blob: d1d7e5ef0227e40a62fbb6c18b9e23189f385595 [file] [log] [blame]
Andrew Scull0372a572018-11-16 15:47:06 +00001//===- llvm/Analysis/IVDescriptors.h - IndVar Descriptors -------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file "describes" induction and recurrence variables.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_ANALYSIS_IVDESCRIPTORS_H
15#define LLVM_ANALYSIS_IVDESCRIPTORS_H
16
17#include "llvm/ADT/DenseMap.h"
18#include "llvm/ADT/Optional.h"
19#include "llvm/ADT/SetVector.h"
20#include "llvm/ADT/SmallPtrSet.h"
21#include "llvm/ADT/SmallVector.h"
22#include "llvm/ADT/StringRef.h"
23#include "llvm/Analysis/AliasAnalysis.h"
24#include "llvm/Analysis/DemandedBits.h"
25#include "llvm/Analysis/EHPersonalities.h"
26#include "llvm/Analysis/MustExecute.h"
27#include "llvm/Analysis/TargetTransformInfo.h"
28#include "llvm/IR/Dominators.h"
29#include "llvm/IR/IRBuilder.h"
30#include "llvm/IR/InstrTypes.h"
31#include "llvm/IR/Operator.h"
32#include "llvm/IR/ValueHandle.h"
33#include "llvm/Support/Casting.h"
34
35namespace llvm {
36
37class AliasSet;
38class AliasSetTracker;
39class BasicBlock;
40class DataLayout;
41class Loop;
42class LoopInfo;
43class OptimizationRemarkEmitter;
44class PredicatedScalarEvolution;
45class PredIteratorCache;
46class ScalarEvolution;
47class SCEV;
48class TargetLibraryInfo;
49class TargetTransformInfo;
50
51/// The RecurrenceDescriptor is used to identify recurrences variables in a
52/// loop. Reduction is a special case of recurrence that has uses of the
53/// recurrence variable outside the loop. The method isReductionPHI identifies
54/// reductions that are basic recurrences.
55///
56/// Basic recurrences are defined as the summation, product, OR, AND, XOR, min,
57/// or max of a set of terms. For example: for(i=0; i<n; i++) { total +=
58/// array[i]; } is a summation of array elements. Basic recurrences are a
59/// special case of chains of recurrences (CR). See ScalarEvolution for CR
60/// references.
61
62/// This struct holds information about recurrence variables.
63class RecurrenceDescriptor {
64public:
65 /// This enum represents the kinds of recurrences that we support.
66 enum RecurrenceKind {
67 RK_NoRecurrence, ///< Not a recurrence.
68 RK_IntegerAdd, ///< Sum of integers.
69 RK_IntegerMult, ///< Product of integers.
70 RK_IntegerOr, ///< Bitwise or logical OR of numbers.
71 RK_IntegerAnd, ///< Bitwise or logical AND of numbers.
72 RK_IntegerXor, ///< Bitwise or logical XOR of numbers.
73 RK_IntegerMinMax, ///< Min/max implemented in terms of select(cmp()).
74 RK_FloatAdd, ///< Sum of floats.
75 RK_FloatMult, ///< Product of floats.
76 RK_FloatMinMax ///< Min/max implemented in terms of select(cmp()).
77 };
78
79 // This enum represents the kind of minmax recurrence.
80 enum MinMaxRecurrenceKind {
81 MRK_Invalid,
82 MRK_UIntMin,
83 MRK_UIntMax,
84 MRK_SIntMin,
85 MRK_SIntMax,
86 MRK_FloatMin,
87 MRK_FloatMax
88 };
89
90 RecurrenceDescriptor() = default;
91
92 RecurrenceDescriptor(Value *Start, Instruction *Exit, RecurrenceKind K,
93 MinMaxRecurrenceKind MK, Instruction *UAI, Type *RT,
94 bool Signed, SmallPtrSetImpl<Instruction *> &CI)
95 : StartValue(Start), LoopExitInstr(Exit), Kind(K), MinMaxKind(MK),
96 UnsafeAlgebraInst(UAI), RecurrenceType(RT), IsSigned(Signed) {
97 CastInsts.insert(CI.begin(), CI.end());
98 }
99
100 /// This POD struct holds information about a potential recurrence operation.
101 class InstDesc {
102 public:
103 InstDesc(bool IsRecur, Instruction *I, Instruction *UAI = nullptr)
104 : IsRecurrence(IsRecur), PatternLastInst(I), MinMaxKind(MRK_Invalid),
105 UnsafeAlgebraInst(UAI) {}
106
107 InstDesc(Instruction *I, MinMaxRecurrenceKind K, Instruction *UAI = nullptr)
108 : IsRecurrence(true), PatternLastInst(I), MinMaxKind(K),
109 UnsafeAlgebraInst(UAI) {}
110
111 bool isRecurrence() { return IsRecurrence; }
112
113 bool hasUnsafeAlgebra() { return UnsafeAlgebraInst != nullptr; }
114
115 Instruction *getUnsafeAlgebraInst() { return UnsafeAlgebraInst; }
116
117 MinMaxRecurrenceKind getMinMaxKind() { return MinMaxKind; }
118
119 Instruction *getPatternInst() { return PatternLastInst; }
120
121 private:
122 // Is this instruction a recurrence candidate.
123 bool IsRecurrence;
124 // The last instruction in a min/max pattern (select of the select(icmp())
125 // pattern), or the current recurrence instruction otherwise.
126 Instruction *PatternLastInst;
127 // If this is a min/max pattern the comparison predicate.
128 MinMaxRecurrenceKind MinMaxKind;
129 // Recurrence has unsafe algebra.
130 Instruction *UnsafeAlgebraInst;
131 };
132
133 /// Returns a struct describing if the instruction 'I' can be a recurrence
134 /// variable of type 'Kind'. If the recurrence is a min/max pattern of
135 /// select(icmp()) this function advances the instruction pointer 'I' from the
136 /// compare instruction to the select instruction and stores this pointer in
137 /// 'PatternLastInst' member of the returned struct.
138 static InstDesc isRecurrenceInstr(Instruction *I, RecurrenceKind Kind,
139 InstDesc &Prev, bool HasFunNoNaNAttr);
140
141 /// Returns true if instruction I has multiple uses in Insts
142 static bool hasMultipleUsesOf(Instruction *I,
143 SmallPtrSetImpl<Instruction *> &Insts);
144
145 /// Returns true if all uses of the instruction I is within the Set.
146 static bool areAllUsesIn(Instruction *I, SmallPtrSetImpl<Instruction *> &Set);
147
148 /// Returns a struct describing if the instruction if the instruction is a
149 /// Select(ICmp(X, Y), X, Y) instruction pattern corresponding to a min(X, Y)
150 /// or max(X, Y).
151 static InstDesc isMinMaxSelectCmpPattern(Instruction *I, InstDesc &Prev);
152
153 /// Returns identity corresponding to the RecurrenceKind.
154 static Constant *getRecurrenceIdentity(RecurrenceKind K, Type *Tp);
155
156 /// Returns the opcode of binary operation corresponding to the
157 /// RecurrenceKind.
158 static unsigned getRecurrenceBinOp(RecurrenceKind Kind);
159
160 /// Returns true if Phi is a reduction of type Kind and adds it to the
161 /// RecurrenceDescriptor. If either \p DB is non-null or \p AC and \p DT are
162 /// non-null, the minimal bit width needed to compute the reduction will be
163 /// computed.
164 static bool AddReductionVar(PHINode *Phi, RecurrenceKind Kind, Loop *TheLoop,
165 bool HasFunNoNaNAttr,
166 RecurrenceDescriptor &RedDes,
167 DemandedBits *DB = nullptr,
168 AssumptionCache *AC = nullptr,
169 DominatorTree *DT = nullptr);
170
171 /// Returns true if Phi is a reduction in TheLoop. The RecurrenceDescriptor
172 /// is returned in RedDes. If either \p DB is non-null or \p AC and \p DT are
173 /// non-null, the minimal bit width needed to compute the reduction will be
174 /// computed.
175 static bool isReductionPHI(PHINode *Phi, Loop *TheLoop,
176 RecurrenceDescriptor &RedDes,
177 DemandedBits *DB = nullptr,
178 AssumptionCache *AC = nullptr,
179 DominatorTree *DT = nullptr);
180
181 /// Returns true if Phi is a first-order recurrence. A first-order recurrence
182 /// is a non-reduction recurrence relation in which the value of the
183 /// recurrence in the current loop iteration equals a value defined in the
184 /// previous iteration. \p SinkAfter includes pairs of instructions where the
185 /// first will be rescheduled to appear after the second if/when the loop is
186 /// vectorized. It may be augmented with additional pairs if needed in order
187 /// to handle Phi as a first-order recurrence.
188 static bool
189 isFirstOrderRecurrence(PHINode *Phi, Loop *TheLoop,
190 DenseMap<Instruction *, Instruction *> &SinkAfter,
191 DominatorTree *DT);
192
193 RecurrenceKind getRecurrenceKind() { return Kind; }
194
195 MinMaxRecurrenceKind getMinMaxRecurrenceKind() { return MinMaxKind; }
196
197 TrackingVH<Value> getRecurrenceStartValue() { return StartValue; }
198
199 Instruction *getLoopExitInstr() { return LoopExitInstr; }
200
201 /// Returns true if the recurrence has unsafe algebra which requires a relaxed
202 /// floating-point model.
203 bool hasUnsafeAlgebra() { return UnsafeAlgebraInst != nullptr; }
204
205 /// Returns first unsafe algebra instruction in the PHI node's use-chain.
206 Instruction *getUnsafeAlgebraInst() { return UnsafeAlgebraInst; }
207
208 /// Returns true if the recurrence kind is an integer kind.
209 static bool isIntegerRecurrenceKind(RecurrenceKind Kind);
210
211 /// Returns true if the recurrence kind is a floating point kind.
212 static bool isFloatingPointRecurrenceKind(RecurrenceKind Kind);
213
214 /// Returns true if the recurrence kind is an arithmetic kind.
215 static bool isArithmeticRecurrenceKind(RecurrenceKind Kind);
216
217 /// Returns the type of the recurrence. This type can be narrower than the
218 /// actual type of the Phi if the recurrence has been type-promoted.
219 Type *getRecurrenceType() { return RecurrenceType; }
220
221 /// Returns a reference to the instructions used for type-promoting the
222 /// recurrence.
223 SmallPtrSet<Instruction *, 8> &getCastInsts() { return CastInsts; }
224
225 /// Returns true if all source operands of the recurrence are SExtInsts.
226 bool isSigned() { return IsSigned; }
227
228private:
229 // The starting value of the recurrence.
230 // It does not have to be zero!
231 TrackingVH<Value> StartValue;
232 // The instruction who's value is used outside the loop.
233 Instruction *LoopExitInstr = nullptr;
234 // The kind of the recurrence.
235 RecurrenceKind Kind = RK_NoRecurrence;
236 // If this a min/max recurrence the kind of recurrence.
237 MinMaxRecurrenceKind MinMaxKind = MRK_Invalid;
238 // First occurrence of unasfe algebra in the PHI's use-chain.
239 Instruction *UnsafeAlgebraInst = nullptr;
240 // The type of the recurrence.
241 Type *RecurrenceType = nullptr;
242 // True if all source operands of the recurrence are SExtInsts.
243 bool IsSigned = false;
244 // Instructions used for type-promoting the recurrence.
245 SmallPtrSet<Instruction *, 8> CastInsts;
246};
247
248/// A struct for saving information about induction variables.
249class InductionDescriptor {
250public:
251 /// This enum represents the kinds of inductions that we support.
252 enum InductionKind {
253 IK_NoInduction, ///< Not an induction variable.
254 IK_IntInduction, ///< Integer induction variable. Step = C.
255 IK_PtrInduction, ///< Pointer induction var. Step = C / sizeof(elem).
256 IK_FpInduction ///< Floating point induction variable.
257 };
258
259public:
260 /// Default constructor - creates an invalid induction.
261 InductionDescriptor() = default;
262
263 /// Get the consecutive direction. Returns:
264 /// 0 - unknown or non-consecutive.
265 /// 1 - consecutive and increasing.
266 /// -1 - consecutive and decreasing.
267 int getConsecutiveDirection() const;
268
269 Value *getStartValue() const { return StartValue; }
270 InductionKind getKind() const { return IK; }
271 const SCEV *getStep() const { return Step; }
272 BinaryOperator *getInductionBinOp() const { return InductionBinOp; }
273 ConstantInt *getConstIntStepValue() const;
274
275 /// Returns true if \p Phi is an induction in the loop \p L. If \p Phi is an
276 /// induction, the induction descriptor \p D will contain the data describing
277 /// this induction. If by some other means the caller has a better SCEV
278 /// expression for \p Phi than the one returned by the ScalarEvolution
279 /// analysis, it can be passed through \p Expr. If the def-use chain
280 /// associated with the phi includes casts (that we know we can ignore
281 /// under proper runtime checks), they are passed through \p CastsToIgnore.
282 static bool
283 isInductionPHI(PHINode *Phi, const Loop *L, ScalarEvolution *SE,
284 InductionDescriptor &D, const SCEV *Expr = nullptr,
285 SmallVectorImpl<Instruction *> *CastsToIgnore = nullptr);
286
287 /// Returns true if \p Phi is a floating point induction in the loop \p L.
288 /// If \p Phi is an induction, the induction descriptor \p D will contain
289 /// the data describing this induction.
290 static bool isFPInductionPHI(PHINode *Phi, const Loop *L, ScalarEvolution *SE,
291 InductionDescriptor &D);
292
293 /// Returns true if \p Phi is a loop \p L induction, in the context associated
294 /// with the run-time predicate of PSE. If \p Assume is true, this can add
295 /// further SCEV predicates to \p PSE in order to prove that \p Phi is an
296 /// induction.
297 /// If \p Phi is an induction, \p D will contain the data describing this
298 /// induction.
299 static bool isInductionPHI(PHINode *Phi, const Loop *L,
300 PredicatedScalarEvolution &PSE,
301 InductionDescriptor &D, bool Assume = false);
302
303 /// Returns true if the induction type is FP and the binary operator does
304 /// not have the "fast-math" property. Such operation requires a relaxed FP
305 /// mode.
306 bool hasUnsafeAlgebra() {
307 return InductionBinOp && !cast<FPMathOperator>(InductionBinOp)->isFast();
308 }
309
310 /// Returns induction operator that does not have "fast-math" property
311 /// and requires FP unsafe mode.
312 Instruction *getUnsafeAlgebraInst() {
313 if (!InductionBinOp || cast<FPMathOperator>(InductionBinOp)->isFast())
314 return nullptr;
315 return InductionBinOp;
316 }
317
318 /// Returns binary opcode of the induction operator.
319 Instruction::BinaryOps getInductionOpcode() const {
320 return InductionBinOp ? InductionBinOp->getOpcode()
321 : Instruction::BinaryOpsEnd;
322 }
323
324 /// Returns a reference to the type cast instructions in the induction
325 /// update chain, that are redundant when guarded with a runtime
326 /// SCEV overflow check.
327 const SmallVectorImpl<Instruction *> &getCastInsts() const {
328 return RedundantCasts;
329 }
330
331private:
332 /// Private constructor - used by \c isInductionPHI.
333 InductionDescriptor(Value *Start, InductionKind K, const SCEV *Step,
334 BinaryOperator *InductionBinOp = nullptr,
335 SmallVectorImpl<Instruction *> *Casts = nullptr);
336
337 /// Start value.
338 TrackingVH<Value> StartValue;
339 /// Induction kind.
340 InductionKind IK = IK_NoInduction;
341 /// Step value.
342 const SCEV *Step = nullptr;
343 // Instruction that advances induction variable.
344 BinaryOperator *InductionBinOp = nullptr;
345 // Instructions used for type-casts of the induction variable,
346 // that are redundant when guarded with a runtime SCEV overflow check.
347 SmallVector<Instruction *, 2> RedundantCasts;
348};
349
350} // end namespace llvm
351
352#endif // LLVM_ANALYSIS_IVDESCRIPTORS_H