Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1 | //===- llvm/ADT/FoldingSet.h - Uniquing Hash Set ----------------*- C++ -*-===// |
| 2 | // |
Andrew Walbran | 16937d0 | 2019-10-22 13:54:20 +0100 | [diff] [blame] | 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file defines a hash set that can be used to remove duplication of nodes |
| 10 | // in a graph. This code was originally created by Chris Lattner for use with |
| 11 | // SelectionDAGCSEMap, but was isolated to provide use across the llvm code set. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #ifndef LLVM_ADT_FOLDINGSET_H |
| 16 | #define LLVM_ADT_FOLDINGSET_H |
| 17 | |
| 18 | #include "llvm/ADT/SmallVector.h" |
| 19 | #include "llvm/ADT/iterator.h" |
| 20 | #include "llvm/Support/Allocator.h" |
| 21 | #include <cassert> |
| 22 | #include <cstddef> |
| 23 | #include <cstdint> |
| 24 | #include <utility> |
| 25 | |
| 26 | namespace llvm { |
| 27 | |
| 28 | /// This folding set used for two purposes: |
| 29 | /// 1. Given information about a node we want to create, look up the unique |
| 30 | /// instance of the node in the set. If the node already exists, return |
| 31 | /// it, otherwise return the bucket it should be inserted into. |
| 32 | /// 2. Given a node that has already been created, remove it from the set. |
| 33 | /// |
| 34 | /// This class is implemented as a single-link chained hash table, where the |
| 35 | /// "buckets" are actually the nodes themselves (the next pointer is in the |
| 36 | /// node). The last node points back to the bucket to simplify node removal. |
| 37 | /// |
| 38 | /// Any node that is to be included in the folding set must be a subclass of |
| 39 | /// FoldingSetNode. The node class must also define a Profile method used to |
| 40 | /// establish the unique bits of data for the node. The Profile method is |
| 41 | /// passed a FoldingSetNodeID object which is used to gather the bits. Just |
| 42 | /// call one of the Add* functions defined in the FoldingSetBase::NodeID class. |
| 43 | /// NOTE: That the folding set does not own the nodes and it is the |
| 44 | /// responsibility of the user to dispose of the nodes. |
| 45 | /// |
| 46 | /// Eg. |
| 47 | /// class MyNode : public FoldingSetNode { |
| 48 | /// private: |
| 49 | /// std::string Name; |
| 50 | /// unsigned Value; |
| 51 | /// public: |
| 52 | /// MyNode(const char *N, unsigned V) : Name(N), Value(V) {} |
| 53 | /// ... |
| 54 | /// void Profile(FoldingSetNodeID &ID) const { |
| 55 | /// ID.AddString(Name); |
| 56 | /// ID.AddInteger(Value); |
| 57 | /// } |
| 58 | /// ... |
| 59 | /// }; |
| 60 | /// |
| 61 | /// To define the folding set itself use the FoldingSet template; |
| 62 | /// |
| 63 | /// Eg. |
| 64 | /// FoldingSet<MyNode> MyFoldingSet; |
| 65 | /// |
| 66 | /// Four public methods are available to manipulate the folding set; |
| 67 | /// |
| 68 | /// 1) If you have an existing node that you want add to the set but unsure |
| 69 | /// that the node might already exist then call; |
| 70 | /// |
| 71 | /// MyNode *M = MyFoldingSet.GetOrInsertNode(N); |
| 72 | /// |
| 73 | /// If The result is equal to the input then the node has been inserted. |
| 74 | /// Otherwise, the result is the node existing in the folding set, and the |
| 75 | /// input can be discarded (use the result instead.) |
| 76 | /// |
| 77 | /// 2) If you are ready to construct a node but want to check if it already |
| 78 | /// exists, then call FindNodeOrInsertPos with a FoldingSetNodeID of the bits to |
| 79 | /// check; |
| 80 | /// |
| 81 | /// FoldingSetNodeID ID; |
| 82 | /// ID.AddString(Name); |
| 83 | /// ID.AddInteger(Value); |
| 84 | /// void *InsertPoint; |
| 85 | /// |
| 86 | /// MyNode *M = MyFoldingSet.FindNodeOrInsertPos(ID, InsertPoint); |
| 87 | /// |
| 88 | /// If found then M with be non-NULL, else InsertPoint will point to where it |
| 89 | /// should be inserted using InsertNode. |
| 90 | /// |
| 91 | /// 3) If you get a NULL result from FindNodeOrInsertPos then you can as a new |
| 92 | /// node with FindNodeOrInsertPos; |
| 93 | /// |
| 94 | /// InsertNode(N, InsertPoint); |
| 95 | /// |
| 96 | /// 4) Finally, if you want to remove a node from the folding set call; |
| 97 | /// |
| 98 | /// bool WasRemoved = RemoveNode(N); |
| 99 | /// |
| 100 | /// The result indicates whether the node existed in the folding set. |
| 101 | |
| 102 | class FoldingSetNodeID; |
| 103 | class StringRef; |
| 104 | |
| 105 | //===----------------------------------------------------------------------===// |
| 106 | /// FoldingSetBase - Implements the folding set functionality. The main |
| 107 | /// structure is an array of buckets. Each bucket is indexed by the hash of |
| 108 | /// the nodes it contains. The bucket itself points to the nodes contained |
| 109 | /// in the bucket via a singly linked list. The last node in the list points |
| 110 | /// back to the bucket to facilitate node removal. |
| 111 | /// |
| 112 | class FoldingSetBase { |
| 113 | virtual void anchor(); // Out of line virtual method. |
| 114 | |
| 115 | protected: |
| 116 | /// Buckets - Array of bucket chains. |
| 117 | void **Buckets; |
| 118 | |
| 119 | /// NumBuckets - Length of the Buckets array. Always a power of 2. |
| 120 | unsigned NumBuckets; |
| 121 | |
| 122 | /// NumNodes - Number of nodes in the folding set. Growth occurs when NumNodes |
| 123 | /// is greater than twice the number of buckets. |
| 124 | unsigned NumNodes; |
| 125 | |
| 126 | explicit FoldingSetBase(unsigned Log2InitSize = 6); |
| 127 | FoldingSetBase(FoldingSetBase &&Arg); |
| 128 | FoldingSetBase &operator=(FoldingSetBase &&RHS); |
| 129 | ~FoldingSetBase(); |
| 130 | |
| 131 | public: |
| 132 | //===--------------------------------------------------------------------===// |
| 133 | /// Node - This class is used to maintain the singly linked bucket list in |
| 134 | /// a folding set. |
| 135 | class Node { |
| 136 | private: |
| 137 | // NextInFoldingSetBucket - next link in the bucket list. |
| 138 | void *NextInFoldingSetBucket = nullptr; |
| 139 | |
| 140 | public: |
| 141 | Node() = default; |
| 142 | |
| 143 | // Accessors |
| 144 | void *getNextInBucket() const { return NextInFoldingSetBucket; } |
| 145 | void SetNextInBucket(void *N) { NextInFoldingSetBucket = N; } |
| 146 | }; |
| 147 | |
| 148 | /// clear - Remove all nodes from the folding set. |
| 149 | void clear(); |
| 150 | |
| 151 | /// size - Returns the number of nodes in the folding set. |
| 152 | unsigned size() const { return NumNodes; } |
| 153 | |
| 154 | /// empty - Returns true if there are no nodes in the folding set. |
| 155 | bool empty() const { return NumNodes == 0; } |
| 156 | |
| 157 | /// reserve - Increase the number of buckets such that adding the |
| 158 | /// EltCount-th node won't cause a rebucket operation. reserve is permitted |
| 159 | /// to allocate more space than requested by EltCount. |
| 160 | void reserve(unsigned EltCount); |
| 161 | |
| 162 | /// capacity - Returns the number of nodes permitted in the folding set |
| 163 | /// before a rebucket operation is performed. |
| 164 | unsigned capacity() { |
| 165 | // We allow a load factor of up to 2.0, |
| 166 | // so that means our capacity is NumBuckets * 2 |
| 167 | return NumBuckets * 2; |
| 168 | } |
| 169 | |
| 170 | private: |
| 171 | /// GrowHashTable - Double the size of the hash table and rehash everything. |
| 172 | void GrowHashTable(); |
| 173 | |
| 174 | /// GrowBucketCount - resize the hash table and rehash everything. |
| 175 | /// NewBucketCount must be a power of two, and must be greater than the old |
| 176 | /// bucket count. |
| 177 | void GrowBucketCount(unsigned NewBucketCount); |
| 178 | |
| 179 | protected: |
| 180 | /// GetNodeProfile - Instantiations of the FoldingSet template implement |
| 181 | /// this function to gather data bits for the given node. |
| 182 | virtual void GetNodeProfile(Node *N, FoldingSetNodeID &ID) const = 0; |
| 183 | |
| 184 | /// NodeEquals - Instantiations of the FoldingSet template implement |
| 185 | /// this function to compare the given node with the given ID. |
| 186 | virtual bool NodeEquals(Node *N, const FoldingSetNodeID &ID, unsigned IDHash, |
| 187 | FoldingSetNodeID &TempID) const=0; |
| 188 | |
| 189 | /// ComputeNodeHash - Instantiations of the FoldingSet template implement |
| 190 | /// this function to compute a hash value for the given node. |
| 191 | virtual unsigned ComputeNodeHash(Node *N, FoldingSetNodeID &TempID) const = 0; |
| 192 | |
| 193 | // The below methods are protected to encourage subclasses to provide a more |
| 194 | // type-safe API. |
| 195 | |
| 196 | /// RemoveNode - Remove a node from the folding set, returning true if one |
| 197 | /// was removed or false if the node was not in the folding set. |
| 198 | bool RemoveNode(Node *N); |
| 199 | |
| 200 | /// GetOrInsertNode - If there is an existing simple Node exactly |
| 201 | /// equal to the specified node, return it. Otherwise, insert 'N' and return |
| 202 | /// it instead. |
| 203 | Node *GetOrInsertNode(Node *N); |
| 204 | |
| 205 | /// FindNodeOrInsertPos - Look up the node specified by ID. If it exists, |
| 206 | /// return it. If not, return the insertion token that will make insertion |
| 207 | /// faster. |
| 208 | Node *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos); |
| 209 | |
| 210 | /// InsertNode - Insert the specified node into the folding set, knowing that |
| 211 | /// it is not already in the folding set. InsertPos must be obtained from |
| 212 | /// FindNodeOrInsertPos. |
| 213 | void InsertNode(Node *N, void *InsertPos); |
| 214 | }; |
| 215 | |
| 216 | //===----------------------------------------------------------------------===// |
| 217 | |
| 218 | /// DefaultFoldingSetTrait - This class provides default implementations |
| 219 | /// for FoldingSetTrait implementations. |
| 220 | template<typename T> struct DefaultFoldingSetTrait { |
| 221 | static void Profile(const T &X, FoldingSetNodeID &ID) { |
| 222 | X.Profile(ID); |
| 223 | } |
| 224 | static void Profile(T &X, FoldingSetNodeID &ID) { |
| 225 | X.Profile(ID); |
| 226 | } |
| 227 | |
| 228 | // Equals - Test if the profile for X would match ID, using TempID |
| 229 | // to compute a temporary ID if necessary. The default implementation |
| 230 | // just calls Profile and does a regular comparison. Implementations |
| 231 | // can override this to provide more efficient implementations. |
| 232 | static inline bool Equals(T &X, const FoldingSetNodeID &ID, unsigned IDHash, |
| 233 | FoldingSetNodeID &TempID); |
| 234 | |
| 235 | // ComputeHash - Compute a hash value for X, using TempID to |
| 236 | // compute a temporary ID if necessary. The default implementation |
| 237 | // just calls Profile and does a regular hash computation. |
| 238 | // Implementations can override this to provide more efficient |
| 239 | // implementations. |
| 240 | static inline unsigned ComputeHash(T &X, FoldingSetNodeID &TempID); |
| 241 | }; |
| 242 | |
| 243 | /// FoldingSetTrait - This trait class is used to define behavior of how |
| 244 | /// to "profile" (in the FoldingSet parlance) an object of a given type. |
| 245 | /// The default behavior is to invoke a 'Profile' method on an object, but |
| 246 | /// through template specialization the behavior can be tailored for specific |
| 247 | /// types. Combined with the FoldingSetNodeWrapper class, one can add objects |
| 248 | /// to FoldingSets that were not originally designed to have that behavior. |
| 249 | template<typename T> struct FoldingSetTrait |
| 250 | : public DefaultFoldingSetTrait<T> {}; |
| 251 | |
| 252 | /// DefaultContextualFoldingSetTrait - Like DefaultFoldingSetTrait, but |
| 253 | /// for ContextualFoldingSets. |
| 254 | template<typename T, typename Ctx> |
| 255 | struct DefaultContextualFoldingSetTrait { |
| 256 | static void Profile(T &X, FoldingSetNodeID &ID, Ctx Context) { |
| 257 | X.Profile(ID, Context); |
| 258 | } |
| 259 | |
| 260 | static inline bool Equals(T &X, const FoldingSetNodeID &ID, unsigned IDHash, |
| 261 | FoldingSetNodeID &TempID, Ctx Context); |
| 262 | static inline unsigned ComputeHash(T &X, FoldingSetNodeID &TempID, |
| 263 | Ctx Context); |
| 264 | }; |
| 265 | |
| 266 | /// ContextualFoldingSetTrait - Like FoldingSetTrait, but for |
| 267 | /// ContextualFoldingSets. |
| 268 | template<typename T, typename Ctx> struct ContextualFoldingSetTrait |
| 269 | : public DefaultContextualFoldingSetTrait<T, Ctx> {}; |
| 270 | |
| 271 | //===--------------------------------------------------------------------===// |
| 272 | /// FoldingSetNodeIDRef - This class describes a reference to an interned |
| 273 | /// FoldingSetNodeID, which can be a useful to store node id data rather |
| 274 | /// than using plain FoldingSetNodeIDs, since the 32-element SmallVector |
| 275 | /// is often much larger than necessary, and the possibility of heap |
| 276 | /// allocation means it requires a non-trivial destructor call. |
| 277 | class FoldingSetNodeIDRef { |
| 278 | const unsigned *Data = nullptr; |
| 279 | size_t Size = 0; |
| 280 | |
| 281 | public: |
| 282 | FoldingSetNodeIDRef() = default; |
| 283 | FoldingSetNodeIDRef(const unsigned *D, size_t S) : Data(D), Size(S) {} |
| 284 | |
| 285 | /// ComputeHash - Compute a strong hash value for this FoldingSetNodeIDRef, |
| 286 | /// used to lookup the node in the FoldingSetBase. |
| 287 | unsigned ComputeHash() const; |
| 288 | |
| 289 | bool operator==(FoldingSetNodeIDRef) const; |
| 290 | |
| 291 | bool operator!=(FoldingSetNodeIDRef RHS) const { return !(*this == RHS); } |
| 292 | |
| 293 | /// Used to compare the "ordering" of two nodes as defined by the |
| 294 | /// profiled bits and their ordering defined by memcmp(). |
| 295 | bool operator<(FoldingSetNodeIDRef) const; |
| 296 | |
| 297 | const unsigned *getData() const { return Data; } |
| 298 | size_t getSize() const { return Size; } |
| 299 | }; |
| 300 | |
| 301 | //===--------------------------------------------------------------------===// |
| 302 | /// FoldingSetNodeID - This class is used to gather all the unique data bits of |
| 303 | /// a node. When all the bits are gathered this class is used to produce a |
| 304 | /// hash value for the node. |
| 305 | class FoldingSetNodeID { |
| 306 | /// Bits - Vector of all the data bits that make the node unique. |
| 307 | /// Use a SmallVector to avoid a heap allocation in the common case. |
| 308 | SmallVector<unsigned, 32> Bits; |
| 309 | |
| 310 | public: |
| 311 | FoldingSetNodeID() = default; |
| 312 | |
| 313 | FoldingSetNodeID(FoldingSetNodeIDRef Ref) |
| 314 | : Bits(Ref.getData(), Ref.getData() + Ref.getSize()) {} |
| 315 | |
| 316 | /// Add* - Add various data types to Bit data. |
| 317 | void AddPointer(const void *Ptr); |
| 318 | void AddInteger(signed I); |
| 319 | void AddInteger(unsigned I); |
| 320 | void AddInteger(long I); |
| 321 | void AddInteger(unsigned long I); |
| 322 | void AddInteger(long long I); |
| 323 | void AddInteger(unsigned long long I); |
| 324 | void AddBoolean(bool B) { AddInteger(B ? 1U : 0U); } |
| 325 | void AddString(StringRef String); |
| 326 | void AddNodeID(const FoldingSetNodeID &ID); |
| 327 | |
| 328 | template <typename T> |
| 329 | inline void Add(const T &x) { FoldingSetTrait<T>::Profile(x, *this); } |
| 330 | |
| 331 | /// clear - Clear the accumulated profile, allowing this FoldingSetNodeID |
| 332 | /// object to be used to compute a new profile. |
| 333 | inline void clear() { Bits.clear(); } |
| 334 | |
| 335 | /// ComputeHash - Compute a strong hash value for this FoldingSetNodeID, used |
| 336 | /// to lookup the node in the FoldingSetBase. |
| 337 | unsigned ComputeHash() const; |
| 338 | |
| 339 | /// operator== - Used to compare two nodes to each other. |
| 340 | bool operator==(const FoldingSetNodeID &RHS) const; |
| 341 | bool operator==(const FoldingSetNodeIDRef RHS) const; |
| 342 | |
| 343 | bool operator!=(const FoldingSetNodeID &RHS) const { return !(*this == RHS); } |
| 344 | bool operator!=(const FoldingSetNodeIDRef RHS) const { return !(*this ==RHS);} |
| 345 | |
| 346 | /// Used to compare the "ordering" of two nodes as defined by the |
| 347 | /// profiled bits and their ordering defined by memcmp(). |
| 348 | bool operator<(const FoldingSetNodeID &RHS) const; |
| 349 | bool operator<(const FoldingSetNodeIDRef RHS) const; |
| 350 | |
| 351 | /// Intern - Copy this node's data to a memory region allocated from the |
| 352 | /// given allocator and return a FoldingSetNodeIDRef describing the |
| 353 | /// interned data. |
| 354 | FoldingSetNodeIDRef Intern(BumpPtrAllocator &Allocator) const; |
| 355 | }; |
| 356 | |
| 357 | // Convenience type to hide the implementation of the folding set. |
| 358 | using FoldingSetNode = FoldingSetBase::Node; |
| 359 | template<class T> class FoldingSetIterator; |
| 360 | template<class T> class FoldingSetBucketIterator; |
| 361 | |
| 362 | // Definitions of FoldingSetTrait and ContextualFoldingSetTrait functions, which |
| 363 | // require the definition of FoldingSetNodeID. |
| 364 | template<typename T> |
| 365 | inline bool |
| 366 | DefaultFoldingSetTrait<T>::Equals(T &X, const FoldingSetNodeID &ID, |
| 367 | unsigned /*IDHash*/, |
| 368 | FoldingSetNodeID &TempID) { |
| 369 | FoldingSetTrait<T>::Profile(X, TempID); |
| 370 | return TempID == ID; |
| 371 | } |
| 372 | template<typename T> |
| 373 | inline unsigned |
| 374 | DefaultFoldingSetTrait<T>::ComputeHash(T &X, FoldingSetNodeID &TempID) { |
| 375 | FoldingSetTrait<T>::Profile(X, TempID); |
| 376 | return TempID.ComputeHash(); |
| 377 | } |
| 378 | template<typename T, typename Ctx> |
| 379 | inline bool |
| 380 | DefaultContextualFoldingSetTrait<T, Ctx>::Equals(T &X, |
| 381 | const FoldingSetNodeID &ID, |
| 382 | unsigned /*IDHash*/, |
| 383 | FoldingSetNodeID &TempID, |
| 384 | Ctx Context) { |
| 385 | ContextualFoldingSetTrait<T, Ctx>::Profile(X, TempID, Context); |
| 386 | return TempID == ID; |
| 387 | } |
| 388 | template<typename T, typename Ctx> |
| 389 | inline unsigned |
| 390 | DefaultContextualFoldingSetTrait<T, Ctx>::ComputeHash(T &X, |
| 391 | FoldingSetNodeID &TempID, |
| 392 | Ctx Context) { |
| 393 | ContextualFoldingSetTrait<T, Ctx>::Profile(X, TempID, Context); |
| 394 | return TempID.ComputeHash(); |
| 395 | } |
| 396 | |
| 397 | //===----------------------------------------------------------------------===// |
| 398 | /// FoldingSetImpl - An implementation detail that lets us share code between |
| 399 | /// FoldingSet and ContextualFoldingSet. |
| 400 | template <class T> class FoldingSetImpl : public FoldingSetBase { |
| 401 | protected: |
| 402 | explicit FoldingSetImpl(unsigned Log2InitSize) |
| 403 | : FoldingSetBase(Log2InitSize) {} |
| 404 | |
| 405 | FoldingSetImpl(FoldingSetImpl &&Arg) = default; |
| 406 | FoldingSetImpl &operator=(FoldingSetImpl &&RHS) = default; |
| 407 | ~FoldingSetImpl() = default; |
| 408 | |
| 409 | public: |
| 410 | using iterator = FoldingSetIterator<T>; |
| 411 | |
| 412 | iterator begin() { return iterator(Buckets); } |
| 413 | iterator end() { return iterator(Buckets+NumBuckets); } |
| 414 | |
| 415 | using const_iterator = FoldingSetIterator<const T>; |
| 416 | |
| 417 | const_iterator begin() const { return const_iterator(Buckets); } |
| 418 | const_iterator end() const { return const_iterator(Buckets+NumBuckets); } |
| 419 | |
| 420 | using bucket_iterator = FoldingSetBucketIterator<T>; |
| 421 | |
| 422 | bucket_iterator bucket_begin(unsigned hash) { |
| 423 | return bucket_iterator(Buckets + (hash & (NumBuckets-1))); |
| 424 | } |
| 425 | |
| 426 | bucket_iterator bucket_end(unsigned hash) { |
| 427 | return bucket_iterator(Buckets + (hash & (NumBuckets-1)), true); |
| 428 | } |
| 429 | |
| 430 | /// RemoveNode - Remove a node from the folding set, returning true if one |
| 431 | /// was removed or false if the node was not in the folding set. |
| 432 | bool RemoveNode(T *N) { return FoldingSetBase::RemoveNode(N); } |
| 433 | |
| 434 | /// GetOrInsertNode - If there is an existing simple Node exactly |
| 435 | /// equal to the specified node, return it. Otherwise, insert 'N' and |
| 436 | /// return it instead. |
| 437 | T *GetOrInsertNode(T *N) { |
| 438 | return static_cast<T *>(FoldingSetBase::GetOrInsertNode(N)); |
| 439 | } |
| 440 | |
| 441 | /// FindNodeOrInsertPos - Look up the node specified by ID. If it exists, |
| 442 | /// return it. If not, return the insertion token that will make insertion |
| 443 | /// faster. |
| 444 | T *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos) { |
| 445 | return static_cast<T *>(FoldingSetBase::FindNodeOrInsertPos(ID, InsertPos)); |
| 446 | } |
| 447 | |
| 448 | /// InsertNode - Insert the specified node into the folding set, knowing that |
| 449 | /// it is not already in the folding set. InsertPos must be obtained from |
| 450 | /// FindNodeOrInsertPos. |
| 451 | void InsertNode(T *N, void *InsertPos) { |
| 452 | FoldingSetBase::InsertNode(N, InsertPos); |
| 453 | } |
| 454 | |
| 455 | /// InsertNode - Insert the specified node into the folding set, knowing that |
| 456 | /// it is not already in the folding set. |
| 457 | void InsertNode(T *N) { |
| 458 | T *Inserted = GetOrInsertNode(N); |
| 459 | (void)Inserted; |
| 460 | assert(Inserted == N && "Node already inserted!"); |
| 461 | } |
| 462 | }; |
| 463 | |
| 464 | //===----------------------------------------------------------------------===// |
| 465 | /// FoldingSet - This template class is used to instantiate a specialized |
| 466 | /// implementation of the folding set to the node class T. T must be a |
| 467 | /// subclass of FoldingSetNode and implement a Profile function. |
| 468 | /// |
| 469 | /// Note that this set type is movable and move-assignable. However, its |
| 470 | /// moved-from state is not a valid state for anything other than |
| 471 | /// move-assigning and destroying. This is primarily to enable movable APIs |
| 472 | /// that incorporate these objects. |
| 473 | template <class T> class FoldingSet final : public FoldingSetImpl<T> { |
| 474 | using Super = FoldingSetImpl<T>; |
| 475 | using Node = typename Super::Node; |
| 476 | |
| 477 | /// GetNodeProfile - Each instantiatation of the FoldingSet needs to provide a |
| 478 | /// way to convert nodes into a unique specifier. |
| 479 | void GetNodeProfile(Node *N, FoldingSetNodeID &ID) const override { |
| 480 | T *TN = static_cast<T *>(N); |
| 481 | FoldingSetTrait<T>::Profile(*TN, ID); |
| 482 | } |
| 483 | |
| 484 | /// NodeEquals - Instantiations may optionally provide a way to compare a |
| 485 | /// node with a specified ID. |
| 486 | bool NodeEquals(Node *N, const FoldingSetNodeID &ID, unsigned IDHash, |
| 487 | FoldingSetNodeID &TempID) const override { |
| 488 | T *TN = static_cast<T *>(N); |
| 489 | return FoldingSetTrait<T>::Equals(*TN, ID, IDHash, TempID); |
| 490 | } |
| 491 | |
| 492 | /// ComputeNodeHash - Instantiations may optionally provide a way to compute a |
| 493 | /// hash value directly from a node. |
| 494 | unsigned ComputeNodeHash(Node *N, FoldingSetNodeID &TempID) const override { |
| 495 | T *TN = static_cast<T *>(N); |
| 496 | return FoldingSetTrait<T>::ComputeHash(*TN, TempID); |
| 497 | } |
| 498 | |
| 499 | public: |
| 500 | explicit FoldingSet(unsigned Log2InitSize = 6) : Super(Log2InitSize) {} |
| 501 | FoldingSet(FoldingSet &&Arg) = default; |
| 502 | FoldingSet &operator=(FoldingSet &&RHS) = default; |
| 503 | }; |
| 504 | |
| 505 | //===----------------------------------------------------------------------===// |
| 506 | /// ContextualFoldingSet - This template class is a further refinement |
| 507 | /// of FoldingSet which provides a context argument when calling |
| 508 | /// Profile on its nodes. Currently, that argument is fixed at |
| 509 | /// initialization time. |
| 510 | /// |
| 511 | /// T must be a subclass of FoldingSetNode and implement a Profile |
| 512 | /// function with signature |
| 513 | /// void Profile(FoldingSetNodeID &, Ctx); |
| 514 | template <class T, class Ctx> |
| 515 | class ContextualFoldingSet final : public FoldingSetImpl<T> { |
| 516 | // Unfortunately, this can't derive from FoldingSet<T> because the |
| 517 | // construction of the vtable for FoldingSet<T> requires |
| 518 | // FoldingSet<T>::GetNodeProfile to be instantiated, which in turn |
| 519 | // requires a single-argument T::Profile(). |
| 520 | |
| 521 | using Super = FoldingSetImpl<T>; |
| 522 | using Node = typename Super::Node; |
| 523 | |
| 524 | Ctx Context; |
| 525 | |
| 526 | /// GetNodeProfile - Each instantiatation of the FoldingSet needs to provide a |
| 527 | /// way to convert nodes into a unique specifier. |
| 528 | void GetNodeProfile(Node *N, FoldingSetNodeID &ID) const override { |
| 529 | T *TN = static_cast<T *>(N); |
| 530 | ContextualFoldingSetTrait<T, Ctx>::Profile(*TN, ID, Context); |
| 531 | } |
| 532 | |
| 533 | bool NodeEquals(Node *N, const FoldingSetNodeID &ID, unsigned IDHash, |
| 534 | FoldingSetNodeID &TempID) const override { |
| 535 | T *TN = static_cast<T *>(N); |
| 536 | return ContextualFoldingSetTrait<T, Ctx>::Equals(*TN, ID, IDHash, TempID, |
| 537 | Context); |
| 538 | } |
| 539 | |
| 540 | unsigned ComputeNodeHash(Node *N, FoldingSetNodeID &TempID) const override { |
| 541 | T *TN = static_cast<T *>(N); |
| 542 | return ContextualFoldingSetTrait<T, Ctx>::ComputeHash(*TN, TempID, Context); |
| 543 | } |
| 544 | |
| 545 | public: |
| 546 | explicit ContextualFoldingSet(Ctx Context, unsigned Log2InitSize = 6) |
| 547 | : Super(Log2InitSize), Context(Context) {} |
| 548 | |
| 549 | Ctx getContext() const { return Context; } |
| 550 | }; |
| 551 | |
| 552 | //===----------------------------------------------------------------------===// |
| 553 | /// FoldingSetVector - This template class combines a FoldingSet and a vector |
| 554 | /// to provide the interface of FoldingSet but with deterministic iteration |
| 555 | /// order based on the insertion order. T must be a subclass of FoldingSetNode |
| 556 | /// and implement a Profile function. |
| 557 | template <class T, class VectorT = SmallVector<T*, 8>> |
| 558 | class FoldingSetVector { |
| 559 | FoldingSet<T> Set; |
| 560 | VectorT Vector; |
| 561 | |
| 562 | public: |
| 563 | explicit FoldingSetVector(unsigned Log2InitSize = 6) : Set(Log2InitSize) {} |
| 564 | |
| 565 | using iterator = pointee_iterator<typename VectorT::iterator>; |
| 566 | |
| 567 | iterator begin() { return Vector.begin(); } |
| 568 | iterator end() { return Vector.end(); } |
| 569 | |
| 570 | using const_iterator = pointee_iterator<typename VectorT::const_iterator>; |
| 571 | |
| 572 | const_iterator begin() const { return Vector.begin(); } |
| 573 | const_iterator end() const { return Vector.end(); } |
| 574 | |
| 575 | /// clear - Remove all nodes from the folding set. |
| 576 | void clear() { Set.clear(); Vector.clear(); } |
| 577 | |
| 578 | /// FindNodeOrInsertPos - Look up the node specified by ID. If it exists, |
| 579 | /// return it. If not, return the insertion token that will make insertion |
| 580 | /// faster. |
| 581 | T *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos) { |
| 582 | return Set.FindNodeOrInsertPos(ID, InsertPos); |
| 583 | } |
| 584 | |
| 585 | /// GetOrInsertNode - If there is an existing simple Node exactly |
| 586 | /// equal to the specified node, return it. Otherwise, insert 'N' and |
| 587 | /// return it instead. |
| 588 | T *GetOrInsertNode(T *N) { |
| 589 | T *Result = Set.GetOrInsertNode(N); |
| 590 | if (Result == N) Vector.push_back(N); |
| 591 | return Result; |
| 592 | } |
| 593 | |
| 594 | /// InsertNode - Insert the specified node into the folding set, knowing that |
| 595 | /// it is not already in the folding set. InsertPos must be obtained from |
| 596 | /// FindNodeOrInsertPos. |
| 597 | void InsertNode(T *N, void *InsertPos) { |
| 598 | Set.InsertNode(N, InsertPos); |
| 599 | Vector.push_back(N); |
| 600 | } |
| 601 | |
| 602 | /// InsertNode - Insert the specified node into the folding set, knowing that |
| 603 | /// it is not already in the folding set. |
| 604 | void InsertNode(T *N) { |
| 605 | Set.InsertNode(N); |
| 606 | Vector.push_back(N); |
| 607 | } |
| 608 | |
| 609 | /// size - Returns the number of nodes in the folding set. |
| 610 | unsigned size() const { return Set.size(); } |
| 611 | |
| 612 | /// empty - Returns true if there are no nodes in the folding set. |
| 613 | bool empty() const { return Set.empty(); } |
| 614 | }; |
| 615 | |
| 616 | //===----------------------------------------------------------------------===// |
| 617 | /// FoldingSetIteratorImpl - This is the common iterator support shared by all |
| 618 | /// folding sets, which knows how to walk the folding set hash table. |
| 619 | class FoldingSetIteratorImpl { |
| 620 | protected: |
| 621 | FoldingSetNode *NodePtr; |
| 622 | |
| 623 | FoldingSetIteratorImpl(void **Bucket); |
| 624 | |
| 625 | void advance(); |
| 626 | |
| 627 | public: |
| 628 | bool operator==(const FoldingSetIteratorImpl &RHS) const { |
| 629 | return NodePtr == RHS.NodePtr; |
| 630 | } |
| 631 | bool operator!=(const FoldingSetIteratorImpl &RHS) const { |
| 632 | return NodePtr != RHS.NodePtr; |
| 633 | } |
| 634 | }; |
| 635 | |
| 636 | template <class T> class FoldingSetIterator : public FoldingSetIteratorImpl { |
| 637 | public: |
| 638 | explicit FoldingSetIterator(void **Bucket) : FoldingSetIteratorImpl(Bucket) {} |
| 639 | |
| 640 | T &operator*() const { |
| 641 | return *static_cast<T*>(NodePtr); |
| 642 | } |
| 643 | |
| 644 | T *operator->() const { |
| 645 | return static_cast<T*>(NodePtr); |
| 646 | } |
| 647 | |
| 648 | inline FoldingSetIterator &operator++() { // Preincrement |
| 649 | advance(); |
| 650 | return *this; |
| 651 | } |
| 652 | FoldingSetIterator operator++(int) { // Postincrement |
| 653 | FoldingSetIterator tmp = *this; ++*this; return tmp; |
| 654 | } |
| 655 | }; |
| 656 | |
| 657 | //===----------------------------------------------------------------------===// |
| 658 | /// FoldingSetBucketIteratorImpl - This is the common bucket iterator support |
| 659 | /// shared by all folding sets, which knows how to walk a particular bucket |
| 660 | /// of a folding set hash table. |
| 661 | class FoldingSetBucketIteratorImpl { |
| 662 | protected: |
| 663 | void *Ptr; |
| 664 | |
| 665 | explicit FoldingSetBucketIteratorImpl(void **Bucket); |
| 666 | |
| 667 | FoldingSetBucketIteratorImpl(void **Bucket, bool) : Ptr(Bucket) {} |
| 668 | |
| 669 | void advance() { |
| 670 | void *Probe = static_cast<FoldingSetNode*>(Ptr)->getNextInBucket(); |
| 671 | uintptr_t x = reinterpret_cast<uintptr_t>(Probe) & ~0x1; |
| 672 | Ptr = reinterpret_cast<void*>(x); |
| 673 | } |
| 674 | |
| 675 | public: |
| 676 | bool operator==(const FoldingSetBucketIteratorImpl &RHS) const { |
| 677 | return Ptr == RHS.Ptr; |
| 678 | } |
| 679 | bool operator!=(const FoldingSetBucketIteratorImpl &RHS) const { |
| 680 | return Ptr != RHS.Ptr; |
| 681 | } |
| 682 | }; |
| 683 | |
| 684 | template <class T> |
| 685 | class FoldingSetBucketIterator : public FoldingSetBucketIteratorImpl { |
| 686 | public: |
| 687 | explicit FoldingSetBucketIterator(void **Bucket) : |
| 688 | FoldingSetBucketIteratorImpl(Bucket) {} |
| 689 | |
| 690 | FoldingSetBucketIterator(void **Bucket, bool) : |
| 691 | FoldingSetBucketIteratorImpl(Bucket, true) {} |
| 692 | |
| 693 | T &operator*() const { return *static_cast<T*>(Ptr); } |
| 694 | T *operator->() const { return static_cast<T*>(Ptr); } |
| 695 | |
| 696 | inline FoldingSetBucketIterator &operator++() { // Preincrement |
| 697 | advance(); |
| 698 | return *this; |
| 699 | } |
| 700 | FoldingSetBucketIterator operator++(int) { // Postincrement |
| 701 | FoldingSetBucketIterator tmp = *this; ++*this; return tmp; |
| 702 | } |
| 703 | }; |
| 704 | |
| 705 | //===----------------------------------------------------------------------===// |
| 706 | /// FoldingSetNodeWrapper - This template class is used to "wrap" arbitrary |
| 707 | /// types in an enclosing object so that they can be inserted into FoldingSets. |
| 708 | template <typename T> |
| 709 | class FoldingSetNodeWrapper : public FoldingSetNode { |
| 710 | T data; |
| 711 | |
| 712 | public: |
| 713 | template <typename... Ts> |
| 714 | explicit FoldingSetNodeWrapper(Ts &&... Args) |
| 715 | : data(std::forward<Ts>(Args)...) {} |
| 716 | |
| 717 | void Profile(FoldingSetNodeID &ID) { FoldingSetTrait<T>::Profile(data, ID); } |
| 718 | |
| 719 | T &getValue() { return data; } |
| 720 | const T &getValue() const { return data; } |
| 721 | |
| 722 | operator T&() { return data; } |
| 723 | operator const T&() const { return data; } |
| 724 | }; |
| 725 | |
| 726 | //===----------------------------------------------------------------------===// |
| 727 | /// FastFoldingSetNode - This is a subclass of FoldingSetNode which stores |
| 728 | /// a FoldingSetNodeID value rather than requiring the node to recompute it |
| 729 | /// each time it is needed. This trades space for speed (which can be |
| 730 | /// significant if the ID is long), and it also permits nodes to drop |
| 731 | /// information that would otherwise only be required for recomputing an ID. |
| 732 | class FastFoldingSetNode : public FoldingSetNode { |
| 733 | FoldingSetNodeID FastID; |
| 734 | |
| 735 | protected: |
| 736 | explicit FastFoldingSetNode(const FoldingSetNodeID &ID) : FastID(ID) {} |
| 737 | |
| 738 | public: |
| 739 | void Profile(FoldingSetNodeID &ID) const { ID.AddNodeID(FastID); } |
| 740 | }; |
| 741 | |
| 742 | //===----------------------------------------------------------------------===// |
| 743 | // Partial specializations of FoldingSetTrait. |
| 744 | |
| 745 | template<typename T> struct FoldingSetTrait<T*> { |
| 746 | static inline void Profile(T *X, FoldingSetNodeID &ID) { |
| 747 | ID.AddPointer(X); |
| 748 | } |
| 749 | }; |
| 750 | template <typename T1, typename T2> |
| 751 | struct FoldingSetTrait<std::pair<T1, T2>> { |
| 752 | static inline void Profile(const std::pair<T1, T2> &P, |
| 753 | FoldingSetNodeID &ID) { |
| 754 | ID.Add(P.first); |
| 755 | ID.Add(P.second); |
| 756 | } |
| 757 | }; |
| 758 | |
| 759 | } // end namespace llvm |
| 760 | |
| 761 | #endif // LLVM_ADT_FOLDINGSET_H |