Import prebuilt clang toolchain for linux.
diff --git a/linux-x64/clang/include/llvm/CodeGen/MachineDominators.h b/linux-x64/clang/include/llvm/CodeGen/MachineDominators.h
new file mode 100644
index 0000000..af642d9
--- /dev/null
+++ b/linux-x64/clang/include/llvm/CodeGen/MachineDominators.h
@@ -0,0 +1,291 @@
+//==- llvm/CodeGen/MachineDominators.h - Machine Dom Calculation -*- C++ -*-==//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines classes mirroring those in llvm/Analysis/Dominators.h,
+// but for target-specific code rather than target-independent IR.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CODEGEN_MACHINEDOMINATORS_H
+#define LLVM_CODEGEN_MACHINEDOMINATORS_H
+
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/Support/GenericDomTree.h"
+#include "llvm/Support/GenericDomTreeConstruction.h"
+#include <cassert>
+#include <memory>
+#include <vector>
+
+namespace llvm {
+
+template <>
+inline void DominatorTreeBase<MachineBasicBlock, false>::addRoot(
+    MachineBasicBlock *MBB) {
+  this->Roots.push_back(MBB);
+}
+
+extern template class DomTreeNodeBase<MachineBasicBlock>;
+extern template class DominatorTreeBase<MachineBasicBlock, false>; // DomTree
+extern template class DominatorTreeBase<MachineBasicBlock, true>; // PostDomTree
+
+using MachineDomTreeNode = DomTreeNodeBase<MachineBasicBlock>;
+
+//===-------------------------------------
+/// DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to
+/// compute a normal dominator tree.
+///
+class MachineDominatorTree : public MachineFunctionPass {
+  /// \brief Helper structure used to hold all the basic blocks
+  /// involved in the split of a critical edge.
+  struct CriticalEdge {
+    MachineBasicBlock *FromBB;
+    MachineBasicBlock *ToBB;
+    MachineBasicBlock *NewBB;
+  };
+
+  /// \brief Pile up all the critical edges to be split.
+  /// The splitting of a critical edge is local and thus, it is possible
+  /// to apply several of those changes at the same time.
+  mutable SmallVector<CriticalEdge, 32> CriticalEdgesToSplit;
+
+  /// \brief Remember all the basic blocks that are inserted during
+  /// edge splitting.
+  /// Invariant: NewBBs == all the basic blocks contained in the NewBB
+  /// field of all the elements of CriticalEdgesToSplit.
+  /// I.e., forall elt in CriticalEdgesToSplit, it exists BB in NewBBs
+  /// such as BB == elt.NewBB.
+  mutable SmallSet<MachineBasicBlock *, 32> NewBBs;
+
+  /// The DominatorTreeBase that is used to compute a normal dominator tree
+  std::unique_ptr<DomTreeBase<MachineBasicBlock>> DT;
+
+  /// \brief Apply all the recorded critical edges to the DT.
+  /// This updates the underlying DT information in a way that uses
+  /// the fast query path of DT as much as possible.
+  ///
+  /// \post CriticalEdgesToSplit.empty().
+  void applySplitCriticalEdges() const;
+
+public:
+  static char ID; // Pass ID, replacement for typeid
+
+  MachineDominatorTree();
+
+  DomTreeBase<MachineBasicBlock> &getBase() {
+    if (!DT) DT.reset(new DomTreeBase<MachineBasicBlock>());
+    applySplitCriticalEdges();
+    return *DT;
+  }
+
+  void getAnalysisUsage(AnalysisUsage &AU) const override;
+
+  /// getRoots -  Return the root blocks of the current CFG.  This may include
+  /// multiple blocks if we are computing post dominators.  For forward
+  /// dominators, this will always be a single block (the entry node).
+  ///
+  inline const SmallVectorImpl<MachineBasicBlock*> &getRoots() const {
+    applySplitCriticalEdges();
+    return DT->getRoots();
+  }
+
+  inline MachineBasicBlock *getRoot() const {
+    applySplitCriticalEdges();
+    return DT->getRoot();
+  }
+
+  inline MachineDomTreeNode *getRootNode() const {
+    applySplitCriticalEdges();
+    return DT->getRootNode();
+  }
+
+  bool runOnMachineFunction(MachineFunction &F) override;
+
+  inline bool dominates(const MachineDomTreeNode* A,
+                        const MachineDomTreeNode* B) const {
+    applySplitCriticalEdges();
+    return DT->dominates(A, B);
+  }
+
+  inline bool dominates(const MachineBasicBlock* A,
+                        const MachineBasicBlock* B) const {
+    applySplitCriticalEdges();
+    return DT->dominates(A, B);
+  }
+
+  // dominates - Return true if A dominates B. This performs the
+  // special checks necessary if A and B are in the same basic block.
+  bool dominates(const MachineInstr *A, const MachineInstr *B) const {
+    applySplitCriticalEdges();
+    const MachineBasicBlock *BBA = A->getParent(), *BBB = B->getParent();
+    if (BBA != BBB) return DT->dominates(BBA, BBB);
+
+    // Loop through the basic block until we find A or B.
+    MachineBasicBlock::const_iterator I = BBA->begin();
+    for (; &*I != A && &*I != B; ++I)
+      /*empty*/ ;
+
+    //if(!DT.IsPostDominators) {
+      // A dominates B if it is found first in the basic block.
+      return &*I == A;
+    //} else {
+    //  // A post-dominates B if B is found first in the basic block.
+    //  return &*I == B;
+    //}
+  }
+
+  inline bool properlyDominates(const MachineDomTreeNode* A,
+                                const MachineDomTreeNode* B) const {
+    applySplitCriticalEdges();
+    return DT->properlyDominates(A, B);
+  }
+
+  inline bool properlyDominates(const MachineBasicBlock* A,
+                                const MachineBasicBlock* B) const {
+    applySplitCriticalEdges();
+    return DT->properlyDominates(A, B);
+  }
+
+  /// findNearestCommonDominator - Find nearest common dominator basic block
+  /// for basic block A and B. If there is no such block then return NULL.
+  inline MachineBasicBlock *findNearestCommonDominator(MachineBasicBlock *A,
+                                                       MachineBasicBlock *B) {
+    applySplitCriticalEdges();
+    return DT->findNearestCommonDominator(A, B);
+  }
+
+  inline MachineDomTreeNode *operator[](MachineBasicBlock *BB) const {
+    applySplitCriticalEdges();
+    return DT->getNode(BB);
+  }
+
+  /// getNode - return the (Post)DominatorTree node for the specified basic
+  /// block.  This is the same as using operator[] on this class.
+  ///
+  inline MachineDomTreeNode *getNode(MachineBasicBlock *BB) const {
+    applySplitCriticalEdges();
+    return DT->getNode(BB);
+  }
+
+  /// addNewBlock - Add a new node to the dominator tree information.  This
+  /// creates a new node as a child of DomBB dominator node,linking it into
+  /// the children list of the immediate dominator.
+  inline MachineDomTreeNode *addNewBlock(MachineBasicBlock *BB,
+                                         MachineBasicBlock *DomBB) {
+    applySplitCriticalEdges();
+    return DT->addNewBlock(BB, DomBB);
+  }
+
+  /// changeImmediateDominator - This method is used to update the dominator
+  /// tree information when a node's immediate dominator changes.
+  ///
+  inline void changeImmediateDominator(MachineBasicBlock *N,
+                                       MachineBasicBlock* NewIDom) {
+    applySplitCriticalEdges();
+    DT->changeImmediateDominator(N, NewIDom);
+  }
+
+  inline void changeImmediateDominator(MachineDomTreeNode *N,
+                                       MachineDomTreeNode* NewIDom) {
+    applySplitCriticalEdges();
+    DT->changeImmediateDominator(N, NewIDom);
+  }
+
+  /// eraseNode - Removes a node from  the dominator tree. Block must not
+  /// dominate any other blocks. Removes node from its immediate dominator's
+  /// children list. Deletes dominator node associated with basic block BB.
+  inline void eraseNode(MachineBasicBlock *BB) {
+    applySplitCriticalEdges();
+    DT->eraseNode(BB);
+  }
+
+  /// splitBlock - BB is split and now it has one successor. Update dominator
+  /// tree to reflect this change.
+  inline void splitBlock(MachineBasicBlock* NewBB) {
+    applySplitCriticalEdges();
+    DT->splitBlock(NewBB);
+  }
+
+  /// isReachableFromEntry - Return true if A is dominated by the entry
+  /// block of the function containing it.
+  bool isReachableFromEntry(const MachineBasicBlock *A) {
+    applySplitCriticalEdges();
+    return DT->isReachableFromEntry(A);
+  }
+
+  void releaseMemory() override;
+
+  void verifyAnalysis() const override;
+
+  void print(raw_ostream &OS, const Module*) const override;
+
+  /// \brief Record that the critical edge (FromBB, ToBB) has been
+  /// split with NewBB.
+  /// This is best to use this method instead of directly update the
+  /// underlying information, because this helps mitigating the
+  /// number of time the DT information is invalidated.
+  ///
+  /// \note Do not use this method with regular edges.
+  ///
+  /// \note To benefit from the compile time improvement incurred by this
+  /// method, the users of this method have to limit the queries to the DT
+  /// interface between two edges splitting. In other words, they have to
+  /// pack the splitting of critical edges as much as possible.
+  void recordSplitCriticalEdge(MachineBasicBlock *FromBB,
+                              MachineBasicBlock *ToBB,
+                              MachineBasicBlock *NewBB) {
+    bool Inserted = NewBBs.insert(NewBB).second;
+    (void)Inserted;
+    assert(Inserted &&
+           "A basic block inserted via edge splitting cannot appear twice");
+    CriticalEdgesToSplit.push_back({FromBB, ToBB, NewBB});
+  }
+};
+
+//===-------------------------------------
+/// DominatorTree GraphTraits specialization so the DominatorTree can be
+/// iterable by generic graph iterators.
+///
+
+template <class Node, class ChildIterator>
+struct MachineDomTreeGraphTraitsBase {
+  using NodeRef = Node *;
+  using ChildIteratorType = ChildIterator;
+
+  static NodeRef getEntryNode(NodeRef N) { return N; }
+  static ChildIteratorType child_begin(NodeRef N) { return N->begin(); }
+  static ChildIteratorType child_end(NodeRef N) { return N->end(); }
+};
+
+template <class T> struct GraphTraits;
+
+template <>
+struct GraphTraits<MachineDomTreeNode *>
+    : public MachineDomTreeGraphTraitsBase<MachineDomTreeNode,
+                                           MachineDomTreeNode::iterator> {};
+
+template <>
+struct GraphTraits<const MachineDomTreeNode *>
+    : public MachineDomTreeGraphTraitsBase<const MachineDomTreeNode,
+                                           MachineDomTreeNode::const_iterator> {
+};
+
+template <> struct GraphTraits<MachineDominatorTree*>
+  : public GraphTraits<MachineDomTreeNode *> {
+  static NodeRef getEntryNode(MachineDominatorTree *DT) {
+    return DT->getRootNode();
+  }
+};
+
+} // end namespace llvm
+
+#endif // LLVM_CODEGEN_MACHINEDOMINATORS_H