Update Linux to v5.4.2

Change-Id: Idf6911045d9d382da2cfe01b1edff026404ac8fd
diff --git a/Documentation/admin-guide/hw-vuln/index.rst b/Documentation/admin-guide/hw-vuln/index.rst
new file mode 100644
index 0000000..0795e3c
--- /dev/null
+++ b/Documentation/admin-guide/hw-vuln/index.rst
@@ -0,0 +1,16 @@
+========================
+Hardware vulnerabilities
+========================
+
+This section describes CPU vulnerabilities and provides an overview of the
+possible mitigations along with guidance for selecting mitigations if they
+are configurable at compile, boot or run time.
+
+.. toctree::
+   :maxdepth: 1
+
+   spectre
+   l1tf
+   mds
+   tsx_async_abort
+   multihit.rst
diff --git a/Documentation/admin-guide/hw-vuln/l1tf.rst b/Documentation/admin-guide/hw-vuln/l1tf.rst
new file mode 100644
index 0000000..f83212f
--- /dev/null
+++ b/Documentation/admin-guide/hw-vuln/l1tf.rst
@@ -0,0 +1,615 @@
+L1TF - L1 Terminal Fault
+========================
+
+L1 Terminal Fault is a hardware vulnerability which allows unprivileged
+speculative access to data which is available in the Level 1 Data Cache
+when the page table entry controlling the virtual address, which is used
+for the access, has the Present bit cleared or other reserved bits set.
+
+Affected processors
+-------------------
+
+This vulnerability affects a wide range of Intel processors. The
+vulnerability is not present on:
+
+   - Processors from AMD, Centaur and other non Intel vendors
+
+   - Older processor models, where the CPU family is < 6
+
+   - A range of Intel ATOM processors (Cedarview, Cloverview, Lincroft,
+     Penwell, Pineview, Silvermont, Airmont, Merrifield)
+
+   - The Intel XEON PHI family
+
+   - Intel processors which have the ARCH_CAP_RDCL_NO bit set in the
+     IA32_ARCH_CAPABILITIES MSR. If the bit is set the CPU is not affected
+     by the Meltdown vulnerability either. These CPUs should become
+     available by end of 2018.
+
+Whether a processor is affected or not can be read out from the L1TF
+vulnerability file in sysfs. See :ref:`l1tf_sys_info`.
+
+Related CVEs
+------------
+
+The following CVE entries are related to the L1TF vulnerability:
+
+   =============  =================  ==============================
+   CVE-2018-3615  L1 Terminal Fault  SGX related aspects
+   CVE-2018-3620  L1 Terminal Fault  OS, SMM related aspects
+   CVE-2018-3646  L1 Terminal Fault  Virtualization related aspects
+   =============  =================  ==============================
+
+Problem
+-------
+
+If an instruction accesses a virtual address for which the relevant page
+table entry (PTE) has the Present bit cleared or other reserved bits set,
+then speculative execution ignores the invalid PTE and loads the referenced
+data if it is present in the Level 1 Data Cache, as if the page referenced
+by the address bits in the PTE was still present and accessible.
+
+While this is a purely speculative mechanism and the instruction will raise
+a page fault when it is retired eventually, the pure act of loading the
+data and making it available to other speculative instructions opens up the
+opportunity for side channel attacks to unprivileged malicious code,
+similar to the Meltdown attack.
+
+While Meltdown breaks the user space to kernel space protection, L1TF
+allows to attack any physical memory address in the system and the attack
+works across all protection domains. It allows an attack of SGX and also
+works from inside virtual machines because the speculation bypasses the
+extended page table (EPT) protection mechanism.
+
+
+Attack scenarios
+----------------
+
+1. Malicious user space
+^^^^^^^^^^^^^^^^^^^^^^^
+
+   Operating Systems store arbitrary information in the address bits of a
+   PTE which is marked non present. This allows a malicious user space
+   application to attack the physical memory to which these PTEs resolve.
+   In some cases user-space can maliciously influence the information
+   encoded in the address bits of the PTE, thus making attacks more
+   deterministic and more practical.
+
+   The Linux kernel contains a mitigation for this attack vector, PTE
+   inversion, which is permanently enabled and has no performance
+   impact. The kernel ensures that the address bits of PTEs, which are not
+   marked present, never point to cacheable physical memory space.
+
+   A system with an up to date kernel is protected against attacks from
+   malicious user space applications.
+
+2. Malicious guest in a virtual machine
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+   The fact that L1TF breaks all domain protections allows malicious guest
+   OSes, which can control the PTEs directly, and malicious guest user
+   space applications, which run on an unprotected guest kernel lacking the
+   PTE inversion mitigation for L1TF, to attack physical host memory.
+
+   A special aspect of L1TF in the context of virtualization is symmetric
+   multi threading (SMT). The Intel implementation of SMT is called
+   HyperThreading. The fact that Hyperthreads on the affected processors
+   share the L1 Data Cache (L1D) is important for this. As the flaw allows
+   only to attack data which is present in L1D, a malicious guest running
+   on one Hyperthread can attack the data which is brought into the L1D by
+   the context which runs on the sibling Hyperthread of the same physical
+   core. This context can be host OS, host user space or a different guest.
+
+   If the processor does not support Extended Page Tables, the attack is
+   only possible, when the hypervisor does not sanitize the content of the
+   effective (shadow) page tables.
+
+   While solutions exist to mitigate these attack vectors fully, these
+   mitigations are not enabled by default in the Linux kernel because they
+   can affect performance significantly. The kernel provides several
+   mechanisms which can be utilized to address the problem depending on the
+   deployment scenario. The mitigations, their protection scope and impact
+   are described in the next sections.
+
+   The default mitigations and the rationale for choosing them are explained
+   at the end of this document. See :ref:`default_mitigations`.
+
+.. _l1tf_sys_info:
+
+L1TF system information
+-----------------------
+
+The Linux kernel provides a sysfs interface to enumerate the current L1TF
+status of the system: whether the system is vulnerable, and which
+mitigations are active. The relevant sysfs file is:
+
+/sys/devices/system/cpu/vulnerabilities/l1tf
+
+The possible values in this file are:
+
+  ===========================   ===============================
+  'Not affected'		The processor is not vulnerable
+  'Mitigation: PTE Inversion'	The host protection is active
+  ===========================   ===============================
+
+If KVM/VMX is enabled and the processor is vulnerable then the following
+information is appended to the 'Mitigation: PTE Inversion' part:
+
+  - SMT status:
+
+    =====================  ================
+    'VMX: SMT vulnerable'  SMT is enabled
+    'VMX: SMT disabled'    SMT is disabled
+    =====================  ================
+
+  - L1D Flush mode:
+
+    ================================  ====================================
+    'L1D vulnerable'		      L1D flushing is disabled
+
+    'L1D conditional cache flushes'   L1D flush is conditionally enabled
+
+    'L1D cache flushes'		      L1D flush is unconditionally enabled
+    ================================  ====================================
+
+The resulting grade of protection is discussed in the following sections.
+
+
+Host mitigation mechanism
+-------------------------
+
+The kernel is unconditionally protected against L1TF attacks from malicious
+user space running on the host.
+
+
+Guest mitigation mechanisms
+---------------------------
+
+.. _l1d_flush:
+
+1. L1D flush on VMENTER
+^^^^^^^^^^^^^^^^^^^^^^^
+
+   To make sure that a guest cannot attack data which is present in the L1D
+   the hypervisor flushes the L1D before entering the guest.
+
+   Flushing the L1D evicts not only the data which should not be accessed
+   by a potentially malicious guest, it also flushes the guest
+   data. Flushing the L1D has a performance impact as the processor has to
+   bring the flushed guest data back into the L1D. Depending on the
+   frequency of VMEXIT/VMENTER and the type of computations in the guest
+   performance degradation in the range of 1% to 50% has been observed. For
+   scenarios where guest VMEXIT/VMENTER are rare the performance impact is
+   minimal. Virtio and mechanisms like posted interrupts are designed to
+   confine the VMEXITs to a bare minimum, but specific configurations and
+   application scenarios might still suffer from a high VMEXIT rate.
+
+   The kernel provides two L1D flush modes:
+    - conditional ('cond')
+    - unconditional ('always')
+
+   The conditional mode avoids L1D flushing after VMEXITs which execute
+   only audited code paths before the corresponding VMENTER. These code
+   paths have been verified that they cannot expose secrets or other
+   interesting data to an attacker, but they can leak information about the
+   address space layout of the hypervisor.
+
+   Unconditional mode flushes L1D on all VMENTER invocations and provides
+   maximum protection. It has a higher overhead than the conditional
+   mode. The overhead cannot be quantified correctly as it depends on the
+   workload scenario and the resulting number of VMEXITs.
+
+   The general recommendation is to enable L1D flush on VMENTER. The kernel
+   defaults to conditional mode on affected processors.
+
+   **Note**, that L1D flush does not prevent the SMT problem because the
+   sibling thread will also bring back its data into the L1D which makes it
+   attackable again.
+
+   L1D flush can be controlled by the administrator via the kernel command
+   line and sysfs control files. See :ref:`mitigation_control_command_line`
+   and :ref:`mitigation_control_kvm`.
+
+.. _guest_confinement:
+
+2. Guest VCPU confinement to dedicated physical cores
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+   To address the SMT problem, it is possible to make a guest or a group of
+   guests affine to one or more physical cores. The proper mechanism for
+   that is to utilize exclusive cpusets to ensure that no other guest or
+   host tasks can run on these cores.
+
+   If only a single guest or related guests run on sibling SMT threads on
+   the same physical core then they can only attack their own memory and
+   restricted parts of the host memory.
+
+   Host memory is attackable, when one of the sibling SMT threads runs in
+   host OS (hypervisor) context and the other in guest context. The amount
+   of valuable information from the host OS context depends on the context
+   which the host OS executes, i.e. interrupts, soft interrupts and kernel
+   threads. The amount of valuable data from these contexts cannot be
+   declared as non-interesting for an attacker without deep inspection of
+   the code.
+
+   **Note**, that assigning guests to a fixed set of physical cores affects
+   the ability of the scheduler to do load balancing and might have
+   negative effects on CPU utilization depending on the hosting
+   scenario. Disabling SMT might be a viable alternative for particular
+   scenarios.
+
+   For further information about confining guests to a single or to a group
+   of cores consult the cpusets documentation:
+
+   https://www.kernel.org/doc/Documentation/admin-guide/cgroup-v1/cpusets.rst
+
+.. _interrupt_isolation:
+
+3. Interrupt affinity
+^^^^^^^^^^^^^^^^^^^^^
+
+   Interrupts can be made affine to logical CPUs. This is not universally
+   true because there are types of interrupts which are truly per CPU
+   interrupts, e.g. the local timer interrupt. Aside of that multi queue
+   devices affine their interrupts to single CPUs or groups of CPUs per
+   queue without allowing the administrator to control the affinities.
+
+   Moving the interrupts, which can be affinity controlled, away from CPUs
+   which run untrusted guests, reduces the attack vector space.
+
+   Whether the interrupts with are affine to CPUs, which run untrusted
+   guests, provide interesting data for an attacker depends on the system
+   configuration and the scenarios which run on the system. While for some
+   of the interrupts it can be assumed that they won't expose interesting
+   information beyond exposing hints about the host OS memory layout, there
+   is no way to make general assumptions.
+
+   Interrupt affinity can be controlled by the administrator via the
+   /proc/irq/$NR/smp_affinity[_list] files. Limited documentation is
+   available at:
+
+   https://www.kernel.org/doc/Documentation/IRQ-affinity.txt
+
+.. _smt_control:
+
+4. SMT control
+^^^^^^^^^^^^^^
+
+   To prevent the SMT issues of L1TF it might be necessary to disable SMT
+   completely. Disabling SMT can have a significant performance impact, but
+   the impact depends on the hosting scenario and the type of workloads.
+   The impact of disabling SMT needs also to be weighted against the impact
+   of other mitigation solutions like confining guests to dedicated cores.
+
+   The kernel provides a sysfs interface to retrieve the status of SMT and
+   to control it. It also provides a kernel command line interface to
+   control SMT.
+
+   The kernel command line interface consists of the following options:
+
+     =========== ==========================================================
+     nosmt	 Affects the bring up of the secondary CPUs during boot. The
+		 kernel tries to bring all present CPUs online during the
+		 boot process. "nosmt" makes sure that from each physical
+		 core only one - the so called primary (hyper) thread is
+		 activated. Due to a design flaw of Intel processors related
+		 to Machine Check Exceptions the non primary siblings have
+		 to be brought up at least partially and are then shut down
+		 again.  "nosmt" can be undone via the sysfs interface.
+
+     nosmt=force Has the same effect as "nosmt" but it does not allow to
+		 undo the SMT disable via the sysfs interface.
+     =========== ==========================================================
+
+   The sysfs interface provides two files:
+
+   - /sys/devices/system/cpu/smt/control
+   - /sys/devices/system/cpu/smt/active
+
+   /sys/devices/system/cpu/smt/control:
+
+     This file allows to read out the SMT control state and provides the
+     ability to disable or (re)enable SMT. The possible states are:
+
+	==============  ===================================================
+	on		SMT is supported by the CPU and enabled. All
+			logical CPUs can be onlined and offlined without
+			restrictions.
+
+	off		SMT is supported by the CPU and disabled. Only
+			the so called primary SMT threads can be onlined
+			and offlined without restrictions. An attempt to
+			online a non-primary sibling is rejected
+
+	forceoff	Same as 'off' but the state cannot be controlled.
+			Attempts to write to the control file are rejected.
+
+	notsupported	The processor does not support SMT. It's therefore
+			not affected by the SMT implications of L1TF.
+			Attempts to write to the control file are rejected.
+	==============  ===================================================
+
+     The possible states which can be written into this file to control SMT
+     state are:
+
+     - on
+     - off
+     - forceoff
+
+   /sys/devices/system/cpu/smt/active:
+
+     This file reports whether SMT is enabled and active, i.e. if on any
+     physical core two or more sibling threads are online.
+
+   SMT control is also possible at boot time via the l1tf kernel command
+   line parameter in combination with L1D flush control. See
+   :ref:`mitigation_control_command_line`.
+
+5. Disabling EPT
+^^^^^^^^^^^^^^^^
+
+  Disabling EPT for virtual machines provides full mitigation for L1TF even
+  with SMT enabled, because the effective page tables for guests are
+  managed and sanitized by the hypervisor. Though disabling EPT has a
+  significant performance impact especially when the Meltdown mitigation
+  KPTI is enabled.
+
+  EPT can be disabled in the hypervisor via the 'kvm-intel.ept' parameter.
+
+There is ongoing research and development for new mitigation mechanisms to
+address the performance impact of disabling SMT or EPT.
+
+.. _mitigation_control_command_line:
+
+Mitigation control on the kernel command line
+---------------------------------------------
+
+The kernel command line allows to control the L1TF mitigations at boot
+time with the option "l1tf=". The valid arguments for this option are:
+
+  ============  =============================================================
+  full		Provides all available mitigations for the L1TF
+		vulnerability. Disables SMT and enables all mitigations in
+		the hypervisors, i.e. unconditional L1D flushing
+
+		SMT control and L1D flush control via the sysfs interface
+		is still possible after boot.  Hypervisors will issue a
+		warning when the first VM is started in a potentially
+		insecure configuration, i.e. SMT enabled or L1D flush
+		disabled.
+
+  full,force	Same as 'full', but disables SMT and L1D flush runtime
+		control. Implies the 'nosmt=force' command line option.
+		(i.e. sysfs control of SMT is disabled.)
+
+  flush		Leaves SMT enabled and enables the default hypervisor
+		mitigation, i.e. conditional L1D flushing
+
+		SMT control and L1D flush control via the sysfs interface
+		is still possible after boot.  Hypervisors will issue a
+		warning when the first VM is started in a potentially
+		insecure configuration, i.e. SMT enabled or L1D flush
+		disabled.
+
+  flush,nosmt	Disables SMT and enables the default hypervisor mitigation,
+		i.e. conditional L1D flushing.
+
+		SMT control and L1D flush control via the sysfs interface
+		is still possible after boot.  Hypervisors will issue a
+		warning when the first VM is started in a potentially
+		insecure configuration, i.e. SMT enabled or L1D flush
+		disabled.
+
+  flush,nowarn	Same as 'flush', but hypervisors will not warn when a VM is
+		started in a potentially insecure configuration.
+
+  off		Disables hypervisor mitigations and doesn't emit any
+		warnings.
+		It also drops the swap size and available RAM limit restrictions
+		on both hypervisor and bare metal.
+
+  ============  =============================================================
+
+The default is 'flush'. For details about L1D flushing see :ref:`l1d_flush`.
+
+
+.. _mitigation_control_kvm:
+
+Mitigation control for KVM - module parameter
+-------------------------------------------------------------
+
+The KVM hypervisor mitigation mechanism, flushing the L1D cache when
+entering a guest, can be controlled with a module parameter.
+
+The option/parameter is "kvm-intel.vmentry_l1d_flush=". It takes the
+following arguments:
+
+  ============  ==============================================================
+  always	L1D cache flush on every VMENTER.
+
+  cond		Flush L1D on VMENTER only when the code between VMEXIT and
+		VMENTER can leak host memory which is considered
+		interesting for an attacker. This still can leak host memory
+		which allows e.g. to determine the hosts address space layout.
+
+  never		Disables the mitigation
+  ============  ==============================================================
+
+The parameter can be provided on the kernel command line, as a module
+parameter when loading the modules and at runtime modified via the sysfs
+file:
+
+/sys/module/kvm_intel/parameters/vmentry_l1d_flush
+
+The default is 'cond'. If 'l1tf=full,force' is given on the kernel command
+line, then 'always' is enforced and the kvm-intel.vmentry_l1d_flush
+module parameter is ignored and writes to the sysfs file are rejected.
+
+.. _mitigation_selection:
+
+Mitigation selection guide
+--------------------------
+
+1. No virtualization in use
+^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+   The system is protected by the kernel unconditionally and no further
+   action is required.
+
+2. Virtualization with trusted guests
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+   If the guest comes from a trusted source and the guest OS kernel is
+   guaranteed to have the L1TF mitigations in place the system is fully
+   protected against L1TF and no further action is required.
+
+   To avoid the overhead of the default L1D flushing on VMENTER the
+   administrator can disable the flushing via the kernel command line and
+   sysfs control files. See :ref:`mitigation_control_command_line` and
+   :ref:`mitigation_control_kvm`.
+
+
+3. Virtualization with untrusted guests
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+3.1. SMT not supported or disabled
+""""""""""""""""""""""""""""""""""
+
+  If SMT is not supported by the processor or disabled in the BIOS or by
+  the kernel, it's only required to enforce L1D flushing on VMENTER.
+
+  Conditional L1D flushing is the default behaviour and can be tuned. See
+  :ref:`mitigation_control_command_line` and :ref:`mitigation_control_kvm`.
+
+3.2. EPT not supported or disabled
+""""""""""""""""""""""""""""""""""
+
+  If EPT is not supported by the processor or disabled in the hypervisor,
+  the system is fully protected. SMT can stay enabled and L1D flushing on
+  VMENTER is not required.
+
+  EPT can be disabled in the hypervisor via the 'kvm-intel.ept' parameter.
+
+3.3. SMT and EPT supported and active
+"""""""""""""""""""""""""""""""""""""
+
+  If SMT and EPT are supported and active then various degrees of
+  mitigations can be employed:
+
+  - L1D flushing on VMENTER:
+
+    L1D flushing on VMENTER is the minimal protection requirement, but it
+    is only potent in combination with other mitigation methods.
+
+    Conditional L1D flushing is the default behaviour and can be tuned. See
+    :ref:`mitigation_control_command_line` and :ref:`mitigation_control_kvm`.
+
+  - Guest confinement:
+
+    Confinement of guests to a single or a group of physical cores which
+    are not running any other processes, can reduce the attack surface
+    significantly, but interrupts, soft interrupts and kernel threads can
+    still expose valuable data to a potential attacker. See
+    :ref:`guest_confinement`.
+
+  - Interrupt isolation:
+
+    Isolating the guest CPUs from interrupts can reduce the attack surface
+    further, but still allows a malicious guest to explore a limited amount
+    of host physical memory. This can at least be used to gain knowledge
+    about the host address space layout. The interrupts which have a fixed
+    affinity to the CPUs which run the untrusted guests can depending on
+    the scenario still trigger soft interrupts and schedule kernel threads
+    which might expose valuable information. See
+    :ref:`interrupt_isolation`.
+
+The above three mitigation methods combined can provide protection to a
+certain degree, but the risk of the remaining attack surface has to be
+carefully analyzed. For full protection the following methods are
+available:
+
+  - Disabling SMT:
+
+    Disabling SMT and enforcing the L1D flushing provides the maximum
+    amount of protection. This mitigation is not depending on any of the
+    above mitigation methods.
+
+    SMT control and L1D flushing can be tuned by the command line
+    parameters 'nosmt', 'l1tf', 'kvm-intel.vmentry_l1d_flush' and at run
+    time with the matching sysfs control files. See :ref:`smt_control`,
+    :ref:`mitigation_control_command_line` and
+    :ref:`mitigation_control_kvm`.
+
+  - Disabling EPT:
+
+    Disabling EPT provides the maximum amount of protection as well. It is
+    not depending on any of the above mitigation methods. SMT can stay
+    enabled and L1D flushing is not required, but the performance impact is
+    significant.
+
+    EPT can be disabled in the hypervisor via the 'kvm-intel.ept'
+    parameter.
+
+3.4. Nested virtual machines
+""""""""""""""""""""""""""""
+
+When nested virtualization is in use, three operating systems are involved:
+the bare metal hypervisor, the nested hypervisor and the nested virtual
+machine.  VMENTER operations from the nested hypervisor into the nested
+guest will always be processed by the bare metal hypervisor. If KVM is the
+bare metal hypervisor it will:
+
+ - Flush the L1D cache on every switch from the nested hypervisor to the
+   nested virtual machine, so that the nested hypervisor's secrets are not
+   exposed to the nested virtual machine;
+
+ - Flush the L1D cache on every switch from the nested virtual machine to
+   the nested hypervisor; this is a complex operation, and flushing the L1D
+   cache avoids that the bare metal hypervisor's secrets are exposed to the
+   nested virtual machine;
+
+ - Instruct the nested hypervisor to not perform any L1D cache flush. This
+   is an optimization to avoid double L1D flushing.
+
+
+.. _default_mitigations:
+
+Default mitigations
+-------------------
+
+  The kernel default mitigations for vulnerable processors are:
+
+  - PTE inversion to protect against malicious user space. This is done
+    unconditionally and cannot be controlled. The swap storage is limited
+    to ~16TB.
+
+  - L1D conditional flushing on VMENTER when EPT is enabled for
+    a guest.
+
+  The kernel does not by default enforce the disabling of SMT, which leaves
+  SMT systems vulnerable when running untrusted guests with EPT enabled.
+
+  The rationale for this choice is:
+
+  - Force disabling SMT can break existing setups, especially with
+    unattended updates.
+
+  - If regular users run untrusted guests on their machine, then L1TF is
+    just an add on to other malware which might be embedded in an untrusted
+    guest, e.g. spam-bots or attacks on the local network.
+
+    There is no technical way to prevent a user from running untrusted code
+    on their machines blindly.
+
+  - It's technically extremely unlikely and from today's knowledge even
+    impossible that L1TF can be exploited via the most popular attack
+    mechanisms like JavaScript because these mechanisms have no way to
+    control PTEs. If this would be possible and not other mitigation would
+    be possible, then the default might be different.
+
+  - The administrators of cloud and hosting setups have to carefully
+    analyze the risk for their scenarios and make the appropriate
+    mitigation choices, which might even vary across their deployed
+    machines and also result in other changes of their overall setup.
+    There is no way for the kernel to provide a sensible default for this
+    kind of scenarios.
diff --git a/Documentation/admin-guide/hw-vuln/mds.rst b/Documentation/admin-guide/hw-vuln/mds.rst
new file mode 100644
index 0000000..2d19c9f
--- /dev/null
+++ b/Documentation/admin-guide/hw-vuln/mds.rst
@@ -0,0 +1,311 @@
+MDS - Microarchitectural Data Sampling
+======================================
+
+Microarchitectural Data Sampling is a hardware vulnerability which allows
+unprivileged speculative access to data which is available in various CPU
+internal buffers.
+
+Affected processors
+-------------------
+
+This vulnerability affects a wide range of Intel processors. The
+vulnerability is not present on:
+
+   - Processors from AMD, Centaur and other non Intel vendors
+
+   - Older processor models, where the CPU family is < 6
+
+   - Some Atoms (Bonnell, Saltwell, Goldmont, GoldmontPlus)
+
+   - Intel processors which have the ARCH_CAP_MDS_NO bit set in the
+     IA32_ARCH_CAPABILITIES MSR.
+
+Whether a processor is affected or not can be read out from the MDS
+vulnerability file in sysfs. See :ref:`mds_sys_info`.
+
+Not all processors are affected by all variants of MDS, but the mitigation
+is identical for all of them so the kernel treats them as a single
+vulnerability.
+
+Related CVEs
+------------
+
+The following CVE entries are related to the MDS vulnerability:
+
+   ==============  =====  ===================================================
+   CVE-2018-12126  MSBDS  Microarchitectural Store Buffer Data Sampling
+   CVE-2018-12130  MFBDS  Microarchitectural Fill Buffer Data Sampling
+   CVE-2018-12127  MLPDS  Microarchitectural Load Port Data Sampling
+   CVE-2019-11091  MDSUM  Microarchitectural Data Sampling Uncacheable Memory
+   ==============  =====  ===================================================
+
+Problem
+-------
+
+When performing store, load, L1 refill operations, processors write data
+into temporary microarchitectural structures (buffers). The data in the
+buffer can be forwarded to load operations as an optimization.
+
+Under certain conditions, usually a fault/assist caused by a load
+operation, data unrelated to the load memory address can be speculatively
+forwarded from the buffers. Because the load operation causes a fault or
+assist and its result will be discarded, the forwarded data will not cause
+incorrect program execution or state changes. But a malicious operation
+may be able to forward this speculative data to a disclosure gadget which
+allows in turn to infer the value via a cache side channel attack.
+
+Because the buffers are potentially shared between Hyper-Threads cross
+Hyper-Thread attacks are possible.
+
+Deeper technical information is available in the MDS specific x86
+architecture section: :ref:`Documentation/x86/mds.rst <mds>`.
+
+
+Attack scenarios
+----------------
+
+Attacks against the MDS vulnerabilities can be mounted from malicious non
+priviledged user space applications running on hosts or guest. Malicious
+guest OSes can obviously mount attacks as well.
+
+Contrary to other speculation based vulnerabilities the MDS vulnerability
+does not allow the attacker to control the memory target address. As a
+consequence the attacks are purely sampling based, but as demonstrated with
+the TLBleed attack samples can be postprocessed successfully.
+
+Web-Browsers
+^^^^^^^^^^^^
+
+  It's unclear whether attacks through Web-Browsers are possible at
+  all. The exploitation through Java-Script is considered very unlikely,
+  but other widely used web technologies like Webassembly could possibly be
+  abused.
+
+
+.. _mds_sys_info:
+
+MDS system information
+-----------------------
+
+The Linux kernel provides a sysfs interface to enumerate the current MDS
+status of the system: whether the system is vulnerable, and which
+mitigations are active. The relevant sysfs file is:
+
+/sys/devices/system/cpu/vulnerabilities/mds
+
+The possible values in this file are:
+
+  .. list-table::
+
+     * - 'Not affected'
+       - The processor is not vulnerable
+     * - 'Vulnerable'
+       - The processor is vulnerable, but no mitigation enabled
+     * - 'Vulnerable: Clear CPU buffers attempted, no microcode'
+       - The processor is vulnerable but microcode is not updated.
+
+         The mitigation is enabled on a best effort basis. See :ref:`vmwerv`
+     * - 'Mitigation: Clear CPU buffers'
+       - The processor is vulnerable and the CPU buffer clearing mitigation is
+         enabled.
+
+If the processor is vulnerable then the following information is appended
+to the above information:
+
+    ========================  ============================================
+    'SMT vulnerable'          SMT is enabled
+    'SMT mitigated'           SMT is enabled and mitigated
+    'SMT disabled'            SMT is disabled
+    'SMT Host state unknown'  Kernel runs in a VM, Host SMT state unknown
+    ========================  ============================================
+
+.. _vmwerv:
+
+Best effort mitigation mode
+^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+  If the processor is vulnerable, but the availability of the microcode based
+  mitigation mechanism is not advertised via CPUID the kernel selects a best
+  effort mitigation mode.  This mode invokes the mitigation instructions
+  without a guarantee that they clear the CPU buffers.
+
+  This is done to address virtualization scenarios where the host has the
+  microcode update applied, but the hypervisor is not yet updated to expose
+  the CPUID to the guest. If the host has updated microcode the protection
+  takes effect otherwise a few cpu cycles are wasted pointlessly.
+
+  The state in the mds sysfs file reflects this situation accordingly.
+
+
+Mitigation mechanism
+-------------------------
+
+The kernel detects the affected CPUs and the presence of the microcode
+which is required.
+
+If a CPU is affected and the microcode is available, then the kernel
+enables the mitigation by default. The mitigation can be controlled at boot
+time via a kernel command line option. See
+:ref:`mds_mitigation_control_command_line`.
+
+.. _cpu_buffer_clear:
+
+CPU buffer clearing
+^^^^^^^^^^^^^^^^^^^
+
+  The mitigation for MDS clears the affected CPU buffers on return to user
+  space and when entering a guest.
+
+  If SMT is enabled it also clears the buffers on idle entry when the CPU
+  is only affected by MSBDS and not any other MDS variant, because the
+  other variants cannot be protected against cross Hyper-Thread attacks.
+
+  For CPUs which are only affected by MSBDS the user space, guest and idle
+  transition mitigations are sufficient and SMT is not affected.
+
+.. _virt_mechanism:
+
+Virtualization mitigation
+^^^^^^^^^^^^^^^^^^^^^^^^^
+
+  The protection for host to guest transition depends on the L1TF
+  vulnerability of the CPU:
+
+  - CPU is affected by L1TF:
+
+    If the L1D flush mitigation is enabled and up to date microcode is
+    available, the L1D flush mitigation is automatically protecting the
+    guest transition.
+
+    If the L1D flush mitigation is disabled then the MDS mitigation is
+    invoked explicit when the host MDS mitigation is enabled.
+
+    For details on L1TF and virtualization see:
+    :ref:`Documentation/admin-guide/hw-vuln//l1tf.rst <mitigation_control_kvm>`.
+
+  - CPU is not affected by L1TF:
+
+    CPU buffers are flushed before entering the guest when the host MDS
+    mitigation is enabled.
+
+  The resulting MDS protection matrix for the host to guest transition:
+
+  ============ ===== ============= ============ =================
+   L1TF         MDS   VMX-L1FLUSH   Host MDS     MDS-State
+
+   Don't care   No    Don't care    N/A          Not affected
+
+   Yes          Yes   Disabled      Off          Vulnerable
+
+   Yes          Yes   Disabled      Full         Mitigated
+
+   Yes          Yes   Enabled       Don't care   Mitigated
+
+   No           Yes   N/A           Off          Vulnerable
+
+   No           Yes   N/A           Full         Mitigated
+  ============ ===== ============= ============ =================
+
+  This only covers the host to guest transition, i.e. prevents leakage from
+  host to guest, but does not protect the guest internally. Guests need to
+  have their own protections.
+
+.. _xeon_phi:
+
+XEON PHI specific considerations
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+  The XEON PHI processor family is affected by MSBDS which can be exploited
+  cross Hyper-Threads when entering idle states. Some XEON PHI variants allow
+  to use MWAIT in user space (Ring 3) which opens an potential attack vector
+  for malicious user space. The exposure can be disabled on the kernel
+  command line with the 'ring3mwait=disable' command line option.
+
+  XEON PHI is not affected by the other MDS variants and MSBDS is mitigated
+  before the CPU enters a idle state. As XEON PHI is not affected by L1TF
+  either disabling SMT is not required for full protection.
+
+.. _mds_smt_control:
+
+SMT control
+^^^^^^^^^^^
+
+  All MDS variants except MSBDS can be attacked cross Hyper-Threads. That
+  means on CPUs which are affected by MFBDS or MLPDS it is necessary to
+  disable SMT for full protection. These are most of the affected CPUs; the
+  exception is XEON PHI, see :ref:`xeon_phi`.
+
+  Disabling SMT can have a significant performance impact, but the impact
+  depends on the type of workloads.
+
+  See the relevant chapter in the L1TF mitigation documentation for details:
+  :ref:`Documentation/admin-guide/hw-vuln/l1tf.rst <smt_control>`.
+
+
+.. _mds_mitigation_control_command_line:
+
+Mitigation control on the kernel command line
+---------------------------------------------
+
+The kernel command line allows to control the MDS mitigations at boot
+time with the option "mds=". The valid arguments for this option are:
+
+  ============  =============================================================
+  full		If the CPU is vulnerable, enable all available mitigations
+		for the MDS vulnerability, CPU buffer clearing on exit to
+		userspace and when entering a VM. Idle transitions are
+		protected as well if SMT is enabled.
+
+		It does not automatically disable SMT.
+
+  full,nosmt	The same as mds=full, with SMT disabled on vulnerable
+		CPUs.  This is the complete mitigation.
+
+  off		Disables MDS mitigations completely.
+
+  ============  =============================================================
+
+Not specifying this option is equivalent to "mds=full". For processors
+that are affected by both TAA (TSX Asynchronous Abort) and MDS,
+specifying just "mds=off" without an accompanying "tsx_async_abort=off"
+will have no effect as the same mitigation is used for both
+vulnerabilities.
+
+Mitigation selection guide
+--------------------------
+
+1. Trusted userspace
+^^^^^^^^^^^^^^^^^^^^
+
+   If all userspace applications are from a trusted source and do not
+   execute untrusted code which is supplied externally, then the mitigation
+   can be disabled.
+
+
+2. Virtualization with trusted guests
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+   The same considerations as above versus trusted user space apply.
+
+3. Virtualization with untrusted guests
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+   The protection depends on the state of the L1TF mitigations.
+   See :ref:`virt_mechanism`.
+
+   If the MDS mitigation is enabled and SMT is disabled, guest to host and
+   guest to guest attacks are prevented.
+
+.. _mds_default_mitigations:
+
+Default mitigations
+-------------------
+
+  The kernel default mitigations for vulnerable processors are:
+
+  - Enable CPU buffer clearing
+
+  The kernel does not by default enforce the disabling of SMT, which leaves
+  SMT systems vulnerable when running untrusted code. The same rationale as
+  for L1TF applies.
+  See :ref:`Documentation/admin-guide/hw-vuln//l1tf.rst <default_mitigations>`.
diff --git a/Documentation/admin-guide/hw-vuln/multihit.rst b/Documentation/admin-guide/hw-vuln/multihit.rst
new file mode 100644
index 0000000..ba9988d
--- /dev/null
+++ b/Documentation/admin-guide/hw-vuln/multihit.rst
@@ -0,0 +1,163 @@
+iTLB multihit
+=============
+
+iTLB multihit is an erratum where some processors may incur a machine check
+error, possibly resulting in an unrecoverable CPU lockup, when an
+instruction fetch hits multiple entries in the instruction TLB. This can
+occur when the page size is changed along with either the physical address
+or cache type. A malicious guest running on a virtualized system can
+exploit this erratum to perform a denial of service attack.
+
+
+Affected processors
+-------------------
+
+Variations of this erratum are present on most Intel Core and Xeon processor
+models. The erratum is not present on:
+
+   - non-Intel processors
+
+   - Some Atoms (Airmont, Bonnell, Goldmont, GoldmontPlus, Saltwell, Silvermont)
+
+   - Intel processors that have the PSCHANGE_MC_NO bit set in the
+     IA32_ARCH_CAPABILITIES MSR.
+
+
+Related CVEs
+------------
+
+The following CVE entry is related to this issue:
+
+   ==============  =================================================
+   CVE-2018-12207  Machine Check Error Avoidance on Page Size Change
+   ==============  =================================================
+
+
+Problem
+-------
+
+Privileged software, including OS and virtual machine managers (VMM), are in
+charge of memory management. A key component in memory management is the control
+of the page tables. Modern processors use virtual memory, a technique that creates
+the illusion of a very large memory for processors. This virtual space is split
+into pages of a given size. Page tables translate virtual addresses to physical
+addresses.
+
+To reduce latency when performing a virtual to physical address translation,
+processors include a structure, called TLB, that caches recent translations.
+There are separate TLBs for instruction (iTLB) and data (dTLB).
+
+Under this errata, instructions are fetched from a linear address translated
+using a 4 KB translation cached in the iTLB. Privileged software modifies the
+paging structure so that the same linear address using large page size (2 MB, 4
+MB, 1 GB) with a different physical address or memory type.  After the page
+structure modification but before the software invalidates any iTLB entries for
+the linear address, a code fetch that happens on the same linear address may
+cause a machine-check error which can result in a system hang or shutdown.
+
+
+Attack scenarios
+----------------
+
+Attacks against the iTLB multihit erratum can be mounted from malicious
+guests in a virtualized system.
+
+
+iTLB multihit system information
+--------------------------------
+
+The Linux kernel provides a sysfs interface to enumerate the current iTLB
+multihit status of the system:whether the system is vulnerable and which
+mitigations are active. The relevant sysfs file is:
+
+/sys/devices/system/cpu/vulnerabilities/itlb_multihit
+
+The possible values in this file are:
+
+.. list-table::
+
+     * - Not affected
+       - The processor is not vulnerable.
+     * - KVM: Mitigation: Split huge pages
+       - Software changes mitigate this issue.
+     * - KVM: Vulnerable
+       - The processor is vulnerable, but no mitigation enabled
+
+
+Enumeration of the erratum
+--------------------------------
+
+A new bit has been allocated in the IA32_ARCH_CAPABILITIES (PSCHANGE_MC_NO) msr
+and will be set on CPU's which are mitigated against this issue.
+
+   =======================================   ===========   ===============================
+   IA32_ARCH_CAPABILITIES MSR                Not present   Possibly vulnerable,check model
+   IA32_ARCH_CAPABILITIES[PSCHANGE_MC_NO]    '0'           Likely vulnerable,check model
+   IA32_ARCH_CAPABILITIES[PSCHANGE_MC_NO]    '1'           Not vulnerable
+   =======================================   ===========   ===============================
+
+
+Mitigation mechanism
+-------------------------
+
+This erratum can be mitigated by restricting the use of large page sizes to
+non-executable pages.  This forces all iTLB entries to be 4K, and removes
+the possibility of multiple hits.
+
+In order to mitigate the vulnerability, KVM initially marks all huge pages
+as non-executable. If the guest attempts to execute in one of those pages,
+the page is broken down into 4K pages, which are then marked executable.
+
+If EPT is disabled or not available on the host, KVM is in control of TLB
+flushes and the problematic situation cannot happen.  However, the shadow
+EPT paging mechanism used by nested virtualization is vulnerable, because
+the nested guest can trigger multiple iTLB hits by modifying its own
+(non-nested) page tables.  For simplicity, KVM will make large pages
+non-executable in all shadow paging modes.
+
+Mitigation control on the kernel command line and KVM - module parameter
+------------------------------------------------------------------------
+
+The KVM hypervisor mitigation mechanism for marking huge pages as
+non-executable can be controlled with a module parameter "nx_huge_pages=".
+The kernel command line allows to control the iTLB multihit mitigations at
+boot time with the option "kvm.nx_huge_pages=".
+
+The valid arguments for these options are:
+
+  ==========  ================================================================
+  force       Mitigation is enabled. In this case, the mitigation implements
+              non-executable huge pages in Linux kernel KVM module. All huge
+              pages in the EPT are marked as non-executable.
+              If a guest attempts to execute in one of those pages, the page is
+              broken down into 4K pages, which are then marked executable.
+
+  off	      Mitigation is disabled.
+
+  auto        Enable mitigation only if the platform is affected and the kernel
+              was not booted with the "mitigations=off" command line parameter.
+	      This is the default option.
+  ==========  ================================================================
+
+
+Mitigation selection guide
+--------------------------
+
+1. No virtualization in use
+^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+   The system is protected by the kernel unconditionally and no further
+   action is required.
+
+2. Virtualization with trusted guests
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+   If the guest comes from a trusted source, you may assume that the guest will
+   not attempt to maliciously exploit these errata and no further action is
+   required.
+
+3. Virtualization with untrusted guests
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+   If the guest comes from an untrusted source, the guest host kernel will need
+   to apply iTLB multihit mitigation via the kernel command line or kvm
+   module parameter.
diff --git a/Documentation/admin-guide/hw-vuln/spectre.rst b/Documentation/admin-guide/hw-vuln/spectre.rst
new file mode 100644
index 0000000..e05e581
--- /dev/null
+++ b/Documentation/admin-guide/hw-vuln/spectre.rst
@@ -0,0 +1,769 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+Spectre Side Channels
+=====================
+
+Spectre is a class of side channel attacks that exploit branch prediction
+and speculative execution on modern CPUs to read memory, possibly
+bypassing access controls. Speculative execution side channel exploits
+do not modify memory but attempt to infer privileged data in the memory.
+
+This document covers Spectre variant 1 and Spectre variant 2.
+
+Affected processors
+-------------------
+
+Speculative execution side channel methods affect a wide range of modern
+high performance processors, since most modern high speed processors
+use branch prediction and speculative execution.
+
+The following CPUs are vulnerable:
+
+    - Intel Core, Atom, Pentium, and Xeon processors
+
+    - AMD Phenom, EPYC, and Zen processors
+
+    - IBM POWER and zSeries processors
+
+    - Higher end ARM processors
+
+    - Apple CPUs
+
+    - Higher end MIPS CPUs
+
+    - Likely most other high performance CPUs. Contact your CPU vendor for details.
+
+Whether a processor is affected or not can be read out from the Spectre
+vulnerability files in sysfs. See :ref:`spectre_sys_info`.
+
+Related CVEs
+------------
+
+The following CVE entries describe Spectre variants:
+
+   =============   =======================  ==========================
+   CVE-2017-5753   Bounds check bypass      Spectre variant 1
+   CVE-2017-5715   Branch target injection  Spectre variant 2
+   CVE-2019-1125   Spectre v1 swapgs        Spectre variant 1 (swapgs)
+   =============   =======================  ==========================
+
+Problem
+-------
+
+CPUs use speculative operations to improve performance. That may leave
+traces of memory accesses or computations in the processor's caches,
+buffers, and branch predictors. Malicious software may be able to
+influence the speculative execution paths, and then use the side effects
+of the speculative execution in the CPUs' caches and buffers to infer
+privileged data touched during the speculative execution.
+
+Spectre variant 1 attacks take advantage of speculative execution of
+conditional branches, while Spectre variant 2 attacks use speculative
+execution of indirect branches to leak privileged memory.
+See :ref:`[1] <spec_ref1>` :ref:`[5] <spec_ref5>` :ref:`[7] <spec_ref7>`
+:ref:`[10] <spec_ref10>` :ref:`[11] <spec_ref11>`.
+
+Spectre variant 1 (Bounds Check Bypass)
+---------------------------------------
+
+The bounds check bypass attack :ref:`[2] <spec_ref2>` takes advantage
+of speculative execution that bypasses conditional branch instructions
+used for memory access bounds check (e.g. checking if the index of an
+array results in memory access within a valid range). This results in
+memory accesses to invalid memory (with out-of-bound index) that are
+done speculatively before validation checks resolve. Such speculative
+memory accesses can leave side effects, creating side channels which
+leak information to the attacker.
+
+There are some extensions of Spectre variant 1 attacks for reading data
+over the network, see :ref:`[12] <spec_ref12>`. However such attacks
+are difficult, low bandwidth, fragile, and are considered low risk.
+
+Note that, despite "Bounds Check Bypass" name, Spectre variant 1 is not
+only about user-controlled array bounds checks.  It can affect any
+conditional checks.  The kernel entry code interrupt, exception, and NMI
+handlers all have conditional swapgs checks.  Those may be problematic
+in the context of Spectre v1, as kernel code can speculatively run with
+a user GS.
+
+Spectre variant 2 (Branch Target Injection)
+-------------------------------------------
+
+The branch target injection attack takes advantage of speculative
+execution of indirect branches :ref:`[3] <spec_ref3>`.  The indirect
+branch predictors inside the processor used to guess the target of
+indirect branches can be influenced by an attacker, causing gadget code
+to be speculatively executed, thus exposing sensitive data touched by
+the victim. The side effects left in the CPU's caches during speculative
+execution can be measured to infer data values.
+
+.. _poison_btb:
+
+In Spectre variant 2 attacks, the attacker can steer speculative indirect
+branches in the victim to gadget code by poisoning the branch target
+buffer of a CPU used for predicting indirect branch addresses. Such
+poisoning could be done by indirect branching into existing code,
+with the address offset of the indirect branch under the attacker's
+control. Since the branch prediction on impacted hardware does not
+fully disambiguate branch address and uses the offset for prediction,
+this could cause privileged code's indirect branch to jump to a gadget
+code with the same offset.
+
+The most useful gadgets take an attacker-controlled input parameter (such
+as a register value) so that the memory read can be controlled. Gadgets
+without input parameters might be possible, but the attacker would have
+very little control over what memory can be read, reducing the risk of
+the attack revealing useful data.
+
+One other variant 2 attack vector is for the attacker to poison the
+return stack buffer (RSB) :ref:`[13] <spec_ref13>` to cause speculative
+subroutine return instruction execution to go to a gadget.  An attacker's
+imbalanced subroutine call instructions might "poison" entries in the
+return stack buffer which are later consumed by a victim's subroutine
+return instructions.  This attack can be mitigated by flushing the return
+stack buffer on context switch, or virtual machine (VM) exit.
+
+On systems with simultaneous multi-threading (SMT), attacks are possible
+from the sibling thread, as level 1 cache and branch target buffer
+(BTB) may be shared between hardware threads in a CPU core.  A malicious
+program running on the sibling thread may influence its peer's BTB to
+steer its indirect branch speculations to gadget code, and measure the
+speculative execution's side effects left in level 1 cache to infer the
+victim's data.
+
+Attack scenarios
+----------------
+
+The following list of attack scenarios have been anticipated, but may
+not cover all possible attack vectors.
+
+1. A user process attacking the kernel
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Spectre variant 1
+~~~~~~~~~~~~~~~~~
+
+   The attacker passes a parameter to the kernel via a register or
+   via a known address in memory during a syscall. Such parameter may
+   be used later by the kernel as an index to an array or to derive
+   a pointer for a Spectre variant 1 attack.  The index or pointer
+   is invalid, but bound checks are bypassed in the code branch taken
+   for speculative execution. This could cause privileged memory to be
+   accessed and leaked.
+
+   For kernel code that has been identified where data pointers could
+   potentially be influenced for Spectre attacks, new "nospec" accessor
+   macros are used to prevent speculative loading of data.
+
+Spectre variant 1 (swapgs)
+~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+   An attacker can train the branch predictor to speculatively skip the
+   swapgs path for an interrupt or exception.  If they initialize
+   the GS register to a user-space value, if the swapgs is speculatively
+   skipped, subsequent GS-related percpu accesses in the speculation
+   window will be done with the attacker-controlled GS value.  This
+   could cause privileged memory to be accessed and leaked.
+
+   For example:
+
+   ::
+
+     if (coming from user space)
+         swapgs
+     mov %gs:<percpu_offset>, %reg
+     mov (%reg), %reg1
+
+   When coming from user space, the CPU can speculatively skip the
+   swapgs, and then do a speculative percpu load using the user GS
+   value.  So the user can speculatively force a read of any kernel
+   value.  If a gadget exists which uses the percpu value as an address
+   in another load/store, then the contents of the kernel value may
+   become visible via an L1 side channel attack.
+
+   A similar attack exists when coming from kernel space.  The CPU can
+   speculatively do the swapgs, causing the user GS to get used for the
+   rest of the speculative window.
+
+Spectre variant 2
+~~~~~~~~~~~~~~~~~
+
+   A spectre variant 2 attacker can :ref:`poison <poison_btb>` the branch
+   target buffer (BTB) before issuing syscall to launch an attack.
+   After entering the kernel, the kernel could use the poisoned branch
+   target buffer on indirect jump and jump to gadget code in speculative
+   execution.
+
+   If an attacker tries to control the memory addresses leaked during
+   speculative execution, he would also need to pass a parameter to the
+   gadget, either through a register or a known address in memory. After
+   the gadget has executed, he can measure the side effect.
+
+   The kernel can protect itself against consuming poisoned branch
+   target buffer entries by using return trampolines (also known as
+   "retpoline") :ref:`[3] <spec_ref3>` :ref:`[9] <spec_ref9>` for all
+   indirect branches. Return trampolines trap speculative execution paths
+   to prevent jumping to gadget code during speculative execution.
+   x86 CPUs with Enhanced Indirect Branch Restricted Speculation
+   (Enhanced IBRS) available in hardware should use the feature to
+   mitigate Spectre variant 2 instead of retpoline. Enhanced IBRS is
+   more efficient than retpoline.
+
+   There may be gadget code in firmware which could be exploited with
+   Spectre variant 2 attack by a rogue user process. To mitigate such
+   attacks on x86, Indirect Branch Restricted Speculation (IBRS) feature
+   is turned on before the kernel invokes any firmware code.
+
+2. A user process attacking another user process
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+   A malicious user process can try to attack another user process,
+   either via a context switch on the same hardware thread, or from the
+   sibling hyperthread sharing a physical processor core on simultaneous
+   multi-threading (SMT) system.
+
+   Spectre variant 1 attacks generally require passing parameters
+   between the processes, which needs a data passing relationship, such
+   as remote procedure calls (RPC).  Those parameters are used in gadget
+   code to derive invalid data pointers accessing privileged memory in
+   the attacked process.
+
+   Spectre variant 2 attacks can be launched from a rogue process by
+   :ref:`poisoning <poison_btb>` the branch target buffer.  This can
+   influence the indirect branch targets for a victim process that either
+   runs later on the same hardware thread, or running concurrently on
+   a sibling hardware thread sharing the same physical core.
+
+   A user process can protect itself against Spectre variant 2 attacks
+   by using the prctl() syscall to disable indirect branch speculation
+   for itself.  An administrator can also cordon off an unsafe process
+   from polluting the branch target buffer by disabling the process's
+   indirect branch speculation. This comes with a performance cost
+   from not using indirect branch speculation and clearing the branch
+   target buffer.  When SMT is enabled on x86, for a process that has
+   indirect branch speculation disabled, Single Threaded Indirect Branch
+   Predictors (STIBP) :ref:`[4] <spec_ref4>` are turned on to prevent the
+   sibling thread from controlling branch target buffer.  In addition,
+   the Indirect Branch Prediction Barrier (IBPB) is issued to clear the
+   branch target buffer when context switching to and from such process.
+
+   On x86, the return stack buffer is stuffed on context switch.
+   This prevents the branch target buffer from being used for branch
+   prediction when the return stack buffer underflows while switching to
+   a deeper call stack. Any poisoned entries in the return stack buffer
+   left by the previous process will also be cleared.
+
+   User programs should use address space randomization to make attacks
+   more difficult (Set /proc/sys/kernel/randomize_va_space = 1 or 2).
+
+3. A virtualized guest attacking the host
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+   The attack mechanism is similar to how user processes attack the
+   kernel.  The kernel is entered via hyper-calls or other virtualization
+   exit paths.
+
+   For Spectre variant 1 attacks, rogue guests can pass parameters
+   (e.g. in registers) via hyper-calls to derive invalid pointers to
+   speculate into privileged memory after entering the kernel.  For places
+   where such kernel code has been identified, nospec accessor macros
+   are used to stop speculative memory access.
+
+   For Spectre variant 2 attacks, rogue guests can :ref:`poison
+   <poison_btb>` the branch target buffer or return stack buffer, causing
+   the kernel to jump to gadget code in the speculative execution paths.
+
+   To mitigate variant 2, the host kernel can use return trampolines
+   for indirect branches to bypass the poisoned branch target buffer,
+   and flushing the return stack buffer on VM exit.  This prevents rogue
+   guests from affecting indirect branching in the host kernel.
+
+   To protect host processes from rogue guests, host processes can have
+   indirect branch speculation disabled via prctl().  The branch target
+   buffer is cleared before context switching to such processes.
+
+4. A virtualized guest attacking other guest
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+   A rogue guest may attack another guest to get data accessible by the
+   other guest.
+
+   Spectre variant 1 attacks are possible if parameters can be passed
+   between guests.  This may be done via mechanisms such as shared memory
+   or message passing.  Such parameters could be used to derive data
+   pointers to privileged data in guest.  The privileged data could be
+   accessed by gadget code in the victim's speculation paths.
+
+   Spectre variant 2 attacks can be launched from a rogue guest by
+   :ref:`poisoning <poison_btb>` the branch target buffer or the return
+   stack buffer. Such poisoned entries could be used to influence
+   speculation execution paths in the victim guest.
+
+   Linux kernel mitigates attacks to other guests running in the same
+   CPU hardware thread by flushing the return stack buffer on VM exit,
+   and clearing the branch target buffer before switching to a new guest.
+
+   If SMT is used, Spectre variant 2 attacks from an untrusted guest
+   in the sibling hyperthread can be mitigated by the administrator,
+   by turning off the unsafe guest's indirect branch speculation via
+   prctl().  A guest can also protect itself by turning on microcode
+   based mitigations (such as IBPB or STIBP on x86) within the guest.
+
+.. _spectre_sys_info:
+
+Spectre system information
+--------------------------
+
+The Linux kernel provides a sysfs interface to enumerate the current
+mitigation status of the system for Spectre: whether the system is
+vulnerable, and which mitigations are active.
+
+The sysfs file showing Spectre variant 1 mitigation status is:
+
+   /sys/devices/system/cpu/vulnerabilities/spectre_v1
+
+The possible values in this file are:
+
+  .. list-table::
+
+     * - 'Not affected'
+       - The processor is not vulnerable.
+     * - 'Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers'
+       - The swapgs protections are disabled; otherwise it has
+         protection in the kernel on a case by case base with explicit
+         pointer sanitation and usercopy LFENCE barriers.
+     * - 'Mitigation: usercopy/swapgs barriers and __user pointer sanitization'
+       - Protection in the kernel on a case by case base with explicit
+         pointer sanitation, usercopy LFENCE barriers, and swapgs LFENCE
+         barriers.
+
+However, the protections are put in place on a case by case basis,
+and there is no guarantee that all possible attack vectors for Spectre
+variant 1 are covered.
+
+The spectre_v2 kernel file reports if the kernel has been compiled with
+retpoline mitigation or if the CPU has hardware mitigation, and if the
+CPU has support for additional process-specific mitigation.
+
+This file also reports CPU features enabled by microcode to mitigate
+attack between user processes:
+
+1. Indirect Branch Prediction Barrier (IBPB) to add additional
+   isolation between processes of different users.
+2. Single Thread Indirect Branch Predictors (STIBP) to add additional
+   isolation between CPU threads running on the same core.
+
+These CPU features may impact performance when used and can be enabled
+per process on a case-by-case base.
+
+The sysfs file showing Spectre variant 2 mitigation status is:
+
+   /sys/devices/system/cpu/vulnerabilities/spectre_v2
+
+The possible values in this file are:
+
+  - Kernel status:
+
+  ====================================  =================================
+  'Not affected'                        The processor is not vulnerable
+  'Vulnerable'                          Vulnerable, no mitigation
+  'Mitigation: Full generic retpoline'  Software-focused mitigation
+  'Mitigation: Full AMD retpoline'      AMD-specific software mitigation
+  'Mitigation: Enhanced IBRS'           Hardware-focused mitigation
+  ====================================  =================================
+
+  - Firmware status: Show if Indirect Branch Restricted Speculation (IBRS) is
+    used to protect against Spectre variant 2 attacks when calling firmware (x86 only).
+
+  ========== =============================================================
+  'IBRS_FW'  Protection against user program attacks when calling firmware
+  ========== =============================================================
+
+  - Indirect branch prediction barrier (IBPB) status for protection between
+    processes of different users. This feature can be controlled through
+    prctl() per process, or through kernel command line options. This is
+    an x86 only feature. For more details see below.
+
+  ===================   ========================================================
+  'IBPB: disabled'      IBPB unused
+  'IBPB: always-on'     Use IBPB on all tasks
+  'IBPB: conditional'   Use IBPB on SECCOMP or indirect branch restricted tasks
+  ===================   ========================================================
+
+  - Single threaded indirect branch prediction (STIBP) status for protection
+    between different hyper threads. This feature can be controlled through
+    prctl per process, or through kernel command line options. This is x86
+    only feature. For more details see below.
+
+  ====================  ========================================================
+  'STIBP: disabled'     STIBP unused
+  'STIBP: forced'       Use STIBP on all tasks
+  'STIBP: conditional'  Use STIBP on SECCOMP or indirect branch restricted tasks
+  ====================  ========================================================
+
+  - Return stack buffer (RSB) protection status:
+
+  =============   ===========================================
+  'RSB filling'   Protection of RSB on context switch enabled
+  =============   ===========================================
+
+Full mitigation might require a microcode update from the CPU
+vendor. When the necessary microcode is not available, the kernel will
+report vulnerability.
+
+Turning on mitigation for Spectre variant 1 and Spectre variant 2
+-----------------------------------------------------------------
+
+1. Kernel mitigation
+^^^^^^^^^^^^^^^^^^^^
+
+Spectre variant 1
+~~~~~~~~~~~~~~~~~
+
+   For the Spectre variant 1, vulnerable kernel code (as determined
+   by code audit or scanning tools) is annotated on a case by case
+   basis to use nospec accessor macros for bounds clipping :ref:`[2]
+   <spec_ref2>` to avoid any usable disclosure gadgets. However, it may
+   not cover all attack vectors for Spectre variant 1.
+
+   Copy-from-user code has an LFENCE barrier to prevent the access_ok()
+   check from being mis-speculated.  The barrier is done by the
+   barrier_nospec() macro.
+
+   For the swapgs variant of Spectre variant 1, LFENCE barriers are
+   added to interrupt, exception and NMI entry where needed.  These
+   barriers are done by the FENCE_SWAPGS_KERNEL_ENTRY and
+   FENCE_SWAPGS_USER_ENTRY macros.
+
+Spectre variant 2
+~~~~~~~~~~~~~~~~~
+
+   For Spectre variant 2 mitigation, the compiler turns indirect calls or
+   jumps in the kernel into equivalent return trampolines (retpolines)
+   :ref:`[3] <spec_ref3>` :ref:`[9] <spec_ref9>` to go to the target
+   addresses.  Speculative execution paths under retpolines are trapped
+   in an infinite loop to prevent any speculative execution jumping to
+   a gadget.
+
+   To turn on retpoline mitigation on a vulnerable CPU, the kernel
+   needs to be compiled with a gcc compiler that supports the
+   -mindirect-branch=thunk-extern -mindirect-branch-register options.
+   If the kernel is compiled with a Clang compiler, the compiler needs
+   to support -mretpoline-external-thunk option.  The kernel config
+   CONFIG_RETPOLINE needs to be turned on, and the CPU needs to run with
+   the latest updated microcode.
+
+   On Intel Skylake-era systems the mitigation covers most, but not all,
+   cases. See :ref:`[3] <spec_ref3>` for more details.
+
+   On CPUs with hardware mitigation for Spectre variant 2 (e.g. Enhanced
+   IBRS on x86), retpoline is automatically disabled at run time.
+
+   The retpoline mitigation is turned on by default on vulnerable
+   CPUs. It can be forced on or off by the administrator
+   via the kernel command line and sysfs control files. See
+   :ref:`spectre_mitigation_control_command_line`.
+
+   On x86, indirect branch restricted speculation is turned on by default
+   before invoking any firmware code to prevent Spectre variant 2 exploits
+   using the firmware.
+
+   Using kernel address space randomization (CONFIG_RANDOMIZE_SLAB=y
+   and CONFIG_SLAB_FREELIST_RANDOM=y in the kernel configuration) makes
+   attacks on the kernel generally more difficult.
+
+2. User program mitigation
+^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+   User programs can mitigate Spectre variant 1 using LFENCE or "bounds
+   clipping". For more details see :ref:`[2] <spec_ref2>`.
+
+   For Spectre variant 2 mitigation, individual user programs
+   can be compiled with return trampolines for indirect branches.
+   This protects them from consuming poisoned entries in the branch
+   target buffer left by malicious software.  Alternatively, the
+   programs can disable their indirect branch speculation via prctl()
+   (See :ref:`Documentation/userspace-api/spec_ctrl.rst <set_spec_ctrl>`).
+   On x86, this will turn on STIBP to guard against attacks from the
+   sibling thread when the user program is running, and use IBPB to
+   flush the branch target buffer when switching to/from the program.
+
+   Restricting indirect branch speculation on a user program will
+   also prevent the program from launching a variant 2 attack
+   on x86.  All sand-boxed SECCOMP programs have indirect branch
+   speculation restricted by default.  Administrators can change
+   that behavior via the kernel command line and sysfs control files.
+   See :ref:`spectre_mitigation_control_command_line`.
+
+   Programs that disable their indirect branch speculation will have
+   more overhead and run slower.
+
+   User programs should use address space randomization
+   (/proc/sys/kernel/randomize_va_space = 1 or 2) to make attacks more
+   difficult.
+
+3. VM mitigation
+^^^^^^^^^^^^^^^^
+
+   Within the kernel, Spectre variant 1 attacks from rogue guests are
+   mitigated on a case by case basis in VM exit paths. Vulnerable code
+   uses nospec accessor macros for "bounds clipping", to avoid any
+   usable disclosure gadgets.  However, this may not cover all variant
+   1 attack vectors.
+
+   For Spectre variant 2 attacks from rogue guests to the kernel, the
+   Linux kernel uses retpoline or Enhanced IBRS to prevent consumption of
+   poisoned entries in branch target buffer left by rogue guests.  It also
+   flushes the return stack buffer on every VM exit to prevent a return
+   stack buffer underflow so poisoned branch target buffer could be used,
+   or attacker guests leaving poisoned entries in the return stack buffer.
+
+   To mitigate guest-to-guest attacks in the same CPU hardware thread,
+   the branch target buffer is sanitized by flushing before switching
+   to a new guest on a CPU.
+
+   The above mitigations are turned on by default on vulnerable CPUs.
+
+   To mitigate guest-to-guest attacks from sibling thread when SMT is
+   in use, an untrusted guest running in the sibling thread can have
+   its indirect branch speculation disabled by administrator via prctl().
+
+   The kernel also allows guests to use any microcode based mitigation
+   they choose to use (such as IBPB or STIBP on x86) to protect themselves.
+
+.. _spectre_mitigation_control_command_line:
+
+Mitigation control on the kernel command line
+---------------------------------------------
+
+Spectre variant 2 mitigation can be disabled or force enabled at the
+kernel command line.
+
+	nospectre_v1
+
+		[X86,PPC] Disable mitigations for Spectre Variant 1
+		(bounds check bypass). With this option data leaks are
+		possible in the system.
+
+	nospectre_v2
+
+		[X86] Disable all mitigations for the Spectre variant 2
+		(indirect branch prediction) vulnerability. System may
+		allow data leaks with this option, which is equivalent
+		to spectre_v2=off.
+
+
+        spectre_v2=
+
+		[X86] Control mitigation of Spectre variant 2
+		(indirect branch speculation) vulnerability.
+		The default operation protects the kernel from
+		user space attacks.
+
+		on
+			unconditionally enable, implies
+			spectre_v2_user=on
+		off
+			unconditionally disable, implies
+		        spectre_v2_user=off
+		auto
+			kernel detects whether your CPU model is
+		        vulnerable
+
+		Selecting 'on' will, and 'auto' may, choose a
+		mitigation method at run time according to the
+		CPU, the available microcode, the setting of the
+		CONFIG_RETPOLINE configuration option, and the
+		compiler with which the kernel was built.
+
+		Selecting 'on' will also enable the mitigation
+		against user space to user space task attacks.
+
+		Selecting 'off' will disable both the kernel and
+		the user space protections.
+
+		Specific mitigations can also be selected manually:
+
+		retpoline
+					replace indirect branches
+		retpoline,generic
+					google's original retpoline
+		retpoline,amd
+					AMD-specific minimal thunk
+
+		Not specifying this option is equivalent to
+		spectre_v2=auto.
+
+For user space mitigation:
+
+        spectre_v2_user=
+
+		[X86] Control mitigation of Spectre variant 2
+		(indirect branch speculation) vulnerability between
+		user space tasks
+
+		on
+			Unconditionally enable mitigations. Is
+			enforced by spectre_v2=on
+
+		off
+			Unconditionally disable mitigations. Is
+			enforced by spectre_v2=off
+
+		prctl
+			Indirect branch speculation is enabled,
+			but mitigation can be enabled via prctl
+			per thread. The mitigation control state
+			is inherited on fork.
+
+		prctl,ibpb
+			Like "prctl" above, but only STIBP is
+			controlled per thread. IBPB is issued
+			always when switching between different user
+			space processes.
+
+		seccomp
+			Same as "prctl" above, but all seccomp
+			threads will enable the mitigation unless
+			they explicitly opt out.
+
+		seccomp,ibpb
+			Like "seccomp" above, but only STIBP is
+			controlled per thread. IBPB is issued
+			always when switching between different
+			user space processes.
+
+		auto
+			Kernel selects the mitigation depending on
+			the available CPU features and vulnerability.
+
+		Default mitigation:
+		If CONFIG_SECCOMP=y then "seccomp", otherwise "prctl"
+
+		Not specifying this option is equivalent to
+		spectre_v2_user=auto.
+
+		In general the kernel by default selects
+		reasonable mitigations for the current CPU. To
+		disable Spectre variant 2 mitigations, boot with
+		spectre_v2=off. Spectre variant 1 mitigations
+		cannot be disabled.
+
+Mitigation selection guide
+--------------------------
+
+1. Trusted userspace
+^^^^^^^^^^^^^^^^^^^^
+
+   If all userspace applications are from trusted sources and do not
+   execute externally supplied untrusted code, then the mitigations can
+   be disabled.
+
+2. Protect sensitive programs
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+   For security-sensitive programs that have secrets (e.g. crypto
+   keys), protection against Spectre variant 2 can be put in place by
+   disabling indirect branch speculation when the program is running
+   (See :ref:`Documentation/userspace-api/spec_ctrl.rst <set_spec_ctrl>`).
+
+3. Sandbox untrusted programs
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+   Untrusted programs that could be a source of attacks can be cordoned
+   off by disabling their indirect branch speculation when they are run
+   (See :ref:`Documentation/userspace-api/spec_ctrl.rst <set_spec_ctrl>`).
+   This prevents untrusted programs from polluting the branch target
+   buffer.  All programs running in SECCOMP sandboxes have indirect
+   branch speculation restricted by default. This behavior can be
+   changed via the kernel command line and sysfs control files. See
+   :ref:`spectre_mitigation_control_command_line`.
+
+3. High security mode
+^^^^^^^^^^^^^^^^^^^^^
+
+   All Spectre variant 2 mitigations can be forced on
+   at boot time for all programs (See the "on" option in
+   :ref:`spectre_mitigation_control_command_line`).  This will add
+   overhead as indirect branch speculations for all programs will be
+   restricted.
+
+   On x86, branch target buffer will be flushed with IBPB when switching
+   to a new program. STIBP is left on all the time to protect programs
+   against variant 2 attacks originating from programs running on
+   sibling threads.
+
+   Alternatively, STIBP can be used only when running programs
+   whose indirect branch speculation is explicitly disabled,
+   while IBPB is still used all the time when switching to a new
+   program to clear the branch target buffer (See "ibpb" option in
+   :ref:`spectre_mitigation_control_command_line`).  This "ibpb" option
+   has less performance cost than the "on" option, which leaves STIBP
+   on all the time.
+
+References on Spectre
+---------------------
+
+Intel white papers:
+
+.. _spec_ref1:
+
+[1] `Intel analysis of speculative execution side channels <https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf>`_.
+
+.. _spec_ref2:
+
+[2] `Bounds check bypass <https://software.intel.com/security-software-guidance/software-guidance/bounds-check-bypass>`_.
+
+.. _spec_ref3:
+
+[3] `Deep dive: Retpoline: A branch target injection mitigation <https://software.intel.com/security-software-guidance/insights/deep-dive-retpoline-branch-target-injection-mitigation>`_.
+
+.. _spec_ref4:
+
+[4] `Deep Dive: Single Thread Indirect Branch Predictors <https://software.intel.com/security-software-guidance/insights/deep-dive-single-thread-indirect-branch-predictors>`_.
+
+AMD white papers:
+
+.. _spec_ref5:
+
+[5] `AMD64 technology indirect branch control extension <https://developer.amd.com/wp-content/resources/Architecture_Guidelines_Update_Indirect_Branch_Control.pdf>`_.
+
+.. _spec_ref6:
+
+[6] `Software techniques for managing speculation on AMD processors <https://developer.amd.com/wp-content/resources/90343-B_SoftwareTechniquesforManagingSpeculation_WP_7-18Update_FNL.pdf>`_.
+
+ARM white papers:
+
+.. _spec_ref7:
+
+[7] `Cache speculation side-channels <https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability/download-the-whitepaper>`_.
+
+.. _spec_ref8:
+
+[8] `Cache speculation issues update <https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability/latest-updates/cache-speculation-issues-update>`_.
+
+Google white paper:
+
+.. _spec_ref9:
+
+[9] `Retpoline: a software construct for preventing branch-target-injection <https://support.google.com/faqs/answer/7625886>`_.
+
+MIPS white paper:
+
+.. _spec_ref10:
+
+[10] `MIPS: response on speculative execution and side channel vulnerabilities <https://www.mips.com/blog/mips-response-on-speculative-execution-and-side-channel-vulnerabilities/>`_.
+
+Academic papers:
+
+.. _spec_ref11:
+
+[11] `Spectre Attacks: Exploiting Speculative Execution <https://spectreattack.com/spectre.pdf>`_.
+
+.. _spec_ref12:
+
+[12] `NetSpectre: Read Arbitrary Memory over Network <https://arxiv.org/abs/1807.10535>`_.
+
+.. _spec_ref13:
+
+[13] `Spectre Returns! Speculation Attacks using the Return Stack Buffer <https://www.usenix.org/system/files/conference/woot18/woot18-paper-koruyeh.pdf>`_.
diff --git a/Documentation/admin-guide/hw-vuln/tsx_async_abort.rst b/Documentation/admin-guide/hw-vuln/tsx_async_abort.rst
new file mode 100644
index 0000000..af6865b
--- /dev/null
+++ b/Documentation/admin-guide/hw-vuln/tsx_async_abort.rst
@@ -0,0 +1,279 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+TAA - TSX Asynchronous Abort
+======================================
+
+TAA is a hardware vulnerability that allows unprivileged speculative access to
+data which is available in various CPU internal buffers by using asynchronous
+aborts within an Intel TSX transactional region.
+
+Affected processors
+-------------------
+
+This vulnerability only affects Intel processors that support Intel
+Transactional Synchronization Extensions (TSX) when the TAA_NO bit (bit 8)
+is 0 in the IA32_ARCH_CAPABILITIES MSR.  On processors where the MDS_NO bit
+(bit 5) is 0 in the IA32_ARCH_CAPABILITIES MSR, the existing MDS mitigations
+also mitigate against TAA.
+
+Whether a processor is affected or not can be read out from the TAA
+vulnerability file in sysfs. See :ref:`tsx_async_abort_sys_info`.
+
+Related CVEs
+------------
+
+The following CVE entry is related to this TAA issue:
+
+   ==============  =====  ===================================================
+   CVE-2019-11135  TAA    TSX Asynchronous Abort (TAA) condition on some
+                          microprocessors utilizing speculative execution may
+                          allow an authenticated user to potentially enable
+                          information disclosure via a side channel with
+                          local access.
+   ==============  =====  ===================================================
+
+Problem
+-------
+
+When performing store, load or L1 refill operations, processors write
+data into temporary microarchitectural structures (buffers). The data in
+those buffers can be forwarded to load operations as an optimization.
+
+Intel TSX is an extension to the x86 instruction set architecture that adds
+hardware transactional memory support to improve performance of multi-threaded
+software. TSX lets the processor expose and exploit concurrency hidden in an
+application due to dynamically avoiding unnecessary synchronization.
+
+TSX supports atomic memory transactions that are either committed (success) or
+aborted. During an abort, operations that happened within the transactional region
+are rolled back. An asynchronous abort takes place, among other options, when a
+different thread accesses a cache line that is also used within the transactional
+region when that access might lead to a data race.
+
+Immediately after an uncompleted asynchronous abort, certain speculatively
+executed loads may read data from those internal buffers and pass it to dependent
+operations. This can be then used to infer the value via a cache side channel
+attack.
+
+Because the buffers are potentially shared between Hyper-Threads cross
+Hyper-Thread attacks are possible.
+
+The victim of a malicious actor does not need to make use of TSX. Only the
+attacker needs to begin a TSX transaction and raise an asynchronous abort
+which in turn potenitally leaks data stored in the buffers.
+
+More detailed technical information is available in the TAA specific x86
+architecture section: :ref:`Documentation/x86/tsx_async_abort.rst <tsx_async_abort>`.
+
+
+Attack scenarios
+----------------
+
+Attacks against the TAA vulnerability can be implemented from unprivileged
+applications running on hosts or guests.
+
+As for MDS, the attacker has no control over the memory addresses that can
+be leaked. Only the victim is responsible for bringing data to the CPU. As
+a result, the malicious actor has to sample as much data as possible and
+then postprocess it to try to infer any useful information from it.
+
+A potential attacker only has read access to the data. Also, there is no direct
+privilege escalation by using this technique.
+
+
+.. _tsx_async_abort_sys_info:
+
+TAA system information
+-----------------------
+
+The Linux kernel provides a sysfs interface to enumerate the current TAA status
+of mitigated systems. The relevant sysfs file is:
+
+/sys/devices/system/cpu/vulnerabilities/tsx_async_abort
+
+The possible values in this file are:
+
+.. list-table::
+
+   * - 'Vulnerable'
+     - The CPU is affected by this vulnerability and the microcode and kernel mitigation are not applied.
+   * - 'Vulnerable: Clear CPU buffers attempted, no microcode'
+     - The system tries to clear the buffers but the microcode might not support the operation.
+   * - 'Mitigation: Clear CPU buffers'
+     - The microcode has been updated to clear the buffers. TSX is still enabled.
+   * - 'Mitigation: TSX disabled'
+     - TSX is disabled.
+   * - 'Not affected'
+     - The CPU is not affected by this issue.
+
+.. _ucode_needed:
+
+Best effort mitigation mode
+^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+If the processor is vulnerable, but the availability of the microcode-based
+mitigation mechanism is not advertised via CPUID the kernel selects a best
+effort mitigation mode.  This mode invokes the mitigation instructions
+without a guarantee that they clear the CPU buffers.
+
+This is done to address virtualization scenarios where the host has the
+microcode update applied, but the hypervisor is not yet updated to expose the
+CPUID to the guest. If the host has updated microcode the protection takes
+effect; otherwise a few CPU cycles are wasted pointlessly.
+
+The state in the tsx_async_abort sysfs file reflects this situation
+accordingly.
+
+
+Mitigation mechanism
+--------------------
+
+The kernel detects the affected CPUs and the presence of the microcode which is
+required. If a CPU is affected and the microcode is available, then the kernel
+enables the mitigation by default.
+
+
+The mitigation can be controlled at boot time via a kernel command line option.
+See :ref:`taa_mitigation_control_command_line`.
+
+.. _virt_mechanism:
+
+Virtualization mitigation
+^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Affected systems where the host has TAA microcode and TAA is mitigated by
+having disabled TSX previously, are not vulnerable regardless of the status
+of the VMs.
+
+In all other cases, if the host either does not have the TAA microcode or
+the kernel is not mitigated, the system might be vulnerable.
+
+
+.. _taa_mitigation_control_command_line:
+
+Mitigation control on the kernel command line
+---------------------------------------------
+
+The kernel command line allows to control the TAA mitigations at boot time with
+the option "tsx_async_abort=". The valid arguments for this option are:
+
+  ============  =============================================================
+  off		This option disables the TAA mitigation on affected platforms.
+                If the system has TSX enabled (see next parameter) and the CPU
+                is affected, the system is vulnerable.
+
+  full	        TAA mitigation is enabled. If TSX is enabled, on an affected
+                system it will clear CPU buffers on ring transitions. On
+                systems which are MDS-affected and deploy MDS mitigation,
+                TAA is also mitigated. Specifying this option on those
+                systems will have no effect.
+
+  full,nosmt    The same as tsx_async_abort=full, with SMT disabled on
+                vulnerable CPUs that have TSX enabled. This is the complete
+                mitigation. When TSX is disabled, SMT is not disabled because
+                CPU is not vulnerable to cross-thread TAA attacks.
+  ============  =============================================================
+
+Not specifying this option is equivalent to "tsx_async_abort=full". For
+processors that are affected by both TAA and MDS, specifying just
+"tsx_async_abort=off" without an accompanying "mds=off" will have no
+effect as the same mitigation is used for both vulnerabilities.
+
+The kernel command line also allows to control the TSX feature using the
+parameter "tsx=" on CPUs which support TSX control. MSR_IA32_TSX_CTRL is used
+to control the TSX feature and the enumeration of the TSX feature bits (RTM
+and HLE) in CPUID.
+
+The valid options are:
+
+  ============  =============================================================
+  off		Disables TSX on the system.
+
+                Note that this option takes effect only on newer CPUs which are
+                not vulnerable to MDS, i.e., have MSR_IA32_ARCH_CAPABILITIES.MDS_NO=1
+                and which get the new IA32_TSX_CTRL MSR through a microcode
+                update. This new MSR allows for the reliable deactivation of
+                the TSX functionality.
+
+  on		Enables TSX.
+
+                Although there are mitigations for all known security
+                vulnerabilities, TSX has been known to be an accelerator for
+                several previous speculation-related CVEs, and so there may be
+                unknown security risks associated with leaving it enabled.
+
+  auto		Disables TSX if X86_BUG_TAA is present, otherwise enables TSX
+                on the system.
+  ============  =============================================================
+
+Not specifying this option is equivalent to "tsx=off".
+
+The following combinations of the "tsx_async_abort" and "tsx" are possible. For
+affected platforms tsx=auto is equivalent to tsx=off and the result will be:
+
+  =========  ==========================   =========================================
+  tsx=on     tsx_async_abort=full         The system will use VERW to clear CPU
+                                          buffers. Cross-thread attacks are still
+					  possible on SMT machines.
+  tsx=on     tsx_async_abort=full,nosmt   As above, cross-thread attacks on SMT
+                                          mitigated.
+  tsx=on     tsx_async_abort=off          The system is vulnerable.
+  tsx=off    tsx_async_abort=full         TSX might be disabled if microcode
+                                          provides a TSX control MSR. If so,
+					  system is not vulnerable.
+  tsx=off    tsx_async_abort=full,nosmt   Ditto
+  tsx=off    tsx_async_abort=off          ditto
+  =========  ==========================   =========================================
+
+
+For unaffected platforms "tsx=on" and "tsx_async_abort=full" does not clear CPU
+buffers.  For platforms without TSX control (MSR_IA32_ARCH_CAPABILITIES.MDS_NO=0)
+"tsx" command line argument has no effect.
+
+For the affected platforms below table indicates the mitigation status for the
+combinations of CPUID bit MD_CLEAR and IA32_ARCH_CAPABILITIES MSR bits MDS_NO
+and TSX_CTRL_MSR.
+
+  =======  =========  =============  ========================================
+  MDS_NO   MD_CLEAR   TSX_CTRL_MSR   Status
+  =======  =========  =============  ========================================
+    0          0            0        Vulnerable (needs microcode)
+    0          1            0        MDS and TAA mitigated via VERW
+    1          1            0        MDS fixed, TAA vulnerable if TSX enabled
+                                     because MD_CLEAR has no meaning and
+                                     VERW is not guaranteed to clear buffers
+    1          X            1        MDS fixed, TAA can be mitigated by
+                                     VERW or TSX_CTRL_MSR
+  =======  =========  =============  ========================================
+
+Mitigation selection guide
+--------------------------
+
+1. Trusted userspace and guests
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+If all user space applications are from a trusted source and do not execute
+untrusted code which is supplied externally, then the mitigation can be
+disabled. The same applies to virtualized environments with trusted guests.
+
+
+2. Untrusted userspace and guests
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+If there are untrusted applications or guests on the system, enabling TSX
+might allow a malicious actor to leak data from the host or from other
+processes running on the same physical core.
+
+If the microcode is available and the TSX is disabled on the host, attacks
+are prevented in a virtualized environment as well, even if the VMs do not
+explicitly enable the mitigation.
+
+
+.. _taa_default_mitigations:
+
+Default mitigations
+-------------------
+
+The kernel's default action for vulnerable processors is:
+
+  - Deploy TSX disable mitigation (tsx_async_abort=full tsx=off).