Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1 | //===- llvm/ADT/DenseMap.h - Dense probed hash table ------------*- C++ -*-===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file defines the DenseMap class. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #ifndef LLVM_ADT_DENSEMAP_H |
| 15 | #define LLVM_ADT_DENSEMAP_H |
| 16 | |
| 17 | #include "llvm/ADT/DenseMapInfo.h" |
| 18 | #include "llvm/ADT/EpochTracker.h" |
| 19 | #include "llvm/Support/AlignOf.h" |
| 20 | #include "llvm/Support/Compiler.h" |
| 21 | #include "llvm/Support/MathExtras.h" |
| 22 | #include "llvm/Support/ReverseIteration.h" |
| 23 | #include "llvm/Support/type_traits.h" |
| 24 | #include <algorithm> |
| 25 | #include <cassert> |
| 26 | #include <cstddef> |
| 27 | #include <cstring> |
| 28 | #include <iterator> |
| 29 | #include <new> |
| 30 | #include <type_traits> |
| 31 | #include <utility> |
| 32 | |
| 33 | namespace llvm { |
| 34 | |
| 35 | namespace detail { |
| 36 | |
| 37 | // We extend a pair to allow users to override the bucket type with their own |
| 38 | // implementation without requiring two members. |
| 39 | template <typename KeyT, typename ValueT> |
| 40 | struct DenseMapPair : public std::pair<KeyT, ValueT> { |
| 41 | KeyT &getFirst() { return std::pair<KeyT, ValueT>::first; } |
| 42 | const KeyT &getFirst() const { return std::pair<KeyT, ValueT>::first; } |
| 43 | ValueT &getSecond() { return std::pair<KeyT, ValueT>::second; } |
| 44 | const ValueT &getSecond() const { return std::pair<KeyT, ValueT>::second; } |
| 45 | }; |
| 46 | |
| 47 | } // end namespace detail |
| 48 | |
| 49 | template < |
| 50 | typename KeyT, typename ValueT, typename KeyInfoT = DenseMapInfo<KeyT>, |
| 51 | typename Bucket = detail::DenseMapPair<KeyT, ValueT>, bool IsConst = false> |
| 52 | class DenseMapIterator; |
| 53 | |
| 54 | template <typename DerivedT, typename KeyT, typename ValueT, typename KeyInfoT, |
| 55 | typename BucketT> |
| 56 | class DenseMapBase : public DebugEpochBase { |
| 57 | template <typename T> |
| 58 | using const_arg_type_t = typename const_pointer_or_const_ref<T>::type; |
| 59 | |
| 60 | public: |
| 61 | using size_type = unsigned; |
| 62 | using key_type = KeyT; |
| 63 | using mapped_type = ValueT; |
| 64 | using value_type = BucketT; |
| 65 | |
| 66 | using iterator = DenseMapIterator<KeyT, ValueT, KeyInfoT, BucketT>; |
| 67 | using const_iterator = |
| 68 | DenseMapIterator<KeyT, ValueT, KeyInfoT, BucketT, true>; |
| 69 | |
| 70 | inline iterator begin() { |
| 71 | // When the map is empty, avoid the overhead of advancing/retreating past |
| 72 | // empty buckets. |
| 73 | if (empty()) |
| 74 | return end(); |
| 75 | if (shouldReverseIterate<KeyT>()) |
| 76 | return makeIterator(getBucketsEnd() - 1, getBuckets(), *this); |
| 77 | return makeIterator(getBuckets(), getBucketsEnd(), *this); |
| 78 | } |
| 79 | inline iterator end() { |
| 80 | return makeIterator(getBucketsEnd(), getBucketsEnd(), *this, true); |
| 81 | } |
| 82 | inline const_iterator begin() const { |
| 83 | if (empty()) |
| 84 | return end(); |
| 85 | if (shouldReverseIterate<KeyT>()) |
| 86 | return makeConstIterator(getBucketsEnd() - 1, getBuckets(), *this); |
| 87 | return makeConstIterator(getBuckets(), getBucketsEnd(), *this); |
| 88 | } |
| 89 | inline const_iterator end() const { |
| 90 | return makeConstIterator(getBucketsEnd(), getBucketsEnd(), *this, true); |
| 91 | } |
| 92 | |
| 93 | LLVM_NODISCARD bool empty() const { |
| 94 | return getNumEntries() == 0; |
| 95 | } |
| 96 | unsigned size() const { return getNumEntries(); } |
| 97 | |
| 98 | /// Grow the densemap so that it can contain at least \p NumEntries items |
| 99 | /// before resizing again. |
| 100 | void reserve(size_type NumEntries) { |
| 101 | auto NumBuckets = getMinBucketToReserveForEntries(NumEntries); |
| 102 | incrementEpoch(); |
| 103 | if (NumBuckets > getNumBuckets()) |
| 104 | grow(NumBuckets); |
| 105 | } |
| 106 | |
| 107 | void clear() { |
| 108 | incrementEpoch(); |
| 109 | if (getNumEntries() == 0 && getNumTombstones() == 0) return; |
| 110 | |
| 111 | // If the capacity of the array is huge, and the # elements used is small, |
| 112 | // shrink the array. |
| 113 | if (getNumEntries() * 4 < getNumBuckets() && getNumBuckets() > 64) { |
| 114 | shrink_and_clear(); |
| 115 | return; |
| 116 | } |
| 117 | |
| 118 | const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey(); |
| 119 | if (isPodLike<KeyT>::value && isPodLike<ValueT>::value) { |
| 120 | // Use a simpler loop when these are trivial types. |
| 121 | for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P) |
| 122 | P->getFirst() = EmptyKey; |
| 123 | } else { |
| 124 | unsigned NumEntries = getNumEntries(); |
| 125 | for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P) { |
| 126 | if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey)) { |
| 127 | if (!KeyInfoT::isEqual(P->getFirst(), TombstoneKey)) { |
| 128 | P->getSecond().~ValueT(); |
| 129 | --NumEntries; |
| 130 | } |
| 131 | P->getFirst() = EmptyKey; |
| 132 | } |
| 133 | } |
| 134 | assert(NumEntries == 0 && "Node count imbalance!"); |
| 135 | } |
| 136 | setNumEntries(0); |
| 137 | setNumTombstones(0); |
| 138 | } |
| 139 | |
| 140 | /// Return 1 if the specified key is in the map, 0 otherwise. |
| 141 | size_type count(const_arg_type_t<KeyT> Val) const { |
| 142 | const BucketT *TheBucket; |
| 143 | return LookupBucketFor(Val, TheBucket) ? 1 : 0; |
| 144 | } |
| 145 | |
| 146 | iterator find(const_arg_type_t<KeyT> Val) { |
| 147 | BucketT *TheBucket; |
| 148 | if (LookupBucketFor(Val, TheBucket)) |
| 149 | return makeIterator(TheBucket, getBucketsEnd(), *this, true); |
| 150 | return end(); |
| 151 | } |
| 152 | const_iterator find(const_arg_type_t<KeyT> Val) const { |
| 153 | const BucketT *TheBucket; |
| 154 | if (LookupBucketFor(Val, TheBucket)) |
| 155 | return makeConstIterator(TheBucket, getBucketsEnd(), *this, true); |
| 156 | return end(); |
| 157 | } |
| 158 | |
| 159 | /// Alternate version of find() which allows a different, and possibly |
| 160 | /// less expensive, key type. |
| 161 | /// The DenseMapInfo is responsible for supplying methods |
| 162 | /// getHashValue(LookupKeyT) and isEqual(LookupKeyT, KeyT) for each key |
| 163 | /// type used. |
| 164 | template<class LookupKeyT> |
| 165 | iterator find_as(const LookupKeyT &Val) { |
| 166 | BucketT *TheBucket; |
| 167 | if (LookupBucketFor(Val, TheBucket)) |
| 168 | return makeIterator(TheBucket, getBucketsEnd(), *this, true); |
| 169 | return end(); |
| 170 | } |
| 171 | template<class LookupKeyT> |
| 172 | const_iterator find_as(const LookupKeyT &Val) const { |
| 173 | const BucketT *TheBucket; |
| 174 | if (LookupBucketFor(Val, TheBucket)) |
| 175 | return makeConstIterator(TheBucket, getBucketsEnd(), *this, true); |
| 176 | return end(); |
| 177 | } |
| 178 | |
| 179 | /// lookup - Return the entry for the specified key, or a default |
| 180 | /// constructed value if no such entry exists. |
| 181 | ValueT lookup(const_arg_type_t<KeyT> Val) const { |
| 182 | const BucketT *TheBucket; |
| 183 | if (LookupBucketFor(Val, TheBucket)) |
| 184 | return TheBucket->getSecond(); |
| 185 | return ValueT(); |
| 186 | } |
| 187 | |
| 188 | // Inserts key,value pair into the map if the key isn't already in the map. |
| 189 | // If the key is already in the map, it returns false and doesn't update the |
| 190 | // value. |
| 191 | std::pair<iterator, bool> insert(const std::pair<KeyT, ValueT> &KV) { |
| 192 | return try_emplace(KV.first, KV.second); |
| 193 | } |
| 194 | |
| 195 | // Inserts key,value pair into the map if the key isn't already in the map. |
| 196 | // If the key is already in the map, it returns false and doesn't update the |
| 197 | // value. |
| 198 | std::pair<iterator, bool> insert(std::pair<KeyT, ValueT> &&KV) { |
| 199 | return try_emplace(std::move(KV.first), std::move(KV.second)); |
| 200 | } |
| 201 | |
| 202 | // Inserts key,value pair into the map if the key isn't already in the map. |
| 203 | // The value is constructed in-place if the key is not in the map, otherwise |
| 204 | // it is not moved. |
| 205 | template <typename... Ts> |
| 206 | std::pair<iterator, bool> try_emplace(KeyT &&Key, Ts &&... Args) { |
| 207 | BucketT *TheBucket; |
| 208 | if (LookupBucketFor(Key, TheBucket)) |
| 209 | return std::make_pair( |
| 210 | makeIterator(TheBucket, getBucketsEnd(), *this, true), |
| 211 | false); // Already in map. |
| 212 | |
| 213 | // Otherwise, insert the new element. |
| 214 | TheBucket = |
| 215 | InsertIntoBucket(TheBucket, std::move(Key), std::forward<Ts>(Args)...); |
| 216 | return std::make_pair( |
| 217 | makeIterator(TheBucket, getBucketsEnd(), *this, true), |
| 218 | true); |
| 219 | } |
| 220 | |
| 221 | // Inserts key,value pair into the map if the key isn't already in the map. |
| 222 | // The value is constructed in-place if the key is not in the map, otherwise |
| 223 | // it is not moved. |
| 224 | template <typename... Ts> |
| 225 | std::pair<iterator, bool> try_emplace(const KeyT &Key, Ts &&... Args) { |
| 226 | BucketT *TheBucket; |
| 227 | if (LookupBucketFor(Key, TheBucket)) |
| 228 | return std::make_pair( |
| 229 | makeIterator(TheBucket, getBucketsEnd(), *this, true), |
| 230 | false); // Already in map. |
| 231 | |
| 232 | // Otherwise, insert the new element. |
| 233 | TheBucket = InsertIntoBucket(TheBucket, Key, std::forward<Ts>(Args)...); |
| 234 | return std::make_pair( |
| 235 | makeIterator(TheBucket, getBucketsEnd(), *this, true), |
| 236 | true); |
| 237 | } |
| 238 | |
| 239 | /// Alternate version of insert() which allows a different, and possibly |
| 240 | /// less expensive, key type. |
| 241 | /// The DenseMapInfo is responsible for supplying methods |
| 242 | /// getHashValue(LookupKeyT) and isEqual(LookupKeyT, KeyT) for each key |
| 243 | /// type used. |
| 244 | template <typename LookupKeyT> |
| 245 | std::pair<iterator, bool> insert_as(std::pair<KeyT, ValueT> &&KV, |
| 246 | const LookupKeyT &Val) { |
| 247 | BucketT *TheBucket; |
| 248 | if (LookupBucketFor(Val, TheBucket)) |
| 249 | return std::make_pair( |
| 250 | makeIterator(TheBucket, getBucketsEnd(), *this, true), |
| 251 | false); // Already in map. |
| 252 | |
| 253 | // Otherwise, insert the new element. |
| 254 | TheBucket = InsertIntoBucketWithLookup(TheBucket, std::move(KV.first), |
| 255 | std::move(KV.second), Val); |
| 256 | return std::make_pair( |
| 257 | makeIterator(TheBucket, getBucketsEnd(), *this, true), |
| 258 | true); |
| 259 | } |
| 260 | |
| 261 | /// insert - Range insertion of pairs. |
| 262 | template<typename InputIt> |
| 263 | void insert(InputIt I, InputIt E) { |
| 264 | for (; I != E; ++I) |
| 265 | insert(*I); |
| 266 | } |
| 267 | |
| 268 | bool erase(const KeyT &Val) { |
| 269 | BucketT *TheBucket; |
| 270 | if (!LookupBucketFor(Val, TheBucket)) |
| 271 | return false; // not in map. |
| 272 | |
| 273 | TheBucket->getSecond().~ValueT(); |
| 274 | TheBucket->getFirst() = getTombstoneKey(); |
| 275 | decrementNumEntries(); |
| 276 | incrementNumTombstones(); |
| 277 | return true; |
| 278 | } |
| 279 | void erase(iterator I) { |
| 280 | BucketT *TheBucket = &*I; |
| 281 | TheBucket->getSecond().~ValueT(); |
| 282 | TheBucket->getFirst() = getTombstoneKey(); |
| 283 | decrementNumEntries(); |
| 284 | incrementNumTombstones(); |
| 285 | } |
| 286 | |
| 287 | value_type& FindAndConstruct(const KeyT &Key) { |
| 288 | BucketT *TheBucket; |
| 289 | if (LookupBucketFor(Key, TheBucket)) |
| 290 | return *TheBucket; |
| 291 | |
| 292 | return *InsertIntoBucket(TheBucket, Key); |
| 293 | } |
| 294 | |
| 295 | ValueT &operator[](const KeyT &Key) { |
| 296 | return FindAndConstruct(Key).second; |
| 297 | } |
| 298 | |
| 299 | value_type& FindAndConstruct(KeyT &&Key) { |
| 300 | BucketT *TheBucket; |
| 301 | if (LookupBucketFor(Key, TheBucket)) |
| 302 | return *TheBucket; |
| 303 | |
| 304 | return *InsertIntoBucket(TheBucket, std::move(Key)); |
| 305 | } |
| 306 | |
| 307 | ValueT &operator[](KeyT &&Key) { |
| 308 | return FindAndConstruct(std::move(Key)).second; |
| 309 | } |
| 310 | |
| 311 | /// isPointerIntoBucketsArray - Return true if the specified pointer points |
| 312 | /// somewhere into the DenseMap's array of buckets (i.e. either to a key or |
| 313 | /// value in the DenseMap). |
| 314 | bool isPointerIntoBucketsArray(const void *Ptr) const { |
| 315 | return Ptr >= getBuckets() && Ptr < getBucketsEnd(); |
| 316 | } |
| 317 | |
| 318 | /// getPointerIntoBucketsArray() - Return an opaque pointer into the buckets |
| 319 | /// array. In conjunction with the previous method, this can be used to |
| 320 | /// determine whether an insertion caused the DenseMap to reallocate. |
| 321 | const void *getPointerIntoBucketsArray() const { return getBuckets(); } |
| 322 | |
| 323 | protected: |
| 324 | DenseMapBase() = default; |
| 325 | |
| 326 | void destroyAll() { |
| 327 | if (getNumBuckets() == 0) // Nothing to do. |
| 328 | return; |
| 329 | |
| 330 | const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey(); |
| 331 | for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P) { |
| 332 | if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey) && |
| 333 | !KeyInfoT::isEqual(P->getFirst(), TombstoneKey)) |
| 334 | P->getSecond().~ValueT(); |
| 335 | P->getFirst().~KeyT(); |
| 336 | } |
| 337 | } |
| 338 | |
| 339 | void initEmpty() { |
| 340 | setNumEntries(0); |
| 341 | setNumTombstones(0); |
| 342 | |
| 343 | assert((getNumBuckets() & (getNumBuckets()-1)) == 0 && |
| 344 | "# initial buckets must be a power of two!"); |
| 345 | const KeyT EmptyKey = getEmptyKey(); |
| 346 | for (BucketT *B = getBuckets(), *E = getBucketsEnd(); B != E; ++B) |
| 347 | ::new (&B->getFirst()) KeyT(EmptyKey); |
| 348 | } |
| 349 | |
| 350 | /// Returns the number of buckets to allocate to ensure that the DenseMap can |
| 351 | /// accommodate \p NumEntries without need to grow(). |
| 352 | unsigned getMinBucketToReserveForEntries(unsigned NumEntries) { |
| 353 | // Ensure that "NumEntries * 4 < NumBuckets * 3" |
| 354 | if (NumEntries == 0) |
| 355 | return 0; |
| 356 | // +1 is required because of the strict equality. |
| 357 | // For example if NumEntries is 48, we need to return 401. |
| 358 | return NextPowerOf2(NumEntries * 4 / 3 + 1); |
| 359 | } |
| 360 | |
| 361 | void moveFromOldBuckets(BucketT *OldBucketsBegin, BucketT *OldBucketsEnd) { |
| 362 | initEmpty(); |
| 363 | |
| 364 | // Insert all the old elements. |
| 365 | const KeyT EmptyKey = getEmptyKey(); |
| 366 | const KeyT TombstoneKey = getTombstoneKey(); |
| 367 | for (BucketT *B = OldBucketsBegin, *E = OldBucketsEnd; B != E; ++B) { |
| 368 | if (!KeyInfoT::isEqual(B->getFirst(), EmptyKey) && |
| 369 | !KeyInfoT::isEqual(B->getFirst(), TombstoneKey)) { |
| 370 | // Insert the key/value into the new table. |
| 371 | BucketT *DestBucket; |
| 372 | bool FoundVal = LookupBucketFor(B->getFirst(), DestBucket); |
| 373 | (void)FoundVal; // silence warning. |
| 374 | assert(!FoundVal && "Key already in new map?"); |
| 375 | DestBucket->getFirst() = std::move(B->getFirst()); |
| 376 | ::new (&DestBucket->getSecond()) ValueT(std::move(B->getSecond())); |
| 377 | incrementNumEntries(); |
| 378 | |
| 379 | // Free the value. |
| 380 | B->getSecond().~ValueT(); |
| 381 | } |
| 382 | B->getFirst().~KeyT(); |
| 383 | } |
| 384 | } |
| 385 | |
| 386 | template <typename OtherBaseT> |
| 387 | void copyFrom( |
| 388 | const DenseMapBase<OtherBaseT, KeyT, ValueT, KeyInfoT, BucketT> &other) { |
| 389 | assert(&other != this); |
| 390 | assert(getNumBuckets() == other.getNumBuckets()); |
| 391 | |
| 392 | setNumEntries(other.getNumEntries()); |
| 393 | setNumTombstones(other.getNumTombstones()); |
| 394 | |
| 395 | if (isPodLike<KeyT>::value && isPodLike<ValueT>::value) |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 396 | memcpy(reinterpret_cast<void *>(getBuckets()), other.getBuckets(), |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 397 | getNumBuckets() * sizeof(BucketT)); |
| 398 | else |
| 399 | for (size_t i = 0; i < getNumBuckets(); ++i) { |
| 400 | ::new (&getBuckets()[i].getFirst()) |
| 401 | KeyT(other.getBuckets()[i].getFirst()); |
| 402 | if (!KeyInfoT::isEqual(getBuckets()[i].getFirst(), getEmptyKey()) && |
| 403 | !KeyInfoT::isEqual(getBuckets()[i].getFirst(), getTombstoneKey())) |
| 404 | ::new (&getBuckets()[i].getSecond()) |
| 405 | ValueT(other.getBuckets()[i].getSecond()); |
| 406 | } |
| 407 | } |
| 408 | |
| 409 | static unsigned getHashValue(const KeyT &Val) { |
| 410 | return KeyInfoT::getHashValue(Val); |
| 411 | } |
| 412 | |
| 413 | template<typename LookupKeyT> |
| 414 | static unsigned getHashValue(const LookupKeyT &Val) { |
| 415 | return KeyInfoT::getHashValue(Val); |
| 416 | } |
| 417 | |
| 418 | static const KeyT getEmptyKey() { |
| 419 | static_assert(std::is_base_of<DenseMapBase, DerivedT>::value, |
| 420 | "Must pass the derived type to this template!"); |
| 421 | return KeyInfoT::getEmptyKey(); |
| 422 | } |
| 423 | |
| 424 | static const KeyT getTombstoneKey() { |
| 425 | return KeyInfoT::getTombstoneKey(); |
| 426 | } |
| 427 | |
| 428 | private: |
| 429 | iterator makeIterator(BucketT *P, BucketT *E, |
| 430 | DebugEpochBase &Epoch, |
| 431 | bool NoAdvance=false) { |
| 432 | if (shouldReverseIterate<KeyT>()) { |
| 433 | BucketT *B = P == getBucketsEnd() ? getBuckets() : P + 1; |
| 434 | return iterator(B, E, Epoch, NoAdvance); |
| 435 | } |
| 436 | return iterator(P, E, Epoch, NoAdvance); |
| 437 | } |
| 438 | |
| 439 | const_iterator makeConstIterator(const BucketT *P, const BucketT *E, |
| 440 | const DebugEpochBase &Epoch, |
| 441 | const bool NoAdvance=false) const { |
| 442 | if (shouldReverseIterate<KeyT>()) { |
| 443 | const BucketT *B = P == getBucketsEnd() ? getBuckets() : P + 1; |
| 444 | return const_iterator(B, E, Epoch, NoAdvance); |
| 445 | } |
| 446 | return const_iterator(P, E, Epoch, NoAdvance); |
| 447 | } |
| 448 | |
| 449 | unsigned getNumEntries() const { |
| 450 | return static_cast<const DerivedT *>(this)->getNumEntries(); |
| 451 | } |
| 452 | |
| 453 | void setNumEntries(unsigned Num) { |
| 454 | static_cast<DerivedT *>(this)->setNumEntries(Num); |
| 455 | } |
| 456 | |
| 457 | void incrementNumEntries() { |
| 458 | setNumEntries(getNumEntries() + 1); |
| 459 | } |
| 460 | |
| 461 | void decrementNumEntries() { |
| 462 | setNumEntries(getNumEntries() - 1); |
| 463 | } |
| 464 | |
| 465 | unsigned getNumTombstones() const { |
| 466 | return static_cast<const DerivedT *>(this)->getNumTombstones(); |
| 467 | } |
| 468 | |
| 469 | void setNumTombstones(unsigned Num) { |
| 470 | static_cast<DerivedT *>(this)->setNumTombstones(Num); |
| 471 | } |
| 472 | |
| 473 | void incrementNumTombstones() { |
| 474 | setNumTombstones(getNumTombstones() + 1); |
| 475 | } |
| 476 | |
| 477 | void decrementNumTombstones() { |
| 478 | setNumTombstones(getNumTombstones() - 1); |
| 479 | } |
| 480 | |
| 481 | const BucketT *getBuckets() const { |
| 482 | return static_cast<const DerivedT *>(this)->getBuckets(); |
| 483 | } |
| 484 | |
| 485 | BucketT *getBuckets() { |
| 486 | return static_cast<DerivedT *>(this)->getBuckets(); |
| 487 | } |
| 488 | |
| 489 | unsigned getNumBuckets() const { |
| 490 | return static_cast<const DerivedT *>(this)->getNumBuckets(); |
| 491 | } |
| 492 | |
| 493 | BucketT *getBucketsEnd() { |
| 494 | return getBuckets() + getNumBuckets(); |
| 495 | } |
| 496 | |
| 497 | const BucketT *getBucketsEnd() const { |
| 498 | return getBuckets() + getNumBuckets(); |
| 499 | } |
| 500 | |
| 501 | void grow(unsigned AtLeast) { |
| 502 | static_cast<DerivedT *>(this)->grow(AtLeast); |
| 503 | } |
| 504 | |
| 505 | void shrink_and_clear() { |
| 506 | static_cast<DerivedT *>(this)->shrink_and_clear(); |
| 507 | } |
| 508 | |
| 509 | template <typename KeyArg, typename... ValueArgs> |
| 510 | BucketT *InsertIntoBucket(BucketT *TheBucket, KeyArg &&Key, |
| 511 | ValueArgs &&... Values) { |
| 512 | TheBucket = InsertIntoBucketImpl(Key, Key, TheBucket); |
| 513 | |
| 514 | TheBucket->getFirst() = std::forward<KeyArg>(Key); |
| 515 | ::new (&TheBucket->getSecond()) ValueT(std::forward<ValueArgs>(Values)...); |
| 516 | return TheBucket; |
| 517 | } |
| 518 | |
| 519 | template <typename LookupKeyT> |
| 520 | BucketT *InsertIntoBucketWithLookup(BucketT *TheBucket, KeyT &&Key, |
| 521 | ValueT &&Value, LookupKeyT &Lookup) { |
| 522 | TheBucket = InsertIntoBucketImpl(Key, Lookup, TheBucket); |
| 523 | |
| 524 | TheBucket->getFirst() = std::move(Key); |
| 525 | ::new (&TheBucket->getSecond()) ValueT(std::move(Value)); |
| 526 | return TheBucket; |
| 527 | } |
| 528 | |
| 529 | template <typename LookupKeyT> |
| 530 | BucketT *InsertIntoBucketImpl(const KeyT &Key, const LookupKeyT &Lookup, |
| 531 | BucketT *TheBucket) { |
| 532 | incrementEpoch(); |
| 533 | |
| 534 | // If the load of the hash table is more than 3/4, or if fewer than 1/8 of |
| 535 | // the buckets are empty (meaning that many are filled with tombstones), |
| 536 | // grow the table. |
| 537 | // |
| 538 | // The later case is tricky. For example, if we had one empty bucket with |
| 539 | // tons of tombstones, failing lookups (e.g. for insertion) would have to |
| 540 | // probe almost the entire table until it found the empty bucket. If the |
| 541 | // table completely filled with tombstones, no lookup would ever succeed, |
| 542 | // causing infinite loops in lookup. |
| 543 | unsigned NewNumEntries = getNumEntries() + 1; |
| 544 | unsigned NumBuckets = getNumBuckets(); |
| 545 | if (LLVM_UNLIKELY(NewNumEntries * 4 >= NumBuckets * 3)) { |
| 546 | this->grow(NumBuckets * 2); |
| 547 | LookupBucketFor(Lookup, TheBucket); |
| 548 | NumBuckets = getNumBuckets(); |
| 549 | } else if (LLVM_UNLIKELY(NumBuckets-(NewNumEntries+getNumTombstones()) <= |
| 550 | NumBuckets/8)) { |
| 551 | this->grow(NumBuckets); |
| 552 | LookupBucketFor(Lookup, TheBucket); |
| 553 | } |
| 554 | assert(TheBucket); |
| 555 | |
| 556 | // Only update the state after we've grown our bucket space appropriately |
| 557 | // so that when growing buckets we have self-consistent entry count. |
| 558 | incrementNumEntries(); |
| 559 | |
| 560 | // If we are writing over a tombstone, remember this. |
| 561 | const KeyT EmptyKey = getEmptyKey(); |
| 562 | if (!KeyInfoT::isEqual(TheBucket->getFirst(), EmptyKey)) |
| 563 | decrementNumTombstones(); |
| 564 | |
| 565 | return TheBucket; |
| 566 | } |
| 567 | |
| 568 | /// LookupBucketFor - Lookup the appropriate bucket for Val, returning it in |
| 569 | /// FoundBucket. If the bucket contains the key and a value, this returns |
| 570 | /// true, otherwise it returns a bucket with an empty marker or tombstone and |
| 571 | /// returns false. |
| 572 | template<typename LookupKeyT> |
| 573 | bool LookupBucketFor(const LookupKeyT &Val, |
| 574 | const BucketT *&FoundBucket) const { |
| 575 | const BucketT *BucketsPtr = getBuckets(); |
| 576 | const unsigned NumBuckets = getNumBuckets(); |
| 577 | |
| 578 | if (NumBuckets == 0) { |
| 579 | FoundBucket = nullptr; |
| 580 | return false; |
| 581 | } |
| 582 | |
| 583 | // FoundTombstone - Keep track of whether we find a tombstone while probing. |
| 584 | const BucketT *FoundTombstone = nullptr; |
| 585 | const KeyT EmptyKey = getEmptyKey(); |
| 586 | const KeyT TombstoneKey = getTombstoneKey(); |
| 587 | assert(!KeyInfoT::isEqual(Val, EmptyKey) && |
| 588 | !KeyInfoT::isEqual(Val, TombstoneKey) && |
| 589 | "Empty/Tombstone value shouldn't be inserted into map!"); |
| 590 | |
| 591 | unsigned BucketNo = getHashValue(Val) & (NumBuckets-1); |
| 592 | unsigned ProbeAmt = 1; |
| 593 | while (true) { |
| 594 | const BucketT *ThisBucket = BucketsPtr + BucketNo; |
| 595 | // Found Val's bucket? If so, return it. |
| 596 | if (LLVM_LIKELY(KeyInfoT::isEqual(Val, ThisBucket->getFirst()))) { |
| 597 | FoundBucket = ThisBucket; |
| 598 | return true; |
| 599 | } |
| 600 | |
| 601 | // If we found an empty bucket, the key doesn't exist in the set. |
| 602 | // Insert it and return the default value. |
| 603 | if (LLVM_LIKELY(KeyInfoT::isEqual(ThisBucket->getFirst(), EmptyKey))) { |
| 604 | // If we've already seen a tombstone while probing, fill it in instead |
| 605 | // of the empty bucket we eventually probed to. |
| 606 | FoundBucket = FoundTombstone ? FoundTombstone : ThisBucket; |
| 607 | return false; |
| 608 | } |
| 609 | |
| 610 | // If this is a tombstone, remember it. If Val ends up not in the map, we |
| 611 | // prefer to return it than something that would require more probing. |
| 612 | if (KeyInfoT::isEqual(ThisBucket->getFirst(), TombstoneKey) && |
| 613 | !FoundTombstone) |
| 614 | FoundTombstone = ThisBucket; // Remember the first tombstone found. |
| 615 | |
| 616 | // Otherwise, it's a hash collision or a tombstone, continue quadratic |
| 617 | // probing. |
| 618 | BucketNo += ProbeAmt++; |
| 619 | BucketNo &= (NumBuckets-1); |
| 620 | } |
| 621 | } |
| 622 | |
| 623 | template <typename LookupKeyT> |
| 624 | bool LookupBucketFor(const LookupKeyT &Val, BucketT *&FoundBucket) { |
| 625 | const BucketT *ConstFoundBucket; |
| 626 | bool Result = const_cast<const DenseMapBase *>(this) |
| 627 | ->LookupBucketFor(Val, ConstFoundBucket); |
| 628 | FoundBucket = const_cast<BucketT *>(ConstFoundBucket); |
| 629 | return Result; |
| 630 | } |
| 631 | |
| 632 | public: |
| 633 | /// Return the approximate size (in bytes) of the actual map. |
| 634 | /// This is just the raw memory used by DenseMap. |
| 635 | /// If entries are pointers to objects, the size of the referenced objects |
| 636 | /// are not included. |
| 637 | size_t getMemorySize() const { |
| 638 | return getNumBuckets() * sizeof(BucketT); |
| 639 | } |
| 640 | }; |
| 641 | |
| 642 | template <typename KeyT, typename ValueT, |
| 643 | typename KeyInfoT = DenseMapInfo<KeyT>, |
| 644 | typename BucketT = detail::DenseMapPair<KeyT, ValueT>> |
| 645 | class DenseMap : public DenseMapBase<DenseMap<KeyT, ValueT, KeyInfoT, BucketT>, |
| 646 | KeyT, ValueT, KeyInfoT, BucketT> { |
| 647 | friend class DenseMapBase<DenseMap, KeyT, ValueT, KeyInfoT, BucketT>; |
| 648 | |
| 649 | // Lift some types from the dependent base class into this class for |
| 650 | // simplicity of referring to them. |
| 651 | using BaseT = DenseMapBase<DenseMap, KeyT, ValueT, KeyInfoT, BucketT>; |
| 652 | |
| 653 | BucketT *Buckets; |
| 654 | unsigned NumEntries; |
| 655 | unsigned NumTombstones; |
| 656 | unsigned NumBuckets; |
| 657 | |
| 658 | public: |
| 659 | /// Create a DenseMap wth an optional \p InitialReserve that guarantee that |
| 660 | /// this number of elements can be inserted in the map without grow() |
| 661 | explicit DenseMap(unsigned InitialReserve = 0) { init(InitialReserve); } |
| 662 | |
| 663 | DenseMap(const DenseMap &other) : BaseT() { |
| 664 | init(0); |
| 665 | copyFrom(other); |
| 666 | } |
| 667 | |
| 668 | DenseMap(DenseMap &&other) : BaseT() { |
| 669 | init(0); |
| 670 | swap(other); |
| 671 | } |
| 672 | |
| 673 | template<typename InputIt> |
| 674 | DenseMap(const InputIt &I, const InputIt &E) { |
| 675 | init(std::distance(I, E)); |
| 676 | this->insert(I, E); |
| 677 | } |
| 678 | |
| 679 | ~DenseMap() { |
| 680 | this->destroyAll(); |
| 681 | operator delete(Buckets); |
| 682 | } |
| 683 | |
| 684 | void swap(DenseMap& RHS) { |
| 685 | this->incrementEpoch(); |
| 686 | RHS.incrementEpoch(); |
| 687 | std::swap(Buckets, RHS.Buckets); |
| 688 | std::swap(NumEntries, RHS.NumEntries); |
| 689 | std::swap(NumTombstones, RHS.NumTombstones); |
| 690 | std::swap(NumBuckets, RHS.NumBuckets); |
| 691 | } |
| 692 | |
| 693 | DenseMap& operator=(const DenseMap& other) { |
| 694 | if (&other != this) |
| 695 | copyFrom(other); |
| 696 | return *this; |
| 697 | } |
| 698 | |
| 699 | DenseMap& operator=(DenseMap &&other) { |
| 700 | this->destroyAll(); |
| 701 | operator delete(Buckets); |
| 702 | init(0); |
| 703 | swap(other); |
| 704 | return *this; |
| 705 | } |
| 706 | |
| 707 | void copyFrom(const DenseMap& other) { |
| 708 | this->destroyAll(); |
| 709 | operator delete(Buckets); |
| 710 | if (allocateBuckets(other.NumBuckets)) { |
| 711 | this->BaseT::copyFrom(other); |
| 712 | } else { |
| 713 | NumEntries = 0; |
| 714 | NumTombstones = 0; |
| 715 | } |
| 716 | } |
| 717 | |
| 718 | void init(unsigned InitNumEntries) { |
| 719 | auto InitBuckets = BaseT::getMinBucketToReserveForEntries(InitNumEntries); |
| 720 | if (allocateBuckets(InitBuckets)) { |
| 721 | this->BaseT::initEmpty(); |
| 722 | } else { |
| 723 | NumEntries = 0; |
| 724 | NumTombstones = 0; |
| 725 | } |
| 726 | } |
| 727 | |
| 728 | void grow(unsigned AtLeast) { |
| 729 | unsigned OldNumBuckets = NumBuckets; |
| 730 | BucketT *OldBuckets = Buckets; |
| 731 | |
| 732 | allocateBuckets(std::max<unsigned>(64, static_cast<unsigned>(NextPowerOf2(AtLeast-1)))); |
| 733 | assert(Buckets); |
| 734 | if (!OldBuckets) { |
| 735 | this->BaseT::initEmpty(); |
| 736 | return; |
| 737 | } |
| 738 | |
| 739 | this->moveFromOldBuckets(OldBuckets, OldBuckets+OldNumBuckets); |
| 740 | |
| 741 | // Free the old table. |
| 742 | operator delete(OldBuckets); |
| 743 | } |
| 744 | |
| 745 | void shrink_and_clear() { |
| 746 | unsigned OldNumEntries = NumEntries; |
| 747 | this->destroyAll(); |
| 748 | |
| 749 | // Reduce the number of buckets. |
| 750 | unsigned NewNumBuckets = 0; |
| 751 | if (OldNumEntries) |
| 752 | NewNumBuckets = std::max(64, 1 << (Log2_32_Ceil(OldNumEntries) + 1)); |
| 753 | if (NewNumBuckets == NumBuckets) { |
| 754 | this->BaseT::initEmpty(); |
| 755 | return; |
| 756 | } |
| 757 | |
| 758 | operator delete(Buckets); |
| 759 | init(NewNumBuckets); |
| 760 | } |
| 761 | |
| 762 | private: |
| 763 | unsigned getNumEntries() const { |
| 764 | return NumEntries; |
| 765 | } |
| 766 | |
| 767 | void setNumEntries(unsigned Num) { |
| 768 | NumEntries = Num; |
| 769 | } |
| 770 | |
| 771 | unsigned getNumTombstones() const { |
| 772 | return NumTombstones; |
| 773 | } |
| 774 | |
| 775 | void setNumTombstones(unsigned Num) { |
| 776 | NumTombstones = Num; |
| 777 | } |
| 778 | |
| 779 | BucketT *getBuckets() const { |
| 780 | return Buckets; |
| 781 | } |
| 782 | |
| 783 | unsigned getNumBuckets() const { |
| 784 | return NumBuckets; |
| 785 | } |
| 786 | |
| 787 | bool allocateBuckets(unsigned Num) { |
| 788 | NumBuckets = Num; |
| 789 | if (NumBuckets == 0) { |
| 790 | Buckets = nullptr; |
| 791 | return false; |
| 792 | } |
| 793 | |
| 794 | Buckets = static_cast<BucketT*>(operator new(sizeof(BucketT) * NumBuckets)); |
| 795 | return true; |
| 796 | } |
| 797 | }; |
| 798 | |
| 799 | template <typename KeyT, typename ValueT, unsigned InlineBuckets = 4, |
| 800 | typename KeyInfoT = DenseMapInfo<KeyT>, |
| 801 | typename BucketT = detail::DenseMapPair<KeyT, ValueT>> |
| 802 | class SmallDenseMap |
| 803 | : public DenseMapBase< |
| 804 | SmallDenseMap<KeyT, ValueT, InlineBuckets, KeyInfoT, BucketT>, KeyT, |
| 805 | ValueT, KeyInfoT, BucketT> { |
| 806 | friend class DenseMapBase<SmallDenseMap, KeyT, ValueT, KeyInfoT, BucketT>; |
| 807 | |
| 808 | // Lift some types from the dependent base class into this class for |
| 809 | // simplicity of referring to them. |
| 810 | using BaseT = DenseMapBase<SmallDenseMap, KeyT, ValueT, KeyInfoT, BucketT>; |
| 811 | |
| 812 | static_assert(isPowerOf2_64(InlineBuckets), |
| 813 | "InlineBuckets must be a power of 2."); |
| 814 | |
| 815 | unsigned Small : 1; |
| 816 | unsigned NumEntries : 31; |
| 817 | unsigned NumTombstones; |
| 818 | |
| 819 | struct LargeRep { |
| 820 | BucketT *Buckets; |
| 821 | unsigned NumBuckets; |
| 822 | }; |
| 823 | |
| 824 | /// A "union" of an inline bucket array and the struct representing |
| 825 | /// a large bucket. This union will be discriminated by the 'Small' bit. |
| 826 | AlignedCharArrayUnion<BucketT[InlineBuckets], LargeRep> storage; |
| 827 | |
| 828 | public: |
| 829 | explicit SmallDenseMap(unsigned NumInitBuckets = 0) { |
| 830 | init(NumInitBuckets); |
| 831 | } |
| 832 | |
| 833 | SmallDenseMap(const SmallDenseMap &other) : BaseT() { |
| 834 | init(0); |
| 835 | copyFrom(other); |
| 836 | } |
| 837 | |
| 838 | SmallDenseMap(SmallDenseMap &&other) : BaseT() { |
| 839 | init(0); |
| 840 | swap(other); |
| 841 | } |
| 842 | |
| 843 | template<typename InputIt> |
| 844 | SmallDenseMap(const InputIt &I, const InputIt &E) { |
| 845 | init(NextPowerOf2(std::distance(I, E))); |
| 846 | this->insert(I, E); |
| 847 | } |
| 848 | |
| 849 | ~SmallDenseMap() { |
| 850 | this->destroyAll(); |
| 851 | deallocateBuckets(); |
| 852 | } |
| 853 | |
| 854 | void swap(SmallDenseMap& RHS) { |
| 855 | unsigned TmpNumEntries = RHS.NumEntries; |
| 856 | RHS.NumEntries = NumEntries; |
| 857 | NumEntries = TmpNumEntries; |
| 858 | std::swap(NumTombstones, RHS.NumTombstones); |
| 859 | |
| 860 | const KeyT EmptyKey = this->getEmptyKey(); |
| 861 | const KeyT TombstoneKey = this->getTombstoneKey(); |
| 862 | if (Small && RHS.Small) { |
| 863 | // If we're swapping inline bucket arrays, we have to cope with some of |
| 864 | // the tricky bits of DenseMap's storage system: the buckets are not |
| 865 | // fully initialized. Thus we swap every key, but we may have |
| 866 | // a one-directional move of the value. |
| 867 | for (unsigned i = 0, e = InlineBuckets; i != e; ++i) { |
| 868 | BucketT *LHSB = &getInlineBuckets()[i], |
| 869 | *RHSB = &RHS.getInlineBuckets()[i]; |
| 870 | bool hasLHSValue = (!KeyInfoT::isEqual(LHSB->getFirst(), EmptyKey) && |
| 871 | !KeyInfoT::isEqual(LHSB->getFirst(), TombstoneKey)); |
| 872 | bool hasRHSValue = (!KeyInfoT::isEqual(RHSB->getFirst(), EmptyKey) && |
| 873 | !KeyInfoT::isEqual(RHSB->getFirst(), TombstoneKey)); |
| 874 | if (hasLHSValue && hasRHSValue) { |
| 875 | // Swap together if we can... |
| 876 | std::swap(*LHSB, *RHSB); |
| 877 | continue; |
| 878 | } |
| 879 | // Swap separately and handle any assymetry. |
| 880 | std::swap(LHSB->getFirst(), RHSB->getFirst()); |
| 881 | if (hasLHSValue) { |
| 882 | ::new (&RHSB->getSecond()) ValueT(std::move(LHSB->getSecond())); |
| 883 | LHSB->getSecond().~ValueT(); |
| 884 | } else if (hasRHSValue) { |
| 885 | ::new (&LHSB->getSecond()) ValueT(std::move(RHSB->getSecond())); |
| 886 | RHSB->getSecond().~ValueT(); |
| 887 | } |
| 888 | } |
| 889 | return; |
| 890 | } |
| 891 | if (!Small && !RHS.Small) { |
| 892 | std::swap(getLargeRep()->Buckets, RHS.getLargeRep()->Buckets); |
| 893 | std::swap(getLargeRep()->NumBuckets, RHS.getLargeRep()->NumBuckets); |
| 894 | return; |
| 895 | } |
| 896 | |
| 897 | SmallDenseMap &SmallSide = Small ? *this : RHS; |
| 898 | SmallDenseMap &LargeSide = Small ? RHS : *this; |
| 899 | |
| 900 | // First stash the large side's rep and move the small side across. |
| 901 | LargeRep TmpRep = std::move(*LargeSide.getLargeRep()); |
| 902 | LargeSide.getLargeRep()->~LargeRep(); |
| 903 | LargeSide.Small = true; |
| 904 | // This is similar to the standard move-from-old-buckets, but the bucket |
| 905 | // count hasn't actually rotated in this case. So we have to carefully |
| 906 | // move construct the keys and values into their new locations, but there |
| 907 | // is no need to re-hash things. |
| 908 | for (unsigned i = 0, e = InlineBuckets; i != e; ++i) { |
| 909 | BucketT *NewB = &LargeSide.getInlineBuckets()[i], |
| 910 | *OldB = &SmallSide.getInlineBuckets()[i]; |
| 911 | ::new (&NewB->getFirst()) KeyT(std::move(OldB->getFirst())); |
| 912 | OldB->getFirst().~KeyT(); |
| 913 | if (!KeyInfoT::isEqual(NewB->getFirst(), EmptyKey) && |
| 914 | !KeyInfoT::isEqual(NewB->getFirst(), TombstoneKey)) { |
| 915 | ::new (&NewB->getSecond()) ValueT(std::move(OldB->getSecond())); |
| 916 | OldB->getSecond().~ValueT(); |
| 917 | } |
| 918 | } |
| 919 | |
| 920 | // The hard part of moving the small buckets across is done, just move |
| 921 | // the TmpRep into its new home. |
| 922 | SmallSide.Small = false; |
| 923 | new (SmallSide.getLargeRep()) LargeRep(std::move(TmpRep)); |
| 924 | } |
| 925 | |
| 926 | SmallDenseMap& operator=(const SmallDenseMap& other) { |
| 927 | if (&other != this) |
| 928 | copyFrom(other); |
| 929 | return *this; |
| 930 | } |
| 931 | |
| 932 | SmallDenseMap& operator=(SmallDenseMap &&other) { |
| 933 | this->destroyAll(); |
| 934 | deallocateBuckets(); |
| 935 | init(0); |
| 936 | swap(other); |
| 937 | return *this; |
| 938 | } |
| 939 | |
| 940 | void copyFrom(const SmallDenseMap& other) { |
| 941 | this->destroyAll(); |
| 942 | deallocateBuckets(); |
| 943 | Small = true; |
| 944 | if (other.getNumBuckets() > InlineBuckets) { |
| 945 | Small = false; |
| 946 | new (getLargeRep()) LargeRep(allocateBuckets(other.getNumBuckets())); |
| 947 | } |
| 948 | this->BaseT::copyFrom(other); |
| 949 | } |
| 950 | |
| 951 | void init(unsigned InitBuckets) { |
| 952 | Small = true; |
| 953 | if (InitBuckets > InlineBuckets) { |
| 954 | Small = false; |
| 955 | new (getLargeRep()) LargeRep(allocateBuckets(InitBuckets)); |
| 956 | } |
| 957 | this->BaseT::initEmpty(); |
| 958 | } |
| 959 | |
| 960 | void grow(unsigned AtLeast) { |
| 961 | if (AtLeast >= InlineBuckets) |
| 962 | AtLeast = std::max<unsigned>(64, NextPowerOf2(AtLeast-1)); |
| 963 | |
| 964 | if (Small) { |
| 965 | if (AtLeast < InlineBuckets) |
| 966 | return; // Nothing to do. |
| 967 | |
| 968 | // First move the inline buckets into a temporary storage. |
| 969 | AlignedCharArrayUnion<BucketT[InlineBuckets]> TmpStorage; |
| 970 | BucketT *TmpBegin = reinterpret_cast<BucketT *>(TmpStorage.buffer); |
| 971 | BucketT *TmpEnd = TmpBegin; |
| 972 | |
| 973 | // Loop over the buckets, moving non-empty, non-tombstones into the |
| 974 | // temporary storage. Have the loop move the TmpEnd forward as it goes. |
| 975 | const KeyT EmptyKey = this->getEmptyKey(); |
| 976 | const KeyT TombstoneKey = this->getTombstoneKey(); |
| 977 | for (BucketT *P = getBuckets(), *E = P + InlineBuckets; P != E; ++P) { |
| 978 | if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey) && |
| 979 | !KeyInfoT::isEqual(P->getFirst(), TombstoneKey)) { |
| 980 | assert(size_t(TmpEnd - TmpBegin) < InlineBuckets && |
| 981 | "Too many inline buckets!"); |
| 982 | ::new (&TmpEnd->getFirst()) KeyT(std::move(P->getFirst())); |
| 983 | ::new (&TmpEnd->getSecond()) ValueT(std::move(P->getSecond())); |
| 984 | ++TmpEnd; |
| 985 | P->getSecond().~ValueT(); |
| 986 | } |
| 987 | P->getFirst().~KeyT(); |
| 988 | } |
| 989 | |
| 990 | // Now make this map use the large rep, and move all the entries back |
| 991 | // into it. |
| 992 | Small = false; |
| 993 | new (getLargeRep()) LargeRep(allocateBuckets(AtLeast)); |
| 994 | this->moveFromOldBuckets(TmpBegin, TmpEnd); |
| 995 | return; |
| 996 | } |
| 997 | |
| 998 | LargeRep OldRep = std::move(*getLargeRep()); |
| 999 | getLargeRep()->~LargeRep(); |
| 1000 | if (AtLeast <= InlineBuckets) { |
| 1001 | Small = true; |
| 1002 | } else { |
| 1003 | new (getLargeRep()) LargeRep(allocateBuckets(AtLeast)); |
| 1004 | } |
| 1005 | |
| 1006 | this->moveFromOldBuckets(OldRep.Buckets, OldRep.Buckets+OldRep.NumBuckets); |
| 1007 | |
| 1008 | // Free the old table. |
| 1009 | operator delete(OldRep.Buckets); |
| 1010 | } |
| 1011 | |
| 1012 | void shrink_and_clear() { |
| 1013 | unsigned OldSize = this->size(); |
| 1014 | this->destroyAll(); |
| 1015 | |
| 1016 | // Reduce the number of buckets. |
| 1017 | unsigned NewNumBuckets = 0; |
| 1018 | if (OldSize) { |
| 1019 | NewNumBuckets = 1 << (Log2_32_Ceil(OldSize) + 1); |
| 1020 | if (NewNumBuckets > InlineBuckets && NewNumBuckets < 64u) |
| 1021 | NewNumBuckets = 64; |
| 1022 | } |
| 1023 | if ((Small && NewNumBuckets <= InlineBuckets) || |
| 1024 | (!Small && NewNumBuckets == getLargeRep()->NumBuckets)) { |
| 1025 | this->BaseT::initEmpty(); |
| 1026 | return; |
| 1027 | } |
| 1028 | |
| 1029 | deallocateBuckets(); |
| 1030 | init(NewNumBuckets); |
| 1031 | } |
| 1032 | |
| 1033 | private: |
| 1034 | unsigned getNumEntries() const { |
| 1035 | return NumEntries; |
| 1036 | } |
| 1037 | |
| 1038 | void setNumEntries(unsigned Num) { |
| 1039 | // NumEntries is hardcoded to be 31 bits wide. |
| 1040 | assert(Num < (1U << 31) && "Cannot support more than 1<<31 entries"); |
| 1041 | NumEntries = Num; |
| 1042 | } |
| 1043 | |
| 1044 | unsigned getNumTombstones() const { |
| 1045 | return NumTombstones; |
| 1046 | } |
| 1047 | |
| 1048 | void setNumTombstones(unsigned Num) { |
| 1049 | NumTombstones = Num; |
| 1050 | } |
| 1051 | |
| 1052 | const BucketT *getInlineBuckets() const { |
| 1053 | assert(Small); |
| 1054 | // Note that this cast does not violate aliasing rules as we assert that |
| 1055 | // the memory's dynamic type is the small, inline bucket buffer, and the |
| 1056 | // 'storage.buffer' static type is 'char *'. |
| 1057 | return reinterpret_cast<const BucketT *>(storage.buffer); |
| 1058 | } |
| 1059 | |
| 1060 | BucketT *getInlineBuckets() { |
| 1061 | return const_cast<BucketT *>( |
| 1062 | const_cast<const SmallDenseMap *>(this)->getInlineBuckets()); |
| 1063 | } |
| 1064 | |
| 1065 | const LargeRep *getLargeRep() const { |
| 1066 | assert(!Small); |
| 1067 | // Note, same rule about aliasing as with getInlineBuckets. |
| 1068 | return reinterpret_cast<const LargeRep *>(storage.buffer); |
| 1069 | } |
| 1070 | |
| 1071 | LargeRep *getLargeRep() { |
| 1072 | return const_cast<LargeRep *>( |
| 1073 | const_cast<const SmallDenseMap *>(this)->getLargeRep()); |
| 1074 | } |
| 1075 | |
| 1076 | const BucketT *getBuckets() const { |
| 1077 | return Small ? getInlineBuckets() : getLargeRep()->Buckets; |
| 1078 | } |
| 1079 | |
| 1080 | BucketT *getBuckets() { |
| 1081 | return const_cast<BucketT *>( |
| 1082 | const_cast<const SmallDenseMap *>(this)->getBuckets()); |
| 1083 | } |
| 1084 | |
| 1085 | unsigned getNumBuckets() const { |
| 1086 | return Small ? InlineBuckets : getLargeRep()->NumBuckets; |
| 1087 | } |
| 1088 | |
| 1089 | void deallocateBuckets() { |
| 1090 | if (Small) |
| 1091 | return; |
| 1092 | |
| 1093 | operator delete(getLargeRep()->Buckets); |
| 1094 | getLargeRep()->~LargeRep(); |
| 1095 | } |
| 1096 | |
| 1097 | LargeRep allocateBuckets(unsigned Num) { |
| 1098 | assert(Num > InlineBuckets && "Must allocate more buckets than are inline"); |
| 1099 | LargeRep Rep = { |
| 1100 | static_cast<BucketT*>(operator new(sizeof(BucketT) * Num)), Num |
| 1101 | }; |
| 1102 | return Rep; |
| 1103 | } |
| 1104 | }; |
| 1105 | |
| 1106 | template <typename KeyT, typename ValueT, typename KeyInfoT, typename Bucket, |
| 1107 | bool IsConst> |
| 1108 | class DenseMapIterator : DebugEpochBase::HandleBase { |
| 1109 | friend class DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, true>; |
| 1110 | friend class DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, false>; |
| 1111 | |
| 1112 | using ConstIterator = DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, true>; |
| 1113 | |
| 1114 | public: |
| 1115 | using difference_type = ptrdiff_t; |
| 1116 | using value_type = |
| 1117 | typename std::conditional<IsConst, const Bucket, Bucket>::type; |
| 1118 | using pointer = value_type *; |
| 1119 | using reference = value_type &; |
| 1120 | using iterator_category = std::forward_iterator_tag; |
| 1121 | |
| 1122 | private: |
| 1123 | pointer Ptr = nullptr; |
| 1124 | pointer End = nullptr; |
| 1125 | |
| 1126 | public: |
| 1127 | DenseMapIterator() = default; |
| 1128 | |
| 1129 | DenseMapIterator(pointer Pos, pointer E, const DebugEpochBase &Epoch, |
| 1130 | bool NoAdvance = false) |
| 1131 | : DebugEpochBase::HandleBase(&Epoch), Ptr(Pos), End(E) { |
| 1132 | assert(isHandleInSync() && "invalid construction!"); |
| 1133 | |
| 1134 | if (NoAdvance) return; |
| 1135 | if (shouldReverseIterate<KeyT>()) { |
| 1136 | RetreatPastEmptyBuckets(); |
| 1137 | return; |
| 1138 | } |
| 1139 | AdvancePastEmptyBuckets(); |
| 1140 | } |
| 1141 | |
| 1142 | // Converting ctor from non-const iterators to const iterators. SFINAE'd out |
| 1143 | // for const iterator destinations so it doesn't end up as a user defined copy |
| 1144 | // constructor. |
| 1145 | template <bool IsConstSrc, |
| 1146 | typename = typename std::enable_if<!IsConstSrc && IsConst>::type> |
| 1147 | DenseMapIterator( |
| 1148 | const DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, IsConstSrc> &I) |
| 1149 | : DebugEpochBase::HandleBase(I), Ptr(I.Ptr), End(I.End) {} |
| 1150 | |
| 1151 | reference operator*() const { |
| 1152 | assert(isHandleInSync() && "invalid iterator access!"); |
| 1153 | if (shouldReverseIterate<KeyT>()) |
| 1154 | return Ptr[-1]; |
| 1155 | return *Ptr; |
| 1156 | } |
| 1157 | pointer operator->() const { |
| 1158 | assert(isHandleInSync() && "invalid iterator access!"); |
| 1159 | if (shouldReverseIterate<KeyT>()) |
| 1160 | return &(Ptr[-1]); |
| 1161 | return Ptr; |
| 1162 | } |
| 1163 | |
| 1164 | bool operator==(const ConstIterator &RHS) const { |
| 1165 | assert((!Ptr || isHandleInSync()) && "handle not in sync!"); |
| 1166 | assert((!RHS.Ptr || RHS.isHandleInSync()) && "handle not in sync!"); |
| 1167 | assert(getEpochAddress() == RHS.getEpochAddress() && |
| 1168 | "comparing incomparable iterators!"); |
| 1169 | return Ptr == RHS.Ptr; |
| 1170 | } |
| 1171 | bool operator!=(const ConstIterator &RHS) const { |
| 1172 | assert((!Ptr || isHandleInSync()) && "handle not in sync!"); |
| 1173 | assert((!RHS.Ptr || RHS.isHandleInSync()) && "handle not in sync!"); |
| 1174 | assert(getEpochAddress() == RHS.getEpochAddress() && |
| 1175 | "comparing incomparable iterators!"); |
| 1176 | return Ptr != RHS.Ptr; |
| 1177 | } |
| 1178 | |
| 1179 | inline DenseMapIterator& operator++() { // Preincrement |
| 1180 | assert(isHandleInSync() && "invalid iterator access!"); |
| 1181 | if (shouldReverseIterate<KeyT>()) { |
| 1182 | --Ptr; |
| 1183 | RetreatPastEmptyBuckets(); |
| 1184 | return *this; |
| 1185 | } |
| 1186 | ++Ptr; |
| 1187 | AdvancePastEmptyBuckets(); |
| 1188 | return *this; |
| 1189 | } |
| 1190 | DenseMapIterator operator++(int) { // Postincrement |
| 1191 | assert(isHandleInSync() && "invalid iterator access!"); |
| 1192 | DenseMapIterator tmp = *this; ++*this; return tmp; |
| 1193 | } |
| 1194 | |
| 1195 | private: |
| 1196 | void AdvancePastEmptyBuckets() { |
| 1197 | assert(Ptr <= End); |
| 1198 | const KeyT Empty = KeyInfoT::getEmptyKey(); |
| 1199 | const KeyT Tombstone = KeyInfoT::getTombstoneKey(); |
| 1200 | |
| 1201 | while (Ptr != End && (KeyInfoT::isEqual(Ptr->getFirst(), Empty) || |
| 1202 | KeyInfoT::isEqual(Ptr->getFirst(), Tombstone))) |
| 1203 | ++Ptr; |
| 1204 | } |
| 1205 | |
| 1206 | void RetreatPastEmptyBuckets() { |
| 1207 | assert(Ptr >= End); |
| 1208 | const KeyT Empty = KeyInfoT::getEmptyKey(); |
| 1209 | const KeyT Tombstone = KeyInfoT::getTombstoneKey(); |
| 1210 | |
| 1211 | while (Ptr != End && (KeyInfoT::isEqual(Ptr[-1].getFirst(), Empty) || |
| 1212 | KeyInfoT::isEqual(Ptr[-1].getFirst(), Tombstone))) |
| 1213 | --Ptr; |
| 1214 | } |
| 1215 | }; |
| 1216 | |
| 1217 | template <typename KeyT, typename ValueT, typename KeyInfoT> |
| 1218 | inline size_t capacity_in_bytes(const DenseMap<KeyT, ValueT, KeyInfoT> &X) { |
| 1219 | return X.getMemorySize(); |
| 1220 | } |
| 1221 | |
| 1222 | } // end namespace llvm |
| 1223 | |
| 1224 | #endif // LLVM_ADT_DENSEMAP_H |