blob: 62f8efd8dfb06f2f679f4622b707cf93534d7e80 [file] [log] [blame]
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001//===-- llvm/MC/MCSchedule.h - Scheduling -----------------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the classes used to describe a subtarget's machine model
11// for scheduling and other instruction cost heuristics.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_MC_MCSCHEDULE_H
16#define LLVM_MC_MCSCHEDULE_H
17
18#include "llvm/ADT/Optional.h"
19#include "llvm/Support/DataTypes.h"
20#include <cassert>
21
22namespace llvm {
23
24struct InstrItinerary;
25class MCSubtargetInfo;
26
27/// Define a kind of processor resource that will be modeled by the scheduler.
28struct MCProcResourceDesc {
29 const char *Name;
30 unsigned NumUnits; // Number of resource of this kind
31 unsigned SuperIdx; // Index of the resources kind that contains this kind.
32
33 // Number of resources that may be buffered.
34 //
35 // Buffered resources (BufferSize != 0) may be consumed at some indeterminate
36 // cycle after dispatch. This should be used for out-of-order cpus when
37 // instructions that use this resource can be buffered in a reservaton
38 // station.
39 //
40 // Unbuffered resources (BufferSize == 0) always consume their resource some
41 // fixed number of cycles after dispatch. If a resource is unbuffered, then
42 // the scheduler will avoid scheduling instructions with conflicting resources
43 // in the same cycle. This is for in-order cpus, or the in-order portion of
44 // an out-of-order cpus.
45 int BufferSize;
46
47 // If the resource has sub-units, a pointer to the first element of an array
48 // of `NumUnits` elements containing the ProcResourceIdx of the sub units.
49 // nullptr if the resource does not have sub-units.
50 const unsigned *SubUnitsIdxBegin;
51
52 bool operator==(const MCProcResourceDesc &Other) const {
53 return NumUnits == Other.NumUnits && SuperIdx == Other.SuperIdx
54 && BufferSize == Other.BufferSize;
55 }
56};
57
58/// Identify one of the processor resource kinds consumed by a particular
59/// scheduling class for the specified number of cycles.
60struct MCWriteProcResEntry {
61 uint16_t ProcResourceIdx;
62 uint16_t Cycles;
63
64 bool operator==(const MCWriteProcResEntry &Other) const {
65 return ProcResourceIdx == Other.ProcResourceIdx && Cycles == Other.Cycles;
66 }
67};
68
69/// Specify the latency in cpu cycles for a particular scheduling class and def
70/// index. -1 indicates an invalid latency. Heuristics would typically consider
71/// an instruction with invalid latency to have infinite latency. Also identify
72/// the WriteResources of this def. When the operand expands to a sequence of
73/// writes, this ID is the last write in the sequence.
74struct MCWriteLatencyEntry {
75 int16_t Cycles;
76 uint16_t WriteResourceID;
77
78 bool operator==(const MCWriteLatencyEntry &Other) const {
79 return Cycles == Other.Cycles && WriteResourceID == Other.WriteResourceID;
80 }
81};
82
83/// Specify the number of cycles allowed after instruction issue before a
84/// particular use operand reads its registers. This effectively reduces the
85/// write's latency. Here we allow negative cycles for corner cases where
86/// latency increases. This rule only applies when the entry's WriteResource
87/// matches the write's WriteResource.
88///
89/// MCReadAdvanceEntries are sorted first by operand index (UseIdx), then by
90/// WriteResourceIdx.
91struct MCReadAdvanceEntry {
92 unsigned UseIdx;
93 unsigned WriteResourceID;
94 int Cycles;
95
96 bool operator==(const MCReadAdvanceEntry &Other) const {
97 return UseIdx == Other.UseIdx && WriteResourceID == Other.WriteResourceID
98 && Cycles == Other.Cycles;
99 }
100};
101
102/// Summarize the scheduling resources required for an instruction of a
103/// particular scheduling class.
104///
105/// Defined as an aggregate struct for creating tables with initializer lists.
106struct MCSchedClassDesc {
107 static const unsigned short InvalidNumMicroOps = (1U << 14) - 1;
108 static const unsigned short VariantNumMicroOps = InvalidNumMicroOps - 1;
109
110#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
111 const char* Name;
112#endif
113 uint16_t NumMicroOps : 14;
114 bool BeginGroup : 1;
115 bool EndGroup : 1;
116 uint16_t WriteProcResIdx; // First index into WriteProcResTable.
117 uint16_t NumWriteProcResEntries;
118 uint16_t WriteLatencyIdx; // First index into WriteLatencyTable.
119 uint16_t NumWriteLatencyEntries;
120 uint16_t ReadAdvanceIdx; // First index into ReadAdvanceTable.
121 uint16_t NumReadAdvanceEntries;
122
123 bool isValid() const {
124 return NumMicroOps != InvalidNumMicroOps;
125 }
126 bool isVariant() const {
127 return NumMicroOps == VariantNumMicroOps;
128 }
129};
130
131/// Machine model for scheduling, bundling, and heuristics.
132///
133/// The machine model directly provides basic information about the
134/// microarchitecture to the scheduler in the form of properties. It also
135/// optionally refers to scheduler resource tables and itinerary
136/// tables. Scheduler resource tables model the latency and cost for each
137/// instruction type. Itinerary tables are an independent mechanism that
138/// provides a detailed reservation table describing each cycle of instruction
139/// execution. Subtargets may define any or all of the above categories of data
140/// depending on the type of CPU and selected scheduler.
141struct MCSchedModel {
142 // IssueWidth is the maximum number of instructions that may be scheduled in
143 // the same per-cycle group.
144 unsigned IssueWidth;
145 static const unsigned DefaultIssueWidth = 1;
146
147 // MicroOpBufferSize is the number of micro-ops that the processor may buffer
148 // for out-of-order execution.
149 //
150 // "0" means operations that are not ready in this cycle are not considered
151 // for scheduling (they go in the pending queue). Latency is paramount. This
152 // may be more efficient if many instructions are pending in a schedule.
153 //
154 // "1" means all instructions are considered for scheduling regardless of
155 // whether they are ready in this cycle. Latency still causes issue stalls,
156 // but we balance those stalls against other heuristics.
157 //
158 // "> 1" means the processor is out-of-order. This is a machine independent
159 // estimate of highly machine specific characteristics such as the register
160 // renaming pool and reorder buffer.
161 unsigned MicroOpBufferSize;
162 static const unsigned DefaultMicroOpBufferSize = 0;
163
164 // LoopMicroOpBufferSize is the number of micro-ops that the processor may
165 // buffer for optimized loop execution. More generally, this represents the
166 // optimal number of micro-ops in a loop body. A loop may be partially
167 // unrolled to bring the count of micro-ops in the loop body closer to this
168 // number.
169 unsigned LoopMicroOpBufferSize;
170 static const unsigned DefaultLoopMicroOpBufferSize = 0;
171
172 // LoadLatency is the expected latency of load instructions.
173 unsigned LoadLatency;
174 static const unsigned DefaultLoadLatency = 4;
175
176 // HighLatency is the expected latency of "very high latency" operations.
177 // See TargetInstrInfo::isHighLatencyDef().
178 // By default, this is set to an arbitrarily high number of cycles
179 // likely to have some impact on scheduling heuristics.
180 unsigned HighLatency;
181 static const unsigned DefaultHighLatency = 10;
182
183 // MispredictPenalty is the typical number of extra cycles the processor
184 // takes to recover from a branch misprediction.
185 unsigned MispredictPenalty;
186 static const unsigned DefaultMispredictPenalty = 10;
187
188 bool PostRAScheduler; // default value is false
189
190 bool CompleteModel;
191
192 unsigned ProcID;
193 const MCProcResourceDesc *ProcResourceTable;
194 const MCSchedClassDesc *SchedClassTable;
195 unsigned NumProcResourceKinds;
196 unsigned NumSchedClasses;
197 // Instruction itinerary tables used by InstrItineraryData.
198 friend class InstrItineraryData;
199 const InstrItinerary *InstrItineraries;
200
201 unsigned getProcessorID() const { return ProcID; }
202
203 /// Does this machine model include instruction-level scheduling.
204 bool hasInstrSchedModel() const { return SchedClassTable; }
205
206 /// Return true if this machine model data for all instructions with a
207 /// scheduling class (itinerary class or SchedRW list).
208 bool isComplete() const { return CompleteModel; }
209
210 /// Return true if machine supports out of order execution.
211 bool isOutOfOrder() const { return MicroOpBufferSize > 1; }
212
213 unsigned getNumProcResourceKinds() const {
214 return NumProcResourceKinds;
215 }
216
217 const MCProcResourceDesc *getProcResource(unsigned ProcResourceIdx) const {
218 assert(hasInstrSchedModel() && "No scheduling machine model");
219
220 assert(ProcResourceIdx < NumProcResourceKinds && "bad proc resource idx");
221 return &ProcResourceTable[ProcResourceIdx];
222 }
223
224 const MCSchedClassDesc *getSchedClassDesc(unsigned SchedClassIdx) const {
225 assert(hasInstrSchedModel() && "No scheduling machine model");
226
227 assert(SchedClassIdx < NumSchedClasses && "bad scheduling class idx");
228 return &SchedClassTable[SchedClassIdx];
229 }
230
231 /// Returns the latency value for the scheduling class.
232 static int computeInstrLatency(const MCSubtargetInfo &STI,
233 const MCSchedClassDesc &SCDesc);
234
235 /// Returns the reciprocal throughput information from a MCSchedClassDesc.
236 static Optional<double>
237 getReciprocalThroughput(const MCSubtargetInfo &STI,
238 const MCSchedClassDesc &SCDesc);
239
240 /// Returns the default initialized model.
241 static const MCSchedModel &GetDefaultSchedModel() { return Default; }
242 static const MCSchedModel Default;
243};
244
245} // End llvm namespace
246
247#endif