Import prebuilt clang toolchain for linux.
diff --git a/linux-x64/clang/include/llvm/IR/DataLayout.h b/linux-x64/clang/include/llvm/IR/DataLayout.h
new file mode 100644
index 0000000..c48e140
--- /dev/null
+++ b/linux-x64/clang/include/llvm/IR/DataLayout.h
@@ -0,0 +1,602 @@
+//===- llvm/DataLayout.h - Data size & alignment info -----------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines layout properties related to datatype size/offset/alignment
+// information. It uses lazy annotations to cache information about how
+// structure types are laid out and used.
+//
+// This structure should be created once, filled in if the defaults are not
+// correct and then passed around by const&. None of the members functions
+// require modification to the object.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_IR_DATALAYOUT_H
+#define LLVM_IR_DATALAYOUT_H
+
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Type.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MathExtras.h"
+#include <cassert>
+#include <cstdint>
+#include <string>
+
+// This needs to be outside of the namespace, to avoid conflict with llvm-c
+// decl.
+using LLVMTargetDataRef = struct LLVMOpaqueTargetData *;
+
+namespace llvm {
+
+class GlobalVariable;
+class LLVMContext;
+class Module;
+class StructLayout;
+class Triple;
+class Value;
+
+/// Enum used to categorize the alignment types stored by LayoutAlignElem
+enum AlignTypeEnum {
+ INVALID_ALIGN = 0,
+ INTEGER_ALIGN = 'i',
+ VECTOR_ALIGN = 'v',
+ FLOAT_ALIGN = 'f',
+ AGGREGATE_ALIGN = 'a'
+};
+
+// FIXME: Currently the DataLayout string carries a "preferred alignment"
+// for types. As the DataLayout is module/global, this should likely be
+// sunk down to an FTTI element that is queried rather than a global
+// preference.
+
+/// \brief Layout alignment element.
+///
+/// Stores the alignment data associated with a given alignment type (integer,
+/// vector, float) and type bit width.
+///
+/// \note The unusual order of elements in the structure attempts to reduce
+/// padding and make the structure slightly more cache friendly.
+struct LayoutAlignElem {
+ /// \brief Alignment type from \c AlignTypeEnum
+ unsigned AlignType : 8;
+ unsigned TypeBitWidth : 24;
+ unsigned ABIAlign : 16;
+ unsigned PrefAlign : 16;
+
+ static LayoutAlignElem get(AlignTypeEnum align_type, unsigned abi_align,
+ unsigned pref_align, uint32_t bit_width);
+
+ bool operator==(const LayoutAlignElem &rhs) const;
+};
+
+/// \brief Layout pointer alignment element.
+///
+/// Stores the alignment data associated with a given pointer and address space.
+///
+/// \note The unusual order of elements in the structure attempts to reduce
+/// padding and make the structure slightly more cache friendly.
+struct PointerAlignElem {
+ unsigned ABIAlign;
+ unsigned PrefAlign;
+ uint32_t TypeByteWidth;
+ uint32_t AddressSpace;
+ uint32_t IndexWidth;
+
+ /// Initializer
+ static PointerAlignElem get(uint32_t AddressSpace, unsigned ABIAlign,
+ unsigned PrefAlign, uint32_t TypeByteWidth,
+ uint32_t IndexWidth);
+
+ bool operator==(const PointerAlignElem &rhs) const;
+};
+
+/// \brief A parsed version of the target data layout string in and methods for
+/// querying it.
+///
+/// The target data layout string is specified *by the target* - a frontend
+/// generating LLVM IR is required to generate the right target data for the
+/// target being codegen'd to.
+class DataLayout {
+private:
+ /// Defaults to false.
+ bool BigEndian;
+
+ unsigned AllocaAddrSpace;
+ unsigned StackNaturalAlign;
+ unsigned ProgramAddrSpace;
+
+ enum ManglingModeT {
+ MM_None,
+ MM_ELF,
+ MM_MachO,
+ MM_WinCOFF,
+ MM_WinCOFFX86,
+ MM_Mips
+ };
+ ManglingModeT ManglingMode;
+
+ SmallVector<unsigned char, 8> LegalIntWidths;
+
+ /// \brief Primitive type alignment data. This is sorted by type and bit
+ /// width during construction.
+ using AlignmentsTy = SmallVector<LayoutAlignElem, 16>;
+ AlignmentsTy Alignments;
+
+ AlignmentsTy::const_iterator
+ findAlignmentLowerBound(AlignTypeEnum AlignType, uint32_t BitWidth) const {
+ return const_cast<DataLayout *>(this)->findAlignmentLowerBound(AlignType,
+ BitWidth);
+ }
+
+ AlignmentsTy::iterator
+ findAlignmentLowerBound(AlignTypeEnum AlignType, uint32_t BitWidth);
+
+ /// \brief The string representation used to create this DataLayout
+ std::string StringRepresentation;
+
+ using PointersTy = SmallVector<PointerAlignElem, 8>;
+ PointersTy Pointers;
+
+ PointersTy::const_iterator
+ findPointerLowerBound(uint32_t AddressSpace) const {
+ return const_cast<DataLayout *>(this)->findPointerLowerBound(AddressSpace);
+ }
+
+ PointersTy::iterator findPointerLowerBound(uint32_t AddressSpace);
+
+ // The StructType -> StructLayout map.
+ mutable void *LayoutMap = nullptr;
+
+ /// Pointers in these address spaces are non-integral, and don't have a
+ /// well-defined bitwise representation.
+ SmallVector<unsigned, 8> NonIntegralAddressSpaces;
+
+ void setAlignment(AlignTypeEnum align_type, unsigned abi_align,
+ unsigned pref_align, uint32_t bit_width);
+ unsigned getAlignmentInfo(AlignTypeEnum align_type, uint32_t bit_width,
+ bool ABIAlign, Type *Ty) const;
+ void setPointerAlignment(uint32_t AddrSpace, unsigned ABIAlign,
+ unsigned PrefAlign, uint32_t TypeByteWidth,
+ uint32_t IndexWidth);
+
+ /// Internal helper method that returns requested alignment for type.
+ unsigned getAlignment(Type *Ty, bool abi_or_pref) const;
+
+ /// Parses a target data specification string. Assert if the string is
+ /// malformed.
+ void parseSpecifier(StringRef LayoutDescription);
+
+ // Free all internal data structures.
+ void clear();
+
+public:
+ /// Constructs a DataLayout from a specification string. See reset().
+ explicit DataLayout(StringRef LayoutDescription) {
+ reset(LayoutDescription);
+ }
+
+ /// Initialize target data from properties stored in the module.
+ explicit DataLayout(const Module *M);
+
+ DataLayout(const DataLayout &DL) { *this = DL; }
+
+ ~DataLayout(); // Not virtual, do not subclass this class
+
+ DataLayout &operator=(const DataLayout &DL) {
+ clear();
+ StringRepresentation = DL.StringRepresentation;
+ BigEndian = DL.isBigEndian();
+ AllocaAddrSpace = DL.AllocaAddrSpace;
+ StackNaturalAlign = DL.StackNaturalAlign;
+ ProgramAddrSpace = DL.ProgramAddrSpace;
+ ManglingMode = DL.ManglingMode;
+ LegalIntWidths = DL.LegalIntWidths;
+ Alignments = DL.Alignments;
+ Pointers = DL.Pointers;
+ NonIntegralAddressSpaces = DL.NonIntegralAddressSpaces;
+ return *this;
+ }
+
+ bool operator==(const DataLayout &Other) const;
+ bool operator!=(const DataLayout &Other) const { return !(*this == Other); }
+
+ void init(const Module *M);
+
+ /// Parse a data layout string (with fallback to default values).
+ void reset(StringRef LayoutDescription);
+
+ /// Layout endianness...
+ bool isLittleEndian() const { return !BigEndian; }
+ bool isBigEndian() const { return BigEndian; }
+
+ /// \brief Returns the string representation of the DataLayout.
+ ///
+ /// This representation is in the same format accepted by the string
+ /// constructor above. This should not be used to compare two DataLayout as
+ /// different string can represent the same layout.
+ const std::string &getStringRepresentation() const {
+ return StringRepresentation;
+ }
+
+ /// \brief Test if the DataLayout was constructed from an empty string.
+ bool isDefault() const { return StringRepresentation.empty(); }
+
+ /// \brief Returns true if the specified type is known to be a native integer
+ /// type supported by the CPU.
+ ///
+ /// For example, i64 is not native on most 32-bit CPUs and i37 is not native
+ /// on any known one. This returns false if the integer width is not legal.
+ ///
+ /// The width is specified in bits.
+ bool isLegalInteger(uint64_t Width) const {
+ for (unsigned LegalIntWidth : LegalIntWidths)
+ if (LegalIntWidth == Width)
+ return true;
+ return false;
+ }
+
+ bool isIllegalInteger(uint64_t Width) const { return !isLegalInteger(Width); }
+
+ /// Returns true if the given alignment exceeds the natural stack alignment.
+ bool exceedsNaturalStackAlignment(unsigned Align) const {
+ return (StackNaturalAlign != 0) && (Align > StackNaturalAlign);
+ }
+
+ unsigned getStackAlignment() const { return StackNaturalAlign; }
+ unsigned getAllocaAddrSpace() const { return AllocaAddrSpace; }
+
+ unsigned getProgramAddressSpace() const { return ProgramAddrSpace; }
+
+ bool hasMicrosoftFastStdCallMangling() const {
+ return ManglingMode == MM_WinCOFFX86;
+ }
+
+ /// Returns true if symbols with leading question marks should not receive IR
+ /// mangling. True for Windows mangling modes.
+ bool doNotMangleLeadingQuestionMark() const {
+ return ManglingMode == MM_WinCOFF || ManglingMode == MM_WinCOFFX86;
+ }
+
+ bool hasLinkerPrivateGlobalPrefix() const { return ManglingMode == MM_MachO; }
+
+ StringRef getLinkerPrivateGlobalPrefix() const {
+ if (ManglingMode == MM_MachO)
+ return "l";
+ return "";
+ }
+
+ char getGlobalPrefix() const {
+ switch (ManglingMode) {
+ case MM_None:
+ case MM_ELF:
+ case MM_Mips:
+ case MM_WinCOFF:
+ return '\0';
+ case MM_MachO:
+ case MM_WinCOFFX86:
+ return '_';
+ }
+ llvm_unreachable("invalid mangling mode");
+ }
+
+ StringRef getPrivateGlobalPrefix() const {
+ switch (ManglingMode) {
+ case MM_None:
+ return "";
+ case MM_ELF:
+ case MM_WinCOFF:
+ return ".L";
+ case MM_Mips:
+ return "$";
+ case MM_MachO:
+ case MM_WinCOFFX86:
+ return "L";
+ }
+ llvm_unreachable("invalid mangling mode");
+ }
+
+ static const char *getManglingComponent(const Triple &T);
+
+ /// \brief Returns true if the specified type fits in a native integer type
+ /// supported by the CPU.
+ ///
+ /// For example, if the CPU only supports i32 as a native integer type, then
+ /// i27 fits in a legal integer type but i45 does not.
+ bool fitsInLegalInteger(unsigned Width) const {
+ for (unsigned LegalIntWidth : LegalIntWidths)
+ if (Width <= LegalIntWidth)
+ return true;
+ return false;
+ }
+
+ /// Layout pointer alignment
+ unsigned getPointerABIAlignment(unsigned AS) const;
+
+ /// Return target's alignment for stack-based pointers
+ /// FIXME: The defaults need to be removed once all of
+ /// the backends/clients are updated.
+ unsigned getPointerPrefAlignment(unsigned AS = 0) const;
+
+ /// Layout pointer size
+ /// FIXME: The defaults need to be removed once all of
+ /// the backends/clients are updated.
+ unsigned getPointerSize(unsigned AS = 0) const;
+
+ // Index size used for address calculation.
+ unsigned getIndexSize(unsigned AS) const;
+
+ /// Return the address spaces containing non-integral pointers. Pointers in
+ /// this address space don't have a well-defined bitwise representation.
+ ArrayRef<unsigned> getNonIntegralAddressSpaces() const {
+ return NonIntegralAddressSpaces;
+ }
+
+ bool isNonIntegralPointerType(PointerType *PT) const {
+ ArrayRef<unsigned> NonIntegralSpaces = getNonIntegralAddressSpaces();
+ return find(NonIntegralSpaces, PT->getAddressSpace()) !=
+ NonIntegralSpaces.end();
+ }
+
+ bool isNonIntegralPointerType(Type *Ty) const {
+ auto *PTy = dyn_cast<PointerType>(Ty);
+ return PTy && isNonIntegralPointerType(PTy);
+ }
+
+ /// Layout pointer size, in bits
+ /// FIXME: The defaults need to be removed once all of
+ /// the backends/clients are updated.
+ unsigned getPointerSizeInBits(unsigned AS = 0) const {
+ return getPointerSize(AS) * 8;
+ }
+
+ /// Size in bits of index used for address calculation in getelementptr.
+ unsigned getIndexSizeInBits(unsigned AS) const {
+ return getIndexSize(AS) * 8;
+ }
+
+ /// Layout pointer size, in bits, based on the type. If this function is
+ /// called with a pointer type, then the type size of the pointer is returned.
+ /// If this function is called with a vector of pointers, then the type size
+ /// of the pointer is returned. This should only be called with a pointer or
+ /// vector of pointers.
+ unsigned getPointerTypeSizeInBits(Type *) const;
+
+ /// Layout size of the index used in GEP calculation.
+ /// The function should be called with pointer or vector of pointers type.
+ unsigned getIndexTypeSizeInBits(Type *Ty) const;
+
+ unsigned getPointerTypeSize(Type *Ty) const {
+ return getPointerTypeSizeInBits(Ty) / 8;
+ }
+
+ /// Size examples:
+ ///
+ /// Type SizeInBits StoreSizeInBits AllocSizeInBits[*]
+ /// ---- ---------- --------------- ---------------
+ /// i1 1 8 8
+ /// i8 8 8 8
+ /// i19 19 24 32
+ /// i32 32 32 32
+ /// i100 100 104 128
+ /// i128 128 128 128
+ /// Float 32 32 32
+ /// Double 64 64 64
+ /// X86_FP80 80 80 96
+ ///
+ /// [*] The alloc size depends on the alignment, and thus on the target.
+ /// These values are for x86-32 linux.
+
+ /// \brief Returns the number of bits necessary to hold the specified type.
+ ///
+ /// For example, returns 36 for i36 and 80 for x86_fp80. The type passed must
+ /// have a size (Type::isSized() must return true).
+ uint64_t getTypeSizeInBits(Type *Ty) const;
+
+ /// \brief Returns the maximum number of bytes that may be overwritten by
+ /// storing the specified type.
+ ///
+ /// For example, returns 5 for i36 and 10 for x86_fp80.
+ uint64_t getTypeStoreSize(Type *Ty) const {
+ return (getTypeSizeInBits(Ty) + 7) / 8;
+ }
+
+ /// \brief Returns the maximum number of bits that may be overwritten by
+ /// storing the specified type; always a multiple of 8.
+ ///
+ /// For example, returns 40 for i36 and 80 for x86_fp80.
+ uint64_t getTypeStoreSizeInBits(Type *Ty) const {
+ return 8 * getTypeStoreSize(Ty);
+ }
+
+ /// \brief Returns the offset in bytes between successive objects of the
+ /// specified type, including alignment padding.
+ ///
+ /// This is the amount that alloca reserves for this type. For example,
+ /// returns 12 or 16 for x86_fp80, depending on alignment.
+ uint64_t getTypeAllocSize(Type *Ty) const {
+ // Round up to the next alignment boundary.
+ return alignTo(getTypeStoreSize(Ty), getABITypeAlignment(Ty));
+ }
+
+ /// \brief Returns the offset in bits between successive objects of the
+ /// specified type, including alignment padding; always a multiple of 8.
+ ///
+ /// This is the amount that alloca reserves for this type. For example,
+ /// returns 96 or 128 for x86_fp80, depending on alignment.
+ uint64_t getTypeAllocSizeInBits(Type *Ty) const {
+ return 8 * getTypeAllocSize(Ty);
+ }
+
+ /// \brief Returns the minimum ABI-required alignment for the specified type.
+ unsigned getABITypeAlignment(Type *Ty) const;
+
+ /// \brief Returns the minimum ABI-required alignment for an integer type of
+ /// the specified bitwidth.
+ unsigned getABIIntegerTypeAlignment(unsigned BitWidth) const;
+
+ /// \brief Returns the preferred stack/global alignment for the specified
+ /// type.
+ ///
+ /// This is always at least as good as the ABI alignment.
+ unsigned getPrefTypeAlignment(Type *Ty) const;
+
+ /// \brief Returns the preferred alignment for the specified type, returned as
+ /// log2 of the value (a shift amount).
+ unsigned getPreferredTypeAlignmentShift(Type *Ty) const;
+
+ /// \brief Returns an integer type with size at least as big as that of a
+ /// pointer in the given address space.
+ IntegerType *getIntPtrType(LLVMContext &C, unsigned AddressSpace = 0) const;
+
+ /// \brief Returns an integer (vector of integer) type with size at least as
+ /// big as that of a pointer of the given pointer (vector of pointer) type.
+ Type *getIntPtrType(Type *) const;
+
+ /// \brief Returns the smallest integer type with size at least as big as
+ /// Width bits.
+ Type *getSmallestLegalIntType(LLVMContext &C, unsigned Width = 0) const;
+
+ /// \brief Returns the largest legal integer type, or null if none are set.
+ Type *getLargestLegalIntType(LLVMContext &C) const {
+ unsigned LargestSize = getLargestLegalIntTypeSizeInBits();
+ return (LargestSize == 0) ? nullptr : Type::getIntNTy(C, LargestSize);
+ }
+
+ /// \brief Returns the size of largest legal integer type size, or 0 if none
+ /// are set.
+ unsigned getLargestLegalIntTypeSizeInBits() const;
+
+ /// \brief Returns the type of a GEP index.
+ /// If it was not specified explicitly, it will be the integer type of the
+ /// pointer width - IntPtrType.
+ Type *getIndexType(Type *PtrTy) const;
+
+ /// \brief Returns the offset from the beginning of the type for the specified
+ /// indices.
+ ///
+ /// Note that this takes the element type, not the pointer type.
+ /// This is used to implement getelementptr.
+ int64_t getIndexedOffsetInType(Type *ElemTy, ArrayRef<Value *> Indices) const;
+
+ /// \brief Returns a StructLayout object, indicating the alignment of the
+ /// struct, its size, and the offsets of its fields.
+ ///
+ /// Note that this information is lazily cached.
+ const StructLayout *getStructLayout(StructType *Ty) const;
+
+ /// \brief Returns the preferred alignment of the specified global.
+ ///
+ /// This includes an explicitly requested alignment (if the global has one).
+ unsigned getPreferredAlignment(const GlobalVariable *GV) const;
+
+ /// \brief Returns the preferred alignment of the specified global, returned
+ /// in log form.
+ ///
+ /// This includes an explicitly requested alignment (if the global has one).
+ unsigned getPreferredAlignmentLog(const GlobalVariable *GV) const;
+};
+
+inline DataLayout *unwrap(LLVMTargetDataRef P) {
+ return reinterpret_cast<DataLayout *>(P);
+}
+
+inline LLVMTargetDataRef wrap(const DataLayout *P) {
+ return reinterpret_cast<LLVMTargetDataRef>(const_cast<DataLayout *>(P));
+}
+
+/// Used to lazily calculate structure layout information for a target machine,
+/// based on the DataLayout structure.
+class StructLayout {
+ uint64_t StructSize;
+ unsigned StructAlignment;
+ unsigned IsPadded : 1;
+ unsigned NumElements : 31;
+ uint64_t MemberOffsets[1]; // variable sized array!
+
+public:
+ uint64_t getSizeInBytes() const { return StructSize; }
+
+ uint64_t getSizeInBits() const { return 8 * StructSize; }
+
+ unsigned getAlignment() const { return StructAlignment; }
+
+ /// Returns whether the struct has padding or not between its fields.
+ /// NB: Padding in nested element is not taken into account.
+ bool hasPadding() const { return IsPadded; }
+
+ /// \brief Given a valid byte offset into the structure, returns the structure
+ /// index that contains it.
+ unsigned getElementContainingOffset(uint64_t Offset) const;
+
+ uint64_t getElementOffset(unsigned Idx) const {
+ assert(Idx < NumElements && "Invalid element idx!");
+ return MemberOffsets[Idx];
+ }
+
+ uint64_t getElementOffsetInBits(unsigned Idx) const {
+ return getElementOffset(Idx) * 8;
+ }
+
+private:
+ friend class DataLayout; // Only DataLayout can create this class
+
+ StructLayout(StructType *ST, const DataLayout &DL);
+};
+
+// The implementation of this method is provided inline as it is particularly
+// well suited to constant folding when called on a specific Type subclass.
+inline uint64_t DataLayout::getTypeSizeInBits(Type *Ty) const {
+ assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!");
+ switch (Ty->getTypeID()) {
+ case Type::LabelTyID:
+ return getPointerSizeInBits(0);
+ case Type::PointerTyID:
+ return getPointerSizeInBits(Ty->getPointerAddressSpace());
+ case Type::ArrayTyID: {
+ ArrayType *ATy = cast<ArrayType>(Ty);
+ return ATy->getNumElements() *
+ getTypeAllocSizeInBits(ATy->getElementType());
+ }
+ case Type::StructTyID:
+ // Get the layout annotation... which is lazily created on demand.
+ return getStructLayout(cast<StructType>(Ty))->getSizeInBits();
+ case Type::IntegerTyID:
+ return Ty->getIntegerBitWidth();
+ case Type::HalfTyID:
+ return 16;
+ case Type::FloatTyID:
+ return 32;
+ case Type::DoubleTyID:
+ case Type::X86_MMXTyID:
+ return 64;
+ case Type::PPC_FP128TyID:
+ case Type::FP128TyID:
+ return 128;
+ // In memory objects this is always aligned to a higher boundary, but
+ // only 80 bits contain information.
+ case Type::X86_FP80TyID:
+ return 80;
+ case Type::VectorTyID: {
+ VectorType *VTy = cast<VectorType>(Ty);
+ return VTy->getNumElements() * getTypeSizeInBits(VTy->getElementType());
+ }
+ default:
+ llvm_unreachable("DataLayout::getTypeSizeInBits(): Unsupported type");
+ }
+}
+
+} // end namespace llvm
+
+#endif // LLVM_IR_DATALAYOUT_H