Update prebuilt Clang to r416183b from Android.
https://android.googlesource.com/platform/prebuilts/clang/host/
linux-x86/+/06a71ddac05c22edb2d10b590e1769b3f8619bef
clang 12.0.5 (based on r416183b) from build 7284624.
Change-Id: I277a316abcf47307562d8b748b84870f31a72866
Signed-off-by: Olivier Deprez <olivier.deprez@arm.com>
diff --git a/linux-x64/clang/include/llvm/ADT/CoalescingBitVector.h b/linux-x64/clang/include/llvm/ADT/CoalescingBitVector.h
new file mode 100644
index 0000000..0a7dcfe
--- /dev/null
+++ b/linux-x64/clang/include/llvm/ADT/CoalescingBitVector.h
@@ -0,0 +1,443 @@
+//===- llvm/ADT/CoalescingBitVector.h - A coalescing bitvector --*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+///
+/// \file A bitvector that uses an IntervalMap to coalesce adjacent elements
+/// into intervals.
+///
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ADT_COALESCINGBITVECTOR_H
+#define LLVM_ADT_COALESCINGBITVECTOR_H
+
+#include "llvm/ADT/IntervalMap.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/iterator_range.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+
+#include <algorithm>
+#include <initializer_list>
+
+namespace llvm {
+
+/// A bitvector that, under the hood, relies on an IntervalMap to coalesce
+/// elements into intervals. Good for representing sets which predominantly
+/// contain contiguous ranges. Bad for representing sets with lots of gaps
+/// between elements.
+///
+/// Compared to SparseBitVector, CoalescingBitVector offers more predictable
+/// performance for non-sequential find() operations.
+///
+/// \tparam IndexT - The type of the index into the bitvector.
+template <typename IndexT> class CoalescingBitVector {
+ static_assert(std::is_unsigned<IndexT>::value,
+ "Index must be an unsigned integer.");
+
+ using ThisT = CoalescingBitVector<IndexT>;
+
+ /// An interval map for closed integer ranges. The mapped values are unused.
+ using MapT = IntervalMap<IndexT, char>;
+
+ using UnderlyingIterator = typename MapT::const_iterator;
+
+ using IntervalT = std::pair<IndexT, IndexT>;
+
+public:
+ using Allocator = typename MapT::Allocator;
+
+ /// Construct by passing in a CoalescingBitVector<IndexT>::Allocator
+ /// reference.
+ CoalescingBitVector(Allocator &Alloc)
+ : Alloc(&Alloc), Intervals(Alloc) {}
+
+ /// \name Copy/move constructors and assignment operators.
+ /// @{
+
+ CoalescingBitVector(const ThisT &Other)
+ : Alloc(Other.Alloc), Intervals(*Other.Alloc) {
+ set(Other);
+ }
+
+ ThisT &operator=(const ThisT &Other) {
+ clear();
+ set(Other);
+ return *this;
+ }
+
+ CoalescingBitVector(ThisT &&Other) = delete;
+ ThisT &operator=(ThisT &&Other) = delete;
+
+ /// @}
+
+ /// Clear all the bits.
+ void clear() { Intervals.clear(); }
+
+ /// Check whether no bits are set.
+ bool empty() const { return Intervals.empty(); }
+
+ /// Count the number of set bits.
+ unsigned count() const {
+ unsigned Bits = 0;
+ for (auto It = Intervals.begin(), End = Intervals.end(); It != End; ++It)
+ Bits += 1 + It.stop() - It.start();
+ return Bits;
+ }
+
+ /// Set the bit at \p Index.
+ ///
+ /// This method does /not/ support setting a bit that has already been set,
+ /// for efficiency reasons. If possible, restructure your code to not set the
+ /// same bit multiple times, or use \ref test_and_set.
+ void set(IndexT Index) {
+ assert(!test(Index) && "Setting already-set bits not supported/efficient, "
+ "IntervalMap will assert");
+ insert(Index, Index);
+ }
+
+ /// Set the bits set in \p Other.
+ ///
+ /// This method does /not/ support setting already-set bits, see \ref set
+ /// for the rationale. For a safe set union operation, use \ref operator|=.
+ void set(const ThisT &Other) {
+ for (auto It = Other.Intervals.begin(), End = Other.Intervals.end();
+ It != End; ++It)
+ insert(It.start(), It.stop());
+ }
+
+ /// Set the bits at \p Indices. Used for testing, primarily.
+ void set(std::initializer_list<IndexT> Indices) {
+ for (IndexT Index : Indices)
+ set(Index);
+ }
+
+ /// Check whether the bit at \p Index is set.
+ bool test(IndexT Index) const {
+ const auto It = Intervals.find(Index);
+ if (It == Intervals.end())
+ return false;
+ assert(It.stop() >= Index && "Interval must end after Index");
+ return It.start() <= Index;
+ }
+
+ /// Set the bit at \p Index. Supports setting an already-set bit.
+ void test_and_set(IndexT Index) {
+ if (!test(Index))
+ set(Index);
+ }
+
+ /// Reset the bit at \p Index. Supports resetting an already-unset bit.
+ void reset(IndexT Index) {
+ auto It = Intervals.find(Index);
+ if (It == Intervals.end())
+ return;
+
+ // Split the interval containing Index into up to two parts: one from
+ // [Start, Index-1] and another from [Index+1, Stop]. If Index is equal to
+ // either Start or Stop, we create one new interval. If Index is equal to
+ // both Start and Stop, we simply erase the existing interval.
+ IndexT Start = It.start();
+ if (Index < Start)
+ // The index was not set.
+ return;
+ IndexT Stop = It.stop();
+ assert(Index <= Stop && "Wrong interval for index");
+ It.erase();
+ if (Start < Index)
+ insert(Start, Index - 1);
+ if (Index < Stop)
+ insert(Index + 1, Stop);
+ }
+
+ /// Set union. If \p RHS is guaranteed to not overlap with this, \ref set may
+ /// be a faster alternative.
+ void operator|=(const ThisT &RHS) {
+ // Get the overlaps between the two interval maps.
+ SmallVector<IntervalT, 8> Overlaps;
+ getOverlaps(RHS, Overlaps);
+
+ // Insert the non-overlapping parts of all the intervals from RHS.
+ for (auto It = RHS.Intervals.begin(), End = RHS.Intervals.end();
+ It != End; ++It) {
+ IndexT Start = It.start();
+ IndexT Stop = It.stop();
+ SmallVector<IntervalT, 8> NonOverlappingParts;
+ getNonOverlappingParts(Start, Stop, Overlaps, NonOverlappingParts);
+ for (IntervalT AdditivePortion : NonOverlappingParts)
+ insert(AdditivePortion.first, AdditivePortion.second);
+ }
+ }
+
+ /// Set intersection.
+ void operator&=(const ThisT &RHS) {
+ // Get the overlaps between the two interval maps (i.e. the intersection).
+ SmallVector<IntervalT, 8> Overlaps;
+ getOverlaps(RHS, Overlaps);
+ // Rebuild the interval map, including only the overlaps.
+ clear();
+ for (IntervalT Overlap : Overlaps)
+ insert(Overlap.first, Overlap.second);
+ }
+
+ /// Reset all bits present in \p Other.
+ void intersectWithComplement(const ThisT &Other) {
+ SmallVector<IntervalT, 8> Overlaps;
+ if (!getOverlaps(Other, Overlaps)) {
+ // If there is no overlap with Other, the intersection is empty.
+ return;
+ }
+
+ // Delete the overlapping intervals. Split up intervals that only partially
+ // intersect an overlap.
+ for (IntervalT Overlap : Overlaps) {
+ IndexT OlapStart, OlapStop;
+ std::tie(OlapStart, OlapStop) = Overlap;
+
+ auto It = Intervals.find(OlapStart);
+ IndexT CurrStart = It.start();
+ IndexT CurrStop = It.stop();
+ assert(CurrStart <= OlapStart && OlapStop <= CurrStop &&
+ "Expected some intersection!");
+
+ // Split the overlap interval into up to two parts: one from [CurrStart,
+ // OlapStart-1] and another from [OlapStop+1, CurrStop]. If OlapStart is
+ // equal to CurrStart, the first split interval is unnecessary. Ditto for
+ // when OlapStop is equal to CurrStop, we omit the second split interval.
+ It.erase();
+ if (CurrStart < OlapStart)
+ insert(CurrStart, OlapStart - 1);
+ if (OlapStop < CurrStop)
+ insert(OlapStop + 1, CurrStop);
+ }
+ }
+
+ bool operator==(const ThisT &RHS) const {
+ // We cannot just use std::equal because it checks the dereferenced values
+ // of an iterator pair for equality, not the iterators themselves. In our
+ // case that results in comparison of the (unused) IntervalMap values.
+ auto ItL = Intervals.begin();
+ auto ItR = RHS.Intervals.begin();
+ while (ItL != Intervals.end() && ItR != RHS.Intervals.end() &&
+ ItL.start() == ItR.start() && ItL.stop() == ItR.stop()) {
+ ++ItL;
+ ++ItR;
+ }
+ return ItL == Intervals.end() && ItR == RHS.Intervals.end();
+ }
+
+ bool operator!=(const ThisT &RHS) const { return !operator==(RHS); }
+
+ class const_iterator
+ : public std::iterator<std::forward_iterator_tag, IndexT> {
+ friend class CoalescingBitVector;
+
+ // For performance reasons, make the offset at the end different than the
+ // one used in \ref begin, to optimize the common `It == end()` pattern.
+ static constexpr unsigned kIteratorAtTheEndOffset = ~0u;
+
+ UnderlyingIterator MapIterator;
+ unsigned OffsetIntoMapIterator = 0;
+
+ // Querying the start/stop of an IntervalMap iterator can be very expensive.
+ // Cache these values for performance reasons.
+ IndexT CachedStart = IndexT();
+ IndexT CachedStop = IndexT();
+
+ void setToEnd() {
+ OffsetIntoMapIterator = kIteratorAtTheEndOffset;
+ CachedStart = IndexT();
+ CachedStop = IndexT();
+ }
+
+ /// MapIterator has just changed, reset the cached state to point to the
+ /// start of the new underlying iterator.
+ void resetCache() {
+ if (MapIterator.valid()) {
+ OffsetIntoMapIterator = 0;
+ CachedStart = MapIterator.start();
+ CachedStop = MapIterator.stop();
+ } else {
+ setToEnd();
+ }
+ }
+
+ /// Advance the iterator to \p Index, if it is contained within the current
+ /// interval. The public-facing method which supports advancing past the
+ /// current interval is \ref advanceToLowerBound.
+ void advanceTo(IndexT Index) {
+ assert(Index <= CachedStop && "Cannot advance to OOB index");
+ if (Index < CachedStart)
+ // We're already past this index.
+ return;
+ OffsetIntoMapIterator = Index - CachedStart;
+ }
+
+ const_iterator(UnderlyingIterator MapIt) : MapIterator(MapIt) {
+ resetCache();
+ }
+
+ public:
+ const_iterator() { setToEnd(); }
+
+ bool operator==(const const_iterator &RHS) const {
+ // Do /not/ compare MapIterator for equality, as this is very expensive.
+ // The cached start/stop values make that check unnecessary.
+ return std::tie(OffsetIntoMapIterator, CachedStart, CachedStop) ==
+ std::tie(RHS.OffsetIntoMapIterator, RHS.CachedStart,
+ RHS.CachedStop);
+ }
+
+ bool operator!=(const const_iterator &RHS) const {
+ return !operator==(RHS);
+ }
+
+ IndexT operator*() const { return CachedStart + OffsetIntoMapIterator; }
+
+ const_iterator &operator++() { // Pre-increment (++It).
+ if (CachedStart + OffsetIntoMapIterator < CachedStop) {
+ // Keep going within the current interval.
+ ++OffsetIntoMapIterator;
+ } else {
+ // We reached the end of the current interval: advance.
+ ++MapIterator;
+ resetCache();
+ }
+ return *this;
+ }
+
+ const_iterator operator++(int) { // Post-increment (It++).
+ const_iterator tmp = *this;
+ operator++();
+ return tmp;
+ }
+
+ /// Advance the iterator to the first set bit AT, OR AFTER, \p Index. If
+ /// no such set bit exists, advance to end(). This is like std::lower_bound.
+ /// This is useful if \p Index is close to the current iterator position.
+ /// However, unlike \ref find(), this has worst-case O(n) performance.
+ void advanceToLowerBound(IndexT Index) {
+ if (OffsetIntoMapIterator == kIteratorAtTheEndOffset)
+ return;
+
+ // Advance to the first interval containing (or past) Index, or to end().
+ while (Index > CachedStop) {
+ ++MapIterator;
+ resetCache();
+ if (OffsetIntoMapIterator == kIteratorAtTheEndOffset)
+ return;
+ }
+
+ advanceTo(Index);
+ }
+ };
+
+ const_iterator begin() const { return const_iterator(Intervals.begin()); }
+
+ const_iterator end() const { return const_iterator(); }
+
+ /// Return an iterator pointing to the first set bit AT, OR AFTER, \p Index.
+ /// If no such set bit exists, return end(). This is like std::lower_bound.
+ /// This has worst-case logarithmic performance (roughly O(log(gaps between
+ /// contiguous ranges))).
+ const_iterator find(IndexT Index) const {
+ auto UnderlyingIt = Intervals.find(Index);
+ if (UnderlyingIt == Intervals.end())
+ return end();
+ auto It = const_iterator(UnderlyingIt);
+ It.advanceTo(Index);
+ return It;
+ }
+
+ /// Return a range iterator which iterates over all of the set bits in the
+ /// half-open range [Start, End).
+ iterator_range<const_iterator> half_open_range(IndexT Start,
+ IndexT End) const {
+ assert(Start < End && "Not a valid range");
+ auto StartIt = find(Start);
+ if (StartIt == end() || *StartIt >= End)
+ return {end(), end()};
+ auto EndIt = StartIt;
+ EndIt.advanceToLowerBound(End);
+ return {StartIt, EndIt};
+ }
+
+ void print(raw_ostream &OS) const {
+ OS << "{";
+ for (auto It = Intervals.begin(), End = Intervals.end(); It != End;
+ ++It) {
+ OS << "[" << It.start();
+ if (It.start() != It.stop())
+ OS << ", " << It.stop();
+ OS << "]";
+ }
+ OS << "}";
+ }
+
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+ LLVM_DUMP_METHOD void dump() const {
+ // LLDB swallows the first line of output after callling dump(). Add
+ // newlines before/after the braces to work around this.
+ dbgs() << "\n";
+ print(dbgs());
+ dbgs() << "\n";
+ }
+#endif
+
+private:
+ void insert(IndexT Start, IndexT End) { Intervals.insert(Start, End, 0); }
+
+ /// Record the overlaps between \p this and \p Other in \p Overlaps. Return
+ /// true if there is any overlap.
+ bool getOverlaps(const ThisT &Other,
+ SmallVectorImpl<IntervalT> &Overlaps) const {
+ for (IntervalMapOverlaps<MapT, MapT> I(Intervals, Other.Intervals);
+ I.valid(); ++I)
+ Overlaps.emplace_back(I.start(), I.stop());
+ assert(llvm::is_sorted(Overlaps,
+ [](IntervalT LHS, IntervalT RHS) {
+ return LHS.second < RHS.first;
+ }) &&
+ "Overlaps must be sorted");
+ return !Overlaps.empty();
+ }
+
+ /// Given the set of overlaps between this and some other bitvector, and an
+ /// interval [Start, Stop] from that bitvector, determine the portions of the
+ /// interval which do not overlap with this.
+ void getNonOverlappingParts(IndexT Start, IndexT Stop,
+ const SmallVectorImpl<IntervalT> &Overlaps,
+ SmallVectorImpl<IntervalT> &NonOverlappingParts) {
+ IndexT NextUncoveredBit = Start;
+ for (IntervalT Overlap : Overlaps) {
+ IndexT OlapStart, OlapStop;
+ std::tie(OlapStart, OlapStop) = Overlap;
+
+ // [Start;Stop] and [OlapStart;OlapStop] overlap iff OlapStart <= Stop
+ // and Start <= OlapStop.
+ bool DoesOverlap = OlapStart <= Stop && Start <= OlapStop;
+ if (!DoesOverlap)
+ continue;
+
+ // Cover the range [NextUncoveredBit, OlapStart). This puts the start of
+ // the next uncovered range at OlapStop+1.
+ if (NextUncoveredBit < OlapStart)
+ NonOverlappingParts.emplace_back(NextUncoveredBit, OlapStart - 1);
+ NextUncoveredBit = OlapStop + 1;
+ if (NextUncoveredBit > Stop)
+ break;
+ }
+ if (NextUncoveredBit <= Stop)
+ NonOverlappingParts.emplace_back(NextUncoveredBit, Stop);
+ }
+
+ Allocator *Alloc;
+ MapT Intervals;
+};
+
+} // namespace llvm
+
+#endif // LLVM_ADT_COALESCINGBITVECTOR_H