Import prebuilt clang toolchain for linux.
diff --git a/linux-x64/clang/include/llvm/IR/DataLayout.h b/linux-x64/clang/include/llvm/IR/DataLayout.h
new file mode 100644
index 0000000..c48e140
--- /dev/null
+++ b/linux-x64/clang/include/llvm/IR/DataLayout.h
@@ -0,0 +1,602 @@
+//===- llvm/DataLayout.h - Data size & alignment info -----------*- C++ -*-===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines layout properties related to datatype size/offset/alignment
+// information.  It uses lazy annotations to cache information about how
+// structure types are laid out and used.
+//
+// This structure should be created once, filled in if the defaults are not
+// correct and then passed around by const&.  None of the members functions
+// require modification to the object.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_IR_DATALAYOUT_H
+#define LLVM_IR_DATALAYOUT_H
+
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Type.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MathExtras.h"
+#include <cassert>
+#include <cstdint>
+#include <string>
+
+// This needs to be outside of the namespace, to avoid conflict with llvm-c
+// decl.
+using LLVMTargetDataRef = struct LLVMOpaqueTargetData *;
+
+namespace llvm {
+
+class GlobalVariable;
+class LLVMContext;
+class Module;
+class StructLayout;
+class Triple;
+class Value;
+
+/// Enum used to categorize the alignment types stored by LayoutAlignElem
+enum AlignTypeEnum {
+  INVALID_ALIGN = 0,
+  INTEGER_ALIGN = 'i',
+  VECTOR_ALIGN = 'v',
+  FLOAT_ALIGN = 'f',
+  AGGREGATE_ALIGN = 'a'
+};
+
+// FIXME: Currently the DataLayout string carries a "preferred alignment"
+// for types. As the DataLayout is module/global, this should likely be
+// sunk down to an FTTI element that is queried rather than a global
+// preference.
+
+/// \brief Layout alignment element.
+///
+/// Stores the alignment data associated with a given alignment type (integer,
+/// vector, float) and type bit width.
+///
+/// \note The unusual order of elements in the structure attempts to reduce
+/// padding and make the structure slightly more cache friendly.
+struct LayoutAlignElem {
+  /// \brief Alignment type from \c AlignTypeEnum
+  unsigned AlignType : 8;
+  unsigned TypeBitWidth : 24;
+  unsigned ABIAlign : 16;
+  unsigned PrefAlign : 16;
+
+  static LayoutAlignElem get(AlignTypeEnum align_type, unsigned abi_align,
+                             unsigned pref_align, uint32_t bit_width);
+
+  bool operator==(const LayoutAlignElem &rhs) const;
+};
+
+/// \brief Layout pointer alignment element.
+///
+/// Stores the alignment data associated with a given pointer and address space.
+///
+/// \note The unusual order of elements in the structure attempts to reduce
+/// padding and make the structure slightly more cache friendly.
+struct PointerAlignElem {
+  unsigned ABIAlign;
+  unsigned PrefAlign;
+  uint32_t TypeByteWidth;
+  uint32_t AddressSpace;
+  uint32_t IndexWidth;
+
+  /// Initializer
+  static PointerAlignElem get(uint32_t AddressSpace, unsigned ABIAlign,
+                              unsigned PrefAlign, uint32_t TypeByteWidth,
+                              uint32_t IndexWidth);
+
+  bool operator==(const PointerAlignElem &rhs) const;
+};
+
+/// \brief A parsed version of the target data layout string in and methods for
+/// querying it.
+///
+/// The target data layout string is specified *by the target* - a frontend
+/// generating LLVM IR is required to generate the right target data for the
+/// target being codegen'd to.
+class DataLayout {
+private:
+  /// Defaults to false.
+  bool BigEndian;
+
+  unsigned AllocaAddrSpace;
+  unsigned StackNaturalAlign;
+  unsigned ProgramAddrSpace;
+
+  enum ManglingModeT {
+    MM_None,
+    MM_ELF,
+    MM_MachO,
+    MM_WinCOFF,
+    MM_WinCOFFX86,
+    MM_Mips
+  };
+  ManglingModeT ManglingMode;
+
+  SmallVector<unsigned char, 8> LegalIntWidths;
+
+  /// \brief Primitive type alignment data. This is sorted by type and bit
+  /// width during construction.
+  using AlignmentsTy = SmallVector<LayoutAlignElem, 16>;
+  AlignmentsTy Alignments;
+
+  AlignmentsTy::const_iterator
+  findAlignmentLowerBound(AlignTypeEnum AlignType, uint32_t BitWidth) const {
+    return const_cast<DataLayout *>(this)->findAlignmentLowerBound(AlignType,
+                                                                   BitWidth);
+  }
+
+  AlignmentsTy::iterator
+  findAlignmentLowerBound(AlignTypeEnum AlignType, uint32_t BitWidth);
+
+  /// \brief The string representation used to create this DataLayout
+  std::string StringRepresentation;
+
+  using PointersTy = SmallVector<PointerAlignElem, 8>;
+  PointersTy Pointers;
+
+  PointersTy::const_iterator
+  findPointerLowerBound(uint32_t AddressSpace) const {
+    return const_cast<DataLayout *>(this)->findPointerLowerBound(AddressSpace);
+  }
+
+  PointersTy::iterator findPointerLowerBound(uint32_t AddressSpace);
+
+  // The StructType -> StructLayout map.
+  mutable void *LayoutMap = nullptr;
+
+  /// Pointers in these address spaces are non-integral, and don't have a
+  /// well-defined bitwise representation.
+  SmallVector<unsigned, 8> NonIntegralAddressSpaces;
+
+  void setAlignment(AlignTypeEnum align_type, unsigned abi_align,
+                    unsigned pref_align, uint32_t bit_width);
+  unsigned getAlignmentInfo(AlignTypeEnum align_type, uint32_t bit_width,
+                            bool ABIAlign, Type *Ty) const;
+  void setPointerAlignment(uint32_t AddrSpace, unsigned ABIAlign,
+                           unsigned PrefAlign, uint32_t TypeByteWidth,
+                           uint32_t IndexWidth);
+
+  /// Internal helper method that returns requested alignment for type.
+  unsigned getAlignment(Type *Ty, bool abi_or_pref) const;
+
+  /// Parses a target data specification string. Assert if the string is
+  /// malformed.
+  void parseSpecifier(StringRef LayoutDescription);
+
+  // Free all internal data structures.
+  void clear();
+
+public:
+  /// Constructs a DataLayout from a specification string. See reset().
+  explicit DataLayout(StringRef LayoutDescription) {
+    reset(LayoutDescription);
+  }
+
+  /// Initialize target data from properties stored in the module.
+  explicit DataLayout(const Module *M);
+
+  DataLayout(const DataLayout &DL) { *this = DL; }
+
+  ~DataLayout(); // Not virtual, do not subclass this class
+
+  DataLayout &operator=(const DataLayout &DL) {
+    clear();
+    StringRepresentation = DL.StringRepresentation;
+    BigEndian = DL.isBigEndian();
+    AllocaAddrSpace = DL.AllocaAddrSpace;
+    StackNaturalAlign = DL.StackNaturalAlign;
+    ProgramAddrSpace = DL.ProgramAddrSpace;
+    ManglingMode = DL.ManglingMode;
+    LegalIntWidths = DL.LegalIntWidths;
+    Alignments = DL.Alignments;
+    Pointers = DL.Pointers;
+    NonIntegralAddressSpaces = DL.NonIntegralAddressSpaces;
+    return *this;
+  }
+
+  bool operator==(const DataLayout &Other) const;
+  bool operator!=(const DataLayout &Other) const { return !(*this == Other); }
+
+  void init(const Module *M);
+
+  /// Parse a data layout string (with fallback to default values).
+  void reset(StringRef LayoutDescription);
+
+  /// Layout endianness...
+  bool isLittleEndian() const { return !BigEndian; }
+  bool isBigEndian() const { return BigEndian; }
+
+  /// \brief Returns the string representation of the DataLayout.
+  ///
+  /// This representation is in the same format accepted by the string
+  /// constructor above. This should not be used to compare two DataLayout as
+  /// different string can represent the same layout.
+  const std::string &getStringRepresentation() const {
+    return StringRepresentation;
+  }
+
+  /// \brief Test if the DataLayout was constructed from an empty string.
+  bool isDefault() const { return StringRepresentation.empty(); }
+
+  /// \brief Returns true if the specified type is known to be a native integer
+  /// type supported by the CPU.
+  ///
+  /// For example, i64 is not native on most 32-bit CPUs and i37 is not native
+  /// on any known one. This returns false if the integer width is not legal.
+  ///
+  /// The width is specified in bits.
+  bool isLegalInteger(uint64_t Width) const {
+    for (unsigned LegalIntWidth : LegalIntWidths)
+      if (LegalIntWidth == Width)
+        return true;
+    return false;
+  }
+
+  bool isIllegalInteger(uint64_t Width) const { return !isLegalInteger(Width); }
+
+  /// Returns true if the given alignment exceeds the natural stack alignment.
+  bool exceedsNaturalStackAlignment(unsigned Align) const {
+    return (StackNaturalAlign != 0) && (Align > StackNaturalAlign);
+  }
+
+  unsigned getStackAlignment() const { return StackNaturalAlign; }
+  unsigned getAllocaAddrSpace() const { return AllocaAddrSpace; }
+
+  unsigned getProgramAddressSpace() const { return ProgramAddrSpace; }
+
+  bool hasMicrosoftFastStdCallMangling() const {
+    return ManglingMode == MM_WinCOFFX86;
+  }
+
+  /// Returns true if symbols with leading question marks should not receive IR
+  /// mangling. True for Windows mangling modes.
+  bool doNotMangleLeadingQuestionMark() const {
+    return ManglingMode == MM_WinCOFF || ManglingMode == MM_WinCOFFX86;
+  }
+
+  bool hasLinkerPrivateGlobalPrefix() const { return ManglingMode == MM_MachO; }
+
+  StringRef getLinkerPrivateGlobalPrefix() const {
+    if (ManglingMode == MM_MachO)
+      return "l";
+    return "";
+  }
+
+  char getGlobalPrefix() const {
+    switch (ManglingMode) {
+    case MM_None:
+    case MM_ELF:
+    case MM_Mips:
+    case MM_WinCOFF:
+      return '\0';
+    case MM_MachO:
+    case MM_WinCOFFX86:
+      return '_';
+    }
+    llvm_unreachable("invalid mangling mode");
+  }
+
+  StringRef getPrivateGlobalPrefix() const {
+    switch (ManglingMode) {
+    case MM_None:
+      return "";
+    case MM_ELF:
+    case MM_WinCOFF:
+      return ".L";
+    case MM_Mips:
+      return "$";
+    case MM_MachO:
+    case MM_WinCOFFX86:
+      return "L";
+    }
+    llvm_unreachable("invalid mangling mode");
+  }
+
+  static const char *getManglingComponent(const Triple &T);
+
+  /// \brief Returns true if the specified type fits in a native integer type
+  /// supported by the CPU.
+  ///
+  /// For example, if the CPU only supports i32 as a native integer type, then
+  /// i27 fits in a legal integer type but i45 does not.
+  bool fitsInLegalInteger(unsigned Width) const {
+    for (unsigned LegalIntWidth : LegalIntWidths)
+      if (Width <= LegalIntWidth)
+        return true;
+    return false;
+  }
+
+  /// Layout pointer alignment
+  unsigned getPointerABIAlignment(unsigned AS) const;
+
+  /// Return target's alignment for stack-based pointers
+  /// FIXME: The defaults need to be removed once all of
+  /// the backends/clients are updated.
+  unsigned getPointerPrefAlignment(unsigned AS = 0) const;
+
+  /// Layout pointer size
+  /// FIXME: The defaults need to be removed once all of
+  /// the backends/clients are updated.
+  unsigned getPointerSize(unsigned AS = 0) const;
+
+  // Index size used for address calculation.
+  unsigned getIndexSize(unsigned AS) const;
+
+  /// Return the address spaces containing non-integral pointers.  Pointers in
+  /// this address space don't have a well-defined bitwise representation.
+  ArrayRef<unsigned> getNonIntegralAddressSpaces() const {
+    return NonIntegralAddressSpaces;
+  }
+
+  bool isNonIntegralPointerType(PointerType *PT) const {
+    ArrayRef<unsigned> NonIntegralSpaces = getNonIntegralAddressSpaces();
+    return find(NonIntegralSpaces, PT->getAddressSpace()) !=
+           NonIntegralSpaces.end();
+  }
+
+  bool isNonIntegralPointerType(Type *Ty) const {
+    auto *PTy = dyn_cast<PointerType>(Ty);
+    return PTy && isNonIntegralPointerType(PTy);
+  }
+
+  /// Layout pointer size, in bits
+  /// FIXME: The defaults need to be removed once all of
+  /// the backends/clients are updated.
+  unsigned getPointerSizeInBits(unsigned AS = 0) const {
+    return getPointerSize(AS) * 8;
+  }
+
+  /// Size in bits of index used for address calculation in getelementptr.
+  unsigned getIndexSizeInBits(unsigned AS) const {
+    return getIndexSize(AS) * 8;
+  }
+
+  /// Layout pointer size, in bits, based on the type.  If this function is
+  /// called with a pointer type, then the type size of the pointer is returned.
+  /// If this function is called with a vector of pointers, then the type size
+  /// of the pointer is returned.  This should only be called with a pointer or
+  /// vector of pointers.
+  unsigned getPointerTypeSizeInBits(Type *) const;
+
+  /// Layout size of the index used in GEP calculation.
+  /// The function should be called with pointer or vector of pointers type.
+  unsigned getIndexTypeSizeInBits(Type *Ty) const;
+
+  unsigned getPointerTypeSize(Type *Ty) const {
+    return getPointerTypeSizeInBits(Ty) / 8;
+  }
+
+  /// Size examples:
+  ///
+  /// Type        SizeInBits  StoreSizeInBits  AllocSizeInBits[*]
+  /// ----        ----------  ---------------  ---------------
+  ///  i1            1           8                8
+  ///  i8            8           8                8
+  ///  i19          19          24               32
+  ///  i32          32          32               32
+  ///  i100        100         104              128
+  ///  i128        128         128              128
+  ///  Float        32          32               32
+  ///  Double       64          64               64
+  ///  X86_FP80     80          80               96
+  ///
+  /// [*] The alloc size depends on the alignment, and thus on the target.
+  ///     These values are for x86-32 linux.
+
+  /// \brief Returns the number of bits necessary to hold the specified type.
+  ///
+  /// For example, returns 36 for i36 and 80 for x86_fp80. The type passed must
+  /// have a size (Type::isSized() must return true).
+  uint64_t getTypeSizeInBits(Type *Ty) const;
+
+  /// \brief Returns the maximum number of bytes that may be overwritten by
+  /// storing the specified type.
+  ///
+  /// For example, returns 5 for i36 and 10 for x86_fp80.
+  uint64_t getTypeStoreSize(Type *Ty) const {
+    return (getTypeSizeInBits(Ty) + 7) / 8;
+  }
+
+  /// \brief Returns the maximum number of bits that may be overwritten by
+  /// storing the specified type; always a multiple of 8.
+  ///
+  /// For example, returns 40 for i36 and 80 for x86_fp80.
+  uint64_t getTypeStoreSizeInBits(Type *Ty) const {
+    return 8 * getTypeStoreSize(Ty);
+  }
+
+  /// \brief Returns the offset in bytes between successive objects of the
+  /// specified type, including alignment padding.
+  ///
+  /// This is the amount that alloca reserves for this type. For example,
+  /// returns 12 or 16 for x86_fp80, depending on alignment.
+  uint64_t getTypeAllocSize(Type *Ty) const {
+    // Round up to the next alignment boundary.
+    return alignTo(getTypeStoreSize(Ty), getABITypeAlignment(Ty));
+  }
+
+  /// \brief Returns the offset in bits between successive objects of the
+  /// specified type, including alignment padding; always a multiple of 8.
+  ///
+  /// This is the amount that alloca reserves for this type. For example,
+  /// returns 96 or 128 for x86_fp80, depending on alignment.
+  uint64_t getTypeAllocSizeInBits(Type *Ty) const {
+    return 8 * getTypeAllocSize(Ty);
+  }
+
+  /// \brief Returns the minimum ABI-required alignment for the specified type.
+  unsigned getABITypeAlignment(Type *Ty) const;
+
+  /// \brief Returns the minimum ABI-required alignment for an integer type of
+  /// the specified bitwidth.
+  unsigned getABIIntegerTypeAlignment(unsigned BitWidth) const;
+
+  /// \brief Returns the preferred stack/global alignment for the specified
+  /// type.
+  ///
+  /// This is always at least as good as the ABI alignment.
+  unsigned getPrefTypeAlignment(Type *Ty) const;
+
+  /// \brief Returns the preferred alignment for the specified type, returned as
+  /// log2 of the value (a shift amount).
+  unsigned getPreferredTypeAlignmentShift(Type *Ty) const;
+
+  /// \brief Returns an integer type with size at least as big as that of a
+  /// pointer in the given address space.
+  IntegerType *getIntPtrType(LLVMContext &C, unsigned AddressSpace = 0) const;
+
+  /// \brief Returns an integer (vector of integer) type with size at least as
+  /// big as that of a pointer of the given pointer (vector of pointer) type.
+  Type *getIntPtrType(Type *) const;
+
+  /// \brief Returns the smallest integer type with size at least as big as
+  /// Width bits.
+  Type *getSmallestLegalIntType(LLVMContext &C, unsigned Width = 0) const;
+
+  /// \brief Returns the largest legal integer type, or null if none are set.
+  Type *getLargestLegalIntType(LLVMContext &C) const {
+    unsigned LargestSize = getLargestLegalIntTypeSizeInBits();
+    return (LargestSize == 0) ? nullptr : Type::getIntNTy(C, LargestSize);
+  }
+
+  /// \brief Returns the size of largest legal integer type size, or 0 if none
+  /// are set.
+  unsigned getLargestLegalIntTypeSizeInBits() const;
+
+  /// \brief Returns the type of a GEP index.
+  /// If it was not specified explicitly, it will be the integer type of the
+  /// pointer width - IntPtrType.
+  Type *getIndexType(Type *PtrTy) const;
+
+  /// \brief Returns the offset from the beginning of the type for the specified
+  /// indices.
+  ///
+  /// Note that this takes the element type, not the pointer type.
+  /// This is used to implement getelementptr.
+  int64_t getIndexedOffsetInType(Type *ElemTy, ArrayRef<Value *> Indices) const;
+
+  /// \brief Returns a StructLayout object, indicating the alignment of the
+  /// struct, its size, and the offsets of its fields.
+  ///
+  /// Note that this information is lazily cached.
+  const StructLayout *getStructLayout(StructType *Ty) const;
+
+  /// \brief Returns the preferred alignment of the specified global.
+  ///
+  /// This includes an explicitly requested alignment (if the global has one).
+  unsigned getPreferredAlignment(const GlobalVariable *GV) const;
+
+  /// \brief Returns the preferred alignment of the specified global, returned
+  /// in log form.
+  ///
+  /// This includes an explicitly requested alignment (if the global has one).
+  unsigned getPreferredAlignmentLog(const GlobalVariable *GV) const;
+};
+
+inline DataLayout *unwrap(LLVMTargetDataRef P) {
+  return reinterpret_cast<DataLayout *>(P);
+}
+
+inline LLVMTargetDataRef wrap(const DataLayout *P) {
+  return reinterpret_cast<LLVMTargetDataRef>(const_cast<DataLayout *>(P));
+}
+
+/// Used to lazily calculate structure layout information for a target machine,
+/// based on the DataLayout structure.
+class StructLayout {
+  uint64_t StructSize;
+  unsigned StructAlignment;
+  unsigned IsPadded : 1;
+  unsigned NumElements : 31;
+  uint64_t MemberOffsets[1]; // variable sized array!
+
+public:
+  uint64_t getSizeInBytes() const { return StructSize; }
+
+  uint64_t getSizeInBits() const { return 8 * StructSize; }
+
+  unsigned getAlignment() const { return StructAlignment; }
+
+  /// Returns whether the struct has padding or not between its fields.
+  /// NB: Padding in nested element is not taken into account.
+  bool hasPadding() const { return IsPadded; }
+
+  /// \brief Given a valid byte offset into the structure, returns the structure
+  /// index that contains it.
+  unsigned getElementContainingOffset(uint64_t Offset) const;
+
+  uint64_t getElementOffset(unsigned Idx) const {
+    assert(Idx < NumElements && "Invalid element idx!");
+    return MemberOffsets[Idx];
+  }
+
+  uint64_t getElementOffsetInBits(unsigned Idx) const {
+    return getElementOffset(Idx) * 8;
+  }
+
+private:
+  friend class DataLayout; // Only DataLayout can create this class
+
+  StructLayout(StructType *ST, const DataLayout &DL);
+};
+
+// The implementation of this method is provided inline as it is particularly
+// well suited to constant folding when called on a specific Type subclass.
+inline uint64_t DataLayout::getTypeSizeInBits(Type *Ty) const {
+  assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!");
+  switch (Ty->getTypeID()) {
+  case Type::LabelTyID:
+    return getPointerSizeInBits(0);
+  case Type::PointerTyID:
+    return getPointerSizeInBits(Ty->getPointerAddressSpace());
+  case Type::ArrayTyID: {
+    ArrayType *ATy = cast<ArrayType>(Ty);
+    return ATy->getNumElements() *
+           getTypeAllocSizeInBits(ATy->getElementType());
+  }
+  case Type::StructTyID:
+    // Get the layout annotation... which is lazily created on demand.
+    return getStructLayout(cast<StructType>(Ty))->getSizeInBits();
+  case Type::IntegerTyID:
+    return Ty->getIntegerBitWidth();
+  case Type::HalfTyID:
+    return 16;
+  case Type::FloatTyID:
+    return 32;
+  case Type::DoubleTyID:
+  case Type::X86_MMXTyID:
+    return 64;
+  case Type::PPC_FP128TyID:
+  case Type::FP128TyID:
+    return 128;
+  // In memory objects this is always aligned to a higher boundary, but
+  // only 80 bits contain information.
+  case Type::X86_FP80TyID:
+    return 80;
+  case Type::VectorTyID: {
+    VectorType *VTy = cast<VectorType>(Ty);
+    return VTy->getNumElements() * getTypeSizeInBits(VTy->getElementType());
+  }
+  default:
+    llvm_unreachable("DataLayout::getTypeSizeInBits(): Unsupported type");
+  }
+}
+
+} // end namespace llvm
+
+#endif // LLVM_IR_DATALAYOUT_H