blob: c8ec737a2cb91ec7fad5f104568ee02e823e234e [file] [log] [blame]
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001//===-- llvm/Analysis/DependenceAnalysis.h -------------------- -*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// DependenceAnalysis is an LLVM pass that analyses dependences between memory
11// accesses. Currently, it is an implementation of the approach described in
12//
13// Practical Dependence Testing
14// Goff, Kennedy, Tseng
15// PLDI 1991
16//
17// There's a single entry point that analyzes the dependence between a pair
18// of memory references in a function, returning either NULL, for no dependence,
19// or a more-or-less detailed description of the dependence between them.
20//
21// This pass exists to support the DependenceGraph pass. There are two separate
22// passes because there's a useful separation of concerns. A dependence exists
23// if two conditions are met:
24//
25// 1) Two instructions reference the same memory location, and
26// 2) There is a flow of control leading from one instruction to the other.
27//
28// DependenceAnalysis attacks the first condition; DependenceGraph will attack
29// the second (it's not yet ready).
30//
31// Please note that this is work in progress and the interface is subject to
32// change.
33//
34// Plausible changes:
35// Return a set of more precise dependences instead of just one dependence
36// summarizing all.
37//
38//===----------------------------------------------------------------------===//
39
40#ifndef LLVM_ANALYSIS_DEPENDENCEANALYSIS_H
41#define LLVM_ANALYSIS_DEPENDENCEANALYSIS_H
42
43#include "llvm/ADT/SmallBitVector.h"
44#include "llvm/Analysis/AliasAnalysis.h"
45#include "llvm/IR/Instructions.h"
46#include "llvm/Pass.h"
47
48namespace llvm {
49template <typename T> class ArrayRef;
50 class Loop;
51 class LoopInfo;
52 class ScalarEvolution;
53 class SCEV;
54 class SCEVConstant;
55 class raw_ostream;
56
57 /// Dependence - This class represents a dependence between two memory
58 /// memory references in a function. It contains minimal information and
59 /// is used in the very common situation where the compiler is unable to
60 /// determine anything beyond the existence of a dependence; that is, it
61 /// represents a confused dependence (see also FullDependence). In most
62 /// cases (for output, flow, and anti dependences), the dependence implies
63 /// an ordering, where the source must precede the destination; in contrast,
64 /// input dependences are unordered.
65 ///
66 /// When a dependence graph is built, each Dependence will be a member of
67 /// the set of predecessor edges for its destination instruction and a set
68 /// if successor edges for its source instruction. These sets are represented
69 /// as singly-linked lists, with the "next" fields stored in the dependence
70 /// itelf.
71 class Dependence {
72 protected:
73 Dependence(Dependence &&) = default;
74 Dependence &operator=(Dependence &&) = default;
75
76 public:
77 Dependence(Instruction *Source,
78 Instruction *Destination) :
79 Src(Source),
80 Dst(Destination),
81 NextPredecessor(nullptr),
82 NextSuccessor(nullptr) {}
83 virtual ~Dependence() {}
84
85 /// Dependence::DVEntry - Each level in the distance/direction vector
86 /// has a direction (or perhaps a union of several directions), and
87 /// perhaps a distance.
88 struct DVEntry {
89 enum { NONE = 0,
90 LT = 1,
91 EQ = 2,
92 LE = 3,
93 GT = 4,
94 NE = 5,
95 GE = 6,
96 ALL = 7 };
97 unsigned char Direction : 3; // Init to ALL, then refine.
98 bool Scalar : 1; // Init to true.
99 bool PeelFirst : 1; // Peeling the first iteration will break dependence.
100 bool PeelLast : 1; // Peeling the last iteration will break the dependence.
101 bool Splitable : 1; // Splitting the loop will break dependence.
102 const SCEV *Distance; // NULL implies no distance available.
103 DVEntry() : Direction(ALL), Scalar(true), PeelFirst(false),
104 PeelLast(false), Splitable(false), Distance(nullptr) { }
105 };
106
107 /// getSrc - Returns the source instruction for this dependence.
108 ///
109 Instruction *getSrc() const { return Src; }
110
111 /// getDst - Returns the destination instruction for this dependence.
112 ///
113 Instruction *getDst() const { return Dst; }
114
115 /// isInput - Returns true if this is an input dependence.
116 ///
117 bool isInput() const;
118
119 /// isOutput - Returns true if this is an output dependence.
120 ///
121 bool isOutput() const;
122
123 /// isFlow - Returns true if this is a flow (aka true) dependence.
124 ///
125 bool isFlow() const;
126
127 /// isAnti - Returns true if this is an anti dependence.
128 ///
129 bool isAnti() const;
130
131 /// isOrdered - Returns true if dependence is Output, Flow, or Anti
132 ///
133 bool isOrdered() const { return isOutput() || isFlow() || isAnti(); }
134
135 /// isUnordered - Returns true if dependence is Input
136 ///
137 bool isUnordered() const { return isInput(); }
138
139 /// isLoopIndependent - Returns true if this is a loop-independent
140 /// dependence.
141 virtual bool isLoopIndependent() const { return true; }
142
143 /// isConfused - Returns true if this dependence is confused
144 /// (the compiler understands nothing and makes worst-case
145 /// assumptions).
146 virtual bool isConfused() const { return true; }
147
148 /// isConsistent - Returns true if this dependence is consistent
149 /// (occurs every time the source and destination are executed).
150 virtual bool isConsistent() const { return false; }
151
152 /// getLevels - Returns the number of common loops surrounding the
153 /// source and destination of the dependence.
154 virtual unsigned getLevels() const { return 0; }
155
156 /// getDirection - Returns the direction associated with a particular
157 /// level.
158 virtual unsigned getDirection(unsigned Level) const { return DVEntry::ALL; }
159
160 /// getDistance - Returns the distance (or NULL) associated with a
161 /// particular level.
162 virtual const SCEV *getDistance(unsigned Level) const { return nullptr; }
163
164 /// isPeelFirst - Returns true if peeling the first iteration from
165 /// this loop will break this dependence.
166 virtual bool isPeelFirst(unsigned Level) const { return false; }
167
168 /// isPeelLast - Returns true if peeling the last iteration from
169 /// this loop will break this dependence.
170 virtual bool isPeelLast(unsigned Level) const { return false; }
171
172 /// isSplitable - Returns true if splitting this loop will break
173 /// the dependence.
174 virtual bool isSplitable(unsigned Level) const { return false; }
175
176 /// isScalar - Returns true if a particular level is scalar; that is,
177 /// if no subscript in the source or destination mention the induction
178 /// variable associated with the loop at this level.
179 virtual bool isScalar(unsigned Level) const;
180
181 /// getNextPredecessor - Returns the value of the NextPredecessor
182 /// field.
183 const Dependence *getNextPredecessor() const { return NextPredecessor; }
184
185 /// getNextSuccessor - Returns the value of the NextSuccessor
186 /// field.
187 const Dependence *getNextSuccessor() const { return NextSuccessor; }
188
189 /// setNextPredecessor - Sets the value of the NextPredecessor
190 /// field.
191 void setNextPredecessor(const Dependence *pred) { NextPredecessor = pred; }
192
193 /// setNextSuccessor - Sets the value of the NextSuccessor
194 /// field.
195 void setNextSuccessor(const Dependence *succ) { NextSuccessor = succ; }
196
197 /// dump - For debugging purposes, dumps a dependence to OS.
198 ///
199 void dump(raw_ostream &OS) const;
200
201 private:
202 Instruction *Src, *Dst;
203 const Dependence *NextPredecessor, *NextSuccessor;
204 friend class DependenceInfo;
205 };
206
207 /// FullDependence - This class represents a dependence between two memory
208 /// references in a function. It contains detailed information about the
209 /// dependence (direction vectors, etc.) and is used when the compiler is
210 /// able to accurately analyze the interaction of the references; that is,
211 /// it is not a confused dependence (see Dependence). In most cases
212 /// (for output, flow, and anti dependences), the dependence implies an
213 /// ordering, where the source must precede the destination; in contrast,
214 /// input dependences are unordered.
215 class FullDependence final : public Dependence {
216 public:
217 FullDependence(Instruction *Src, Instruction *Dst, bool LoopIndependent,
218 unsigned Levels);
219
220 /// isLoopIndependent - Returns true if this is a loop-independent
221 /// dependence.
222 bool isLoopIndependent() const override { return LoopIndependent; }
223
224 /// isConfused - Returns true if this dependence is confused
225 /// (the compiler understands nothing and makes worst-case
226 /// assumptions).
227 bool isConfused() const override { return false; }
228
229 /// isConsistent - Returns true if this dependence is consistent
230 /// (occurs every time the source and destination are executed).
231 bool isConsistent() const override { return Consistent; }
232
233 /// getLevels - Returns the number of common loops surrounding the
234 /// source and destination of the dependence.
235 unsigned getLevels() const override { return Levels; }
236
237 /// getDirection - Returns the direction associated with a particular
238 /// level.
239 unsigned getDirection(unsigned Level) const override;
240
241 /// getDistance - Returns the distance (or NULL) associated with a
242 /// particular level.
243 const SCEV *getDistance(unsigned Level) const override;
244
245 /// isPeelFirst - Returns true if peeling the first iteration from
246 /// this loop will break this dependence.
247 bool isPeelFirst(unsigned Level) const override;
248
249 /// isPeelLast - Returns true if peeling the last iteration from
250 /// this loop will break this dependence.
251 bool isPeelLast(unsigned Level) const override;
252
253 /// isSplitable - Returns true if splitting the loop will break
254 /// the dependence.
255 bool isSplitable(unsigned Level) const override;
256
257 /// isScalar - Returns true if a particular level is scalar; that is,
258 /// if no subscript in the source or destination mention the induction
259 /// variable associated with the loop at this level.
260 bool isScalar(unsigned Level) const override;
261
262 private:
263 unsigned short Levels;
264 bool LoopIndependent;
265 bool Consistent; // Init to true, then refine.
266 std::unique_ptr<DVEntry[]> DV;
267 friend class DependenceInfo;
268 };
269
270 /// DependenceInfo - This class is the main dependence-analysis driver.
271 ///
272 class DependenceInfo {
273 public:
274 DependenceInfo(Function *F, AliasAnalysis *AA, ScalarEvolution *SE,
275 LoopInfo *LI)
276 : AA(AA), SE(SE), LI(LI), F(F) {}
277
278 /// depends - Tests for a dependence between the Src and Dst instructions.
279 /// Returns NULL if no dependence; otherwise, returns a Dependence (or a
280 /// FullDependence) with as much information as can be gleaned.
281 /// The flag PossiblyLoopIndependent should be set by the caller
282 /// if it appears that control flow can reach from Src to Dst
283 /// without traversing a loop back edge.
284 std::unique_ptr<Dependence> depends(Instruction *Src,
285 Instruction *Dst,
286 bool PossiblyLoopIndependent);
287
288 /// getSplitIteration - Give a dependence that's splittable at some
289 /// particular level, return the iteration that should be used to split
290 /// the loop.
291 ///
292 /// Generally, the dependence analyzer will be used to build
293 /// a dependence graph for a function (basically a map from instructions
294 /// to dependences). Looking for cycles in the graph shows us loops
295 /// that cannot be trivially vectorized/parallelized.
296 ///
297 /// We can try to improve the situation by examining all the dependences
298 /// that make up the cycle, looking for ones we can break.
299 /// Sometimes, peeling the first or last iteration of a loop will break
300 /// dependences, and there are flags for those possibilities.
301 /// Sometimes, splitting a loop at some other iteration will do the trick,
302 /// and we've got a flag for that case. Rather than waste the space to
303 /// record the exact iteration (since we rarely know), we provide
304 /// a method that calculates the iteration. It's a drag that it must work
305 /// from scratch, but wonderful in that it's possible.
306 ///
307 /// Here's an example:
308 ///
309 /// for (i = 0; i < 10; i++)
310 /// A[i] = ...
311 /// ... = A[11 - i]
312 ///
313 /// There's a loop-carried flow dependence from the store to the load,
314 /// found by the weak-crossing SIV test. The dependence will have a flag,
315 /// indicating that the dependence can be broken by splitting the loop.
316 /// Calling getSplitIteration will return 5.
317 /// Splitting the loop breaks the dependence, like so:
318 ///
319 /// for (i = 0; i <= 5; i++)
320 /// A[i] = ...
321 /// ... = A[11 - i]
322 /// for (i = 6; i < 10; i++)
323 /// A[i] = ...
324 /// ... = A[11 - i]
325 ///
326 /// breaks the dependence and allows us to vectorize/parallelize
327 /// both loops.
328 const SCEV *getSplitIteration(const Dependence &Dep, unsigned Level);
329
330 Function *getFunction() const { return F; }
331
332 private:
333 AliasAnalysis *AA;
334 ScalarEvolution *SE;
335 LoopInfo *LI;
336 Function *F;
337
338 /// Subscript - This private struct represents a pair of subscripts from
339 /// a pair of potentially multi-dimensional array references. We use a
340 /// vector of them to guide subscript partitioning.
341 struct Subscript {
342 const SCEV *Src;
343 const SCEV *Dst;
344 enum ClassificationKind { ZIV, SIV, RDIV, MIV, NonLinear } Classification;
345 SmallBitVector Loops;
346 SmallBitVector GroupLoops;
347 SmallBitVector Group;
348 };
349
350 struct CoefficientInfo {
351 const SCEV *Coeff;
352 const SCEV *PosPart;
353 const SCEV *NegPart;
354 const SCEV *Iterations;
355 };
356
357 struct BoundInfo {
358 const SCEV *Iterations;
359 const SCEV *Upper[8];
360 const SCEV *Lower[8];
361 unsigned char Direction;
362 unsigned char DirSet;
363 };
364
365 /// Constraint - This private class represents a constraint, as defined
366 /// in the paper
367 ///
368 /// Practical Dependence Testing
369 /// Goff, Kennedy, Tseng
370 /// PLDI 1991
371 ///
372 /// There are 5 kinds of constraint, in a hierarchy.
373 /// 1) Any - indicates no constraint, any dependence is possible.
374 /// 2) Line - A line ax + by = c, where a, b, and c are parameters,
375 /// representing the dependence equation.
376 /// 3) Distance - The value d of the dependence distance;
377 /// 4) Point - A point <x, y> representing the dependence from
378 /// iteration x to iteration y.
379 /// 5) Empty - No dependence is possible.
380 class Constraint {
381 private:
382 enum ConstraintKind { Empty, Point, Distance, Line, Any } Kind;
383 ScalarEvolution *SE;
384 const SCEV *A;
385 const SCEV *B;
386 const SCEV *C;
387 const Loop *AssociatedLoop;
388
389 public:
390 /// isEmpty - Return true if the constraint is of kind Empty.
391 bool isEmpty() const { return Kind == Empty; }
392
393 /// isPoint - Return true if the constraint is of kind Point.
394 bool isPoint() const { return Kind == Point; }
395
396 /// isDistance - Return true if the constraint is of kind Distance.
397 bool isDistance() const { return Kind == Distance; }
398
399 /// isLine - Return true if the constraint is of kind Line.
400 /// Since Distance's can also be represented as Lines, we also return
401 /// true if the constraint is of kind Distance.
402 bool isLine() const { return Kind == Line || Kind == Distance; }
403
404 /// isAny - Return true if the constraint is of kind Any;
405 bool isAny() const { return Kind == Any; }
406
407 /// getX - If constraint is a point <X, Y>, returns X.
408 /// Otherwise assert.
409 const SCEV *getX() const;
410
411 /// getY - If constraint is a point <X, Y>, returns Y.
412 /// Otherwise assert.
413 const SCEV *getY() const;
414
415 /// getA - If constraint is a line AX + BY = C, returns A.
416 /// Otherwise assert.
417 const SCEV *getA() const;
418
419 /// getB - If constraint is a line AX + BY = C, returns B.
420 /// Otherwise assert.
421 const SCEV *getB() const;
422
423 /// getC - If constraint is a line AX + BY = C, returns C.
424 /// Otherwise assert.
425 const SCEV *getC() const;
426
427 /// getD - If constraint is a distance, returns D.
428 /// Otherwise assert.
429 const SCEV *getD() const;
430
431 /// getAssociatedLoop - Returns the loop associated with this constraint.
432 const Loop *getAssociatedLoop() const;
433
434 /// setPoint - Change a constraint to Point.
435 void setPoint(const SCEV *X, const SCEV *Y, const Loop *CurrentLoop);
436
437 /// setLine - Change a constraint to Line.
438 void setLine(const SCEV *A, const SCEV *B,
439 const SCEV *C, const Loop *CurrentLoop);
440
441 /// setDistance - Change a constraint to Distance.
442 void setDistance(const SCEV *D, const Loop *CurrentLoop);
443
444 /// setEmpty - Change a constraint to Empty.
445 void setEmpty();
446
447 /// setAny - Change a constraint to Any.
448 void setAny(ScalarEvolution *SE);
449
450 /// dump - For debugging purposes. Dumps the constraint
451 /// out to OS.
452 void dump(raw_ostream &OS) const;
453 };
454
455 /// establishNestingLevels - Examines the loop nesting of the Src and Dst
456 /// instructions and establishes their shared loops. Sets the variables
457 /// CommonLevels, SrcLevels, and MaxLevels.
458 /// The source and destination instructions needn't be contained in the same
459 /// loop. The routine establishNestingLevels finds the level of most deeply
460 /// nested loop that contains them both, CommonLevels. An instruction that's
461 /// not contained in a loop is at level = 0. MaxLevels is equal to the level
462 /// of the source plus the level of the destination, minus CommonLevels.
463 /// This lets us allocate vectors MaxLevels in length, with room for every
464 /// distinct loop referenced in both the source and destination subscripts.
465 /// The variable SrcLevels is the nesting depth of the source instruction.
466 /// It's used to help calculate distinct loops referenced by the destination.
467 /// Here's the map from loops to levels:
468 /// 0 - unused
469 /// 1 - outermost common loop
470 /// ... - other common loops
471 /// CommonLevels - innermost common loop
472 /// ... - loops containing Src but not Dst
473 /// SrcLevels - innermost loop containing Src but not Dst
474 /// ... - loops containing Dst but not Src
475 /// MaxLevels - innermost loop containing Dst but not Src
476 /// Consider the follow code fragment:
477 /// for (a = ...) {
478 /// for (b = ...) {
479 /// for (c = ...) {
480 /// for (d = ...) {
481 /// A[] = ...;
482 /// }
483 /// }
484 /// for (e = ...) {
485 /// for (f = ...) {
486 /// for (g = ...) {
487 /// ... = A[];
488 /// }
489 /// }
490 /// }
491 /// }
492 /// }
493 /// If we're looking at the possibility of a dependence between the store
494 /// to A (the Src) and the load from A (the Dst), we'll note that they
495 /// have 2 loops in common, so CommonLevels will equal 2 and the direction
496 /// vector for Result will have 2 entries. SrcLevels = 4 and MaxLevels = 7.
497 /// A map from loop names to level indices would look like
498 /// a - 1
499 /// b - 2 = CommonLevels
500 /// c - 3
501 /// d - 4 = SrcLevels
502 /// e - 5
503 /// f - 6
504 /// g - 7 = MaxLevels
505 void establishNestingLevels(const Instruction *Src,
506 const Instruction *Dst);
507
508 unsigned CommonLevels, SrcLevels, MaxLevels;
509
510 /// mapSrcLoop - Given one of the loops containing the source, return
511 /// its level index in our numbering scheme.
512 unsigned mapSrcLoop(const Loop *SrcLoop) const;
513
514 /// mapDstLoop - Given one of the loops containing the destination,
515 /// return its level index in our numbering scheme.
516 unsigned mapDstLoop(const Loop *DstLoop) const;
517
518 /// isLoopInvariant - Returns true if Expression is loop invariant
519 /// in LoopNest.
520 bool isLoopInvariant(const SCEV *Expression, const Loop *LoopNest) const;
521
522 /// Makes sure all subscript pairs share the same integer type by
523 /// sign-extending as necessary.
524 /// Sign-extending a subscript is safe because getelementptr assumes the
525 /// array subscripts are signed.
526 void unifySubscriptType(ArrayRef<Subscript *> Pairs);
527
528 /// removeMatchingExtensions - Examines a subscript pair.
529 /// If the source and destination are identically sign (or zero)
530 /// extended, it strips off the extension in an effort to
531 /// simplify the actual analysis.
532 void removeMatchingExtensions(Subscript *Pair);
533
534 /// collectCommonLoops - Finds the set of loops from the LoopNest that
535 /// have a level <= CommonLevels and are referred to by the SCEV Expression.
536 void collectCommonLoops(const SCEV *Expression,
537 const Loop *LoopNest,
538 SmallBitVector &Loops) const;
539
540 /// checkSrcSubscript - Examines the SCEV Src, returning true iff it's
541 /// linear. Collect the set of loops mentioned by Src.
542 bool checkSrcSubscript(const SCEV *Src,
543 const Loop *LoopNest,
544 SmallBitVector &Loops);
545
546 /// checkDstSubscript - Examines the SCEV Dst, returning true iff it's
547 /// linear. Collect the set of loops mentioned by Dst.
548 bool checkDstSubscript(const SCEV *Dst,
549 const Loop *LoopNest,
550 SmallBitVector &Loops);
551
552 /// isKnownPredicate - Compare X and Y using the predicate Pred.
553 /// Basically a wrapper for SCEV::isKnownPredicate,
554 /// but tries harder, especially in the presence of sign and zero
555 /// extensions and symbolics.
556 bool isKnownPredicate(ICmpInst::Predicate Pred,
557 const SCEV *X,
558 const SCEV *Y) const;
559
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100560 /// isKnownLessThan - Compare to see if S is less than Size
561 /// Another wrapper for isKnownNegative(S - max(Size, 1)) with some extra
562 /// checking if S is an AddRec and we can prove lessthan using the loop
563 /// bounds.
564 bool isKnownLessThan(const SCEV *S, const SCEV *Size) const;
565
566 /// isKnownNonNegative - Compare to see if S is known not to be negative
567 /// Uses the fact that S comes from Ptr, which may be an inbound GEP,
568 /// Proving there is no wrapping going on.
569 bool isKnownNonNegative(const SCEV *S, const Value *Ptr) const;
570
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100571 /// collectUpperBound - All subscripts are the same type (on my machine,
572 /// an i64). The loop bound may be a smaller type. collectUpperBound
573 /// find the bound, if available, and zero extends it to the Type T.
574 /// (I zero extend since the bound should always be >= 0.)
575 /// If no upper bound is available, return NULL.
576 const SCEV *collectUpperBound(const Loop *l, Type *T) const;
577
578 /// collectConstantUpperBound - Calls collectUpperBound(), then
579 /// attempts to cast it to SCEVConstant. If the cast fails,
580 /// returns NULL.
581 const SCEVConstant *collectConstantUpperBound(const Loop *l, Type *T) const;
582
583 /// classifyPair - Examines the subscript pair (the Src and Dst SCEVs)
584 /// and classifies it as either ZIV, SIV, RDIV, MIV, or Nonlinear.
585 /// Collects the associated loops in a set.
586 Subscript::ClassificationKind classifyPair(const SCEV *Src,
587 const Loop *SrcLoopNest,
588 const SCEV *Dst,
589 const Loop *DstLoopNest,
590 SmallBitVector &Loops);
591
592 /// testZIV - Tests the ZIV subscript pair (Src and Dst) for dependence.
593 /// Returns true if any possible dependence is disproved.
594 /// If there might be a dependence, returns false.
595 /// If the dependence isn't proven to exist,
596 /// marks the Result as inconsistent.
597 bool testZIV(const SCEV *Src,
598 const SCEV *Dst,
599 FullDependence &Result) const;
600
601 /// testSIV - Tests the SIV subscript pair (Src and Dst) for dependence.
602 /// Things of the form [c1 + a1*i] and [c2 + a2*j], where
603 /// i and j are induction variables, c1 and c2 are loop invariant,
604 /// and a1 and a2 are constant.
605 /// Returns true if any possible dependence is disproved.
606 /// If there might be a dependence, returns false.
607 /// Sets appropriate direction vector entry and, when possible,
608 /// the distance vector entry.
609 /// If the dependence isn't proven to exist,
610 /// marks the Result as inconsistent.
611 bool testSIV(const SCEV *Src,
612 const SCEV *Dst,
613 unsigned &Level,
614 FullDependence &Result,
615 Constraint &NewConstraint,
616 const SCEV *&SplitIter) const;
617
618 /// testRDIV - Tests the RDIV subscript pair (Src and Dst) for dependence.
619 /// Things of the form [c1 + a1*i] and [c2 + a2*j]
620 /// where i and j are induction variables, c1 and c2 are loop invariant,
621 /// and a1 and a2 are constant.
622 /// With minor algebra, this test can also be used for things like
623 /// [c1 + a1*i + a2*j][c2].
624 /// Returns true if any possible dependence is disproved.
625 /// If there might be a dependence, returns false.
626 /// Marks the Result as inconsistent.
627 bool testRDIV(const SCEV *Src,
628 const SCEV *Dst,
629 FullDependence &Result) const;
630
631 /// testMIV - Tests the MIV subscript pair (Src and Dst) for dependence.
632 /// Returns true if dependence disproved.
633 /// Can sometimes refine direction vectors.
634 bool testMIV(const SCEV *Src,
635 const SCEV *Dst,
636 const SmallBitVector &Loops,
637 FullDependence &Result) const;
638
639 /// strongSIVtest - Tests the strong SIV subscript pair (Src and Dst)
640 /// for dependence.
641 /// Things of the form [c1 + a*i] and [c2 + a*i],
642 /// where i is an induction variable, c1 and c2 are loop invariant,
643 /// and a is a constant
644 /// Returns true if any possible dependence is disproved.
645 /// If there might be a dependence, returns false.
646 /// Sets appropriate direction and distance.
647 bool strongSIVtest(const SCEV *Coeff,
648 const SCEV *SrcConst,
649 const SCEV *DstConst,
650 const Loop *CurrentLoop,
651 unsigned Level,
652 FullDependence &Result,
653 Constraint &NewConstraint) const;
654
655 /// weakCrossingSIVtest - Tests the weak-crossing SIV subscript pair
656 /// (Src and Dst) for dependence.
657 /// Things of the form [c1 + a*i] and [c2 - a*i],
658 /// where i is an induction variable, c1 and c2 are loop invariant,
659 /// and a is a constant.
660 /// Returns true if any possible dependence is disproved.
661 /// If there might be a dependence, returns false.
662 /// Sets appropriate direction entry.
663 /// Set consistent to false.
664 /// Marks the dependence as splitable.
665 bool weakCrossingSIVtest(const SCEV *SrcCoeff,
666 const SCEV *SrcConst,
667 const SCEV *DstConst,
668 const Loop *CurrentLoop,
669 unsigned Level,
670 FullDependence &Result,
671 Constraint &NewConstraint,
672 const SCEV *&SplitIter) const;
673
674 /// ExactSIVtest - Tests the SIV subscript pair
675 /// (Src and Dst) for dependence.
676 /// Things of the form [c1 + a1*i] and [c2 + a2*i],
677 /// where i is an induction variable, c1 and c2 are loop invariant,
678 /// and a1 and a2 are constant.
679 /// Returns true if any possible dependence is disproved.
680 /// If there might be a dependence, returns false.
681 /// Sets appropriate direction entry.
682 /// Set consistent to false.
683 bool exactSIVtest(const SCEV *SrcCoeff,
684 const SCEV *DstCoeff,
685 const SCEV *SrcConst,
686 const SCEV *DstConst,
687 const Loop *CurrentLoop,
688 unsigned Level,
689 FullDependence &Result,
690 Constraint &NewConstraint) const;
691
692 /// weakZeroSrcSIVtest - Tests the weak-zero SIV subscript pair
693 /// (Src and Dst) for dependence.
694 /// Things of the form [c1] and [c2 + a*i],
695 /// where i is an induction variable, c1 and c2 are loop invariant,
696 /// and a is a constant. See also weakZeroDstSIVtest.
697 /// Returns true if any possible dependence is disproved.
698 /// If there might be a dependence, returns false.
699 /// Sets appropriate direction entry.
700 /// Set consistent to false.
701 /// If loop peeling will break the dependence, mark appropriately.
702 bool weakZeroSrcSIVtest(const SCEV *DstCoeff,
703 const SCEV *SrcConst,
704 const SCEV *DstConst,
705 const Loop *CurrentLoop,
706 unsigned Level,
707 FullDependence &Result,
708 Constraint &NewConstraint) const;
709
710 /// weakZeroDstSIVtest - Tests the weak-zero SIV subscript pair
711 /// (Src and Dst) for dependence.
712 /// Things of the form [c1 + a*i] and [c2],
713 /// where i is an induction variable, c1 and c2 are loop invariant,
714 /// and a is a constant. See also weakZeroSrcSIVtest.
715 /// Returns true if any possible dependence is disproved.
716 /// If there might be a dependence, returns false.
717 /// Sets appropriate direction entry.
718 /// Set consistent to false.
719 /// If loop peeling will break the dependence, mark appropriately.
720 bool weakZeroDstSIVtest(const SCEV *SrcCoeff,
721 const SCEV *SrcConst,
722 const SCEV *DstConst,
723 const Loop *CurrentLoop,
724 unsigned Level,
725 FullDependence &Result,
726 Constraint &NewConstraint) const;
727
728 /// exactRDIVtest - Tests the RDIV subscript pair for dependence.
729 /// Things of the form [c1 + a*i] and [c2 + b*j],
730 /// where i and j are induction variable, c1 and c2 are loop invariant,
731 /// and a and b are constants.
732 /// Returns true if any possible dependence is disproved.
733 /// Marks the result as inconsistent.
734 /// Works in some cases that symbolicRDIVtest doesn't,
735 /// and vice versa.
736 bool exactRDIVtest(const SCEV *SrcCoeff,
737 const SCEV *DstCoeff,
738 const SCEV *SrcConst,
739 const SCEV *DstConst,
740 const Loop *SrcLoop,
741 const Loop *DstLoop,
742 FullDependence &Result) const;
743
744 /// symbolicRDIVtest - Tests the RDIV subscript pair for dependence.
745 /// Things of the form [c1 + a*i] and [c2 + b*j],
746 /// where i and j are induction variable, c1 and c2 are loop invariant,
747 /// and a and b are constants.
748 /// Returns true if any possible dependence is disproved.
749 /// Marks the result as inconsistent.
750 /// Works in some cases that exactRDIVtest doesn't,
751 /// and vice versa. Can also be used as a backup for
752 /// ordinary SIV tests.
753 bool symbolicRDIVtest(const SCEV *SrcCoeff,
754 const SCEV *DstCoeff,
755 const SCEV *SrcConst,
756 const SCEV *DstConst,
757 const Loop *SrcLoop,
758 const Loop *DstLoop) const;
759
760 /// gcdMIVtest - Tests an MIV subscript pair for dependence.
761 /// Returns true if any possible dependence is disproved.
762 /// Marks the result as inconsistent.
763 /// Can sometimes disprove the equal direction for 1 or more loops.
764 // Can handle some symbolics that even the SIV tests don't get,
765 /// so we use it as a backup for everything.
766 bool gcdMIVtest(const SCEV *Src,
767 const SCEV *Dst,
768 FullDependence &Result) const;
769
770 /// banerjeeMIVtest - Tests an MIV subscript pair for dependence.
771 /// Returns true if any possible dependence is disproved.
772 /// Marks the result as inconsistent.
773 /// Computes directions.
774 bool banerjeeMIVtest(const SCEV *Src,
775 const SCEV *Dst,
776 const SmallBitVector &Loops,
777 FullDependence &Result) const;
778
779 /// collectCoefficientInfo - Walks through the subscript,
780 /// collecting each coefficient, the associated loop bounds,
781 /// and recording its positive and negative parts for later use.
782 CoefficientInfo *collectCoeffInfo(const SCEV *Subscript,
783 bool SrcFlag,
784 const SCEV *&Constant) const;
785
786 /// getPositivePart - X^+ = max(X, 0).
787 ///
788 const SCEV *getPositivePart(const SCEV *X) const;
789
790 /// getNegativePart - X^- = min(X, 0).
791 ///
792 const SCEV *getNegativePart(const SCEV *X) const;
793
794 /// getLowerBound - Looks through all the bounds info and
795 /// computes the lower bound given the current direction settings
796 /// at each level.
797 const SCEV *getLowerBound(BoundInfo *Bound) const;
798
799 /// getUpperBound - Looks through all the bounds info and
800 /// computes the upper bound given the current direction settings
801 /// at each level.
802 const SCEV *getUpperBound(BoundInfo *Bound) const;
803
804 /// exploreDirections - Hierarchically expands the direction vector
805 /// search space, combining the directions of discovered dependences
806 /// in the DirSet field of Bound. Returns the number of distinct
807 /// dependences discovered. If the dependence is disproved,
808 /// it will return 0.
809 unsigned exploreDirections(unsigned Level,
810 CoefficientInfo *A,
811 CoefficientInfo *B,
812 BoundInfo *Bound,
813 const SmallBitVector &Loops,
814 unsigned &DepthExpanded,
815 const SCEV *Delta) const;
816
817 /// testBounds - Returns true iff the current bounds are plausible.
818 bool testBounds(unsigned char DirKind,
819 unsigned Level,
820 BoundInfo *Bound,
821 const SCEV *Delta) const;
822
823 /// findBoundsALL - Computes the upper and lower bounds for level K
824 /// using the * direction. Records them in Bound.
825 void findBoundsALL(CoefficientInfo *A,
826 CoefficientInfo *B,
827 BoundInfo *Bound,
828 unsigned K) const;
829
830 /// findBoundsLT - Computes the upper and lower bounds for level K
831 /// using the < direction. Records them in Bound.
832 void findBoundsLT(CoefficientInfo *A,
833 CoefficientInfo *B,
834 BoundInfo *Bound,
835 unsigned K) const;
836
837 /// findBoundsGT - Computes the upper and lower bounds for level K
838 /// using the > direction. Records them in Bound.
839 void findBoundsGT(CoefficientInfo *A,
840 CoefficientInfo *B,
841 BoundInfo *Bound,
842 unsigned K) const;
843
844 /// findBoundsEQ - Computes the upper and lower bounds for level K
845 /// using the = direction. Records them in Bound.
846 void findBoundsEQ(CoefficientInfo *A,
847 CoefficientInfo *B,
848 BoundInfo *Bound,
849 unsigned K) const;
850
851 /// intersectConstraints - Updates X with the intersection
852 /// of the Constraints X and Y. Returns true if X has changed.
853 bool intersectConstraints(Constraint *X,
854 const Constraint *Y);
855
856 /// propagate - Review the constraints, looking for opportunities
857 /// to simplify a subscript pair (Src and Dst).
858 /// Return true if some simplification occurs.
859 /// If the simplification isn't exact (that is, if it is conservative
860 /// in terms of dependence), set consistent to false.
861 bool propagate(const SCEV *&Src,
862 const SCEV *&Dst,
863 SmallBitVector &Loops,
864 SmallVectorImpl<Constraint> &Constraints,
865 bool &Consistent);
866
867 /// propagateDistance - Attempt to propagate a distance
868 /// constraint into a subscript pair (Src and Dst).
869 /// Return true if some simplification occurs.
870 /// If the simplification isn't exact (that is, if it is conservative
871 /// in terms of dependence), set consistent to false.
872 bool propagateDistance(const SCEV *&Src,
873 const SCEV *&Dst,
874 Constraint &CurConstraint,
875 bool &Consistent);
876
877 /// propagatePoint - Attempt to propagate a point
878 /// constraint into a subscript pair (Src and Dst).
879 /// Return true if some simplification occurs.
880 bool propagatePoint(const SCEV *&Src,
881 const SCEV *&Dst,
882 Constraint &CurConstraint);
883
884 /// propagateLine - Attempt to propagate a line
885 /// constraint into a subscript pair (Src and Dst).
886 /// Return true if some simplification occurs.
887 /// If the simplification isn't exact (that is, if it is conservative
888 /// in terms of dependence), set consistent to false.
889 bool propagateLine(const SCEV *&Src,
890 const SCEV *&Dst,
891 Constraint &CurConstraint,
892 bool &Consistent);
893
894 /// findCoefficient - Given a linear SCEV,
895 /// return the coefficient corresponding to specified loop.
896 /// If there isn't one, return the SCEV constant 0.
897 /// For example, given a*i + b*j + c*k, returning the coefficient
898 /// corresponding to the j loop would yield b.
899 const SCEV *findCoefficient(const SCEV *Expr,
900 const Loop *TargetLoop) const;
901
902 /// zeroCoefficient - Given a linear SCEV,
903 /// return the SCEV given by zeroing out the coefficient
904 /// corresponding to the specified loop.
905 /// For example, given a*i + b*j + c*k, zeroing the coefficient
906 /// corresponding to the j loop would yield a*i + c*k.
907 const SCEV *zeroCoefficient(const SCEV *Expr,
908 const Loop *TargetLoop) const;
909
910 /// addToCoefficient - Given a linear SCEV Expr,
911 /// return the SCEV given by adding some Value to the
912 /// coefficient corresponding to the specified TargetLoop.
913 /// For example, given a*i + b*j + c*k, adding 1 to the coefficient
914 /// corresponding to the j loop would yield a*i + (b+1)*j + c*k.
915 const SCEV *addToCoefficient(const SCEV *Expr,
916 const Loop *TargetLoop,
917 const SCEV *Value) const;
918
919 /// updateDirection - Update direction vector entry
920 /// based on the current constraint.
921 void updateDirection(Dependence::DVEntry &Level,
922 const Constraint &CurConstraint) const;
923
924 bool tryDelinearize(Instruction *Src, Instruction *Dst,
925 SmallVectorImpl<Subscript> &Pair);
926 }; // class DependenceInfo
927
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100928 /// AnalysisPass to compute dependence information in a function
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100929 class DependenceAnalysis : public AnalysisInfoMixin<DependenceAnalysis> {
930 public:
931 typedef DependenceInfo Result;
932 Result run(Function &F, FunctionAnalysisManager &FAM);
933
934 private:
935 static AnalysisKey Key;
936 friend struct AnalysisInfoMixin<DependenceAnalysis>;
937 }; // class DependenceAnalysis
938
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100939 /// Legacy pass manager pass to access dependence information
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100940 class DependenceAnalysisWrapperPass : public FunctionPass {
941 public:
942 static char ID; // Class identification, replacement for typeinfo
943 DependenceAnalysisWrapperPass() : FunctionPass(ID) {
944 initializeDependenceAnalysisWrapperPassPass(
945 *PassRegistry::getPassRegistry());
946 }
947
948 bool runOnFunction(Function &F) override;
949 void releaseMemory() override;
950 void getAnalysisUsage(AnalysisUsage &) const override;
951 void print(raw_ostream &, const Module * = nullptr) const override;
952 DependenceInfo &getDI() const;
953
954 private:
955 std::unique_ptr<DependenceInfo> info;
956 }; // class DependenceAnalysisWrapperPass
957
958 /// createDependenceAnalysisPass - This creates an instance of the
959 /// DependenceAnalysis wrapper pass.
960 FunctionPass *createDependenceAnalysisWrapperPass();
961
962} // namespace llvm
963
964#endif