Update prebuilt Clang to r416183b from Android.

https://android.googlesource.com/platform/prebuilts/clang/host/
linux-x86/+/06a71ddac05c22edb2d10b590e1769b3f8619bef

clang 12.0.5 (based on r416183b) from build 7284624.

Change-Id: I277a316abcf47307562d8b748b84870f31a72866
Signed-off-by: Olivier Deprez <olivier.deprez@arm.com>
diff --git a/linux-x64/clang/python3/include/python3.9/pymem.h b/linux-x64/clang/python3/include/python3.9/pymem.h
new file mode 100644
index 0000000..607feb9
--- /dev/null
+++ b/linux-x64/clang/python3/include/python3.9/pymem.h
@@ -0,0 +1,115 @@
+/* The PyMem_ family:  low-level memory allocation interfaces.
+   See objimpl.h for the PyObject_ memory family.
+*/
+
+#ifndef Py_PYMEM_H
+#define Py_PYMEM_H
+
+#include "pyport.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/* BEWARE:
+
+   Each interface exports both functions and macros.  Extension modules should
+   use the functions, to ensure binary compatibility across Python versions.
+   Because the Python implementation is free to change internal details, and
+   the macros may (or may not) expose details for speed, if you do use the
+   macros you must recompile your extensions with each Python release.
+
+   Never mix calls to PyMem_ with calls to the platform malloc/realloc/
+   calloc/free.  For example, on Windows different DLLs may end up using
+   different heaps, and if you use PyMem_Malloc you'll get the memory from the
+   heap used by the Python DLL; it could be a disaster if you free()'ed that
+   directly in your own extension.  Using PyMem_Free instead ensures Python
+   can return the memory to the proper heap.  As another example, in
+   PYMALLOC_DEBUG mode, Python wraps all calls to all PyMem_ and PyObject_
+   memory functions in special debugging wrappers that add additional
+   debugging info to dynamic memory blocks.  The system routines have no idea
+   what to do with that stuff, and the Python wrappers have no idea what to do
+   with raw blocks obtained directly by the system routines then.
+
+   The GIL must be held when using these APIs.
+*/
+
+/*
+ * Raw memory interface
+ * ====================
+ */
+
+/* Functions
+
+   Functions supplying platform-independent semantics for malloc/realloc/
+   free.  These functions make sure that allocating 0 bytes returns a distinct
+   non-NULL pointer (whenever possible -- if we're flat out of memory, NULL
+   may be returned), even if the platform malloc and realloc don't.
+   Returned pointers must be checked for NULL explicitly.  No action is
+   performed on failure (no exception is set, no warning is printed, etc).
+*/
+
+PyAPI_FUNC(void *) PyMem_Malloc(size_t size);
+PyAPI_FUNC(void *) PyMem_Realloc(void *ptr, size_t new_size);
+PyAPI_FUNC(void) PyMem_Free(void *ptr);
+
+/* Macros. */
+
+/* PyMem_MALLOC(0) means malloc(1). Some systems would return NULL
+   for malloc(0), which would be treated as an error. Some platforms
+   would return a pointer with no memory behind it, which would break
+   pymalloc. To solve these problems, allocate an extra byte. */
+/* Returns NULL to indicate error if a negative size or size larger than
+   Py_ssize_t can represent is supplied.  Helps prevents security holes. */
+#define PyMem_MALLOC(n)         PyMem_Malloc(n)
+#define PyMem_REALLOC(p, n)     PyMem_Realloc(p, n)
+#define PyMem_FREE(p)           PyMem_Free(p)
+
+/*
+ * Type-oriented memory interface
+ * ==============================
+ *
+ * Allocate memory for n objects of the given type.  Returns a new pointer
+ * or NULL if the request was too large or memory allocation failed.  Use
+ * these macros rather than doing the multiplication yourself so that proper
+ * overflow checking is always done.
+ */
+
+#define PyMem_New(type, n) \
+  ( ((size_t)(n) > PY_SSIZE_T_MAX / sizeof(type)) ? NULL :      \
+        ( (type *) PyMem_Malloc((n) * sizeof(type)) ) )
+#define PyMem_NEW(type, n) \
+  ( ((size_t)(n) > PY_SSIZE_T_MAX / sizeof(type)) ? NULL :      \
+        ( (type *) PyMem_MALLOC((n) * sizeof(type)) ) )
+
+/*
+ * The value of (p) is always clobbered by this macro regardless of success.
+ * The caller MUST check if (p) is NULL afterwards and deal with the memory
+ * error if so.  This means the original value of (p) MUST be saved for the
+ * caller's memory error handler to not lose track of it.
+ */
+#define PyMem_Resize(p, type, n) \
+  ( (p) = ((size_t)(n) > PY_SSIZE_T_MAX / sizeof(type)) ? NULL :        \
+        (type *) PyMem_Realloc((p), (n) * sizeof(type)) )
+#define PyMem_RESIZE(p, type, n) \
+  ( (p) = ((size_t)(n) > PY_SSIZE_T_MAX / sizeof(type)) ? NULL :        \
+        (type *) PyMem_REALLOC((p), (n) * sizeof(type)) )
+
+/* PyMem{Del,DEL} are left over from ancient days, and shouldn't be used
+ * anymore.  They're just confusing aliases for PyMem_{Free,FREE} now.
+ */
+#define PyMem_Del               PyMem_Free
+#define PyMem_DEL               PyMem_FREE
+
+
+#ifndef Py_LIMITED_API
+#  define Py_CPYTHON_PYMEM_H
+#  include  "cpython/pymem.h"
+#  undef Py_CPYTHON_PYMEM_H
+#endif
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* !Py_PYMEM_H */