Update prebuilt Clang to r416183b from Android.

https://android.googlesource.com/platform/prebuilts/clang/host/
linux-x86/+/06a71ddac05c22edb2d10b590e1769b3f8619bef

clang 12.0.5 (based on r416183b) from build 7284624.

Change-Id: I277a316abcf47307562d8b748b84870f31a72866
Signed-off-by: Olivier Deprez <olivier.deprez@arm.com>
diff --git a/linux-x64/clang/include/llvm/ADT/CoalescingBitVector.h b/linux-x64/clang/include/llvm/ADT/CoalescingBitVector.h
new file mode 100644
index 0000000..0a7dcfe
--- /dev/null
+++ b/linux-x64/clang/include/llvm/ADT/CoalescingBitVector.h
@@ -0,0 +1,443 @@
+//===- llvm/ADT/CoalescingBitVector.h - A coalescing bitvector --*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+///
+/// \file A bitvector that uses an IntervalMap to coalesce adjacent elements
+/// into intervals.
+///
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ADT_COALESCINGBITVECTOR_H
+#define LLVM_ADT_COALESCINGBITVECTOR_H
+
+#include "llvm/ADT/IntervalMap.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/iterator_range.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+
+#include <algorithm>
+#include <initializer_list>
+
+namespace llvm {
+
+/// A bitvector that, under the hood, relies on an IntervalMap to coalesce
+/// elements into intervals. Good for representing sets which predominantly
+/// contain contiguous ranges. Bad for representing sets with lots of gaps
+/// between elements.
+///
+/// Compared to SparseBitVector, CoalescingBitVector offers more predictable
+/// performance for non-sequential find() operations.
+///
+/// \tparam IndexT - The type of the index into the bitvector.
+template <typename IndexT> class CoalescingBitVector {
+  static_assert(std::is_unsigned<IndexT>::value,
+                "Index must be an unsigned integer.");
+
+  using ThisT = CoalescingBitVector<IndexT>;
+
+  /// An interval map for closed integer ranges. The mapped values are unused.
+  using MapT = IntervalMap<IndexT, char>;
+
+  using UnderlyingIterator = typename MapT::const_iterator;
+
+  using IntervalT = std::pair<IndexT, IndexT>;
+
+public:
+  using Allocator = typename MapT::Allocator;
+
+  /// Construct by passing in a CoalescingBitVector<IndexT>::Allocator
+  /// reference.
+  CoalescingBitVector(Allocator &Alloc)
+      : Alloc(&Alloc), Intervals(Alloc) {}
+
+  /// \name Copy/move constructors and assignment operators.
+  /// @{
+
+  CoalescingBitVector(const ThisT &Other)
+      : Alloc(Other.Alloc), Intervals(*Other.Alloc) {
+    set(Other);
+  }
+
+  ThisT &operator=(const ThisT &Other) {
+    clear();
+    set(Other);
+    return *this;
+  }
+
+  CoalescingBitVector(ThisT &&Other) = delete;
+  ThisT &operator=(ThisT &&Other) = delete;
+
+  /// @}
+
+  /// Clear all the bits.
+  void clear() { Intervals.clear(); }
+
+  /// Check whether no bits are set.
+  bool empty() const { return Intervals.empty(); }
+
+  /// Count the number of set bits.
+  unsigned count() const {
+    unsigned Bits = 0;
+    for (auto It = Intervals.begin(), End = Intervals.end(); It != End; ++It)
+      Bits += 1 + It.stop() - It.start();
+    return Bits;
+  }
+
+  /// Set the bit at \p Index.
+  ///
+  /// This method does /not/ support setting a bit that has already been set,
+  /// for efficiency reasons. If possible, restructure your code to not set the
+  /// same bit multiple times, or use \ref test_and_set.
+  void set(IndexT Index) {
+    assert(!test(Index) && "Setting already-set bits not supported/efficient, "
+                           "IntervalMap will assert");
+    insert(Index, Index);
+  }
+
+  /// Set the bits set in \p Other.
+  ///
+  /// This method does /not/ support setting already-set bits, see \ref set
+  /// for the rationale. For a safe set union operation, use \ref operator|=.
+  void set(const ThisT &Other) {
+    for (auto It = Other.Intervals.begin(), End = Other.Intervals.end();
+         It != End; ++It)
+      insert(It.start(), It.stop());
+  }
+
+  /// Set the bits at \p Indices. Used for testing, primarily.
+  void set(std::initializer_list<IndexT> Indices) {
+    for (IndexT Index : Indices)
+      set(Index);
+  }
+
+  /// Check whether the bit at \p Index is set.
+  bool test(IndexT Index) const {
+    const auto It = Intervals.find(Index);
+    if (It == Intervals.end())
+      return false;
+    assert(It.stop() >= Index && "Interval must end after Index");
+    return It.start() <= Index;
+  }
+
+  /// Set the bit at \p Index. Supports setting an already-set bit.
+  void test_and_set(IndexT Index) {
+    if (!test(Index))
+      set(Index);
+  }
+
+  /// Reset the bit at \p Index. Supports resetting an already-unset bit.
+  void reset(IndexT Index) {
+    auto It = Intervals.find(Index);
+    if (It == Intervals.end())
+      return;
+
+    // Split the interval containing Index into up to two parts: one from
+    // [Start, Index-1] and another from [Index+1, Stop]. If Index is equal to
+    // either Start or Stop, we create one new interval. If Index is equal to
+    // both Start and Stop, we simply erase the existing interval.
+    IndexT Start = It.start();
+    if (Index < Start)
+      // The index was not set.
+      return;
+    IndexT Stop = It.stop();
+    assert(Index <= Stop && "Wrong interval for index");
+    It.erase();
+    if (Start < Index)
+      insert(Start, Index - 1);
+    if (Index < Stop)
+      insert(Index + 1, Stop);
+  }
+
+  /// Set union. If \p RHS is guaranteed to not overlap with this, \ref set may
+  /// be a faster alternative.
+  void operator|=(const ThisT &RHS) {
+    // Get the overlaps between the two interval maps.
+    SmallVector<IntervalT, 8> Overlaps;
+    getOverlaps(RHS, Overlaps);
+
+    // Insert the non-overlapping parts of all the intervals from RHS.
+    for (auto It = RHS.Intervals.begin(), End = RHS.Intervals.end();
+         It != End; ++It) {
+      IndexT Start = It.start();
+      IndexT Stop = It.stop();
+      SmallVector<IntervalT, 8> NonOverlappingParts;
+      getNonOverlappingParts(Start, Stop, Overlaps, NonOverlappingParts);
+      for (IntervalT AdditivePortion : NonOverlappingParts)
+        insert(AdditivePortion.first, AdditivePortion.second);
+    }
+  }
+
+  /// Set intersection.
+  void operator&=(const ThisT &RHS) {
+    // Get the overlaps between the two interval maps (i.e. the intersection).
+    SmallVector<IntervalT, 8> Overlaps;
+    getOverlaps(RHS, Overlaps);
+    // Rebuild the interval map, including only the overlaps.
+    clear();
+    for (IntervalT Overlap : Overlaps)
+      insert(Overlap.first, Overlap.second);
+  }
+
+  /// Reset all bits present in \p Other.
+  void intersectWithComplement(const ThisT &Other) {
+    SmallVector<IntervalT, 8> Overlaps;
+    if (!getOverlaps(Other, Overlaps)) {
+      // If there is no overlap with Other, the intersection is empty.
+      return;
+    }
+
+    // Delete the overlapping intervals. Split up intervals that only partially
+    // intersect an overlap.
+    for (IntervalT Overlap : Overlaps) {
+      IndexT OlapStart, OlapStop;
+      std::tie(OlapStart, OlapStop) = Overlap;
+
+      auto It = Intervals.find(OlapStart);
+      IndexT CurrStart = It.start();
+      IndexT CurrStop = It.stop();
+      assert(CurrStart <= OlapStart && OlapStop <= CurrStop &&
+             "Expected some intersection!");
+
+      // Split the overlap interval into up to two parts: one from [CurrStart,
+      // OlapStart-1] and another from [OlapStop+1, CurrStop]. If OlapStart is
+      // equal to CurrStart, the first split interval is unnecessary. Ditto for
+      // when OlapStop is equal to CurrStop, we omit the second split interval.
+      It.erase();
+      if (CurrStart < OlapStart)
+        insert(CurrStart, OlapStart - 1);
+      if (OlapStop < CurrStop)
+        insert(OlapStop + 1, CurrStop);
+    }
+  }
+
+  bool operator==(const ThisT &RHS) const {
+    // We cannot just use std::equal because it checks the dereferenced values
+    // of an iterator pair for equality, not the iterators themselves. In our
+    // case that results in comparison of the (unused) IntervalMap values.
+    auto ItL = Intervals.begin();
+    auto ItR = RHS.Intervals.begin();
+    while (ItL != Intervals.end() && ItR != RHS.Intervals.end() &&
+           ItL.start() == ItR.start() && ItL.stop() == ItR.stop()) {
+      ++ItL;
+      ++ItR;
+    }
+    return ItL == Intervals.end() && ItR == RHS.Intervals.end();
+  }
+
+  bool operator!=(const ThisT &RHS) const { return !operator==(RHS); }
+
+  class const_iterator
+      : public std::iterator<std::forward_iterator_tag, IndexT> {
+    friend class CoalescingBitVector;
+
+    // For performance reasons, make the offset at the end different than the
+    // one used in \ref begin, to optimize the common `It == end()` pattern.
+    static constexpr unsigned kIteratorAtTheEndOffset = ~0u;
+
+    UnderlyingIterator MapIterator;
+    unsigned OffsetIntoMapIterator = 0;
+
+    // Querying the start/stop of an IntervalMap iterator can be very expensive.
+    // Cache these values for performance reasons.
+    IndexT CachedStart = IndexT();
+    IndexT CachedStop = IndexT();
+
+    void setToEnd() {
+      OffsetIntoMapIterator = kIteratorAtTheEndOffset;
+      CachedStart = IndexT();
+      CachedStop = IndexT();
+    }
+
+    /// MapIterator has just changed, reset the cached state to point to the
+    /// start of the new underlying iterator.
+    void resetCache() {
+      if (MapIterator.valid()) {
+        OffsetIntoMapIterator = 0;
+        CachedStart = MapIterator.start();
+        CachedStop = MapIterator.stop();
+      } else {
+        setToEnd();
+      }
+    }
+
+    /// Advance the iterator to \p Index, if it is contained within the current
+    /// interval. The public-facing method which supports advancing past the
+    /// current interval is \ref advanceToLowerBound.
+    void advanceTo(IndexT Index) {
+      assert(Index <= CachedStop && "Cannot advance to OOB index");
+      if (Index < CachedStart)
+        // We're already past this index.
+        return;
+      OffsetIntoMapIterator = Index - CachedStart;
+    }
+
+    const_iterator(UnderlyingIterator MapIt) : MapIterator(MapIt) {
+      resetCache();
+    }
+
+  public:
+    const_iterator() { setToEnd(); }
+
+    bool operator==(const const_iterator &RHS) const {
+      // Do /not/ compare MapIterator for equality, as this is very expensive.
+      // The cached start/stop values make that check unnecessary.
+      return std::tie(OffsetIntoMapIterator, CachedStart, CachedStop) ==
+             std::tie(RHS.OffsetIntoMapIterator, RHS.CachedStart,
+                      RHS.CachedStop);
+    }
+
+    bool operator!=(const const_iterator &RHS) const {
+      return !operator==(RHS);
+    }
+
+    IndexT operator*() const { return CachedStart + OffsetIntoMapIterator; }
+
+    const_iterator &operator++() { // Pre-increment (++It).
+      if (CachedStart + OffsetIntoMapIterator < CachedStop) {
+        // Keep going within the current interval.
+        ++OffsetIntoMapIterator;
+      } else {
+        // We reached the end of the current interval: advance.
+        ++MapIterator;
+        resetCache();
+      }
+      return *this;
+    }
+
+    const_iterator operator++(int) { // Post-increment (It++).
+      const_iterator tmp = *this;
+      operator++();
+      return tmp;
+    }
+
+    /// Advance the iterator to the first set bit AT, OR AFTER, \p Index. If
+    /// no such set bit exists, advance to end(). This is like std::lower_bound.
+    /// This is useful if \p Index is close to the current iterator position.
+    /// However, unlike \ref find(), this has worst-case O(n) performance.
+    void advanceToLowerBound(IndexT Index) {
+      if (OffsetIntoMapIterator == kIteratorAtTheEndOffset)
+        return;
+
+      // Advance to the first interval containing (or past) Index, or to end().
+      while (Index > CachedStop) {
+        ++MapIterator;
+        resetCache();
+        if (OffsetIntoMapIterator == kIteratorAtTheEndOffset)
+          return;
+      }
+
+      advanceTo(Index);
+    }
+  };
+
+  const_iterator begin() const { return const_iterator(Intervals.begin()); }
+
+  const_iterator end() const { return const_iterator(); }
+
+  /// Return an iterator pointing to the first set bit AT, OR AFTER, \p Index.
+  /// If no such set bit exists, return end(). This is like std::lower_bound.
+  /// This has worst-case logarithmic performance (roughly O(log(gaps between
+  /// contiguous ranges))).
+  const_iterator find(IndexT Index) const {
+    auto UnderlyingIt = Intervals.find(Index);
+    if (UnderlyingIt == Intervals.end())
+      return end();
+    auto It = const_iterator(UnderlyingIt);
+    It.advanceTo(Index);
+    return It;
+  }
+
+  /// Return a range iterator which iterates over all of the set bits in the
+  /// half-open range [Start, End).
+  iterator_range<const_iterator> half_open_range(IndexT Start,
+                                                 IndexT End) const {
+    assert(Start < End && "Not a valid range");
+    auto StartIt = find(Start);
+    if (StartIt == end() || *StartIt >= End)
+      return {end(), end()};
+    auto EndIt = StartIt;
+    EndIt.advanceToLowerBound(End);
+    return {StartIt, EndIt};
+  }
+
+  void print(raw_ostream &OS) const {
+    OS << "{";
+    for (auto It = Intervals.begin(), End = Intervals.end(); It != End;
+         ++It) {
+      OS << "[" << It.start();
+      if (It.start() != It.stop())
+        OS << ", " << It.stop();
+      OS << "]";
+    }
+    OS << "}";
+  }
+
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+  LLVM_DUMP_METHOD void dump() const {
+    // LLDB swallows the first line of output after callling dump(). Add
+    // newlines before/after the braces to work around this.
+    dbgs() << "\n";
+    print(dbgs());
+    dbgs() << "\n";
+  }
+#endif
+
+private:
+  void insert(IndexT Start, IndexT End) { Intervals.insert(Start, End, 0); }
+
+  /// Record the overlaps between \p this and \p Other in \p Overlaps. Return
+  /// true if there is any overlap.
+  bool getOverlaps(const ThisT &Other,
+                   SmallVectorImpl<IntervalT> &Overlaps) const {
+    for (IntervalMapOverlaps<MapT, MapT> I(Intervals, Other.Intervals);
+         I.valid(); ++I)
+      Overlaps.emplace_back(I.start(), I.stop());
+    assert(llvm::is_sorted(Overlaps,
+                           [](IntervalT LHS, IntervalT RHS) {
+                             return LHS.second < RHS.first;
+                           }) &&
+           "Overlaps must be sorted");
+    return !Overlaps.empty();
+  }
+
+  /// Given the set of overlaps between this and some other bitvector, and an
+  /// interval [Start, Stop] from that bitvector, determine the portions of the
+  /// interval which do not overlap with this.
+  void getNonOverlappingParts(IndexT Start, IndexT Stop,
+                              const SmallVectorImpl<IntervalT> &Overlaps,
+                              SmallVectorImpl<IntervalT> &NonOverlappingParts) {
+    IndexT NextUncoveredBit = Start;
+    for (IntervalT Overlap : Overlaps) {
+      IndexT OlapStart, OlapStop;
+      std::tie(OlapStart, OlapStop) = Overlap;
+
+      // [Start;Stop] and [OlapStart;OlapStop] overlap iff OlapStart <= Stop
+      // and Start <= OlapStop.
+      bool DoesOverlap = OlapStart <= Stop && Start <= OlapStop;
+      if (!DoesOverlap)
+        continue;
+
+      // Cover the range [NextUncoveredBit, OlapStart). This puts the start of
+      // the next uncovered range at OlapStop+1.
+      if (NextUncoveredBit < OlapStart)
+        NonOverlappingParts.emplace_back(NextUncoveredBit, OlapStart - 1);
+      NextUncoveredBit = OlapStop + 1;
+      if (NextUncoveredBit > Stop)
+        break;
+    }
+    if (NextUncoveredBit <= Stop)
+      NonOverlappingParts.emplace_back(NextUncoveredBit, Stop);
+  }
+
+  Allocator *Alloc;
+  MapT Intervals;
+};
+
+} // namespace llvm
+
+#endif // LLVM_ADT_COALESCINGBITVECTOR_H