blob: b5223a34b158495f0edb760d47ce682f4a2ad665 [file] [log] [blame]
shiqiane35fdd92008-12-10 05:08:54 +00001$$ -*- mode: c++; -*-
2$$ This is a Pump source file. Please use Pump to convert it to
3$$ gmock-generated-variadic-actions.h.
4$$
5$var n = 10 $$ The maximum arity we support.
zhanyong.wan18490652009-05-11 18:54:08 +00006$$}} This meta comment fixes auto-indentation in editors.
shiqiane35fdd92008-12-10 05:08:54 +00007// Copyright 2007, Google Inc.
8// All rights reserved.
9//
10// Redistribution and use in source and binary forms, with or without
11// modification, are permitted provided that the following conditions are
12// met:
13//
14// * Redistributions of source code must retain the above copyright
15// notice, this list of conditions and the following disclaimer.
16// * Redistributions in binary form must reproduce the above
17// copyright notice, this list of conditions and the following disclaimer
18// in the documentation and/or other materials provided with the
19// distribution.
20// * Neither the name of Google Inc. nor the names of its
21// contributors may be used to endorse or promote products derived from
22// this software without specific prior written permission.
23//
24// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
27// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
28// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
29// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
30// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
31// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
32// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
33// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
34// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35//
36// Author: wan@google.com (Zhanyong Wan)
37
38// Google Mock - a framework for writing C++ mock classes.
39//
40// This file implements some commonly used variadic actions.
41
42#ifndef GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_ACTIONS_H_
43#define GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_ACTIONS_H_
44
45#include <gmock/gmock-actions.h>
46#include <gmock/internal/gmock-port.h>
47
48namespace testing {
49namespace internal {
50
51// InvokeHelper<F> knows how to unpack an N-tuple and invoke an N-ary
52// function or method with the unpacked values, where F is a function
53// type that takes N arguments.
54template <typename Result, typename ArgumentTuple>
55class InvokeHelper;
56
57
58$range i 0..n
59$for i [[
60$range j 1..i
61$var types = [[$for j [[, typename A$j]]]]
62$var as = [[$for j, [[A$j]]]]
63$var args = [[$if i==0 [[]] $else [[ args]]]]
64$var import = [[$if i==0 [[]] $else [[
65 using ::std::tr1::get;
66
67]]]]
68$var gets = [[$for j, [[get<$(j - 1)>(args)]]]]
69template <typename R$types>
70class InvokeHelper<R, ::std::tr1::tuple<$as> > {
71 public:
72 template <typename Function>
73 static R Invoke(Function function, const ::std::tr1::tuple<$as>&$args) {
74$import return function($gets);
75 }
76
77 template <class Class, typename MethodPtr>
78 static R InvokeMethod(Class* obj_ptr,
79 MethodPtr method_ptr,
80 const ::std::tr1::tuple<$as>&$args) {
81$import return (obj_ptr->*method_ptr)($gets);
82 }
83};
84
85
86]]
87
88// Implements the Invoke(f) action. The template argument
89// FunctionImpl is the implementation type of f, which can be either a
90// function pointer or a functor. Invoke(f) can be used as an
91// Action<F> as long as f's type is compatible with F (i.e. f can be
92// assigned to a tr1::function<F>).
93template <typename FunctionImpl>
94class InvokeAction {
95 public:
96 // The c'tor makes a copy of function_impl (either a function
97 // pointer or a functor).
98 explicit InvokeAction(FunctionImpl function_impl)
99 : function_impl_(function_impl) {}
100
101 template <typename Result, typename ArgumentTuple>
102 Result Perform(const ArgumentTuple& args) {
103 return InvokeHelper<Result, ArgumentTuple>::Invoke(function_impl_, args);
104 }
105 private:
106 FunctionImpl function_impl_;
107};
108
109// Implements the Invoke(object_ptr, &Class::Method) action.
110template <class Class, typename MethodPtr>
111class InvokeMethodAction {
112 public:
113 InvokeMethodAction(Class* obj_ptr, MethodPtr method_ptr)
114 : obj_ptr_(obj_ptr), method_ptr_(method_ptr) {}
115
116 template <typename Result, typename ArgumentTuple>
117 Result Perform(const ArgumentTuple& args) const {
118 return InvokeHelper<Result, ArgumentTuple>::InvokeMethod(
119 obj_ptr_, method_ptr_, args);
120 }
121 private:
122 Class* const obj_ptr_;
123 const MethodPtr method_ptr_;
124};
125
126// A ReferenceWrapper<T> object represents a reference to type T,
127// which can be either const or not. It can be explicitly converted
128// from, and implicitly converted to, a T&. Unlike a reference,
129// ReferenceWrapper<T> can be copied and can survive template type
130// inference. This is used to support by-reference arguments in the
131// InvokeArgument<N>(...) action. The idea was from "reference
132// wrappers" in tr1, which we don't have in our source tree yet.
133template <typename T>
134class ReferenceWrapper {
135 public:
136 // Constructs a ReferenceWrapper<T> object from a T&.
137 explicit ReferenceWrapper(T& l_value) : pointer_(&l_value) {} // NOLINT
138
139 // Allows a ReferenceWrapper<T> object to be implicitly converted to
140 // a T&.
141 operator T&() const { return *pointer_; }
142 private:
143 T* pointer_;
144};
145
146// CallableHelper has static methods for invoking "callables",
147// i.e. function pointers and functors. It uses overloading to
148// provide a uniform interface for invoking different kinds of
149// callables. In particular, you can use:
150//
151// CallableHelper<R>::Call(callable, a1, a2, ..., an)
152//
153// to invoke an n-ary callable, where R is its return type. If an
154// argument, say a2, needs to be passed by reference, you should write
155// ByRef(a2) instead of a2 in the above expression.
156template <typename R>
157class CallableHelper {
158 public:
159 // Calls a nullary callable.
160 template <typename Function>
161 static R Call(Function function) { return function(); }
162
163 // Calls a unary callable.
164
165 // We deliberately pass a1 by value instead of const reference here
166 // in case it is a C-string literal. If we had declared the
167 // parameter as 'const A1& a1' and write Call(function, "Hi"), the
168 // compiler would've thought A1 is 'char[3]', which causes trouble
169 // when you need to copy a value of type A1. By declaring the
170 // parameter as 'A1 a1', the compiler will correctly infer that A1
171 // is 'const char*' when it sees Call(function, "Hi").
172 //
173 // Since this function is defined inline, the compiler can get rid
174 // of the copying of the arguments. Therefore the performance won't
175 // be hurt.
176 template <typename Function, typename A1>
177 static R Call(Function function, A1 a1) { return function(a1); }
178
179$range i 2..n
180$for i
181[[
182$var arity = [[$if i==2 [[binary]] $elif i==3 [[ternary]] $else [[$i-ary]]]]
183
184 // Calls a $arity callable.
185
186$range j 1..i
187$var typename_As = [[$for j, [[typename A$j]]]]
188$var Aas = [[$for j, [[A$j a$j]]]]
189$var as = [[$for j, [[a$j]]]]
190$var typename_Ts = [[$for j, [[typename T$j]]]]
191$var Ts = [[$for j, [[T$j]]]]
192 template <typename Function, $typename_As>
193 static R Call(Function function, $Aas) {
194 return function($as);
195 }
196
197]]
198
199}; // class CallableHelper
200
shiqiane35fdd92008-12-10 05:08:54 +0000201// An INTERNAL macro for extracting the type of a tuple field. It's
202// subject to change without notice - DO NOT USE IN USER CODE!
zhanyong.wane0d051e2009-02-19 00:33:37 +0000203#define GMOCK_FIELD_(Tuple, N) \
shiqiane35fdd92008-12-10 05:08:54 +0000204 typename ::std::tr1::tuple_element<N, Tuple>::type
205
206$range i 1..n
207
208// SelectArgs<Result, ArgumentTuple, k1, k2, ..., k_n>::type is the
209// type of an n-ary function whose i-th (1-based) argument type is the
210// k{i}-th (0-based) field of ArgumentTuple, which must be a tuple
211// type, and whose return type is Result. For example,
212// SelectArgs<int, ::std::tr1::tuple<bool, char, double, long>, 0, 3>::type
213// is int(bool, long).
214//
215// SelectArgs<Result, ArgumentTuple, k1, k2, ..., k_n>::Select(args)
216// returns the selected fields (k1, k2, ..., k_n) of args as a tuple.
217// For example,
218// SelectArgs<int, ::std::tr1::tuple<bool, char, double>, 2, 0>::Select(
219// ::std::tr1::make_tuple(true, 'a', 2.5))
220// returns ::std::tr1::tuple (2.5, true).
221//
222// The numbers in list k1, k2, ..., k_n must be >= 0, where n can be
223// in the range [0, $n]. Duplicates are allowed and they don't have
224// to be in an ascending or descending order.
225
226template <typename Result, typename ArgumentTuple, $for i, [[int k$i]]>
227class SelectArgs {
228 public:
zhanyong.wane0d051e2009-02-19 00:33:37 +0000229 typedef Result type($for i, [[GMOCK_FIELD_(ArgumentTuple, k$i)]]);
shiqiane35fdd92008-12-10 05:08:54 +0000230 typedef typename Function<type>::ArgumentTuple SelectedArgs;
231 static SelectedArgs Select(const ArgumentTuple& args) {
232 using ::std::tr1::get;
233 return SelectedArgs($for i, [[get<k$i>(args)]]);
234 }
235};
236
237
238$for i [[
239$range j 1..n
240$range j1 1..i-1
241template <typename Result, typename ArgumentTuple$for j1[[, int k$j1]]>
242class SelectArgs<Result, ArgumentTuple,
243 $for j, [[$if j <= i-1 [[k$j]] $else [[-1]]]]> {
244 public:
zhanyong.wane0d051e2009-02-19 00:33:37 +0000245 typedef Result type($for j1, [[GMOCK_FIELD_(ArgumentTuple, k$j1)]]);
shiqiane35fdd92008-12-10 05:08:54 +0000246 typedef typename Function<type>::ArgumentTuple SelectedArgs;
zhanyong.wan3fbd2dd2009-03-26 19:06:45 +0000247 static SelectedArgs Select(const ArgumentTuple& [[]]
248$if i == 1 [[/* args */]] $else [[args]]) {
shiqiane35fdd92008-12-10 05:08:54 +0000249 using ::std::tr1::get;
250 return SelectedArgs($for j1, [[get<k$j1>(args)]]);
251 }
252};
253
254
255]]
zhanyong.wane0d051e2009-02-19 00:33:37 +0000256#undef GMOCK_FIELD_
shiqiane35fdd92008-12-10 05:08:54 +0000257
258$var ks = [[$for i, [[k$i]]]]
259
260// Implements the WithArgs action.
261template <typename InnerAction, $for i, [[int k$i = -1]]>
262class WithArgsAction {
263 public:
264 explicit WithArgsAction(const InnerAction& action) : action_(action) {}
265
266 template <typename F>
zhanyong.wan38ca64d2009-02-19 22:30:22 +0000267 operator Action<F>() const { return MakeAction(new Impl<F>(action_)); }
268
269 private:
270 template <typename F>
271 class Impl : public ActionInterface<F> {
272 public:
shiqiane35fdd92008-12-10 05:08:54 +0000273 typedef typename Function<F>::Result Result;
274 typedef typename Function<F>::ArgumentTuple ArgumentTuple;
zhanyong.wan38ca64d2009-02-19 22:30:22 +0000275
276 explicit Impl(const InnerAction& action) : action_(action) {}
277
278 virtual Result Perform(const ArgumentTuple& args) {
279 return action_.Perform(SelectArgs<Result, ArgumentTuple, $ks>::Select(args));
280 }
281
282 private:
shiqiane35fdd92008-12-10 05:08:54 +0000283 typedef typename SelectArgs<Result, ArgumentTuple,
zhanyong.wan38ca64d2009-02-19 22:30:22 +0000284 $ks>::type InnerFunctionType;
shiqiane35fdd92008-12-10 05:08:54 +0000285
zhanyong.wan38ca64d2009-02-19 22:30:22 +0000286 Action<InnerFunctionType> action_;
287 };
shiqiane35fdd92008-12-10 05:08:54 +0000288
shiqiane35fdd92008-12-10 05:08:54 +0000289 const InnerAction action_;
290};
291
292// Does two actions sequentially. Used for implementing the DoAll(a1,
293// a2, ...) action.
294template <typename Action1, typename Action2>
295class DoBothAction {
296 public:
297 DoBothAction(Action1 action1, Action2 action2)
298 : action1_(action1), action2_(action2) {}
299
300 // This template type conversion operator allows DoAll(a1, ..., a_n)
301 // to be used in ANY function of compatible type.
302 template <typename F>
303 operator Action<F>() const {
zhanyong.wan38ca64d2009-02-19 22:30:22 +0000304 return Action<F>(new Impl<F>(action1_, action2_));
305 }
306
307 private:
308 // Implements the DoAll(...) action for a particular function type F.
309 template <typename F>
310 class Impl : public ActionInterface<F> {
311 public:
shiqiane35fdd92008-12-10 05:08:54 +0000312 typedef typename Function<F>::Result Result;
313 typedef typename Function<F>::ArgumentTuple ArgumentTuple;
314 typedef typename Function<F>::MakeResultVoid VoidResult;
315
zhanyong.wan38ca64d2009-02-19 22:30:22 +0000316 Impl(const Action<VoidResult>& action1, const Action<F>& action2)
317 : action1_(action1), action2_(action2) {}
shiqiane35fdd92008-12-10 05:08:54 +0000318
zhanyong.wan38ca64d2009-02-19 22:30:22 +0000319 virtual Result Perform(const ArgumentTuple& args) {
320 action1_.Perform(args);
321 return action2_.Perform(args);
322 }
shiqiane35fdd92008-12-10 05:08:54 +0000323
zhanyong.wan38ca64d2009-02-19 22:30:22 +0000324 private:
325 const Action<VoidResult> action1_;
326 const Action<F> action2_;
327 };
328
shiqiane35fdd92008-12-10 05:08:54 +0000329 Action1 action1_;
330 Action2 action2_;
331};
332
shiqian326aa562009-01-09 21:43:57 +0000333// A macro from the ACTION* family (defined later in this file)
334// defines an action that can be used in a mock function. Typically,
335// these actions only care about a subset of the arguments of the mock
336// function. For example, if such an action only uses the second
337// argument, it can be used in any mock function that takes >= 2
338// arguments where the type of the second argument is compatible.
339//
340// Therefore, the action implementation must be prepared to take more
341// arguments than it needs. The ExcessiveArg type is used to
342// represent those excessive arguments. In order to keep the compiler
343// error messages tractable, we define it in the testing namespace
344// instead of testing::internal. However, this is an INTERNAL TYPE
345// and subject to change without notice, so a user MUST NOT USE THIS
346// TYPE DIRECTLY.
347struct ExcessiveArg {};
348
349// A helper class needed for implementing the ACTION* macros.
350template <typename Result, class Impl>
351class ActionHelper {
352 public:
353$range i 0..n
354$for i
355
356[[
357$var template = [[$if i==0 [[]] $else [[
358$range j 0..i-1
359 template <$for j, [[typename A$j]]>
360]]]]
361$range j 0..i-1
362$var As = [[$for j, [[A$j]]]]
363$var as = [[$for j, [[get<$j>(args)]]]]
364$range k 1..n-i
365$var eas = [[$for k, [[ExcessiveArg()]]]]
366$var arg_list = [[$if (i==0) | (i==n) [[$as$eas]] $else [[$as, $eas]]]]
367$template
368 static Result Perform(Impl* impl, const ::std::tr1::tuple<$As>& args) {
369 using ::std::tr1::get;
zhanyong.wan7f4c2c02009-02-19 22:38:27 +0000370 return impl->template gmock_PerformImpl<$As>(args, $arg_list);
shiqian326aa562009-01-09 21:43:57 +0000371 }
372
373]]
374};
375
shiqiane35fdd92008-12-10 05:08:54 +0000376} // namespace internal
377
378// Various overloads for Invoke().
379
380// Creates an action that invokes 'function_impl' with the mock
381// function's arguments.
382template <typename FunctionImpl>
383PolymorphicAction<internal::InvokeAction<FunctionImpl> > Invoke(
384 FunctionImpl function_impl) {
385 return MakePolymorphicAction(
386 internal::InvokeAction<FunctionImpl>(function_impl));
387}
388
389// Creates an action that invokes the given method on the given object
390// with the mock function's arguments.
391template <class Class, typename MethodPtr>
392PolymorphicAction<internal::InvokeMethodAction<Class, MethodPtr> > Invoke(
393 Class* obj_ptr, MethodPtr method_ptr) {
394 return MakePolymorphicAction(
395 internal::InvokeMethodAction<Class, MethodPtr>(obj_ptr, method_ptr));
396}
397
398// Creates a reference wrapper for the given L-value. If necessary,
399// you can explicitly specify the type of the reference. For example,
400// suppose 'derived' is an object of type Derived, ByRef(derived)
401// would wrap a Derived&. If you want to wrap a const Base& instead,
402// where Base is a base class of Derived, just write:
403//
404// ByRef<const Base>(derived)
405template <typename T>
406inline internal::ReferenceWrapper<T> ByRef(T& l_value) { // NOLINT
407 return internal::ReferenceWrapper<T>(l_value);
408}
409
shiqiane35fdd92008-12-10 05:08:54 +0000410// WithoutArgs(inner_action) can be used in a mock function with a
411// non-empty argument list to perform inner_action, which takes no
412// argument. In other words, it adapts an action accepting no
413// argument to one that accepts (and ignores) arguments.
414template <typename InnerAction>
415inline internal::WithArgsAction<InnerAction>
416WithoutArgs(const InnerAction& action) {
417 return internal::WithArgsAction<InnerAction>(action);
418}
419
420// WithArg<k>(an_action) creates an action that passes the k-th
421// (0-based) argument of the mock function to an_action and performs
422// it. It adapts an action accepting one argument to one that accepts
423// multiple arguments. For convenience, we also provide
424// WithArgs<k>(an_action) (defined below) as a synonym.
425template <int k, typename InnerAction>
426inline internal::WithArgsAction<InnerAction, k>
427WithArg(const InnerAction& action) {
428 return internal::WithArgsAction<InnerAction, k>(action);
429}
430
431// WithArgs<N1, N2, ..., Nk>(an_action) creates an action that passes
432// the selected arguments of the mock function to an_action and
433// performs it. It serves as an adaptor between actions with
434// different argument lists. C++ doesn't support default arguments for
435// function templates, so we have to overload it.
436
437$range i 1..n
438$for i [[
439$range j 1..i
440template <$for j [[int k$j, ]]typename InnerAction>
441inline internal::WithArgsAction<InnerAction$for j [[, k$j]]>
442WithArgs(const InnerAction& action) {
443 return internal::WithArgsAction<InnerAction$for j [[, k$j]]>(action);
444}
445
446
447]]
448// Creates an action that does actions a1, a2, ..., sequentially in
449// each invocation.
450$range i 2..n
451$for i [[
452$range j 2..i
453$var types = [[$for j, [[typename Action$j]]]]
454$var Aas = [[$for j [[, Action$j a$j]]]]
455
456template <typename Action1, $types>
457$range k 1..i-1
458
459inline $for k [[internal::DoBothAction<Action$k, ]]Action$i$for k [[>]]
460
461DoAll(Action1 a1$Aas) {
462$if i==2 [[
463
464 return internal::DoBothAction<Action1, Action2>(a1, a2);
465]] $else [[
466$range j2 2..i
467
468 return DoAll(a1, DoAll($for j2, [[a$j2]]));
469]]
470
471}
472
473]]
474
475} // namespace testing
476
shiqian326aa562009-01-09 21:43:57 +0000477// The ACTION* family of macros can be used in a namespace scope to
478// define custom actions easily. The syntax:
479//
480// ACTION(name) { statements; }
481//
482// will define an action with the given name that executes the
483// statements. The value returned by the statements will be used as
484// the return value of the action. Inside the statements, you can
485// refer to the K-th (0-based) argument of the mock function by
486// 'argK', and refer to its type by 'argK_type'. For example:
487//
488// ACTION(IncrementArg1) {
489// arg1_type temp = arg1;
490// return ++(*temp);
491// }
492//
493// allows you to write
494//
495// ...WillOnce(IncrementArg1());
496//
497// You can also refer to the entire argument tuple and its type by
498// 'args' and 'args_type', and refer to the mock function type and its
499// return type by 'function_type' and 'return_type'.
500//
501// Note that you don't need to specify the types of the mock function
502// arguments. However rest assured that your code is still type-safe:
503// you'll get a compiler error if *arg1 doesn't support the ++
504// operator, or if the type of ++(*arg1) isn't compatible with the
505// mock function's return type, for example.
506//
507// Sometimes you'll want to parameterize the action. For that you can use
508// another macro:
509//
510// ACTION_P(name, param_name) { statements; }
511//
512// For example:
513//
514// ACTION_P(Add, n) { return arg0 + n; }
515//
516// will allow you to write:
517//
518// ...WillOnce(Add(5));
519//
520// Note that you don't need to provide the type of the parameter
521// either. If you need to reference the type of a parameter named
522// 'foo', you can write 'foo_type'. For example, in the body of
523// ACTION_P(Add, n) above, you can write 'n_type' to refer to the type
524// of 'n'.
525//
526// We also provide ACTION_P2, ACTION_P3, ..., up to ACTION_P$n to support
527// multi-parameter actions.
528//
529// For the purpose of typing, you can view
530//
531// ACTION_Pk(Foo, p1, ..., pk) { ... }
532//
533// as shorthand for
534//
535// template <typename p1_type, ..., typename pk_type>
536// FooActionPk<p1_type, ..., pk_type> Foo(p1_type p1, ..., pk_type pk) { ... }
537//
538// In particular, you can provide the template type arguments
539// explicitly when invoking Foo(), as in Foo<long, bool>(5, false);
540// although usually you can rely on the compiler to infer the types
541// for you automatically. You can assign the result of expression
542// Foo(p1, ..., pk) to a variable of type FooActionPk<p1_type, ...,
543// pk_type>. This can be useful when composing actions.
544//
545// You can also overload actions with different numbers of parameters:
546//
547// ACTION_P(Plus, a) { ... }
548// ACTION_P2(Plus, a, b) { ... }
549//
550// While it's tempting to always use the ACTION* macros when defining
551// a new action, you should also consider implementing ActionInterface
552// or using MakePolymorphicAction() instead, especially if you need to
553// use the action a lot. While these approaches require more work,
554// they give you more control on the types of the mock function
555// arguments and the action parameters, which in general leads to
556// better compiler error messages that pay off in the long run. They
557// also allow overloading actions based on parameter types (as opposed
558// to just based on the number of parameters).
559//
560// CAVEAT:
561//
562// ACTION*() can only be used in a namespace scope. The reason is
563// that C++ doesn't yet allow function-local types to be used to
564// instantiate templates. The up-coming C++0x standard will fix this.
565// Once that's done, we'll consider supporting using ACTION*() inside
566// a function.
567//
568// MORE INFORMATION:
569//
570// To learn more about using these macros, please search for 'ACTION'
571// on http://code.google.com/p/googlemock/wiki/CookBook.
572
573$range i 0..n
zhanyong.wan33c0af02009-04-03 00:10:12 +0000574$range k 0..n-1
575
576// An internal macro needed for implementing ACTION*().
577#define GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_\
578 const args_type& args GTEST_ATTRIBUTE_UNUSED_
579$for k [[,\
580 arg$k[[]]_type arg$k GTEST_ATTRIBUTE_UNUSED_]]
581
582
zhanyong.wan18490652009-05-11 18:54:08 +0000583// Sometimes you want to give an action explicit template parameters
584// that cannot be inferred from its value parameters. ACTION() and
585// ACTION_P*() don't support that. ACTION_TEMPLATE() remedies that
586// and can be viewed as an extension to ACTION() and ACTION_P*().
587//
588// The syntax:
589//
590// ACTION_TEMPLATE(ActionName,
591// HAS_m_TEMPLATE_PARAMS(kind1, name1, ..., kind_m, name_m),
592// AND_n_VALUE_PARAMS(p1, ..., p_n)) { statements; }
593//
594// defines an action template that takes m explicit template
595// parameters and n value parameters. name_i is the name of the i-th
596// template parameter, and kind_i specifies whether it's a typename,
597// an integral constant, or a template. p_i is the name of the i-th
598// value parameter.
599//
600// Example:
601//
602// // DuplicateArg<k, T>(output) converts the k-th argument of the mock
603// // function to type T and copies it to *output.
604// ACTION_TEMPLATE(DuplicateArg,
605// HAS_2_TEMPLATE_PARAMS(int, k, typename, T),
606// AND_1_VALUE_PARAMS(output)) {
607// *output = T(std::tr1::get<k>(args));
608// }
609// ...
610// int n;
611// EXPECT_CALL(mock, Foo(_, _))
612// .WillOnce(DuplicateArg<1, unsigned char>(&n));
613//
614// To create an instance of an action template, write:
615//
616// ActionName<t1, ..., t_m>(v1, ..., v_n)
617//
618// where the ts are the template arguments and the vs are the value
619// arguments. The value argument types are inferred by the compiler.
620// If you want to explicitly specify the value argument types, you can
621// provide additional template arguments:
622//
623// ActionName<t1, ..., t_m, u1, ..., u_k>(v1, ..., v_n)
624//
625// where u_i is the desired type of v_i.
626//
627// ACTION_TEMPLATE and ACTION/ACTION_P* can be overloaded on the
628// number of value parameters, but not on the number of template
629// parameters. Without the restriction, the meaning of the following
630// is unclear:
631//
632// OverloadedAction<int, bool>(x);
633//
634// Are we using a single-template-parameter action where 'bool' refers
635// to the type of x, or are we using a two-template-parameter action
636// where the compiler is asked to infer the type of x?
637//
638// Implementation notes:
639//
640// GMOCK_INTERNAL_*_HAS_m_TEMPLATE_PARAMS and
641// GMOCK_INTERNAL_*_AND_n_VALUE_PARAMS are internal macros for
642// implementing ACTION_TEMPLATE. The main trick we use is to create
643// new macro invocations when expanding a macro. For example, we have
644//
645// #define ACTION_TEMPLATE(name, template_params, value_params)
646// ... GMOCK_INTERNAL_DECL_##template_params ...
647//
648// which causes ACTION_TEMPLATE(..., HAS_1_TEMPLATE_PARAMS(typename, T), ...)
649// to expand to
650//
651// ... GMOCK_INTERNAL_DECL_HAS_1_TEMPLATE_PARAMS(typename, T) ...
652//
653// Since GMOCK_INTERNAL_DECL_HAS_1_TEMPLATE_PARAMS is a macro, the
654// preprocessor will continue to expand it to
655//
656// ... typename T ...
657//
658// This technique conforms to the C++ standard and is portable. It
659// allows us to implement action templates using O(N) code, where N is
660// the maximum number of template/value parameters supported. Without
661// using it, we'd have to devote O(N^2) amount of code to implement all
662// combinations of m and n.
663
664// Declares the template parameters.
665
666$range j 1..n
667$for j [[
668$range m 0..j-1
669#define GMOCK_INTERNAL_DECL_HAS_$j[[]]
670_TEMPLATE_PARAMS($for m, [[kind$m, name$m]]) $for m, [[kind$m name$m]]
671
672
673]]
674
675// Lists the template parameters.
676
677$for j [[
678$range m 0..j-1
679#define GMOCK_INTERNAL_LIST_HAS_$j[[]]
680_TEMPLATE_PARAMS($for m, [[kind$m, name$m]]) $for m, [[name$m]]
681
682
683]]
684
685// Declares the types of value parameters.
686
687$for i [[
688$range j 0..i-1
689#define GMOCK_INTERNAL_DECL_TYPE_AND_$i[[]]
690_VALUE_PARAMS($for j, [[p$j]]) $for j [[, typename p$j##_type]]
691
692
693]]
694
695// Initializes the value parameters.
696
697$for i [[
698$range j 0..i-1
699#define GMOCK_INTERNAL_INIT_AND_$i[[]]_VALUE_PARAMS($for j, [[p$j]])\
700 ($for j, [[p$j##_type gmock_p$j]])$if i>0 [[ : ]]$for j, [[p$j(gmock_p$j)]]
701
702
703]]
704
705// Declares the fields for storing the value parameters.
706
707$for i [[
708$range j 0..i-1
709#define GMOCK_INTERNAL_DEFN_AND_$i[[]]
710_VALUE_PARAMS($for j, [[p$j]]) $for j [[p$j##_type p$j; ]]
711
712
713]]
714
715// Lists the value parameters.
716
717$for i [[
718$range j 0..i-1
719#define GMOCK_INTERNAL_LIST_AND_$i[[]]
720_VALUE_PARAMS($for j, [[p$j]]) $for j, [[p$j]]
721
722
723]]
724
725// Lists the value parameter types.
726
727$for i [[
728$range j 0..i-1
729#define GMOCK_INTERNAL_LIST_TYPE_AND_$i[[]]
730_VALUE_PARAMS($for j, [[p$j]]) $for j [[, p$j##_type]]
731
732
733]]
734
735// Declares the value parameters.
736
737$for i [[
738$range j 0..i-1
739#define GMOCK_INTERNAL_DECL_AND_$i[[]]_VALUE_PARAMS($for j, [[p$j]]) [[]]
740$for j, [[p$j##_type p$j]]
741
742
743]]
744
745// The suffix of the class template implementing the action template.
746$for i [[
747
748
749$range j 0..i-1
750#define GMOCK_INTERNAL_COUNT_AND_$i[[]]_VALUE_PARAMS($for j, [[p$j]]) [[]]
751$if i==1 [[P]] $elif i>=2 [[P$i]]
752]]
753
754
755// The name of the class template implementing the action template.
756#define GMOCK_ACTION_CLASS_(name, value_params)\
757 GMOCK_CONCAT_TOKEN_(name##Action, GMOCK_INTERNAL_COUNT_##value_params)
758
759$range k 0..n-1
760
761#define ACTION_TEMPLATE(name, template_params, value_params)\
762 template <GMOCK_INTERNAL_DECL_##template_params\
763 GMOCK_INTERNAL_DECL_TYPE_##value_params>\
764 class GMOCK_ACTION_CLASS_(name, value_params) {\
765 public:\
766 GMOCK_ACTION_CLASS_(name, value_params)\
767 GMOCK_INTERNAL_INIT_##value_params {}\
768 template <typename F>\
769 class gmock_Impl : public ::testing::ActionInterface<F> {\
770 public:\
771 typedef F function_type;\
772 typedef typename ::testing::internal::Function<F>::Result return_type;\
773 typedef typename ::testing::internal::Function<F>::ArgumentTuple\
774 args_type;\
775 explicit gmock_Impl GMOCK_INTERNAL_INIT_##value_params {}\
776 virtual return_type Perform(const args_type& args) {\
777 return ::testing::internal::ActionHelper<return_type, gmock_Impl>::\
778 Perform(this, args);\
779 }\
780 template <$for k, [[typename arg$k[[]]_type]]>\
781 return_type gmock_PerformImpl(const args_type& args[[]]
782$for k [[, arg$k[[]]_type arg$k]]) const;\
783 GMOCK_INTERNAL_DEFN_##value_params\
784 };\
785 template <typename F> operator ::testing::Action<F>() const {\
786 return ::testing::Action<F>(\
787 new gmock_Impl<F>(GMOCK_INTERNAL_LIST_##value_params));\
788 }\
789 GMOCK_INTERNAL_DEFN_##value_params\
790 };\
791 template <GMOCK_INTERNAL_DECL_##template_params\
792 GMOCK_INTERNAL_DECL_TYPE_##value_params>\
793 inline GMOCK_ACTION_CLASS_(name, value_params)<\
794 GMOCK_INTERNAL_LIST_##template_params\
795 GMOCK_INTERNAL_LIST_TYPE_##value_params> name(\
796 GMOCK_INTERNAL_DECL_##value_params) {\
797 return GMOCK_ACTION_CLASS_(name, value_params)<\
798 GMOCK_INTERNAL_LIST_##template_params\
799 GMOCK_INTERNAL_LIST_TYPE_##value_params>(\
800 GMOCK_INTERNAL_LIST_##value_params);\
801 }\
802 template <GMOCK_INTERNAL_DECL_##template_params\
803 GMOCK_INTERNAL_DECL_TYPE_##value_params>\
804 template <typename F>\
805 template <typename arg0_type, typename arg1_type, typename arg2_type,\
806 typename arg3_type, typename arg4_type, typename arg5_type,\
807 typename arg6_type, typename arg7_type, typename arg8_type,\
808 typename arg9_type>\
809 typename ::testing::internal::Function<F>::Result\
810 GMOCK_ACTION_CLASS_(name, value_params)<\
811 GMOCK_INTERNAL_LIST_##template_params\
812 GMOCK_INTERNAL_LIST_TYPE_##value_params>::gmock_Impl<F>::\
813 gmock_PerformImpl(\
814 GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const
815
shiqian326aa562009-01-09 21:43:57 +0000816$for i
817
818[[
819$var template = [[$if i==0 [[]] $else [[
820$range j 0..i-1
821
822 template <$for j, [[typename p$j##_type]]>\
823]]]]
824$var class_name = [[name##Action[[$if i==0 [[]] $elif i==1 [[P]]
825 $else [[P$i]]]]]]
826$range j 0..i-1
827$var ctor_param_list = [[$for j, [[p$j##_type gmock_p$j]]]]
828$var param_types_and_names = [[$for j, [[p$j##_type p$j]]]]
829$var inits = [[$if i==0 [[]] $else [[ : $for j, [[p$j(gmock_p$j)]]]]]]
zhanyong.wanc069d7f2009-02-02 20:51:53 +0000830$var param_field_decls = [[$for j
shiqian326aa562009-01-09 21:43:57 +0000831[[
832
zhanyong.wanc069d7f2009-02-02 20:51:53 +0000833 p$j##_type p$j;\
shiqian326aa562009-01-09 21:43:57 +0000834]]]]
zhanyong.wanc069d7f2009-02-02 20:51:53 +0000835$var param_field_decls2 = [[$for j
shiqian326aa562009-01-09 21:43:57 +0000836[[
837
zhanyong.wanc069d7f2009-02-02 20:51:53 +0000838 p$j##_type p$j;\
shiqian326aa562009-01-09 21:43:57 +0000839]]]]
840$var params = [[$for j, [[p$j]]]]
841$var param_types = [[$if i==0 [[]] $else [[<$for j, [[p$j##_type]]>]]]]
shiqian326aa562009-01-09 21:43:57 +0000842$var typename_arg_types = [[$for k, [[typename arg$k[[]]_type]]]]
843$var arg_types_and_names = [[$for k, [[arg$k[[]]_type arg$k]]]]
844$var macro_name = [[$if i==0 [[ACTION]] $elif i==1 [[ACTION_P]]
845 $else [[ACTION_P$i]]]]
846
847#define $macro_name(name$for j [[, p$j]])\$template
848 class $class_name {\
849 public:\
850 $class_name($ctor_param_list)$inits {}\
851 template <typename F>\
852 class gmock_Impl : public ::testing::ActionInterface<F> {\
853 public:\
854 typedef F function_type;\
855 typedef typename ::testing::internal::Function<F>::Result return_type;\
856 typedef typename ::testing::internal::Function<F>::ArgumentTuple\
857 args_type;\
858 [[$if i==1 [[explicit ]]]]gmock_Impl($ctor_param_list)$inits {}\
859 virtual return_type Perform(const args_type& args) {\
860 return ::testing::internal::ActionHelper<return_type, gmock_Impl>::\
861 Perform(this, args);\
862 }\
863 template <$typename_arg_types>\
864 return_type gmock_PerformImpl(const args_type& args, [[]]
zhanyong.wanc069d7f2009-02-02 20:51:53 +0000865$arg_types_and_names) const;\$param_field_decls
shiqian326aa562009-01-09 21:43:57 +0000866 };\
867 template <typename F> operator ::testing::Action<F>() const {\
868 return ::testing::Action<F>(new gmock_Impl<F>($params));\
zhanyong.wanc069d7f2009-02-02 20:51:53 +0000869 }\$param_field_decls2
shiqian326aa562009-01-09 21:43:57 +0000870 };\$template
871 inline $class_name$param_types name($param_types_and_names) {\
872 return $class_name$param_types($params);\
873 }\$template
874 template <typename F>\
875 template <$typename_arg_types>\
876 typename ::testing::internal::Function<F>::Result\
zhanyong.wan33c0af02009-04-03 00:10:12 +0000877 $class_name$param_types::gmock_Impl<F>::gmock_PerformImpl(\
878 GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const
shiqian326aa562009-01-09 21:43:57 +0000879]]
zhanyong.wan7f4c2c02009-02-19 22:38:27 +0000880$$ } // This meta comment fixes auto-indentation in Emacs. It won't
881$$ // show up in the generated code.
shiqian326aa562009-01-09 21:43:57 +0000882
883
zhanyong.wan7f4c2c02009-02-19 22:38:27 +0000884// TODO(wan@google.com): move the following to a different .h file
885// such that we don't have to run 'pump' every time the code is
886// updated.
zhanyong.wane1cdce52009-02-06 01:09:43 +0000887namespace testing {
888
zhanyong.wan16cf4732009-05-14 20:55:30 +0000889// Various overloads for InvokeArgument<N>().
890//
891// The InvokeArgument<N>(a1, a2, ..., a_k) action invokes the N-th
892// (0-based) argument, which must be a k-ary callable, of the mock
893// function, with arguments a1, a2, ..., a_k.
894//
895// Notes:
896//
897// 1. The arguments are passed by value by default. If you need to
898// pass an argument by reference, wrap it inside ByRef(). For
899// example,
900//
901// InvokeArgument<1>(5, string("Hello"), ByRef(foo))
902//
903// passes 5 and string("Hello") by value, and passes foo by
904// reference.
905//
906// 2. If the callable takes an argument by reference but ByRef() is
907// not used, it will receive the reference to a copy of the value,
908// instead of the original value. For example, when the 0-th
909// argument of the mock function takes a const string&, the action
910//
911// InvokeArgument<0>(string("Hello"))
912//
913// makes a copy of the temporary string("Hello") object and passes a
914// reference of the copy, instead of the original temporary object,
915// to the callable. This makes it easy for a user to define an
916// InvokeArgument action from temporary values and have it performed
917// later.
zhanyong.wan7f4c2c02009-02-19 22:38:27 +0000918
zhanyong.wan1c8eb1c2009-04-09 07:29:58 +0000919$range i 0..n
920$for i [[
zhanyong.wan16cf4732009-05-14 20:55:30 +0000921$range j 0..i-1
zhanyong.wan1c8eb1c2009-04-09 07:29:58 +0000922
zhanyong.wan16cf4732009-05-14 20:55:30 +0000923ACTION_TEMPLATE(InvokeArgument,
924 HAS_1_TEMPLATE_PARAMS(int, k),
925 AND_$i[[]]_VALUE_PARAMS($for j, [[p$j]])) {
926 return internal::CallableHelper<return_type>::Call(
927 ::std::tr1::get<k>(args)$for j [[, p$j]]);
928}
zhanyong.wan1c8eb1c2009-04-09 07:29:58 +0000929
930]]
931
zhanyong.wan7f4c2c02009-02-19 22:38:27 +0000932// Action SaveArg<k>(pointer) saves the k-th (0-based) argument of the
933// mock function to *pointer.
zhanyong.wan16cf4732009-05-14 20:55:30 +0000934ACTION_TEMPLATE(SaveArg,
935 HAS_1_TEMPLATE_PARAMS(int, k),
936 AND_1_VALUE_PARAMS(pointer)) {
937 *pointer = ::std::tr1::get<k>(args);
zhanyong.wan7f4c2c02009-02-19 22:38:27 +0000938}
939
940// Action SetArgReferee<k>(value) assigns 'value' to the variable
941// referenced by the k-th (0-based) argument of the mock function.
zhanyong.wan16cf4732009-05-14 20:55:30 +0000942ACTION_TEMPLATE(SetArgReferee,
943 HAS_1_TEMPLATE_PARAMS(int, k),
944 AND_1_VALUE_PARAMS(value)) {
945 typedef typename ::std::tr1::tuple_element<k, args_type>::type argk_type;
946 // Ensures that argument #k is a reference. If you get a compiler
947 // error on the next line, you are using SetArgReferee<k>(value) in
948 // a mock function whose k-th (0-based) argument is not a reference.
949 GMOCK_COMPILE_ASSERT_(internal::is_reference<argk_type>::value,
950 SetArgReferee_must_be_used_with_a_reference_argument);
951 ::std::tr1::get<k>(args) = value;
952}
953
954// Action SetArrayArgument<k>(first, last) copies the elements in
955// source range [first, last) to the array pointed to by the k-th
956// (0-based) argument, which can be either a pointer or an
957// iterator. The action does not take ownership of the elements in the
958// source range.
959ACTION_TEMPLATE(SetArrayArgument,
960 HAS_1_TEMPLATE_PARAMS(int, k),
961 AND_2_VALUE_PARAMS(first, last)) {
962 // Microsoft compiler deprecates ::std::copy, so we want to suppress warning
963 // 4996 (Function call with parameters that may be unsafe) there.
964#ifdef _MSC_VER
965#pragma warning(push) // Saves the current warning state.
966#pragma warning(disable:4996) // Temporarily disables warning 4996.
967#endif
968 ::std::copy(first, last, ::std::tr1::get<k>(args));
969#ifdef _MSC_VER
970#pragma warning(pop) // Restores the warning state.
971#endif
zhanyong.wan7f4c2c02009-02-19 22:38:27 +0000972}
973
zhanyong.wan1c8eb1c2009-04-09 07:29:58 +0000974// Various overloads for ReturnNew<T>().
975//
976// The ReturnNew<T>(a1, a2, ..., a_k) action returns a pointer to a new
977// instance of type T, constructed on the heap with constructor arguments
978// a1, a2, ..., and a_k. The caller assumes ownership of the returned value.
979$range i 0..n
980$for i [[
zhanyong.wan16cf4732009-05-14 20:55:30 +0000981$range j 0..i-1
982$var ps = [[$for j, [[p$j]]]]
zhanyong.wan1c8eb1c2009-04-09 07:29:58 +0000983
zhanyong.wan16cf4732009-05-14 20:55:30 +0000984ACTION_TEMPLATE(ReturnNew,
985 HAS_1_TEMPLATE_PARAMS(typename, T),
986 AND_$i[[]]_VALUE_PARAMS($ps)) {
987 return new T($ps);
zhanyong.wan1c8eb1c2009-04-09 07:29:58 +0000988}
989
990]]
991
992// Action DeleteArg<k>() deletes the k-th (0-based) argument of the mock
993// function.
zhanyong.wan16cf4732009-05-14 20:55:30 +0000994ACTION_TEMPLATE(DeleteArg,
995 HAS_1_TEMPLATE_PARAMS(int, k),
996 AND_0_VALUE_PARAMS()) {
997 delete ::std::tr1::get<k>(args);
zhanyong.wan1c8eb1c2009-04-09 07:29:58 +0000998}
999
zhanyong.wane1cdce52009-02-06 01:09:43 +00001000// Action Throw(exception) can be used in a mock function of any type
1001// to throw the given exception. Any copyable value can be thrown.
1002#if GTEST_HAS_EXCEPTIONS
1003ACTION_P(Throw, exception) { throw exception; }
1004#endif // GTEST_HAS_EXCEPTIONS
1005
1006} // namespace testing
1007
shiqiane35fdd92008-12-10 05:08:54 +00001008#endif // GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_ACTIONS_H_