Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame^] | 1 | //===- llvm/Use.h - Definition of the Use class -----------------*- C++ -*-===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | /// \file |
| 10 | /// |
| 11 | /// This defines the Use class. The Use class represents the operand of an |
| 12 | /// instruction or some other User instance which refers to a Value. The Use |
| 13 | /// class keeps the "use list" of the referenced value up to date. |
| 14 | /// |
| 15 | /// Pointer tagging is used to efficiently find the User corresponding to a Use |
| 16 | /// without having to store a User pointer in every Use. A User is preceded in |
| 17 | /// memory by all the Uses corresponding to its operands, and the low bits of |
| 18 | /// one of the fields (Prev) of the Use class are used to encode offsets to be |
| 19 | /// able to find that User given a pointer to any Use. For details, see: |
| 20 | /// |
| 21 | /// http://www.llvm.org/docs/ProgrammersManual.html#UserLayout |
| 22 | /// |
| 23 | //===----------------------------------------------------------------------===// |
| 24 | |
| 25 | #ifndef LLVM_IR_USE_H |
| 26 | #define LLVM_IR_USE_H |
| 27 | |
| 28 | #include "llvm-c/Types.h" |
| 29 | #include "llvm/ADT/PointerIntPair.h" |
| 30 | #include "llvm/Support/CBindingWrapping.h" |
| 31 | #include "llvm/Support/Compiler.h" |
| 32 | |
| 33 | namespace llvm { |
| 34 | |
| 35 | template <typename> struct simplify_type; |
| 36 | class User; |
| 37 | class Value; |
| 38 | |
| 39 | /// \brief A Use represents the edge between a Value definition and its users. |
| 40 | /// |
| 41 | /// This is notionally a two-dimensional linked list. It supports traversing |
| 42 | /// all of the uses for a particular value definition. It also supports jumping |
| 43 | /// directly to the used value when we arrive from the User's operands, and |
| 44 | /// jumping directly to the User when we arrive from the Value's uses. |
| 45 | /// |
| 46 | /// The pointer to the used Value is explicit, and the pointer to the User is |
| 47 | /// implicit. The implicit pointer is found via a waymarking algorithm |
| 48 | /// described in the programmer's manual: |
| 49 | /// |
| 50 | /// http://www.llvm.org/docs/ProgrammersManual.html#the-waymarking-algorithm |
| 51 | /// |
| 52 | /// This is essentially the single most memory intensive object in LLVM because |
| 53 | /// of the number of uses in the system. At the same time, the constant time |
| 54 | /// operations it allows are essential to many optimizations having reasonable |
| 55 | /// time complexity. |
| 56 | class Use { |
| 57 | public: |
| 58 | Use(const Use &U) = delete; |
| 59 | |
| 60 | /// \brief Provide a fast substitute to std::swap<Use> |
| 61 | /// that also works with less standard-compliant compilers |
| 62 | void swap(Use &RHS); |
| 63 | |
| 64 | /// Pointer traits for the UserRef PointerIntPair. This ensures we always |
| 65 | /// use the LSB regardless of pointer alignment on different targets. |
| 66 | struct UserRefPointerTraits { |
| 67 | static inline void *getAsVoidPointer(User *P) { return P; } |
| 68 | |
| 69 | static inline User *getFromVoidPointer(void *P) { |
| 70 | return (User *)P; |
| 71 | } |
| 72 | |
| 73 | enum { NumLowBitsAvailable = 1 }; |
| 74 | }; |
| 75 | |
| 76 | // A type for the word following an array of hung-off Uses in memory, which is |
| 77 | // a pointer back to their User with the bottom bit set. |
| 78 | using UserRef = PointerIntPair<User *, 1, unsigned, UserRefPointerTraits>; |
| 79 | |
| 80 | /// Pointer traits for the Prev PointerIntPair. This ensures we always use |
| 81 | /// the two LSBs regardless of pointer alignment on different targets. |
| 82 | struct PrevPointerTraits { |
| 83 | static inline void *getAsVoidPointer(Use **P) { return P; } |
| 84 | |
| 85 | static inline Use **getFromVoidPointer(void *P) { |
| 86 | return (Use **)P; |
| 87 | } |
| 88 | |
| 89 | enum { NumLowBitsAvailable = 2 }; |
| 90 | }; |
| 91 | |
| 92 | private: |
| 93 | /// Destructor - Only for zap() |
| 94 | ~Use() { |
| 95 | if (Val) |
| 96 | removeFromList(); |
| 97 | } |
| 98 | |
| 99 | enum PrevPtrTag { zeroDigitTag, oneDigitTag, stopTag, fullStopTag }; |
| 100 | |
| 101 | /// Constructor |
| 102 | Use(PrevPtrTag tag) { Prev.setInt(tag); } |
| 103 | |
| 104 | public: |
| 105 | friend class Value; |
| 106 | |
| 107 | operator Value *() const { return Val; } |
| 108 | Value *get() const { return Val; } |
| 109 | |
| 110 | /// \brief Returns the User that contains this Use. |
| 111 | /// |
| 112 | /// For an instruction operand, for example, this will return the |
| 113 | /// instruction. |
| 114 | User *getUser() const LLVM_READONLY; |
| 115 | |
| 116 | inline void set(Value *Val); |
| 117 | |
| 118 | inline Value *operator=(Value *RHS); |
| 119 | inline const Use &operator=(const Use &RHS); |
| 120 | |
| 121 | Value *operator->() { return Val; } |
| 122 | const Value *operator->() const { return Val; } |
| 123 | |
| 124 | Use *getNext() const { return Next; } |
| 125 | |
| 126 | /// \brief Return the operand # of this use in its User. |
| 127 | unsigned getOperandNo() const; |
| 128 | |
| 129 | /// \brief Initializes the waymarking tags on an array of Uses. |
| 130 | /// |
| 131 | /// This sets up the array of Uses such that getUser() can find the User from |
| 132 | /// any of those Uses. |
| 133 | static Use *initTags(Use *Start, Use *Stop); |
| 134 | |
| 135 | /// \brief Destroys Use operands when the number of operands of |
| 136 | /// a User changes. |
| 137 | static void zap(Use *Start, const Use *Stop, bool del = false); |
| 138 | |
| 139 | private: |
| 140 | const Use *getImpliedUser() const LLVM_READONLY; |
| 141 | |
| 142 | Value *Val = nullptr; |
| 143 | Use *Next; |
| 144 | PointerIntPair<Use **, 2, PrevPtrTag, PrevPointerTraits> Prev; |
| 145 | |
| 146 | void setPrev(Use **NewPrev) { Prev.setPointer(NewPrev); } |
| 147 | |
| 148 | void addToList(Use **List) { |
| 149 | Next = *List; |
| 150 | if (Next) |
| 151 | Next->setPrev(&Next); |
| 152 | setPrev(List); |
| 153 | *List = this; |
| 154 | } |
| 155 | |
| 156 | void removeFromList() { |
| 157 | Use **StrippedPrev = Prev.getPointer(); |
| 158 | *StrippedPrev = Next; |
| 159 | if (Next) |
| 160 | Next->setPrev(StrippedPrev); |
| 161 | } |
| 162 | }; |
| 163 | |
| 164 | /// \brief Allow clients to treat uses just like values when using |
| 165 | /// casting operators. |
| 166 | template <> struct simplify_type<Use> { |
| 167 | using SimpleType = Value *; |
| 168 | |
| 169 | static SimpleType getSimplifiedValue(Use &Val) { return Val.get(); } |
| 170 | }; |
| 171 | template <> struct simplify_type<const Use> { |
| 172 | using SimpleType = /*const*/ Value *; |
| 173 | |
| 174 | static SimpleType getSimplifiedValue(const Use &Val) { return Val.get(); } |
| 175 | }; |
| 176 | |
| 177 | // Create wrappers for C Binding types (see CBindingWrapping.h). |
| 178 | DEFINE_SIMPLE_CONVERSION_FUNCTIONS(Use, LLVMUseRef) |
| 179 | |
| 180 | } // end namespace llvm |
| 181 | |
| 182 | #endif // LLVM_IR_USE_H |