blob: 61f1cf07bcf2c0b4f9527cdc96b9b3f332b865f7 [file] [log] [blame]
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001//===-- llvm/CodeGen/TargetFrameLowering.h ----------------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Interface to describe the layout of a stack frame on the target machine.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CODEGEN_TARGETFRAMELOWERING_H
15#define LLVM_CODEGEN_TARGETFRAMELOWERING_H
16
17#include "llvm/CodeGen/MachineBasicBlock.h"
18#include <utility>
19#include <vector>
20
21namespace llvm {
22 class BitVector;
23 class CalleeSavedInfo;
24 class MachineFunction;
25 class RegScavenger;
26
27/// Information about stack frame layout on the target. It holds the direction
28/// of stack growth, the known stack alignment on entry to each function, and
29/// the offset to the locals area.
30///
31/// The offset to the local area is the offset from the stack pointer on
32/// function entry to the first location where function data (local variables,
33/// spill locations) can be stored.
34class TargetFrameLowering {
35public:
36 enum StackDirection {
37 StackGrowsUp, // Adding to the stack increases the stack address
38 StackGrowsDown // Adding to the stack decreases the stack address
39 };
40
41 // Maps a callee saved register to a stack slot with a fixed offset.
42 struct SpillSlot {
43 unsigned Reg;
44 int Offset; // Offset relative to stack pointer on function entry.
45 };
46private:
47 StackDirection StackDir;
48 unsigned StackAlignment;
49 unsigned TransientStackAlignment;
50 int LocalAreaOffset;
51 bool StackRealignable;
52public:
53 TargetFrameLowering(StackDirection D, unsigned StackAl, int LAO,
54 unsigned TransAl = 1, bool StackReal = true)
55 : StackDir(D), StackAlignment(StackAl), TransientStackAlignment(TransAl),
56 LocalAreaOffset(LAO), StackRealignable(StackReal) {}
57
58 virtual ~TargetFrameLowering();
59
60 // These methods return information that describes the abstract stack layout
61 // of the target machine.
62
63 /// getStackGrowthDirection - Return the direction the stack grows
64 ///
65 StackDirection getStackGrowthDirection() const { return StackDir; }
66
67 /// getStackAlignment - This method returns the number of bytes to which the
68 /// stack pointer must be aligned on entry to a function. Typically, this
69 /// is the largest alignment for any data object in the target.
70 ///
71 unsigned getStackAlignment() const { return StackAlignment; }
72
73 /// alignSPAdjust - This method aligns the stack adjustment to the correct
74 /// alignment.
75 ///
76 int alignSPAdjust(int SPAdj) const {
77 if (SPAdj < 0) {
78 SPAdj = -alignTo(-SPAdj, StackAlignment);
79 } else {
80 SPAdj = alignTo(SPAdj, StackAlignment);
81 }
82 return SPAdj;
83 }
84
85 /// getTransientStackAlignment - This method returns the number of bytes to
86 /// which the stack pointer must be aligned at all times, even between
87 /// calls.
88 ///
89 unsigned getTransientStackAlignment() const {
90 return TransientStackAlignment;
91 }
92
93 /// isStackRealignable - This method returns whether the stack can be
94 /// realigned.
95 bool isStackRealignable() const {
96 return StackRealignable;
97 }
98
99 /// Return the skew that has to be applied to stack alignment under
100 /// certain conditions (e.g. stack was adjusted before function \p MF
101 /// was called).
102 virtual unsigned getStackAlignmentSkew(const MachineFunction &MF) const;
103
104 /// getOffsetOfLocalArea - This method returns the offset of the local area
105 /// from the stack pointer on entrance to a function.
106 ///
107 int getOffsetOfLocalArea() const { return LocalAreaOffset; }
108
109 /// isFPCloseToIncomingSP - Return true if the frame pointer is close to
110 /// the incoming stack pointer, false if it is close to the post-prologue
111 /// stack pointer.
112 virtual bool isFPCloseToIncomingSP() const { return true; }
113
114 /// assignCalleeSavedSpillSlots - Allows target to override spill slot
115 /// assignment logic. If implemented, assignCalleeSavedSpillSlots() should
116 /// assign frame slots to all CSI entries and return true. If this method
117 /// returns false, spill slots will be assigned using generic implementation.
118 /// assignCalleeSavedSpillSlots() may add, delete or rearrange elements of
119 /// CSI.
120 virtual bool
121 assignCalleeSavedSpillSlots(MachineFunction &MF,
122 const TargetRegisterInfo *TRI,
123 std::vector<CalleeSavedInfo> &CSI) const {
124 return false;
125 }
126
127 /// getCalleeSavedSpillSlots - This method returns a pointer to an array of
128 /// pairs, that contains an entry for each callee saved register that must be
129 /// spilled to a particular stack location if it is spilled.
130 ///
131 /// Each entry in this array contains a <register,offset> pair, indicating the
132 /// fixed offset from the incoming stack pointer that each register should be
133 /// spilled at. If a register is not listed here, the code generator is
134 /// allowed to spill it anywhere it chooses.
135 ///
136 virtual const SpillSlot *
137 getCalleeSavedSpillSlots(unsigned &NumEntries) const {
138 NumEntries = 0;
139 return nullptr;
140 }
141
142 /// targetHandlesStackFrameRounding - Returns true if the target is
143 /// responsible for rounding up the stack frame (probably at emitPrologue
144 /// time).
145 virtual bool targetHandlesStackFrameRounding() const {
146 return false;
147 }
148
149 /// Returns true if the target will correctly handle shrink wrapping.
150 virtual bool enableShrinkWrapping(const MachineFunction &MF) const {
151 return false;
152 }
153
154 /// Returns true if the stack slot holes in the fixed and callee-save stack
155 /// area should be used when allocating other stack locations to reduce stack
156 /// size.
157 virtual bool enableStackSlotScavenging(const MachineFunction &MF) const {
158 return false;
159 }
160
161 /// emitProlog/emitEpilog - These methods insert prolog and epilog code into
162 /// the function.
163 virtual void emitPrologue(MachineFunction &MF,
164 MachineBasicBlock &MBB) const = 0;
165 virtual void emitEpilogue(MachineFunction &MF,
166 MachineBasicBlock &MBB) const = 0;
167
168 /// Replace a StackProbe stub (if any) with the actual probe code inline
169 virtual void inlineStackProbe(MachineFunction &MF,
170 MachineBasicBlock &PrologueMBB) const {}
171
172 /// Adjust the prologue to have the function use segmented stacks. This works
173 /// by adding a check even before the "normal" function prologue.
174 virtual void adjustForSegmentedStacks(MachineFunction &MF,
175 MachineBasicBlock &PrologueMBB) const {}
176
177 /// Adjust the prologue to add Erlang Run-Time System (ERTS) specific code in
178 /// the assembly prologue to explicitly handle the stack.
179 virtual void adjustForHiPEPrologue(MachineFunction &MF,
180 MachineBasicBlock &PrologueMBB) const {}
181
182 /// spillCalleeSavedRegisters - Issues instruction(s) to spill all callee
183 /// saved registers and returns true if it isn't possible / profitable to do
184 /// so by issuing a series of store instructions via
185 /// storeRegToStackSlot(). Returns false otherwise.
186 virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
187 MachineBasicBlock::iterator MI,
188 const std::vector<CalleeSavedInfo> &CSI,
189 const TargetRegisterInfo *TRI) const {
190 return false;
191 }
192
193 /// restoreCalleeSavedRegisters - Issues instruction(s) to restore all callee
194 /// saved registers and returns true if it isn't possible / profitable to do
195 /// so by issuing a series of load instructions via loadRegToStackSlot().
196 /// If it returns true, and any of the registers in CSI is not restored,
197 /// it sets the corresponding Restored flag in CSI to false.
198 /// Returns false otherwise.
199 virtual bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
200 MachineBasicBlock::iterator MI,
201 std::vector<CalleeSavedInfo> &CSI,
202 const TargetRegisterInfo *TRI) const {
203 return false;
204 }
205
206 /// Return true if the target needs to disable frame pointer elimination.
207 virtual bool noFramePointerElim(const MachineFunction &MF) const;
208
209 /// hasFP - Return true if the specified function should have a dedicated
210 /// frame pointer register. For most targets this is true only if the function
211 /// has variable sized allocas or if frame pointer elimination is disabled.
212 virtual bool hasFP(const MachineFunction &MF) const = 0;
213
214 /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is
215 /// not required, we reserve argument space for call sites in the function
216 /// immediately on entry to the current function. This eliminates the need for
217 /// add/sub sp brackets around call sites. Returns true if the call frame is
218 /// included as part of the stack frame.
219 virtual bool hasReservedCallFrame(const MachineFunction &MF) const {
220 return !hasFP(MF);
221 }
222
223 /// canSimplifyCallFramePseudos - When possible, it's best to simplify the
224 /// call frame pseudo ops before doing frame index elimination. This is
225 /// possible only when frame index references between the pseudos won't
226 /// need adjusting for the call frame adjustments. Normally, that's true
227 /// if the function has a reserved call frame or a frame pointer. Some
228 /// targets (Thumb2, for example) may have more complicated criteria,
229 /// however, and can override this behavior.
230 virtual bool canSimplifyCallFramePseudos(const MachineFunction &MF) const {
231 return hasReservedCallFrame(MF) || hasFP(MF);
232 }
233
234 // needsFrameIndexResolution - Do we need to perform FI resolution for
235 // this function. Normally, this is required only when the function
236 // has any stack objects. However, targets may want to override this.
237 virtual bool needsFrameIndexResolution(const MachineFunction &MF) const;
238
239 /// getFrameIndexReference - This method should return the base register
240 /// and offset used to reference a frame index location. The offset is
241 /// returned directly, and the base register is returned via FrameReg.
242 virtual int getFrameIndexReference(const MachineFunction &MF, int FI,
243 unsigned &FrameReg) const;
244
245 /// Same as \c getFrameIndexReference, except that the stack pointer (as
246 /// opposed to the frame pointer) will be the preferred value for \p
247 /// FrameReg. This is generally used for emitting statepoint or EH tables that
248 /// use offsets from RSP. If \p IgnoreSPUpdates is true, the returned
249 /// offset is only guaranteed to be valid with respect to the value of SP at
250 /// the end of the prologue.
251 virtual int getFrameIndexReferencePreferSP(const MachineFunction &MF, int FI,
252 unsigned &FrameReg,
253 bool IgnoreSPUpdates) const {
254 // Always safe to dispatch to getFrameIndexReference.
255 return getFrameIndexReference(MF, FI, FrameReg);
256 }
257
258 /// This method determines which of the registers reported by
259 /// TargetRegisterInfo::getCalleeSavedRegs() should actually get saved.
260 /// The default implementation checks populates the \p SavedRegs bitset with
261 /// all registers which are modified in the function, targets may override
262 /// this function to save additional registers.
263 /// This method also sets up the register scavenger ensuring there is a free
264 /// register or a frameindex available.
265 virtual void determineCalleeSaves(MachineFunction &MF, BitVector &SavedRegs,
266 RegScavenger *RS = nullptr) const;
267
268 /// processFunctionBeforeFrameFinalized - This method is called immediately
269 /// before the specified function's frame layout (MF.getFrameInfo()) is
270 /// finalized. Once the frame is finalized, MO_FrameIndex operands are
271 /// replaced with direct constants. This method is optional.
272 ///
273 virtual void processFunctionBeforeFrameFinalized(MachineFunction &MF,
274 RegScavenger *RS = nullptr) const {
275 }
276
277 virtual unsigned getWinEHParentFrameOffset(const MachineFunction &MF) const {
278 report_fatal_error("WinEH not implemented for this target");
279 }
280
281 /// This method is called during prolog/epilog code insertion to eliminate
282 /// call frame setup and destroy pseudo instructions (but only if the Target
283 /// is using them). It is responsible for eliminating these instructions,
284 /// replacing them with concrete instructions. This method need only be
285 /// implemented if using call frame setup/destroy pseudo instructions.
286 /// Returns an iterator pointing to the instruction after the replaced one.
287 virtual MachineBasicBlock::iterator
288 eliminateCallFramePseudoInstr(MachineFunction &MF,
289 MachineBasicBlock &MBB,
290 MachineBasicBlock::iterator MI) const {
291 llvm_unreachable("Call Frame Pseudo Instructions do not exist on this "
292 "target!");
293 }
294
295
296 /// Order the symbols in the local stack frame.
297 /// The list of objects that we want to order is in \p objectsToAllocate as
298 /// indices into the MachineFrameInfo. The array can be reordered in any way
299 /// upon return. The contents of the array, however, may not be modified (i.e.
300 /// only their order may be changed).
301 /// By default, just maintain the original order.
302 virtual void
303 orderFrameObjects(const MachineFunction &MF,
304 SmallVectorImpl<int> &objectsToAllocate) const {
305 }
306
307 /// Check whether or not the given \p MBB can be used as a prologue
308 /// for the target.
309 /// The prologue will be inserted first in this basic block.
310 /// This method is used by the shrink-wrapping pass to decide if
311 /// \p MBB will be correctly handled by the target.
312 /// As soon as the target enable shrink-wrapping without overriding
313 /// this method, we assume that each basic block is a valid
314 /// prologue.
315 virtual bool canUseAsPrologue(const MachineBasicBlock &MBB) const {
316 return true;
317 }
318
319 /// Check whether or not the given \p MBB can be used as a epilogue
320 /// for the target.
321 /// The epilogue will be inserted before the first terminator of that block.
322 /// This method is used by the shrink-wrapping pass to decide if
323 /// \p MBB will be correctly handled by the target.
324 /// As soon as the target enable shrink-wrapping without overriding
325 /// this method, we assume that each basic block is a valid
326 /// epilogue.
327 virtual bool canUseAsEpilogue(const MachineBasicBlock &MBB) const {
328 return true;
329 }
330
331 /// Check if given function is safe for not having callee saved registers.
332 /// This is used when interprocedural register allocation is enabled.
333 static bool isSafeForNoCSROpt(const Function &F) {
334 if (!F.hasLocalLinkage() || F.hasAddressTaken() ||
335 !F.hasFnAttribute(Attribute::NoRecurse))
336 return false;
337 // Function should not be optimized as tail call.
338 for (const User *U : F.users())
339 if (auto CS = ImmutableCallSite(U))
340 if (CS.isTailCall())
341 return false;
342 return true;
343 }
344};
345
346} // End llvm namespace
347
348#endif