blob: b746505d2a45e979d55db56ffeba0b87dab1f49d [file] [log] [blame]
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001//===- Target.td - Target Independent TableGen interface ---*- tablegen -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the target-independent interfaces which should be
11// implemented by each target which is using a TableGen based code generator.
12//
13//===----------------------------------------------------------------------===//
14
15// Include all information about LLVM intrinsics.
16include "llvm/IR/Intrinsics.td"
17
18//===----------------------------------------------------------------------===//
19// Register file description - These classes are used to fill in the target
20// description classes.
21
22class RegisterClass; // Forward def
23
24class HwMode<string FS> {
25 // A string representing subtarget features that turn on this HW mode.
26 // For example, "+feat1,-feat2" will indicate that the mode is active
27 // when "feat1" is enabled and "feat2" is disabled at the same time.
28 // Any other features are not checked.
29 // When multiple modes are used, they should be mutually exclusive,
30 // otherwise the results are unpredictable.
31 string Features = FS;
32}
33
34// A special mode recognized by tablegen. This mode is considered active
35// when no other mode is active. For targets that do not use specific hw
36// modes, this is the only mode.
37def DefaultMode : HwMode<"">;
38
39// A class used to associate objects with HW modes. It is only intended to
40// be used as a base class, where the derived class should contain a member
41// "Objects", which is a list of the same length as the list of modes.
42// The n-th element on the Objects list will be associated with the n-th
43// element on the Modes list.
44class HwModeSelect<list<HwMode> Ms> {
45 list<HwMode> Modes = Ms;
46}
47
48// A common class that implements a counterpart of ValueType, which is
49// dependent on a HW mode. This class inherits from ValueType itself,
50// which makes it possible to use objects of this class where ValueType
51// objects could be used. This is specifically applicable to selection
52// patterns.
53class ValueTypeByHwMode<list<HwMode> Ms, list<ValueType> Ts>
54 : HwModeSelect<Ms>, ValueType<0, 0> {
55 // The length of this list must be the same as the length of Ms.
56 list<ValueType> Objects = Ts;
57}
58
59// A class representing the register size, spill size and spill alignment
60// in bits of a register.
61class RegInfo<int RS, int SS, int SA> {
62 int RegSize = RS; // Register size in bits.
63 int SpillSize = SS; // Spill slot size in bits.
64 int SpillAlignment = SA; // Spill slot alignment in bits.
65}
66
67// The register size/alignment information, parameterized by a HW mode.
68class RegInfoByHwMode<list<HwMode> Ms = [], list<RegInfo> Ts = []>
69 : HwModeSelect<Ms> {
70 // The length of this list must be the same as the length of Ms.
71 list<RegInfo> Objects = Ts;
72}
73
74// SubRegIndex - Use instances of SubRegIndex to identify subregisters.
75class SubRegIndex<int size, int offset = 0> {
76 string Namespace = "";
77
78 // Size - Size (in bits) of the sub-registers represented by this index.
79 int Size = size;
80
81 // Offset - Offset of the first bit that is part of this sub-register index.
82 // Set it to -1 if the same index is used to represent sub-registers that can
83 // be at different offsets (for example when using an index to access an
84 // element in a register tuple).
85 int Offset = offset;
86
87 // ComposedOf - A list of two SubRegIndex instances, [A, B].
88 // This indicates that this SubRegIndex is the result of composing A and B.
89 // See ComposedSubRegIndex.
90 list<SubRegIndex> ComposedOf = [];
91
92 // CoveringSubRegIndices - A list of two or more sub-register indexes that
93 // cover this sub-register.
94 //
95 // This field should normally be left blank as TableGen can infer it.
96 //
97 // TableGen automatically detects sub-registers that straddle the registers
98 // in the SubRegs field of a Register definition. For example:
99 //
100 // Q0 = dsub_0 -> D0, dsub_1 -> D1
101 // Q1 = dsub_0 -> D2, dsub_1 -> D3
102 // D1_D2 = dsub_0 -> D1, dsub_1 -> D2
103 // QQ0 = qsub_0 -> Q0, qsub_1 -> Q1
104 //
105 // TableGen will infer that D1_D2 is a sub-register of QQ0. It will be given
106 // the synthetic index dsub_1_dsub_2 unless some SubRegIndex is defined with
107 // CoveringSubRegIndices = [dsub_1, dsub_2].
108 list<SubRegIndex> CoveringSubRegIndices = [];
109}
110
111// ComposedSubRegIndex - A sub-register that is the result of composing A and B.
112// Offset is set to the sum of A and B's Offsets. Size is set to B's Size.
113class ComposedSubRegIndex<SubRegIndex A, SubRegIndex B>
114 : SubRegIndex<B.Size, !if(!eq(A.Offset, -1), -1,
115 !if(!eq(B.Offset, -1), -1,
116 !add(A.Offset, B.Offset)))> {
117 // See SubRegIndex.
118 let ComposedOf = [A, B];
119}
120
121// RegAltNameIndex - The alternate name set to use for register operands of
122// this register class when printing.
123class RegAltNameIndex {
124 string Namespace = "";
125}
126def NoRegAltName : RegAltNameIndex;
127
128// Register - You should define one instance of this class for each register
129// in the target machine. String n will become the "name" of the register.
130class Register<string n, list<string> altNames = []> {
131 string Namespace = "";
132 string AsmName = n;
133 list<string> AltNames = altNames;
134
135 // Aliases - A list of registers that this register overlaps with. A read or
136 // modification of this register can potentially read or modify the aliased
137 // registers.
138 list<Register> Aliases = [];
139
140 // SubRegs - A list of registers that are parts of this register. Note these
141 // are "immediate" sub-registers and the registers within the list do not
142 // themselves overlap. e.g. For X86, EAX's SubRegs list contains only [AX],
143 // not [AX, AH, AL].
144 list<Register> SubRegs = [];
145
146 // SubRegIndices - For each register in SubRegs, specify the SubRegIndex used
147 // to address it. Sub-sub-register indices are automatically inherited from
148 // SubRegs.
149 list<SubRegIndex> SubRegIndices = [];
150
151 // RegAltNameIndices - The alternate name indices which are valid for this
152 // register.
153 list<RegAltNameIndex> RegAltNameIndices = [];
154
155 // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
156 // These values can be determined by locating the <target>.h file in the
157 // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES. The
158 // order of these names correspond to the enumeration used by gcc. A value of
159 // -1 indicates that the gcc number is undefined and -2 that register number
160 // is invalid for this mode/flavour.
161 list<int> DwarfNumbers = [];
162
163 // CostPerUse - Additional cost of instructions using this register compared
164 // to other registers in its class. The register allocator will try to
165 // minimize the number of instructions using a register with a CostPerUse.
166 // This is used by the x86-64 and ARM Thumb targets where some registers
167 // require larger instruction encodings.
168 int CostPerUse = 0;
169
170 // CoveredBySubRegs - When this bit is set, the value of this register is
171 // completely determined by the value of its sub-registers. For example, the
172 // x86 register AX is covered by its sub-registers AL and AH, but EAX is not
173 // covered by its sub-register AX.
174 bit CoveredBySubRegs = 0;
175
176 // HWEncoding - The target specific hardware encoding for this register.
177 bits<16> HWEncoding = 0;
178
179 bit isArtificial = 0;
180}
181
182// RegisterWithSubRegs - This can be used to define instances of Register which
183// need to specify sub-registers.
184// List "subregs" specifies which registers are sub-registers to this one. This
185// is used to populate the SubRegs and AliasSet fields of TargetRegisterDesc.
186// This allows the code generator to be careful not to put two values with
187// overlapping live ranges into registers which alias.
188class RegisterWithSubRegs<string n, list<Register> subregs> : Register<n> {
189 let SubRegs = subregs;
190}
191
192// DAGOperand - An empty base class that unifies RegisterClass's and other forms
193// of Operand's that are legal as type qualifiers in DAG patterns. This should
194// only ever be used for defining multiclasses that are polymorphic over both
195// RegisterClass's and other Operand's.
196class DAGOperand {
197 string OperandNamespace = "MCOI";
198 string DecoderMethod = "";
199}
200
201// RegisterClass - Now that all of the registers are defined, and aliases
202// between registers are defined, specify which registers belong to which
203// register classes. This also defines the default allocation order of
204// registers by register allocators.
205//
206class RegisterClass<string namespace, list<ValueType> regTypes, int alignment,
207 dag regList, RegAltNameIndex idx = NoRegAltName>
208 : DAGOperand {
209 string Namespace = namespace;
210
211 // The register size/alignment information, parameterized by a HW mode.
212 RegInfoByHwMode RegInfos;
213
214 // RegType - Specify the list ValueType of the registers in this register
215 // class. Note that all registers in a register class must have the same
216 // ValueTypes. This is a list because some targets permit storing different
217 // types in same register, for example vector values with 128-bit total size,
218 // but different count/size of items, like SSE on x86.
219 //
220 list<ValueType> RegTypes = regTypes;
221
222 // Size - Specify the spill size in bits of the registers. A default value of
223 // zero lets tablgen pick an appropriate size.
224 int Size = 0;
225
226 // Alignment - Specify the alignment required of the registers when they are
227 // stored or loaded to memory.
228 //
229 int Alignment = alignment;
230
231 // CopyCost - This value is used to specify the cost of copying a value
232 // between two registers in this register class. The default value is one
233 // meaning it takes a single instruction to perform the copying. A negative
234 // value means copying is extremely expensive or impossible.
235 int CopyCost = 1;
236
237 // MemberList - Specify which registers are in this class. If the
238 // allocation_order_* method are not specified, this also defines the order of
239 // allocation used by the register allocator.
240 //
241 dag MemberList = regList;
242
243 // AltNameIndex - The alternate register name to use when printing operands
244 // of this register class. Every register in the register class must have
245 // a valid alternate name for the given index.
246 RegAltNameIndex altNameIndex = idx;
247
248 // isAllocatable - Specify that the register class can be used for virtual
249 // registers and register allocation. Some register classes are only used to
250 // model instruction operand constraints, and should have isAllocatable = 0.
251 bit isAllocatable = 1;
252
253 // AltOrders - List of alternative allocation orders. The default order is
254 // MemberList itself, and that is good enough for most targets since the
255 // register allocators automatically remove reserved registers and move
256 // callee-saved registers to the end.
257 list<dag> AltOrders = [];
258
259 // AltOrderSelect - The body of a function that selects the allocation order
260 // to use in a given machine function. The code will be inserted in a
261 // function like this:
262 //
263 // static inline unsigned f(const MachineFunction &MF) { ... }
264 //
265 // The function should return 0 to select the default order defined by
266 // MemberList, 1 to select the first AltOrders entry and so on.
267 code AltOrderSelect = [{}];
268
269 // Specify allocation priority for register allocators using a greedy
270 // heuristic. Classes with higher priority values are assigned first. This is
271 // useful as it is sometimes beneficial to assign registers to highly
272 // constrained classes first. The value has to be in the range [0,63].
273 int AllocationPriority = 0;
274
275 // The diagnostic type to present when referencing this operand in a match
276 // failure error message. If this is empty, the default Match_InvalidOperand
277 // diagnostic type will be used. If this is "<name>", a Match_<name> enum
278 // value will be generated and used for this operand type. The target
279 // assembly parser is responsible for converting this into a user-facing
280 // diagnostic message.
281 string DiagnosticType = "";
282
283 // A diagnostic message to emit when an invalid value is provided for this
284 // register class when it is being used an an assembly operand. If this is
285 // non-empty, an anonymous diagnostic type enum value will be generated, and
286 // the assembly matcher will provide a function to map from diagnostic types
287 // to message strings.
288 string DiagnosticString = "";
289}
290
291// The memberList in a RegisterClass is a dag of set operations. TableGen
292// evaluates these set operations and expand them into register lists. These
293// are the most common operation, see test/TableGen/SetTheory.td for more
294// examples of what is possible:
295//
296// (add R0, R1, R2) - Set Union. Each argument can be an individual register, a
297// register class, or a sub-expression. This is also the way to simply list
298// registers.
299//
300// (sub GPR, SP) - Set difference. Subtract the last arguments from the first.
301//
302// (and GPR, CSR) - Set intersection. All registers from the first set that are
303// also in the second set.
304//
305// (sequence "R%u", 0, 15) -> [R0, R1, ..., R15]. Generate a sequence of
306// numbered registers. Takes an optional 4th operand which is a stride to use
307// when generating the sequence.
308//
309// (shl GPR, 4) - Remove the first N elements.
310//
311// (trunc GPR, 4) - Truncate after the first N elements.
312//
313// (rotl GPR, 1) - Rotate N places to the left.
314//
315// (rotr GPR, 1) - Rotate N places to the right.
316//
317// (decimate GPR, 2) - Pick every N'th element, starting with the first.
318//
319// (interleave A, B, ...) - Interleave the elements from each argument list.
320//
321// All of these operators work on ordered sets, not lists. That means
322// duplicates are removed from sub-expressions.
323
324// Set operators. The rest is defined in TargetSelectionDAG.td.
325def sequence;
326def decimate;
327def interleave;
328
329// RegisterTuples - Automatically generate super-registers by forming tuples of
330// sub-registers. This is useful for modeling register sequence constraints
331// with pseudo-registers that are larger than the architectural registers.
332//
333// The sub-register lists are zipped together:
334//
335// def EvenOdd : RegisterTuples<[sube, subo], [(add R0, R2), (add R1, R3)]>;
336//
337// Generates the same registers as:
338//
339// let SubRegIndices = [sube, subo] in {
340// def R0_R1 : RegisterWithSubRegs<"", [R0, R1]>;
341// def R2_R3 : RegisterWithSubRegs<"", [R2, R3]>;
342// }
343//
344// The generated pseudo-registers inherit super-classes and fields from their
345// first sub-register. Most fields from the Register class are inferred, and
346// the AsmName and Dwarf numbers are cleared.
347//
348// RegisterTuples instances can be used in other set operations to form
349// register classes and so on. This is the only way of using the generated
350// registers.
351class RegisterTuples<list<SubRegIndex> Indices, list<dag> Regs> {
352 // SubRegs - N lists of registers to be zipped up. Super-registers are
353 // synthesized from the first element of each SubRegs list, the second
354 // element and so on.
355 list<dag> SubRegs = Regs;
356
357 // SubRegIndices - N SubRegIndex instances. This provides the names of the
358 // sub-registers in the synthesized super-registers.
359 list<SubRegIndex> SubRegIndices = Indices;
360}
361
362
363//===----------------------------------------------------------------------===//
364// DwarfRegNum - This class provides a mapping of the llvm register enumeration
365// to the register numbering used by gcc and gdb. These values are used by a
366// debug information writer to describe where values may be located during
367// execution.
368class DwarfRegNum<list<int> Numbers> {
369 // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
370 // These values can be determined by locating the <target>.h file in the
371 // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES. The
372 // order of these names correspond to the enumeration used by gcc. A value of
373 // -1 indicates that the gcc number is undefined and -2 that register number
374 // is invalid for this mode/flavour.
375 list<int> DwarfNumbers = Numbers;
376}
377
378// DwarfRegAlias - This class declares that a given register uses the same dwarf
379// numbers as another one. This is useful for making it clear that the two
380// registers do have the same number. It also lets us build a mapping
381// from dwarf register number to llvm register.
382class DwarfRegAlias<Register reg> {
383 Register DwarfAlias = reg;
384}
385
386//===----------------------------------------------------------------------===//
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100387// Pull in the common support for MCPredicate (portable scheduling predicates).
388//
389include "llvm/Target/TargetInstrPredicate.td"
390
391//===----------------------------------------------------------------------===//
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100392// Pull in the common support for scheduling
393//
394include "llvm/Target/TargetSchedule.td"
395
396class Predicate; // Forward def
397
398//===----------------------------------------------------------------------===//
399// Instruction set description - These classes correspond to the C++ classes in
400// the Target/TargetInstrInfo.h file.
401//
402class Instruction {
403 string Namespace = "";
404
405 dag OutOperandList; // An dag containing the MI def operand list.
406 dag InOperandList; // An dag containing the MI use operand list.
407 string AsmString = ""; // The .s format to print the instruction with.
408
409 // Pattern - Set to the DAG pattern for this instruction, if we know of one,
410 // otherwise, uninitialized.
411 list<dag> Pattern;
412
413 // The follow state will eventually be inferred automatically from the
414 // instruction pattern.
415
416 list<Register> Uses = []; // Default to using no non-operand registers
417 list<Register> Defs = []; // Default to modifying no non-operand registers
418
419 // Predicates - List of predicates which will be turned into isel matching
420 // code.
421 list<Predicate> Predicates = [];
422
423 // Size - Size of encoded instruction, or zero if the size cannot be determined
424 // from the opcode.
425 int Size = 0;
426
427 // DecoderNamespace - The "namespace" in which this instruction exists, on
428 // targets like ARM which multiple ISA namespaces exist.
429 string DecoderNamespace = "";
430
431 // Code size, for instruction selection.
432 // FIXME: What does this actually mean?
433 int CodeSize = 0;
434
435 // Added complexity passed onto matching pattern.
436 int AddedComplexity = 0;
437
438 // These bits capture information about the high-level semantics of the
439 // instruction.
440 bit isReturn = 0; // Is this instruction a return instruction?
441 bit isBranch = 0; // Is this instruction a branch instruction?
442 bit isIndirectBranch = 0; // Is this instruction an indirect branch?
443 bit isCompare = 0; // Is this instruction a comparison instruction?
444 bit isMoveImm = 0; // Is this instruction a move immediate instruction?
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100445 bit isMoveReg = 0; // Is this instruction a move register instruction?
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100446 bit isBitcast = 0; // Is this instruction a bitcast instruction?
447 bit isSelect = 0; // Is this instruction a select instruction?
448 bit isBarrier = 0; // Can control flow fall through this instruction?
449 bit isCall = 0; // Is this instruction a call instruction?
450 bit isAdd = 0; // Is this instruction an add instruction?
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100451 bit isTrap = 0; // Is this instruction a trap instruction?
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100452 bit canFoldAsLoad = 0; // Can this be folded as a simple memory operand?
453 bit mayLoad = ?; // Is it possible for this inst to read memory?
454 bit mayStore = ?; // Is it possible for this inst to write memory?
455 bit isConvertibleToThreeAddress = 0; // Can this 2-addr instruction promote?
456 bit isCommutable = 0; // Is this 3 operand instruction commutable?
457 bit isTerminator = 0; // Is this part of the terminator for a basic block?
458 bit isReMaterializable = 0; // Is this instruction re-materializable?
459 bit isPredicable = 0; // Is this instruction predicable?
460 bit hasDelaySlot = 0; // Does this instruction have an delay slot?
461 bit usesCustomInserter = 0; // Pseudo instr needing special help.
462 bit hasPostISelHook = 0; // To be *adjusted* after isel by target hook.
463 bit hasCtrlDep = 0; // Does this instruction r/w ctrl-flow chains?
464 bit isNotDuplicable = 0; // Is it unsafe to duplicate this instruction?
465 bit isConvergent = 0; // Is this instruction convergent?
466 bit isAsCheapAsAMove = 0; // As cheap (or cheaper) than a move instruction.
467 bit hasExtraSrcRegAllocReq = 0; // Sources have special regalloc requirement?
468 bit hasExtraDefRegAllocReq = 0; // Defs have special regalloc requirement?
469 bit isRegSequence = 0; // Is this instruction a kind of reg sequence?
470 // If so, make sure to override
471 // TargetInstrInfo::getRegSequenceLikeInputs.
472 bit isPseudo = 0; // Is this instruction a pseudo-instruction?
473 // If so, won't have encoding information for
474 // the [MC]CodeEmitter stuff.
475 bit isExtractSubreg = 0; // Is this instruction a kind of extract subreg?
476 // If so, make sure to override
477 // TargetInstrInfo::getExtractSubregLikeInputs.
478 bit isInsertSubreg = 0; // Is this instruction a kind of insert subreg?
479 // If so, make sure to override
480 // TargetInstrInfo::getInsertSubregLikeInputs.
481
482 // Does the instruction have side effects that are not captured by any
483 // operands of the instruction or other flags?
484 bit hasSideEffects = ?;
485
486 // Is this instruction a "real" instruction (with a distinct machine
487 // encoding), or is it a pseudo instruction used for codegen modeling
488 // purposes.
489 // FIXME: For now this is distinct from isPseudo, above, as code-gen-only
490 // instructions can (and often do) still have encoding information
491 // associated with them. Once we've migrated all of them over to true
492 // pseudo-instructions that are lowered to real instructions prior to
493 // the printer/emitter, we can remove this attribute and just use isPseudo.
494 //
495 // The intended use is:
496 // isPseudo: Does not have encoding information and should be expanded,
497 // at the latest, during lowering to MCInst.
498 //
499 // isCodeGenOnly: Does have encoding information and can go through to the
500 // CodeEmitter unchanged, but duplicates a canonical instruction
501 // definition's encoding and should be ignored when constructing the
502 // assembler match tables.
503 bit isCodeGenOnly = 0;
504
505 // Is this instruction a pseudo instruction for use by the assembler parser.
506 bit isAsmParserOnly = 0;
507
508 // This instruction is not expected to be queried for scheduling latencies
509 // and therefore needs no scheduling information even for a complete
510 // scheduling model.
511 bit hasNoSchedulingInfo = 0;
512
513 InstrItinClass Itinerary = NoItinerary;// Execution steps used for scheduling.
514
515 // Scheduling information from TargetSchedule.td.
516 list<SchedReadWrite> SchedRW;
517
518 string Constraints = ""; // OperandConstraint, e.g. $src = $dst.
519
520 /// DisableEncoding - List of operand names (e.g. "$op1,$op2") that should not
521 /// be encoded into the output machineinstr.
522 string DisableEncoding = "";
523
524 string PostEncoderMethod = "";
525 string DecoderMethod = "";
526
527 // Is the instruction decoder method able to completely determine if the
528 // given instruction is valid or not. If the TableGen definition of the
529 // instruction specifies bitpattern A??B where A and B are static bits, the
530 // hasCompleteDecoder flag says whether the decoder method fully handles the
531 // ?? space, i.e. if it is a final arbiter for the instruction validity.
532 // If not then the decoder attempts to continue decoding when the decoder
533 // method fails.
534 //
535 // This allows to handle situations where the encoding is not fully
536 // orthogonal. Example:
537 // * InstA with bitpattern 0b0000????,
538 // * InstB with bitpattern 0b000000?? but the associated decoder method
539 // DecodeInstB() returns Fail when ?? is 0b00 or 0b11.
540 //
541 // The decoder tries to decode a bitpattern that matches both InstA and
542 // InstB bitpatterns first as InstB (because it is the most specific
543 // encoding). In the default case (hasCompleteDecoder = 1), when
544 // DecodeInstB() returns Fail the bitpattern gets rejected. By setting
545 // hasCompleteDecoder = 0 in InstB, the decoder is informed that
546 // DecodeInstB() is not able to determine if all possible values of ?? are
547 // valid or not. If DecodeInstB() returns Fail the decoder will attempt to
548 // decode the bitpattern as InstA too.
549 bit hasCompleteDecoder = 1;
550
551 /// Target-specific flags. This becomes the TSFlags field in TargetInstrDesc.
552 bits<64> TSFlags = 0;
553
554 ///@name Assembler Parser Support
555 ///@{
556
557 string AsmMatchConverter = "";
558
559 /// TwoOperandAliasConstraint - Enable TableGen to auto-generate a
560 /// two-operand matcher inst-alias for a three operand instruction.
561 /// For example, the arm instruction "add r3, r3, r5" can be written
562 /// as "add r3, r5". The constraint is of the same form as a tied-operand
563 /// constraint. For example, "$Rn = $Rd".
564 string TwoOperandAliasConstraint = "";
565
566 /// Assembler variant name to use for this instruction. If specified then
567 /// instruction will be presented only in MatchTable for this variant. If
568 /// not specified then assembler variants will be determined based on
569 /// AsmString
570 string AsmVariantName = "";
571
572 ///@}
573
574 /// UseNamedOperandTable - If set, the operand indices of this instruction
575 /// can be queried via the getNamedOperandIdx() function which is generated
576 /// by TableGen.
577 bit UseNamedOperandTable = 0;
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100578
579 /// Should FastISel ignore this instruction. For certain ISAs, they have
580 /// instructions which map to the same ISD Opcode, value type operands and
581 /// instruction selection predicates. FastISel cannot handle such cases, but
582 /// SelectionDAG can.
583 bit FastISelShouldIgnore = 0;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100584}
585
586/// PseudoInstExpansion - Expansion information for a pseudo-instruction.
587/// Which instruction it expands to and how the operands map from the
588/// pseudo.
589class PseudoInstExpansion<dag Result> {
590 dag ResultInst = Result; // The instruction to generate.
591 bit isPseudo = 1;
592}
593
594/// Predicates - These are extra conditionals which are turned into instruction
595/// selector matching code. Currently each predicate is just a string.
596class Predicate<string cond> {
597 string CondString = cond;
598
599 /// AssemblerMatcherPredicate - If this feature can be used by the assembler
600 /// matcher, this is true. Targets should set this by inheriting their
601 /// feature from the AssemblerPredicate class in addition to Predicate.
602 bit AssemblerMatcherPredicate = 0;
603
604 /// AssemblerCondString - Name of the subtarget feature being tested used
605 /// as alternative condition string used for assembler matcher.
606 /// e.g. "ModeThumb" is translated to "(Bits & ModeThumb) != 0".
607 /// "!ModeThumb" is translated to "(Bits & ModeThumb) == 0".
608 /// It can also list multiple features separated by ",".
609 /// e.g. "ModeThumb,FeatureThumb2" is translated to
610 /// "(Bits & ModeThumb) != 0 && (Bits & FeatureThumb2) != 0".
611 string AssemblerCondString = "";
612
613 /// PredicateName - User-level name to use for the predicate. Mainly for use
614 /// in diagnostics such as missing feature errors in the asm matcher.
615 string PredicateName = "";
616
617 /// Setting this to '1' indicates that the predicate must be recomputed on
618 /// every function change. Most predicates can leave this at '0'.
619 ///
620 /// Ignored by SelectionDAG, it always recomputes the predicate on every use.
621 bit RecomputePerFunction = 0;
622}
623
624/// NoHonorSignDependentRounding - This predicate is true if support for
625/// sign-dependent-rounding is not enabled.
626def NoHonorSignDependentRounding
627 : Predicate<"!TM.Options.HonorSignDependentRoundingFPMath()">;
628
629class Requires<list<Predicate> preds> {
630 list<Predicate> Predicates = preds;
631}
632
633/// ops definition - This is just a simple marker used to identify the operand
634/// list for an instruction. outs and ins are identical both syntactically and
635/// semantically; they are used to define def operands and use operands to
636/// improve readibility. This should be used like this:
637/// (outs R32:$dst), (ins R32:$src1, R32:$src2) or something similar.
638def ops;
639def outs;
640def ins;
641
642/// variable_ops definition - Mark this instruction as taking a variable number
643/// of operands.
644def variable_ops;
645
646
647/// PointerLikeRegClass - Values that are designed to have pointer width are
648/// derived from this. TableGen treats the register class as having a symbolic
649/// type that it doesn't know, and resolves the actual regclass to use by using
650/// the TargetRegisterInfo::getPointerRegClass() hook at codegen time.
651class PointerLikeRegClass<int Kind> {
652 int RegClassKind = Kind;
653}
654
655
656/// ptr_rc definition - Mark this operand as being a pointer value whose
657/// register class is resolved dynamically via a callback to TargetInstrInfo.
658/// FIXME: We should probably change this to a class which contain a list of
659/// flags. But currently we have but one flag.
660def ptr_rc : PointerLikeRegClass<0>;
661
662/// unknown definition - Mark this operand as being of unknown type, causing
663/// it to be resolved by inference in the context it is used.
664class unknown_class;
665def unknown : unknown_class;
666
667/// AsmOperandClass - Representation for the kinds of operands which the target
668/// specific parser can create and the assembly matcher may need to distinguish.
669///
670/// Operand classes are used to define the order in which instructions are
671/// matched, to ensure that the instruction which gets matched for any
672/// particular list of operands is deterministic.
673///
674/// The target specific parser must be able to classify a parsed operand into a
675/// unique class which does not partially overlap with any other classes. It can
676/// match a subset of some other class, in which case the super class field
677/// should be defined.
678class AsmOperandClass {
679 /// The name to use for this class, which should be usable as an enum value.
680 string Name = ?;
681
682 /// The super classes of this operand.
683 list<AsmOperandClass> SuperClasses = [];
684
685 /// The name of the method on the target specific operand to call to test
686 /// whether the operand is an instance of this class. If not set, this will
687 /// default to "isFoo", where Foo is the AsmOperandClass name. The method
688 /// signature should be:
689 /// bool isFoo() const;
690 string PredicateMethod = ?;
691
692 /// The name of the method on the target specific operand to call to add the
693 /// target specific operand to an MCInst. If not set, this will default to
694 /// "addFooOperands", where Foo is the AsmOperandClass name. The method
695 /// signature should be:
696 /// void addFooOperands(MCInst &Inst, unsigned N) const;
697 string RenderMethod = ?;
698
699 /// The name of the method on the target specific operand to call to custom
700 /// handle the operand parsing. This is useful when the operands do not relate
701 /// to immediates or registers and are very instruction specific (as flags to
702 /// set in a processor register, coprocessor number, ...).
703 string ParserMethod = ?;
704
705 // The diagnostic type to present when referencing this operand in a
706 // match failure error message. By default, use a generic "invalid operand"
707 // diagnostic. The target AsmParser maps these codes to text.
708 string DiagnosticType = "";
709
710 /// A diagnostic message to emit when an invalid value is provided for this
711 /// operand.
712 string DiagnosticString = "";
713
714 /// Set to 1 if this operand is optional and not always required. Typically,
715 /// the AsmParser will emit an error when it finishes parsing an
716 /// instruction if it hasn't matched all the operands yet. However, this
717 /// error will be suppressed if all of the remaining unmatched operands are
718 /// marked as IsOptional.
719 ///
720 /// Optional arguments must be at the end of the operand list.
721 bit IsOptional = 0;
722
723 /// The name of the method on the target specific asm parser that returns the
724 /// default operand for this optional operand. This method is only used if
725 /// IsOptional == 1. If not set, this will default to "defaultFooOperands",
726 /// where Foo is the AsmOperandClass name. The method signature should be:
727 /// std::unique_ptr<MCParsedAsmOperand> defaultFooOperands() const;
728 string DefaultMethod = ?;
729}
730
731def ImmAsmOperand : AsmOperandClass {
732 let Name = "Imm";
733}
734
735/// Operand Types - These provide the built-in operand types that may be used
736/// by a target. Targets can optionally provide their own operand types as
737/// needed, though this should not be needed for RISC targets.
738class Operand<ValueType ty> : DAGOperand {
739 ValueType Type = ty;
740 string PrintMethod = "printOperand";
741 string EncoderMethod = "";
742 bit hasCompleteDecoder = 1;
743 string OperandType = "OPERAND_UNKNOWN";
744 dag MIOperandInfo = (ops);
745
746 // MCOperandPredicate - Optionally, a code fragment operating on
747 // const MCOperand &MCOp, and returning a bool, to indicate if
748 // the value of MCOp is valid for the specific subclass of Operand
749 code MCOperandPredicate;
750
751 // ParserMatchClass - The "match class" that operands of this type fit
752 // in. Match classes are used to define the order in which instructions are
753 // match, to ensure that which instructions gets matched is deterministic.
754 //
755 // The target specific parser must be able to classify an parsed operand into
756 // a unique class, which does not partially overlap with any other classes. It
757 // can match a subset of some other class, in which case the AsmOperandClass
758 // should declare the other operand as one of its super classes.
759 AsmOperandClass ParserMatchClass = ImmAsmOperand;
760}
761
762class RegisterOperand<RegisterClass regclass, string pm = "printOperand">
763 : DAGOperand {
764 // RegClass - The register class of the operand.
765 RegisterClass RegClass = regclass;
766 // PrintMethod - The target method to call to print register operands of
767 // this type. The method normally will just use an alt-name index to look
768 // up the name to print. Default to the generic printOperand().
769 string PrintMethod = pm;
770
771 // EncoderMethod - The target method name to call to encode this register
772 // operand.
773 string EncoderMethod = "";
774
775 // ParserMatchClass - The "match class" that operands of this type fit
776 // in. Match classes are used to define the order in which instructions are
777 // match, to ensure that which instructions gets matched is deterministic.
778 //
779 // The target specific parser must be able to classify an parsed operand into
780 // a unique class, which does not partially overlap with any other classes. It
781 // can match a subset of some other class, in which case the AsmOperandClass
782 // should declare the other operand as one of its super classes.
783 AsmOperandClass ParserMatchClass;
784
785 string OperandType = "OPERAND_REGISTER";
786
787 // When referenced in the result of a CodeGen pattern, GlobalISel will
788 // normally copy the matched operand to the result. When this is set, it will
789 // emit a special copy that will replace zero-immediates with the specified
790 // zero-register.
791 Register GIZeroRegister = ?;
792}
793
794let OperandType = "OPERAND_IMMEDIATE" in {
795def i1imm : Operand<i1>;
796def i8imm : Operand<i8>;
797def i16imm : Operand<i16>;
798def i32imm : Operand<i32>;
799def i64imm : Operand<i64>;
800
801def f32imm : Operand<f32>;
802def f64imm : Operand<f64>;
803}
804
805// Register operands for generic instructions don't have an MVT, but do have
806// constraints linking the operands (e.g. all operands of a G_ADD must
807// have the same LLT).
808class TypedOperand<string Ty> : Operand<untyped> {
809 let OperandType = Ty;
810 bit IsPointer = 0;
811}
812
813def type0 : TypedOperand<"OPERAND_GENERIC_0">;
814def type1 : TypedOperand<"OPERAND_GENERIC_1">;
815def type2 : TypedOperand<"OPERAND_GENERIC_2">;
816def type3 : TypedOperand<"OPERAND_GENERIC_3">;
817def type4 : TypedOperand<"OPERAND_GENERIC_4">;
818def type5 : TypedOperand<"OPERAND_GENERIC_5">;
819
820let IsPointer = 1 in {
821 def ptype0 : TypedOperand<"OPERAND_GENERIC_0">;
822 def ptype1 : TypedOperand<"OPERAND_GENERIC_1">;
823 def ptype2 : TypedOperand<"OPERAND_GENERIC_2">;
824 def ptype3 : TypedOperand<"OPERAND_GENERIC_3">;
825 def ptype4 : TypedOperand<"OPERAND_GENERIC_4">;
826 def ptype5 : TypedOperand<"OPERAND_GENERIC_5">;
827}
828
829/// zero_reg definition - Special node to stand for the zero register.
830///
831def zero_reg;
832
833/// All operands which the MC layer classifies as predicates should inherit from
834/// this class in some manner. This is already handled for the most commonly
835/// used PredicateOperand, but may be useful in other circumstances.
836class PredicateOp;
837
838/// OperandWithDefaultOps - This Operand class can be used as the parent class
839/// for an Operand that needs to be initialized with a default value if
840/// no value is supplied in a pattern. This class can be used to simplify the
841/// pattern definitions for instructions that have target specific flags
842/// encoded as immediate operands.
843class OperandWithDefaultOps<ValueType ty, dag defaultops>
844 : Operand<ty> {
845 dag DefaultOps = defaultops;
846}
847
848/// PredicateOperand - This can be used to define a predicate operand for an
849/// instruction. OpTypes specifies the MIOperandInfo for the operand, and
850/// AlwaysVal specifies the value of this predicate when set to "always
851/// execute".
852class PredicateOperand<ValueType ty, dag OpTypes, dag AlwaysVal>
853 : OperandWithDefaultOps<ty, AlwaysVal>, PredicateOp {
854 let MIOperandInfo = OpTypes;
855}
856
857/// OptionalDefOperand - This is used to define a optional definition operand
858/// for an instruction. DefaultOps is the register the operand represents if
859/// none is supplied, e.g. zero_reg.
860class OptionalDefOperand<ValueType ty, dag OpTypes, dag defaultops>
861 : OperandWithDefaultOps<ty, defaultops> {
862 let MIOperandInfo = OpTypes;
863}
864
865
866// InstrInfo - This class should only be instantiated once to provide parameters
867// which are global to the target machine.
868//
869class InstrInfo {
870 // Target can specify its instructions in either big or little-endian formats.
871 // For instance, while both Sparc and PowerPC are big-endian platforms, the
872 // Sparc manual specifies its instructions in the format [31..0] (big), while
873 // PowerPC specifies them using the format [0..31] (little).
874 bit isLittleEndianEncoding = 0;
875
876 // The instruction properties mayLoad, mayStore, and hasSideEffects are unset
877 // by default, and TableGen will infer their value from the instruction
878 // pattern when possible.
879 //
880 // Normally, TableGen will issue an error it it can't infer the value of a
881 // property that hasn't been set explicitly. When guessInstructionProperties
882 // is set, it will guess a safe value instead.
883 //
884 // This option is a temporary migration help. It will go away.
885 bit guessInstructionProperties = 1;
886
887 // TableGen's instruction encoder generator has support for matching operands
888 // to bit-field variables both by name and by position. While matching by
889 // name is preferred, this is currently not possible for complex operands,
890 // and some targets still reply on the positional encoding rules. When
891 // generating a decoder for such targets, the positional encoding rules must
892 // be used by the decoder generator as well.
893 //
894 // This option is temporary; it will go away once the TableGen decoder
895 // generator has better support for complex operands and targets have
896 // migrated away from using positionally encoded operands.
897 bit decodePositionallyEncodedOperands = 0;
898
899 // When set, this indicates that there will be no overlap between those
900 // operands that are matched by ordering (positional operands) and those
901 // matched by name.
902 //
903 // This option is temporary; it will go away once the TableGen decoder
904 // generator has better support for complex operands and targets have
905 // migrated away from using positionally encoded operands.
906 bit noNamedPositionallyEncodedOperands = 0;
907}
908
909// Standard Pseudo Instructions.
910// This list must match TargetOpcodes.h and CodeGenTarget.cpp.
911// Only these instructions are allowed in the TargetOpcode namespace.
912// Ensure mayLoad and mayStore have a default value, so as not to break
913// targets that set guessInstructionProperties=0. Any local definition of
914// mayLoad/mayStore takes precedence over these default values.
915class StandardPseudoInstruction : Instruction {
916 let mayLoad = 0;
917 let mayStore = 0;
918 let isCodeGenOnly = 1;
919 let isPseudo = 1;
920 let hasNoSchedulingInfo = 1;
921 let Namespace = "TargetOpcode";
922}
923def PHI : StandardPseudoInstruction {
924 let OutOperandList = (outs unknown:$dst);
925 let InOperandList = (ins variable_ops);
926 let AsmString = "PHINODE";
927 let hasSideEffects = 0;
928}
929def INLINEASM : StandardPseudoInstruction {
930 let OutOperandList = (outs);
931 let InOperandList = (ins variable_ops);
932 let AsmString = "";
933 let hasSideEffects = 0; // Note side effect is encoded in an operand.
934}
935def CFI_INSTRUCTION : StandardPseudoInstruction {
936 let OutOperandList = (outs);
937 let InOperandList = (ins i32imm:$id);
938 let AsmString = "";
939 let hasCtrlDep = 1;
940 let hasSideEffects = 0;
941 let isNotDuplicable = 1;
942}
943def EH_LABEL : StandardPseudoInstruction {
944 let OutOperandList = (outs);
945 let InOperandList = (ins i32imm:$id);
946 let AsmString = "";
947 let hasCtrlDep = 1;
948 let hasSideEffects = 0;
949 let isNotDuplicable = 1;
950}
951def GC_LABEL : StandardPseudoInstruction {
952 let OutOperandList = (outs);
953 let InOperandList = (ins i32imm:$id);
954 let AsmString = "";
955 let hasCtrlDep = 1;
956 let hasSideEffects = 0;
957 let isNotDuplicable = 1;
958}
959def ANNOTATION_LABEL : StandardPseudoInstruction {
960 let OutOperandList = (outs);
961 let InOperandList = (ins i32imm:$id);
962 let AsmString = "";
963 let hasCtrlDep = 1;
964 let hasSideEffects = 0;
965 let isNotDuplicable = 1;
966}
967def KILL : StandardPseudoInstruction {
968 let OutOperandList = (outs);
969 let InOperandList = (ins variable_ops);
970 let AsmString = "";
971 let hasSideEffects = 0;
972}
973def EXTRACT_SUBREG : StandardPseudoInstruction {
974 let OutOperandList = (outs unknown:$dst);
975 let InOperandList = (ins unknown:$supersrc, i32imm:$subidx);
976 let AsmString = "";
977 let hasSideEffects = 0;
978}
979def INSERT_SUBREG : StandardPseudoInstruction {
980 let OutOperandList = (outs unknown:$dst);
981 let InOperandList = (ins unknown:$supersrc, unknown:$subsrc, i32imm:$subidx);
982 let AsmString = "";
983 let hasSideEffects = 0;
984 let Constraints = "$supersrc = $dst";
985}
986def IMPLICIT_DEF : StandardPseudoInstruction {
987 let OutOperandList = (outs unknown:$dst);
988 let InOperandList = (ins);
989 let AsmString = "";
990 let hasSideEffects = 0;
991 let isReMaterializable = 1;
992 let isAsCheapAsAMove = 1;
993}
994def SUBREG_TO_REG : StandardPseudoInstruction {
995 let OutOperandList = (outs unknown:$dst);
996 let InOperandList = (ins unknown:$implsrc, unknown:$subsrc, i32imm:$subidx);
997 let AsmString = "";
998 let hasSideEffects = 0;
999}
1000def COPY_TO_REGCLASS : StandardPseudoInstruction {
1001 let OutOperandList = (outs unknown:$dst);
1002 let InOperandList = (ins unknown:$src, i32imm:$regclass);
1003 let AsmString = "";
1004 let hasSideEffects = 0;
1005 let isAsCheapAsAMove = 1;
1006}
1007def DBG_VALUE : StandardPseudoInstruction {
1008 let OutOperandList = (outs);
1009 let InOperandList = (ins variable_ops);
1010 let AsmString = "DBG_VALUE";
1011 let hasSideEffects = 0;
1012}
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001013def DBG_LABEL : StandardPseudoInstruction {
1014 let OutOperandList = (outs);
1015 let InOperandList = (ins unknown:$label);
1016 let AsmString = "DBG_LABEL";
1017 let hasSideEffects = 0;
1018}
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001019def REG_SEQUENCE : StandardPseudoInstruction {
1020 let OutOperandList = (outs unknown:$dst);
1021 let InOperandList = (ins unknown:$supersrc, variable_ops);
1022 let AsmString = "";
1023 let hasSideEffects = 0;
1024 let isAsCheapAsAMove = 1;
1025}
1026def COPY : StandardPseudoInstruction {
1027 let OutOperandList = (outs unknown:$dst);
1028 let InOperandList = (ins unknown:$src);
1029 let AsmString = "";
1030 let hasSideEffects = 0;
1031 let isAsCheapAsAMove = 1;
1032 let hasNoSchedulingInfo = 0;
1033}
1034def BUNDLE : StandardPseudoInstruction {
1035 let OutOperandList = (outs);
1036 let InOperandList = (ins variable_ops);
1037 let AsmString = "BUNDLE";
1038 let hasSideEffects = 1;
1039}
1040def LIFETIME_START : StandardPseudoInstruction {
1041 let OutOperandList = (outs);
1042 let InOperandList = (ins i32imm:$id);
1043 let AsmString = "LIFETIME_START";
1044 let hasSideEffects = 0;
1045}
1046def LIFETIME_END : StandardPseudoInstruction {
1047 let OutOperandList = (outs);
1048 let InOperandList = (ins i32imm:$id);
1049 let AsmString = "LIFETIME_END";
1050 let hasSideEffects = 0;
1051}
1052def STACKMAP : StandardPseudoInstruction {
1053 let OutOperandList = (outs);
1054 let InOperandList = (ins i64imm:$id, i32imm:$nbytes, variable_ops);
1055 let hasSideEffects = 1;
1056 let isCall = 1;
1057 let mayLoad = 1;
1058 let usesCustomInserter = 1;
1059}
1060def PATCHPOINT : StandardPseudoInstruction {
1061 let OutOperandList = (outs unknown:$dst);
1062 let InOperandList = (ins i64imm:$id, i32imm:$nbytes, unknown:$callee,
1063 i32imm:$nargs, i32imm:$cc, variable_ops);
1064 let hasSideEffects = 1;
1065 let isCall = 1;
1066 let mayLoad = 1;
1067 let usesCustomInserter = 1;
1068}
1069def STATEPOINT : StandardPseudoInstruction {
1070 let OutOperandList = (outs);
1071 let InOperandList = (ins variable_ops);
1072 let usesCustomInserter = 1;
1073 let mayLoad = 1;
1074 let mayStore = 1;
1075 let hasSideEffects = 1;
1076 let isCall = 1;
1077}
1078def LOAD_STACK_GUARD : StandardPseudoInstruction {
1079 let OutOperandList = (outs ptr_rc:$dst);
1080 let InOperandList = (ins);
1081 let mayLoad = 1;
1082 bit isReMaterializable = 1;
1083 let hasSideEffects = 0;
1084 bit isPseudo = 1;
1085}
1086def LOCAL_ESCAPE : StandardPseudoInstruction {
1087 // This instruction is really just a label. It has to be part of the chain so
1088 // that it doesn't get dropped from the DAG, but it produces nothing and has
1089 // no side effects.
1090 let OutOperandList = (outs);
1091 let InOperandList = (ins ptr_rc:$symbol, i32imm:$id);
1092 let hasSideEffects = 0;
1093 let hasCtrlDep = 1;
1094}
1095def FAULTING_OP : StandardPseudoInstruction {
1096 let OutOperandList = (outs unknown:$dst);
1097 let InOperandList = (ins variable_ops);
1098 let usesCustomInserter = 1;
1099 let hasSideEffects = 1;
1100 let mayLoad = 1;
1101 let mayStore = 1;
1102 let isTerminator = 1;
1103 let isBranch = 1;
1104}
1105def PATCHABLE_OP : StandardPseudoInstruction {
1106 let OutOperandList = (outs unknown:$dst);
1107 let InOperandList = (ins variable_ops);
1108 let usesCustomInserter = 1;
1109 let mayLoad = 1;
1110 let mayStore = 1;
1111 let hasSideEffects = 1;
1112}
1113def PATCHABLE_FUNCTION_ENTER : StandardPseudoInstruction {
1114 let OutOperandList = (outs);
1115 let InOperandList = (ins);
1116 let AsmString = "# XRay Function Enter.";
1117 let usesCustomInserter = 1;
1118 let hasSideEffects = 0;
1119}
1120def PATCHABLE_RET : StandardPseudoInstruction {
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001121 let OutOperandList = (outs);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001122 let InOperandList = (ins variable_ops);
1123 let AsmString = "# XRay Function Patchable RET.";
1124 let usesCustomInserter = 1;
1125 let hasSideEffects = 1;
1126 let isTerminator = 1;
1127 let isReturn = 1;
1128}
1129def PATCHABLE_FUNCTION_EXIT : StandardPseudoInstruction {
1130 let OutOperandList = (outs);
1131 let InOperandList = (ins);
1132 let AsmString = "# XRay Function Exit.";
1133 let usesCustomInserter = 1;
1134 let hasSideEffects = 0; // FIXME: is this correct?
1135 let isReturn = 0; // Original return instruction will follow
1136}
1137def PATCHABLE_TAIL_CALL : StandardPseudoInstruction {
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001138 let OutOperandList = (outs);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001139 let InOperandList = (ins variable_ops);
1140 let AsmString = "# XRay Tail Call Exit.";
1141 let usesCustomInserter = 1;
1142 let hasSideEffects = 1;
1143 let isReturn = 1;
1144}
1145def PATCHABLE_EVENT_CALL : StandardPseudoInstruction {
1146 let OutOperandList = (outs);
1147 let InOperandList = (ins ptr_rc:$event, i8imm:$size);
1148 let AsmString = "# XRay Custom Event Log.";
1149 let usesCustomInserter = 1;
1150 let isCall = 1;
1151 let mayLoad = 1;
1152 let mayStore = 1;
1153 let hasSideEffects = 1;
1154}
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001155def PATCHABLE_TYPED_EVENT_CALL : StandardPseudoInstruction {
1156 let OutOperandList = (outs);
1157 let InOperandList = (ins i16imm:$type, ptr_rc:$event, i32imm:$size);
1158 let AsmString = "# XRay Typed Event Log.";
1159 let usesCustomInserter = 1;
1160 let isCall = 1;
1161 let mayLoad = 1;
1162 let mayStore = 1;
1163 let hasSideEffects = 1;
1164}
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001165def FENTRY_CALL : StandardPseudoInstruction {
1166 let OutOperandList = (outs unknown:$dst);
1167 let InOperandList = (ins variable_ops);
1168 let AsmString = "# FEntry call";
1169 let usesCustomInserter = 1;
1170 let mayLoad = 1;
1171 let mayStore = 1;
1172 let hasSideEffects = 1;
1173}
1174def ICALL_BRANCH_FUNNEL : StandardPseudoInstruction {
1175 let OutOperandList = (outs unknown:$dst);
1176 let InOperandList = (ins variable_ops);
1177 let AsmString = "";
1178 let hasSideEffects = 1;
1179}
1180
1181// Generic opcodes used in GlobalISel.
1182include "llvm/Target/GenericOpcodes.td"
1183
1184//===----------------------------------------------------------------------===//
1185// AsmParser - This class can be implemented by targets that wish to implement
1186// .s file parsing.
1187//
1188// Subtargets can have multiple different assembly parsers (e.g. AT&T vs Intel
1189// syntax on X86 for example).
1190//
1191class AsmParser {
1192 // AsmParserClassName - This specifies the suffix to use for the asmparser
1193 // class. Generated AsmParser classes are always prefixed with the target
1194 // name.
1195 string AsmParserClassName = "AsmParser";
1196
1197 // AsmParserInstCleanup - If non-empty, this is the name of a custom member
1198 // function of the AsmParser class to call on every matched instruction.
1199 // This can be used to perform target specific instruction post-processing.
1200 string AsmParserInstCleanup = "";
1201
1202 // ShouldEmitMatchRegisterName - Set to false if the target needs a hand
1203 // written register name matcher
1204 bit ShouldEmitMatchRegisterName = 1;
1205
1206 // Set to true if the target needs a generated 'alternative register name'
1207 // matcher.
1208 //
1209 // This generates a function which can be used to lookup registers from
1210 // their aliases. This function will fail when called on targets where
1211 // several registers share the same alias (i.e. not a 1:1 mapping).
1212 bit ShouldEmitMatchRegisterAltName = 0;
1213
1214 // Set to true if MatchRegisterName and MatchRegisterAltName functions
1215 // should be generated even if there are duplicate register names. The
1216 // target is responsible for coercing aliased registers as necessary
1217 // (e.g. in validateTargetOperandClass), and there are no guarantees about
1218 // which numeric register identifier will be returned in the case of
1219 // multiple matches.
1220 bit AllowDuplicateRegisterNames = 0;
1221
1222 // HasMnemonicFirst - Set to false if target instructions don't always
1223 // start with a mnemonic as the first token.
1224 bit HasMnemonicFirst = 1;
1225
1226 // ReportMultipleNearMisses -
1227 // When 0, the assembly matcher reports an error for one encoding or operand
1228 // that did not match the parsed instruction.
1229 // When 1, the assmebly matcher returns a list of encodings that were close
1230 // to matching the parsed instruction, so to allow more detailed error
1231 // messages.
1232 bit ReportMultipleNearMisses = 0;
1233}
1234def DefaultAsmParser : AsmParser;
1235
1236//===----------------------------------------------------------------------===//
1237// AsmParserVariant - Subtargets can have multiple different assembly parsers
1238// (e.g. AT&T vs Intel syntax on X86 for example). This class can be
1239// implemented by targets to describe such variants.
1240//
1241class AsmParserVariant {
1242 // Variant - AsmParsers can be of multiple different variants. Variants are
1243 // used to support targets that need to parser multiple formats for the
1244 // assembly language.
1245 int Variant = 0;
1246
1247 // Name - The AsmParser variant name (e.g., AT&T vs Intel).
1248 string Name = "";
1249
1250 // CommentDelimiter - If given, the delimiter string used to recognize
1251 // comments which are hard coded in the .td assembler strings for individual
1252 // instructions.
1253 string CommentDelimiter = "";
1254
1255 // RegisterPrefix - If given, the token prefix which indicates a register
1256 // token. This is used by the matcher to automatically recognize hard coded
1257 // register tokens as constrained registers, instead of tokens, for the
1258 // purposes of matching.
1259 string RegisterPrefix = "";
1260
1261 // TokenizingCharacters - Characters that are standalone tokens
1262 string TokenizingCharacters = "[]*!";
1263
1264 // SeparatorCharacters - Characters that are not tokens
1265 string SeparatorCharacters = " \t,";
1266
1267 // BreakCharacters - Characters that start new identifiers
1268 string BreakCharacters = "";
1269}
1270def DefaultAsmParserVariant : AsmParserVariant;
1271
1272/// AssemblerPredicate - This is a Predicate that can be used when the assembler
1273/// matches instructions and aliases.
1274class AssemblerPredicate<string cond, string name = ""> {
1275 bit AssemblerMatcherPredicate = 1;
1276 string AssemblerCondString = cond;
1277 string PredicateName = name;
1278}
1279
1280/// TokenAlias - This class allows targets to define assembler token
1281/// operand aliases. That is, a token literal operand which is equivalent
1282/// to another, canonical, token literal. For example, ARM allows:
1283/// vmov.u32 s4, #0 -> vmov.i32, #0
1284/// 'u32' is a more specific designator for the 32-bit integer type specifier
1285/// and is legal for any instruction which accepts 'i32' as a datatype suffix.
1286/// def : TokenAlias<".u32", ".i32">;
1287///
1288/// This works by marking the match class of 'From' as a subclass of the
1289/// match class of 'To'.
1290class TokenAlias<string From, string To> {
1291 string FromToken = From;
1292 string ToToken = To;
1293}
1294
1295/// MnemonicAlias - This class allows targets to define assembler mnemonic
1296/// aliases. This should be used when all forms of one mnemonic are accepted
1297/// with a different mnemonic. For example, X86 allows:
1298/// sal %al, 1 -> shl %al, 1
1299/// sal %ax, %cl -> shl %ax, %cl
1300/// sal %eax, %cl -> shl %eax, %cl
1301/// etc. Though "sal" is accepted with many forms, all of them are directly
1302/// translated to a shl, so it can be handled with (in the case of X86, it
1303/// actually has one for each suffix as well):
1304/// def : MnemonicAlias<"sal", "shl">;
1305///
1306/// Mnemonic aliases are mapped before any other translation in the match phase,
1307/// and do allow Requires predicates, e.g.:
1308///
1309/// def : MnemonicAlias<"pushf", "pushfq">, Requires<[In64BitMode]>;
1310/// def : MnemonicAlias<"pushf", "pushfl">, Requires<[In32BitMode]>;
1311///
1312/// Mnemonic aliases can also be constrained to specific variants, e.g.:
1313///
1314/// def : MnemonicAlias<"pushf", "pushfq", "att">, Requires<[In64BitMode]>;
1315///
1316/// If no variant (e.g., "att" or "intel") is specified then the alias is
1317/// applied unconditionally.
1318class MnemonicAlias<string From, string To, string VariantName = ""> {
1319 string FromMnemonic = From;
1320 string ToMnemonic = To;
1321 string AsmVariantName = VariantName;
1322
1323 // Predicates - Predicates that must be true for this remapping to happen.
1324 list<Predicate> Predicates = [];
1325}
1326
1327/// InstAlias - This defines an alternate assembly syntax that is allowed to
1328/// match an instruction that has a different (more canonical) assembly
1329/// representation.
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001330class InstAlias<string Asm, dag Result, int Emit = 1, string VariantName = ""> {
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001331 string AsmString = Asm; // The .s format to match the instruction with.
1332 dag ResultInst = Result; // The MCInst to generate.
1333
1334 // This determines which order the InstPrinter detects aliases for
1335 // printing. A larger value makes the alias more likely to be
1336 // emitted. The Instruction's own definition is notionally 0.5, so 0
1337 // disables printing and 1 enables it if there are no conflicting aliases.
1338 int EmitPriority = Emit;
1339
1340 // Predicates - Predicates that must be true for this to match.
1341 list<Predicate> Predicates = [];
1342
1343 // If the instruction specified in Result has defined an AsmMatchConverter
1344 // then setting this to 1 will cause the alias to use the AsmMatchConverter
1345 // function when converting the OperandVector into an MCInst instead of the
1346 // function that is generated by the dag Result.
1347 // Setting this to 0 will cause the alias to ignore the Result instruction's
1348 // defined AsmMatchConverter and instead use the function generated by the
1349 // dag Result.
1350 bit UseInstAsmMatchConverter = 1;
1351
1352 // Assembler variant name to use for this alias. If not specified then
1353 // assembler variants will be determined based on AsmString
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001354 string AsmVariantName = VariantName;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001355}
1356
1357//===----------------------------------------------------------------------===//
1358// AsmWriter - This class can be implemented by targets that need to customize
1359// the format of the .s file writer.
1360//
1361// Subtargets can have multiple different asmwriters (e.g. AT&T vs Intel syntax
1362// on X86 for example).
1363//
1364class AsmWriter {
1365 // AsmWriterClassName - This specifies the suffix to use for the asmwriter
1366 // class. Generated AsmWriter classes are always prefixed with the target
1367 // name.
1368 string AsmWriterClassName = "InstPrinter";
1369
1370 // PassSubtarget - Determines whether MCSubtargetInfo should be passed to
1371 // the various print methods.
1372 // FIXME: Remove after all ports are updated.
1373 int PassSubtarget = 0;
1374
1375 // Variant - AsmWriters can be of multiple different variants. Variants are
1376 // used to support targets that need to emit assembly code in ways that are
1377 // mostly the same for different targets, but have minor differences in
1378 // syntax. If the asmstring contains {|} characters in them, this integer
1379 // will specify which alternative to use. For example "{x|y|z}" with Variant
1380 // == 1, will expand to "y".
1381 int Variant = 0;
1382}
1383def DefaultAsmWriter : AsmWriter;
1384
1385
1386//===----------------------------------------------------------------------===//
1387// Target - This class contains the "global" target information
1388//
1389class Target {
1390 // InstructionSet - Instruction set description for this target.
1391 InstrInfo InstructionSet;
1392
1393 // AssemblyParsers - The AsmParser instances available for this target.
1394 list<AsmParser> AssemblyParsers = [DefaultAsmParser];
1395
1396 /// AssemblyParserVariants - The AsmParserVariant instances available for
1397 /// this target.
1398 list<AsmParserVariant> AssemblyParserVariants = [DefaultAsmParserVariant];
1399
1400 // AssemblyWriters - The AsmWriter instances available for this target.
1401 list<AsmWriter> AssemblyWriters = [DefaultAsmWriter];
1402
1403 // AllowRegisterRenaming - Controls whether this target allows
1404 // post-register-allocation renaming of registers. This is done by
1405 // setting hasExtraDefRegAllocReq and hasExtraSrcRegAllocReq to 1
1406 // for all opcodes if this flag is set to 0.
1407 int AllowRegisterRenaming = 0;
1408}
1409
1410//===----------------------------------------------------------------------===//
1411// SubtargetFeature - A characteristic of the chip set.
1412//
1413class SubtargetFeature<string n, string a, string v, string d,
1414 list<SubtargetFeature> i = []> {
1415 // Name - Feature name. Used by command line (-mattr=) to determine the
1416 // appropriate target chip.
1417 //
1418 string Name = n;
1419
1420 // Attribute - Attribute to be set by feature.
1421 //
1422 string Attribute = a;
1423
1424 // Value - Value the attribute to be set to by feature.
1425 //
1426 string Value = v;
1427
1428 // Desc - Feature description. Used by command line (-mattr=) to display help
1429 // information.
1430 //
1431 string Desc = d;
1432
1433 // Implies - Features that this feature implies are present. If one of those
1434 // features isn't set, then this one shouldn't be set either.
1435 //
1436 list<SubtargetFeature> Implies = i;
1437}
1438
1439/// Specifies a Subtarget feature that this instruction is deprecated on.
1440class Deprecated<SubtargetFeature dep> {
1441 SubtargetFeature DeprecatedFeatureMask = dep;
1442}
1443
1444/// A custom predicate used to determine if an instruction is
1445/// deprecated or not.
1446class ComplexDeprecationPredicate<string dep> {
1447 string ComplexDeprecationPredicate = dep;
1448}
1449
1450//===----------------------------------------------------------------------===//
1451// Processor chip sets - These values represent each of the chip sets supported
1452// by the scheduler. Each Processor definition requires corresponding
1453// instruction itineraries.
1454//
1455class Processor<string n, ProcessorItineraries pi, list<SubtargetFeature> f> {
1456 // Name - Chip set name. Used by command line (-mcpu=) to determine the
1457 // appropriate target chip.
1458 //
1459 string Name = n;
1460
1461 // SchedModel - The machine model for scheduling and instruction cost.
1462 //
1463 SchedMachineModel SchedModel = NoSchedModel;
1464
1465 // ProcItin - The scheduling information for the target processor.
1466 //
1467 ProcessorItineraries ProcItin = pi;
1468
1469 // Features - list of
1470 list<SubtargetFeature> Features = f;
1471}
1472
1473// ProcessorModel allows subtargets to specify the more general
1474// SchedMachineModel instead if a ProcessorItinerary. Subtargets will
1475// gradually move to this newer form.
1476//
1477// Although this class always passes NoItineraries to the Processor
1478// class, the SchedMachineModel may still define valid Itineraries.
1479class ProcessorModel<string n, SchedMachineModel m, list<SubtargetFeature> f>
1480 : Processor<n, NoItineraries, f> {
1481 let SchedModel = m;
1482}
1483
1484//===----------------------------------------------------------------------===//
1485// InstrMapping - This class is used to create mapping tables to relate
1486// instructions with each other based on the values specified in RowFields,
1487// ColFields, KeyCol and ValueCols.
1488//
1489class InstrMapping {
1490 // FilterClass - Used to limit search space only to the instructions that
1491 // define the relationship modeled by this InstrMapping record.
1492 string FilterClass;
1493
1494 // RowFields - List of fields/attributes that should be same for all the
1495 // instructions in a row of the relation table. Think of this as a set of
1496 // properties shared by all the instructions related by this relationship
1497 // model and is used to categorize instructions into subgroups. For instance,
1498 // if we want to define a relation that maps 'Add' instruction to its
1499 // predicated forms, we can define RowFields like this:
1500 //
1501 // let RowFields = BaseOp
1502 // All add instruction predicated/non-predicated will have to set their BaseOp
1503 // to the same value.
1504 //
1505 // def Add: { let BaseOp = 'ADD'; let predSense = 'nopred' }
1506 // def Add_predtrue: { let BaseOp = 'ADD'; let predSense = 'true' }
1507 // def Add_predfalse: { let BaseOp = 'ADD'; let predSense = 'false' }
1508 list<string> RowFields = [];
1509
1510 // List of fields/attributes that are same for all the instructions
1511 // in a column of the relation table.
1512 // Ex: let ColFields = 'predSense' -- It means that the columns are arranged
1513 // based on the 'predSense' values. All the instruction in a specific
1514 // column have the same value and it is fixed for the column according
1515 // to the values set in 'ValueCols'.
1516 list<string> ColFields = [];
1517
1518 // Values for the fields/attributes listed in 'ColFields'.
1519 // Ex: let KeyCol = 'nopred' -- It means that the key instruction (instruction
1520 // that models this relation) should be non-predicated.
1521 // In the example above, 'Add' is the key instruction.
1522 list<string> KeyCol = [];
1523
1524 // List of values for the fields/attributes listed in 'ColFields', one for
1525 // each column in the relation table.
1526 //
1527 // Ex: let ValueCols = [['true'],['false']] -- It adds two columns in the
1528 // table. First column requires all the instructions to have predSense
1529 // set to 'true' and second column requires it to be 'false'.
1530 list<list<string> > ValueCols = [];
1531}
1532
1533//===----------------------------------------------------------------------===//
1534// Pull in the common support for calling conventions.
1535//
1536include "llvm/Target/TargetCallingConv.td"
1537
1538//===----------------------------------------------------------------------===//
1539// Pull in the common support for DAG isel generation.
1540//
1541include "llvm/Target/TargetSelectionDAG.td"
1542
1543//===----------------------------------------------------------------------===//
1544// Pull in the common support for Global ISel register bank info generation.
1545//
1546include "llvm/Target/GlobalISel/RegisterBank.td"
1547
1548//===----------------------------------------------------------------------===//
1549// Pull in the common support for DAG isel generation.
1550//
1551include "llvm/Target/GlobalISel/Target.td"
1552
1553//===----------------------------------------------------------------------===//
1554// Pull in the common support for the Global ISel DAG-based selector generation.
1555//
1556include "llvm/Target/GlobalISel/SelectionDAGCompat.td"