Import prebuilt clang toolchain for linux.
diff --git a/linux-x64/clang/include/llvm/CodeGen/MachineInstr.h b/linux-x64/clang/include/llvm/CodeGen/MachineInstr.h
new file mode 100644
index 0000000..ea94be0
--- /dev/null
+++ b/linux-x64/clang/include/llvm/CodeGen/MachineInstr.h
@@ -0,0 +1,1407 @@
+//===- llvm/CodeGen/MachineInstr.h - MachineInstr class ---------*- C++ -*-===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the declaration of the MachineInstr class, which is the
+// basic representation for all target dependent machine instructions used by
+// the back end.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CODEGEN_MACHINEINSTR_H
+#define LLVM_CODEGEN_MACHINEINSTR_H
+
+#include "llvm/ADT/DenseMapInfo.h"
+#include "llvm/ADT/ilist.h"
+#include "llvm/ADT/ilist_node.h"
+#include "llvm/ADT/iterator_range.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/CodeGen/MachineOperand.h"
+#include "llvm/CodeGen/TargetOpcodes.h"
+#include "llvm/IR/DebugLoc.h"
+#include "llvm/IR/InlineAsm.h"
+#include "llvm/MC/MCInstrDesc.h"
+#include "llvm/Support/ArrayRecycler.h"
+#include <algorithm>
+#include <cassert>
+#include <cstdint>
+#include <utility>
+
+namespace llvm {
+
+template <typename T> class ArrayRef;
+class DIExpression;
+class DILocalVariable;
+class MachineBasicBlock;
+class MachineFunction;
+class MachineMemOperand;
+class MachineRegisterInfo;
+class ModuleSlotTracker;
+class raw_ostream;
+template <typename T> class SmallVectorImpl;
+class SmallBitVector;
+class StringRef;
+class TargetInstrInfo;
+class TargetRegisterClass;
+class TargetRegisterInfo;
+
+//===----------------------------------------------------------------------===//
+/// Representation of each machine instruction.
+///
+/// This class isn't a POD type, but it must have a trivial destructor. When a
+/// MachineFunction is deleted, all the contained MachineInstrs are deallocated
+/// without having their destructor called.
+///
+class MachineInstr
+    : public ilist_node_with_parent<MachineInstr, MachineBasicBlock,
+                                    ilist_sentinel_tracking<true>> {
+public:
+  using mmo_iterator = MachineMemOperand **;
+
+  /// Flags to specify different kinds of comments to output in
+  /// assembly code.  These flags carry semantic information not
+  /// otherwise easily derivable from the IR text.
+  ///
+  enum CommentFlag {
+    ReloadReuse = 0x1,    // higher bits are reserved for target dep comments.
+    NoSchedComment = 0x2,
+    TAsmComments = 0x4    // Target Asm comments should start from this value.
+  };
+
+  enum MIFlag {
+    NoFlags      = 0,
+    FrameSetup   = 1 << 0,              // Instruction is used as a part of
+                                        // function frame setup code.
+    FrameDestroy = 1 << 1,              // Instruction is used as a part of
+                                        // function frame destruction code.
+    BundledPred  = 1 << 2,              // Instruction has bundled predecessors.
+    BundledSucc  = 1 << 3               // Instruction has bundled successors.
+  };
+
+private:
+  const MCInstrDesc *MCID;              // Instruction descriptor.
+  MachineBasicBlock *Parent = nullptr;  // Pointer to the owning basic block.
+
+  // Operands are allocated by an ArrayRecycler.
+  MachineOperand *Operands = nullptr;   // Pointer to the first operand.
+  unsigned NumOperands = 0;             // Number of operands on instruction.
+  using OperandCapacity = ArrayRecycler<MachineOperand>::Capacity;
+  OperandCapacity CapOperands;          // Capacity of the Operands array.
+
+  uint8_t Flags = 0;                    // Various bits of additional
+                                        // information about machine
+                                        // instruction.
+
+  uint8_t AsmPrinterFlags = 0;          // Various bits of information used by
+                                        // the AsmPrinter to emit helpful
+                                        // comments.  This is *not* semantic
+                                        // information.  Do not use this for
+                                        // anything other than to convey comment
+                                        // information to AsmPrinter.
+
+  uint8_t NumMemRefs = 0;               // Information on memory references.
+  // Note that MemRefs == nullptr,  means 'don't know', not 'no memory access'.
+  // Calling code must treat missing information conservatively.  If the number
+  // of memory operands required to be precise exceeds the maximum value of
+  // NumMemRefs - currently 256 - we remove the operands entirely. Note also
+  // that this is a non-owning reference to a shared copy on write buffer owned
+  // by the MachineFunction and created via MF.allocateMemRefsArray.
+  mmo_iterator MemRefs = nullptr;
+
+  DebugLoc debugLoc;                    // Source line information.
+
+  // Intrusive list support
+  friend struct ilist_traits<MachineInstr>;
+  friend struct ilist_callback_traits<MachineBasicBlock>;
+  void setParent(MachineBasicBlock *P) { Parent = P; }
+
+  /// This constructor creates a copy of the given
+  /// MachineInstr in the given MachineFunction.
+  MachineInstr(MachineFunction &, const MachineInstr &);
+
+  /// This constructor create a MachineInstr and add the implicit operands.
+  /// It reserves space for number of operands specified by
+  /// MCInstrDesc.  An explicit DebugLoc is supplied.
+  MachineInstr(MachineFunction &, const MCInstrDesc &MCID, DebugLoc dl,
+               bool NoImp = false);
+
+  // MachineInstrs are pool-allocated and owned by MachineFunction.
+  friend class MachineFunction;
+
+public:
+  MachineInstr(const MachineInstr &) = delete;
+  MachineInstr &operator=(const MachineInstr &) = delete;
+  // Use MachineFunction::DeleteMachineInstr() instead.
+  ~MachineInstr() = delete;
+
+  const MachineBasicBlock* getParent() const { return Parent; }
+  MachineBasicBlock* getParent() { return Parent; }
+
+  /// Return the function that contains the basic block that this instruction
+  /// belongs to.
+  ///
+  /// Note: this is undefined behaviour if the instruction does not have a
+  /// parent.
+  const MachineFunction *getMF() const;
+  MachineFunction *getMF() {
+    return const_cast<MachineFunction *>(
+        static_cast<const MachineInstr *>(this)->getMF());
+  }
+
+  /// Return the asm printer flags bitvector.
+  uint8_t getAsmPrinterFlags() const { return AsmPrinterFlags; }
+
+  /// Clear the AsmPrinter bitvector.
+  void clearAsmPrinterFlags() { AsmPrinterFlags = 0; }
+
+  /// Return whether an AsmPrinter flag is set.
+  bool getAsmPrinterFlag(CommentFlag Flag) const {
+    return AsmPrinterFlags & Flag;
+  }
+
+  /// Set a flag for the AsmPrinter.
+  void setAsmPrinterFlag(uint8_t Flag) {
+    AsmPrinterFlags |= Flag;
+  }
+
+  /// Clear specific AsmPrinter flags.
+  void clearAsmPrinterFlag(CommentFlag Flag) {
+    AsmPrinterFlags &= ~Flag;
+  }
+
+  /// Return the MI flags bitvector.
+  uint8_t getFlags() const {
+    return Flags;
+  }
+
+  /// Return whether an MI flag is set.
+  bool getFlag(MIFlag Flag) const {
+    return Flags & Flag;
+  }
+
+  /// Set a MI flag.
+  void setFlag(MIFlag Flag) {
+    Flags |= (uint8_t)Flag;
+  }
+
+  void setFlags(unsigned flags) {
+    // Filter out the automatically maintained flags.
+    unsigned Mask = BundledPred | BundledSucc;
+    Flags = (Flags & Mask) | (flags & ~Mask);
+  }
+
+  /// clearFlag - Clear a MI flag.
+  void clearFlag(MIFlag Flag) {
+    Flags &= ~((uint8_t)Flag);
+  }
+
+  /// Return true if MI is in a bundle (but not the first MI in a bundle).
+  ///
+  /// A bundle looks like this before it's finalized:
+  ///   ----------------
+  ///   |      MI      |
+  ///   ----------------
+  ///          |
+  ///   ----------------
+  ///   |      MI    * |
+  ///   ----------------
+  ///          |
+  ///   ----------------
+  ///   |      MI    * |
+  ///   ----------------
+  /// In this case, the first MI starts a bundle but is not inside a bundle, the
+  /// next 2 MIs are considered "inside" the bundle.
+  ///
+  /// After a bundle is finalized, it looks like this:
+  ///   ----------------
+  ///   |    Bundle    |
+  ///   ----------------
+  ///          |
+  ///   ----------------
+  ///   |      MI    * |
+  ///   ----------------
+  ///          |
+  ///   ----------------
+  ///   |      MI    * |
+  ///   ----------------
+  ///          |
+  ///   ----------------
+  ///   |      MI    * |
+  ///   ----------------
+  /// The first instruction has the special opcode "BUNDLE". It's not "inside"
+  /// a bundle, but the next three MIs are.
+  bool isInsideBundle() const {
+    return getFlag(BundledPred);
+  }
+
+  /// Return true if this instruction part of a bundle. This is true
+  /// if either itself or its following instruction is marked "InsideBundle".
+  bool isBundled() const {
+    return isBundledWithPred() || isBundledWithSucc();
+  }
+
+  /// Return true if this instruction is part of a bundle, and it is not the
+  /// first instruction in the bundle.
+  bool isBundledWithPred() const { return getFlag(BundledPred); }
+
+  /// Return true if this instruction is part of a bundle, and it is not the
+  /// last instruction in the bundle.
+  bool isBundledWithSucc() const { return getFlag(BundledSucc); }
+
+  /// Bundle this instruction with its predecessor. This can be an unbundled
+  /// instruction, or it can be the first instruction in a bundle.
+  void bundleWithPred();
+
+  /// Bundle this instruction with its successor. This can be an unbundled
+  /// instruction, or it can be the last instruction in a bundle.
+  void bundleWithSucc();
+
+  /// Break bundle above this instruction.
+  void unbundleFromPred();
+
+  /// Break bundle below this instruction.
+  void unbundleFromSucc();
+
+  /// Returns the debug location id of this MachineInstr.
+  const DebugLoc &getDebugLoc() const { return debugLoc; }
+
+  /// Return the debug variable referenced by
+  /// this DBG_VALUE instruction.
+  const DILocalVariable *getDebugVariable() const;
+
+  /// Return the complex address expression referenced by
+  /// this DBG_VALUE instruction.
+  const DIExpression *getDebugExpression() const;
+
+  /// Emit an error referring to the source location of this instruction.
+  /// This should only be used for inline assembly that is somehow
+  /// impossible to compile. Other errors should have been handled much
+  /// earlier.
+  ///
+  /// If this method returns, the caller should try to recover from the error.
+  void emitError(StringRef Msg) const;
+
+  /// Returns the target instruction descriptor of this MachineInstr.
+  const MCInstrDesc &getDesc() const { return *MCID; }
+
+  /// Returns the opcode of this MachineInstr.
+  unsigned getOpcode() const { return MCID->Opcode; }
+
+  /// Access to explicit operands of the instruction.
+  unsigned getNumOperands() const { return NumOperands; }
+
+  const MachineOperand& getOperand(unsigned i) const {
+    assert(i < getNumOperands() && "getOperand() out of range!");
+    return Operands[i];
+  }
+  MachineOperand& getOperand(unsigned i) {
+    assert(i < getNumOperands() && "getOperand() out of range!");
+    return Operands[i];
+  }
+
+  /// Return true if operand \p OpIdx is a subregister index.
+  bool isOperandSubregIdx(unsigned OpIdx) const {
+    assert(getOperand(OpIdx).getType() == MachineOperand::MO_Immediate &&
+           "Expected MO_Immediate operand type.");
+    if (isExtractSubreg() && OpIdx == 2)
+      return true;
+    if (isInsertSubreg() && OpIdx == 3)
+      return true;
+    if (isRegSequence() && OpIdx > 1 && (OpIdx % 2) == 0)
+      return true;
+    if (isSubregToReg() && OpIdx == 3)
+      return true;
+    return false;
+  }
+
+  /// Returns the number of non-implicit operands.
+  unsigned getNumExplicitOperands() const;
+
+  /// iterator/begin/end - Iterate over all operands of a machine instruction.
+  using mop_iterator = MachineOperand *;
+  using const_mop_iterator = const MachineOperand *;
+
+  mop_iterator operands_begin() { return Operands; }
+  mop_iterator operands_end() { return Operands + NumOperands; }
+
+  const_mop_iterator operands_begin() const { return Operands; }
+  const_mop_iterator operands_end() const { return Operands + NumOperands; }
+
+  iterator_range<mop_iterator> operands() {
+    return make_range(operands_begin(), operands_end());
+  }
+  iterator_range<const_mop_iterator> operands() const {
+    return make_range(operands_begin(), operands_end());
+  }
+  iterator_range<mop_iterator> explicit_operands() {
+    return make_range(operands_begin(),
+                      operands_begin() + getNumExplicitOperands());
+  }
+  iterator_range<const_mop_iterator> explicit_operands() const {
+    return make_range(operands_begin(),
+                      operands_begin() + getNumExplicitOperands());
+  }
+  iterator_range<mop_iterator> implicit_operands() {
+    return make_range(explicit_operands().end(), operands_end());
+  }
+  iterator_range<const_mop_iterator> implicit_operands() const {
+    return make_range(explicit_operands().end(), operands_end());
+  }
+  /// Returns a range over all explicit operands that are register definitions.
+  /// Implicit definition are not included!
+  iterator_range<mop_iterator> defs() {
+    return make_range(operands_begin(),
+                      operands_begin() + getDesc().getNumDefs());
+  }
+  /// \copydoc defs()
+  iterator_range<const_mop_iterator> defs() const {
+    return make_range(operands_begin(),
+                      operands_begin() + getDesc().getNumDefs());
+  }
+  /// Returns a range that includes all operands that are register uses.
+  /// This may include unrelated operands which are not register uses.
+  iterator_range<mop_iterator> uses() {
+    return make_range(operands_begin() + getDesc().getNumDefs(),
+                      operands_end());
+  }
+  /// \copydoc uses()
+  iterator_range<const_mop_iterator> uses() const {
+    return make_range(operands_begin() + getDesc().getNumDefs(),
+                      operands_end());
+  }
+  iterator_range<mop_iterator> explicit_uses() {
+    return make_range(operands_begin() + getDesc().getNumDefs(),
+                      operands_begin() + getNumExplicitOperands() );
+  }
+  iterator_range<const_mop_iterator> explicit_uses() const {
+    return make_range(operands_begin() + getDesc().getNumDefs(),
+                      operands_begin() + getNumExplicitOperands() );
+  }
+
+  /// Returns the number of the operand iterator \p I points to.
+  unsigned getOperandNo(const_mop_iterator I) const {
+    return I - operands_begin();
+  }
+
+  /// Access to memory operands of the instruction
+  mmo_iterator memoperands_begin() const { return MemRefs; }
+  mmo_iterator memoperands_end() const { return MemRefs + NumMemRefs; }
+  /// Return true if we don't have any memory operands which described the
+  /// memory access done by this instruction.  If this is true, calling code
+  /// must be conservative.
+  bool memoperands_empty() const { return NumMemRefs == 0; }
+
+  iterator_range<mmo_iterator>  memoperands() {
+    return make_range(memoperands_begin(), memoperands_end());
+  }
+  iterator_range<mmo_iterator> memoperands() const {
+    return make_range(memoperands_begin(), memoperands_end());
+  }
+
+  /// Return true if this instruction has exactly one MachineMemOperand.
+  bool hasOneMemOperand() const {
+    return NumMemRefs == 1;
+  }
+
+  /// Return the number of memory operands.
+  unsigned getNumMemOperands() const { return NumMemRefs; }
+
+  /// API for querying MachineInstr properties. They are the same as MCInstrDesc
+  /// queries but they are bundle aware.
+
+  enum QueryType {
+    IgnoreBundle,    // Ignore bundles
+    AnyInBundle,     // Return true if any instruction in bundle has property
+    AllInBundle      // Return true if all instructions in bundle have property
+  };
+
+  /// Return true if the instruction (or in the case of a bundle,
+  /// the instructions inside the bundle) has the specified property.
+  /// The first argument is the property being queried.
+  /// The second argument indicates whether the query should look inside
+  /// instruction bundles.
+  bool hasProperty(unsigned MCFlag, QueryType Type = AnyInBundle) const {
+    // Inline the fast path for unbundled or bundle-internal instructions.
+    if (Type == IgnoreBundle || !isBundled() || isBundledWithPred())
+      return getDesc().getFlags() & (1ULL << MCFlag);
+
+    // If this is the first instruction in a bundle, take the slow path.
+    return hasPropertyInBundle(1ULL << MCFlag, Type);
+  }
+
+  /// Return true if this instruction can have a variable number of operands.
+  /// In this case, the variable operands will be after the normal
+  /// operands but before the implicit definitions and uses (if any are
+  /// present).
+  bool isVariadic(QueryType Type = IgnoreBundle) const {
+    return hasProperty(MCID::Variadic, Type);
+  }
+
+  /// Set if this instruction has an optional definition, e.g.
+  /// ARM instructions which can set condition code if 's' bit is set.
+  bool hasOptionalDef(QueryType Type = IgnoreBundle) const {
+    return hasProperty(MCID::HasOptionalDef, Type);
+  }
+
+  /// Return true if this is a pseudo instruction that doesn't
+  /// correspond to a real machine instruction.
+  bool isPseudo(QueryType Type = IgnoreBundle) const {
+    return hasProperty(MCID::Pseudo, Type);
+  }
+
+  bool isReturn(QueryType Type = AnyInBundle) const {
+    return hasProperty(MCID::Return, Type);
+  }
+
+  bool isCall(QueryType Type = AnyInBundle) const {
+    return hasProperty(MCID::Call, Type);
+  }
+
+  /// Returns true if the specified instruction stops control flow
+  /// from executing the instruction immediately following it.  Examples include
+  /// unconditional branches and return instructions.
+  bool isBarrier(QueryType Type = AnyInBundle) const {
+    return hasProperty(MCID::Barrier, Type);
+  }
+
+  /// Returns true if this instruction part of the terminator for a basic block.
+  /// Typically this is things like return and branch instructions.
+  ///
+  /// Various passes use this to insert code into the bottom of a basic block,
+  /// but before control flow occurs.
+  bool isTerminator(QueryType Type = AnyInBundle) const {
+    return hasProperty(MCID::Terminator, Type);
+  }
+
+  /// Returns true if this is a conditional, unconditional, or indirect branch.
+  /// Predicates below can be used to discriminate between
+  /// these cases, and the TargetInstrInfo::AnalyzeBranch method can be used to
+  /// get more information.
+  bool isBranch(QueryType Type = AnyInBundle) const {
+    return hasProperty(MCID::Branch, Type);
+  }
+
+  /// Return true if this is an indirect branch, such as a
+  /// branch through a register.
+  bool isIndirectBranch(QueryType Type = AnyInBundle) const {
+    return hasProperty(MCID::IndirectBranch, Type);
+  }
+
+  /// Return true if this is a branch which may fall
+  /// through to the next instruction or may transfer control flow to some other
+  /// block.  The TargetInstrInfo::AnalyzeBranch method can be used to get more
+  /// information about this branch.
+  bool isConditionalBranch(QueryType Type = AnyInBundle) const {
+    return isBranch(Type) & !isBarrier(Type) & !isIndirectBranch(Type);
+  }
+
+  /// Return true if this is a branch which always
+  /// transfers control flow to some other block.  The
+  /// TargetInstrInfo::AnalyzeBranch method can be used to get more information
+  /// about this branch.
+  bool isUnconditionalBranch(QueryType Type = AnyInBundle) const {
+    return isBranch(Type) & isBarrier(Type) & !isIndirectBranch(Type);
+  }
+
+  /// Return true if this instruction has a predicate operand that
+  /// controls execution.  It may be set to 'always', or may be set to other
+  /// values.   There are various methods in TargetInstrInfo that can be used to
+  /// control and modify the predicate in this instruction.
+  bool isPredicable(QueryType Type = AllInBundle) const {
+    // If it's a bundle than all bundled instructions must be predicable for this
+    // to return true.
+    return hasProperty(MCID::Predicable, Type);
+  }
+
+  /// Return true if this instruction is a comparison.
+  bool isCompare(QueryType Type = IgnoreBundle) const {
+    return hasProperty(MCID::Compare, Type);
+  }
+
+  /// Return true if this instruction is a move immediate
+  /// (including conditional moves) instruction.
+  bool isMoveImmediate(QueryType Type = IgnoreBundle) const {
+    return hasProperty(MCID::MoveImm, Type);
+  }
+
+  /// Return true if this instruction is a bitcast instruction.
+  bool isBitcast(QueryType Type = IgnoreBundle) const {
+    return hasProperty(MCID::Bitcast, Type);
+  }
+
+  /// Return true if this instruction is a select instruction.
+  bool isSelect(QueryType Type = IgnoreBundle) const {
+    return hasProperty(MCID::Select, Type);
+  }
+
+  /// Return true if this instruction cannot be safely duplicated.
+  /// For example, if the instruction has a unique labels attached
+  /// to it, duplicating it would cause multiple definition errors.
+  bool isNotDuplicable(QueryType Type = AnyInBundle) const {
+    return hasProperty(MCID::NotDuplicable, Type);
+  }
+
+  /// Return true if this instruction is convergent.
+  /// Convergent instructions can not be made control-dependent on any
+  /// additional values.
+  bool isConvergent(QueryType Type = AnyInBundle) const {
+    if (isInlineAsm()) {
+      unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
+      if (ExtraInfo & InlineAsm::Extra_IsConvergent)
+        return true;
+    }
+    return hasProperty(MCID::Convergent, Type);
+  }
+
+  /// Returns true if the specified instruction has a delay slot
+  /// which must be filled by the code generator.
+  bool hasDelaySlot(QueryType Type = AnyInBundle) const {
+    return hasProperty(MCID::DelaySlot, Type);
+  }
+
+  /// Return true for instructions that can be folded as
+  /// memory operands in other instructions. The most common use for this
+  /// is instructions that are simple loads from memory that don't modify
+  /// the loaded value in any way, but it can also be used for instructions
+  /// that can be expressed as constant-pool loads, such as V_SETALLONES
+  /// on x86, to allow them to be folded when it is beneficial.
+  /// This should only be set on instructions that return a value in their
+  /// only virtual register definition.
+  bool canFoldAsLoad(QueryType Type = IgnoreBundle) const {
+    return hasProperty(MCID::FoldableAsLoad, Type);
+  }
+
+  /// \brief Return true if this instruction behaves
+  /// the same way as the generic REG_SEQUENCE instructions.
+  /// E.g., on ARM,
+  /// dX VMOVDRR rY, rZ
+  /// is equivalent to
+  /// dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1.
+  ///
+  /// Note that for the optimizers to be able to take advantage of
+  /// this property, TargetInstrInfo::getRegSequenceLikeInputs has to be
+  /// override accordingly.
+  bool isRegSequenceLike(QueryType Type = IgnoreBundle) const {
+    return hasProperty(MCID::RegSequence, Type);
+  }
+
+  /// \brief Return true if this instruction behaves
+  /// the same way as the generic EXTRACT_SUBREG instructions.
+  /// E.g., on ARM,
+  /// rX, rY VMOVRRD dZ
+  /// is equivalent to two EXTRACT_SUBREG:
+  /// rX = EXTRACT_SUBREG dZ, ssub_0
+  /// rY = EXTRACT_SUBREG dZ, ssub_1
+  ///
+  /// Note that for the optimizers to be able to take advantage of
+  /// this property, TargetInstrInfo::getExtractSubregLikeInputs has to be
+  /// override accordingly.
+  bool isExtractSubregLike(QueryType Type = IgnoreBundle) const {
+    return hasProperty(MCID::ExtractSubreg, Type);
+  }
+
+  /// \brief Return true if this instruction behaves
+  /// the same way as the generic INSERT_SUBREG instructions.
+  /// E.g., on ARM,
+  /// dX = VSETLNi32 dY, rZ, Imm
+  /// is equivalent to a INSERT_SUBREG:
+  /// dX = INSERT_SUBREG dY, rZ, translateImmToSubIdx(Imm)
+  ///
+  /// Note that for the optimizers to be able to take advantage of
+  /// this property, TargetInstrInfo::getInsertSubregLikeInputs has to be
+  /// override accordingly.
+  bool isInsertSubregLike(QueryType Type = IgnoreBundle) const {
+    return hasProperty(MCID::InsertSubreg, Type);
+  }
+
+  //===--------------------------------------------------------------------===//
+  // Side Effect Analysis
+  //===--------------------------------------------------------------------===//
+
+  /// Return true if this instruction could possibly read memory.
+  /// Instructions with this flag set are not necessarily simple load
+  /// instructions, they may load a value and modify it, for example.
+  bool mayLoad(QueryType Type = AnyInBundle) const {
+    if (isInlineAsm()) {
+      unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
+      if (ExtraInfo & InlineAsm::Extra_MayLoad)
+        return true;
+    }
+    return hasProperty(MCID::MayLoad, Type);
+  }
+
+  /// Return true if this instruction could possibly modify memory.
+  /// Instructions with this flag set are not necessarily simple store
+  /// instructions, they may store a modified value based on their operands, or
+  /// may not actually modify anything, for example.
+  bool mayStore(QueryType Type = AnyInBundle) const {
+    if (isInlineAsm()) {
+      unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
+      if (ExtraInfo & InlineAsm::Extra_MayStore)
+        return true;
+    }
+    return hasProperty(MCID::MayStore, Type);
+  }
+
+  /// Return true if this instruction could possibly read or modify memory.
+  bool mayLoadOrStore(QueryType Type = AnyInBundle) const {
+    return mayLoad(Type) || mayStore(Type);
+  }
+
+  //===--------------------------------------------------------------------===//
+  // Flags that indicate whether an instruction can be modified by a method.
+  //===--------------------------------------------------------------------===//
+
+  /// Return true if this may be a 2- or 3-address
+  /// instruction (of the form "X = op Y, Z, ..."), which produces the same
+  /// result if Y and Z are exchanged.  If this flag is set, then the
+  /// TargetInstrInfo::commuteInstruction method may be used to hack on the
+  /// instruction.
+  ///
+  /// Note that this flag may be set on instructions that are only commutable
+  /// sometimes.  In these cases, the call to commuteInstruction will fail.
+  /// Also note that some instructions require non-trivial modification to
+  /// commute them.
+  bool isCommutable(QueryType Type = IgnoreBundle) const {
+    return hasProperty(MCID::Commutable, Type);
+  }
+
+  /// Return true if this is a 2-address instruction
+  /// which can be changed into a 3-address instruction if needed.  Doing this
+  /// transformation can be profitable in the register allocator, because it
+  /// means that the instruction can use a 2-address form if possible, but
+  /// degrade into a less efficient form if the source and dest register cannot
+  /// be assigned to the same register.  For example, this allows the x86
+  /// backend to turn a "shl reg, 3" instruction into an LEA instruction, which
+  /// is the same speed as the shift but has bigger code size.
+  ///
+  /// If this returns true, then the target must implement the
+  /// TargetInstrInfo::convertToThreeAddress method for this instruction, which
+  /// is allowed to fail if the transformation isn't valid for this specific
+  /// instruction (e.g. shl reg, 4 on x86).
+  ///
+  bool isConvertibleTo3Addr(QueryType Type = IgnoreBundle) const {
+    return hasProperty(MCID::ConvertibleTo3Addr, Type);
+  }
+
+  /// Return true if this instruction requires
+  /// custom insertion support when the DAG scheduler is inserting it into a
+  /// machine basic block.  If this is true for the instruction, it basically
+  /// means that it is a pseudo instruction used at SelectionDAG time that is
+  /// expanded out into magic code by the target when MachineInstrs are formed.
+  ///
+  /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method
+  /// is used to insert this into the MachineBasicBlock.
+  bool usesCustomInsertionHook(QueryType Type = IgnoreBundle) const {
+    return hasProperty(MCID::UsesCustomInserter, Type);
+  }
+
+  /// Return true if this instruction requires *adjustment*
+  /// after instruction selection by calling a target hook. For example, this
+  /// can be used to fill in ARM 's' optional operand depending on whether
+  /// the conditional flag register is used.
+  bool hasPostISelHook(QueryType Type = IgnoreBundle) const {
+    return hasProperty(MCID::HasPostISelHook, Type);
+  }
+
+  /// Returns true if this instruction is a candidate for remat.
+  /// This flag is deprecated, please don't use it anymore.  If this
+  /// flag is set, the isReallyTriviallyReMaterializable() method is called to
+  /// verify the instruction is really rematable.
+  bool isRematerializable(QueryType Type = AllInBundle) const {
+    // It's only possible to re-mat a bundle if all bundled instructions are
+    // re-materializable.
+    return hasProperty(MCID::Rematerializable, Type);
+  }
+
+  /// Returns true if this instruction has the same cost (or less) than a move
+  /// instruction. This is useful during certain types of optimizations
+  /// (e.g., remat during two-address conversion or machine licm)
+  /// where we would like to remat or hoist the instruction, but not if it costs
+  /// more than moving the instruction into the appropriate register. Note, we
+  /// are not marking copies from and to the same register class with this flag.
+  bool isAsCheapAsAMove(QueryType Type = AllInBundle) const {
+    // Only returns true for a bundle if all bundled instructions are cheap.
+    return hasProperty(MCID::CheapAsAMove, Type);
+  }
+
+  /// Returns true if this instruction source operands
+  /// have special register allocation requirements that are not captured by the
+  /// operand register classes. e.g. ARM::STRD's two source registers must be an
+  /// even / odd pair, ARM::STM registers have to be in ascending order.
+  /// Post-register allocation passes should not attempt to change allocations
+  /// for sources of instructions with this flag.
+  bool hasExtraSrcRegAllocReq(QueryType Type = AnyInBundle) const {
+    return hasProperty(MCID::ExtraSrcRegAllocReq, Type);
+  }
+
+  /// Returns true if this instruction def operands
+  /// have special register allocation requirements that are not captured by the
+  /// operand register classes. e.g. ARM::LDRD's two def registers must be an
+  /// even / odd pair, ARM::LDM registers have to be in ascending order.
+  /// Post-register allocation passes should not attempt to change allocations
+  /// for definitions of instructions with this flag.
+  bool hasExtraDefRegAllocReq(QueryType Type = AnyInBundle) const {
+    return hasProperty(MCID::ExtraDefRegAllocReq, Type);
+  }
+
+  enum MICheckType {
+    CheckDefs,      // Check all operands for equality
+    CheckKillDead,  // Check all operands including kill / dead markers
+    IgnoreDefs,     // Ignore all definitions
+    IgnoreVRegDefs  // Ignore virtual register definitions
+  };
+
+  /// Return true if this instruction is identical to \p Other.
+  /// Two instructions are identical if they have the same opcode and all their
+  /// operands are identical (with respect to MachineOperand::isIdenticalTo()).
+  /// Note that this means liveness related flags (dead, undef, kill) do not
+  /// affect the notion of identical.
+  bool isIdenticalTo(const MachineInstr &Other,
+                     MICheckType Check = CheckDefs) const;
+
+  /// Unlink 'this' from the containing basic block, and return it without
+  /// deleting it.
+  ///
+  /// This function can not be used on bundled instructions, use
+  /// removeFromBundle() to remove individual instructions from a bundle.
+  MachineInstr *removeFromParent();
+
+  /// Unlink this instruction from its basic block and return it without
+  /// deleting it.
+  ///
+  /// If the instruction is part of a bundle, the other instructions in the
+  /// bundle remain bundled.
+  MachineInstr *removeFromBundle();
+
+  /// Unlink 'this' from the containing basic block and delete it.
+  ///
+  /// If this instruction is the header of a bundle, the whole bundle is erased.
+  /// This function can not be used for instructions inside a bundle, use
+  /// eraseFromBundle() to erase individual bundled instructions.
+  void eraseFromParent();
+
+  /// Unlink 'this' from the containing basic block and delete it.
+  ///
+  /// For all definitions mark their uses in DBG_VALUE nodes
+  /// as undefined. Otherwise like eraseFromParent().
+  void eraseFromParentAndMarkDBGValuesForRemoval();
+
+  /// Unlink 'this' form its basic block and delete it.
+  ///
+  /// If the instruction is part of a bundle, the other instructions in the
+  /// bundle remain bundled.
+  void eraseFromBundle();
+
+  bool isEHLabel() const { return getOpcode() == TargetOpcode::EH_LABEL; }
+  bool isGCLabel() const { return getOpcode() == TargetOpcode::GC_LABEL; }
+  bool isAnnotationLabel() const {
+    return getOpcode() == TargetOpcode::ANNOTATION_LABEL;
+  }
+
+  /// Returns true if the MachineInstr represents a label.
+  bool isLabel() const {
+    return isEHLabel() || isGCLabel() || isAnnotationLabel();
+  }
+
+  bool isCFIInstruction() const {
+    return getOpcode() == TargetOpcode::CFI_INSTRUCTION;
+  }
+
+  // True if the instruction represents a position in the function.
+  bool isPosition() const { return isLabel() || isCFIInstruction(); }
+
+  bool isDebugValue() const { return getOpcode() == TargetOpcode::DBG_VALUE; }
+
+  /// A DBG_VALUE is indirect iff the first operand is a register and
+  /// the second operand is an immediate.
+  bool isIndirectDebugValue() const {
+    return isDebugValue()
+      && getOperand(0).isReg()
+      && getOperand(1).isImm();
+  }
+
+  bool isPHI() const {
+    return getOpcode() == TargetOpcode::PHI ||
+           getOpcode() == TargetOpcode::G_PHI;
+  }
+  bool isKill() const { return getOpcode() == TargetOpcode::KILL; }
+  bool isImplicitDef() const { return getOpcode()==TargetOpcode::IMPLICIT_DEF; }
+  bool isInlineAsm() const { return getOpcode() == TargetOpcode::INLINEASM; }
+
+  bool isMSInlineAsm() const {
+    return getOpcode() == TargetOpcode::INLINEASM && getInlineAsmDialect();
+  }
+
+  bool isStackAligningInlineAsm() const;
+  InlineAsm::AsmDialect getInlineAsmDialect() const;
+
+  bool isInsertSubreg() const {
+    return getOpcode() == TargetOpcode::INSERT_SUBREG;
+  }
+
+  bool isSubregToReg() const {
+    return getOpcode() == TargetOpcode::SUBREG_TO_REG;
+  }
+
+  bool isRegSequence() const {
+    return getOpcode() == TargetOpcode::REG_SEQUENCE;
+  }
+
+  bool isBundle() const {
+    return getOpcode() == TargetOpcode::BUNDLE;
+  }
+
+  bool isCopy() const {
+    return getOpcode() == TargetOpcode::COPY;
+  }
+
+  bool isFullCopy() const {
+    return isCopy() && !getOperand(0).getSubReg() && !getOperand(1).getSubReg();
+  }
+
+  bool isExtractSubreg() const {
+    return getOpcode() == TargetOpcode::EXTRACT_SUBREG;
+  }
+
+  /// Return true if the instruction behaves like a copy.
+  /// This does not include native copy instructions.
+  bool isCopyLike() const {
+    return isCopy() || isSubregToReg();
+  }
+
+  /// Return true is the instruction is an identity copy.
+  bool isIdentityCopy() const {
+    return isCopy() && getOperand(0).getReg() == getOperand(1).getReg() &&
+      getOperand(0).getSubReg() == getOperand(1).getSubReg();
+  }
+
+  /// Return true if this instruction doesn't produce any output in the form of
+  /// executable instructions.
+  bool isMetaInstruction() const {
+    switch (getOpcode()) {
+    default:
+      return false;
+    case TargetOpcode::IMPLICIT_DEF:
+    case TargetOpcode::KILL:
+    case TargetOpcode::CFI_INSTRUCTION:
+    case TargetOpcode::EH_LABEL:
+    case TargetOpcode::GC_LABEL:
+    case TargetOpcode::DBG_VALUE:
+    case TargetOpcode::LIFETIME_START:
+    case TargetOpcode::LIFETIME_END:
+      return true;
+    }
+  }
+
+  /// Return true if this is a transient instruction that is either very likely
+  /// to be eliminated during register allocation (such as copy-like
+  /// instructions), or if this instruction doesn't have an execution-time cost.
+  bool isTransient() const {
+    switch (getOpcode()) {
+    default:
+      return isMetaInstruction();
+    // Copy-like instructions are usually eliminated during register allocation.
+    case TargetOpcode::PHI:
+    case TargetOpcode::G_PHI:
+    case TargetOpcode::COPY:
+    case TargetOpcode::INSERT_SUBREG:
+    case TargetOpcode::SUBREG_TO_REG:
+    case TargetOpcode::REG_SEQUENCE:
+      return true;
+    }
+  }
+
+  /// Return the number of instructions inside the MI bundle, excluding the
+  /// bundle header.
+  ///
+  /// This is the number of instructions that MachineBasicBlock::iterator
+  /// skips, 0 for unbundled instructions.
+  unsigned getBundleSize() const;
+
+  /// Return true if the MachineInstr reads the specified register.
+  /// If TargetRegisterInfo is passed, then it also checks if there
+  /// is a read of a super-register.
+  /// This does not count partial redefines of virtual registers as reads:
+  ///   %reg1024:6 = OP.
+  bool readsRegister(unsigned Reg,
+                     const TargetRegisterInfo *TRI = nullptr) const {
+    return findRegisterUseOperandIdx(Reg, false, TRI) != -1;
+  }
+
+  /// Return true if the MachineInstr reads the specified virtual register.
+  /// Take into account that a partial define is a
+  /// read-modify-write operation.
+  bool readsVirtualRegister(unsigned Reg) const {
+    return readsWritesVirtualRegister(Reg).first;
+  }
+
+  /// Return a pair of bools (reads, writes) indicating if this instruction
+  /// reads or writes Reg. This also considers partial defines.
+  /// If Ops is not null, all operand indices for Reg are added.
+  std::pair<bool,bool> readsWritesVirtualRegister(unsigned Reg,
+                                SmallVectorImpl<unsigned> *Ops = nullptr) const;
+
+  /// Return true if the MachineInstr kills the specified register.
+  /// If TargetRegisterInfo is passed, then it also checks if there is
+  /// a kill of a super-register.
+  bool killsRegister(unsigned Reg,
+                     const TargetRegisterInfo *TRI = nullptr) const {
+    return findRegisterUseOperandIdx(Reg, true, TRI) != -1;
+  }
+
+  /// Return true if the MachineInstr fully defines the specified register.
+  /// If TargetRegisterInfo is passed, then it also checks
+  /// if there is a def of a super-register.
+  /// NOTE: It's ignoring subreg indices on virtual registers.
+  bool definesRegister(unsigned Reg,
+                       const TargetRegisterInfo *TRI = nullptr) const {
+    return findRegisterDefOperandIdx(Reg, false, false, TRI) != -1;
+  }
+
+  /// Return true if the MachineInstr modifies (fully define or partially
+  /// define) the specified register.
+  /// NOTE: It's ignoring subreg indices on virtual registers.
+  bool modifiesRegister(unsigned Reg, const TargetRegisterInfo *TRI) const {
+    return findRegisterDefOperandIdx(Reg, false, true, TRI) != -1;
+  }
+
+  /// Returns true if the register is dead in this machine instruction.
+  /// If TargetRegisterInfo is passed, then it also checks
+  /// if there is a dead def of a super-register.
+  bool registerDefIsDead(unsigned Reg,
+                         const TargetRegisterInfo *TRI = nullptr) const {
+    return findRegisterDefOperandIdx(Reg, true, false, TRI) != -1;
+  }
+
+  /// Returns true if the MachineInstr has an implicit-use operand of exactly
+  /// the given register (not considering sub/super-registers).
+  bool hasRegisterImplicitUseOperand(unsigned Reg) const;
+
+  /// Returns the operand index that is a use of the specific register or -1
+  /// if it is not found. It further tightens the search criteria to a use
+  /// that kills the register if isKill is true.
+  int findRegisterUseOperandIdx(unsigned Reg, bool isKill = false,
+                                const TargetRegisterInfo *TRI = nullptr) const;
+
+  /// Wrapper for findRegisterUseOperandIdx, it returns
+  /// a pointer to the MachineOperand rather than an index.
+  MachineOperand *findRegisterUseOperand(unsigned Reg, bool isKill = false,
+                                      const TargetRegisterInfo *TRI = nullptr) {
+    int Idx = findRegisterUseOperandIdx(Reg, isKill, TRI);
+    return (Idx == -1) ? nullptr : &getOperand(Idx);
+  }
+
+  const MachineOperand *findRegisterUseOperand(
+    unsigned Reg, bool isKill = false,
+    const TargetRegisterInfo *TRI = nullptr) const {
+    return const_cast<MachineInstr *>(this)->
+      findRegisterUseOperand(Reg, isKill, TRI);
+  }
+
+  /// Returns the operand index that is a def of the specified register or
+  /// -1 if it is not found. If isDead is true, defs that are not dead are
+  /// skipped. If Overlap is true, then it also looks for defs that merely
+  /// overlap the specified register. If TargetRegisterInfo is non-null,
+  /// then it also checks if there is a def of a super-register.
+  /// This may also return a register mask operand when Overlap is true.
+  int findRegisterDefOperandIdx(unsigned Reg,
+                                bool isDead = false, bool Overlap = false,
+                                const TargetRegisterInfo *TRI = nullptr) const;
+
+  /// Wrapper for findRegisterDefOperandIdx, it returns
+  /// a pointer to the MachineOperand rather than an index.
+  MachineOperand *findRegisterDefOperand(unsigned Reg, bool isDead = false,
+                                      const TargetRegisterInfo *TRI = nullptr) {
+    int Idx = findRegisterDefOperandIdx(Reg, isDead, false, TRI);
+    return (Idx == -1) ? nullptr : &getOperand(Idx);
+  }
+
+  /// Find the index of the first operand in the
+  /// operand list that is used to represent the predicate. It returns -1 if
+  /// none is found.
+  int findFirstPredOperandIdx() const;
+
+  /// Find the index of the flag word operand that
+  /// corresponds to operand OpIdx on an inline asm instruction.  Returns -1 if
+  /// getOperand(OpIdx) does not belong to an inline asm operand group.
+  ///
+  /// If GroupNo is not NULL, it will receive the number of the operand group
+  /// containing OpIdx.
+  ///
+  /// The flag operand is an immediate that can be decoded with methods like
+  /// InlineAsm::hasRegClassConstraint().
+  int findInlineAsmFlagIdx(unsigned OpIdx, unsigned *GroupNo = nullptr) const;
+
+  /// Compute the static register class constraint for operand OpIdx.
+  /// For normal instructions, this is derived from the MCInstrDesc.
+  /// For inline assembly it is derived from the flag words.
+  ///
+  /// Returns NULL if the static register class constraint cannot be
+  /// determined.
+  const TargetRegisterClass*
+  getRegClassConstraint(unsigned OpIdx,
+                        const TargetInstrInfo *TII,
+                        const TargetRegisterInfo *TRI) const;
+
+  /// \brief Applies the constraints (def/use) implied by this MI on \p Reg to
+  /// the given \p CurRC.
+  /// If \p ExploreBundle is set and MI is part of a bundle, all the
+  /// instructions inside the bundle will be taken into account. In other words,
+  /// this method accumulates all the constraints of the operand of this MI and
+  /// the related bundle if MI is a bundle or inside a bundle.
+  ///
+  /// Returns the register class that satisfies both \p CurRC and the
+  /// constraints set by MI. Returns NULL if such a register class does not
+  /// exist.
+  ///
+  /// \pre CurRC must not be NULL.
+  const TargetRegisterClass *getRegClassConstraintEffectForVReg(
+      unsigned Reg, const TargetRegisterClass *CurRC,
+      const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
+      bool ExploreBundle = false) const;
+
+  /// \brief Applies the constraints (def/use) implied by the \p OpIdx operand
+  /// to the given \p CurRC.
+  ///
+  /// Returns the register class that satisfies both \p CurRC and the
+  /// constraints set by \p OpIdx MI. Returns NULL if such a register class
+  /// does not exist.
+  ///
+  /// \pre CurRC must not be NULL.
+  /// \pre The operand at \p OpIdx must be a register.
+  const TargetRegisterClass *
+  getRegClassConstraintEffect(unsigned OpIdx, const TargetRegisterClass *CurRC,
+                              const TargetInstrInfo *TII,
+                              const TargetRegisterInfo *TRI) const;
+
+  /// Add a tie between the register operands at DefIdx and UseIdx.
+  /// The tie will cause the register allocator to ensure that the two
+  /// operands are assigned the same physical register.
+  ///
+  /// Tied operands are managed automatically for explicit operands in the
+  /// MCInstrDesc. This method is for exceptional cases like inline asm.
+  void tieOperands(unsigned DefIdx, unsigned UseIdx);
+
+  /// Given the index of a tied register operand, find the
+  /// operand it is tied to. Defs are tied to uses and vice versa. Returns the
+  /// index of the tied operand which must exist.
+  unsigned findTiedOperandIdx(unsigned OpIdx) const;
+
+  /// Given the index of a register def operand,
+  /// check if the register def is tied to a source operand, due to either
+  /// two-address elimination or inline assembly constraints. Returns the
+  /// first tied use operand index by reference if UseOpIdx is not null.
+  bool isRegTiedToUseOperand(unsigned DefOpIdx,
+                             unsigned *UseOpIdx = nullptr) const {
+    const MachineOperand &MO = getOperand(DefOpIdx);
+    if (!MO.isReg() || !MO.isDef() || !MO.isTied())
+      return false;
+    if (UseOpIdx)
+      *UseOpIdx = findTiedOperandIdx(DefOpIdx);
+    return true;
+  }
+
+  /// Return true if the use operand of the specified index is tied to a def
+  /// operand. It also returns the def operand index by reference if DefOpIdx
+  /// is not null.
+  bool isRegTiedToDefOperand(unsigned UseOpIdx,
+                             unsigned *DefOpIdx = nullptr) const {
+    const MachineOperand &MO = getOperand(UseOpIdx);
+    if (!MO.isReg() || !MO.isUse() || !MO.isTied())
+      return false;
+    if (DefOpIdx)
+      *DefOpIdx = findTiedOperandIdx(UseOpIdx);
+    return true;
+  }
+
+  /// Clears kill flags on all operands.
+  void clearKillInfo();
+
+  /// Replace all occurrences of FromReg with ToReg:SubIdx,
+  /// properly composing subreg indices where necessary.
+  void substituteRegister(unsigned FromReg, unsigned ToReg, unsigned SubIdx,
+                          const TargetRegisterInfo &RegInfo);
+
+  /// We have determined MI kills a register. Look for the
+  /// operand that uses it and mark it as IsKill. If AddIfNotFound is true,
+  /// add a implicit operand if it's not found. Returns true if the operand
+  /// exists / is added.
+  bool addRegisterKilled(unsigned IncomingReg,
+                         const TargetRegisterInfo *RegInfo,
+                         bool AddIfNotFound = false);
+
+  /// Clear all kill flags affecting Reg.  If RegInfo is provided, this includes
+  /// all aliasing registers.
+  void clearRegisterKills(unsigned Reg, const TargetRegisterInfo *RegInfo);
+
+  /// We have determined MI defined a register without a use.
+  /// Look for the operand that defines it and mark it as IsDead. If
+  /// AddIfNotFound is true, add a implicit operand if it's not found. Returns
+  /// true if the operand exists / is added.
+  bool addRegisterDead(unsigned Reg, const TargetRegisterInfo *RegInfo,
+                       bool AddIfNotFound = false);
+
+  /// Clear all dead flags on operands defining register @p Reg.
+  void clearRegisterDeads(unsigned Reg);
+
+  /// Mark all subregister defs of register @p Reg with the undef flag.
+  /// This function is used when we determined to have a subregister def in an
+  /// otherwise undefined super register.
+  void setRegisterDefReadUndef(unsigned Reg, bool IsUndef = true);
+
+  /// We have determined MI defines a register. Make sure there is an operand
+  /// defining Reg.
+  void addRegisterDefined(unsigned Reg,
+                          const TargetRegisterInfo *RegInfo = nullptr);
+
+  /// Mark every physreg used by this instruction as
+  /// dead except those in the UsedRegs list.
+  ///
+  /// On instructions with register mask operands, also add implicit-def
+  /// operands for all registers in UsedRegs.
+  void setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,
+                             const TargetRegisterInfo &TRI);
+
+  /// Return true if it is safe to move this instruction. If
+  /// SawStore is set to true, it means that there is a store (or call) between
+  /// the instruction's location and its intended destination.
+  bool isSafeToMove(AliasAnalysis *AA, bool &SawStore) const;
+
+  /// Returns true if this instruction's memory access aliases the memory
+  /// access of Other.
+  //
+  /// Assumes any physical registers used to compute addresses
+  /// have the same value for both instructions.  Returns false if neither
+  /// instruction writes to memory.
+  ///
+  /// @param AA Optional alias analysis, used to compare memory operands.
+  /// @param Other MachineInstr to check aliasing against.
+  /// @param UseTBAA Whether to pass TBAA information to alias analysis.
+  bool mayAlias(AliasAnalysis *AA, MachineInstr &Other, bool UseTBAA);
+
+  /// Return true if this instruction may have an ordered
+  /// or volatile memory reference, or if the information describing the memory
+  /// reference is not available. Return false if it is known to have no
+  /// ordered or volatile memory references.
+  bool hasOrderedMemoryRef() const;
+
+  /// Return true if this load instruction never traps and points to a memory
+  /// location whose value doesn't change during the execution of this function.
+  ///
+  /// Examples include loading a value from the constant pool or from the
+  /// argument area of a function (if it does not change).  If the instruction
+  /// does multiple loads, this returns true only if all of the loads are
+  /// dereferenceable and invariant.
+  bool isDereferenceableInvariantLoad(AliasAnalysis *AA) const;
+
+  /// If the specified instruction is a PHI that always merges together the
+  /// same virtual register, return the register, otherwise return 0.
+  unsigned isConstantValuePHI() const;
+
+  /// Return true if this instruction has side effects that are not modeled
+  /// by mayLoad / mayStore, etc.
+  /// For all instructions, the property is encoded in MCInstrDesc::Flags
+  /// (see MCInstrDesc::hasUnmodeledSideEffects(). The only exception is
+  /// INLINEASM instruction, in which case the side effect property is encoded
+  /// in one of its operands (see InlineAsm::Extra_HasSideEffect).
+  ///
+  bool hasUnmodeledSideEffects() const;
+
+  /// Returns true if it is illegal to fold a load across this instruction.
+  bool isLoadFoldBarrier() const;
+
+  /// Return true if all the defs of this instruction are dead.
+  bool allDefsAreDead() const;
+
+  /// Copy implicit register operands from specified
+  /// instruction to this instruction.
+  void copyImplicitOps(MachineFunction &MF, const MachineInstr &MI);
+
+  /// Debugging support
+  /// @{
+  /// Determine the generic type to be printed (if needed) on uses and defs.
+  LLT getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes,
+                     const MachineRegisterInfo &MRI) const;
+
+  /// Return true when an instruction has tied register that can't be determined
+  /// by the instruction's descriptor. This is useful for MIR printing, to
+  /// determine whether we need to print the ties or not.
+  bool hasComplexRegisterTies() const;
+
+  /// Print this MI to \p OS.
+  /// Don't print information that can be inferred from other instructions if
+  /// \p IsStandalone is false. It is usually true when only a fragment of the
+  /// function is printed.
+  /// Only print the defs and the opcode if \p SkipOpers is true.
+  /// Otherwise, also print operands if \p SkipDebugLoc is true.
+  /// Otherwise, also print the debug loc, with a terminating newline.
+  /// \p TII is used to print the opcode name.  If it's not present, but the
+  /// MI is in a function, the opcode will be printed using the function's TII.
+  void print(raw_ostream &OS, bool IsStandalone = true, bool SkipOpers = false,
+             bool SkipDebugLoc = false,
+             const TargetInstrInfo *TII = nullptr) const;
+  void print(raw_ostream &OS, ModuleSlotTracker &MST, bool IsStandalone = true,
+             bool SkipOpers = false, bool SkipDebugLoc = false,
+             const TargetInstrInfo *TII = nullptr) const;
+  void dump() const;
+  /// @}
+
+  //===--------------------------------------------------------------------===//
+  // Accessors used to build up machine instructions.
+
+  /// Add the specified operand to the instruction.  If it is an implicit
+  /// operand, it is added to the end of the operand list.  If it is an
+  /// explicit operand it is added at the end of the explicit operand list
+  /// (before the first implicit operand).
+  ///
+  /// MF must be the machine function that was used to allocate this
+  /// instruction.
+  ///
+  /// MachineInstrBuilder provides a more convenient interface for creating
+  /// instructions and adding operands.
+  void addOperand(MachineFunction &MF, const MachineOperand &Op);
+
+  /// Add an operand without providing an MF reference. This only works for
+  /// instructions that are inserted in a basic block.
+  ///
+  /// MachineInstrBuilder and the two-argument addOperand(MF, MO) should be
+  /// preferred.
+  void addOperand(const MachineOperand &Op);
+
+  /// Replace the instruction descriptor (thus opcode) of
+  /// the current instruction with a new one.
+  void setDesc(const MCInstrDesc &tid) { MCID = &tid; }
+
+  /// Replace current source information with new such.
+  /// Avoid using this, the constructor argument is preferable.
+  void setDebugLoc(DebugLoc dl) {
+    debugLoc = std::move(dl);
+    assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
+  }
+
+  /// Erase an operand from an instruction, leaving it with one
+  /// fewer operand than it started with.
+  void RemoveOperand(unsigned i);
+
+  /// Add a MachineMemOperand to the machine instruction.
+  /// This function should be used only occasionally. The setMemRefs function
+  /// is the primary method for setting up a MachineInstr's MemRefs list.
+  void addMemOperand(MachineFunction &MF, MachineMemOperand *MO);
+
+  /// Assign this MachineInstr's memory reference descriptor list.
+  /// This does not transfer ownership.
+  void setMemRefs(mmo_iterator NewMemRefs, mmo_iterator NewMemRefsEnd) {
+    setMemRefs(std::make_pair(NewMemRefs, NewMemRefsEnd-NewMemRefs));
+  }
+
+  /// Assign this MachineInstr's memory reference descriptor list.  First
+  /// element in the pair is the begin iterator/pointer to the array; the
+  /// second is the number of MemoryOperands.  This does not transfer ownership
+  /// of the underlying memory.
+  void setMemRefs(std::pair<mmo_iterator, unsigned> NewMemRefs) {
+    MemRefs = NewMemRefs.first;
+    NumMemRefs = uint8_t(NewMemRefs.second);
+    assert(NumMemRefs == NewMemRefs.second &&
+           "Too many memrefs - must drop memory operands");
+  }
+
+  /// Return a set of memrefs (begin iterator, size) which conservatively
+  /// describe the memory behavior of both MachineInstrs.  This is appropriate
+  /// for use when merging two MachineInstrs into one. This routine does not
+  /// modify the memrefs of the this MachineInstr.
+  std::pair<mmo_iterator, unsigned> mergeMemRefsWith(const MachineInstr& Other);
+
+  /// Return the MIFlags which represent both MachineInstrs. This
+  /// should be used when merging two MachineInstrs into one. This routine does
+  /// not modify the MIFlags of this MachineInstr.
+  uint8_t mergeFlagsWith(const MachineInstr& Other) const;
+
+  /// Clear this MachineInstr's memory reference descriptor list.  This resets
+  /// the memrefs to their most conservative state.  This should be used only
+  /// as a last resort since it greatly pessimizes our knowledge of the memory
+  /// access performed by the instruction.
+  void dropMemRefs() {
+    MemRefs = nullptr;
+    NumMemRefs = 0;
+  }
+
+  /// Break any tie involving OpIdx.
+  void untieRegOperand(unsigned OpIdx) {
+    MachineOperand &MO = getOperand(OpIdx);
+    if (MO.isReg() && MO.isTied()) {
+      getOperand(findTiedOperandIdx(OpIdx)).TiedTo = 0;
+      MO.TiedTo = 0;
+    }
+  }
+
+  /// Add all implicit def and use operands to this instruction.
+  void addImplicitDefUseOperands(MachineFunction &MF);
+
+private:
+  /// If this instruction is embedded into a MachineFunction, return the
+  /// MachineRegisterInfo object for the current function, otherwise
+  /// return null.
+  MachineRegisterInfo *getRegInfo();
+
+  /// Unlink all of the register operands in this instruction from their
+  /// respective use lists.  This requires that the operands already be on their
+  /// use lists.
+  void RemoveRegOperandsFromUseLists(MachineRegisterInfo&);
+
+  /// Add all of the register operands in this instruction from their
+  /// respective use lists.  This requires that the operands not be on their
+  /// use lists yet.
+  void AddRegOperandsToUseLists(MachineRegisterInfo&);
+
+  /// Slow path for hasProperty when we're dealing with a bundle.
+  bool hasPropertyInBundle(unsigned Mask, QueryType Type) const;
+
+  /// \brief Implements the logic of getRegClassConstraintEffectForVReg for the
+  /// this MI and the given operand index \p OpIdx.
+  /// If the related operand does not constrained Reg, this returns CurRC.
+  const TargetRegisterClass *getRegClassConstraintEffectForVRegImpl(
+      unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC,
+      const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const;
+};
+
+/// Special DenseMapInfo traits to compare MachineInstr* by *value* of the
+/// instruction rather than by pointer value.
+/// The hashing and equality testing functions ignore definitions so this is
+/// useful for CSE, etc.
+struct MachineInstrExpressionTrait : DenseMapInfo<MachineInstr*> {
+  static inline MachineInstr *getEmptyKey() {
+    return nullptr;
+  }
+
+  static inline MachineInstr *getTombstoneKey() {
+    return reinterpret_cast<MachineInstr*>(-1);
+  }
+
+  static unsigned getHashValue(const MachineInstr* const &MI);
+
+  static bool isEqual(const MachineInstr* const &LHS,
+                      const MachineInstr* const &RHS) {
+    if (RHS == getEmptyKey() || RHS == getTombstoneKey() ||
+        LHS == getEmptyKey() || LHS == getTombstoneKey())
+      return LHS == RHS;
+    return LHS->isIdenticalTo(*RHS, MachineInstr::IgnoreVRegDefs);
+  }
+};
+
+//===----------------------------------------------------------------------===//
+// Debugging Support
+
+inline raw_ostream& operator<<(raw_ostream &OS, const MachineInstr &MI) {
+  MI.print(OS);
+  return OS;
+}
+
+} // end namespace llvm
+
+#endif // LLVM_CODEGEN_MACHINEINSTR_H