Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1 | //===-- X86DisassemblerDecoderCommon.h - Disassembler decoder ---*- C++ -*-===// |
| 2 | // |
Andrew Walbran | 16937d0 | 2019-10-22 13:54:20 +0100 | [diff] [blame] | 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file is part of the X86 Disassembler. |
| 10 | // It contains common definitions used by both the disassembler and the table |
| 11 | // generator. |
| 12 | // Documentation for the disassembler can be found in X86Disassembler.h. |
| 13 | // |
| 14 | //===----------------------------------------------------------------------===// |
| 15 | |
| 16 | #ifndef LLVM_LIB_TARGET_X86_DISASSEMBLER_X86DISASSEMBLERDECODERCOMMON_H |
| 17 | #define LLVM_LIB_TARGET_X86_DISASSEMBLER_X86DISASSEMBLERDECODERCOMMON_H |
| 18 | |
| 19 | #include "llvm/Support/DataTypes.h" |
| 20 | |
| 21 | namespace llvm { |
| 22 | namespace X86Disassembler { |
| 23 | |
| 24 | #define INSTRUCTIONS_SYM x86DisassemblerInstrSpecifiers |
| 25 | #define CONTEXTS_SYM x86DisassemblerContexts |
| 26 | #define ONEBYTE_SYM x86DisassemblerOneByteOpcodes |
| 27 | #define TWOBYTE_SYM x86DisassemblerTwoByteOpcodes |
| 28 | #define THREEBYTE38_SYM x86DisassemblerThreeByte38Opcodes |
| 29 | #define THREEBYTE3A_SYM x86DisassemblerThreeByte3AOpcodes |
| 30 | #define XOP8_MAP_SYM x86DisassemblerXOP8Opcodes |
| 31 | #define XOP9_MAP_SYM x86DisassemblerXOP9Opcodes |
| 32 | #define XOPA_MAP_SYM x86DisassemblerXOPAOpcodes |
| 33 | #define THREEDNOW_MAP_SYM x86Disassembler3DNowOpcodes |
| 34 | |
| 35 | #define INSTRUCTIONS_STR "x86DisassemblerInstrSpecifiers" |
| 36 | #define CONTEXTS_STR "x86DisassemblerContexts" |
| 37 | #define ONEBYTE_STR "x86DisassemblerOneByteOpcodes" |
| 38 | #define TWOBYTE_STR "x86DisassemblerTwoByteOpcodes" |
| 39 | #define THREEBYTE38_STR "x86DisassemblerThreeByte38Opcodes" |
| 40 | #define THREEBYTE3A_STR "x86DisassemblerThreeByte3AOpcodes" |
| 41 | #define XOP8_MAP_STR "x86DisassemblerXOP8Opcodes" |
| 42 | #define XOP9_MAP_STR "x86DisassemblerXOP9Opcodes" |
| 43 | #define XOPA_MAP_STR "x86DisassemblerXOPAOpcodes" |
| 44 | #define THREEDNOW_MAP_STR "x86Disassembler3DNowOpcodes" |
| 45 | |
| 46 | // Attributes of an instruction that must be known before the opcode can be |
| 47 | // processed correctly. Most of these indicate the presence of particular |
| 48 | // prefixes, but ATTR_64BIT is simply an attribute of the decoding context. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 49 | enum attributeBits { |
Andrew Walbran | 3d2c197 | 2020-04-07 12:24:26 +0100 | [diff] [blame] | 50 | ATTR_NONE = 0x00, |
| 51 | ATTR_64BIT = 0x1 << 0, |
| 52 | ATTR_XS = 0x1 << 1, |
| 53 | ATTR_XD = 0x1 << 2, |
| 54 | ATTR_REXW = 0x1 << 3, |
| 55 | ATTR_OPSIZE = 0x1 << 4, |
| 56 | ATTR_ADSIZE = 0x1 << 5, |
| 57 | ATTR_VEX = 0x1 << 6, |
| 58 | ATTR_VEXL = 0x1 << 7, |
| 59 | ATTR_EVEX = 0x1 << 8, |
| 60 | ATTR_EVEXL2 = 0x1 << 9, |
| 61 | ATTR_EVEXK = 0x1 << 10, |
| 62 | ATTR_EVEXKZ = 0x1 << 11, |
| 63 | ATTR_EVEXB = 0x1 << 12, |
| 64 | ATTR_max = 0x1 << 13, |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 65 | }; |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 66 | |
| 67 | // Combinations of the above attributes that are relevant to instruction |
| 68 | // decode. Although other combinations are possible, they can be reduced to |
| 69 | // these without affecting the ultimately decoded instruction. |
| 70 | |
| 71 | // Class name Rank Rationale for rank assignment |
| 72 | #define INSTRUCTION_CONTEXTS \ |
| 73 | ENUM_ENTRY(IC, 0, "says nothing about the instruction") \ |
| 74 | ENUM_ENTRY(IC_64BIT, 1, "says the instruction applies in " \ |
| 75 | "64-bit mode but no more") \ |
| 76 | ENUM_ENTRY(IC_OPSIZE, 3, "requires an OPSIZE prefix, so " \ |
| 77 | "operands change width") \ |
| 78 | ENUM_ENTRY(IC_ADSIZE, 3, "requires an ADSIZE prefix, so " \ |
| 79 | "operands change width") \ |
| 80 | ENUM_ENTRY(IC_OPSIZE_ADSIZE, 4, "requires ADSIZE and OPSIZE prefixes") \ |
| 81 | ENUM_ENTRY(IC_XD, 2, "may say something about the opcode " \ |
| 82 | "but not the operands") \ |
| 83 | ENUM_ENTRY(IC_XS, 2, "may say something about the opcode " \ |
| 84 | "but not the operands") \ |
| 85 | ENUM_ENTRY(IC_XD_OPSIZE, 3, "requires an OPSIZE prefix, so " \ |
| 86 | "operands change width") \ |
| 87 | ENUM_ENTRY(IC_XS_OPSIZE, 3, "requires an OPSIZE prefix, so " \ |
| 88 | "operands change width") \ |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 89 | ENUM_ENTRY(IC_XD_ADSIZE, 3, "requires an ADSIZE prefix, so " \ |
| 90 | "operands change width") \ |
| 91 | ENUM_ENTRY(IC_XS_ADSIZE, 3, "requires an ADSIZE prefix, so " \ |
| 92 | "operands change width") \ |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 93 | ENUM_ENTRY(IC_64BIT_REXW, 5, "requires a REX.W prefix, so operands "\ |
| 94 | "change width; overrides IC_OPSIZE") \ |
| 95 | ENUM_ENTRY(IC_64BIT_REXW_ADSIZE, 6, "requires a REX.W prefix and 0x67 " \ |
| 96 | "prefix") \ |
| 97 | ENUM_ENTRY(IC_64BIT_OPSIZE, 3, "Just as meaningful as IC_OPSIZE") \ |
| 98 | ENUM_ENTRY(IC_64BIT_ADSIZE, 3, "Just as meaningful as IC_ADSIZE") \ |
| 99 | ENUM_ENTRY(IC_64BIT_OPSIZE_ADSIZE, 4, "Just as meaningful as IC_OPSIZE/" \ |
| 100 | "IC_ADSIZE") \ |
| 101 | ENUM_ENTRY(IC_64BIT_XD, 6, "XD instructions are SSE; REX.W is " \ |
| 102 | "secondary") \ |
| 103 | ENUM_ENTRY(IC_64BIT_XS, 6, "Just as meaningful as IC_64BIT_XD") \ |
| 104 | ENUM_ENTRY(IC_64BIT_XD_OPSIZE, 3, "Just as meaningful as IC_XD_OPSIZE") \ |
| 105 | ENUM_ENTRY(IC_64BIT_XS_OPSIZE, 3, "Just as meaningful as IC_XS_OPSIZE") \ |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 106 | ENUM_ENTRY(IC_64BIT_XD_ADSIZE, 3, "Just as meaningful as IC_XD_ADSIZE") \ |
| 107 | ENUM_ENTRY(IC_64BIT_XS_ADSIZE, 3, "Just as meaningful as IC_XS_ADSIZE") \ |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 108 | ENUM_ENTRY(IC_64BIT_REXW_XS, 7, "OPSIZE could mean a different " \ |
| 109 | "opcode") \ |
| 110 | ENUM_ENTRY(IC_64BIT_REXW_XD, 7, "Just as meaningful as " \ |
| 111 | "IC_64BIT_REXW_XS") \ |
| 112 | ENUM_ENTRY(IC_64BIT_REXW_OPSIZE, 8, "The Dynamic Duo! Prefer over all " \ |
| 113 | "else because this changes most " \ |
| 114 | "operands' meaning") \ |
| 115 | ENUM_ENTRY(IC_VEX, 1, "requires a VEX prefix") \ |
| 116 | ENUM_ENTRY(IC_VEX_XS, 2, "requires VEX and the XS prefix") \ |
| 117 | ENUM_ENTRY(IC_VEX_XD, 2, "requires VEX and the XD prefix") \ |
| 118 | ENUM_ENTRY(IC_VEX_OPSIZE, 2, "requires VEX and the OpSize prefix") \ |
| 119 | ENUM_ENTRY(IC_VEX_W, 3, "requires VEX and the W prefix") \ |
| 120 | ENUM_ENTRY(IC_VEX_W_XS, 4, "requires VEX, W, and XS prefix") \ |
| 121 | ENUM_ENTRY(IC_VEX_W_XD, 4, "requires VEX, W, and XD prefix") \ |
| 122 | ENUM_ENTRY(IC_VEX_W_OPSIZE, 4, "requires VEX, W, and OpSize") \ |
| 123 | ENUM_ENTRY(IC_VEX_L, 3, "requires VEX and the L prefix") \ |
| 124 | ENUM_ENTRY(IC_VEX_L_XS, 4, "requires VEX and the L and XS prefix")\ |
| 125 | ENUM_ENTRY(IC_VEX_L_XD, 4, "requires VEX and the L and XD prefix")\ |
| 126 | ENUM_ENTRY(IC_VEX_L_OPSIZE, 4, "requires VEX, L, and OpSize") \ |
| 127 | ENUM_ENTRY(IC_VEX_L_W, 4, "requires VEX, L and W") \ |
| 128 | ENUM_ENTRY(IC_VEX_L_W_XS, 5, "requires VEX, L, W and XS prefix") \ |
| 129 | ENUM_ENTRY(IC_VEX_L_W_XD, 5, "requires VEX, L, W and XD prefix") \ |
| 130 | ENUM_ENTRY(IC_VEX_L_W_OPSIZE, 5, "requires VEX, L, W and OpSize") \ |
| 131 | ENUM_ENTRY(IC_EVEX, 1, "requires an EVEX prefix") \ |
| 132 | ENUM_ENTRY(IC_EVEX_XS, 2, "requires EVEX and the XS prefix") \ |
| 133 | ENUM_ENTRY(IC_EVEX_XD, 2, "requires EVEX and the XD prefix") \ |
| 134 | ENUM_ENTRY(IC_EVEX_OPSIZE, 2, "requires EVEX and the OpSize prefix") \ |
| 135 | ENUM_ENTRY(IC_EVEX_W, 3, "requires EVEX and the W prefix") \ |
| 136 | ENUM_ENTRY(IC_EVEX_W_XS, 4, "requires EVEX, W, and XS prefix") \ |
| 137 | ENUM_ENTRY(IC_EVEX_W_XD, 4, "requires EVEX, W, and XD prefix") \ |
| 138 | ENUM_ENTRY(IC_EVEX_W_OPSIZE, 4, "requires EVEX, W, and OpSize") \ |
| 139 | ENUM_ENTRY(IC_EVEX_L, 3, "requires EVEX and the L prefix") \ |
| 140 | ENUM_ENTRY(IC_EVEX_L_XS, 4, "requires EVEX and the L and XS prefix")\ |
| 141 | ENUM_ENTRY(IC_EVEX_L_XD, 4, "requires EVEX and the L and XD prefix")\ |
| 142 | ENUM_ENTRY(IC_EVEX_L_OPSIZE, 4, "requires EVEX, L, and OpSize") \ |
| 143 | ENUM_ENTRY(IC_EVEX_L_W, 3, "requires EVEX, L and W") \ |
| 144 | ENUM_ENTRY(IC_EVEX_L_W_XS, 4, "requires EVEX, L, W and XS prefix") \ |
| 145 | ENUM_ENTRY(IC_EVEX_L_W_XD, 4, "requires EVEX, L, W and XD prefix") \ |
| 146 | ENUM_ENTRY(IC_EVEX_L_W_OPSIZE, 4, "requires EVEX, L, W and OpSize") \ |
| 147 | ENUM_ENTRY(IC_EVEX_L2, 3, "requires EVEX and the L2 prefix") \ |
| 148 | ENUM_ENTRY(IC_EVEX_L2_XS, 4, "requires EVEX and the L2 and XS prefix")\ |
| 149 | ENUM_ENTRY(IC_EVEX_L2_XD, 4, "requires EVEX and the L2 and XD prefix")\ |
| 150 | ENUM_ENTRY(IC_EVEX_L2_OPSIZE, 4, "requires EVEX, L2, and OpSize") \ |
| 151 | ENUM_ENTRY(IC_EVEX_L2_W, 3, "requires EVEX, L2 and W") \ |
| 152 | ENUM_ENTRY(IC_EVEX_L2_W_XS, 4, "requires EVEX, L2, W and XS prefix") \ |
| 153 | ENUM_ENTRY(IC_EVEX_L2_W_XD, 4, "requires EVEX, L2, W and XD prefix") \ |
| 154 | ENUM_ENTRY(IC_EVEX_L2_W_OPSIZE, 4, "requires EVEX, L2, W and OpSize") \ |
| 155 | ENUM_ENTRY(IC_EVEX_K, 1, "requires an EVEX_K prefix") \ |
| 156 | ENUM_ENTRY(IC_EVEX_XS_K, 2, "requires EVEX_K and the XS prefix") \ |
| 157 | ENUM_ENTRY(IC_EVEX_XD_K, 2, "requires EVEX_K and the XD prefix") \ |
| 158 | ENUM_ENTRY(IC_EVEX_OPSIZE_K, 2, "requires EVEX_K and the OpSize prefix") \ |
| 159 | ENUM_ENTRY(IC_EVEX_W_K, 3, "requires EVEX_K and the W prefix") \ |
| 160 | ENUM_ENTRY(IC_EVEX_W_XS_K, 4, "requires EVEX_K, W, and XS prefix") \ |
| 161 | ENUM_ENTRY(IC_EVEX_W_XD_K, 4, "requires EVEX_K, W, and XD prefix") \ |
| 162 | ENUM_ENTRY(IC_EVEX_W_OPSIZE_K, 4, "requires EVEX_K, W, and OpSize") \ |
| 163 | ENUM_ENTRY(IC_EVEX_L_K, 3, "requires EVEX_K and the L prefix") \ |
| 164 | ENUM_ENTRY(IC_EVEX_L_XS_K, 4, "requires EVEX_K and the L and XS prefix")\ |
| 165 | ENUM_ENTRY(IC_EVEX_L_XD_K, 4, "requires EVEX_K and the L and XD prefix")\ |
| 166 | ENUM_ENTRY(IC_EVEX_L_OPSIZE_K, 4, "requires EVEX_K, L, and OpSize") \ |
| 167 | ENUM_ENTRY(IC_EVEX_L_W_K, 3, "requires EVEX_K, L and W") \ |
| 168 | ENUM_ENTRY(IC_EVEX_L_W_XS_K, 4, "requires EVEX_K, L, W and XS prefix") \ |
| 169 | ENUM_ENTRY(IC_EVEX_L_W_XD_K, 4, "requires EVEX_K, L, W and XD prefix") \ |
| 170 | ENUM_ENTRY(IC_EVEX_L_W_OPSIZE_K, 4, "requires EVEX_K, L, W and OpSize") \ |
| 171 | ENUM_ENTRY(IC_EVEX_L2_K, 3, "requires EVEX_K and the L2 prefix") \ |
| 172 | ENUM_ENTRY(IC_EVEX_L2_XS_K, 4, "requires EVEX_K and the L2 and XS prefix")\ |
| 173 | ENUM_ENTRY(IC_EVEX_L2_XD_K, 4, "requires EVEX_K and the L2 and XD prefix")\ |
| 174 | ENUM_ENTRY(IC_EVEX_L2_OPSIZE_K, 4, "requires EVEX_K, L2, and OpSize") \ |
| 175 | ENUM_ENTRY(IC_EVEX_L2_W_K, 3, "requires EVEX_K, L2 and W") \ |
| 176 | ENUM_ENTRY(IC_EVEX_L2_W_XS_K, 4, "requires EVEX_K, L2, W and XS prefix") \ |
| 177 | ENUM_ENTRY(IC_EVEX_L2_W_XD_K, 4, "requires EVEX_K, L2, W and XD prefix") \ |
| 178 | ENUM_ENTRY(IC_EVEX_L2_W_OPSIZE_K, 4, "requires EVEX_K, L2, W and OpSize") \ |
| 179 | ENUM_ENTRY(IC_EVEX_B, 1, "requires an EVEX_B prefix") \ |
| 180 | ENUM_ENTRY(IC_EVEX_XS_B, 2, "requires EVEX_B and the XS prefix") \ |
| 181 | ENUM_ENTRY(IC_EVEX_XD_B, 2, "requires EVEX_B and the XD prefix") \ |
| 182 | ENUM_ENTRY(IC_EVEX_OPSIZE_B, 2, "requires EVEX_B and the OpSize prefix") \ |
| 183 | ENUM_ENTRY(IC_EVEX_W_B, 3, "requires EVEX_B and the W prefix") \ |
| 184 | ENUM_ENTRY(IC_EVEX_W_XS_B, 4, "requires EVEX_B, W, and XS prefix") \ |
| 185 | ENUM_ENTRY(IC_EVEX_W_XD_B, 4, "requires EVEX_B, W, and XD prefix") \ |
| 186 | ENUM_ENTRY(IC_EVEX_W_OPSIZE_B, 4, "requires EVEX_B, W, and OpSize") \ |
| 187 | ENUM_ENTRY(IC_EVEX_L_B, 3, "requires EVEX_B and the L prefix") \ |
| 188 | ENUM_ENTRY(IC_EVEX_L_XS_B, 4, "requires EVEX_B and the L and XS prefix")\ |
| 189 | ENUM_ENTRY(IC_EVEX_L_XD_B, 4, "requires EVEX_B and the L and XD prefix")\ |
| 190 | ENUM_ENTRY(IC_EVEX_L_OPSIZE_B, 4, "requires EVEX_B, L, and OpSize") \ |
| 191 | ENUM_ENTRY(IC_EVEX_L_W_B, 3, "requires EVEX_B, L and W") \ |
| 192 | ENUM_ENTRY(IC_EVEX_L_W_XS_B, 4, "requires EVEX_B, L, W and XS prefix") \ |
| 193 | ENUM_ENTRY(IC_EVEX_L_W_XD_B, 4, "requires EVEX_B, L, W and XD prefix") \ |
| 194 | ENUM_ENTRY(IC_EVEX_L_W_OPSIZE_B, 4, "requires EVEX_B, L, W and OpSize") \ |
| 195 | ENUM_ENTRY(IC_EVEX_L2_B, 3, "requires EVEX_B and the L2 prefix") \ |
| 196 | ENUM_ENTRY(IC_EVEX_L2_XS_B, 4, "requires EVEX_B and the L2 and XS prefix")\ |
| 197 | ENUM_ENTRY(IC_EVEX_L2_XD_B, 4, "requires EVEX_B and the L2 and XD prefix")\ |
| 198 | ENUM_ENTRY(IC_EVEX_L2_OPSIZE_B, 4, "requires EVEX_B, L2, and OpSize") \ |
| 199 | ENUM_ENTRY(IC_EVEX_L2_W_B, 3, "requires EVEX_B, L2 and W") \ |
| 200 | ENUM_ENTRY(IC_EVEX_L2_W_XS_B, 4, "requires EVEX_B, L2, W and XS prefix") \ |
| 201 | ENUM_ENTRY(IC_EVEX_L2_W_XD_B, 4, "requires EVEX_B, L2, W and XD prefix") \ |
| 202 | ENUM_ENTRY(IC_EVEX_L2_W_OPSIZE_B, 4, "requires EVEX_B, L2, W and OpSize") \ |
| 203 | ENUM_ENTRY(IC_EVEX_K_B, 1, "requires EVEX_B and EVEX_K prefix") \ |
| 204 | ENUM_ENTRY(IC_EVEX_XS_K_B, 2, "requires EVEX_B, EVEX_K and the XS prefix") \ |
| 205 | ENUM_ENTRY(IC_EVEX_XD_K_B, 2, "requires EVEX_B, EVEX_K and the XD prefix") \ |
| 206 | ENUM_ENTRY(IC_EVEX_OPSIZE_K_B, 2, "requires EVEX_B, EVEX_K and the OpSize prefix") \ |
| 207 | ENUM_ENTRY(IC_EVEX_W_K_B, 3, "requires EVEX_B, EVEX_K and the W prefix") \ |
| 208 | ENUM_ENTRY(IC_EVEX_W_XS_K_B, 4, "requires EVEX_B, EVEX_K, W, and XS prefix") \ |
| 209 | ENUM_ENTRY(IC_EVEX_W_XD_K_B, 4, "requires EVEX_B, EVEX_K, W, and XD prefix") \ |
| 210 | ENUM_ENTRY(IC_EVEX_W_OPSIZE_K_B, 4, "requires EVEX_B, EVEX_K, W, and OpSize") \ |
| 211 | ENUM_ENTRY(IC_EVEX_L_K_B, 3, "requires EVEX_B, EVEX_K and the L prefix") \ |
| 212 | ENUM_ENTRY(IC_EVEX_L_XS_K_B, 4, "requires EVEX_B, EVEX_K and the L and XS prefix")\ |
| 213 | ENUM_ENTRY(IC_EVEX_L_XD_K_B, 4, "requires EVEX_B, EVEX_K and the L and XD prefix")\ |
| 214 | ENUM_ENTRY(IC_EVEX_L_OPSIZE_K_B, 4, "requires EVEX_B, EVEX_K, L, and OpSize") \ |
| 215 | ENUM_ENTRY(IC_EVEX_L_W_K_B, 3, "requires EVEX_B, EVEX_K, L and W") \ |
| 216 | ENUM_ENTRY(IC_EVEX_L_W_XS_K_B, 4, "requires EVEX_B, EVEX_K, L, W and XS prefix") \ |
| 217 | ENUM_ENTRY(IC_EVEX_L_W_XD_K_B, 4, "requires EVEX_B, EVEX_K, L, W and XD prefix") \ |
| 218 | ENUM_ENTRY(IC_EVEX_L_W_OPSIZE_K_B,4, "requires EVEX_B, EVEX_K, L, W and OpSize") \ |
| 219 | ENUM_ENTRY(IC_EVEX_L2_K_B, 3, "requires EVEX_B, EVEX_K and the L2 prefix") \ |
| 220 | ENUM_ENTRY(IC_EVEX_L2_XS_K_B, 4, "requires EVEX_B, EVEX_K and the L2 and XS prefix")\ |
| 221 | ENUM_ENTRY(IC_EVEX_L2_XD_K_B, 4, "requires EVEX_B, EVEX_K and the L2 and XD prefix")\ |
| 222 | ENUM_ENTRY(IC_EVEX_L2_OPSIZE_K_B, 4, "requires EVEX_B, EVEX_K, L2, and OpSize") \ |
| 223 | ENUM_ENTRY(IC_EVEX_L2_W_K_B, 3, "requires EVEX_B, EVEX_K, L2 and W") \ |
| 224 | ENUM_ENTRY(IC_EVEX_L2_W_XS_K_B, 4, "requires EVEX_B, EVEX_K, L2, W and XS prefix") \ |
| 225 | ENUM_ENTRY(IC_EVEX_L2_W_XD_K_B, 4, "requires EVEX_B, EVEX_K, L2, W and XD prefix") \ |
| 226 | ENUM_ENTRY(IC_EVEX_L2_W_OPSIZE_K_B,4, "requires EVEX_B, EVEX_K, L2, W and OpSize") \ |
| 227 | ENUM_ENTRY(IC_EVEX_KZ_B, 1, "requires EVEX_B and EVEX_KZ prefix") \ |
| 228 | ENUM_ENTRY(IC_EVEX_XS_KZ_B, 2, "requires EVEX_B, EVEX_KZ and the XS prefix") \ |
| 229 | ENUM_ENTRY(IC_EVEX_XD_KZ_B, 2, "requires EVEX_B, EVEX_KZ and the XD prefix") \ |
| 230 | ENUM_ENTRY(IC_EVEX_OPSIZE_KZ_B, 2, "requires EVEX_B, EVEX_KZ and the OpSize prefix") \ |
| 231 | ENUM_ENTRY(IC_EVEX_W_KZ_B, 3, "requires EVEX_B, EVEX_KZ and the W prefix") \ |
| 232 | ENUM_ENTRY(IC_EVEX_W_XS_KZ_B, 4, "requires EVEX_B, EVEX_KZ, W, and XS prefix") \ |
| 233 | ENUM_ENTRY(IC_EVEX_W_XD_KZ_B, 4, "requires EVEX_B, EVEX_KZ, W, and XD prefix") \ |
| 234 | ENUM_ENTRY(IC_EVEX_W_OPSIZE_KZ_B, 4, "requires EVEX_B, EVEX_KZ, W, and OpSize") \ |
| 235 | ENUM_ENTRY(IC_EVEX_L_KZ_B, 3, "requires EVEX_B, EVEX_KZ and the L prefix") \ |
| 236 | ENUM_ENTRY(IC_EVEX_L_XS_KZ_B, 4, "requires EVEX_B, EVEX_KZ and the L and XS prefix")\ |
| 237 | ENUM_ENTRY(IC_EVEX_L_XD_KZ_B, 4, "requires EVEX_B, EVEX_KZ and the L and XD prefix")\ |
| 238 | ENUM_ENTRY(IC_EVEX_L_OPSIZE_KZ_B, 4, "requires EVEX_B, EVEX_KZ, L, and OpSize") \ |
| 239 | ENUM_ENTRY(IC_EVEX_L_W_KZ_B, 3, "requires EVEX_B, EVEX_KZ, L and W") \ |
| 240 | ENUM_ENTRY(IC_EVEX_L_W_XS_KZ_B, 4, "requires EVEX_B, EVEX_KZ, L, W and XS prefix") \ |
| 241 | ENUM_ENTRY(IC_EVEX_L_W_XD_KZ_B, 4, "requires EVEX_B, EVEX_KZ, L, W and XD prefix") \ |
| 242 | ENUM_ENTRY(IC_EVEX_L_W_OPSIZE_KZ_B, 4, "requires EVEX_B, EVEX_KZ, L, W and OpSize") \ |
| 243 | ENUM_ENTRY(IC_EVEX_L2_KZ_B, 3, "requires EVEX_B, EVEX_KZ and the L2 prefix") \ |
| 244 | ENUM_ENTRY(IC_EVEX_L2_XS_KZ_B, 4, "requires EVEX_B, EVEX_KZ and the L2 and XS prefix")\ |
| 245 | ENUM_ENTRY(IC_EVEX_L2_XD_KZ_B, 4, "requires EVEX_B, EVEX_KZ and the L2 and XD prefix")\ |
| 246 | ENUM_ENTRY(IC_EVEX_L2_OPSIZE_KZ_B, 4, "requires EVEX_B, EVEX_KZ, L2, and OpSize") \ |
| 247 | ENUM_ENTRY(IC_EVEX_L2_W_KZ_B, 3, "requires EVEX_B, EVEX_KZ, L2 and W") \ |
| 248 | ENUM_ENTRY(IC_EVEX_L2_W_XS_KZ_B, 4, "requires EVEX_B, EVEX_KZ, L2, W and XS prefix") \ |
| 249 | ENUM_ENTRY(IC_EVEX_L2_W_XD_KZ_B, 4, "requires EVEX_B, EVEX_KZ, L2, W and XD prefix") \ |
| 250 | ENUM_ENTRY(IC_EVEX_L2_W_OPSIZE_KZ_B, 4, "requires EVEX_B, EVEX_KZ, L2, W and OpSize") \ |
| 251 | ENUM_ENTRY(IC_EVEX_KZ, 1, "requires an EVEX_KZ prefix") \ |
| 252 | ENUM_ENTRY(IC_EVEX_XS_KZ, 2, "requires EVEX_KZ and the XS prefix") \ |
| 253 | ENUM_ENTRY(IC_EVEX_XD_KZ, 2, "requires EVEX_KZ and the XD prefix") \ |
| 254 | ENUM_ENTRY(IC_EVEX_OPSIZE_KZ, 2, "requires EVEX_KZ and the OpSize prefix") \ |
| 255 | ENUM_ENTRY(IC_EVEX_W_KZ, 3, "requires EVEX_KZ and the W prefix") \ |
| 256 | ENUM_ENTRY(IC_EVEX_W_XS_KZ, 4, "requires EVEX_KZ, W, and XS prefix") \ |
| 257 | ENUM_ENTRY(IC_EVEX_W_XD_KZ, 4, "requires EVEX_KZ, W, and XD prefix") \ |
| 258 | ENUM_ENTRY(IC_EVEX_W_OPSIZE_KZ, 4, "requires EVEX_KZ, W, and OpSize") \ |
| 259 | ENUM_ENTRY(IC_EVEX_L_KZ, 3, "requires EVEX_KZ and the L prefix") \ |
| 260 | ENUM_ENTRY(IC_EVEX_L_XS_KZ, 4, "requires EVEX_KZ and the L and XS prefix")\ |
| 261 | ENUM_ENTRY(IC_EVEX_L_XD_KZ, 4, "requires EVEX_KZ and the L and XD prefix")\ |
| 262 | ENUM_ENTRY(IC_EVEX_L_OPSIZE_KZ, 4, "requires EVEX_KZ, L, and OpSize") \ |
| 263 | ENUM_ENTRY(IC_EVEX_L_W_KZ, 3, "requires EVEX_KZ, L and W") \ |
| 264 | ENUM_ENTRY(IC_EVEX_L_W_XS_KZ, 4, "requires EVEX_KZ, L, W and XS prefix") \ |
| 265 | ENUM_ENTRY(IC_EVEX_L_W_XD_KZ, 4, "requires EVEX_KZ, L, W and XD prefix") \ |
| 266 | ENUM_ENTRY(IC_EVEX_L_W_OPSIZE_KZ, 4, "requires EVEX_KZ, L, W and OpSize") \ |
| 267 | ENUM_ENTRY(IC_EVEX_L2_KZ, 3, "requires EVEX_KZ and the L2 prefix") \ |
| 268 | ENUM_ENTRY(IC_EVEX_L2_XS_KZ, 4, "requires EVEX_KZ and the L2 and XS prefix")\ |
| 269 | ENUM_ENTRY(IC_EVEX_L2_XD_KZ, 4, "requires EVEX_KZ and the L2 and XD prefix")\ |
| 270 | ENUM_ENTRY(IC_EVEX_L2_OPSIZE_KZ, 4, "requires EVEX_KZ, L2, and OpSize") \ |
| 271 | ENUM_ENTRY(IC_EVEX_L2_W_KZ, 3, "requires EVEX_KZ, L2 and W") \ |
| 272 | ENUM_ENTRY(IC_EVEX_L2_W_XS_KZ, 4, "requires EVEX_KZ, L2, W and XS prefix") \ |
| 273 | ENUM_ENTRY(IC_EVEX_L2_W_XD_KZ, 4, "requires EVEX_KZ, L2, W and XD prefix") \ |
| 274 | ENUM_ENTRY(IC_EVEX_L2_W_OPSIZE_KZ, 4, "requires EVEX_KZ, L2, W and OpSize") |
| 275 | |
| 276 | #define ENUM_ENTRY(n, r, d) n, |
| 277 | enum InstructionContext { |
| 278 | INSTRUCTION_CONTEXTS |
| 279 | IC_max |
| 280 | }; |
| 281 | #undef ENUM_ENTRY |
| 282 | |
| 283 | // Opcode types, which determine which decode table to use, both in the Intel |
| 284 | // manual and also for the decoder. |
| 285 | enum OpcodeType { |
| 286 | ONEBYTE = 0, |
| 287 | TWOBYTE = 1, |
| 288 | THREEBYTE_38 = 2, |
| 289 | THREEBYTE_3A = 3, |
| 290 | XOP8_MAP = 4, |
| 291 | XOP9_MAP = 5, |
| 292 | XOPA_MAP = 6, |
| 293 | THREEDNOW_MAP = 7 |
| 294 | }; |
| 295 | |
| 296 | // The following structs are used for the hierarchical decode table. After |
| 297 | // determining the instruction's class (i.e., which IC_* constant applies to |
| 298 | // it), the decoder reads the opcode. Some instructions require specific |
| 299 | // values of the ModR/M byte, so the ModR/M byte indexes into the final table. |
| 300 | // |
| 301 | // If a ModR/M byte is not required, "required" is left unset, and the values |
| 302 | // for each instructionID are identical. |
| 303 | typedef uint16_t InstrUID; |
| 304 | |
| 305 | // ModRMDecisionType - describes the type of ModR/M decision, allowing the |
| 306 | // consumer to determine the number of entries in it. |
| 307 | // |
| 308 | // MODRM_ONEENTRY - No matter what the value of the ModR/M byte is, the decoded |
| 309 | // instruction is the same. |
| 310 | // MODRM_SPLITRM - If the ModR/M byte is between 0x00 and 0xbf, the opcode |
| 311 | // corresponds to one instruction; otherwise, it corresponds to |
| 312 | // a different instruction. |
| 313 | // MODRM_SPLITMISC- If the ModR/M byte is between 0x00 and 0xbf, ModR/M byte |
| 314 | // divided by 8 is used to select instruction; otherwise, each |
| 315 | // value of the ModR/M byte could correspond to a different |
| 316 | // instruction. |
| 317 | // MODRM_SPLITREG - ModR/M byte divided by 8 is used to select instruction. This |
| 318 | // corresponds to instructions that use reg field as opcode |
| 319 | // MODRM_FULL - Potentially, each value of the ModR/M byte could correspond |
| 320 | // to a different instruction. |
| 321 | #define MODRMTYPES \ |
| 322 | ENUM_ENTRY(MODRM_ONEENTRY) \ |
| 323 | ENUM_ENTRY(MODRM_SPLITRM) \ |
| 324 | ENUM_ENTRY(MODRM_SPLITMISC) \ |
| 325 | ENUM_ENTRY(MODRM_SPLITREG) \ |
| 326 | ENUM_ENTRY(MODRM_FULL) |
| 327 | |
| 328 | #define ENUM_ENTRY(n) n, |
| 329 | enum ModRMDecisionType { |
| 330 | MODRMTYPES |
| 331 | MODRM_max |
| 332 | }; |
| 333 | #undef ENUM_ENTRY |
| 334 | |
| 335 | #define CASE_ENCODING_RM \ |
| 336 | case ENCODING_RM: \ |
| 337 | case ENCODING_RM_CD2: \ |
| 338 | case ENCODING_RM_CD4: \ |
| 339 | case ENCODING_RM_CD8: \ |
| 340 | case ENCODING_RM_CD16: \ |
| 341 | case ENCODING_RM_CD32: \ |
| 342 | case ENCODING_RM_CD64 |
| 343 | |
| 344 | #define CASE_ENCODING_VSIB \ |
| 345 | case ENCODING_VSIB: \ |
| 346 | case ENCODING_VSIB_CD2: \ |
| 347 | case ENCODING_VSIB_CD4: \ |
| 348 | case ENCODING_VSIB_CD8: \ |
| 349 | case ENCODING_VSIB_CD16: \ |
| 350 | case ENCODING_VSIB_CD32: \ |
| 351 | case ENCODING_VSIB_CD64 |
| 352 | |
| 353 | // Physical encodings of instruction operands. |
| 354 | #define ENCODINGS \ |
| 355 | ENUM_ENTRY(ENCODING_NONE, "") \ |
| 356 | ENUM_ENTRY(ENCODING_REG, "Register operand in ModR/M byte.") \ |
| 357 | ENUM_ENTRY(ENCODING_RM, "R/M operand in ModR/M byte.") \ |
| 358 | ENUM_ENTRY(ENCODING_RM_CD2, "R/M operand with CDisp scaling of 2") \ |
| 359 | ENUM_ENTRY(ENCODING_RM_CD4, "R/M operand with CDisp scaling of 4") \ |
| 360 | ENUM_ENTRY(ENCODING_RM_CD8, "R/M operand with CDisp scaling of 8") \ |
| 361 | ENUM_ENTRY(ENCODING_RM_CD16,"R/M operand with CDisp scaling of 16") \ |
| 362 | ENUM_ENTRY(ENCODING_RM_CD32,"R/M operand with CDisp scaling of 32") \ |
| 363 | ENUM_ENTRY(ENCODING_RM_CD64,"R/M operand with CDisp scaling of 64") \ |
Olivier Deprez | f4ef2d0 | 2021-04-20 13:36:24 +0200 | [diff] [blame] | 364 | ENUM_ENTRY(ENCODING_SIB, "Force SIB operand in ModR/M byte.") \ |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 365 | ENUM_ENTRY(ENCODING_VSIB, "VSIB operand in ModR/M byte.") \ |
| 366 | ENUM_ENTRY(ENCODING_VSIB_CD2, "VSIB operand with CDisp scaling of 2") \ |
| 367 | ENUM_ENTRY(ENCODING_VSIB_CD4, "VSIB operand with CDisp scaling of 4") \ |
| 368 | ENUM_ENTRY(ENCODING_VSIB_CD8, "VSIB operand with CDisp scaling of 8") \ |
| 369 | ENUM_ENTRY(ENCODING_VSIB_CD16,"VSIB operand with CDisp scaling of 16") \ |
| 370 | ENUM_ENTRY(ENCODING_VSIB_CD32,"VSIB operand with CDisp scaling of 32") \ |
| 371 | ENUM_ENTRY(ENCODING_VSIB_CD64,"VSIB operand with CDisp scaling of 64") \ |
| 372 | ENUM_ENTRY(ENCODING_VVVV, "Register operand in VEX.vvvv byte.") \ |
| 373 | ENUM_ENTRY(ENCODING_WRITEMASK, "Register operand in EVEX.aaa byte.") \ |
| 374 | ENUM_ENTRY(ENCODING_IB, "1-byte immediate") \ |
| 375 | ENUM_ENTRY(ENCODING_IW, "2-byte") \ |
| 376 | ENUM_ENTRY(ENCODING_ID, "4-byte") \ |
| 377 | ENUM_ENTRY(ENCODING_IO, "8-byte") \ |
Olivier Deprez | f4ef2d0 | 2021-04-20 13:36:24 +0200 | [diff] [blame] | 378 | ENUM_ENTRY(ENCODING_RB, "(AL..DIL, R8B..R15B) Register code added to " \ |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 379 | "the opcode byte") \ |
| 380 | ENUM_ENTRY(ENCODING_RW, "(AX..DI, R8W..R15W)") \ |
| 381 | ENUM_ENTRY(ENCODING_RD, "(EAX..EDI, R8D..R15D)") \ |
| 382 | ENUM_ENTRY(ENCODING_RO, "(RAX..RDI, R8..R15)") \ |
| 383 | ENUM_ENTRY(ENCODING_FP, "Position on floating-point stack in ModR/M " \ |
| 384 | "byte.") \ |
| 385 | \ |
| 386 | ENUM_ENTRY(ENCODING_Iv, "Immediate of operand size") \ |
| 387 | ENUM_ENTRY(ENCODING_Ia, "Immediate of address size") \ |
| 388 | ENUM_ENTRY(ENCODING_IRC, "Immediate for static rounding control") \ |
| 389 | ENUM_ENTRY(ENCODING_Rv, "Register code of operand size added to the " \ |
| 390 | "opcode byte") \ |
Andrew Walbran | 3d2c197 | 2020-04-07 12:24:26 +0100 | [diff] [blame] | 391 | ENUM_ENTRY(ENCODING_CC, "Condition code encoded in opcode") \ |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 392 | ENUM_ENTRY(ENCODING_DUP, "Duplicate of another operand; ID is encoded " \ |
| 393 | "in type") \ |
| 394 | ENUM_ENTRY(ENCODING_SI, "Source index; encoded in OpSize/Adsize prefix") \ |
| 395 | ENUM_ENTRY(ENCODING_DI, "Destination index; encoded in prefixes") |
| 396 | |
| 397 | #define ENUM_ENTRY(n, d) n, |
| 398 | enum OperandEncoding { |
| 399 | ENCODINGS |
| 400 | ENCODING_max |
| 401 | }; |
| 402 | #undef ENUM_ENTRY |
| 403 | |
| 404 | // Semantic interpretations of instruction operands. |
| 405 | #define TYPES \ |
| 406 | ENUM_ENTRY(TYPE_NONE, "") \ |
| 407 | ENUM_ENTRY(TYPE_REL, "immediate address") \ |
| 408 | ENUM_ENTRY(TYPE_R8, "1-byte register operand") \ |
| 409 | ENUM_ENTRY(TYPE_R16, "2-byte") \ |
| 410 | ENUM_ENTRY(TYPE_R32, "4-byte") \ |
| 411 | ENUM_ENTRY(TYPE_R64, "8-byte") \ |
Andrew Walbran | 16937d0 | 2019-10-22 13:54:20 +0100 | [diff] [blame] | 412 | ENUM_ENTRY(TYPE_IMM, "immediate operand") \ |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 413 | ENUM_ENTRY(TYPE_UIMM8, "1-byte unsigned immediate operand") \ |
| 414 | ENUM_ENTRY(TYPE_M, "Memory operand") \ |
Olivier Deprez | f4ef2d0 | 2021-04-20 13:36:24 +0200 | [diff] [blame] | 415 | ENUM_ENTRY(TYPE_MSIB, "Memory operand force sib encoding") \ |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 416 | ENUM_ENTRY(TYPE_MVSIBX, "Memory operand using XMM index") \ |
| 417 | ENUM_ENTRY(TYPE_MVSIBY, "Memory operand using YMM index") \ |
| 418 | ENUM_ENTRY(TYPE_MVSIBZ, "Memory operand using ZMM index") \ |
| 419 | ENUM_ENTRY(TYPE_SRCIDX, "memory at source index") \ |
| 420 | ENUM_ENTRY(TYPE_DSTIDX, "memory at destination index") \ |
| 421 | ENUM_ENTRY(TYPE_MOFFS, "memory offset (relative to segment base)") \ |
| 422 | ENUM_ENTRY(TYPE_ST, "Position on the floating-point stack") \ |
| 423 | ENUM_ENTRY(TYPE_MM64, "8-byte MMX register") \ |
| 424 | ENUM_ENTRY(TYPE_XMM, "16-byte") \ |
| 425 | ENUM_ENTRY(TYPE_YMM, "32-byte") \ |
| 426 | ENUM_ENTRY(TYPE_ZMM, "64-byte") \ |
| 427 | ENUM_ENTRY(TYPE_VK, "mask register") \ |
Andrew Walbran | 3d2c197 | 2020-04-07 12:24:26 +0100 | [diff] [blame] | 428 | ENUM_ENTRY(TYPE_VK_PAIR, "mask register pair") \ |
Olivier Deprez | f4ef2d0 | 2021-04-20 13:36:24 +0200 | [diff] [blame] | 429 | ENUM_ENTRY(TYPE_TMM, "tile") \ |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 430 | ENUM_ENTRY(TYPE_SEGMENTREG, "Segment register operand") \ |
| 431 | ENUM_ENTRY(TYPE_DEBUGREG, "Debug register operand") \ |
| 432 | ENUM_ENTRY(TYPE_CONTROLREG, "Control register operand") \ |
| 433 | ENUM_ENTRY(TYPE_BNDR, "MPX bounds register") \ |
| 434 | \ |
| 435 | ENUM_ENTRY(TYPE_Rv, "Register operand of operand size") \ |
| 436 | ENUM_ENTRY(TYPE_RELv, "Immediate address of operand size") \ |
| 437 | ENUM_ENTRY(TYPE_DUP0, "Duplicate of operand 0") \ |
| 438 | ENUM_ENTRY(TYPE_DUP1, "operand 1") \ |
| 439 | ENUM_ENTRY(TYPE_DUP2, "operand 2") \ |
| 440 | ENUM_ENTRY(TYPE_DUP3, "operand 3") \ |
| 441 | ENUM_ENTRY(TYPE_DUP4, "operand 4") \ |
| 442 | |
| 443 | #define ENUM_ENTRY(n, d) n, |
| 444 | enum OperandType { |
| 445 | TYPES |
| 446 | TYPE_max |
| 447 | }; |
| 448 | #undef ENUM_ENTRY |
| 449 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 450 | /// The specification for how to extract and interpret one operand. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 451 | struct OperandSpecifier { |
| 452 | uint8_t encoding; |
| 453 | uint8_t type; |
| 454 | }; |
| 455 | |
| 456 | static const unsigned X86_MAX_OPERANDS = 6; |
| 457 | |
| 458 | /// Decoding mode for the Intel disassembler. 16-bit, 32-bit, and 64-bit mode |
| 459 | /// are supported, and represent real mode, IA-32e, and IA-32e in 64-bit mode, |
| 460 | /// respectively. |
| 461 | enum DisassemblerMode { |
| 462 | MODE_16BIT, |
| 463 | MODE_32BIT, |
| 464 | MODE_64BIT |
| 465 | }; |
| 466 | |
| 467 | } // namespace X86Disassembler |
| 468 | } // namespace llvm |
| 469 | |
| 470 | #endif |