Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame^] | 1 | //===- llvm/CodeGen/GlobalISel/LegalizerInfo.h ------------------*- C++ -*-===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | /// Interface for Targets to specify which operations they can successfully |
| 11 | /// select and how the others should be expanded most efficiently. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #ifndef LLVM_CODEGEN_GLOBALISEL_LEGALIZERINFO_H |
| 16 | #define LLVM_CODEGEN_GLOBALISEL_LEGALIZERINFO_H |
| 17 | |
| 18 | #include "llvm/ADT/DenseMap.h" |
| 19 | #include "llvm/ADT/None.h" |
| 20 | #include "llvm/ADT/Optional.h" |
| 21 | #include "llvm/ADT/STLExtras.h" |
| 22 | #include "llvm/ADT/SmallVector.h" |
| 23 | #include "llvm/CodeGen/MachineFunction.h" |
| 24 | #include "llvm/CodeGen/TargetOpcodes.h" |
| 25 | #include "llvm/Support/raw_ostream.h" |
| 26 | #include "llvm/Support/LowLevelTypeImpl.h" |
| 27 | #include <cassert> |
| 28 | #include <cstdint> |
| 29 | #include <tuple> |
| 30 | #include <unordered_map> |
| 31 | #include <utility> |
| 32 | |
| 33 | namespace llvm { |
| 34 | |
| 35 | extern cl::opt<bool> DisableGISelLegalityCheck; |
| 36 | |
| 37 | class MachineInstr; |
| 38 | class MachineIRBuilder; |
| 39 | class MachineRegisterInfo; |
| 40 | |
| 41 | namespace LegalizeActions { |
| 42 | enum LegalizeAction : std::uint8_t { |
| 43 | /// The operation is expected to be selectable directly by the target, and |
| 44 | /// no transformation is necessary. |
| 45 | Legal, |
| 46 | |
| 47 | /// The operation should be synthesized from multiple instructions acting on |
| 48 | /// a narrower scalar base-type. For example a 64-bit add might be |
| 49 | /// implemented in terms of 32-bit add-with-carry. |
| 50 | NarrowScalar, |
| 51 | |
| 52 | /// The operation should be implemented in terms of a wider scalar |
| 53 | /// base-type. For example a <2 x s8> add could be implemented as a <2 |
| 54 | /// x s32> add (ignoring the high bits). |
| 55 | WidenScalar, |
| 56 | |
| 57 | /// The (vector) operation should be implemented by splitting it into |
| 58 | /// sub-vectors where the operation is legal. For example a <8 x s64> add |
| 59 | /// might be implemented as 4 separate <2 x s64> adds. |
| 60 | FewerElements, |
| 61 | |
| 62 | /// The (vector) operation should be implemented by widening the input |
| 63 | /// vector and ignoring the lanes added by doing so. For example <2 x i8> is |
| 64 | /// rarely legal, but you might perform an <8 x i8> and then only look at |
| 65 | /// the first two results. |
| 66 | MoreElements, |
| 67 | |
| 68 | /// The operation itself must be expressed in terms of simpler actions on |
| 69 | /// this target. E.g. a SREM replaced by an SDIV and subtraction. |
| 70 | Lower, |
| 71 | |
| 72 | /// The operation should be implemented as a call to some kind of runtime |
| 73 | /// support library. For example this usually happens on machines that don't |
| 74 | /// support floating-point operations natively. |
| 75 | Libcall, |
| 76 | |
| 77 | /// The target wants to do something special with this combination of |
| 78 | /// operand and type. A callback will be issued when it is needed. |
| 79 | Custom, |
| 80 | |
| 81 | /// This operation is completely unsupported on the target. A programming |
| 82 | /// error has occurred. |
| 83 | Unsupported, |
| 84 | |
| 85 | /// Sentinel value for when no action was found in the specified table. |
| 86 | NotFound, |
| 87 | |
| 88 | /// Fall back onto the old rules. |
| 89 | /// TODO: Remove this once we've migrated |
| 90 | UseLegacyRules, |
| 91 | }; |
| 92 | } // end namespace LegalizeActions |
| 93 | |
| 94 | using LegalizeActions::LegalizeAction; |
| 95 | |
| 96 | /// Legalization is decided based on an instruction's opcode, which type slot |
| 97 | /// we're considering, and what the existing type is. These aspects are gathered |
| 98 | /// together for convenience in the InstrAspect class. |
| 99 | struct InstrAspect { |
| 100 | unsigned Opcode; |
| 101 | unsigned Idx = 0; |
| 102 | LLT Type; |
| 103 | |
| 104 | InstrAspect(unsigned Opcode, LLT Type) : Opcode(Opcode), Type(Type) {} |
| 105 | InstrAspect(unsigned Opcode, unsigned Idx, LLT Type) |
| 106 | : Opcode(Opcode), Idx(Idx), Type(Type) {} |
| 107 | |
| 108 | bool operator==(const InstrAspect &RHS) const { |
| 109 | return Opcode == RHS.Opcode && Idx == RHS.Idx && Type == RHS.Type; |
| 110 | } |
| 111 | }; |
| 112 | |
| 113 | /// The LegalityQuery object bundles together all the information that's needed |
| 114 | /// to decide whether a given operation is legal or not. |
| 115 | /// For efficiency, it doesn't make a copy of Types so care must be taken not |
| 116 | /// to free it before using the query. |
| 117 | struct LegalityQuery { |
| 118 | unsigned Opcode; |
| 119 | ArrayRef<LLT> Types; |
| 120 | |
| 121 | raw_ostream &print(raw_ostream &OS) const; |
| 122 | }; |
| 123 | |
| 124 | /// The result of a query. It either indicates a final answer of Legal or |
| 125 | /// Unsupported or describes an action that must be taken to make an operation |
| 126 | /// more legal. |
| 127 | struct LegalizeActionStep { |
| 128 | /// The action to take or the final answer. |
| 129 | LegalizeAction Action; |
| 130 | /// If describing an action, the type index to change. Otherwise zero. |
| 131 | unsigned TypeIdx; |
| 132 | /// If describing an action, the new type for TypeIdx. Otherwise LLT{}. |
| 133 | LLT NewType; |
| 134 | |
| 135 | LegalizeActionStep(LegalizeAction Action, unsigned TypeIdx, |
| 136 | const LLT &NewType) |
| 137 | : Action(Action), TypeIdx(TypeIdx), NewType(NewType) {} |
| 138 | |
| 139 | bool operator==(const LegalizeActionStep &RHS) const { |
| 140 | return std::tie(Action, TypeIdx, NewType) == |
| 141 | std::tie(RHS.Action, RHS.TypeIdx, RHS.NewType); |
| 142 | } |
| 143 | }; |
| 144 | |
| 145 | using LegalityPredicate = std::function<bool (const LegalityQuery &)>; |
| 146 | using LegalizeMutation = |
| 147 | std::function<std::pair<unsigned, LLT>(const LegalityQuery &)>; |
| 148 | |
| 149 | namespace LegalityPredicates { |
| 150 | /// True iff P0 and P1 are true. |
| 151 | LegalityPredicate all(LegalityPredicate P0, LegalityPredicate P1); |
| 152 | /// True iff the given type index is one of the specified types. |
| 153 | LegalityPredicate typeInSet(unsigned TypeIdx, |
| 154 | std::initializer_list<LLT> TypesInit); |
| 155 | /// True iff the given types for the given pair of type indexes is one of the |
| 156 | /// specified type pairs. |
| 157 | LegalityPredicate |
| 158 | typePairInSet(unsigned TypeIdx0, unsigned TypeIdx1, |
| 159 | std::initializer_list<std::pair<LLT, LLT>> TypesInit); |
| 160 | /// True iff the specified type index is a scalar. |
| 161 | LegalityPredicate isScalar(unsigned TypeIdx); |
| 162 | /// True iff the specified type index is a scalar that's narrower than the given |
| 163 | /// size. |
| 164 | LegalityPredicate narrowerThan(unsigned TypeIdx, unsigned Size); |
| 165 | /// True iff the specified type index is a scalar that's wider than the given |
| 166 | /// size. |
| 167 | LegalityPredicate widerThan(unsigned TypeIdx, unsigned Size); |
| 168 | /// True iff the specified type index is a scalar whose size is not a power of |
| 169 | /// 2. |
| 170 | LegalityPredicate sizeNotPow2(unsigned TypeIdx); |
| 171 | /// True iff the specified type index is a vector whose element count is not a |
| 172 | /// power of 2. |
| 173 | LegalityPredicate numElementsNotPow2(unsigned TypeIdx); |
| 174 | } // end namespace LegalityPredicates |
| 175 | |
| 176 | namespace LegalizeMutations { |
| 177 | /// Select this specific type for the given type index. |
| 178 | LegalizeMutation changeTo(unsigned TypeIdx, LLT Ty); |
| 179 | /// Widen the type for the given type index to the next power of 2. |
| 180 | LegalizeMutation widenScalarToNextPow2(unsigned TypeIdx, unsigned Min = 0); |
| 181 | /// Add more elements to the type for the given type index to the next power of |
| 182 | /// 2. |
| 183 | LegalizeMutation moreElementsToNextPow2(unsigned TypeIdx, unsigned Min = 0); |
| 184 | } // end namespace LegalizeMutations |
| 185 | |
| 186 | /// A single rule in a legalizer info ruleset. |
| 187 | /// The specified action is chosen when the predicate is true. Where appropriate |
| 188 | /// for the action (e.g. for WidenScalar) the new type is selected using the |
| 189 | /// given mutator. |
| 190 | class LegalizeRule { |
| 191 | LegalityPredicate Predicate; |
| 192 | LegalizeAction Action; |
| 193 | LegalizeMutation Mutation; |
| 194 | |
| 195 | public: |
| 196 | LegalizeRule(LegalityPredicate Predicate, LegalizeAction Action, |
| 197 | LegalizeMutation Mutation = nullptr) |
| 198 | : Predicate(Predicate), Action(Action), Mutation(Mutation) {} |
| 199 | |
| 200 | /// Test whether the LegalityQuery matches. |
| 201 | bool match(const LegalityQuery &Query) const { |
| 202 | return Predicate(Query); |
| 203 | } |
| 204 | |
| 205 | LegalizeAction getAction() const { return Action; } |
| 206 | |
| 207 | /// Determine the change to make. |
| 208 | std::pair<unsigned, LLT> determineMutation(const LegalityQuery &Query) const { |
| 209 | if (Mutation) |
| 210 | return Mutation(Query); |
| 211 | return std::make_pair(0, LLT{}); |
| 212 | } |
| 213 | }; |
| 214 | |
| 215 | class LegalizeRuleSet { |
| 216 | /// When non-zero, the opcode we are an alias of |
| 217 | unsigned AliasOf; |
| 218 | /// If true, there is another opcode that aliases this one |
| 219 | bool IsAliasedByAnother; |
| 220 | SmallVector<LegalizeRule, 2> Rules; |
| 221 | |
| 222 | void add(const LegalizeRule &Rule) { |
| 223 | assert(AliasOf == 0 && |
| 224 | "RuleSet is aliased, change the representative opcode instead"); |
| 225 | Rules.push_back(Rule); |
| 226 | } |
| 227 | |
| 228 | static bool always(const LegalityQuery &) { return true; } |
| 229 | |
| 230 | /// Use the given action when the predicate is true. |
| 231 | /// Action should not be an action that requires mutation. |
| 232 | LegalizeRuleSet &actionIf(LegalizeAction Action, |
| 233 | LegalityPredicate Predicate) { |
| 234 | add({Predicate, Action}); |
| 235 | return *this; |
| 236 | } |
| 237 | /// Use the given action when the predicate is true. |
| 238 | /// Action should not be an action that requires mutation. |
| 239 | LegalizeRuleSet &actionIf(LegalizeAction Action, LegalityPredicate Predicate, |
| 240 | LegalizeMutation Mutation) { |
| 241 | add({Predicate, Action, Mutation}); |
| 242 | return *this; |
| 243 | } |
| 244 | /// Use the given action when type index 0 is any type in the given list. |
| 245 | /// Action should not be an action that requires mutation. |
| 246 | LegalizeRuleSet &actionFor(LegalizeAction Action, |
| 247 | std::initializer_list<LLT> Types) { |
| 248 | using namespace LegalityPredicates; |
| 249 | return actionIf(Action, typeInSet(0, Types)); |
| 250 | } |
| 251 | /// Use the given action when type indexes 0 and 1 is any type pair in the |
| 252 | /// given list. |
| 253 | /// Action should not be an action that requires mutation. |
| 254 | LegalizeRuleSet & |
| 255 | actionFor(LegalizeAction Action, |
| 256 | std::initializer_list<std::pair<LLT, LLT>> Types) { |
| 257 | using namespace LegalityPredicates; |
| 258 | return actionIf(Action, typePairInSet(0, 1, Types)); |
| 259 | } |
| 260 | /// Use the given action when type indexes 0 and 1 are both in the given list. |
| 261 | /// That is, the type pair is in the cartesian product of the list. |
| 262 | /// Action should not be an action that requires mutation. |
| 263 | LegalizeRuleSet &actionForCartesianProduct(LegalizeAction Action, |
| 264 | std::initializer_list<LLT> Types) { |
| 265 | using namespace LegalityPredicates; |
| 266 | return actionIf(Action, all(typeInSet(0, Types), typeInSet(1, Types))); |
| 267 | } |
| 268 | /// Use the given action when type indexes 0 and 1 are both their respective |
| 269 | /// lists. |
| 270 | /// That is, the type pair is in the cartesian product of the lists |
| 271 | /// Action should not be an action that requires mutation. |
| 272 | LegalizeRuleSet & |
| 273 | actionForCartesianProduct(LegalizeAction Action, |
| 274 | std::initializer_list<LLT> Types0, |
| 275 | std::initializer_list<LLT> Types1) { |
| 276 | using namespace LegalityPredicates; |
| 277 | return actionIf(Action, all(typeInSet(0, Types0), typeInSet(1, Types1))); |
| 278 | } |
| 279 | |
| 280 | public: |
| 281 | LegalizeRuleSet() : AliasOf(0), IsAliasedByAnother(false), Rules() {} |
| 282 | |
| 283 | bool isAliasedByAnother() { return IsAliasedByAnother; } |
| 284 | void setIsAliasedByAnother() { IsAliasedByAnother = true; } |
| 285 | void aliasTo(unsigned Opcode) { |
| 286 | assert((AliasOf == 0 || AliasOf == Opcode) && |
| 287 | "Opcode is already aliased to another opcode"); |
| 288 | assert(Rules.empty() && "Aliasing will discard rules"); |
| 289 | AliasOf = Opcode; |
| 290 | } |
| 291 | unsigned getAlias() const { return AliasOf; } |
| 292 | |
| 293 | /// The instruction is legal if predicate is true. |
| 294 | LegalizeRuleSet &legalIf(LegalityPredicate Predicate) { |
| 295 | return actionIf(LegalizeAction::Legal, Predicate); |
| 296 | } |
| 297 | /// The instruction is legal when type index 0 is any type in the given list. |
| 298 | LegalizeRuleSet &legalFor(std::initializer_list<LLT> Types) { |
| 299 | return actionFor(LegalizeAction::Legal, Types); |
| 300 | } |
| 301 | /// The instruction is legal when type indexes 0 and 1 is any type pair in the |
| 302 | /// given list. |
| 303 | LegalizeRuleSet &legalFor(std::initializer_list<std::pair<LLT, LLT>> Types) { |
| 304 | return actionFor(LegalizeAction::Legal, Types); |
| 305 | } |
| 306 | /// The instruction is legal when type indexes 0 and 1 are both in the given |
| 307 | /// list. That is, the type pair is in the cartesian product of the list. |
| 308 | LegalizeRuleSet &legalForCartesianProduct(std::initializer_list<LLT> Types) { |
| 309 | return actionForCartesianProduct(LegalizeAction::Legal, Types); |
| 310 | } |
| 311 | /// The instruction is legal when type indexes 0 and 1 are both their |
| 312 | /// respective lists. |
| 313 | LegalizeRuleSet &legalForCartesianProduct(std::initializer_list<LLT> Types0, |
| 314 | std::initializer_list<LLT> Types1) { |
| 315 | return actionForCartesianProduct(LegalizeAction::Legal, Types0, Types1); |
| 316 | } |
| 317 | |
| 318 | /// Like legalIf, but for the Libcall action. |
| 319 | LegalizeRuleSet &libcallIf(LegalityPredicate Predicate) { |
| 320 | return actionIf(LegalizeAction::Libcall, Predicate); |
| 321 | } |
| 322 | LegalizeRuleSet &libcallFor(std::initializer_list<LLT> Types) { |
| 323 | return actionFor(LegalizeAction::Libcall, Types); |
| 324 | } |
| 325 | LegalizeRuleSet & |
| 326 | libcallFor(std::initializer_list<std::pair<LLT, LLT>> Types) { |
| 327 | return actionFor(LegalizeAction::Libcall, Types); |
| 328 | } |
| 329 | LegalizeRuleSet & |
| 330 | libcallForCartesianProduct(std::initializer_list<LLT> Types) { |
| 331 | return actionForCartesianProduct(LegalizeAction::Libcall, Types); |
| 332 | } |
| 333 | LegalizeRuleSet & |
| 334 | libcallForCartesianProduct(std::initializer_list<LLT> Types0, |
| 335 | std::initializer_list<LLT> Types1) { |
| 336 | return actionForCartesianProduct(LegalizeAction::Libcall, Types0, Types1); |
| 337 | } |
| 338 | |
| 339 | /// Widen the scalar to the one selected by the mutation if the predicate is |
| 340 | /// true. |
| 341 | LegalizeRuleSet &widenScalarIf(LegalityPredicate Predicate, |
| 342 | LegalizeMutation Mutation) { |
| 343 | return actionIf(LegalizeAction::WidenScalar, Predicate, Mutation); |
| 344 | } |
| 345 | /// Narrow the scalar to the one selected by the mutation if the predicate is |
| 346 | /// true. |
| 347 | LegalizeRuleSet &narrowScalarIf(LegalityPredicate Predicate, |
| 348 | LegalizeMutation Mutation) { |
| 349 | return actionIf(LegalizeAction::NarrowScalar, Predicate, Mutation); |
| 350 | } |
| 351 | |
| 352 | /// Add more elements to reach the type selected by the mutation if the |
| 353 | /// predicate is true. |
| 354 | LegalizeRuleSet &moreElementsIf(LegalityPredicate Predicate, |
| 355 | LegalizeMutation Mutation) { |
| 356 | return actionIf(LegalizeAction::MoreElements, Predicate, Mutation); |
| 357 | } |
| 358 | /// Remove elements to reach the type selected by the mutation if the |
| 359 | /// predicate is true. |
| 360 | LegalizeRuleSet &fewerElementsIf(LegalityPredicate Predicate, |
| 361 | LegalizeMutation Mutation) { |
| 362 | return actionIf(LegalizeAction::FewerElements, Predicate, Mutation); |
| 363 | } |
| 364 | |
| 365 | /// The instruction is unsupported. |
| 366 | LegalizeRuleSet &unsupported() { |
| 367 | return actionIf(LegalizeAction::Unsupported, always); |
| 368 | } |
| 369 | LegalizeRuleSet &unsupportedIf(LegalityPredicate Predicate) { |
| 370 | return actionIf(LegalizeAction::Unsupported, Predicate); |
| 371 | } |
| 372 | |
| 373 | LegalizeRuleSet &customIf(LegalityPredicate Predicate) { |
| 374 | return actionIf(LegalizeAction::Custom, Predicate); |
| 375 | } |
| 376 | LegalizeRuleSet &customFor(std::initializer_list<LLT> Types) { |
| 377 | return actionFor(LegalizeAction::Custom, Types); |
| 378 | } |
| 379 | LegalizeRuleSet &customForCartesianProduct(std::initializer_list<LLT> Types) { |
| 380 | return actionForCartesianProduct(LegalizeAction::Custom, Types); |
| 381 | } |
| 382 | LegalizeRuleSet & |
| 383 | customForCartesianProduct(std::initializer_list<LLT> Types0, |
| 384 | std::initializer_list<LLT> Types1) { |
| 385 | return actionForCartesianProduct(LegalizeAction::Custom, Types0, Types1); |
| 386 | } |
| 387 | |
| 388 | /// Widen the scalar to the next power of two that is at least MinSize. |
| 389 | /// No effect if the type is not a scalar or is a power of two. |
| 390 | LegalizeRuleSet &widenScalarToNextPow2(unsigned TypeIdx, unsigned MinSize = 0) { |
| 391 | using namespace LegalityPredicates; |
| 392 | return widenScalarIf( |
| 393 | sizeNotPow2(TypeIdx), |
| 394 | LegalizeMutations::widenScalarToNextPow2(TypeIdx, MinSize)); |
| 395 | } |
| 396 | |
| 397 | LegalizeRuleSet &narrowScalar(unsigned TypeIdx, LegalizeMutation Mutation) { |
| 398 | using namespace LegalityPredicates; |
| 399 | return narrowScalarIf(isScalar(TypeIdx), Mutation); |
| 400 | } |
| 401 | |
| 402 | /// Ensure the scalar is at least as wide as Ty. |
| 403 | LegalizeRuleSet &minScalar(unsigned TypeIdx, const LLT &Ty) { |
| 404 | using namespace LegalityPredicates; |
| 405 | using namespace LegalizeMutations; |
| 406 | return widenScalarIf(narrowerThan(TypeIdx, Ty.getSizeInBits()), |
| 407 | changeTo(TypeIdx, Ty)); |
| 408 | } |
| 409 | |
| 410 | /// Ensure the scalar is at most as wide as Ty. |
| 411 | LegalizeRuleSet &maxScalar(unsigned TypeIdx, const LLT &Ty) { |
| 412 | using namespace LegalityPredicates; |
| 413 | using namespace LegalizeMutations; |
| 414 | return narrowScalarIf(widerThan(TypeIdx, Ty.getSizeInBits()), |
| 415 | changeTo(TypeIdx, Ty)); |
| 416 | } |
| 417 | |
| 418 | /// Conditionally limit the maximum size of the scalar. |
| 419 | /// For example, when the maximum size of one type depends on the size of |
| 420 | /// another such as extracting N bits from an M bit container. |
| 421 | LegalizeRuleSet &maxScalarIf(LegalityPredicate Predicate, unsigned TypeIdx, const LLT &Ty) { |
| 422 | using namespace LegalityPredicates; |
| 423 | using namespace LegalizeMutations; |
| 424 | return narrowScalarIf( |
| 425 | [=](const LegalityQuery &Query) { |
| 426 | return widerThan(TypeIdx, Ty.getSizeInBits()) && |
| 427 | Predicate(Query); |
| 428 | }, |
| 429 | changeTo(TypeIdx, Ty)); |
| 430 | } |
| 431 | |
| 432 | /// Limit the range of scalar sizes to MinTy and MaxTy. |
| 433 | LegalizeRuleSet &clampScalar(unsigned TypeIdx, const LLT &MinTy, const LLT &MaxTy) { |
| 434 | assert(MinTy.isScalar() && MaxTy.isScalar() && "Expected scalar types"); |
| 435 | |
| 436 | return minScalar(TypeIdx, MinTy) |
| 437 | .maxScalar(TypeIdx, MaxTy); |
| 438 | } |
| 439 | |
| 440 | /// Add more elements to the vector to reach the next power of two. |
| 441 | /// No effect if the type is not a vector or the element count is a power of |
| 442 | /// two. |
| 443 | LegalizeRuleSet &moreElementsToNextPow2(unsigned TypeIdx) { |
| 444 | using namespace LegalityPredicates; |
| 445 | return moreElementsIf(numElementsNotPow2(TypeIdx), |
| 446 | LegalizeMutations::moreElementsToNextPow2(TypeIdx)); |
| 447 | } |
| 448 | |
| 449 | /// Limit the number of elements in EltTy vectors to at least MinElements. |
| 450 | LegalizeRuleSet &clampMinNumElements(unsigned TypeIdx, const LLT &EltTy, |
| 451 | unsigned MinElements) { |
| 452 | return moreElementsIf( |
| 453 | [=](const LegalityQuery &Query) { |
| 454 | LLT VecTy = Query.Types[TypeIdx]; |
| 455 | return VecTy.getElementType() == EltTy && |
| 456 | VecTy.getNumElements() < MinElements; |
| 457 | }, |
| 458 | [=](const LegalityQuery &Query) { |
| 459 | LLT VecTy = Query.Types[TypeIdx]; |
| 460 | return std::make_pair( |
| 461 | TypeIdx, LLT::vector(MinElements, VecTy.getScalarSizeInBits())); |
| 462 | }); |
| 463 | } |
| 464 | /// Limit the number of elements in EltTy vectors to at most MaxElements. |
| 465 | LegalizeRuleSet &clampMaxNumElements(unsigned TypeIdx, const LLT &EltTy, |
| 466 | unsigned MaxElements) { |
| 467 | return fewerElementsIf( |
| 468 | [=](const LegalityQuery &Query) { |
| 469 | LLT VecTy = Query.Types[TypeIdx]; |
| 470 | return VecTy.getElementType() == EltTy && |
| 471 | VecTy.getNumElements() > MaxElements; |
| 472 | }, |
| 473 | [=](const LegalityQuery &Query) { |
| 474 | LLT VecTy = Query.Types[TypeIdx]; |
| 475 | return std::make_pair( |
| 476 | TypeIdx, LLT::vector(MaxElements, VecTy.getScalarSizeInBits())); |
| 477 | }); |
| 478 | } |
| 479 | /// Limit the number of elements for the given vectors to at least MinTy's |
| 480 | /// number of elements and at most MaxTy's number of elements. |
| 481 | /// |
| 482 | /// No effect if the type is not a vector or does not have the same element |
| 483 | /// type as the constraints. |
| 484 | /// The element type of MinTy and MaxTy must match. |
| 485 | LegalizeRuleSet &clampNumElements(unsigned TypeIdx, const LLT &MinTy, |
| 486 | const LLT &MaxTy) { |
| 487 | assert(MinTy.getElementType() == MaxTy.getElementType() && |
| 488 | "Expected element types to agree"); |
| 489 | |
| 490 | const LLT &EltTy = MinTy.getElementType(); |
| 491 | return clampMinNumElements(TypeIdx, EltTy, MinTy.getNumElements()) |
| 492 | .clampMaxNumElements(TypeIdx, EltTy, MaxTy.getNumElements()); |
| 493 | } |
| 494 | |
| 495 | /// Fallback on the previous implementation. This should only be used while |
| 496 | /// porting a rule. |
| 497 | LegalizeRuleSet &fallback() { |
| 498 | add({always, LegalizeAction::UseLegacyRules}); |
| 499 | return *this; |
| 500 | } |
| 501 | |
| 502 | /// Apply the ruleset to the given LegalityQuery. |
| 503 | LegalizeActionStep apply(const LegalityQuery &Query) const; |
| 504 | }; |
| 505 | |
| 506 | class LegalizerInfo { |
| 507 | public: |
| 508 | LegalizerInfo(); |
| 509 | virtual ~LegalizerInfo() = default; |
| 510 | |
| 511 | unsigned getOpcodeIdxForOpcode(unsigned Opcode) const; |
| 512 | unsigned getActionDefinitionsIdx(unsigned Opcode) const; |
| 513 | |
| 514 | /// Compute any ancillary tables needed to quickly decide how an operation |
| 515 | /// should be handled. This must be called after all "set*Action"methods but |
| 516 | /// before any query is made or incorrect results may be returned. |
| 517 | void computeTables(); |
| 518 | |
| 519 | static bool needsLegalizingToDifferentSize(const LegalizeAction Action) { |
| 520 | using namespace LegalizeActions; |
| 521 | switch (Action) { |
| 522 | case NarrowScalar: |
| 523 | case WidenScalar: |
| 524 | case FewerElements: |
| 525 | case MoreElements: |
| 526 | case Unsupported: |
| 527 | return true; |
| 528 | default: |
| 529 | return false; |
| 530 | } |
| 531 | } |
| 532 | |
| 533 | using SizeAndAction = std::pair<uint16_t, LegalizeAction>; |
| 534 | using SizeAndActionsVec = std::vector<SizeAndAction>; |
| 535 | using SizeChangeStrategy = |
| 536 | std::function<SizeAndActionsVec(const SizeAndActionsVec &v)>; |
| 537 | |
| 538 | /// More friendly way to set an action for common types that have an LLT |
| 539 | /// representation. |
| 540 | /// The LegalizeAction must be one for which NeedsLegalizingToDifferentSize |
| 541 | /// returns false. |
| 542 | void setAction(const InstrAspect &Aspect, LegalizeAction Action) { |
| 543 | assert(!needsLegalizingToDifferentSize(Action)); |
| 544 | TablesInitialized = false; |
| 545 | const unsigned OpcodeIdx = Aspect.Opcode - FirstOp; |
| 546 | if (SpecifiedActions[OpcodeIdx].size() <= Aspect.Idx) |
| 547 | SpecifiedActions[OpcodeIdx].resize(Aspect.Idx + 1); |
| 548 | SpecifiedActions[OpcodeIdx][Aspect.Idx][Aspect.Type] = Action; |
| 549 | } |
| 550 | |
| 551 | /// The setAction calls record the non-size-changing legalization actions |
| 552 | /// to take on specificly-sized types. The SizeChangeStrategy defines what |
| 553 | /// to do when the size of the type needs to be changed to reach a legally |
| 554 | /// sized type (i.e., one that was defined through a setAction call). |
| 555 | /// e.g. |
| 556 | /// setAction ({G_ADD, 0, LLT::scalar(32)}, Legal); |
| 557 | /// setLegalizeScalarToDifferentSizeStrategy( |
| 558 | /// G_ADD, 0, widenToLargerTypesAndNarrowToLargest); |
| 559 | /// will end up defining getAction({G_ADD, 0, T}) to return the following |
| 560 | /// actions for different scalar types T: |
| 561 | /// LLT::scalar(1)..LLT::scalar(31): {WidenScalar, 0, LLT::scalar(32)} |
| 562 | /// LLT::scalar(32): {Legal, 0, LLT::scalar(32)} |
| 563 | /// LLT::scalar(33)..: {NarrowScalar, 0, LLT::scalar(32)} |
| 564 | /// |
| 565 | /// If no SizeChangeAction gets defined, through this function, |
| 566 | /// the default is unsupportedForDifferentSizes. |
| 567 | void setLegalizeScalarToDifferentSizeStrategy(const unsigned Opcode, |
| 568 | const unsigned TypeIdx, |
| 569 | SizeChangeStrategy S) { |
| 570 | const unsigned OpcodeIdx = Opcode - FirstOp; |
| 571 | if (ScalarSizeChangeStrategies[OpcodeIdx].size() <= TypeIdx) |
| 572 | ScalarSizeChangeStrategies[OpcodeIdx].resize(TypeIdx + 1); |
| 573 | ScalarSizeChangeStrategies[OpcodeIdx][TypeIdx] = S; |
| 574 | } |
| 575 | |
| 576 | /// See also setLegalizeScalarToDifferentSizeStrategy. |
| 577 | /// This function allows to set the SizeChangeStrategy for vector elements. |
| 578 | void setLegalizeVectorElementToDifferentSizeStrategy(const unsigned Opcode, |
| 579 | const unsigned TypeIdx, |
| 580 | SizeChangeStrategy S) { |
| 581 | const unsigned OpcodeIdx = Opcode - FirstOp; |
| 582 | if (VectorElementSizeChangeStrategies[OpcodeIdx].size() <= TypeIdx) |
| 583 | VectorElementSizeChangeStrategies[OpcodeIdx].resize(TypeIdx + 1); |
| 584 | VectorElementSizeChangeStrategies[OpcodeIdx][TypeIdx] = S; |
| 585 | } |
| 586 | |
| 587 | /// A SizeChangeStrategy for the common case where legalization for a |
| 588 | /// particular operation consists of only supporting a specific set of type |
| 589 | /// sizes. E.g. |
| 590 | /// setAction ({G_DIV, 0, LLT::scalar(32)}, Legal); |
| 591 | /// setAction ({G_DIV, 0, LLT::scalar(64)}, Legal); |
| 592 | /// setLegalizeScalarToDifferentSizeStrategy( |
| 593 | /// G_DIV, 0, unsupportedForDifferentSizes); |
| 594 | /// will result in getAction({G_DIV, 0, T}) to return Legal for s32 and s64, |
| 595 | /// and Unsupported for all other scalar types T. |
| 596 | static SizeAndActionsVec |
| 597 | unsupportedForDifferentSizes(const SizeAndActionsVec &v) { |
| 598 | using namespace LegalizeActions; |
| 599 | return increaseToLargerTypesAndDecreaseToLargest(v, Unsupported, |
| 600 | Unsupported); |
| 601 | } |
| 602 | |
| 603 | /// A SizeChangeStrategy for the common case where legalization for a |
| 604 | /// particular operation consists of widening the type to a large legal type, |
| 605 | /// unless there is no such type and then instead it should be narrowed to the |
| 606 | /// largest legal type. |
| 607 | static SizeAndActionsVec |
| 608 | widenToLargerTypesAndNarrowToLargest(const SizeAndActionsVec &v) { |
| 609 | using namespace LegalizeActions; |
| 610 | assert(v.size() > 0 && |
| 611 | "At least one size that can be legalized towards is needed" |
| 612 | " for this SizeChangeStrategy"); |
| 613 | return increaseToLargerTypesAndDecreaseToLargest(v, WidenScalar, |
| 614 | NarrowScalar); |
| 615 | } |
| 616 | |
| 617 | static SizeAndActionsVec |
| 618 | widenToLargerTypesUnsupportedOtherwise(const SizeAndActionsVec &v) { |
| 619 | using namespace LegalizeActions; |
| 620 | return increaseToLargerTypesAndDecreaseToLargest(v, WidenScalar, |
| 621 | Unsupported); |
| 622 | } |
| 623 | |
| 624 | static SizeAndActionsVec |
| 625 | narrowToSmallerAndUnsupportedIfTooSmall(const SizeAndActionsVec &v) { |
| 626 | using namespace LegalizeActions; |
| 627 | return decreaseToSmallerTypesAndIncreaseToSmallest(v, NarrowScalar, |
| 628 | Unsupported); |
| 629 | } |
| 630 | |
| 631 | static SizeAndActionsVec |
| 632 | narrowToSmallerAndWidenToSmallest(const SizeAndActionsVec &v) { |
| 633 | using namespace LegalizeActions; |
| 634 | assert(v.size() > 0 && |
| 635 | "At least one size that can be legalized towards is needed" |
| 636 | " for this SizeChangeStrategy"); |
| 637 | return decreaseToSmallerTypesAndIncreaseToSmallest(v, NarrowScalar, |
| 638 | WidenScalar); |
| 639 | } |
| 640 | |
| 641 | /// A SizeChangeStrategy for the common case where legalization for a |
| 642 | /// particular vector operation consists of having more elements in the |
| 643 | /// vector, to a type that is legal. Unless there is no such type and then |
| 644 | /// instead it should be legalized towards the widest vector that's still |
| 645 | /// legal. E.g. |
| 646 | /// setAction({G_ADD, LLT::vector(8, 8)}, Legal); |
| 647 | /// setAction({G_ADD, LLT::vector(16, 8)}, Legal); |
| 648 | /// setAction({G_ADD, LLT::vector(2, 32)}, Legal); |
| 649 | /// setAction({G_ADD, LLT::vector(4, 32)}, Legal); |
| 650 | /// setLegalizeVectorElementToDifferentSizeStrategy( |
| 651 | /// G_ADD, 0, moreToWiderTypesAndLessToWidest); |
| 652 | /// will result in the following getAction results: |
| 653 | /// * getAction({G_ADD, LLT::vector(8,8)}) returns |
| 654 | /// (Legal, vector(8,8)). |
| 655 | /// * getAction({G_ADD, LLT::vector(9,8)}) returns |
| 656 | /// (MoreElements, vector(16,8)). |
| 657 | /// * getAction({G_ADD, LLT::vector(8,32)}) returns |
| 658 | /// (FewerElements, vector(4,32)). |
| 659 | static SizeAndActionsVec |
| 660 | moreToWiderTypesAndLessToWidest(const SizeAndActionsVec &v) { |
| 661 | using namespace LegalizeActions; |
| 662 | return increaseToLargerTypesAndDecreaseToLargest(v, MoreElements, |
| 663 | FewerElements); |
| 664 | } |
| 665 | |
| 666 | /// Helper function to implement many typical SizeChangeStrategy functions. |
| 667 | static SizeAndActionsVec |
| 668 | increaseToLargerTypesAndDecreaseToLargest(const SizeAndActionsVec &v, |
| 669 | LegalizeAction IncreaseAction, |
| 670 | LegalizeAction DecreaseAction); |
| 671 | /// Helper function to implement many typical SizeChangeStrategy functions. |
| 672 | static SizeAndActionsVec |
| 673 | decreaseToSmallerTypesAndIncreaseToSmallest(const SizeAndActionsVec &v, |
| 674 | LegalizeAction DecreaseAction, |
| 675 | LegalizeAction IncreaseAction); |
| 676 | |
| 677 | /// Get the action definitions for the given opcode. Use this to run a |
| 678 | /// LegalityQuery through the definitions. |
| 679 | const LegalizeRuleSet &getActionDefinitions(unsigned Opcode) const; |
| 680 | |
| 681 | /// Get the action definition builder for the given opcode. Use this to define |
| 682 | /// the action definitions. |
| 683 | /// |
| 684 | /// It is an error to request an opcode that has already been requested by the |
| 685 | /// multiple-opcode variant. |
| 686 | LegalizeRuleSet &getActionDefinitionsBuilder(unsigned Opcode); |
| 687 | |
| 688 | /// Get the action definition builder for the given set of opcodes. Use this |
| 689 | /// to define the action definitions for multiple opcodes at once. The first |
| 690 | /// opcode given will be considered the representative opcode and will hold |
| 691 | /// the definitions whereas the other opcodes will be configured to refer to |
| 692 | /// the representative opcode. This lowers memory requirements and very |
| 693 | /// slightly improves performance. |
| 694 | /// |
| 695 | /// It would be very easy to introduce unexpected side-effects as a result of |
| 696 | /// this aliasing if it were permitted to request different but intersecting |
| 697 | /// sets of opcodes but that is difficult to keep track of. It is therefore an |
| 698 | /// error to request the same opcode twice using this API, to request an |
| 699 | /// opcode that already has definitions, or to use the single-opcode API on an |
| 700 | /// opcode that has already been requested by this API. |
| 701 | LegalizeRuleSet & |
| 702 | getActionDefinitionsBuilder(std::initializer_list<unsigned> Opcodes); |
| 703 | void aliasActionDefinitions(unsigned OpcodeTo, unsigned OpcodeFrom); |
| 704 | |
| 705 | /// Determine what action should be taken to legalize the described |
| 706 | /// instruction. Requires computeTables to have been called. |
| 707 | /// |
| 708 | /// \returns a description of the next legalization step to perform. |
| 709 | LegalizeActionStep getAction(const LegalityQuery &Query) const; |
| 710 | |
| 711 | /// Determine what action should be taken to legalize the given generic |
| 712 | /// instruction. |
| 713 | /// |
| 714 | /// \returns a description of the next legalization step to perform. |
| 715 | LegalizeActionStep getAction(const MachineInstr &MI, |
| 716 | const MachineRegisterInfo &MRI) const; |
| 717 | |
| 718 | bool isLegal(const MachineInstr &MI, const MachineRegisterInfo &MRI) const; |
| 719 | |
| 720 | virtual bool legalizeCustom(MachineInstr &MI, |
| 721 | MachineRegisterInfo &MRI, |
| 722 | MachineIRBuilder &MIRBuilder) const; |
| 723 | |
| 724 | private: |
| 725 | /// Determine what action should be taken to legalize the given generic |
| 726 | /// instruction opcode, type-index and type. Requires computeTables to have |
| 727 | /// been called. |
| 728 | /// |
| 729 | /// \returns a pair consisting of the kind of legalization that should be |
| 730 | /// performed and the destination type. |
| 731 | std::pair<LegalizeAction, LLT> |
| 732 | getAspectAction(const InstrAspect &Aspect) const; |
| 733 | |
| 734 | /// The SizeAndActionsVec is a representation mapping between all natural |
| 735 | /// numbers and an Action. The natural number represents the bit size of |
| 736 | /// the InstrAspect. For example, for a target with native support for 32-bit |
| 737 | /// and 64-bit additions, you'd express that as: |
| 738 | /// setScalarAction(G_ADD, 0, |
| 739 | /// {{1, WidenScalar}, // bit sizes [ 1, 31[ |
| 740 | /// {32, Legal}, // bit sizes [32, 33[ |
| 741 | /// {33, WidenScalar}, // bit sizes [33, 64[ |
| 742 | /// {64, Legal}, // bit sizes [64, 65[ |
| 743 | /// {65, NarrowScalar} // bit sizes [65, +inf[ |
| 744 | /// }); |
| 745 | /// It may be that only 64-bit pointers are supported on your target: |
| 746 | /// setPointerAction(G_GEP, 0, LLT:pointer(1), |
| 747 | /// {{1, Unsupported}, // bit sizes [ 1, 63[ |
| 748 | /// {64, Legal}, // bit sizes [64, 65[ |
| 749 | /// {65, Unsupported}, // bit sizes [65, +inf[ |
| 750 | /// }); |
| 751 | void setScalarAction(const unsigned Opcode, const unsigned TypeIndex, |
| 752 | const SizeAndActionsVec &SizeAndActions) { |
| 753 | const unsigned OpcodeIdx = Opcode - FirstOp; |
| 754 | SmallVector<SizeAndActionsVec, 1> &Actions = ScalarActions[OpcodeIdx]; |
| 755 | setActions(TypeIndex, Actions, SizeAndActions); |
| 756 | } |
| 757 | void setPointerAction(const unsigned Opcode, const unsigned TypeIndex, |
| 758 | const unsigned AddressSpace, |
| 759 | const SizeAndActionsVec &SizeAndActions) { |
| 760 | const unsigned OpcodeIdx = Opcode - FirstOp; |
| 761 | if (AddrSpace2PointerActions[OpcodeIdx].find(AddressSpace) == |
| 762 | AddrSpace2PointerActions[OpcodeIdx].end()) |
| 763 | AddrSpace2PointerActions[OpcodeIdx][AddressSpace] = {{}}; |
| 764 | SmallVector<SizeAndActionsVec, 1> &Actions = |
| 765 | AddrSpace2PointerActions[OpcodeIdx].find(AddressSpace)->second; |
| 766 | setActions(TypeIndex, Actions, SizeAndActions); |
| 767 | } |
| 768 | |
| 769 | /// If an operation on a given vector type (say <M x iN>) isn't explicitly |
| 770 | /// specified, we proceed in 2 stages. First we legalize the underlying scalar |
| 771 | /// (so that there's at least one legal vector with that scalar), then we |
| 772 | /// adjust the number of elements in the vector so that it is legal. The |
| 773 | /// desired action in the first step is controlled by this function. |
| 774 | void setScalarInVectorAction(const unsigned Opcode, const unsigned TypeIndex, |
| 775 | const SizeAndActionsVec &SizeAndActions) { |
| 776 | unsigned OpcodeIdx = Opcode - FirstOp; |
| 777 | SmallVector<SizeAndActionsVec, 1> &Actions = |
| 778 | ScalarInVectorActions[OpcodeIdx]; |
| 779 | setActions(TypeIndex, Actions, SizeAndActions); |
| 780 | } |
| 781 | |
| 782 | /// See also setScalarInVectorAction. |
| 783 | /// This function let's you specify the number of elements in a vector that |
| 784 | /// are legal for a legal element size. |
| 785 | void setVectorNumElementAction(const unsigned Opcode, |
| 786 | const unsigned TypeIndex, |
| 787 | const unsigned ElementSize, |
| 788 | const SizeAndActionsVec &SizeAndActions) { |
| 789 | const unsigned OpcodeIdx = Opcode - FirstOp; |
| 790 | if (NumElements2Actions[OpcodeIdx].find(ElementSize) == |
| 791 | NumElements2Actions[OpcodeIdx].end()) |
| 792 | NumElements2Actions[OpcodeIdx][ElementSize] = {{}}; |
| 793 | SmallVector<SizeAndActionsVec, 1> &Actions = |
| 794 | NumElements2Actions[OpcodeIdx].find(ElementSize)->second; |
| 795 | setActions(TypeIndex, Actions, SizeAndActions); |
| 796 | } |
| 797 | |
| 798 | /// A partial SizeAndActionsVec potentially doesn't cover all bit sizes, |
| 799 | /// i.e. it's OK if it doesn't start from size 1. |
| 800 | static void checkPartialSizeAndActionsVector(const SizeAndActionsVec& v) { |
| 801 | using namespace LegalizeActions; |
| 802 | #ifndef NDEBUG |
| 803 | // The sizes should be in increasing order |
| 804 | int prev_size = -1; |
| 805 | for(auto SizeAndAction: v) { |
| 806 | assert(SizeAndAction.first > prev_size); |
| 807 | prev_size = SizeAndAction.first; |
| 808 | } |
| 809 | // - for every Widen action, there should be a larger bitsize that |
| 810 | // can be legalized towards (e.g. Legal, Lower, Libcall or Custom |
| 811 | // action). |
| 812 | // - for every Narrow action, there should be a smaller bitsize that |
| 813 | // can be legalized towards. |
| 814 | int SmallestNarrowIdx = -1; |
| 815 | int LargestWidenIdx = -1; |
| 816 | int SmallestLegalizableToSameSizeIdx = -1; |
| 817 | int LargestLegalizableToSameSizeIdx = -1; |
| 818 | for(size_t i=0; i<v.size(); ++i) { |
| 819 | switch (v[i].second) { |
| 820 | case FewerElements: |
| 821 | case NarrowScalar: |
| 822 | if (SmallestNarrowIdx == -1) |
| 823 | SmallestNarrowIdx = i; |
| 824 | break; |
| 825 | case WidenScalar: |
| 826 | case MoreElements: |
| 827 | LargestWidenIdx = i; |
| 828 | break; |
| 829 | case Unsupported: |
| 830 | break; |
| 831 | default: |
| 832 | if (SmallestLegalizableToSameSizeIdx == -1) |
| 833 | SmallestLegalizableToSameSizeIdx = i; |
| 834 | LargestLegalizableToSameSizeIdx = i; |
| 835 | } |
| 836 | } |
| 837 | if (SmallestNarrowIdx != -1) { |
| 838 | assert(SmallestLegalizableToSameSizeIdx != -1); |
| 839 | assert(SmallestNarrowIdx > SmallestLegalizableToSameSizeIdx); |
| 840 | } |
| 841 | if (LargestWidenIdx != -1) |
| 842 | assert(LargestWidenIdx < LargestLegalizableToSameSizeIdx); |
| 843 | #endif |
| 844 | } |
| 845 | |
| 846 | /// A full SizeAndActionsVec must cover all bit sizes, i.e. must start with |
| 847 | /// from size 1. |
| 848 | static void checkFullSizeAndActionsVector(const SizeAndActionsVec& v) { |
| 849 | #ifndef NDEBUG |
| 850 | // Data structure invariant: The first bit size must be size 1. |
| 851 | assert(v.size() >= 1); |
| 852 | assert(v[0].first == 1); |
| 853 | checkPartialSizeAndActionsVector(v); |
| 854 | #endif |
| 855 | } |
| 856 | |
| 857 | /// Sets actions for all bit sizes on a particular generic opcode, type |
| 858 | /// index and scalar or pointer type. |
| 859 | void setActions(unsigned TypeIndex, |
| 860 | SmallVector<SizeAndActionsVec, 1> &Actions, |
| 861 | const SizeAndActionsVec &SizeAndActions) { |
| 862 | checkFullSizeAndActionsVector(SizeAndActions); |
| 863 | if (Actions.size() <= TypeIndex) |
| 864 | Actions.resize(TypeIndex + 1); |
| 865 | Actions[TypeIndex] = SizeAndActions; |
| 866 | } |
| 867 | |
| 868 | static SizeAndAction findAction(const SizeAndActionsVec &Vec, |
| 869 | const uint32_t Size); |
| 870 | |
| 871 | /// Returns the next action needed to get the scalar or pointer type closer |
| 872 | /// to being legal |
| 873 | /// E.g. findLegalAction({G_REM, 13}) should return |
| 874 | /// (WidenScalar, 32). After that, findLegalAction({G_REM, 32}) will |
| 875 | /// probably be called, which should return (Lower, 32). |
| 876 | /// This is assuming the setScalarAction on G_REM was something like: |
| 877 | /// setScalarAction(G_REM, 0, |
| 878 | /// {{1, WidenScalar}, // bit sizes [ 1, 31[ |
| 879 | /// {32, Lower}, // bit sizes [32, 33[ |
| 880 | /// {33, NarrowScalar} // bit sizes [65, +inf[ |
| 881 | /// }); |
| 882 | std::pair<LegalizeAction, LLT> |
| 883 | findScalarLegalAction(const InstrAspect &Aspect) const; |
| 884 | |
| 885 | /// Returns the next action needed towards legalizing the vector type. |
| 886 | std::pair<LegalizeAction, LLT> |
| 887 | findVectorLegalAction(const InstrAspect &Aspect) const; |
| 888 | |
| 889 | static const int FirstOp = TargetOpcode::PRE_ISEL_GENERIC_OPCODE_START; |
| 890 | static const int LastOp = TargetOpcode::PRE_ISEL_GENERIC_OPCODE_END; |
| 891 | |
| 892 | // Data structures used temporarily during construction of legality data: |
| 893 | using TypeMap = DenseMap<LLT, LegalizeAction>; |
| 894 | SmallVector<TypeMap, 1> SpecifiedActions[LastOp - FirstOp + 1]; |
| 895 | SmallVector<SizeChangeStrategy, 1> |
| 896 | ScalarSizeChangeStrategies[LastOp - FirstOp + 1]; |
| 897 | SmallVector<SizeChangeStrategy, 1> |
| 898 | VectorElementSizeChangeStrategies[LastOp - FirstOp + 1]; |
| 899 | bool TablesInitialized; |
| 900 | |
| 901 | // Data structures used by getAction: |
| 902 | SmallVector<SizeAndActionsVec, 1> ScalarActions[LastOp - FirstOp + 1]; |
| 903 | SmallVector<SizeAndActionsVec, 1> ScalarInVectorActions[LastOp - FirstOp + 1]; |
| 904 | std::unordered_map<uint16_t, SmallVector<SizeAndActionsVec, 1>> |
| 905 | AddrSpace2PointerActions[LastOp - FirstOp + 1]; |
| 906 | std::unordered_map<uint16_t, SmallVector<SizeAndActionsVec, 1>> |
| 907 | NumElements2Actions[LastOp - FirstOp + 1]; |
| 908 | |
| 909 | LegalizeRuleSet RulesForOpcode[LastOp - FirstOp + 1]; |
| 910 | }; |
| 911 | |
| 912 | #ifndef NDEBUG |
| 913 | /// Checks that MIR is fully legal, returns an illegal instruction if it's not, |
| 914 | /// nullptr otherwise |
| 915 | const MachineInstr *machineFunctionIsIllegal(const MachineFunction &MF); |
| 916 | #endif |
| 917 | |
| 918 | } // end namespace llvm. |
| 919 | |
| 920 | #endif // LLVM_CODEGEN_GLOBALISEL_LEGALIZERINFO_H |