blob: d2200080b8978994a799e318524e0e09192c5c5e [file] [log] [blame]
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001//==- llvm/CodeGen/MachineDominators.h - Machine Dom Calculation -*- C++ -*-==//
2//
Andrew Walbran16937d02019-10-22 13:54:20 +01003// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01006//
7//===----------------------------------------------------------------------===//
8//
9// This file defines classes mirroring those in llvm/Analysis/Dominators.h,
10// but for target-specific code rather than target-independent IR.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CODEGEN_MACHINEDOMINATORS_H
15#define LLVM_CODEGEN_MACHINEDOMINATORS_H
16
17#include "llvm/ADT/SmallSet.h"
18#include "llvm/ADT/SmallVector.h"
19#include "llvm/CodeGen/MachineBasicBlock.h"
20#include "llvm/CodeGen/MachineFunctionPass.h"
21#include "llvm/CodeGen/MachineInstr.h"
22#include "llvm/Support/GenericDomTree.h"
23#include "llvm/Support/GenericDomTreeConstruction.h"
24#include <cassert>
25#include <memory>
26#include <vector>
27
28namespace llvm {
29
30template <>
31inline void DominatorTreeBase<MachineBasicBlock, false>::addRoot(
32 MachineBasicBlock *MBB) {
33 this->Roots.push_back(MBB);
34}
35
36extern template class DomTreeNodeBase<MachineBasicBlock>;
37extern template class DominatorTreeBase<MachineBasicBlock, false>; // DomTree
38extern template class DominatorTreeBase<MachineBasicBlock, true>; // PostDomTree
39
40using MachineDomTreeNode = DomTreeNodeBase<MachineBasicBlock>;
41
42//===-------------------------------------
43/// DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to
44/// compute a normal dominator tree.
45///
46class MachineDominatorTree : public MachineFunctionPass {
Andrew Scullcdfcccc2018-10-05 20:58:37 +010047 /// Helper structure used to hold all the basic blocks
Andrew Scull5e1ddfa2018-08-14 10:06:54 +010048 /// involved in the split of a critical edge.
49 struct CriticalEdge {
50 MachineBasicBlock *FromBB;
51 MachineBasicBlock *ToBB;
52 MachineBasicBlock *NewBB;
53 };
54
Andrew Scullcdfcccc2018-10-05 20:58:37 +010055 /// Pile up all the critical edges to be split.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +010056 /// The splitting of a critical edge is local and thus, it is possible
57 /// to apply several of those changes at the same time.
58 mutable SmallVector<CriticalEdge, 32> CriticalEdgesToSplit;
59
Andrew Scullcdfcccc2018-10-05 20:58:37 +010060 /// Remember all the basic blocks that are inserted during
Andrew Scull5e1ddfa2018-08-14 10:06:54 +010061 /// edge splitting.
62 /// Invariant: NewBBs == all the basic blocks contained in the NewBB
63 /// field of all the elements of CriticalEdgesToSplit.
64 /// I.e., forall elt in CriticalEdgesToSplit, it exists BB in NewBBs
65 /// such as BB == elt.NewBB.
66 mutable SmallSet<MachineBasicBlock *, 32> NewBBs;
67
68 /// The DominatorTreeBase that is used to compute a normal dominator tree
69 std::unique_ptr<DomTreeBase<MachineBasicBlock>> DT;
70
Andrew Scullcdfcccc2018-10-05 20:58:37 +010071 /// Apply all the recorded critical edges to the DT.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +010072 /// This updates the underlying DT information in a way that uses
73 /// the fast query path of DT as much as possible.
74 ///
75 /// \post CriticalEdgesToSplit.empty().
76 void applySplitCriticalEdges() const;
77
78public:
79 static char ID; // Pass ID, replacement for typeid
80
81 MachineDominatorTree();
82
83 DomTreeBase<MachineBasicBlock> &getBase() {
84 if (!DT) DT.reset(new DomTreeBase<MachineBasicBlock>());
85 applySplitCriticalEdges();
86 return *DT;
87 }
88
89 void getAnalysisUsage(AnalysisUsage &AU) const override;
90
91 /// getRoots - Return the root blocks of the current CFG. This may include
92 /// multiple blocks if we are computing post dominators. For forward
93 /// dominators, this will always be a single block (the entry node).
94 ///
95 inline const SmallVectorImpl<MachineBasicBlock*> &getRoots() const {
96 applySplitCriticalEdges();
97 return DT->getRoots();
98 }
99
100 inline MachineBasicBlock *getRoot() const {
101 applySplitCriticalEdges();
102 return DT->getRoot();
103 }
104
105 inline MachineDomTreeNode *getRootNode() const {
106 applySplitCriticalEdges();
107 return DT->getRootNode();
108 }
109
110 bool runOnMachineFunction(MachineFunction &F) override;
111
112 inline bool dominates(const MachineDomTreeNode* A,
113 const MachineDomTreeNode* B) const {
114 applySplitCriticalEdges();
115 return DT->dominates(A, B);
116 }
117
118 inline bool dominates(const MachineBasicBlock* A,
119 const MachineBasicBlock* B) const {
120 applySplitCriticalEdges();
121 return DT->dominates(A, B);
122 }
123
124 // dominates - Return true if A dominates B. This performs the
125 // special checks necessary if A and B are in the same basic block.
126 bool dominates(const MachineInstr *A, const MachineInstr *B) const {
127 applySplitCriticalEdges();
128 const MachineBasicBlock *BBA = A->getParent(), *BBB = B->getParent();
129 if (BBA != BBB) return DT->dominates(BBA, BBB);
130
131 // Loop through the basic block until we find A or B.
132 MachineBasicBlock::const_iterator I = BBA->begin();
133 for (; &*I != A && &*I != B; ++I)
134 /*empty*/ ;
135
136 //if(!DT.IsPostDominators) {
137 // A dominates B if it is found first in the basic block.
138 return &*I == A;
139 //} else {
140 // // A post-dominates B if B is found first in the basic block.
141 // return &*I == B;
142 //}
143 }
144
145 inline bool properlyDominates(const MachineDomTreeNode* A,
146 const MachineDomTreeNode* B) const {
147 applySplitCriticalEdges();
148 return DT->properlyDominates(A, B);
149 }
150
151 inline bool properlyDominates(const MachineBasicBlock* A,
152 const MachineBasicBlock* B) const {
153 applySplitCriticalEdges();
154 return DT->properlyDominates(A, B);
155 }
156
157 /// findNearestCommonDominator - Find nearest common dominator basic block
158 /// for basic block A and B. If there is no such block then return NULL.
159 inline MachineBasicBlock *findNearestCommonDominator(MachineBasicBlock *A,
160 MachineBasicBlock *B) {
161 applySplitCriticalEdges();
162 return DT->findNearestCommonDominator(A, B);
163 }
164
165 inline MachineDomTreeNode *operator[](MachineBasicBlock *BB) const {
166 applySplitCriticalEdges();
167 return DT->getNode(BB);
168 }
169
170 /// getNode - return the (Post)DominatorTree node for the specified basic
171 /// block. This is the same as using operator[] on this class.
172 ///
173 inline MachineDomTreeNode *getNode(MachineBasicBlock *BB) const {
174 applySplitCriticalEdges();
175 return DT->getNode(BB);
176 }
177
178 /// addNewBlock - Add a new node to the dominator tree information. This
179 /// creates a new node as a child of DomBB dominator node,linking it into
180 /// the children list of the immediate dominator.
181 inline MachineDomTreeNode *addNewBlock(MachineBasicBlock *BB,
182 MachineBasicBlock *DomBB) {
183 applySplitCriticalEdges();
184 return DT->addNewBlock(BB, DomBB);
185 }
186
187 /// changeImmediateDominator - This method is used to update the dominator
188 /// tree information when a node's immediate dominator changes.
189 ///
190 inline void changeImmediateDominator(MachineBasicBlock *N,
191 MachineBasicBlock* NewIDom) {
192 applySplitCriticalEdges();
193 DT->changeImmediateDominator(N, NewIDom);
194 }
195
196 inline void changeImmediateDominator(MachineDomTreeNode *N,
197 MachineDomTreeNode* NewIDom) {
198 applySplitCriticalEdges();
199 DT->changeImmediateDominator(N, NewIDom);
200 }
201
202 /// eraseNode - Removes a node from the dominator tree. Block must not
203 /// dominate any other blocks. Removes node from its immediate dominator's
204 /// children list. Deletes dominator node associated with basic block BB.
205 inline void eraseNode(MachineBasicBlock *BB) {
206 applySplitCriticalEdges();
207 DT->eraseNode(BB);
208 }
209
210 /// splitBlock - BB is split and now it has one successor. Update dominator
211 /// tree to reflect this change.
212 inline void splitBlock(MachineBasicBlock* NewBB) {
213 applySplitCriticalEdges();
214 DT->splitBlock(NewBB);
215 }
216
217 /// isReachableFromEntry - Return true if A is dominated by the entry
218 /// block of the function containing it.
219 bool isReachableFromEntry(const MachineBasicBlock *A) {
220 applySplitCriticalEdges();
221 return DT->isReachableFromEntry(A);
222 }
223
224 void releaseMemory() override;
225
226 void verifyAnalysis() const override;
227
228 void print(raw_ostream &OS, const Module*) const override;
229
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100230 /// Record that the critical edge (FromBB, ToBB) has been
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100231 /// split with NewBB.
232 /// This is best to use this method instead of directly update the
233 /// underlying information, because this helps mitigating the
234 /// number of time the DT information is invalidated.
235 ///
236 /// \note Do not use this method with regular edges.
237 ///
238 /// \note To benefit from the compile time improvement incurred by this
239 /// method, the users of this method have to limit the queries to the DT
240 /// interface between two edges splitting. In other words, they have to
241 /// pack the splitting of critical edges as much as possible.
242 void recordSplitCriticalEdge(MachineBasicBlock *FromBB,
243 MachineBasicBlock *ToBB,
244 MachineBasicBlock *NewBB) {
245 bool Inserted = NewBBs.insert(NewBB).second;
246 (void)Inserted;
247 assert(Inserted &&
248 "A basic block inserted via edge splitting cannot appear twice");
249 CriticalEdgesToSplit.push_back({FromBB, ToBB, NewBB});
250 }
251};
252
253//===-------------------------------------
254/// DominatorTree GraphTraits specialization so the DominatorTree can be
255/// iterable by generic graph iterators.
256///
257
258template <class Node, class ChildIterator>
259struct MachineDomTreeGraphTraitsBase {
260 using NodeRef = Node *;
261 using ChildIteratorType = ChildIterator;
262
263 static NodeRef getEntryNode(NodeRef N) { return N; }
264 static ChildIteratorType child_begin(NodeRef N) { return N->begin(); }
265 static ChildIteratorType child_end(NodeRef N) { return N->end(); }
266};
267
268template <class T> struct GraphTraits;
269
270template <>
271struct GraphTraits<MachineDomTreeNode *>
272 : public MachineDomTreeGraphTraitsBase<MachineDomTreeNode,
273 MachineDomTreeNode::iterator> {};
274
275template <>
276struct GraphTraits<const MachineDomTreeNode *>
277 : public MachineDomTreeGraphTraitsBase<const MachineDomTreeNode,
278 MachineDomTreeNode::const_iterator> {
279};
280
281template <> struct GraphTraits<MachineDominatorTree*>
282 : public GraphTraits<MachineDomTreeNode *> {
283 static NodeRef getEntryNode(MachineDominatorTree *DT) {
284 return DT->getRootNode();
285 }
286};
287
288} // end namespace llvm
289
290#endif // LLVM_CODEGEN_MACHINEDOMINATORS_H