blob: fa02463856168e28280a7c96040b4bae81a96a35 [file] [log] [blame]
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001//===-- llvm/Support/TargetOpcodes.def - Target Indep Opcodes ---*- C++ -*-===//
2//
Andrew Walbran16937d02019-10-22 13:54:20 +01003// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01006//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the target independent instruction opcodes.
10//
11//===----------------------------------------------------------------------===//
12
13// NOTE: NO INCLUDE GUARD DESIRED!
14
15/// HANDLE_TARGET_OPCODE defines an opcode and its associated enum value.
16///
17#ifndef HANDLE_TARGET_OPCODE
18#define HANDLE_TARGET_OPCODE(OPC, NUM)
19#endif
20
21/// HANDLE_TARGET_OPCODE_MARKER defines an alternative identifier for an opcode.
22///
23#ifndef HANDLE_TARGET_OPCODE_MARKER
24#define HANDLE_TARGET_OPCODE_MARKER(IDENT, OPC)
25#endif
26
27/// Every instruction defined here must also appear in Target.td.
28///
29HANDLE_TARGET_OPCODE(PHI)
30HANDLE_TARGET_OPCODE(INLINEASM)
Andrew Walbran16937d02019-10-22 13:54:20 +010031HANDLE_TARGET_OPCODE(INLINEASM_BR)
Andrew Scull5e1ddfa2018-08-14 10:06:54 +010032HANDLE_TARGET_OPCODE(CFI_INSTRUCTION)
33HANDLE_TARGET_OPCODE(EH_LABEL)
34HANDLE_TARGET_OPCODE(GC_LABEL)
35HANDLE_TARGET_OPCODE(ANNOTATION_LABEL)
36
37/// KILL - This instruction is a noop that is used only to adjust the
38/// liveness of registers. This can be useful when dealing with
39/// sub-registers.
40HANDLE_TARGET_OPCODE(KILL)
41
42/// EXTRACT_SUBREG - This instruction takes two operands: a register
43/// that has subregisters, and a subregister index. It returns the
44/// extracted subregister value. This is commonly used to implement
45/// truncation operations on target architectures which support it.
46HANDLE_TARGET_OPCODE(EXTRACT_SUBREG)
47
48/// INSERT_SUBREG - This instruction takes three operands: a register that
49/// has subregisters, a register providing an insert value, and a
50/// subregister index. It returns the value of the first register with the
51/// value of the second register inserted. The first register is often
52/// defined by an IMPLICIT_DEF, because it is commonly used to implement
53/// anyext operations on target architectures which support it.
54HANDLE_TARGET_OPCODE(INSERT_SUBREG)
55
56/// IMPLICIT_DEF - This is the MachineInstr-level equivalent of undef.
57HANDLE_TARGET_OPCODE(IMPLICIT_DEF)
58
59/// SUBREG_TO_REG - Assert the value of bits in a super register.
60/// The result of this instruction is the value of the second operand inserted
61/// into the subregister specified by the third operand. All other bits are
62/// assumed to be equal to the bits in the immediate integer constant in the
63/// first operand. This instruction just communicates information; No code
64/// should be generated.
65/// This is typically used after an instruction where the write to a subregister
66/// implicitly cleared the bits in the super registers.
67HANDLE_TARGET_OPCODE(SUBREG_TO_REG)
68
69/// COPY_TO_REGCLASS - This instruction is a placeholder for a plain
70/// register-to-register copy into a specific register class. This is only
71/// used between instruction selection and MachineInstr creation, before
72/// virtual registers have been created for all the instructions, and it's
73/// only needed in cases where the register classes implied by the
74/// instructions are insufficient. It is emitted as a COPY MachineInstr.
75 HANDLE_TARGET_OPCODE(COPY_TO_REGCLASS)
76
77/// DBG_VALUE - a mapping of the llvm.dbg.value intrinsic
78HANDLE_TARGET_OPCODE(DBG_VALUE)
79
Andrew Scullcdfcccc2018-10-05 20:58:37 +010080/// DBG_LABEL - a mapping of the llvm.dbg.label intrinsic
81HANDLE_TARGET_OPCODE(DBG_LABEL)
82
Andrew Scull5e1ddfa2018-08-14 10:06:54 +010083/// REG_SEQUENCE - This variadic instruction is used to form a register that
84/// represents a consecutive sequence of sub-registers. It's used as a
85/// register coalescing / allocation aid and must be eliminated before code
86/// emission.
87// In SDNode form, the first operand encodes the register class created by
88// the REG_SEQUENCE, while each subsequent pair names a vreg + subreg index
89// pair. Once it has been lowered to a MachineInstr, the regclass operand
90// is no longer present.
91/// e.g. v1027 = REG_SEQUENCE v1024, 3, v1025, 4, v1026, 5
92/// After register coalescing references of v1024 should be replace with
93/// v1027:3, v1025 with v1027:4, etc.
94 HANDLE_TARGET_OPCODE(REG_SEQUENCE)
95
96/// COPY - Target-independent register copy. This instruction can also be
97/// used to copy between subregisters of virtual registers.
98 HANDLE_TARGET_OPCODE(COPY)
99
100/// BUNDLE - This instruction represents an instruction bundle. Instructions
101/// which immediately follow a BUNDLE instruction which are marked with
102/// 'InsideBundle' flag are inside the bundle.
103HANDLE_TARGET_OPCODE(BUNDLE)
104
105/// Lifetime markers.
106HANDLE_TARGET_OPCODE(LIFETIME_START)
107HANDLE_TARGET_OPCODE(LIFETIME_END)
108
109/// A Stackmap instruction captures the location of live variables at its
110/// position in the instruction stream. It is followed by a shadow of bytes
111/// that must lie within the function and not contain another stackmap.
112HANDLE_TARGET_OPCODE(STACKMAP)
113
114/// FEntry all - This is a marker instruction which gets translated into a raw fentry call.
115HANDLE_TARGET_OPCODE(FENTRY_CALL)
116
117/// Patchable call instruction - this instruction represents a call to a
118/// constant address, followed by a series of NOPs. It is intended to
119/// support optimizations for dynamic languages (such as javascript) that
120/// rewrite calls to runtimes with more efficient code sequences.
121/// This also implies a stack map.
122HANDLE_TARGET_OPCODE(PATCHPOINT)
123
124/// This pseudo-instruction loads the stack guard value. Targets which need
125/// to prevent the stack guard value or address from being spilled to the
126/// stack should override TargetLowering::emitLoadStackGuardNode and
127/// additionally expand this pseudo after register allocation.
128HANDLE_TARGET_OPCODE(LOAD_STACK_GUARD)
129
130/// Call instruction with associated vm state for deoptimization and list
131/// of live pointers for relocation by the garbage collector. It is
132/// intended to support garbage collection with fully precise relocating
133/// collectors and deoptimizations in either the callee or caller.
134HANDLE_TARGET_OPCODE(STATEPOINT)
135
136/// Instruction that records the offset of a local stack allocation passed to
137/// llvm.localescape. It has two arguments: the symbol for the label and the
138/// frame index of the local stack allocation.
139HANDLE_TARGET_OPCODE(LOCAL_ESCAPE)
140
141/// Wraps a machine instruction which can fault, bundled with associated
142/// information on how to handle such a fault.
143/// For example loading instruction that may page fault, bundled with associated
144/// information on how to handle such a page fault. It is intended to support
145/// "zero cost" null checks in managed languages by allowing LLVM to fold
146/// comparisons into existing memory operations.
147HANDLE_TARGET_OPCODE(FAULTING_OP)
148
149/// Wraps a machine instruction to add patchability constraints. An
150/// instruction wrapped in PATCHABLE_OP has to either have a minimum
151/// size or be preceded with a nop of that size. The first operand is
152/// an immediate denoting the minimum size of the instruction, the
153/// second operand is an immediate denoting the opcode of the original
154/// instruction. The rest of the operands are the operands of the
155/// original instruction.
156HANDLE_TARGET_OPCODE(PATCHABLE_OP)
157
158/// This is a marker instruction which gets translated into a nop sled, useful
159/// for inserting instrumentation instructions at runtime.
160HANDLE_TARGET_OPCODE(PATCHABLE_FUNCTION_ENTER)
161
162/// Wraps a return instruction and its operands to enable adding nop sleds
163/// either before or after the return. The nop sleds are useful for inserting
164/// instrumentation instructions at runtime.
165/// The patch here replaces the return instruction.
166HANDLE_TARGET_OPCODE(PATCHABLE_RET)
167
168/// This is a marker instruction which gets translated into a nop sled, useful
169/// for inserting instrumentation instructions at runtime.
170/// The patch here prepends the return instruction.
171/// The same thing as in x86_64 is not possible for ARM because it has multiple
172/// return instructions. Furthermore, CPU allows parametrized and even
173/// conditional return instructions. In the current ARM implementation we are
174/// making use of the fact that currently LLVM doesn't seem to generate
175/// conditional return instructions.
176/// On ARM, the same instruction can be used for popping multiple registers
177/// from the stack and returning (it just pops pc register too), and LLVM
178/// generates it sometimes. So we can't insert the sled between this stack
179/// adjustment and the return without splitting the original instruction into 2
180/// instructions. So on ARM, rather than jumping into the exit trampoline, we
181/// call it, it does the tracing, preserves the stack and returns.
182HANDLE_TARGET_OPCODE(PATCHABLE_FUNCTION_EXIT)
183
184/// Wraps a tail call instruction and its operands to enable adding nop sleds
185/// either before or after the tail exit. We use this as a disambiguation from
186/// PATCHABLE_RET which specifically only works for return instructions.
187HANDLE_TARGET_OPCODE(PATCHABLE_TAIL_CALL)
188
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100189/// Wraps a logging call and its arguments with nop sleds. At runtime, this can
190/// be patched to insert instrumentation instructions.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100191HANDLE_TARGET_OPCODE(PATCHABLE_EVENT_CALL)
192
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100193/// Wraps a typed logging call and its argument with nop sleds. At runtime, this
194/// can be patched to insert instrumentation instructions.
195HANDLE_TARGET_OPCODE(PATCHABLE_TYPED_EVENT_CALL)
196
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100197HANDLE_TARGET_OPCODE(ICALL_BRANCH_FUNNEL)
198
199/// The following generic opcodes are not supposed to appear after ISel.
200/// This is something we might want to relax, but for now, this is convenient
201/// to produce diagnostics.
202
203/// Generic ADD instruction. This is an integer add.
204HANDLE_TARGET_OPCODE(G_ADD)
205HANDLE_TARGET_OPCODE_MARKER(PRE_ISEL_GENERIC_OPCODE_START, G_ADD)
206
207/// Generic SUB instruction. This is an integer sub.
208HANDLE_TARGET_OPCODE(G_SUB)
209
210// Generic multiply instruction.
211HANDLE_TARGET_OPCODE(G_MUL)
212
213// Generic signed division instruction.
214HANDLE_TARGET_OPCODE(G_SDIV)
215
216// Generic unsigned division instruction.
217HANDLE_TARGET_OPCODE(G_UDIV)
218
219// Generic signed remainder instruction.
220HANDLE_TARGET_OPCODE(G_SREM)
221
222// Generic unsigned remainder instruction.
223HANDLE_TARGET_OPCODE(G_UREM)
224
225/// Generic bitwise and instruction.
226HANDLE_TARGET_OPCODE(G_AND)
227
228/// Generic bitwise or instruction.
229HANDLE_TARGET_OPCODE(G_OR)
230
231/// Generic bitwise exclusive-or instruction.
232HANDLE_TARGET_OPCODE(G_XOR)
233
234
235HANDLE_TARGET_OPCODE(G_IMPLICIT_DEF)
236
237/// Generic PHI instruction with types.
238HANDLE_TARGET_OPCODE(G_PHI)
239
240/// Generic instruction to materialize the address of an alloca or other
241/// stack-based object.
242HANDLE_TARGET_OPCODE(G_FRAME_INDEX)
243
244/// Generic reference to global value.
245HANDLE_TARGET_OPCODE(G_GLOBAL_VALUE)
246
247/// Generic instruction to extract blocks of bits from the register given
248/// (typically a sub-register COPY after instruction selection).
249HANDLE_TARGET_OPCODE(G_EXTRACT)
250
251HANDLE_TARGET_OPCODE(G_UNMERGE_VALUES)
252
253/// Generic instruction to insert blocks of bits from the registers given into
254/// the source.
255HANDLE_TARGET_OPCODE(G_INSERT)
256
257/// Generic instruction to paste a variable number of components together into a
258/// larger register.
259HANDLE_TARGET_OPCODE(G_MERGE_VALUES)
260
Andrew Walbran16937d02019-10-22 13:54:20 +0100261/// Generic instruction to create a vector value from a number of scalar
262/// components.
263HANDLE_TARGET_OPCODE(G_BUILD_VECTOR)
264
265/// Generic instruction to create a vector value from a number of scalar
266/// components, which have types larger than the result vector elt type.
267HANDLE_TARGET_OPCODE(G_BUILD_VECTOR_TRUNC)
268
269/// Generic instruction to create a vector by concatenating multiple vectors.
270HANDLE_TARGET_OPCODE(G_CONCAT_VECTORS)
271
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100272/// Generic pointer to int conversion.
273HANDLE_TARGET_OPCODE(G_PTRTOINT)
274
275/// Generic int to pointer conversion.
276HANDLE_TARGET_OPCODE(G_INTTOPTR)
277
278/// Generic bitcast. The source and destination types must be different, or a
279/// COPY is the relevant instruction.
280HANDLE_TARGET_OPCODE(G_BITCAST)
281
Andrew Scull0372a572018-11-16 15:47:06 +0000282/// INTRINSIC trunc intrinsic.
283HANDLE_TARGET_OPCODE(G_INTRINSIC_TRUNC)
284
285/// INTRINSIC round intrinsic.
286HANDLE_TARGET_OPCODE(G_INTRINSIC_ROUND)
287
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100288/// Generic load (including anyext load)
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100289HANDLE_TARGET_OPCODE(G_LOAD)
290
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100291/// Generic signext load
292HANDLE_TARGET_OPCODE(G_SEXTLOAD)
293
294/// Generic zeroext load
295HANDLE_TARGET_OPCODE(G_ZEXTLOAD)
296
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100297/// Generic store.
298HANDLE_TARGET_OPCODE(G_STORE)
299
300/// Generic atomic cmpxchg with internal success check.
301HANDLE_TARGET_OPCODE(G_ATOMIC_CMPXCHG_WITH_SUCCESS)
302
303/// Generic atomic cmpxchg.
304HANDLE_TARGET_OPCODE(G_ATOMIC_CMPXCHG)
305
306/// Generic atomicrmw.
307HANDLE_TARGET_OPCODE(G_ATOMICRMW_XCHG)
308HANDLE_TARGET_OPCODE(G_ATOMICRMW_ADD)
309HANDLE_TARGET_OPCODE(G_ATOMICRMW_SUB)
310HANDLE_TARGET_OPCODE(G_ATOMICRMW_AND)
311HANDLE_TARGET_OPCODE(G_ATOMICRMW_NAND)
312HANDLE_TARGET_OPCODE(G_ATOMICRMW_OR)
313HANDLE_TARGET_OPCODE(G_ATOMICRMW_XOR)
314HANDLE_TARGET_OPCODE(G_ATOMICRMW_MAX)
315HANDLE_TARGET_OPCODE(G_ATOMICRMW_MIN)
316HANDLE_TARGET_OPCODE(G_ATOMICRMW_UMAX)
317HANDLE_TARGET_OPCODE(G_ATOMICRMW_UMIN)
318
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100319// Generic atomic fence
320HANDLE_TARGET_OPCODE(G_FENCE)
321
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100322/// Generic conditional branch instruction.
323HANDLE_TARGET_OPCODE(G_BRCOND)
324
325/// Generic indirect branch instruction.
326HANDLE_TARGET_OPCODE(G_BRINDIRECT)
327
328/// Generic intrinsic use (without side effects).
329HANDLE_TARGET_OPCODE(G_INTRINSIC)
330
331/// Generic intrinsic use (with side effects).
332HANDLE_TARGET_OPCODE(G_INTRINSIC_W_SIDE_EFFECTS)
333
334/// Generic extension allowing rubbish in high bits.
335HANDLE_TARGET_OPCODE(G_ANYEXT)
336
337/// Generic instruction to discard the high bits of a register. This differs
338/// from (G_EXTRACT val, 0) on its action on vectors: G_TRUNC will truncate
339/// each element individually, G_EXTRACT will typically discard the high
340/// elements of the vector.
341HANDLE_TARGET_OPCODE(G_TRUNC)
342
343/// Generic integer constant.
344HANDLE_TARGET_OPCODE(G_CONSTANT)
345
346/// Generic floating constant.
347HANDLE_TARGET_OPCODE(G_FCONSTANT)
348
349/// Generic va_start instruction. Stores to its one pointer operand.
350HANDLE_TARGET_OPCODE(G_VASTART)
351
352/// Generic va_start instruction. Stores to its one pointer operand.
353HANDLE_TARGET_OPCODE(G_VAARG)
354
355// Generic sign extend
356HANDLE_TARGET_OPCODE(G_SEXT)
357
358// Generic zero extend
359HANDLE_TARGET_OPCODE(G_ZEXT)
360
361// Generic left-shift
362HANDLE_TARGET_OPCODE(G_SHL)
363
364// Generic logical right-shift
365HANDLE_TARGET_OPCODE(G_LSHR)
366
367// Generic arithmetic right-shift
368HANDLE_TARGET_OPCODE(G_ASHR)
369
370/// Generic integer-base comparison, also applicable to vectors of integers.
371HANDLE_TARGET_OPCODE(G_ICMP)
372
373/// Generic floating-point comparison, also applicable to vectors.
374HANDLE_TARGET_OPCODE(G_FCMP)
375
376/// Generic select.
377HANDLE_TARGET_OPCODE(G_SELECT)
378
Andrew Scull0372a572018-11-16 15:47:06 +0000379/// Generic unsigned add instruction, consuming the normal operands and
380/// producing the result and a carry flag.
381HANDLE_TARGET_OPCODE(G_UADDO)
382
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100383/// Generic unsigned add instruction, consuming the normal operands plus a carry
384/// flag, and similarly producing the result and a carry flag.
385HANDLE_TARGET_OPCODE(G_UADDE)
386
Andrew Scull0372a572018-11-16 15:47:06 +0000387/// Generic unsigned sub instruction, consuming the normal operands and
388/// producing the result and a carry flag.
389HANDLE_TARGET_OPCODE(G_USUBO)
390
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100391/// Generic unsigned subtract instruction, consuming the normal operands plus a
392/// carry flag, and similarly producing the result and a carry flag.
393HANDLE_TARGET_OPCODE(G_USUBE)
394
395/// Generic signed add instruction, producing the result and a signed overflow
396/// flag.
397HANDLE_TARGET_OPCODE(G_SADDO)
398
Andrew Scull0372a572018-11-16 15:47:06 +0000399/// Generic signed add instruction, consuming the normal operands plus a carry
400/// flag, and similarly producing the result and a carry flag.
401HANDLE_TARGET_OPCODE(G_SADDE)
402
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100403/// Generic signed subtract instruction, producing the result and a signed
404/// overflow flag.
405HANDLE_TARGET_OPCODE(G_SSUBO)
406
Andrew Scull0372a572018-11-16 15:47:06 +0000407/// Generic signed sub instruction, consuming the normal operands plus a carry
408/// flag, and similarly producing the result and a carry flag.
409HANDLE_TARGET_OPCODE(G_SSUBE)
410
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100411/// Generic unsigned multiply instruction, producing the result and a signed
412/// overflow flag.
413HANDLE_TARGET_OPCODE(G_UMULO)
414
415/// Generic signed multiply instruction, producing the result and a signed
416/// overflow flag.
417HANDLE_TARGET_OPCODE(G_SMULO)
418
419// Multiply two numbers at twice the incoming bit width (unsigned) and return
420// the high half of the result.
421HANDLE_TARGET_OPCODE(G_UMULH)
422
423// Multiply two numbers at twice the incoming bit width (signed) and return
424// the high half of the result.
425HANDLE_TARGET_OPCODE(G_SMULH)
426
427/// Generic FP addition.
428HANDLE_TARGET_OPCODE(G_FADD)
429
430/// Generic FP subtraction.
431HANDLE_TARGET_OPCODE(G_FSUB)
432
433/// Generic FP multiplication.
434HANDLE_TARGET_OPCODE(G_FMUL)
435
436/// Generic FMA multiplication. Behaves like llvm fma intrinsic
437HANDLE_TARGET_OPCODE(G_FMA)
438
439/// Generic FP division.
440HANDLE_TARGET_OPCODE(G_FDIV)
441
442/// Generic FP remainder.
443HANDLE_TARGET_OPCODE(G_FREM)
444
445/// Generic FP exponentiation.
446HANDLE_TARGET_OPCODE(G_FPOW)
447
448/// Generic base-e exponential of a value.
449HANDLE_TARGET_OPCODE(G_FEXP)
450
451/// Generic base-2 exponential of a value.
452HANDLE_TARGET_OPCODE(G_FEXP2)
453
454/// Floating point base-e logarithm of a value.
455HANDLE_TARGET_OPCODE(G_FLOG)
456
457/// Floating point base-2 logarithm of a value.
458HANDLE_TARGET_OPCODE(G_FLOG2)
459
Andrew Walbran16937d02019-10-22 13:54:20 +0100460/// Floating point base-10 logarithm of a value.
461HANDLE_TARGET_OPCODE(G_FLOG10)
462
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100463/// Generic FP negation.
464HANDLE_TARGET_OPCODE(G_FNEG)
465
466/// Generic FP extension.
467HANDLE_TARGET_OPCODE(G_FPEXT)
468
469/// Generic float to signed-int conversion
470HANDLE_TARGET_OPCODE(G_FPTRUNC)
471
472/// Generic float to signed-int conversion
473HANDLE_TARGET_OPCODE(G_FPTOSI)
474
475/// Generic float to unsigned-int conversion
476HANDLE_TARGET_OPCODE(G_FPTOUI)
477
478/// Generic signed-int to float conversion
479HANDLE_TARGET_OPCODE(G_SITOFP)
480
481/// Generic unsigned-int to float conversion
482HANDLE_TARGET_OPCODE(G_UITOFP)
483
484/// Generic FP absolute value.
485HANDLE_TARGET_OPCODE(G_FABS)
486
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100487/// FCOPYSIGN(X, Y) - Return the value of X with the sign of Y. NOTE: This does
488/// not require that X and Y have the same type, just that they are both
489/// floating point. X and the result must have the same type. FCOPYSIGN(f32,
490/// f64) is allowed.
491HANDLE_TARGET_OPCODE(G_FCOPYSIGN)
492
Andrew Walbran16937d02019-10-22 13:54:20 +0100493/// Generic FP canonicalize value.
494HANDLE_TARGET_OPCODE(G_FCANONICALIZE)
495
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100496/// Generic pointer offset
497HANDLE_TARGET_OPCODE(G_GEP)
498
499/// Clear the specified number of low bits in a pointer. This rounds the value
500/// *down* to the given alignment.
501HANDLE_TARGET_OPCODE(G_PTR_MASK)
502
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100503/// Generic signed integer minimum.
504HANDLE_TARGET_OPCODE(G_SMIN)
505
506/// Generic signed integer maximum.
507HANDLE_TARGET_OPCODE(G_SMAX)
508
509/// Generic unsigned integer maximum.
510HANDLE_TARGET_OPCODE(G_UMIN)
511
512/// Generic unsigned integer maximum.
513HANDLE_TARGET_OPCODE(G_UMAX)
514
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100515/// Generic BRANCH instruction. This is an unconditional branch.
516HANDLE_TARGET_OPCODE(G_BR)
517
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100518/// Generic branch to jump table entry.
519HANDLE_TARGET_OPCODE(G_BRJT)
520
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100521/// Generic insertelement.
522HANDLE_TARGET_OPCODE(G_INSERT_VECTOR_ELT)
523
524/// Generic extractelement.
525HANDLE_TARGET_OPCODE(G_EXTRACT_VECTOR_ELT)
526
527/// Generic shufflevector.
528HANDLE_TARGET_OPCODE(G_SHUFFLE_VECTOR)
529
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100530/// Generic count trailing zeroes.
531HANDLE_TARGET_OPCODE(G_CTTZ)
532
533/// Same as above, undefined for zero inputs.
534HANDLE_TARGET_OPCODE(G_CTTZ_ZERO_UNDEF)
535
536/// Generic count leading zeroes.
537HANDLE_TARGET_OPCODE(G_CTLZ)
538
539/// Same as above, undefined for zero inputs.
540HANDLE_TARGET_OPCODE(G_CTLZ_ZERO_UNDEF)
541
542/// Generic count bits.
543HANDLE_TARGET_OPCODE(G_CTPOP)
544
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100545/// Generic byte swap.
546HANDLE_TARGET_OPCODE(G_BSWAP)
547
Andrew Walbran16937d02019-10-22 13:54:20 +0100548/// Floating point ceil.
549HANDLE_TARGET_OPCODE(G_FCEIL)
550
551/// Floating point cosine.
552HANDLE_TARGET_OPCODE(G_FCOS)
553
554/// Floating point sine.
555HANDLE_TARGET_OPCODE(G_FSIN)
556
557/// Floating point square root.
558HANDLE_TARGET_OPCODE(G_FSQRT)
559
560/// Floating point floor.
561HANDLE_TARGET_OPCODE(G_FFLOOR)
562
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100563/// Floating point round to next integer.
564HANDLE_TARGET_OPCODE(G_FRINT)
565
566/// Floating point round to nearest integer.
567HANDLE_TARGET_OPCODE(G_FNEARBYINT)
568
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100569/// Generic AddressSpaceCast.
570HANDLE_TARGET_OPCODE(G_ADDRSPACE_CAST)
571
572/// Generic block address
573HANDLE_TARGET_OPCODE(G_BLOCK_ADDR)
574
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100575/// Generic jump table address
576HANDLE_TARGET_OPCODE(G_JUMP_TABLE)
577
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100578// TODO: Add more generic opcodes as we move along.
579
580/// Marker for the end of the generic opcode.
581/// This is used to check if an opcode is in the range of the
582/// generic opcodes.
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100583HANDLE_TARGET_OPCODE_MARKER(PRE_ISEL_GENERIC_OPCODE_END, G_JUMP_TABLE)
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100584
585/// BUILTIN_OP_END - This must be the last enum value in this list.
586/// The target-specific post-isel opcode values start here.
587HANDLE_TARGET_OPCODE_MARKER(GENERIC_OP_END, PRE_ISEL_GENERIC_OPCODE_END)