Import prebuilt clang toolchain for linux.
diff --git a/linux-x64/clang/include/llvm/CodeGen/ScheduleDAG.h b/linux-x64/clang/include/llvm/CodeGen/ScheduleDAG.h
new file mode 100644
index 0000000..f3f2f05
--- /dev/null
+++ b/linux-x64/clang/include/llvm/CodeGen/ScheduleDAG.h
@@ -0,0 +1,764 @@
+//===- llvm/CodeGen/ScheduleDAG.h - Common Base Class -----------*- C++ -*-===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file Implements the ScheduleDAG class, which is used as the common base
+/// class for instruction schedulers. This encapsulates the scheduling DAG,
+/// which is shared between SelectionDAG and MachineInstr scheduling.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CODEGEN_SCHEDULEDAG_H
+#define LLVM_CODEGEN_SCHEDULEDAG_H
+
+#include "llvm/ADT/BitVector.h"
+#include "llvm/ADT/GraphTraits.h"
+#include "llvm/ADT/PointerIntPair.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/iterator.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/TargetLowering.h"
+#include "llvm/Support/ErrorHandling.h"
+#include <cassert>
+#include <cstddef>
+#include <iterator>
+#include <string>
+#include <vector>
+
+namespace llvm {
+
+template<class Graph> class GraphWriter;
+class MachineFunction;
+class MachineRegisterInfo;
+class MCInstrDesc;
+struct MCSchedClassDesc;
+class ScheduleDAG;
+class SDNode;
+class SUnit;
+class TargetInstrInfo;
+class TargetMachine;
+class TargetRegisterClass;
+class TargetRegisterInfo;
+
+  /// Scheduling dependency. This represents one direction of an edge in the
+  /// scheduling DAG.
+  class SDep {
+  public:
+    /// These are the different kinds of scheduling dependencies.
+    enum Kind {
+      Data,        ///< Regular data dependence (aka true-dependence).
+      Anti,        ///< A register anti-dependence (aka WAR).
+      Output,      ///< A register output-dependence (aka WAW).
+      Order        ///< Any other ordering dependency.
+    };
+
+    // Strong dependencies must be respected by the scheduler. Artificial
+    // dependencies may be removed only if they are redundant with another
+    // strong dependence.
+    //
+    // Weak dependencies may be violated by the scheduling strategy, but only if
+    // the strategy can prove it is correct to do so.
+    //
+    // Strong OrderKinds must occur before "Weak".
+    // Weak OrderKinds must occur after "Weak".
+    enum OrderKind {
+      Barrier,      ///< An unknown scheduling barrier.
+      MayAliasMem,  ///< Nonvolatile load/Store instructions that may alias.
+      MustAliasMem, ///< Nonvolatile load/Store instructions that must alias.
+      Artificial,   ///< Arbitrary strong DAG edge (no real dependence).
+      Weak,         ///< Arbitrary weak DAG edge.
+      Cluster       ///< Weak DAG edge linking a chain of clustered instrs.
+    };
+
+  private:
+    /// \brief A pointer to the depending/depended-on SUnit, and an enum
+    /// indicating the kind of the dependency.
+    PointerIntPair<SUnit *, 2, Kind> Dep;
+
+    /// A union discriminated by the dependence kind.
+    union {
+      /// For Data, Anti, and Output dependencies, the associated register. For
+      /// Data dependencies that don't currently have a register/ assigned, this
+      /// is set to zero.
+      unsigned Reg;
+
+      /// Additional information about Order dependencies.
+      unsigned OrdKind; // enum OrderKind
+    } Contents;
+
+    /// The time associated with this edge. Often this is just the value of the
+    /// Latency field of the predecessor, however advanced models may provide
+    /// additional information about specific edges.
+    unsigned Latency;
+
+  public:
+    /// Constructs a null SDep. This is only for use by container classes which
+    /// require default constructors. SUnits may not/ have null SDep edges.
+    SDep() : Dep(nullptr, Data) {}
+
+    /// Constructs an SDep with the specified values.
+    SDep(SUnit *S, Kind kind, unsigned Reg)
+      : Dep(S, kind), Contents() {
+      switch (kind) {
+      default:
+        llvm_unreachable("Reg given for non-register dependence!");
+      case Anti:
+      case Output:
+        assert(Reg != 0 &&
+               "SDep::Anti and SDep::Output must use a non-zero Reg!");
+        Contents.Reg = Reg;
+        Latency = 0;
+        break;
+      case Data:
+        Contents.Reg = Reg;
+        Latency = 1;
+        break;
+      }
+    }
+
+    SDep(SUnit *S, OrderKind kind)
+      : Dep(S, Order), Contents(), Latency(0) {
+      Contents.OrdKind = kind;
+    }
+
+    /// Returns true if the specified SDep is equivalent except for latency.
+    bool overlaps(const SDep &Other) const;
+
+    bool operator==(const SDep &Other) const {
+      return overlaps(Other) && Latency == Other.Latency;
+    }
+
+    bool operator!=(const SDep &Other) const {
+      return !operator==(Other);
+    }
+
+    /// \brief Returns the latency value for this edge, which roughly means the
+    /// minimum number of cycles that must elapse between the predecessor and
+    /// the successor, given that they have this edge between them.
+    unsigned getLatency() const {
+      return Latency;
+    }
+
+    /// Sets the latency for this edge.
+    void setLatency(unsigned Lat) {
+      Latency = Lat;
+    }
+
+    //// Returns the SUnit to which this edge points.
+    SUnit *getSUnit() const;
+
+    //// Assigns the SUnit to which this edge points.
+    void setSUnit(SUnit *SU);
+
+    /// Returns an enum value representing the kind of the dependence.
+    Kind getKind() const;
+
+    /// Shorthand for getKind() != SDep::Data.
+    bool isCtrl() const {
+      return getKind() != Data;
+    }
+
+    /// \brief Tests if this is an Order dependence between two memory accesses
+    /// where both sides of the dependence access memory in non-volatile and
+    /// fully modeled ways.
+    bool isNormalMemory() const {
+      return getKind() == Order && (Contents.OrdKind == MayAliasMem
+                                    || Contents.OrdKind == MustAliasMem);
+    }
+
+    /// Tests if this is an Order dependence that is marked as a barrier.
+    bool isBarrier() const {
+      return getKind() == Order && Contents.OrdKind == Barrier;
+    }
+
+    /// Tests if this is could be any kind of memory dependence.
+    bool isNormalMemoryOrBarrier() const {
+      return (isNormalMemory() || isBarrier());
+    }
+
+    /// \brief Tests if this is an Order dependence that is marked as
+    /// "must alias", meaning that the SUnits at either end of the edge have a
+    /// memory dependence on a known memory location.
+    bool isMustAlias() const {
+      return getKind() == Order && Contents.OrdKind == MustAliasMem;
+    }
+
+    /// Tests if this a weak dependence. Weak dependencies are considered DAG
+    /// edges for height computation and other heuristics, but do not force
+    /// ordering. Breaking a weak edge may require the scheduler to compensate,
+    /// for example by inserting a copy.
+    bool isWeak() const {
+      return getKind() == Order && Contents.OrdKind >= Weak;
+    }
+
+    /// \brief Tests if this is an Order dependence that is marked as
+    /// "artificial", meaning it isn't necessary for correctness.
+    bool isArtificial() const {
+      return getKind() == Order && Contents.OrdKind == Artificial;
+    }
+
+    /// \brief Tests if this is an Order dependence that is marked as "cluster",
+    /// meaning it is artificial and wants to be adjacent.
+    bool isCluster() const {
+      return getKind() == Order && Contents.OrdKind == Cluster;
+    }
+
+    /// Tests if this is a Data dependence that is associated with a register.
+    bool isAssignedRegDep() const {
+      return getKind() == Data && Contents.Reg != 0;
+    }
+
+    /// Returns the register associated with this edge. This is only valid on
+    /// Data, Anti, and Output edges. On Data edges, this value may be zero,
+    /// meaning there is no associated register.
+    unsigned getReg() const {
+      assert((getKind() == Data || getKind() == Anti || getKind() == Output) &&
+             "getReg called on non-register dependence edge!");
+      return Contents.Reg;
+    }
+
+    /// Assigns the associated register for this edge. This is only valid on
+    /// Data, Anti, and Output edges. On Anti and Output edges, this value must
+    /// not be zero. On Data edges, the value may be zero, which would mean that
+    /// no specific register is associated with this edge.
+    void setReg(unsigned Reg) {
+      assert((getKind() == Data || getKind() == Anti || getKind() == Output) &&
+             "setReg called on non-register dependence edge!");
+      assert((getKind() != Anti || Reg != 0) &&
+             "SDep::Anti edge cannot use the zero register!");
+      assert((getKind() != Output || Reg != 0) &&
+             "SDep::Output edge cannot use the zero register!");
+      Contents.Reg = Reg;
+    }
+
+    raw_ostream &print(raw_ostream &O,
+                       const TargetRegisterInfo *TRI = nullptr) const;
+  };
+
+  template <>
+  struct isPodLike<SDep> { static const bool value = true; };
+
+  /// Scheduling unit. This is a node in the scheduling DAG.
+  class SUnit {
+  private:
+    enum : unsigned { BoundaryID = ~0u };
+
+    SDNode *Node = nullptr;        ///< Representative node.
+    MachineInstr *Instr = nullptr; ///< Alternatively, a MachineInstr.
+
+  public:
+    SUnit *OrigNode = nullptr; ///< If not this, the node from which this node 
+                               /// was cloned. (SD scheduling only)
+
+    const MCSchedClassDesc *SchedClass =
+        nullptr; ///< nullptr or resolved SchedClass.
+
+    SmallVector<SDep, 4> Preds;  ///< All sunit predecessors.
+    SmallVector<SDep, 4> Succs;  ///< All sunit successors.
+
+    typedef SmallVectorImpl<SDep>::iterator pred_iterator;
+    typedef SmallVectorImpl<SDep>::iterator succ_iterator;
+    typedef SmallVectorImpl<SDep>::const_iterator const_pred_iterator;
+    typedef SmallVectorImpl<SDep>::const_iterator const_succ_iterator;
+
+    unsigned NodeNum = BoundaryID;     ///< Entry # of node in the node vector.
+    unsigned NodeQueueId = 0;          ///< Queue id of node.
+    unsigned NumPreds = 0;             ///< # of SDep::Data preds.
+    unsigned NumSuccs = 0;             ///< # of SDep::Data sucss.
+    unsigned NumPredsLeft = 0;         ///< # of preds not scheduled.
+    unsigned NumSuccsLeft = 0;         ///< # of succs not scheduled.
+    unsigned WeakPredsLeft = 0;        ///< # of weak preds not scheduled.
+    unsigned WeakSuccsLeft = 0;        ///< # of weak succs not scheduled.
+    unsigned short NumRegDefsLeft = 0; ///< # of reg defs with no scheduled use.
+    unsigned short Latency = 0;        ///< Node latency.
+    bool isVRegCycle      : 1;         ///< May use and def the same vreg.
+    bool isCall           : 1;         ///< Is a function call.
+    bool isCallOp         : 1;         ///< Is a function call operand.
+    bool isTwoAddress     : 1;         ///< Is a two-address instruction.
+    bool isCommutable     : 1;         ///< Is a commutable instruction.
+    bool hasPhysRegUses   : 1;         ///< Has physreg uses.
+    bool hasPhysRegDefs   : 1;         ///< Has physreg defs that are being used.
+    bool hasPhysRegClobbers : 1;       ///< Has any physreg defs, used or not.
+    bool isPending        : 1;         ///< True once pending.
+    bool isAvailable      : 1;         ///< True once available.
+    bool isScheduled      : 1;         ///< True once scheduled.
+    bool isScheduleHigh   : 1;         ///< True if preferable to schedule high.
+    bool isScheduleLow    : 1;         ///< True if preferable to schedule low.
+    bool isCloned         : 1;         ///< True if this node has been cloned.
+    bool isUnbuffered     : 1;         ///< Uses an unbuffered resource.
+    bool hasReservedResource : 1;      ///< Uses a reserved resource.
+    Sched::Preference SchedulingPref = Sched::None; ///< Scheduling preference.
+
+  private:
+    bool isDepthCurrent   : 1;         ///< True if Depth is current.
+    bool isHeightCurrent  : 1;         ///< True if Height is current.
+    unsigned Depth = 0;                ///< Node depth.
+    unsigned Height = 0;               ///< Node height.
+
+  public:
+    unsigned TopReadyCycle = 0; ///< Cycle relative to start when node is ready.
+    unsigned BotReadyCycle = 0; ///< Cycle relative to end when node is ready.
+
+    const TargetRegisterClass *CopyDstRC =
+        nullptr; ///< Is a special copy node if != nullptr.
+    const TargetRegisterClass *CopySrcRC = nullptr;
+
+    /// \brief Constructs an SUnit for pre-regalloc scheduling to represent an
+    /// SDNode and any nodes flagged to it.
+    SUnit(SDNode *node, unsigned nodenum)
+      : Node(node), NodeNum(nodenum), isVRegCycle(false), isCall(false),
+        isCallOp(false), isTwoAddress(false), isCommutable(false),
+        hasPhysRegUses(false), hasPhysRegDefs(false), hasPhysRegClobbers(false),
+        isPending(false), isAvailable(false), isScheduled(false),
+        isScheduleHigh(false), isScheduleLow(false), isCloned(false),
+        isUnbuffered(false), hasReservedResource(false), isDepthCurrent(false),
+        isHeightCurrent(false) {}
+
+    /// \brief Constructs an SUnit for post-regalloc scheduling to represent a
+    /// MachineInstr.
+    SUnit(MachineInstr *instr, unsigned nodenum)
+      : Instr(instr), NodeNum(nodenum), isVRegCycle(false), isCall(false),
+        isCallOp(false), isTwoAddress(false), isCommutable(false),
+        hasPhysRegUses(false), hasPhysRegDefs(false), hasPhysRegClobbers(false),
+        isPending(false), isAvailable(false), isScheduled(false),
+        isScheduleHigh(false), isScheduleLow(false), isCloned(false),
+        isUnbuffered(false), hasReservedResource(false), isDepthCurrent(false),
+        isHeightCurrent(false) {}
+
+    /// \brief Constructs a placeholder SUnit.
+    SUnit()
+      : isVRegCycle(false), isCall(false), isCallOp(false), isTwoAddress(false),
+        isCommutable(false), hasPhysRegUses(false), hasPhysRegDefs(false),
+        hasPhysRegClobbers(false), isPending(false), isAvailable(false),
+        isScheduled(false), isScheduleHigh(false), isScheduleLow(false),
+        isCloned(false), isUnbuffered(false), hasReservedResource(false),
+        isDepthCurrent(false), isHeightCurrent(false) {}
+
+    /// \brief Boundary nodes are placeholders for the boundary of the
+    /// scheduling region.
+    ///
+    /// BoundaryNodes can have DAG edges, including Data edges, but they do not
+    /// correspond to schedulable entities (e.g. instructions) and do not have a
+    /// valid ID. Consequently, always check for boundary nodes before accessing
+    /// an associative data structure keyed on node ID.
+    bool isBoundaryNode() const { return NodeNum == BoundaryID; }
+
+    /// Assigns the representative SDNode for this SUnit. This may be used
+    /// during pre-regalloc scheduling.
+    void setNode(SDNode *N) {
+      assert(!Instr && "Setting SDNode of SUnit with MachineInstr!");
+      Node = N;
+    }
+
+    /// Returns the representative SDNode for this SUnit. This may be used
+    /// during pre-regalloc scheduling.
+    SDNode *getNode() const {
+      assert(!Instr && "Reading SDNode of SUnit with MachineInstr!");
+      return Node;
+    }
+
+    /// \brief Returns true if this SUnit refers to a machine instruction as
+    /// opposed to an SDNode.
+    bool isInstr() const { return Instr; }
+
+    /// Assigns the instruction for the SUnit. This may be used during
+    /// post-regalloc scheduling.
+    void setInstr(MachineInstr *MI) {
+      assert(!Node && "Setting MachineInstr of SUnit with SDNode!");
+      Instr = MI;
+    }
+
+    /// Returns the representative MachineInstr for this SUnit. This may be used
+    /// during post-regalloc scheduling.
+    MachineInstr *getInstr() const {
+      assert(!Node && "Reading MachineInstr of SUnit with SDNode!");
+      return Instr;
+    }
+
+    /// Adds the specified edge as a pred of the current node if not already.
+    /// It also adds the current node as a successor of the specified node.
+    bool addPred(const SDep &D, bool Required = true);
+
+    /// \brief Adds a barrier edge to SU by calling addPred(), with latency 0
+    /// generally or latency 1 for a store followed by a load.
+    bool addPredBarrier(SUnit *SU) {
+      SDep Dep(SU, SDep::Barrier);
+      unsigned TrueMemOrderLatency =
+        ((SU->getInstr()->mayStore() && this->getInstr()->mayLoad()) ? 1 : 0);
+      Dep.setLatency(TrueMemOrderLatency);
+      return addPred(Dep);
+    }
+
+    /// Removes the specified edge as a pred of the current node if it exists.
+    /// It also removes the current node as a successor of the specified node.
+    void removePred(const SDep &D);
+
+    /// Returns the depth of this node, which is the length of the maximum path
+    /// up to any node which has no predecessors.
+    unsigned getDepth() const {
+      if (!isDepthCurrent)
+        const_cast<SUnit *>(this)->ComputeDepth();
+      return Depth;
+    }
+
+    /// \brief Returns the height of this node, which is the length of the
+    /// maximum path down to any node which has no successors.
+    unsigned getHeight() const {
+      if (!isHeightCurrent)
+        const_cast<SUnit *>(this)->ComputeHeight();
+      return Height;
+    }
+
+    /// \brief If NewDepth is greater than this node's depth value, sets it to
+    /// be the new depth value. This also recursively marks successor nodes
+    /// dirty.
+    void setDepthToAtLeast(unsigned NewDepth);
+
+    /// \brief If NewDepth is greater than this node's depth value, set it to be
+    /// the new height value. This also recursively marks predecessor nodes
+    /// dirty.
+    void setHeightToAtLeast(unsigned NewHeight);
+
+    /// \brief Sets a flag in this node to indicate that its stored Depth value
+    /// will require recomputation the next time getDepth() is called.
+    void setDepthDirty();
+
+    /// \brief Sets a flag in this node to indicate that its stored Height value
+    /// will require recomputation the next time getHeight() is called.
+    void setHeightDirty();
+
+    /// Tests if node N is a predecessor of this node.
+    bool isPred(const SUnit *N) const {
+      for (const SDep &Pred : Preds)
+        if (Pred.getSUnit() == N)
+          return true;
+      return false;
+    }
+
+    /// Tests if node N is a successor of this node.
+    bool isSucc(const SUnit *N) const {
+      for (const SDep &Succ : Succs)
+        if (Succ.getSUnit() == N)
+          return true;
+      return false;
+    }
+
+    bool isTopReady() const {
+      return NumPredsLeft == 0;
+    }
+    bool isBottomReady() const {
+      return NumSuccsLeft == 0;
+    }
+
+    /// \brief Orders this node's predecessor edges such that the critical path
+    /// edge occurs first.
+    void biasCriticalPath();
+
+    void dump(const ScheduleDAG *G) const;
+    void dumpAll(const ScheduleDAG *G) const;
+    raw_ostream &print(raw_ostream &O,
+                       const SUnit *N = nullptr,
+                       const SUnit *X = nullptr) const;
+    raw_ostream &print(raw_ostream &O, const ScheduleDAG *G) const;
+
+  private:
+    void ComputeDepth();
+    void ComputeHeight();
+  };
+
+  /// Returns true if the specified SDep is equivalent except for latency.
+  inline bool SDep::overlaps(const SDep &Other) const {
+    if (Dep != Other.Dep)
+      return false;
+    switch (Dep.getInt()) {
+    case Data:
+    case Anti:
+    case Output:
+      return Contents.Reg == Other.Contents.Reg;
+    case Order:
+      return Contents.OrdKind == Other.Contents.OrdKind;
+    }
+    llvm_unreachable("Invalid dependency kind!");
+  }
+
+  //// Returns the SUnit to which this edge points.
+  inline SUnit *SDep::getSUnit() const { return Dep.getPointer(); }
+
+  //// Assigns the SUnit to which this edge points.
+  inline void SDep::setSUnit(SUnit *SU) { Dep.setPointer(SU); }
+
+  /// Returns an enum value representing the kind of the dependence.
+  inline SDep::Kind SDep::getKind() const { return Dep.getInt(); }
+
+  //===--------------------------------------------------------------------===//
+
+  /// \brief This interface is used to plug different priorities computation
+  /// algorithms into the list scheduler. It implements the interface of a
+  /// standard priority queue, where nodes are inserted in arbitrary order and
+  /// returned in priority order.  The computation of the priority and the
+  /// representation of the queue are totally up to the implementation to
+  /// decide.
+  class SchedulingPriorityQueue {
+    virtual void anchor();
+
+    unsigned CurCycle = 0;
+    bool HasReadyFilter;
+
+  public:
+    SchedulingPriorityQueue(bool rf = false) :  HasReadyFilter(rf) {}
+
+    virtual ~SchedulingPriorityQueue() = default;
+
+    virtual bool isBottomUp() const = 0;
+
+    virtual void initNodes(std::vector<SUnit> &SUnits) = 0;
+    virtual void addNode(const SUnit *SU) = 0;
+    virtual void updateNode(const SUnit *SU) = 0;
+    virtual void releaseState() = 0;
+
+    virtual bool empty() const = 0;
+
+    bool hasReadyFilter() const { return HasReadyFilter; }
+
+    virtual bool tracksRegPressure() const { return false; }
+
+    virtual bool isReady(SUnit *) const {
+      assert(!HasReadyFilter && "The ready filter must override isReady()");
+      return true;
+    }
+
+    virtual void push(SUnit *U) = 0;
+
+    void push_all(const std::vector<SUnit *> &Nodes) {
+      for (std::vector<SUnit *>::const_iterator I = Nodes.begin(),
+           E = Nodes.end(); I != E; ++I)
+        push(*I);
+    }
+
+    virtual SUnit *pop() = 0;
+
+    virtual void remove(SUnit *SU) = 0;
+
+    virtual void dump(ScheduleDAG *) const {}
+
+    /// As each node is scheduled, this method is invoked.  This allows the
+    /// priority function to adjust the priority of related unscheduled nodes,
+    /// for example.
+    virtual void scheduledNode(SUnit *) {}
+
+    virtual void unscheduledNode(SUnit *) {}
+
+    void setCurCycle(unsigned Cycle) {
+      CurCycle = Cycle;
+    }
+
+    unsigned getCurCycle() const {
+      return CurCycle;
+    }
+  };
+
+  class ScheduleDAG {
+  public:
+    const TargetMachine &TM;            ///< Target processor
+    const TargetInstrInfo *TII;         ///< Target instruction information
+    const TargetRegisterInfo *TRI;      ///< Target processor register info
+    MachineFunction &MF;                ///< Machine function
+    MachineRegisterInfo &MRI;           ///< Virtual/real register map
+    std::vector<SUnit> SUnits;          ///< The scheduling units.
+    SUnit EntrySU;                      ///< Special node for the region entry.
+    SUnit ExitSU;                       ///< Special node for the region exit.
+
+#ifdef NDEBUG
+    static const bool StressSched = false;
+#else
+    bool StressSched;
+#endif
+
+    explicit ScheduleDAG(MachineFunction &mf);
+
+    virtual ~ScheduleDAG();
+
+    /// Clears the DAG state (between regions).
+    void clearDAG();
+
+    /// Returns the MCInstrDesc of this SUnit.
+    /// Returns NULL for SDNodes without a machine opcode.
+    const MCInstrDesc *getInstrDesc(const SUnit *SU) const {
+      if (SU->isInstr()) return &SU->getInstr()->getDesc();
+      return getNodeDesc(SU->getNode());
+    }
+
+    /// Pops up a GraphViz/gv window with the ScheduleDAG rendered using 'dot'.
+    virtual void viewGraph(const Twine &Name, const Twine &Title);
+    virtual void viewGraph();
+
+    virtual void dumpNode(const SUnit *SU) const = 0;
+
+    /// Returns a label for an SUnit node in a visualization of the ScheduleDAG.
+    virtual std::string getGraphNodeLabel(const SUnit *SU) const = 0;
+
+    /// Returns a label for the region of code covered by the DAG.
+    virtual std::string getDAGName() const = 0;
+
+    /// Adds custom features for a visualization of the ScheduleDAG.
+    virtual void addCustomGraphFeatures(GraphWriter<ScheduleDAG*> &) const {}
+
+#ifndef NDEBUG
+    /// \brief Verifies that all SUnits were scheduled and that their state is
+    /// consistent. Returns the number of scheduled SUnits.
+    unsigned VerifyScheduledDAG(bool isBottomUp);
+#endif
+
+  private:
+    /// Returns the MCInstrDesc of this SDNode or NULL.
+    const MCInstrDesc *getNodeDesc(const SDNode *Node) const;
+  };
+
+  class SUnitIterator : public std::iterator<std::forward_iterator_tag,
+                                             SUnit, ptrdiff_t> {
+    SUnit *Node;
+    unsigned Operand;
+
+    SUnitIterator(SUnit *N, unsigned Op) : Node(N), Operand(Op) {}
+
+  public:
+    bool operator==(const SUnitIterator& x) const {
+      return Operand == x.Operand;
+    }
+    bool operator!=(const SUnitIterator& x) const { return !operator==(x); }
+
+    pointer operator*() const {
+      return Node->Preds[Operand].getSUnit();
+    }
+    pointer operator->() const { return operator*(); }
+
+    SUnitIterator& operator++() {                // Preincrement
+      ++Operand;
+      return *this;
+    }
+    SUnitIterator operator++(int) { // Postincrement
+      SUnitIterator tmp = *this; ++*this; return tmp;
+    }
+
+    static SUnitIterator begin(SUnit *N) { return SUnitIterator(N, 0); }
+    static SUnitIterator end  (SUnit *N) {
+      return SUnitIterator(N, (unsigned)N->Preds.size());
+    }
+
+    unsigned getOperand() const { return Operand; }
+    const SUnit *getNode() const { return Node; }
+
+    /// Tests if this is not an SDep::Data dependence.
+    bool isCtrlDep() const {
+      return getSDep().isCtrl();
+    }
+    bool isArtificialDep() const {
+      return getSDep().isArtificial();
+    }
+    const SDep &getSDep() const {
+      return Node->Preds[Operand];
+    }
+  };
+
+  template <> struct GraphTraits<SUnit*> {
+    typedef SUnit *NodeRef;
+    typedef SUnitIterator ChildIteratorType;
+    static NodeRef getEntryNode(SUnit *N) { return N; }
+    static ChildIteratorType child_begin(NodeRef N) {
+      return SUnitIterator::begin(N);
+    }
+    static ChildIteratorType child_end(NodeRef N) {
+      return SUnitIterator::end(N);
+    }
+  };
+
+  template <> struct GraphTraits<ScheduleDAG*> : public GraphTraits<SUnit*> {
+    typedef pointer_iterator<std::vector<SUnit>::iterator> nodes_iterator;
+    static nodes_iterator nodes_begin(ScheduleDAG *G) {
+      return nodes_iterator(G->SUnits.begin());
+    }
+    static nodes_iterator nodes_end(ScheduleDAG *G) {
+      return nodes_iterator(G->SUnits.end());
+    }
+  };
+
+  /// This class can compute a topological ordering for SUnits and provides
+  /// methods for dynamically updating the ordering as new edges are added.
+  ///
+  /// This allows a very fast implementation of IsReachable, for example.
+  class ScheduleDAGTopologicalSort {
+    /// A reference to the ScheduleDAG's SUnits.
+    std::vector<SUnit> &SUnits;
+    SUnit *ExitSU;
+
+    /// Maps topological index to the node number.
+    std::vector<int> Index2Node;
+    /// Maps the node number to its topological index.
+    std::vector<int> Node2Index;
+    /// a set of nodes visited during a DFS traversal.
+    BitVector Visited;
+
+    /// Makes a DFS traversal and mark all nodes affected by the edge insertion.
+    /// These nodes will later get new topological indexes by means of the Shift
+    /// method.
+    void DFS(const SUnit *SU, int UpperBound, bool& HasLoop);
+
+    /// \brief Reassigns topological indexes for the nodes in the DAG to
+    /// preserve the topological ordering.
+    void Shift(BitVector& Visited, int LowerBound, int UpperBound);
+
+    /// Assigns the topological index to the node n.
+    void Allocate(int n, int index);
+
+  public:
+    ScheduleDAGTopologicalSort(std::vector<SUnit> &SUnits, SUnit *ExitSU);
+
+    /// Creates the initial topological ordering from the DAG to be scheduled.
+    void InitDAGTopologicalSorting();
+
+    /// Returns an array of SUs that are both in the successor
+    /// subtree of StartSU and in the predecessor subtree of TargetSU.
+    /// StartSU and TargetSU are not in the array.
+    /// Success is false if TargetSU is not in the successor subtree of
+    /// StartSU, else it is true.
+    std::vector<int> GetSubGraph(const SUnit &StartSU, const SUnit &TargetSU,
+                                 bool &Success);
+
+    /// Checks if \p SU is reachable from \p TargetSU.
+    bool IsReachable(const SUnit *SU, const SUnit *TargetSU);
+
+    /// Returns true if addPred(TargetSU, SU) creates a cycle.
+    bool WillCreateCycle(SUnit *TargetSU, SUnit *SU);
+
+    /// \brief Updates the topological ordering to accommodate an edge to be
+    /// added from SUnit \p X to SUnit \p Y.
+    void AddPred(SUnit *Y, SUnit *X);
+
+    /// \brief Updates the topological ordering to accommodate an an edge to be
+    /// removed from the specified node \p N from the predecessors of the
+    /// current node \p M.
+    void RemovePred(SUnit *M, SUnit *N);
+
+    typedef std::vector<int>::iterator iterator;
+    typedef std::vector<int>::const_iterator const_iterator;
+    iterator begin() { return Index2Node.begin(); }
+    const_iterator begin() const { return Index2Node.begin(); }
+    iterator end() { return Index2Node.end(); }
+    const_iterator end() const { return Index2Node.end(); }
+
+    typedef std::vector<int>::reverse_iterator reverse_iterator;
+    typedef std::vector<int>::const_reverse_iterator const_reverse_iterator;
+    reverse_iterator rbegin() { return Index2Node.rbegin(); }
+    const_reverse_iterator rbegin() const { return Index2Node.rbegin(); }
+    reverse_iterator rend() { return Index2Node.rend(); }
+    const_reverse_iterator rend() const { return Index2Node.rend(); }
+  };
+
+} // end namespace llvm
+
+#endif // LLVM_CODEGEN_SCHEDULEDAG_H