Import prebuilt clang toolchain for linux.
diff --git a/linux-x64/clang/include/llvm/MC/MCInstrDesc.h b/linux-x64/clang/include/llvm/MC/MCInstrDesc.h
new file mode 100644
index 0000000..ff4c756
--- /dev/null
+++ b/linux-x64/clang/include/llvm/MC/MCInstrDesc.h
@@ -0,0 +1,591 @@
+//===-- llvm/MC/MCInstrDesc.h - Instruction Descriptors -*- C++ -*-===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the MCOperandInfo and MCInstrDesc classes, which
+// are used to describe target instructions and their operands.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_MC_MCINSTRDESC_H
+#define LLVM_MC_MCINSTRDESC_H
+
+#include "llvm/MC/MCRegisterInfo.h"
+#include "llvm/Support/DataTypes.h"
+#include <string>
+
+namespace llvm {
+  class MCInst;
+  class MCSubtargetInfo;
+  class FeatureBitset;
+
+//===----------------------------------------------------------------------===//
+// Machine Operand Flags and Description
+//===----------------------------------------------------------------------===//
+
+namespace MCOI {
+// Operand constraints
+enum OperandConstraint {
+  TIED_TO = 0,  // Must be allocated the same register as.
+  EARLY_CLOBBER // Operand is an early clobber register operand
+};
+
+/// \brief These are flags set on operands, but should be considered
+/// private, all access should go through the MCOperandInfo accessors.
+/// See the accessors for a description of what these are.
+enum OperandFlags { LookupPtrRegClass = 0, Predicate, OptionalDef };
+
+/// \brief Operands are tagged with one of the values of this enum.
+enum OperandType {
+  OPERAND_UNKNOWN = 0,
+  OPERAND_IMMEDIATE = 1,
+  OPERAND_REGISTER = 2,
+  OPERAND_MEMORY = 3,
+  OPERAND_PCREL = 4,
+
+  OPERAND_FIRST_GENERIC = 6,
+  OPERAND_GENERIC_0 = 6,
+  OPERAND_GENERIC_1 = 7,
+  OPERAND_GENERIC_2 = 8,
+  OPERAND_GENERIC_3 = 9,
+  OPERAND_GENERIC_4 = 10,
+  OPERAND_GENERIC_5 = 11,
+  OPERAND_LAST_GENERIC = 11,
+
+  OPERAND_FIRST_TARGET = 12,
+};
+
+enum GenericOperandType {
+};
+
+}
+
+/// \brief This holds information about one operand of a machine instruction,
+/// indicating the register class for register operands, etc.
+class MCOperandInfo {
+public:
+  /// \brief This specifies the register class enumeration of the operand
+  /// if the operand is a register.  If isLookupPtrRegClass is set, then this is
+  /// an index that is passed to TargetRegisterInfo::getPointerRegClass(x) to
+  /// get a dynamic register class.
+  int16_t RegClass;
+
+  /// \brief These are flags from the MCOI::OperandFlags enum.
+  uint8_t Flags;
+
+  /// \brief Information about the type of the operand.
+  uint8_t OperandType;
+  /// \brief The lower 16 bits are used to specify which constraints are set.
+  /// The higher 16 bits are used to specify the value of constraints (4 bits
+  /// each).
+  uint32_t Constraints;
+
+  /// \brief Set if this operand is a pointer value and it requires a callback
+  /// to look up its register class.
+  bool isLookupPtrRegClass() const {
+    return Flags & (1 << MCOI::LookupPtrRegClass);
+  }
+
+  /// \brief Set if this is one of the operands that made up of the predicate
+  /// operand that controls an isPredicable() instruction.
+  bool isPredicate() const { return Flags & (1 << MCOI::Predicate); }
+
+  /// \brief Set if this operand is a optional def.
+  bool isOptionalDef() const { return Flags & (1 << MCOI::OptionalDef); }
+
+  bool isGenericType() const {
+    return OperandType >= MCOI::OPERAND_FIRST_GENERIC &&
+           OperandType <= MCOI::OPERAND_LAST_GENERIC;
+  }
+
+  unsigned getGenericTypeIndex() const {
+    assert(isGenericType() && "non-generic types don't have an index");
+    return OperandType - MCOI::OPERAND_FIRST_GENERIC;
+  }
+};
+
+//===----------------------------------------------------------------------===//
+// Machine Instruction Flags and Description
+//===----------------------------------------------------------------------===//
+
+namespace MCID {
+/// \brief These should be considered private to the implementation of the
+/// MCInstrDesc class.  Clients should use the predicate methods on MCInstrDesc,
+/// not use these directly.  These all correspond to bitfields in the
+/// MCInstrDesc::Flags field.
+enum Flag {
+  Variadic = 0,
+  HasOptionalDef,
+  Pseudo,
+  Return,
+  Call,
+  Barrier,
+  Terminator,
+  Branch,
+  IndirectBranch,
+  Compare,
+  MoveImm,
+  Bitcast,
+  Select,
+  DelaySlot,
+  FoldableAsLoad,
+  MayLoad,
+  MayStore,
+  Predicable,
+  NotDuplicable,
+  UnmodeledSideEffects,
+  Commutable,
+  ConvertibleTo3Addr,
+  UsesCustomInserter,
+  HasPostISelHook,
+  Rematerializable,
+  CheapAsAMove,
+  ExtraSrcRegAllocReq,
+  ExtraDefRegAllocReq,
+  RegSequence,
+  ExtractSubreg,
+  InsertSubreg,
+  Convergent,
+  Add
+};
+}
+
+/// \brief Describe properties that are true of each instruction in the target
+/// description file.  This captures information about side effects, register
+/// use and many other things.  There is one instance of this struct for each
+/// target instruction class, and the MachineInstr class points to this struct
+/// directly to describe itself.
+class MCInstrDesc {
+public:
+  unsigned short Opcode;         // The opcode number
+  unsigned short NumOperands;    // Num of args (may be more if variable_ops)
+  unsigned char NumDefs;         // Num of args that are definitions
+  unsigned char Size;            // Number of bytes in encoding.
+  unsigned short SchedClass;     // enum identifying instr sched class
+  uint64_t Flags;                // Flags identifying machine instr class
+  uint64_t TSFlags;              // Target Specific Flag values
+  const MCPhysReg *ImplicitUses; // Registers implicitly read by this instr
+  const MCPhysReg *ImplicitDefs; // Registers implicitly defined by this instr
+  const MCOperandInfo *OpInfo;   // 'NumOperands' entries about operands
+  // Subtarget feature that this is deprecated on, if any
+  // -1 implies this is not deprecated by any single feature. It may still be
+  // deprecated due to a "complex" reason, below.
+  int64_t DeprecatedFeature;
+
+  // A complex method to determine is a certain is deprecated or not, and return
+  // the reason for deprecation.
+  bool (*ComplexDeprecationInfo)(MCInst &, const MCSubtargetInfo &,
+                                 std::string &);
+
+  /// \brief Returns the value of the specific constraint if
+  /// it is set. Returns -1 if it is not set.
+  int getOperandConstraint(unsigned OpNum,
+                           MCOI::OperandConstraint Constraint) const {
+    if (OpNum < NumOperands &&
+        (OpInfo[OpNum].Constraints & (1 << Constraint))) {
+      unsigned Pos = 16 + Constraint * 4;
+      return (int)(OpInfo[OpNum].Constraints >> Pos) & 0xf;
+    }
+    return -1;
+  }
+
+  /// \brief Returns true if a certain instruction is deprecated and if so
+  /// returns the reason in \p Info.
+  bool getDeprecatedInfo(MCInst &MI, const MCSubtargetInfo &STI,
+                         std::string &Info) const;
+
+  /// \brief Return the opcode number for this descriptor.
+  unsigned getOpcode() const { return Opcode; }
+
+  /// \brief Return the number of declared MachineOperands for this
+  /// MachineInstruction.  Note that variadic (isVariadic() returns true)
+  /// instructions may have additional operands at the end of the list, and note
+  /// that the machine instruction may include implicit register def/uses as
+  /// well.
+  unsigned getNumOperands() const { return NumOperands; }
+
+  using const_opInfo_iterator = const MCOperandInfo *;
+
+  const_opInfo_iterator opInfo_begin() const { return OpInfo; }
+  const_opInfo_iterator opInfo_end() const { return OpInfo + NumOperands; }
+
+  iterator_range<const_opInfo_iterator> operands() const {
+    return make_range(opInfo_begin(), opInfo_end());
+  }
+
+  /// \brief Return the number of MachineOperands that are register
+  /// definitions.  Register definitions always occur at the start of the
+  /// machine operand list.  This is the number of "outs" in the .td file,
+  /// and does not include implicit defs.
+  unsigned getNumDefs() const { return NumDefs; }
+
+  /// \brief Return flags of this instruction.
+  uint64_t getFlags() const { return Flags; }
+
+  /// \brief Return true if this instruction can have a variable number of
+  /// operands.  In this case, the variable operands will be after the normal
+  /// operands but before the implicit definitions and uses (if any are
+  /// present).
+  bool isVariadic() const { return Flags & (1ULL << MCID::Variadic); }
+
+  /// \brief Set if this instruction has an optional definition, e.g.
+  /// ARM instructions which can set condition code if 's' bit is set.
+  bool hasOptionalDef() const { return Flags & (1ULL << MCID::HasOptionalDef); }
+
+  /// \brief Return true if this is a pseudo instruction that doesn't
+  /// correspond to a real machine instruction.
+  bool isPseudo() const { return Flags & (1ULL << MCID::Pseudo); }
+
+  /// \brief Return true if the instruction is a return.
+  bool isReturn() const { return Flags & (1ULL << MCID::Return); }
+
+  /// \brief Return true if the instruction is an add instruction.
+  bool isAdd() const { return Flags & (1ULL << MCID::Add); }
+
+  /// \brief  Return true if the instruction is a call.
+  bool isCall() const { return Flags & (1ULL << MCID::Call); }
+
+  /// \brief Returns true if the specified instruction stops control flow
+  /// from executing the instruction immediately following it.  Examples include
+  /// unconditional branches and return instructions.
+  bool isBarrier() const { return Flags & (1ULL << MCID::Barrier); }
+
+  /// \brief Returns true if this instruction part of the terminator for
+  /// a basic block.  Typically this is things like return and branch
+  /// instructions.
+  ///
+  /// Various passes use this to insert code into the bottom of a basic block,
+  /// but before control flow occurs.
+  bool isTerminator() const { return Flags & (1ULL << MCID::Terminator); }
+
+  /// \brief Returns true if this is a conditional, unconditional, or
+  /// indirect branch.  Predicates below can be used to discriminate between
+  /// these cases, and the TargetInstrInfo::AnalyzeBranch method can be used to
+  /// get more information.
+  bool isBranch() const { return Flags & (1ULL << MCID::Branch); }
+
+  /// \brief Return true if this is an indirect branch, such as a
+  /// branch through a register.
+  bool isIndirectBranch() const { return Flags & (1ULL << MCID::IndirectBranch); }
+
+  /// \brief Return true if this is a branch which may fall
+  /// through to the next instruction or may transfer control flow to some other
+  /// block.  The TargetInstrInfo::AnalyzeBranch method can be used to get more
+  /// information about this branch.
+  bool isConditionalBranch() const {
+    return isBranch() & !isBarrier() & !isIndirectBranch();
+  }
+
+  /// \brief Return true if this is a branch which always
+  /// transfers control flow to some other block.  The
+  /// TargetInstrInfo::AnalyzeBranch method can be used to get more information
+  /// about this branch.
+  bool isUnconditionalBranch() const {
+    return isBranch() & isBarrier() & !isIndirectBranch();
+  }
+
+  /// \brief Return true if this is a branch or an instruction which directly
+  /// writes to the program counter. Considered 'may' affect rather than
+  /// 'does' affect as things like predication are not taken into account.
+  bool mayAffectControlFlow(const MCInst &MI, const MCRegisterInfo &RI) const;
+
+  /// \brief Return true if this instruction has a predicate operand
+  /// that controls execution. It may be set to 'always', or may be set to other
+  /// values. There are various methods in TargetInstrInfo that can be used to
+  /// control and modify the predicate in this instruction.
+  bool isPredicable() const { return Flags & (1ULL << MCID::Predicable); }
+
+  /// \brief Return true if this instruction is a comparison.
+  bool isCompare() const { return Flags & (1ULL << MCID::Compare); }
+
+  /// \brief Return true if this instruction is a move immediate
+  /// (including conditional moves) instruction.
+  bool isMoveImmediate() const { return Flags & (1ULL << MCID::MoveImm); }
+
+  /// \brief Return true if this instruction is a bitcast instruction.
+  bool isBitcast() const { return Flags & (1ULL << MCID::Bitcast); }
+
+  /// \brief Return true if this is a select instruction.
+  bool isSelect() const { return Flags & (1ULL << MCID::Select); }
+
+  /// \brief Return true if this instruction cannot be safely
+  /// duplicated.  For example, if the instruction has a unique labels attached
+  /// to it, duplicating it would cause multiple definition errors.
+  bool isNotDuplicable() const { return Flags & (1ULL << MCID::NotDuplicable); }
+
+  /// \brief Returns true if the specified instruction has a delay slot which
+  /// must be filled by the code generator.
+  bool hasDelaySlot() const { return Flags & (1ULL << MCID::DelaySlot); }
+
+  /// \brief Return true for instructions that can be folded as memory operands
+  /// in other instructions. The most common use for this is instructions that
+  /// are simple loads from memory that don't modify the loaded value in any
+  /// way, but it can also be used for instructions that can be expressed as
+  /// constant-pool loads, such as V_SETALLONES on x86, to allow them to be
+  /// folded when it is beneficial.  This should only be set on instructions
+  /// that return a value in their only virtual register definition.
+  bool canFoldAsLoad() const { return Flags & (1ULL << MCID::FoldableAsLoad); }
+
+  /// \brief Return true if this instruction behaves
+  /// the same way as the generic REG_SEQUENCE instructions.
+  /// E.g., on ARM,
+  /// dX VMOVDRR rY, rZ
+  /// is equivalent to
+  /// dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1.
+  ///
+  /// Note that for the optimizers to be able to take advantage of
+  /// this property, TargetInstrInfo::getRegSequenceLikeInputs has to be
+  /// override accordingly.
+  bool isRegSequenceLike() const { return Flags & (1ULL << MCID::RegSequence); }
+
+  /// \brief Return true if this instruction behaves
+  /// the same way as the generic EXTRACT_SUBREG instructions.
+  /// E.g., on ARM,
+  /// rX, rY VMOVRRD dZ
+  /// is equivalent to two EXTRACT_SUBREG:
+  /// rX = EXTRACT_SUBREG dZ, ssub_0
+  /// rY = EXTRACT_SUBREG dZ, ssub_1
+  ///
+  /// Note that for the optimizers to be able to take advantage of
+  /// this property, TargetInstrInfo::getExtractSubregLikeInputs has to be
+  /// override accordingly.
+  bool isExtractSubregLike() const {
+    return Flags & (1ULL << MCID::ExtractSubreg);
+  }
+
+  /// \brief Return true if this instruction behaves
+  /// the same way as the generic INSERT_SUBREG instructions.
+  /// E.g., on ARM,
+  /// dX = VSETLNi32 dY, rZ, Imm
+  /// is equivalent to a INSERT_SUBREG:
+  /// dX = INSERT_SUBREG dY, rZ, translateImmToSubIdx(Imm)
+  ///
+  /// Note that for the optimizers to be able to take advantage of
+  /// this property, TargetInstrInfo::getInsertSubregLikeInputs has to be
+  /// override accordingly.
+  bool isInsertSubregLike() const { return Flags & (1ULL << MCID::InsertSubreg); }
+
+
+  /// \brief Return true if this instruction is convergent.
+  ///
+  /// Convergent instructions may not be made control-dependent on any
+  /// additional values.
+  bool isConvergent() const { return Flags & (1ULL << MCID::Convergent); }
+
+  //===--------------------------------------------------------------------===//
+  // Side Effect Analysis
+  //===--------------------------------------------------------------------===//
+
+  /// \brief Return true if this instruction could possibly read memory.
+  /// Instructions with this flag set are not necessarily simple load
+  /// instructions, they may load a value and modify it, for example.
+  bool mayLoad() const { return Flags & (1ULL << MCID::MayLoad); }
+
+  /// \brief Return true if this instruction could possibly modify memory.
+  /// Instructions with this flag set are not necessarily simple store
+  /// instructions, they may store a modified value based on their operands, or
+  /// may not actually modify anything, for example.
+  bool mayStore() const { return Flags & (1ULL << MCID::MayStore); }
+
+  /// \brief Return true if this instruction has side
+  /// effects that are not modeled by other flags.  This does not return true
+  /// for instructions whose effects are captured by:
+  ///
+  ///  1. Their operand list and implicit definition/use list.  Register use/def
+  ///     info is explicit for instructions.
+  ///  2. Memory accesses.  Use mayLoad/mayStore.
+  ///  3. Calling, branching, returning: use isCall/isReturn/isBranch.
+  ///
+  /// Examples of side effects would be modifying 'invisible' machine state like
+  /// a control register, flushing a cache, modifying a register invisible to
+  /// LLVM, etc.
+  bool hasUnmodeledSideEffects() const {
+    return Flags & (1ULL << MCID::UnmodeledSideEffects);
+  }
+
+  //===--------------------------------------------------------------------===//
+  // Flags that indicate whether an instruction can be modified by a method.
+  //===--------------------------------------------------------------------===//
+
+  /// \brief Return true if this may be a 2- or 3-address instruction (of the
+  /// form "X = op Y, Z, ..."), which produces the same result if Y and Z are
+  /// exchanged.  If this flag is set, then the
+  /// TargetInstrInfo::commuteInstruction method may be used to hack on the
+  /// instruction.
+  ///
+  /// Note that this flag may be set on instructions that are only commutable
+  /// sometimes.  In these cases, the call to commuteInstruction will fail.
+  /// Also note that some instructions require non-trivial modification to
+  /// commute them.
+  bool isCommutable() const { return Flags & (1ULL << MCID::Commutable); }
+
+  /// \brief Return true if this is a 2-address instruction which can be changed
+  /// into a 3-address instruction if needed.  Doing this transformation can be
+  /// profitable in the register allocator, because it means that the
+  /// instruction can use a 2-address form if possible, but degrade into a less
+  /// efficient form if the source and dest register cannot be assigned to the
+  /// same register.  For example, this allows the x86 backend to turn a "shl
+  /// reg, 3" instruction into an LEA instruction, which is the same speed as
+  /// the shift but has bigger code size.
+  ///
+  /// If this returns true, then the target must implement the
+  /// TargetInstrInfo::convertToThreeAddress method for this instruction, which
+  /// is allowed to fail if the transformation isn't valid for this specific
+  /// instruction (e.g. shl reg, 4 on x86).
+  ///
+  bool isConvertibleTo3Addr() const {
+    return Flags & (1ULL << MCID::ConvertibleTo3Addr);
+  }
+
+  /// \brief Return true if this instruction requires custom insertion support
+  /// when the DAG scheduler is inserting it into a machine basic block.  If
+  /// this is true for the instruction, it basically means that it is a pseudo
+  /// instruction used at SelectionDAG time that is expanded out into magic code
+  /// by the target when MachineInstrs are formed.
+  ///
+  /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method
+  /// is used to insert this into the MachineBasicBlock.
+  bool usesCustomInsertionHook() const {
+    return Flags & (1ULL << MCID::UsesCustomInserter);
+  }
+
+  /// \brief Return true if this instruction requires *adjustment* after
+  /// instruction selection by calling a target hook. For example, this can be
+  /// used to fill in ARM 's' optional operand depending on whether the
+  /// conditional flag register is used.
+  bool hasPostISelHook() const { return Flags & (1ULL << MCID::HasPostISelHook); }
+
+  /// \brief Returns true if this instruction is a candidate for remat. This
+  /// flag is only used in TargetInstrInfo method isTriviallyRematerializable.
+  ///
+  /// If this flag is set, the isReallyTriviallyReMaterializable()
+  /// or isReallyTriviallyReMaterializableGeneric methods are called to verify
+  /// the instruction is really rematable.
+  bool isRematerializable() const {
+    return Flags & (1ULL << MCID::Rematerializable);
+  }
+
+  /// \brief Returns true if this instruction has the same cost (or less) than a
+  /// move instruction. This is useful during certain types of optimizations
+  /// (e.g., remat during two-address conversion or machine licm) where we would
+  /// like to remat or hoist the instruction, but not if it costs more than
+  /// moving the instruction into the appropriate register. Note, we are not
+  /// marking copies from and to the same register class with this flag.
+  ///
+  /// This method could be called by interface TargetInstrInfo::isAsCheapAsAMove
+  /// for different subtargets.
+  bool isAsCheapAsAMove() const { return Flags & (1ULL << MCID::CheapAsAMove); }
+
+  /// \brief Returns true if this instruction source operands have special
+  /// register allocation requirements that are not captured by the operand
+  /// register classes. e.g. ARM::STRD's two source registers must be an even /
+  /// odd pair, ARM::STM registers have to be in ascending order.  Post-register
+  /// allocation passes should not attempt to change allocations for sources of
+  /// instructions with this flag.
+  bool hasExtraSrcRegAllocReq() const {
+    return Flags & (1ULL << MCID::ExtraSrcRegAllocReq);
+  }
+
+  /// \brief Returns true if this instruction def operands have special register
+  /// allocation requirements that are not captured by the operand register
+  /// classes. e.g. ARM::LDRD's two def registers must be an even / odd pair,
+  /// ARM::LDM registers have to be in ascending order.  Post-register
+  /// allocation passes should not attempt to change allocations for definitions
+  /// of instructions with this flag.
+  bool hasExtraDefRegAllocReq() const {
+    return Flags & (1ULL << MCID::ExtraDefRegAllocReq);
+  }
+
+  /// \brief Return a list of registers that are potentially read by any
+  /// instance of this machine instruction.  For example, on X86, the "adc"
+  /// instruction adds two register operands and adds the carry bit in from the
+  /// flags register.  In this case, the instruction is marked as implicitly
+  /// reading the flags.  Likewise, the variable shift instruction on X86 is
+  /// marked as implicitly reading the 'CL' register, which it always does.
+  ///
+  /// This method returns null if the instruction has no implicit uses.
+  const MCPhysReg *getImplicitUses() const { return ImplicitUses; }
+
+  /// \brief Return the number of implicit uses this instruction has.
+  unsigned getNumImplicitUses() const {
+    if (!ImplicitUses)
+      return 0;
+    unsigned i = 0;
+    for (; ImplicitUses[i]; ++i) /*empty*/
+      ;
+    return i;
+  }
+
+  /// \brief Return a list of registers that are potentially written by any
+  /// instance of this machine instruction.  For example, on X86, many
+  /// instructions implicitly set the flags register.  In this case, they are
+  /// marked as setting the FLAGS.  Likewise, many instructions always deposit
+  /// their result in a physical register.  For example, the X86 divide
+  /// instruction always deposits the quotient and remainder in the EAX/EDX
+  /// registers.  For that instruction, this will return a list containing the
+  /// EAX/EDX/EFLAGS registers.
+  ///
+  /// This method returns null if the instruction has no implicit defs.
+  const MCPhysReg *getImplicitDefs() const { return ImplicitDefs; }
+
+  /// \brief Return the number of implicit defs this instruct has.
+  unsigned getNumImplicitDefs() const {
+    if (!ImplicitDefs)
+      return 0;
+    unsigned i = 0;
+    for (; ImplicitDefs[i]; ++i) /*empty*/
+      ;
+    return i;
+  }
+
+  /// \brief Return true if this instruction implicitly
+  /// uses the specified physical register.
+  bool hasImplicitUseOfPhysReg(unsigned Reg) const {
+    if (const MCPhysReg *ImpUses = ImplicitUses)
+      for (; *ImpUses; ++ImpUses)
+        if (*ImpUses == Reg)
+          return true;
+    return false;
+  }
+
+  /// \brief Return true if this instruction implicitly
+  /// defines the specified physical register.
+  bool hasImplicitDefOfPhysReg(unsigned Reg,
+                               const MCRegisterInfo *MRI = nullptr) const;
+
+  /// \brief Return the scheduling class for this instruction.  The
+  /// scheduling class is an index into the InstrItineraryData table.  This
+  /// returns zero if there is no known scheduling information for the
+  /// instruction.
+  unsigned getSchedClass() const { return SchedClass; }
+
+  /// \brief Return the number of bytes in the encoding of this instruction,
+  /// or zero if the encoding size cannot be known from the opcode.
+  unsigned getSize() const { return Size; }
+
+  /// \brief Find the index of the first operand in the
+  /// operand list that is used to represent the predicate. It returns -1 if
+  /// none is found.
+  int findFirstPredOperandIdx() const {
+    if (isPredicable()) {
+      for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
+        if (OpInfo[i].isPredicate())
+          return i;
+    }
+    return -1;
+  }
+
+  /// \brief Return true if this instruction defines the specified physical
+  /// register, either explicitly or implicitly.
+  bool hasDefOfPhysReg(const MCInst &MI, unsigned Reg,
+                       const MCRegisterInfo &RI) const;
+};
+
+} // end namespace llvm
+
+#endif