Update Linux to v5.4.2

Change-Id: Idf6911045d9d382da2cfe01b1edff026404ac8fd
diff --git a/Documentation/admin-guide/device-mapper/dm-raid.rst b/Documentation/admin-guide/device-mapper/dm-raid.rst
new file mode 100644
index 0000000..2fe255b
--- /dev/null
+++ b/Documentation/admin-guide/device-mapper/dm-raid.rst
@@ -0,0 +1,419 @@
+=======
+dm-raid
+=======
+
+The device-mapper RAID (dm-raid) target provides a bridge from DM to MD.
+It allows the MD RAID drivers to be accessed using a device-mapper
+interface.
+
+
+Mapping Table Interface
+-----------------------
+The target is named "raid" and it accepts the following parameters::
+
+  <raid_type> <#raid_params> <raid_params> \
+    <#raid_devs> <metadata_dev0> <dev0> [.. <metadata_devN> <devN>]
+
+<raid_type>:
+
+  ============= ===============================================================
+  raid0		RAID0 striping (no resilience)
+  raid1		RAID1 mirroring
+  raid4		RAID4 with dedicated last parity disk
+  raid5_n 	RAID5 with dedicated last parity disk supporting takeover
+		Same as raid4
+
+		- Transitory layout
+  raid5_la	RAID5 left asymmetric
+
+		- rotating parity 0 with data continuation
+  raid5_ra	RAID5 right asymmetric
+
+		- rotating parity N with data continuation
+  raid5_ls	RAID5 left symmetric
+
+		- rotating parity 0 with data restart
+  raid5_rs 	RAID5 right symmetric
+
+		- rotating parity N with data restart
+  raid6_zr	RAID6 zero restart
+
+		- rotating parity zero (left-to-right) with data restart
+  raid6_nr	RAID6 N restart
+
+		- rotating parity N (right-to-left) with data restart
+  raid6_nc	RAID6 N continue
+
+		- rotating parity N (right-to-left) with data continuation
+  raid6_n_6	RAID6 with dedicate parity disks
+
+		- parity and Q-syndrome on the last 2 disks;
+		  layout for takeover from/to raid4/raid5_n
+  raid6_la_6	Same as "raid_la" plus dedicated last Q-syndrome disk
+
+		- layout for takeover from raid5_la from/to raid6
+  raid6_ra_6	Same as "raid5_ra" dedicated last Q-syndrome disk
+
+		- layout for takeover from raid5_ra from/to raid6
+  raid6_ls_6	Same as "raid5_ls" dedicated last Q-syndrome disk
+
+		- layout for takeover from raid5_ls from/to raid6
+  raid6_rs_6	Same as "raid5_rs" dedicated last Q-syndrome disk
+
+		- layout for takeover from raid5_rs from/to raid6
+  raid10        Various RAID10 inspired algorithms chosen by additional params
+		(see raid10_format and raid10_copies below)
+
+		- RAID10: Striped Mirrors (aka 'Striping on top of mirrors')
+		- RAID1E: Integrated Adjacent Stripe Mirroring
+		- RAID1E: Integrated Offset Stripe Mirroring
+		- and other similar RAID10 variants
+  ============= ===============================================================
+
+  Reference: Chapter 4 of
+  http://www.snia.org/sites/default/files/SNIA_DDF_Technical_Position_v2.0.pdf
+
+<#raid_params>: The number of parameters that follow.
+
+<raid_params> consists of
+
+    Mandatory parameters:
+        <chunk_size>:
+		      Chunk size in sectors.  This parameter is often known as
+		      "stripe size".  It is the only mandatory parameter and
+		      is placed first.
+
+    followed by optional parameters (in any order):
+	[sync|nosync]
+		Force or prevent RAID initialization.
+
+	[rebuild <idx>]
+		Rebuild drive number 'idx' (first drive is 0).
+
+	[daemon_sleep <ms>]
+		Interval between runs of the bitmap daemon that
+		clear bits.  A longer interval means less bitmap I/O but
+		resyncing after a failure is likely to take longer.
+
+	[min_recovery_rate <kB/sec/disk>]
+		Throttle RAID initialization
+	[max_recovery_rate <kB/sec/disk>]
+		Throttle RAID initialization
+	[write_mostly <idx>]
+		Mark drive index 'idx' write-mostly.
+	[max_write_behind <sectors>]
+		See '--write-behind=' (man mdadm)
+	[stripe_cache <sectors>]
+		Stripe cache size (RAID 4/5/6 only)
+	[region_size <sectors>]
+		The region_size multiplied by the number of regions is the
+		logical size of the array.  The bitmap records the device
+		synchronisation state for each region.
+
+        [raid10_copies   <# copies>], [raid10_format   <near|far|offset>]
+		These two options are used to alter the default layout of
+		a RAID10 configuration.  The number of copies is can be
+		specified, but the default is 2.  There are also three
+		variations to how the copies are laid down - the default
+		is "near".  Near copies are what most people think of with
+		respect to mirroring.  If these options are left unspecified,
+		or 'raid10_copies 2' and/or 'raid10_format near' are given,
+		then the layouts for 2, 3 and 4 devices	are:
+
+		========	 ==========	   ==============
+		2 drives         3 drives          4 drives
+		========	 ==========	   ==============
+		A1  A1           A1  A1  A2        A1  A1  A2  A2
+		A2  A2           A2  A3  A3        A3  A3  A4  A4
+		A3  A3           A4  A4  A5        A5  A5  A6  A6
+		A4  A4           A5  A6  A6        A7  A7  A8  A8
+		..  ..           ..  ..  ..        ..  ..  ..  ..
+		========	 ==========	   ==============
+
+		The 2-device layout is equivalent 2-way RAID1.  The 4-device
+		layout is what a traditional RAID10 would look like.  The
+		3-device layout is what might be called a 'RAID1E - Integrated
+		Adjacent Stripe Mirroring'.
+
+		If 'raid10_copies 2' and 'raid10_format far', then the layouts
+		for 2, 3 and 4 devices are:
+
+		========	     ============	  ===================
+		2 drives             3 drives             4 drives
+		========	     ============	  ===================
+		A1  A2               A1   A2   A3         A1   A2   A3   A4
+		A3  A4               A4   A5   A6         A5   A6   A7   A8
+		A5  A6               A7   A8   A9         A9   A10  A11  A12
+		..  ..               ..   ..   ..         ..   ..   ..   ..
+		A2  A1               A3   A1   A2         A2   A1   A4   A3
+		A4  A3               A6   A4   A5         A6   A5   A8   A7
+		A6  A5               A9   A7   A8         A10  A9   A12  A11
+		..  ..               ..   ..   ..         ..   ..   ..   ..
+		========	     ============	  ===================
+
+		If 'raid10_copies 2' and 'raid10_format offset', then the
+		layouts for 2, 3 and 4 devices are:
+
+		========       ==========         ================
+		2 drives       3 drives           4 drives
+		========       ==========         ================
+		A1  A2         A1  A2  A3         A1  A2  A3  A4
+		A2  A1         A3  A1  A2         A2  A1  A4  A3
+		A3  A4         A4  A5  A6         A5  A6  A7  A8
+		A4  A3         A6  A4  A5         A6  A5  A8  A7
+		A5  A6         A7  A8  A9         A9  A10 A11 A12
+		A6  A5         A9  A7  A8         A10 A9  A12 A11
+		..  ..         ..  ..  ..         ..  ..  ..  ..
+		========       ==========         ================
+
+		Here we see layouts closely akin to 'RAID1E - Integrated
+		Offset Stripe Mirroring'.
+
+        [delta_disks <N>]
+		The delta_disks option value (-251 < N < +251) triggers
+		device removal (negative value) or device addition (positive
+		value) to any reshape supporting raid levels 4/5/6 and 10.
+		RAID levels 4/5/6 allow for addition of devices (metadata
+		and data device tuple), raid10_near and raid10_offset only
+		allow for device addition. raid10_far does not support any
+		reshaping at all.
+		A minimum of devices have to be kept to enforce resilience,
+		which is 3 devices for raid4/5 and 4 devices for raid6.
+
+        [data_offset <sectors>]
+		This option value defines the offset into each data device
+		where the data starts. This is used to provide out-of-place
+		reshaping space to avoid writing over data while
+		changing the layout of stripes, hence an interruption/crash
+		may happen at any time without the risk of losing data.
+		E.g. when adding devices to an existing raid set during
+		forward reshaping, the out-of-place space will be allocated
+		at the beginning of each raid device. The kernel raid4/5/6/10
+		MD personalities supporting such device addition will read the data from
+		the existing first stripes (those with smaller number of stripes)
+		starting at data_offset to fill up a new stripe with the larger
+		number of stripes, calculate the redundancy blocks (CRC/Q-syndrome)
+		and write that new stripe to offset 0. Same will be applied to all
+		N-1 other new stripes. This out-of-place scheme is used to change
+		the RAID type (i.e. the allocation algorithm) as well, e.g.
+		changing from raid5_ls to raid5_n.
+
+	[journal_dev <dev>]
+		This option adds a journal device to raid4/5/6 raid sets and
+		uses it to close the 'write hole' caused by the non-atomic updates
+		to the component devices which can cause data loss during recovery.
+		The journal device is used as writethrough thus causing writes to
+		be throttled versus non-journaled raid4/5/6 sets.
+		Takeover/reshape is not possible with a raid4/5/6 journal device;
+		it has to be deconfigured before requesting these.
+
+	[journal_mode <mode>]
+		This option sets the caching mode on journaled raid4/5/6 raid sets
+		(see 'journal_dev <dev>' above) to 'writethrough' or 'writeback'.
+		If 'writeback' is selected the journal device has to be resilient
+		and must not suffer from the 'write hole' problem itself (e.g. use
+		raid1 or raid10) to avoid a single point of failure.
+
+<#raid_devs>: The number of devices composing the array.
+	Each device consists of two entries.  The first is the device
+	containing the metadata (if any); the second is the one containing the
+	data. A Maximum of 64 metadata/data device entries are supported
+	up to target version 1.8.0.
+	1.9.0 supports up to 253 which is enforced by the used MD kernel runtime.
+
+	If a drive has failed or is missing at creation time, a '-' can be
+	given for both the metadata and data drives for a given position.
+
+
+Example Tables
+--------------
+
+::
+
+  # RAID4 - 4 data drives, 1 parity (no metadata devices)
+  # No metadata devices specified to hold superblock/bitmap info
+  # Chunk size of 1MiB
+  # (Lines separated for easy reading)
+
+  0 1960893648 raid \
+          raid4 1 2048 \
+          5 - 8:17 - 8:33 - 8:49 - 8:65 - 8:81
+
+  # RAID4 - 4 data drives, 1 parity (with metadata devices)
+  # Chunk size of 1MiB, force RAID initialization,
+  #       min recovery rate at 20 kiB/sec/disk
+
+  0 1960893648 raid \
+          raid4 4 2048 sync min_recovery_rate 20 \
+          5 8:17 8:18 8:33 8:34 8:49 8:50 8:65 8:66 8:81 8:82
+
+
+Status Output
+-------------
+'dmsetup table' displays the table used to construct the mapping.
+The optional parameters are always printed in the order listed
+above with "sync" or "nosync" always output ahead of the other
+arguments, regardless of the order used when originally loading the table.
+Arguments that can be repeated are ordered by value.
+
+
+'dmsetup status' yields information on the state and health of the array.
+The output is as follows (normally a single line, but expanded here for
+clarity)::
+
+  1: <s> <l> raid \
+  2:      <raid_type> <#devices> <health_chars> \
+  3:      <sync_ratio> <sync_action> <mismatch_cnt>
+
+Line 1 is the standard output produced by device-mapper.
+
+Line 2 & 3 are produced by the raid target and are best explained by example::
+
+        0 1960893648 raid raid4 5 AAAAA 2/490221568 init 0
+
+Here we can see the RAID type is raid4, there are 5 devices - all of
+which are 'A'live, and the array is 2/490221568 complete with its initial
+recovery.  Here is a fuller description of the individual fields:
+
+	=============== =========================================================
+	<raid_type>     Same as the <raid_type> used to create the array.
+	<health_chars>  One char for each device, indicating:
+
+			- 'A' = alive and in-sync
+			- 'a' = alive but not in-sync
+			- 'D' = dead/failed.
+	<sync_ratio>    The ratio indicating how much of the array has undergone
+			the process described by 'sync_action'.  If the
+			'sync_action' is "check" or "repair", then the process
+			of "resync" or "recover" can be considered complete.
+	<sync_action>   One of the following possible states:
+
+			idle
+				- No synchronization action is being performed.
+			frozen
+				- The current action has been halted.
+			resync
+				- Array is undergoing its initial synchronization
+				  or is resynchronizing after an unclean shutdown
+				  (possibly aided by a bitmap).
+			recover
+				- A device in the array is being rebuilt or
+				  replaced.
+			check
+				- A user-initiated full check of the array is
+				  being performed.  All blocks are read and
+				  checked for consistency.  The number of
+				  discrepancies found are recorded in
+				  <mismatch_cnt>.  No changes are made to the
+				  array by this action.
+			repair
+				- The same as "check", but discrepancies are
+				  corrected.
+			reshape
+				- The array is undergoing a reshape.
+	<mismatch_cnt>  The number of discrepancies found between mirror copies
+			in RAID1/10 or wrong parity values found in RAID4/5/6.
+			This value is valid only after a "check" of the array
+			is performed.  A healthy array has a 'mismatch_cnt' of 0.
+	<data_offset>   The current data offset to the start of the user data on
+			each component device of a raid set (see the respective
+			raid parameter to support out-of-place reshaping).
+	<journal_char>	- 'A' - active write-through journal device.
+			- 'a' - active write-back journal device.
+			- 'D' - dead journal device.
+			- '-' - no journal device.
+	=============== =========================================================
+
+
+Message Interface
+-----------------
+The dm-raid target will accept certain actions through the 'message' interface.
+('man dmsetup' for more information on the message interface.)  These actions
+include:
+
+	========= ================================================
+	"idle"    Halt the current sync action.
+	"frozen"  Freeze the current sync action.
+	"resync"  Initiate/continue a resync.
+	"recover" Initiate/continue a recover process.
+	"check"   Initiate a check (i.e. a "scrub") of the array.
+	"repair"  Initiate a repair of the array.
+	========= ================================================
+
+
+Discard Support
+---------------
+The implementation of discard support among hardware vendors varies.
+When a block is discarded, some storage devices will return zeroes when
+the block is read.  These devices set the 'discard_zeroes_data'
+attribute.  Other devices will return random data.  Confusingly, some
+devices that advertise 'discard_zeroes_data' will not reliably return
+zeroes when discarded blocks are read!  Since RAID 4/5/6 uses blocks
+from a number of devices to calculate parity blocks and (for performance
+reasons) relies on 'discard_zeroes_data' being reliable, it is important
+that the devices be consistent.  Blocks may be discarded in the middle
+of a RAID 4/5/6 stripe and if subsequent read results are not
+consistent, the parity blocks may be calculated differently at any time;
+making the parity blocks useless for redundancy.  It is important to
+understand how your hardware behaves with discards if you are going to
+enable discards with RAID 4/5/6.
+
+Since the behavior of storage devices is unreliable in this respect,
+even when reporting 'discard_zeroes_data', by default RAID 4/5/6
+discard support is disabled -- this ensures data integrity at the
+expense of losing some performance.
+
+Storage devices that properly support 'discard_zeroes_data' are
+increasingly whitelisted in the kernel and can thus be trusted.
+
+For trusted devices, the following dm-raid module parameter can be set
+to safely enable discard support for RAID 4/5/6:
+
+    'devices_handle_discards_safely'
+
+
+Version History
+---------------
+
+::
+
+ 1.0.0	Initial version.  Support for RAID 4/5/6
+ 1.1.0	Added support for RAID 1
+ 1.2.0	Handle creation of arrays that contain failed devices.
+ 1.3.0	Added support for RAID 10
+ 1.3.1	Allow device replacement/rebuild for RAID 10
+ 1.3.2	Fix/improve redundancy checking for RAID10
+ 1.4.0	Non-functional change.  Removes arg from mapping function.
+ 1.4.1	RAID10 fix redundancy validation checks (commit 55ebbb5).
+ 1.4.2	Add RAID10 "far" and "offset" algorithm support.
+ 1.5.0	Add message interface to allow manipulation of the sync_action.
+	New status (STATUSTYPE_INFO) fields: sync_action and mismatch_cnt.
+ 1.5.1	Add ability to restore transiently failed devices on resume.
+ 1.5.2	'mismatch_cnt' is zero unless [last_]sync_action is "check".
+ 1.6.0	Add discard support (and devices_handle_discard_safely module param).
+ 1.7.0	Add support for MD RAID0 mappings.
+ 1.8.0	Explicitly check for compatible flags in the superblock metadata
+	and reject to start the raid set if any are set by a newer
+	target version, thus avoiding data corruption on a raid set
+	with a reshape in progress.
+ 1.9.0	Add support for RAID level takeover/reshape/region size
+	and set size reduction.
+ 1.9.1	Fix activation of existing RAID 4/10 mapped devices
+ 1.9.2	Don't emit '- -' on the status table line in case the constructor
+	fails reading a superblock. Correctly emit 'maj:min1 maj:min2' and
+	'D' on the status line.  If '- -' is passed into the constructor, emit
+	'- -' on the table line and '-' as the status line health character.
+ 1.10.0	Add support for raid4/5/6 journal device
+ 1.10.1	Fix data corruption on reshape request
+ 1.11.0	Fix table line argument order
+	(wrong raid10_copies/raid10_format sequence)
+ 1.11.1	Add raid4/5/6 journal write-back support via journal_mode option
+ 1.12.1	Fix for MD deadlock between mddev_suspend() and md_write_start() available
+ 1.13.0	Fix dev_health status at end of "recover" (was 'a', now 'A')
+ 1.13.1	Fix deadlock caused by early md_stop_writes().  Also fix size an
+	state races.
+ 1.13.2	Fix raid redundancy validation and avoid keeping raid set frozen
+ 1.14.0	Fix reshape race on small devices.  Fix stripe adding reshape
+	deadlock/potential data corruption.  Update superblock when
+	specific devices are requested via rebuild.  Fix RAID leg
+	rebuild errors.