputlb_use_tlbie()) {
+				if (mm_needs_flush_escalation(mm))
+					also_pwc = true;
+
+				_tlbie_pid(pid,
+					also_pwc ?  RIC_FLUSH_ALL : RIC_FLUSH_TLB);
+			} else {
+				_tlbiel_pid_multicast(mm, pid,
+					also_pwc ?  RIC_FLUSH_ALL : RIC_FLUSH_TLB);
+			}
+
+		}
+	} else {
+		if (local)
+			_tlbiel_va_range(start, end, pid, page_size, psize, also_pwc);
+		else if (cputlb_use_tlbie())
+			_tlbie_va_range(start, end, pid, page_size, psize, also_pwc);
+		else
+			_tlbiel_va_range_multicast(mm,
+					start, end, pid, page_size, psize, also_pwc);
+	}
+	preempt_enable();
+}
+
+void radix__flush_tlb_range_psize(struct mm_struct *mm, unsigned long start,
+				  unsigned long end, int psize)
+{
+	return __radix__flush_tlb_range_psize(mm, start, end, psize, false);
+}
+
+static void radix__flush_tlb_pwc_range_psize(struct mm_struct *mm, unsigned long start,
+				  unsigned long end, int psize)
+{
+	__radix__flush_tlb_range_psize(mm, start, end, psize, true);
+}
+
+#ifdef CONFIG_TRANSPARENT_HUGEPAGE
+void radix__flush_tlb_collapsed_pmd(struct mm_struct *mm, unsigned long addr)
+{
+	unsigned long pid, end;
+
+	pid = mm->context.id;
+	if (unlikely(pid == MMU_NO_CONTEXT))
+		return;
+
+	/* 4k page size, just blow the world */
+	if (PAGE_SIZE == 0x1000) {
+		radix__flush_all_mm(mm);
+		return;
+	}
+
+	end = addr + HPAGE_PMD_SIZE;
+
+	/* Otherwise first do the PWC, then iterate the pages. */
+	preempt_disable();
+	smp_mb(); /* see radix__flush_tlb_mm */
+	if (!mm_is_thread_local(mm)) {
+		if (unlikely(mm_is_singlethreaded(mm))) {
+			exit_flush_lazy_tlbs(mm);
+			goto local;
+		}
+		if (cputlb_use_tlbie())
+			_tlbie_va_range(addr, end, pid, PAGE_SIZE, mmu_virtual_psize, true);
+		else
+			_tlbiel_va_range_multicast(mm,
+					addr, end, pid, PAGE_SIZE, mmu_virtual_psize, true);
+	} else {
+local:
+		_tlbiel_va_range(addr, end, pid, PAGE_SIZE, mmu_virtual_psize, true);
+	}
+
+	preempt_enable();
+}
+#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
+
+void radix__flush_pmd_tlb_range(struct vm_area_struct *vma,
+				unsigned long start, unsigned long end)
+{
+	radix__flush_tlb_range_psize(vma->vm_mm, start, end, MMU_PAGE_2M);
+}
+EXPORT_SYMBOL(radix__flush_pmd_tlb_range);
+
+void radix__flush_tlb_all(void)
+{
+	unsigned long rb,prs,r,rs;
+	unsigned long ric = RIC_FLUSH_ALL;
+
+	rb = 0x3 << PPC_BITLSHIFT(53); /* IS = 3 */
+	prs = 0; /* partition scoped */
+	r = 1;   /* radix format */
+	rs = 1 & ((1UL << 32) - 1); /* any LPID value to flush guest mappings */
+
+	asm volatile("ptesync": : :"memory");
+	/*
+	 * now flush guest entries by passing PRS = 1 and LPID != 0
+	 */
+	asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1)
+		     : : "r"(rb), "i"(r), "i"(1), "i"(ric), "r"(rs) : "memory");
+	/*
+	 * now flush host entires by passing PRS = 0 and LPID == 0
+	 */
+	asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1)
+		     : : "r"(rb), "i"(r), "i"(prs), "i"(ric), "r"(0) : "memory");
+	asm volatile("eieio; tlbsync; ptesync": : :"memory");
+}
+
+#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
+extern void radix_kvm_prefetch_workaround(struct mm_struct *mm)
+{
+	unsigned long pid = mm->context.id;
+
+	if (unlikely(pid == MMU_NO_CONTEXT))
+		return;
+
+	/*
+	 * If this context hasn't run on that CPU before and KVM is
+	 * around, there's a slim chance that the guest on another
+	 * CPU just brought in obsolete translation into the TLB of
+	 * this CPU due to a bad prefetch using the guest PID on
+	 * the way into the hypervisor.
+	 *
+	 * We work around this here. If KVM is possible, we check if
+	 * any sibling thread is in KVM. If it is, the window may exist
+	 * and thus we flush that PID from the core.
+	 *
+	 * A potential future improvement would be to mark which PIDs
+	 * have never been used on the system and avoid it if the PID
+	 * is new and the process has no other cpumask bit set.
+	 */
+	if (cpu_has_feature(CPU_FTR_HVMODE) && radix_enabled()) {
+		int cpu = smp_processor_id();
+		int sib = cpu_first_thread_sibling(cpu);
+		bool flush = false;
+
+		for (; sib <= cpu_last_thread_sibling(cpu) && !flush; sib++) {
+			if (sib == cpu)
+				continue;
+			if (!cpu_possible(sib))
+				continue;
+			if (paca_ptrs[sib]->kvm_hstate.kvm_vcpu)
+				flush = true;
+		}
+		if (flush)
+			_tlbiel_pid(pid, RIC_FLUSH_ALL);
+	}
+}
+EXPORT_SYMBOL_GPL(radix_kvm_prefetch_workaround);
+#endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
diff --git a/arch/powerpc/mm/book3s64/slb.c b/arch/powerpc/mm/book3s64/slb.c
new file mode 100644
index 0000000..716204a
--- /dev/null
+++ b/arch/powerpc/mm/book3s64/slb.c
@@ -0,0 +1,828 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * PowerPC64 SLB support.
+ *
+ * Copyright (C) 2004 David Gibson <dwg@au.ibm.com>, IBM
+ * Based on earlier code written by:
+ * Dave Engebretsen and Mike Corrigan {engebret|mikejc}@us.ibm.com
+ *    Copyright (c) 2001 Dave Engebretsen
+ * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
+ */
+
+#include <asm/asm-prototypes.h>
+#include <asm/pgtable.h>
+#include <asm/mmu.h>
+#include <asm/mmu_context.h>
+#include <asm/paca.h>
+#include <asm/ppc-opcode.h>
+#include <asm/cputable.h>
+#include <asm/cacheflush.h>
+#include <asm/smp.h>
+#include <linux/compiler.h>
+#include <linux/context_tracking.h>
+#include <linux/mm_types.h>
+
+#include <asm/udbg.h>
+#include <asm/code-patching.h>
+
+enum slb_index {
+	LINEAR_INDEX	= 0, /* Kernel linear map  (0xc000000000000000) */
+	KSTACK_INDEX	= 1, /* Kernel stack map */
+};
+
+static long slb_allocate_user(struct mm_struct *mm, unsigned long ea);
+
+#define slb_esid_mask(ssize)	\
+	(((ssize) == MMU_SEGSIZE_256M)? ESID_MASK: ESID_MASK_1T)
+
+static inline unsigned long mk_esid_data(unsigned long ea, int ssize,
+					 enum slb_index index)
+{
+	return (ea & slb_esid_mask(ssize)) | SLB_ESID_V | index;
+}
+
+static inline unsigned long __mk_vsid_data(unsigned long vsid, int ssize,
+					 unsigned long flags)
+{
+	return (vsid << slb_vsid_shift(ssize)) | flags |
+		((unsigned long) ssize << SLB_VSID_SSIZE_SHIFT);
+}
+
+static inline unsigned long mk_vsid_data(unsigned long ea, int ssize,
+					 unsigned long flags)
+{
+	return __mk_vsid_data(get_kernel_vsid(ea, ssize), ssize, flags);
+}
+
+static void assert_slb_presence(bool present, unsigned long ea)
+{
+#ifdef CONFIG_DEBUG_VM
+	unsigned long tmp;
+
+	WARN_ON_ONCE(mfmsr() & MSR_EE);
+
+	if (!cpu_has_feature(CPU_FTR_ARCH_206))
+		return;
+
+	/*
+	 * slbfee. requires bit 24 (PPC bit 39) be clear in RB. Hardware
+	 * ignores all other bits from 0-27, so just clear them all.
+	 */
+	ea &= ~((1UL << 28) - 1);
+	asm volatile(__PPC_SLBFEE_DOT(%0, %1) : "=r"(tmp) : "r"(ea) : "cr0");
+
+	WARN_ON(present == (tmp == 0));
+#endif
+}
+
+static inline void slb_shadow_update(unsigned long ea, int ssize,
+				     unsigned long flags,
+				     enum slb_index index)
+{
+	struct slb_shadow *p = get_slb_shadow();
+
+	/*
+	 * Clear the ESID first so the entry is not valid while we are
+	 * updating it.  No write barriers are needed here, provided
+	 * we only update the current CPU's SLB shadow buffer.
+	 */
+	WRITE_ONCE(p->save_area[index].esid, 0);
+	WRITE_ONCE(p->save_area[index].vsid, cpu_to_be64(mk_vsid_data(ea, ssize, flags)));
+	WRITE_ONCE(p->save_area[index].esid, cpu_to_be64(mk_esid_data(ea, ssize, index)));
+}
+
+static inline void slb_shadow_clear(enum slb_index index)
+{
+	WRITE_ONCE(get_slb_shadow()->save_area[index].esid, cpu_to_be64(index));
+}
+
+static inline void create_shadowed_slbe(unsigned long ea, int ssize,
+					unsigned long flags,
+					enum slb_index index)
+{
+	/*
+	 * Updating the shadow buffer before writing the SLB ensures
+	 * we don't get a stale entry here if we get preempted by PHYP
+	 * between these two statements.
+	 */
+	slb_shadow_update(ea, ssize, flags, index);
+
+	assert_slb_presence(false, ea);
+	asm volatile("slbmte  %0,%1" :
+		     : "r" (mk_vsid_data(ea, ssize, flags)),
+		       "r" (mk_esid_data(ea, ssize, index))
+		     : "memory" );
+}
+
+/*
+ * Insert bolted entries into SLB (which may not be empty, so don't clear
+ * slb_cache_ptr).
+ */
+void __slb_restore_bolted_realmode(void)
+{
+	struct slb_shadow *p = get_slb_shadow();
+	enum slb_index index;
+
+	 /* No isync needed because realmode. */
+	for (index = 0; index < SLB_NUM_BOLTED; index++) {
+		asm volatile("slbmte  %0,%1" :
+		     : "r" (be64_to_cpu(p->save_area[index].vsid)),
+		       "r" (be64_to_cpu(p->save_area[index].esid)));
+	}
+
+	assert_slb_presence(true, local_paca->kstack);
+}
+
+/*
+ * Insert the bolted entries into an empty SLB.
+ */
+void slb_restore_bolted_realmode(void)
+{
+	__slb_restore_bolted_realmode();
+	get_paca()->slb_cache_ptr = 0;
+
+	get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1;
+	get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap;
+}
+
+/*
+ * This flushes all SLB entries including 0, so it must be realmode.
+ */
+void slb_flush_all_realmode(void)
+{
+	asm volatile("slbmte %0,%0; slbia" : : "r" (0));
+}
+
+/*
+ * This flushes non-bolted entries, it can be run in virtual mode. Must
+ * be called with interrupts disabled.
+ */
+void slb_flush_and_restore_bolted(void)
+{
+	struct slb_shadow *p = get_slb_shadow();
+
+	BUILD_BUG_ON(SLB_NUM_BOLTED != 2);
+
+	WARN_ON(!irqs_disabled());
+
+	/*
+	 * We can't take a PMU exception in the following code, so hard
+	 * disable interrupts.
+	 */
+	hard_irq_disable();
+
+	asm volatile("isync\n"
+		     "slbia\n"
+		     "slbmte  %0, %1\n"
+		     "isync\n"
+		     :: "r" (be64_to_cpu(p->save_area[KSTACK_INDEX].vsid)),
+			"r" (be64_to_cpu(p->save_area[KSTACK_INDEX].esid))
+		     : "memory");
+	assert_slb_presence(true, get_paca()->kstack);
+
+	get_paca()->slb_cache_ptr = 0;
+
+	get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1;
+	get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap;
+}
+
+void slb_save_contents(struct slb_entry *slb_ptr)
+{
+	int i;
+	unsigned long e, v;
+
+	/* Save slb_cache_ptr value. */
+	get_paca()->slb_save_cache_ptr = get_paca()->slb_cache_ptr;
+
+	if (!slb_ptr)
+		return;
+
+	for (i = 0; i < mmu_slb_size; i++) {
+		asm volatile("slbmfee  %0,%1" : "=r" (e) : "r" (i));
+		asm volatile("slbmfev  %0,%1" : "=r" (v) : "r" (i));
+		slb_ptr->esid = e;
+		slb_ptr->vsid = v;
+		slb_ptr++;
+	}
+}
+
+void slb_dump_contents(struct slb_entry *slb_ptr)
+{
+	int i, n;
+	unsigned long e, v;
+	unsigned long llp;
+
+	if (!slb_ptr)
+		return;
+
+	pr_err("SLB contents of cpu 0x%x\n", smp_processor_id());
+	pr_err("Last SLB entry inserted at slot %d\n", get_paca()->stab_rr);
+
+	for (i = 0; i < mmu_slb_size; i++) {
+		e = slb_ptr->esid;
+		v = slb_ptr->vsid;
+		slb_ptr++;
+
+		if (!e && !v)
+			continue;
+
+		pr_err("%02d %016lx %016lx\n", i, e, v);
+
+		if (!(e & SLB_ESID_V)) {
+			pr_err("\n");
+			continue;
+		}
+		llp = v & SLB_VSID_LLP;
+		if (v & SLB_VSID_B_1T) {
+			pr_err("  1T  ESID=%9lx  VSID=%13lx LLP:%3lx\n",
+			       GET_ESID_1T(e),
+			       (v & ~SLB_VSID_B) >> SLB_VSID_SHIFT_1T, llp);
+		} else {
+			pr_err(" 256M ESID=%9lx  VSID=%13lx LLP:%3lx\n",
+			       GET_ESID(e),
+			       (v & ~SLB_VSID_B) >> SLB_VSID_SHIFT, llp);
+		}
+	}
+	pr_err("----------------------------------\n");
+
+	/* Dump slb cache entires as well. */
+	pr_err("SLB cache ptr value = %d\n", get_paca()->slb_save_cache_ptr);
+	pr_err("Valid SLB cache entries:\n");
+	n = min_t(int, get_paca()->slb_save_cache_ptr, SLB_CACHE_ENTRIES);
+	for (i = 0; i < n; i++)
+		pr_err("%02d EA[0-35]=%9x\n", i, get_paca()->slb_cache[i]);
+	pr_err("Rest of SLB cache entries:\n");
+	for (i = n; i < SLB_CACHE_ENTRIES; i++)
+		pr_err("%02d EA[0-35]=%9x\n", i, get_paca()->slb_cache[i]);
+}
+
+void slb_vmalloc_update(void)
+{
+	/*
+	 * vmalloc is not bolted, so just have to flush non-bolted.
+	 */
+	slb_flush_and_restore_bolted();
+}
+
+static bool preload_hit(struct thread_info *ti, unsigned long esid)
+{
+	unsigned char i;
+
+	for (i = 0; i < ti->slb_preload_nr; i++) {
+		unsigned char idx;
+
+		idx = (ti->slb_preload_tail + i) % SLB_PRELOAD_NR;
+		if (esid == ti->slb_preload_esid[idx])
+			return true;
+	}
+	return false;
+}
+
+static bool preload_add(struct thread_info *ti, unsigned long ea)
+{
+	unsigned char idx;
+	unsigned long esid;
+
+	if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) {
+		/* EAs are stored >> 28 so 256MB segments don't need clearing */
+		if (ea & ESID_MASK_1T)
+			ea &= ESID_MASK_1T;
+	}
+
+	esid = ea >> SID_SHIFT;
+
+	if (preload_hit(ti, esid))
+		return false;
+
+	idx = (ti->slb_preload_tail + ti->slb_preload_nr) % SLB_PRELOAD_NR;
+	ti->slb_preload_esid[idx] = esid;
+	if (ti->slb_preload_nr == SLB_PRELOAD_NR)
+		ti->slb_preload_tail = (ti->slb_preload_tail + 1) % SLB_PRELOAD_NR;
+	else
+		ti->slb_preload_nr++;
+
+	return true;
+}
+
+static void preload_age(struct thread_info *ti)
+{
+	if (!ti->slb_preload_nr)
+		return;
+	ti->slb_preload_nr--;
+	ti->slb_preload_tail = (ti->slb_preload_tail + 1) % SLB_PRELOAD_NR;
+}
+
+void slb_setup_new_exec(void)
+{
+	struct thread_info *ti = current_thread_info();
+	struct mm_struct *mm = current->mm;
+	unsigned long exec = 0x10000000;
+
+	WARN_ON(irqs_disabled());
+
+	/*
+	 * preload cache can only be used to determine whether a SLB
+	 * entry exists if it does not start to overflow.
+	 */
+	if (ti->slb_preload_nr + 2 > SLB_PRELOAD_NR)
+		return;
+
+	hard_irq_disable();
+
+	/*
+	 * We have no good place to clear the slb preload cache on exec,
+	 * flush_thread is about the earliest arch hook but that happens
+	 * after we switch to the mm and have aleady preloaded the SLBEs.
+	 *
+	 * For the most part that's probably okay to use entries from the
+	 * previous exec, they will age out if unused. It may turn out to
+	 * be an advantage to clear the cache before switching to it,
+	 * however.
+	 */
+
+	/*
+	 * preload some userspace segments into the SLB.
+	 * Almost all 32 and 64bit PowerPC executables are linked at
+	 * 0x10000000 so it makes sense to preload this segment.
+	 */
+	if (!is_kernel_addr(exec)) {
+		if (preload_add(ti, exec))
+			slb_allocate_user(mm, exec);
+	}
+
+	/* Libraries and mmaps. */
+	if (!is_kernel_addr(mm->mmap_base)) {
+		if (preload_add(ti, mm->mmap_base))
+			slb_allocate_user(mm, mm->mmap_base);
+	}
+
+	/* see switch_slb */
+	asm volatile("isync" : : : "memory");
+
+	local_irq_enable();
+}
+
+void preload_new_slb_context(unsigned long start, unsigned long sp)
+{
+	struct thread_info *ti = current_thread_info();
+	struct mm_struct *mm = current->mm;
+	unsigned long heap = mm->start_brk;
+
+	WARN_ON(irqs_disabled());
+
+	/* see above */
+	if (ti->slb_preload_nr + 3 > SLB_PRELOAD_NR)
+		return;
+
+	hard_irq_disable();
+
+	/* Userspace entry address. */
+	if (!is_kernel_addr(start)) {
+		if (preload_add(ti, start))
+			slb_allocate_user(mm, start);
+	}
+
+	/* Top of stack, grows down. */
+	if (!is_kernel_addr(sp)) {
+		if (preload_add(ti, sp))
+			slb_allocate_user(mm, sp);
+	}
+
+	/* Bottom of heap, grows up. */
+	if (heap && !is_kernel_addr(heap)) {
+		if (preload_add(ti, heap))
+			slb_allocate_user(mm, heap);
+	}
+
+	/* see switch_slb */
+	asm volatile("isync" : : : "memory");
+
+	local_irq_enable();
+}
+
+
+/* Flush all user entries from the segment table of the current processor. */
+void switch_slb(struct task_struct *tsk, struct mm_struct *mm)
+{
+	struct thread_info *ti = task_thread_info(tsk);
+	unsigned char i;
+
+	/*
+	 * We need interrupts hard-disabled here, not just soft-disabled,
+	 * so that a PMU interrupt can't occur, which might try to access
+	 * user memory (to get a stack trace) and possible cause an SLB miss
+	 * which would update the slb_cache/slb_cache_ptr fields in the PACA.
+	 */
+	hard_irq_disable();
+	asm volatile("isync" : : : "memory");
+	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
+		/*
+		 * SLBIA IH=3 invalidates all Class=1 SLBEs and their
+		 * associated lookaside structures, which matches what
+		 * switch_slb wants. So ARCH_300 does not use the slb
+		 * cache.
+		 */
+		asm volatile(PPC_SLBIA(3));
+	} else {
+		unsigned long offset = get_paca()->slb_cache_ptr;
+
+		if (!mmu_has_feature(MMU_FTR_NO_SLBIE_B) &&
+		    offset <= SLB_CACHE_ENTRIES) {
+			unsigned long slbie_data = 0;
+
+			for (i = 0; i < offset; i++) {
+				unsigned long ea;
+
+				ea = (unsigned long)
+					get_paca()->slb_cache[i] << SID_SHIFT;
+				/*
+				 * Could assert_slb_presence(true) here, but
+				 * hypervisor or machine check could have come
+				 * in and removed the entry at this point.
+				 */
+
+				slbie_data = ea;
+				slbie_data |= user_segment_size(slbie_data)
+						<< SLBIE_SSIZE_SHIFT;
+				slbie_data |= SLBIE_C; /* user slbs have C=1 */
+				asm volatile("slbie %0" : : "r" (slbie_data));
+			}
+
+			/* Workaround POWER5 < DD2.1 issue */
+			if (!cpu_has_feature(CPU_FTR_ARCH_207S) && offset == 1)
+				asm volatile("slbie %0" : : "r" (slbie_data));
+
+		} else {
+			struct slb_shadow *p = get_slb_shadow();
+			unsigned long ksp_esid_data =
+				be64_to_cpu(p->save_area[KSTACK_INDEX].esid);
+			unsigned long ksp_vsid_data =
+				be64_to_cpu(p->save_area[KSTACK_INDEX].vsid);
+
+			asm volatile(PPC_SLBIA(1) "\n"
+				     "slbmte	%0,%1\n"
+				     "isync"
+				     :: "r"(ksp_vsid_data),
+					"r"(ksp_esid_data));
+
+			get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1;
+		}
+
+		get_paca()->slb_cache_ptr = 0;
+	}
+	get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap;
+
+	copy_mm_to_paca(mm);
+
+	/*
+	 * We gradually age out SLBs after a number of context switches to
+	 * reduce reload overhead of unused entries (like we do with FP/VEC
+	 * reload). Each time we wrap 256 switches, take an entry out of the
+	 * SLB preload cache.
+	 */
+	tsk->thread.load_slb++;
+	if (!tsk->thread.load_slb) {
+		unsigned long pc = KSTK_EIP(tsk);
+
+		preload_age(ti);
+		preload_add(ti, pc);
+	}
+
+	for (i = 0; i < ti->slb_preload_nr; i++) {
+		unsigned char idx;
+		unsigned long ea;
+
+		idx = (ti->slb_preload_tail + i) % SLB_PRELOAD_NR;
+		ea = (unsigned long)ti->slb_preload_esid[idx] << SID_SHIFT;
+
+		slb_allocate_user(mm, ea);
+	}
+
+	/*
+	 * Synchronize slbmte preloads with possible subsequent user memory
+	 * address accesses by the kernel (user mode won't happen until
+	 * rfid, which is safe).
+	 */
+	asm volatile("isync" : : : "memory");
+}
+
+void slb_set_size(u16 size)
+{
+	mmu_slb_size = size;
+}
+
+void slb_initialize(void)
+{
+	unsigned long linear_llp, vmalloc_llp, io_llp;
+	unsigned long lflags;
+	static int slb_encoding_inited;
+#ifdef CONFIG_SPARSEMEM_VMEMMAP
+	unsigned long vmemmap_llp;
+#endif
+
+	/* Prepare our SLB miss handler based on our page size */
+	linear_llp = mmu_psize_defs[mmu_linear_psize].sllp;
+	io_llp = mmu_psize_defs[mmu_io_psize].sllp;
+	vmalloc_llp = mmu_psize_defs[mmu_vmalloc_psize].sllp;
+	get_paca()->vmalloc_sllp = SLB_VSID_KERNEL | vmalloc_llp;
+#ifdef CONFIG_SPARSEMEM_VMEMMAP
+	vmemmap_llp = mmu_psize_defs[mmu_vmemmap_psize].sllp;
+#endif
+	if (!slb_encoding_inited) {
+		slb_encoding_inited = 1;
+		pr_devel("SLB: linear  LLP = %04lx\n", linear_llp);
+		pr_devel("SLB: io      LLP = %04lx\n", io_llp);
+#ifdef CONFIG_SPARSEMEM_VMEMMAP
+		pr_devel("SLB: vmemmap LLP = %04lx\n", vmemmap_llp);
+#endif
+	}
+
+	get_paca()->stab_rr = SLB_NUM_BOLTED - 1;
+	get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1;
+	get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap;
+
+	lflags = SLB_VSID_KERNEL | linear_llp;
+
+	/* Invalidate the entire SLB (even entry 0) & all the ERATS */
+	asm volatile("isync":::"memory");
+	asm volatile("slbmte  %0,%0"::"r" (0) : "memory");
+	asm volatile("isync; slbia; isync":::"memory");
+	create_shadowed_slbe(PAGE_OFFSET, mmu_kernel_ssize, lflags, LINEAR_INDEX);
+
+	/*
+	 * For the boot cpu, we're running on the stack in init_thread_union,
+	 * which is in the first segment of the linear mapping, and also
+	 * get_paca()->kstack hasn't been initialized yet.
+	 * For secondary cpus, we need to bolt the kernel stack entry now.
+	 */
+	slb_shadow_clear(KSTACK_INDEX);
+	if (raw_smp_processor_id() != boot_cpuid &&
+	    (get_paca()->kstack & slb_esid_mask(mmu_kernel_ssize)) > PAGE_OFFSET)
+		create_shadowed_slbe(get_paca()->kstack,
+				     mmu_kernel_ssize, lflags, KSTACK_INDEX);
+
+	asm volatile("isync":::"memory");
+}
+
+static void slb_cache_update(unsigned long esid_data)
+{
+	int slb_cache_index;
+
+	if (cpu_has_feature(CPU_FTR_ARCH_300))
+		return; /* ISAv3.0B and later does not use slb_cache */
+
+	/*
+	 * Now update slb cache entries
+	 */
+	slb_cache_index = local_paca->slb_cache_ptr;
+	if (slb_cache_index < SLB_CACHE_ENTRIES) {
+		/*
+		 * We have space in slb cache for optimized switch_slb().
+		 * Top 36 bits from esid_data as per ISA
+		 */
+		local_paca->slb_cache[slb_cache_index++] = esid_data >> 28;
+		local_paca->slb_cache_ptr++;
+	} else {
+		/*
+		 * Our cache is full and the current cache content strictly
+		 * doesn't indicate the active SLB conents. Bump the ptr
+		 * so that switch_slb() will ignore the cache.
+		 */
+		local_paca->slb_cache_ptr = SLB_CACHE_ENTRIES + 1;
+	}
+}
+
+static enum slb_index alloc_slb_index(bool kernel)
+{
+	enum slb_index index;
+
+	/*
+	 * The allocation bitmaps can become out of synch with the SLB
+	 * when the _switch code does slbie when bolting a new stack
+	 * segment and it must not be anywhere else in the SLB. This leaves
+	 * a kernel allocated entry that is unused in the SLB. With very
+	 * large systems or small segment sizes, the bitmaps could slowly
+	 * fill with these entries. They will eventually be cleared out
+	 * by the round robin allocator in that case, so it's probably not
+	 * worth accounting for.
+	 */
+
+	/*
+	 * SLBs beyond 32 entries are allocated with stab_rr only
+	 * POWER7/8/9 have 32 SLB entries, this could be expanded if a
+	 * future CPU has more.
+	 */
+	if (local_paca->slb_used_bitmap != U32_MAX) {
+		index = ffz(local_paca->slb_used_bitmap);
+		local_paca->slb_used_bitmap |= 1U << index;
+		if (kernel)
+			local_paca->slb_kern_bitmap |= 1U << index;
+	} else {
+		/* round-robin replacement of slb starting at SLB_NUM_BOLTED. */
+		index = local_paca->stab_rr;
+		if (index < (mmu_slb_size - 1))
+			index++;
+		else
+			index = SLB_NUM_BOLTED;
+		local_paca->stab_rr = index;
+		if (index < 32) {
+			if (kernel)
+				local_paca->slb_kern_bitmap |= 1U << index;
+			else
+				local_paca->slb_kern_bitmap &= ~(1U << index);
+		}
+	}
+	BUG_ON(index < SLB_NUM_BOLTED);
+
+	return index;
+}
+
+static long slb_insert_entry(unsigned long ea, unsigned long context,
+				unsigned long flags, int ssize, bool kernel)
+{
+	unsigned long vsid;
+	unsigned long vsid_data, esid_data;
+	enum slb_index index;
+
+	vsid = get_vsid(context, ea, ssize);
+	if (!vsid)
+		return -EFAULT;
+
+	/*
+	 * There must not be a kernel SLB fault in alloc_slb_index or before
+	 * slbmte here or the allocation bitmaps could get out of whack with
+	 * the SLB.
+	 *
+	 * User SLB faults or preloads take this path which might get inlined
+	 * into the caller, so add compiler barriers here to ensure unsafe
+	 * memory accesses do not come between.
+	 */
+	barrier();
+
+	index = alloc_slb_index(kernel);
+
+	vsid_data = __mk_vsid_data(vsid, ssize, flags);
+	esid_data = mk_esid_data(ea, ssize, index);
+
+	/*
+	 * No need for an isync before or after this slbmte. The exception
+	 * we enter with and the rfid we exit with are context synchronizing.
+	 * User preloads should add isync afterwards in case the kernel
+	 * accesses user memory before it returns to userspace with rfid.
+	 */
+	assert_slb_presence(false, ea);
+	asm volatile("slbmte %0, %1" : : "r" (vsid_data), "r" (esid_data));
+
+	barrier();
+
+	if (!kernel)
+		slb_cache_update(esid_data);
+
+	return 0;
+}
+
+static long slb_allocate_kernel(unsigned long ea, unsigned long id)
+{
+	unsigned long context;
+	unsigned long flags;
+	int ssize;
+
+	if (id == LINEAR_MAP_REGION_ID) {
+
+		/* We only support upto MAX_PHYSMEM_BITS */
+		if ((ea & EA_MASK) > (1UL << MAX_PHYSMEM_BITS))
+			return -EFAULT;
+
+		flags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_linear_psize].sllp;
+
+#ifdef CONFIG_SPARSEMEM_VMEMMAP
+	} else if (id == VMEMMAP_REGION_ID) {
+
+		if (ea >= H_VMEMMAP_END)
+			return -EFAULT;
+
+		flags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_vmemmap_psize].sllp;
+#endif
+	} else if (id == VMALLOC_REGION_ID) {
+
+		if (ea >= H_VMALLOC_END)
+			return -EFAULT;
+
+		flags = local_paca->vmalloc_sllp;
+
+	} else if (id == IO_REGION_ID) {
+
+		if (ea >= H_KERN_IO_END)
+			return -EFAULT;
+
+		flags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_io_psize].sllp;
+
+	} else {
+		return -EFAULT;
+	}
+
+	ssize = MMU_SEGSIZE_1T;
+	if (!mmu_has_feature(MMU_FTR_1T_SEGMENT))
+		ssize = MMU_SEGSIZE_256M;
+
+	context = get_kernel_context(ea);
+
+	return slb_insert_entry(ea, context, flags, ssize, true);
+}
+
+static long slb_allocate_user(struct mm_struct *mm, unsigned long ea)
+{
+	unsigned long context;
+	unsigned long flags;
+	int bpsize;
+	int ssize;
+
+	/*
+	 * consider this as bad access if we take a SLB miss
+	 * on an address above addr limit.
+	 */
+	if (ea >= mm_ctx_slb_addr_limit(&mm->context))
+		return -EFAULT;
+
+	context = get_user_context(&mm->context, ea);
+	if (!context)
+		return -EFAULT;
+
+	if (unlikely(ea >= H_PGTABLE_RANGE)) {
+		WARN_ON(1);
+		return -EFAULT;
+	}
+
+	ssize = user_segment_size(ea);
+
+	bpsize = get_slice_psize(mm, ea);
+	flags = SLB_VSID_USER | mmu_psize_defs[bpsize].sllp;
+
+	return slb_insert_entry(ea, context, flags, ssize, false);
+}
+
+long do_slb_fault(struct pt_regs *regs, unsigned long ea)
+{
+	unsigned long id = get_region_id(ea);
+
+	/* IRQs are not reconciled here, so can't check irqs_disabled */
+	VM_WARN_ON(mfmsr() & MSR_EE);
+
+	if (unlikely(!(regs->msr & MSR_RI)))
+		return -EINVAL;
+
+	/*
+	 * SLB kernel faults must be very careful not to touch anything
+	 * that is not bolted. E.g., PACA and global variables are okay,
+	 * mm->context stuff is not.
+	 *
+	 * SLB user faults can access all of kernel memory, but must be
+	 * careful not to touch things like IRQ state because it is not
+	 * "reconciled" here. The difficulty is that we must use
+	 * fast_exception_return to return from kernel SLB faults without
+	 * looking at possible non-bolted memory. We could test user vs
+	 * kernel faults in the interrupt handler asm and do a full fault,
+	 * reconcile, ret_from_except for user faults which would make them
+	 * first class kernel code. But for performance it's probably nicer
+	 * if they go via fast_exception_return too.
+	 */
+	if (id >= LINEAR_MAP_REGION_ID) {
+		long err;
+#ifdef CONFIG_DEBUG_VM
+		/* Catch recursive kernel SLB faults. */
+		BUG_ON(local_paca->in_kernel_slb_handler);
+		local_paca->in_kernel_slb_handler = 1;
+#endif
+		err = slb_allocate_kernel(ea, id);
+#ifdef CONFIG_DEBUG_VM
+		local_paca->in_kernel_slb_handler = 0;
+#endif
+		return err;
+	} else {
+		struct mm_struct *mm = current->mm;
+		long err;
+
+		if (unlikely(!mm))
+			return -EFAULT;
+
+		err = slb_allocate_user(mm, ea);
+		if (!err)
+			preload_add(current_thread_info(), ea);
+
+		return err;
+	}
+}
+
+void do_bad_slb_fault(struct pt_regs *regs, unsigned long ea, long err)
+{
+	if (err == -EFAULT) {
+		if (user_mode(regs))
+			_exception(SIGSEGV, regs, SEGV_BNDERR, ea);
+		else
+			bad_page_fault(regs, ea, SIGSEGV);
+	} else if (err == -EINVAL) {
+		unrecoverable_exception(regs);
+	} else {
+		BUG();
+	}
+}
diff --git a/arch/powerpc/mm/book3s64/subpage_prot.c b/arch/powerpc/mm/book3s64/subpage_prot.c
new file mode 100644
index 0000000..2ef24a5
--- /dev/null
+++ b/arch/powerpc/mm/book3s64/subpage_prot.c
@@ -0,0 +1,285 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * Copyright 2007-2008 Paul Mackerras, IBM Corp.
+ */
+
+#include <linux/errno.h>
+#include <linux/kernel.h>
+#include <linux/gfp.h>
+#include <linux/types.h>
+#include <linux/pagewalk.h>
+#include <linux/hugetlb.h>
+#include <linux/syscalls.h>
+
+#include <asm/pgtable.h>
+#include <linux/uaccess.h>
+
+/*
+ * Free all pages allocated for subpage protection maps and pointers.
+ * Also makes sure that the subpage_prot_table structure is
+ * reinitialized for the next user.
+ */
+void subpage_prot_free(struct mm_struct *mm)
+{
+	struct subpage_prot_table *spt = mm_ctx_subpage_prot(&mm->context);
+	unsigned long i, j, addr;
+	u32 **p;
+
+	if (!spt)
+		return;
+
+	for (i = 0; i < 4; ++i) {
+		if (spt->low_prot[i]) {
+			free_page((unsigned long)spt->low_prot[i]);
+			spt->low_prot[i] = NULL;
+		}
+	}
+	addr = 0;
+	for (i = 0; i < (TASK_SIZE_USER64 >> 43); ++i) {
+		p = spt->protptrs[i];
+		if (!p)
+			continue;
+		spt->protptrs[i] = NULL;
+		for (j = 0; j < SBP_L2_COUNT && addr < spt->maxaddr;
+		     ++j, addr += PAGE_SIZE)
+			if (p[j])
+				free_page((unsigned long)p[j]);
+		free_page((unsigned long)p);
+	}
+	spt->maxaddr = 0;
+	kfree(spt);
+}
+
+static void hpte_flush_range(struct mm_struct *mm, unsigned long addr,
+			     int npages)
+{
+	pgd_t *pgd;
+	pud_t *pud;
+	pmd_t *pmd;
+	pte_t *pte;
+	spinlock_t *ptl;
+
+	pgd = pgd_offset(mm, addr);
+	if (pgd_none(*pgd))
+		return;
+	pud = pud_offset(pgd, addr);
+	if (pud_none(*pud))
+		return;
+	pmd = pmd_offset(pud, addr);
+	if (pmd_none(*pmd))
+		return;
+	pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
+	arch_enter_lazy_mmu_mode();
+	for (; npages > 0; --npages) {
+		pte_update(mm, addr, pte, 0, 0, 0);
+		addr += PAGE_SIZE;
+		++pte;
+	}
+	arch_leave_lazy_mmu_mode();
+	pte_unmap_unlock(pte - 1, ptl);
+}
+
+/*
+ * Clear the subpage protection map for an address range, allowing
+ * all accesses that are allowed by the pte permissions.
+ */
+static void subpage_prot_clear(unsigned long addr, unsigned long len)
+{
+	struct mm_struct *mm = current->mm;
+	struct subpage_prot_table *spt;
+	u32 **spm, *spp;
+	unsigned long i;
+	size_t nw;
+	unsigned long next, limit;
+
+	down_write(&mm->mmap_sem);
+
+	spt = mm_ctx_subpage_prot(&mm->context);
+	if (!spt)
+		goto err_out;
+
+	limit = addr + len;
+	if (limit > spt->maxaddr)
+		limit = spt->maxaddr;
+	for (; addr < limit; addr = next) {
+		next = pmd_addr_end(addr, limit);
+		if (addr < 0x100000000UL) {
+			spm = spt->low_prot;
+		} else {
+			spm = spt->protptrs[addr >> SBP_L3_SHIFT];
+			if (!spm)
+				continue;
+		}
+		spp = spm[(addr >> SBP_L2_SHIFT) & (SBP_L2_COUNT - 1)];
+		if (!spp)
+			continue;
+		spp += (addr >> PAGE_SHIFT) & (SBP_L1_COUNT - 1);
+
+		i = (addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
+		nw = PTRS_PER_PTE - i;
+		if (addr + (nw << PAGE_SHIFT) > next)
+			nw = (next - addr) >> PAGE_SHIFT;
+
+		memset(spp, 0, nw * sizeof(u32));
+
+		/* now flush any existing HPTEs for the range */
+		hpte_flush_range(mm, addr, nw);
+	}
+
+err_out:
+	up_write(&mm->mmap_sem);
+}
+
+#ifdef CONFIG_TRANSPARENT_HUGEPAGE
+static int subpage_walk_pmd_entry(pmd_t *pmd, unsigned long addr,
+				  unsigned long end, struct mm_walk *walk)
+{
+	struct vm_area_struct *vma = walk->vma;
+	split_huge_pmd(vma, pmd, addr);
+	return 0;
+}
+
+static const struct mm_walk_ops subpage_walk_ops = {
+	.pmd_entry	= subpage_walk_pmd_entry,
+};
+
+static void subpage_mark_vma_nohuge(struct mm_struct *mm, unsigned long addr,
+				    unsigned long len)
+{
+	struct vm_area_struct *vma;
+
+	/*
+	 * We don't try too hard, we just mark all the vma in that range
+	 * VM_NOHUGEPAGE and split them.
+	 */
+	vma = find_vma(mm, addr);
+	/*
+	 * If the range is in unmapped range, just return
+	 */
+	if (vma && ((addr + len) <= vma->vm_start))
+		return;
+
+	while (vma) {
+		if (vma->vm_start >= (addr + len))
+			break;
+		vma->vm_flags |= VM_NOHUGEPAGE;
+		walk_page_vma(vma, &subpage_walk_ops, NULL);
+		vma = vma->vm_next;
+	}
+}
+#else
+static void subpage_mark_vma_nohuge(struct mm_struct *mm, unsigned long addr,
+				    unsigned long len)
+{
+	return;
+}
+#endif
+
+/*
+ * Copy in a subpage protection map for an address range.
+ * The map has 2 bits per 4k subpage, so 32 bits per 64k page.
+ * Each 2-bit field is 0 to allow any access, 1 to prevent writes,
+ * 2 or 3 to prevent all accesses.
+ * Note that the normal page protections also apply; the subpage
+ * protection mechanism is an additional constraint, so putting 0
+ * in a 2-bit field won't allow writes to a page that is otherwise
+ * write-protected.
+ */
+SYSCALL_DEFINE3(subpage_prot, unsigned long, addr,
+		unsigned long, len, u32 __user *, map)
+{
+	struct mm_struct *mm = current->mm;
+	struct subpage_prot_table *spt;
+	u32 **spm, *spp;
+	unsigned long i;
+	size_t nw;
+	unsigned long next, limit;
+	int err;
+
+	if (radix_enabled())
+		return -ENOENT;
+
+	/* Check parameters */
+	if ((addr & ~PAGE_MASK) || (len & ~PAGE_MASK) ||
+	    addr >= mm->task_size || len >= mm->task_size ||
+	    addr + len > mm->task_size)
+		return -EINVAL;
+
+	if (is_hugepage_only_range(mm, addr, len))
+		return -EINVAL;
+
+	if (!map) {
+		/* Clear out the protection map for the address range */
+		subpage_prot_clear(addr, len);
+		return 0;
+	}
+
+	if (!access_ok(map, (len >> PAGE_SHIFT) * sizeof(u32)))
+		return -EFAULT;
+
+	down_write(&mm->mmap_sem);
+
+	spt = mm_ctx_subpage_prot(&mm->context);
+	if (!spt) {
+		/*
+		 * Allocate subpage prot table if not already done.
+		 * Do this with mmap_sem held
+		 */
+		spt = kzalloc(sizeof(struct subpage_prot_table), GFP_KERNEL);
+		if (!spt) {
+			err = -ENOMEM;
+			goto out;
+		}
+		mm->context.hash_context->spt = spt;
+	}
+
+	subpage_mark_vma_nohuge(mm, addr, len);
+	for (limit = addr + len; addr < limit; addr = next) {
+		next = pmd_addr_end(addr, limit);
+		err = -ENOMEM;
+		if (addr < 0x100000000UL) {
+			spm = spt->low_prot;
+		} else {
+			spm = spt->protptrs[addr >> SBP_L3_SHIFT];
+			if (!spm) {
+				spm = (u32 **)get_zeroed_page(GFP_KERNEL);
+				if (!spm)
+					goto out;
+				spt->protptrs[addr >> SBP_L3_SHIFT] = spm;
+			}
+		}
+		spm += (addr >> SBP_L2_SHIFT) & (SBP_L2_COUNT - 1);
+		spp = *spm;
+		if (!spp) {
+			spp = (u32 *)get_zeroed_page(GFP_KERNEL);
+			if (!spp)
+				goto out;
+			*spm = spp;
+		}
+		spp += (addr >> PAGE_SHIFT) & (SBP_L1_COUNT - 1);
+
+		local_irq_disable();
+		demote_segment_4k(mm, addr);
+		local_irq_enable();
+
+		i = (addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
+		nw = PTRS_PER_PTE - i;
+		if (addr + (nw << PAGE_SHIFT) > next)
+			nw = (next - addr) >> PAGE_SHIFT;
+
+		up_write(&mm->mmap_sem);
+		if (__copy_from_user(spp, map, nw * sizeof(u32)))
+			return -EFAULT;
+		map += nw;
+		down_write(&mm->mmap_sem);
+
+		/* now flush any existing HPTEs for the range */
+		hpte_flush_range(mm, addr, nw);
+	}
+	if (limit > spt->maxaddr)
+		spt->maxaddr = limit;
+	err = 0;
+ out:
+	up_write(&mm->mmap_sem);
+	return err;
+}