shiqian | e35fdd9 | 2008-12-10 05:08:54 +0000 | [diff] [blame] | 1 | // Copyright 2007, Google Inc. |
| 2 | // All rights reserved. |
| 3 | // |
| 4 | // Redistribution and use in source and binary forms, with or without |
| 5 | // modification, are permitted provided that the following conditions are |
| 6 | // met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright |
| 9 | // notice, this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above |
| 11 | // copyright notice, this list of conditions and the following disclaimer |
| 12 | // in the documentation and/or other materials provided with the |
| 13 | // distribution. |
| 14 | // * Neither the name of Google Inc. nor the names of its |
| 15 | // contributors may be used to endorse or promote products derived from |
| 16 | // this software without specific prior written permission. |
| 17 | // |
| 18 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 19 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 20 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 21 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 22 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 23 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 24 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 25 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 26 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 27 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 28 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 29 | // |
| 30 | // Author: wan@google.com (Zhanyong Wan) |
| 31 | |
| 32 | // Google Mock - a framework for writing C++ mock classes. |
| 33 | // |
| 34 | // This file defines some utilities useful for implementing Google |
| 35 | // Mock. They are subject to change without notice, so please DO NOT |
| 36 | // USE THEM IN USER CODE. |
| 37 | |
| 38 | #ifndef GMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_INTERNAL_UTILS_H_ |
| 39 | #define GMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_INTERNAL_UTILS_H_ |
| 40 | |
| 41 | #include <stdio.h> |
| 42 | #include <ostream> // NOLINT |
| 43 | #include <string> |
| 44 | |
| 45 | #include <gmock/internal/gmock-generated-internal-utils.h> |
| 46 | #include <gmock/internal/gmock-port.h> |
| 47 | #include <gtest/gtest.h> |
| 48 | |
| 49 | // Concatenates two pre-processor symbols; works for concatenating |
| 50 | // built-in macros like __FILE__ and __LINE__. |
zhanyong.wan | e0d051e | 2009-02-19 00:33:37 +0000 | [diff] [blame] | 51 | #define GMOCK_CONCAT_TOKEN_IMPL_(foo, bar) foo##bar |
| 52 | #define GMOCK_CONCAT_TOKEN_(foo, bar) GMOCK_CONCAT_TOKEN_IMPL_(foo, bar) |
shiqian | e35fdd9 | 2008-12-10 05:08:54 +0000 | [diff] [blame] | 53 | |
| 54 | #ifdef __GNUC__ |
zhanyong.wan | e0d051e | 2009-02-19 00:33:37 +0000 | [diff] [blame] | 55 | #define GMOCK_ATTRIBUTE_UNUSED_ __attribute__ ((unused)) |
shiqian | e35fdd9 | 2008-12-10 05:08:54 +0000 | [diff] [blame] | 56 | #else |
zhanyong.wan | e0d051e | 2009-02-19 00:33:37 +0000 | [diff] [blame] | 57 | #define GMOCK_ATTRIBUTE_UNUSED_ |
shiqian | e35fdd9 | 2008-12-10 05:08:54 +0000 | [diff] [blame] | 58 | #endif // __GNUC__ |
| 59 | |
| 60 | class ProtocolMessage; |
| 61 | namespace proto2 { class Message; } |
| 62 | |
| 63 | namespace testing { |
| 64 | namespace internal { |
| 65 | |
zhanyong.wan | ce198ff | 2009-02-12 01:34:27 +0000 | [diff] [blame] | 66 | // Converts an identifier name to a space-separated list of lower-case |
| 67 | // words. Each maximum substring of the form [A-Za-z][a-z]*|\d+ is |
| 68 | // treated as one word. For example, both "FooBar123" and |
| 69 | // "foo_bar_123" are converted to "foo bar 123". |
| 70 | string ConvertIdentifierNameToWords(const char* id_name); |
| 71 | |
shiqian | e35fdd9 | 2008-12-10 05:08:54 +0000 | [diff] [blame] | 72 | // Defining a variable of type CompileAssertTypesEqual<T1, T2> will cause a |
| 73 | // compiler error iff T1 and T2 are different types. |
| 74 | template <typename T1, typename T2> |
| 75 | struct CompileAssertTypesEqual; |
| 76 | |
| 77 | template <typename T> |
| 78 | struct CompileAssertTypesEqual<T, T> { |
| 79 | }; |
| 80 | |
| 81 | // Removes the reference from a type if it is a reference type, |
| 82 | // otherwise leaves it unchanged. This is the same as |
| 83 | // tr1::remove_reference, which is not widely available yet. |
| 84 | template <typename T> |
| 85 | struct RemoveReference { typedef T type; }; // NOLINT |
| 86 | template <typename T> |
| 87 | struct RemoveReference<T&> { typedef T type; }; // NOLINT |
| 88 | |
| 89 | // A handy wrapper around RemoveReference that works when the argument |
| 90 | // T depends on template parameters. |
zhanyong.wan | e0d051e | 2009-02-19 00:33:37 +0000 | [diff] [blame] | 91 | #define GMOCK_REMOVE_REFERENCE_(T) \ |
shiqian | e35fdd9 | 2008-12-10 05:08:54 +0000 | [diff] [blame] | 92 | typename ::testing::internal::RemoveReference<T>::type |
| 93 | |
| 94 | // Removes const from a type if it is a const type, otherwise leaves |
| 95 | // it unchanged. This is the same as tr1::remove_const, which is not |
| 96 | // widely available yet. |
| 97 | template <typename T> |
| 98 | struct RemoveConst { typedef T type; }; // NOLINT |
| 99 | template <typename T> |
| 100 | struct RemoveConst<const T> { typedef T type; }; // NOLINT |
| 101 | |
zhanyong.wan | b824316 | 2009-06-04 05:48:20 +0000 | [diff] [blame] | 102 | // MSVC 8.0 has a bug which causes the above definition to fail to |
| 103 | // remove the const in 'const int[3]'. The following specialization |
| 104 | // works around the bug. However, it causes trouble with gcc and thus |
| 105 | // needs to be conditionally compiled. |
| 106 | #ifdef _MSC_VER |
| 107 | template <typename T, size_t N> |
| 108 | struct RemoveConst<T[N]> { |
| 109 | typedef typename RemoveConst<T>::type type[N]; |
| 110 | }; |
| 111 | #endif // _MSC_VER |
| 112 | |
shiqian | e35fdd9 | 2008-12-10 05:08:54 +0000 | [diff] [blame] | 113 | // A handy wrapper around RemoveConst that works when the argument |
| 114 | // T depends on template parameters. |
zhanyong.wan | e0d051e | 2009-02-19 00:33:37 +0000 | [diff] [blame] | 115 | #define GMOCK_REMOVE_CONST_(T) \ |
shiqian | e35fdd9 | 2008-12-10 05:08:54 +0000 | [diff] [blame] | 116 | typename ::testing::internal::RemoveConst<T>::type |
| 117 | |
| 118 | // Adds reference to a type if it is not a reference type, |
| 119 | // otherwise leaves it unchanged. This is the same as |
| 120 | // tr1::add_reference, which is not widely available yet. |
| 121 | template <typename T> |
| 122 | struct AddReference { typedef T& type; }; // NOLINT |
| 123 | template <typename T> |
| 124 | struct AddReference<T&> { typedef T& type; }; // NOLINT |
| 125 | |
| 126 | // A handy wrapper around AddReference that works when the argument T |
| 127 | // depends on template parameters. |
zhanyong.wan | e0d051e | 2009-02-19 00:33:37 +0000 | [diff] [blame] | 128 | #define GMOCK_ADD_REFERENCE_(T) \ |
shiqian | e35fdd9 | 2008-12-10 05:08:54 +0000 | [diff] [blame] | 129 | typename ::testing::internal::AddReference<T>::type |
| 130 | |
| 131 | // Adds a reference to const on top of T as necessary. For example, |
| 132 | // it transforms |
| 133 | // |
| 134 | // char ==> const char& |
| 135 | // const char ==> const char& |
| 136 | // char& ==> const char& |
| 137 | // const char& ==> const char& |
| 138 | // |
| 139 | // The argument T must depend on some template parameters. |
zhanyong.wan | e0d051e | 2009-02-19 00:33:37 +0000 | [diff] [blame] | 140 | #define GMOCK_REFERENCE_TO_CONST_(T) \ |
| 141 | GMOCK_ADD_REFERENCE_(const GMOCK_REMOVE_REFERENCE_(T)) |
shiqian | e35fdd9 | 2008-12-10 05:08:54 +0000 | [diff] [blame] | 142 | |
| 143 | // PointeeOf<Pointer>::type is the type of a value pointed to by a |
| 144 | // Pointer, which can be either a smart pointer or a raw pointer. The |
| 145 | // following default implementation is for the case where Pointer is a |
| 146 | // smart pointer. |
| 147 | template <typename Pointer> |
| 148 | struct PointeeOf { |
| 149 | // Smart pointer classes define type element_type as the type of |
| 150 | // their pointees. |
| 151 | typedef typename Pointer::element_type type; |
| 152 | }; |
| 153 | // This specialization is for the raw pointer case. |
| 154 | template <typename T> |
| 155 | struct PointeeOf<T*> { typedef T type; }; // NOLINT |
| 156 | |
| 157 | // GetRawPointer(p) returns the raw pointer underlying p when p is a |
| 158 | // smart pointer, or returns p itself when p is already a raw pointer. |
| 159 | // The following default implementation is for the smart pointer case. |
| 160 | template <typename Pointer> |
| 161 | inline typename Pointer::element_type* GetRawPointer(const Pointer& p) { |
| 162 | return p.get(); |
| 163 | } |
| 164 | // This overloaded version is for the raw pointer case. |
| 165 | template <typename Element> |
| 166 | inline Element* GetRawPointer(Element* p) { return p; } |
| 167 | |
| 168 | // This comparator allows linked_ptr to be stored in sets. |
| 169 | template <typename T> |
| 170 | struct LinkedPtrLessThan { |
zhanyong.wan | 16cf473 | 2009-05-14 20:55:30 +0000 | [diff] [blame] | 171 | bool operator()(const ::testing::internal::linked_ptr<T>& lhs, |
shiqian | e35fdd9 | 2008-12-10 05:08:54 +0000 | [diff] [blame] | 172 | const ::testing::internal::linked_ptr<T>& rhs) const { |
| 173 | return lhs.get() < rhs.get(); |
| 174 | } |
| 175 | }; |
| 176 | |
| 177 | // ImplicitlyConvertible<From, To>::value is a compile-time bool |
| 178 | // constant that's true iff type From can be implicitly converted to |
| 179 | // type To. |
| 180 | template <typename From, typename To> |
| 181 | class ImplicitlyConvertible { |
| 182 | private: |
| 183 | // We need the following helper functions only for their types. |
| 184 | // They have no implementations. |
| 185 | |
| 186 | // MakeFrom() is an expression whose type is From. We cannot simply |
| 187 | // use From(), as the type From may not have a public default |
| 188 | // constructor. |
| 189 | static From MakeFrom(); |
| 190 | |
| 191 | // These two functions are overloaded. Given an expression |
| 192 | // Helper(x), the compiler will pick the first version if x can be |
| 193 | // implicitly converted to type To; otherwise it will pick the |
| 194 | // second version. |
| 195 | // |
| 196 | // The first version returns a value of size 1, and the second |
| 197 | // version returns a value of size 2. Therefore, by checking the |
| 198 | // size of Helper(x), which can be done at compile time, we can tell |
| 199 | // which version of Helper() is used, and hence whether x can be |
| 200 | // implicitly converted to type To. |
| 201 | static char Helper(To); |
| 202 | static char (&Helper(...))[2]; // NOLINT |
| 203 | |
| 204 | // We have to put the 'public' section after the 'private' section, |
| 205 | // or MSVC refuses to compile the code. |
| 206 | public: |
| 207 | // MSVC warns about implicitly converting from double to int for |
| 208 | // possible loss of data, so we need to temporarily disable the |
| 209 | // warning. |
| 210 | #ifdef _MSC_VER |
| 211 | #pragma warning(push) // Saves the current warning state. |
| 212 | #pragma warning(disable:4244) // Temporarily disables warning 4244. |
| 213 | static const bool value = |
| 214 | sizeof(Helper(ImplicitlyConvertible::MakeFrom())) == 1; |
| 215 | #pragma warning(pop) // Restores the warning state. |
| 216 | #else |
| 217 | static const bool value = |
| 218 | sizeof(Helper(ImplicitlyConvertible::MakeFrom())) == 1; |
| 219 | #endif // _MSV_VER |
| 220 | }; |
| 221 | template <typename From, typename To> |
| 222 | const bool ImplicitlyConvertible<From, To>::value; |
| 223 | |
zhanyong.wan | 16cf473 | 2009-05-14 20:55:30 +0000 | [diff] [blame] | 224 | // In what follows, we use the term "kind" to indicate whether a type |
| 225 | // is bool, an integer type (excluding bool), a floating-point type, |
| 226 | // or none of them. This categorization is useful for determining |
| 227 | // when a matcher argument type can be safely converted to another |
| 228 | // type in the implementation of SafeMatcherCast. |
| 229 | enum TypeKind { |
| 230 | kBool, kInteger, kFloatingPoint, kOther |
| 231 | }; |
| 232 | |
| 233 | // KindOf<T>::value is the kind of type T. |
| 234 | template <typename T> struct KindOf { |
| 235 | enum { value = kOther }; // The default kind. |
| 236 | }; |
| 237 | |
| 238 | // This macro declares that the kind of 'type' is 'kind'. |
| 239 | #define GMOCK_DECLARE_KIND_(type, kind) \ |
| 240 | template <> struct KindOf<type> { enum { value = kind }; } |
| 241 | |
| 242 | GMOCK_DECLARE_KIND_(bool, kBool); |
| 243 | |
| 244 | // All standard integer types. |
| 245 | GMOCK_DECLARE_KIND_(char, kInteger); |
| 246 | GMOCK_DECLARE_KIND_(signed char, kInteger); |
| 247 | GMOCK_DECLARE_KIND_(unsigned char, kInteger); |
| 248 | GMOCK_DECLARE_KIND_(short, kInteger); // NOLINT |
| 249 | GMOCK_DECLARE_KIND_(unsigned short, kInteger); // NOLINT |
| 250 | GMOCK_DECLARE_KIND_(int, kInteger); |
| 251 | GMOCK_DECLARE_KIND_(unsigned int, kInteger); |
| 252 | GMOCK_DECLARE_KIND_(long, kInteger); // NOLINT |
| 253 | GMOCK_DECLARE_KIND_(unsigned long, kInteger); // NOLINT |
| 254 | |
| 255 | // MSVC can be configured to define wchar_t as a typedef of unsigned |
| 256 | // short. It defines _NATIVE_WCHAR_T_DEFINED symbol when wchar_t is a |
| 257 | // native type. |
| 258 | #if !defined(_MSC_VER) || defined(_NATIVE_WCHAR_T_DEFINED) |
| 259 | GMOCK_DECLARE_KIND_(wchar_t, kInteger); |
| 260 | #endif |
| 261 | |
| 262 | // Non-standard integer types. |
| 263 | GMOCK_DECLARE_KIND_(Int64, kInteger); |
| 264 | GMOCK_DECLARE_KIND_(UInt64, kInteger); |
| 265 | |
| 266 | // All standard floating-point types. |
| 267 | GMOCK_DECLARE_KIND_(float, kFloatingPoint); |
| 268 | GMOCK_DECLARE_KIND_(double, kFloatingPoint); |
| 269 | GMOCK_DECLARE_KIND_(long double, kFloatingPoint); |
| 270 | |
| 271 | #undef GMOCK_DECLARE_KIND_ |
| 272 | |
| 273 | // Evaluates to the kind of 'type'. |
| 274 | #define GMOCK_KIND_OF_(type) \ |
| 275 | static_cast< ::testing::internal::TypeKind>( \ |
| 276 | ::testing::internal::KindOf<type>::value) |
| 277 | |
| 278 | // Evaluates to true iff integer type T is signed. |
| 279 | #define GMOCK_IS_SIGNED_(T) (static_cast<T>(-1) < 0) |
| 280 | |
| 281 | // LosslessArithmeticConvertibleImpl<kFromKind, From, kToKind, To>::value |
| 282 | // is true iff arithmetic type From can be losslessly converted to |
| 283 | // arithmetic type To. |
| 284 | // |
| 285 | // It's the user's responsibility to ensure that both From and To are |
| 286 | // raw (i.e. has no CV modifier, is not a pointer, and is not a |
| 287 | // reference) built-in arithmetic types, kFromKind is the kind of |
| 288 | // From, and kToKind is the kind of To; the value is |
| 289 | // implementation-defined when the above pre-condition is violated. |
| 290 | template <TypeKind kFromKind, typename From, TypeKind kToKind, typename To> |
| 291 | struct LosslessArithmeticConvertibleImpl : public false_type {}; |
| 292 | |
| 293 | // Converting bool to bool is lossless. |
| 294 | template <> |
| 295 | struct LosslessArithmeticConvertibleImpl<kBool, bool, kBool, bool> |
| 296 | : public true_type {}; // NOLINT |
| 297 | |
| 298 | // Converting bool to any integer type is lossless. |
| 299 | template <typename To> |
| 300 | struct LosslessArithmeticConvertibleImpl<kBool, bool, kInteger, To> |
| 301 | : public true_type {}; // NOLINT |
| 302 | |
| 303 | // Converting bool to any floating-point type is lossless. |
| 304 | template <typename To> |
| 305 | struct LosslessArithmeticConvertibleImpl<kBool, bool, kFloatingPoint, To> |
| 306 | : public true_type {}; // NOLINT |
| 307 | |
| 308 | // Converting an integer to bool is lossy. |
| 309 | template <typename From> |
| 310 | struct LosslessArithmeticConvertibleImpl<kInteger, From, kBool, bool> |
| 311 | : public false_type {}; // NOLINT |
| 312 | |
| 313 | // Converting an integer to another non-bool integer is lossless iff |
| 314 | // the target type's range encloses the source type's range. |
| 315 | template <typename From, typename To> |
| 316 | struct LosslessArithmeticConvertibleImpl<kInteger, From, kInteger, To> |
| 317 | : public bool_constant< |
| 318 | // When converting from a smaller size to a larger size, we are |
| 319 | // fine as long as we are not converting from signed to unsigned. |
| 320 | ((sizeof(From) < sizeof(To)) && |
| 321 | (!GMOCK_IS_SIGNED_(From) || GMOCK_IS_SIGNED_(To))) || |
| 322 | // When converting between the same size, the signedness must match. |
| 323 | ((sizeof(From) == sizeof(To)) && |
| 324 | (GMOCK_IS_SIGNED_(From) == GMOCK_IS_SIGNED_(To)))> {}; // NOLINT |
| 325 | |
| 326 | #undef GMOCK_IS_SIGNED_ |
| 327 | |
| 328 | // Converting an integer to a floating-point type may be lossy, since |
| 329 | // the format of a floating-point number is implementation-defined. |
| 330 | template <typename From, typename To> |
| 331 | struct LosslessArithmeticConvertibleImpl<kInteger, From, kFloatingPoint, To> |
| 332 | : public false_type {}; // NOLINT |
| 333 | |
| 334 | // Converting a floating-point to bool is lossy. |
| 335 | template <typename From> |
| 336 | struct LosslessArithmeticConvertibleImpl<kFloatingPoint, From, kBool, bool> |
| 337 | : public false_type {}; // NOLINT |
| 338 | |
| 339 | // Converting a floating-point to an integer is lossy. |
| 340 | template <typename From, typename To> |
| 341 | struct LosslessArithmeticConvertibleImpl<kFloatingPoint, From, kInteger, To> |
| 342 | : public false_type {}; // NOLINT |
| 343 | |
| 344 | // Converting a floating-point to another floating-point is lossless |
| 345 | // iff the target type is at least as big as the source type. |
| 346 | template <typename From, typename To> |
| 347 | struct LosslessArithmeticConvertibleImpl< |
| 348 | kFloatingPoint, From, kFloatingPoint, To> |
| 349 | : public bool_constant<sizeof(From) <= sizeof(To)> {}; // NOLINT |
| 350 | |
| 351 | // LosslessArithmeticConvertible<From, To>::value is true iff arithmetic |
| 352 | // type From can be losslessly converted to arithmetic type To. |
| 353 | // |
| 354 | // It's the user's responsibility to ensure that both From and To are |
| 355 | // raw (i.e. has no CV modifier, is not a pointer, and is not a |
| 356 | // reference) built-in arithmetic types; the value is |
| 357 | // implementation-defined when the above pre-condition is violated. |
| 358 | template <typename From, typename To> |
| 359 | struct LosslessArithmeticConvertible |
| 360 | : public LosslessArithmeticConvertibleImpl< |
| 361 | GMOCK_KIND_OF_(From), From, GMOCK_KIND_OF_(To), To> {}; // NOLINT |
| 362 | |
shiqian | e35fdd9 | 2008-12-10 05:08:54 +0000 | [diff] [blame] | 363 | // IsAProtocolMessage<T>::value is a compile-time bool constant that's |
| 364 | // true iff T is type ProtocolMessage, proto2::Message, or a subclass |
| 365 | // of those. |
| 366 | template <typename T> |
zhanyong.wan | 16cf473 | 2009-05-14 20:55:30 +0000 | [diff] [blame] | 367 | struct IsAProtocolMessage |
| 368 | : public bool_constant< |
| 369 | ImplicitlyConvertible<const T*, const ::ProtocolMessage*>::value || |
| 370 | ImplicitlyConvertible<const T*, const ::proto2::Message*>::value> { |
shiqian | e35fdd9 | 2008-12-10 05:08:54 +0000 | [diff] [blame] | 371 | }; |
shiqian | e35fdd9 | 2008-12-10 05:08:54 +0000 | [diff] [blame] | 372 | |
| 373 | // When the compiler sees expression IsContainerTest<C>(0), the first |
| 374 | // overload of IsContainerTest will be picked if C is an STL-style |
| 375 | // container class (since C::const_iterator* is a valid type and 0 can |
| 376 | // be converted to it), while the second overload will be picked |
| 377 | // otherwise (since C::const_iterator will be an invalid type in this |
| 378 | // case). Therefore, we can determine whether C is a container class |
| 379 | // by checking the type of IsContainerTest<C>(0). The value of the |
| 380 | // expression is insignificant. |
| 381 | typedef int IsContainer; |
| 382 | template <class C> |
| 383 | IsContainer IsContainerTest(typename C::const_iterator*) { return 0; } |
| 384 | |
| 385 | typedef char IsNotContainer; |
| 386 | template <class C> |
| 387 | IsNotContainer IsContainerTest(...) { return '\0'; } |
| 388 | |
| 389 | // This interface knows how to report a Google Mock failure (either |
| 390 | // non-fatal or fatal). |
| 391 | class FailureReporterInterface { |
| 392 | public: |
| 393 | // The type of a failure (either non-fatal or fatal). |
| 394 | enum FailureType { |
| 395 | NONFATAL, FATAL |
| 396 | }; |
| 397 | |
| 398 | virtual ~FailureReporterInterface() {} |
| 399 | |
| 400 | // Reports a failure that occurred at the given source file location. |
| 401 | virtual void ReportFailure(FailureType type, const char* file, int line, |
| 402 | const string& message) = 0; |
| 403 | }; |
| 404 | |
| 405 | // Returns the failure reporter used by Google Mock. |
| 406 | FailureReporterInterface* GetFailureReporter(); |
| 407 | |
| 408 | // Asserts that condition is true; aborts the process with the given |
| 409 | // message if condition is false. We cannot use LOG(FATAL) or CHECK() |
| 410 | // as Google Mock might be used to mock the log sink itself. We |
| 411 | // inline this function to prevent it from showing up in the stack |
| 412 | // trace. |
| 413 | inline void Assert(bool condition, const char* file, int line, |
| 414 | const string& msg) { |
| 415 | if (!condition) { |
| 416 | GetFailureReporter()->ReportFailure(FailureReporterInterface::FATAL, |
| 417 | file, line, msg); |
| 418 | } |
| 419 | } |
| 420 | inline void Assert(bool condition, const char* file, int line) { |
| 421 | Assert(condition, file, line, "Assertion failed."); |
| 422 | } |
| 423 | |
| 424 | // Verifies that condition is true; generates a non-fatal failure if |
| 425 | // condition is false. |
| 426 | inline void Expect(bool condition, const char* file, int line, |
| 427 | const string& msg) { |
| 428 | if (!condition) { |
| 429 | GetFailureReporter()->ReportFailure(FailureReporterInterface::NONFATAL, |
| 430 | file, line, msg); |
| 431 | } |
| 432 | } |
| 433 | inline void Expect(bool condition, const char* file, int line) { |
| 434 | Expect(condition, file, line, "Expectation failed."); |
| 435 | } |
| 436 | |
| 437 | // Severity level of a log. |
| 438 | enum LogSeverity { |
| 439 | INFO = 0, |
| 440 | WARNING = 1, |
| 441 | }; |
| 442 | |
| 443 | // Valid values for the --gmock_verbose flag. |
| 444 | |
| 445 | // All logs (informational and warnings) are printed. |
| 446 | const char kInfoVerbosity[] = "info"; |
| 447 | // Only warnings are printed. |
| 448 | const char kWarningVerbosity[] = "warning"; |
| 449 | // No logs are printed. |
| 450 | const char kErrorVerbosity[] = "error"; |
| 451 | |
zhanyong.wan | 9413f2f | 2009-05-29 19:50:06 +0000 | [diff] [blame] | 452 | // Returns true iff a log with the given severity is visible according |
| 453 | // to the --gmock_verbose flag. |
| 454 | bool LogIsVisible(LogSeverity severity); |
| 455 | |
shiqian | e35fdd9 | 2008-12-10 05:08:54 +0000 | [diff] [blame] | 456 | // Prints the given message to stdout iff 'severity' >= the level |
| 457 | // specified by the --gmock_verbose flag. If stack_frames_to_skip >= |
| 458 | // 0, also prints the stack trace excluding the top |
| 459 | // stack_frames_to_skip frames. In opt mode, any positive |
| 460 | // stack_frames_to_skip is treated as 0, since we don't know which |
| 461 | // function calls will be inlined by the compiler and need to be |
| 462 | // conservative. |
| 463 | void Log(LogSeverity severity, const string& message, int stack_frames_to_skip); |
| 464 | |
zhanyong.wan | 16cf473 | 2009-05-14 20:55:30 +0000 | [diff] [blame] | 465 | // TODO(wan@google.com): group all type utilities together. |
| 466 | |
shiqian | e35fdd9 | 2008-12-10 05:08:54 +0000 | [diff] [blame] | 467 | // Type traits. |
| 468 | |
| 469 | // is_reference<T>::value is non-zero iff T is a reference type. |
| 470 | template <typename T> struct is_reference : public false_type {}; |
| 471 | template <typename T> struct is_reference<T&> : public true_type {}; |
| 472 | |
| 473 | // type_equals<T1, T2>::value is non-zero iff T1 and T2 are the same type. |
| 474 | template <typename T1, typename T2> struct type_equals : public false_type {}; |
| 475 | template <typename T> struct type_equals<T, T> : public true_type {}; |
| 476 | |
| 477 | // remove_reference<T>::type removes the reference from type T, if any. |
zhanyong.wan | 16cf473 | 2009-05-14 20:55:30 +0000 | [diff] [blame] | 478 | template <typename T> struct remove_reference { typedef T type; }; // NOLINT |
| 479 | template <typename T> struct remove_reference<T&> { typedef T type; }; // NOLINT |
shiqian | e35fdd9 | 2008-12-10 05:08:54 +0000 | [diff] [blame] | 480 | |
| 481 | // Invalid<T>() returns an invalid value of type T. This is useful |
| 482 | // when a value of type T is needed for compilation, but the statement |
| 483 | // will not really be executed (or we don't care if the statement |
| 484 | // crashes). |
| 485 | template <typename T> |
| 486 | inline T Invalid() { |
| 487 | return *static_cast<typename remove_reference<T>::type*>(NULL); |
| 488 | } |
| 489 | template <> |
| 490 | inline void Invalid<void>() {} |
| 491 | |
zhanyong.wan | b824316 | 2009-06-04 05:48:20 +0000 | [diff] [blame] | 492 | // Utilities for native arrays. |
| 493 | |
| 494 | // ArrayEq() compares two k-dimensional native arrays using the |
| 495 | // elements' operator==, where k can be any integer >= 0. When k is |
| 496 | // 0, ArrayEq() degenerates into comparing a single pair of values. |
| 497 | |
| 498 | template <typename T, typename U> |
| 499 | bool ArrayEq(const T* lhs, size_t size, const U* rhs); |
| 500 | |
| 501 | // This generic version is used when k is 0. |
| 502 | template <typename T, typename U> |
| 503 | inline bool ArrayEq(const T& lhs, const U& rhs) { return lhs == rhs; } |
| 504 | |
| 505 | // This overload is used when k >= 1. |
| 506 | template <typename T, typename U, size_t N> |
| 507 | inline bool ArrayEq(const T(&lhs)[N], const U(&rhs)[N]) { |
| 508 | return internal::ArrayEq(lhs, N, rhs); |
| 509 | } |
| 510 | |
| 511 | // This helper reduces code bloat. If we instead put its logic inside |
| 512 | // the previous ArrayEq() function, arrays with different sizes would |
| 513 | // lead to different copies of the template code. |
| 514 | template <typename T, typename U> |
| 515 | bool ArrayEq(const T* lhs, size_t size, const U* rhs) { |
| 516 | for (size_t i = 0; i != size; i++) { |
| 517 | if (!internal::ArrayEq(lhs[i], rhs[i])) |
| 518 | return false; |
| 519 | } |
| 520 | return true; |
| 521 | } |
| 522 | |
| 523 | // Finds the first element in the iterator range [begin, end) that |
| 524 | // equals elem. Element may be a native array type itself. |
| 525 | template <typename Iter, typename Element> |
| 526 | Iter ArrayAwareFind(Iter begin, Iter end, const Element& elem) { |
| 527 | for (Iter it = begin; it != end; ++it) { |
| 528 | if (internal::ArrayEq(*it, elem)) |
| 529 | return it; |
| 530 | } |
| 531 | return end; |
| 532 | } |
| 533 | |
| 534 | // CopyArray() copies a k-dimensional native array using the elements' |
| 535 | // operator=, where k can be any integer >= 0. When k is 0, |
| 536 | // CopyArray() degenerates into copying a single value. |
| 537 | |
| 538 | template <typename T, typename U> |
| 539 | void CopyArray(const T* from, size_t size, U* to); |
| 540 | |
| 541 | // This generic version is used when k is 0. |
| 542 | template <typename T, typename U> |
| 543 | inline void CopyArray(const T& from, U* to) { *to = from; } |
| 544 | |
| 545 | // This overload is used when k >= 1. |
| 546 | template <typename T, typename U, size_t N> |
| 547 | inline void CopyArray(const T(&from)[N], U(*to)[N]) { |
| 548 | internal::CopyArray(from, N, *to); |
| 549 | } |
| 550 | |
| 551 | // This helper reduces code bloat. If we instead put its logic inside |
| 552 | // the previous CopyArray() function, arrays with different sizes |
| 553 | // would lead to different copies of the template code. |
| 554 | template <typename T, typename U> |
| 555 | void CopyArray(const T* from, size_t size, U* to) { |
| 556 | for (size_t i = 0; i != size; i++) { |
| 557 | internal::CopyArray(from[i], to + i); |
| 558 | } |
| 559 | } |
| 560 | |
| 561 | // The relation between an NativeArray object (see below) and the |
| 562 | // native array it represents. |
| 563 | enum RelationToSource { |
| 564 | kReference, // The NativeArray references the native array. |
| 565 | kCopy // The NativeArray makes a copy of the native array and |
| 566 | // owns the copy. |
| 567 | }; |
| 568 | |
| 569 | // Adapts a native array to a read-only STL-style container. Instead |
| 570 | // of the complete STL container concept, this adaptor only implements |
| 571 | // members useful for Google Mock's container matchers. New members |
| 572 | // should be added as needed. To simplify the implementation, we only |
| 573 | // support Element being a raw type (i.e. having no top-level const or |
| 574 | // reference modifier). It's the client's responsibility to satisfy |
| 575 | // this requirement. Element can be an array type itself (hence |
| 576 | // multi-dimensional arrays are supported). |
| 577 | template <typename Element> |
| 578 | class NativeArray { |
| 579 | public: |
| 580 | // STL-style container typedefs. |
| 581 | typedef Element value_type; |
| 582 | typedef const Element* const_iterator; |
| 583 | |
| 584 | // Constructs from a native array passed by reference. |
| 585 | template <size_t N> |
| 586 | NativeArray(const Element (&array)[N], RelationToSource relation) { |
| 587 | Init(array, N, relation); |
| 588 | } |
| 589 | |
| 590 | // Constructs from a native array passed by a pointer and a size. |
| 591 | // For generality we don't artificially restrict the types of the |
| 592 | // pointer and the size. |
| 593 | template <typename Pointer, typename Size> |
| 594 | NativeArray(const ::std::tr1::tuple<Pointer, Size>& array, |
| 595 | RelationToSource relation) { |
| 596 | Init(internal::GetRawPointer(::std::tr1::get<0>(array)), |
| 597 | ::std::tr1::get<1>(array), |
| 598 | relation); |
| 599 | } |
| 600 | |
| 601 | // Copy constructor. |
| 602 | NativeArray(const NativeArray& rhs) { |
| 603 | Init(rhs.array_, rhs.size_, rhs.relation_to_source_); |
| 604 | } |
| 605 | |
| 606 | ~NativeArray() { |
| 607 | // Ensures that the user doesn't instantiate NativeArray with a |
| 608 | // const or reference type. |
| 609 | testing::StaticAssertTypeEq<Element, |
| 610 | GMOCK_REMOVE_CONST_(GMOCK_REMOVE_REFERENCE_(Element))>(); |
| 611 | if (relation_to_source_ == kCopy) |
| 612 | delete[] array_; |
| 613 | } |
| 614 | |
| 615 | // STL-style container methods. |
| 616 | size_t size() const { return size_; } |
| 617 | const_iterator begin() const { return array_; } |
| 618 | const_iterator end() const { return array_ + size_; } |
| 619 | bool operator==(const NativeArray& rhs) const { |
| 620 | return size() == rhs.size() && |
| 621 | ArrayEq(begin(), size(), rhs.begin()); |
| 622 | } |
| 623 | |
| 624 | private: |
| 625 | // Not implemented as we don't want to support assignment. |
| 626 | void operator=(const NativeArray& rhs); |
| 627 | |
| 628 | // Initializes this object; makes a copy of the input array if |
| 629 | // 'relation' is kCopy. |
| 630 | void Init(const Element* array, size_t size, RelationToSource relation) { |
| 631 | if (relation == kReference) { |
| 632 | array_ = array; |
| 633 | } else { |
| 634 | Element* const copy = new Element[size]; |
| 635 | CopyArray(array, size, copy); |
| 636 | array_ = copy; |
| 637 | } |
| 638 | size_ = size; |
| 639 | relation_to_source_ = relation; |
| 640 | } |
| 641 | |
| 642 | const Element* array_; |
| 643 | size_t size_; |
| 644 | RelationToSource relation_to_source_; |
| 645 | }; |
| 646 | |
| 647 | // Given a raw type (i.e. having no top-level reference or const |
| 648 | // modifier) RawContainer that's either an STL-style container or a |
| 649 | // native array, class StlContainerView<RawContainer> has the |
| 650 | // following members: |
| 651 | // |
| 652 | // - type is a type that provides an STL-style container view to |
| 653 | // (i.e. implements the STL container concept for) RawContainer; |
| 654 | // - const_reference is a type that provides a reference to a const |
| 655 | // RawContainer; |
| 656 | // - ConstReference(raw_container) returns a const reference to an STL-style |
| 657 | // container view to raw_container, which is a RawContainer. |
| 658 | // - Copy(raw_container) returns an STL-style container view of a |
| 659 | // copy of raw_container, which is a RawContainer. |
| 660 | // |
| 661 | // This generic version is used when RawContainer itself is already an |
| 662 | // STL-style container. |
| 663 | template <class RawContainer> |
| 664 | class StlContainerView { |
| 665 | public: |
| 666 | typedef RawContainer type; |
| 667 | typedef const type& const_reference; |
| 668 | |
| 669 | static const_reference ConstReference(const RawContainer& container) { |
| 670 | // Ensures that RawContainer is not a const type. |
| 671 | testing::StaticAssertTypeEq<RawContainer, |
| 672 | GMOCK_REMOVE_CONST_(RawContainer)>(); |
| 673 | return container; |
| 674 | } |
| 675 | static type Copy(const RawContainer& container) { return container; } |
| 676 | }; |
| 677 | |
| 678 | // This specialization is used when RawContainer is a native array type. |
| 679 | template <typename Element, size_t N> |
| 680 | class StlContainerView<Element[N]> { |
| 681 | public: |
| 682 | typedef GMOCK_REMOVE_CONST_(Element) RawElement; |
| 683 | typedef internal::NativeArray<RawElement> type; |
| 684 | // NativeArray<T> can represent a native array either by value or by |
| 685 | // reference (selected by a constructor argument), so 'const type' |
| 686 | // can be used to reference a const native array. We cannot |
| 687 | // 'typedef const type& const_reference' here, as that would mean |
| 688 | // ConstReference() has to return a reference to a local variable. |
| 689 | typedef const type const_reference; |
| 690 | |
| 691 | static const_reference ConstReference(const Element (&array)[N]) { |
| 692 | // Ensures that Element is not a const type. |
| 693 | testing::StaticAssertTypeEq<Element, RawElement>(); |
| 694 | return type(array, kReference); |
| 695 | } |
| 696 | static type Copy(const Element (&array)[N]) { |
| 697 | return type(array, kCopy); |
| 698 | } |
| 699 | }; |
| 700 | |
| 701 | // This specialization is used when RawContainer is a native array |
| 702 | // represented as a (pointer, size) tuple. |
| 703 | template <typename ElementPointer, typename Size> |
| 704 | class StlContainerView< ::std::tr1::tuple<ElementPointer, Size> > { |
| 705 | public: |
| 706 | typedef GMOCK_REMOVE_CONST_( |
| 707 | typename internal::PointeeOf<ElementPointer>::type) RawElement; |
| 708 | typedef internal::NativeArray<RawElement> type; |
| 709 | typedef const type const_reference; |
| 710 | |
| 711 | static const_reference ConstReference( |
| 712 | const ::std::tr1::tuple<ElementPointer, Size>& array) { |
| 713 | return type(array, kReference); |
| 714 | } |
| 715 | static type Copy(const ::std::tr1::tuple<ElementPointer, Size>& array) { |
| 716 | return type(array, kCopy); |
| 717 | } |
| 718 | }; |
| 719 | |
| 720 | // The following specialization prevents the user from instantiating |
| 721 | // StlContainer with a reference type. |
| 722 | template <typename T> class StlContainerView<T&>; |
| 723 | |
shiqian | e35fdd9 | 2008-12-10 05:08:54 +0000 | [diff] [blame] | 724 | } // namespace internal |
| 725 | } // namespace testing |
| 726 | |
| 727 | #endif // GMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_INTERNAL_UTILS_H_ |