Import prebuilt clang toolchain for linux.
diff --git a/linux-x64/clang/include/llvm/CodeGen/MachineBasicBlock.h b/linux-x64/clang/include/llvm/CodeGen/MachineBasicBlock.h
new file mode 100644
index 0000000..f3130b6
--- /dev/null
+++ b/linux-x64/clang/include/llvm/CodeGen/MachineBasicBlock.h
@@ -0,0 +1,918 @@
+//===- llvm/CodeGen/MachineBasicBlock.h -------------------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Collect the sequence of machine instructions for a basic block.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CODEGEN_MACHINEBASICBLOCK_H
+#define LLVM_CODEGEN_MACHINEBASICBLOCK_H
+
+#include "llvm/ADT/GraphTraits.h"
+#include "llvm/ADT/ilist.h"
+#include "llvm/ADT/ilist_node.h"
+#include "llvm/ADT/iterator_range.h"
+#include "llvm/ADT/simple_ilist.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineInstrBundleIterator.h"
+#include "llvm/IR/DebugLoc.h"
+#include "llvm/MC/LaneBitmask.h"
+#include "llvm/MC/MCRegisterInfo.h"
+#include "llvm/Support/BranchProbability.h"
+#include "llvm/Support/Printable.h"
+#include <cassert>
+#include <cstdint>
+#include <functional>
+#include <iterator>
+#include <string>
+#include <vector>
+
+namespace llvm {
+
+class BasicBlock;
+class MachineFunction;
+class MCSymbol;
+class ModuleSlotTracker;
+class Pass;
+class SlotIndexes;
+class StringRef;
+class raw_ostream;
+class TargetRegisterClass;
+class TargetRegisterInfo;
+
+template <> struct ilist_traits<MachineInstr> {
+private:
+ friend class MachineBasicBlock; // Set by the owning MachineBasicBlock.
+
+ MachineBasicBlock *Parent;
+
+ using instr_iterator =
+ simple_ilist<MachineInstr, ilist_sentinel_tracking<true>>::iterator;
+
+public:
+ void addNodeToList(MachineInstr *N);
+ void removeNodeFromList(MachineInstr *N);
+ void transferNodesFromList(ilist_traits &OldList, instr_iterator First,
+ instr_iterator Last);
+ void deleteNode(MachineInstr *MI);
+};
+
+class MachineBasicBlock
+ : public ilist_node_with_parent<MachineBasicBlock, MachineFunction> {
+public:
+ /// Pair of physical register and lane mask.
+ /// This is not simply a std::pair typedef because the members should be named
+ /// clearly as they both have an integer type.
+ struct RegisterMaskPair {
+ public:
+ MCPhysReg PhysReg;
+ LaneBitmask LaneMask;
+
+ RegisterMaskPair(MCPhysReg PhysReg, LaneBitmask LaneMask)
+ : PhysReg(PhysReg), LaneMask(LaneMask) {}
+ };
+
+private:
+ using Instructions = ilist<MachineInstr, ilist_sentinel_tracking<true>>;
+
+ Instructions Insts;
+ const BasicBlock *BB;
+ int Number;
+ MachineFunction *xParent;
+
+ /// Keep track of the predecessor / successor basic blocks.
+ std::vector<MachineBasicBlock *> Predecessors;
+ std::vector<MachineBasicBlock *> Successors;
+
+ /// Keep track of the probabilities to the successors. This vector has the
+ /// same order as Successors, or it is empty if we don't use it (disable
+ /// optimization).
+ std::vector<BranchProbability> Probs;
+ using probability_iterator = std::vector<BranchProbability>::iterator;
+ using const_probability_iterator =
+ std::vector<BranchProbability>::const_iterator;
+
+ Optional<uint64_t> IrrLoopHeaderWeight;
+
+ /// Keep track of the physical registers that are livein of the basicblock.
+ using LiveInVector = std::vector<RegisterMaskPair>;
+ LiveInVector LiveIns;
+
+ /// Alignment of the basic block. Zero if the basic block does not need to be
+ /// aligned. The alignment is specified as log2(bytes).
+ unsigned Alignment = 0;
+
+ /// Indicate that this basic block is entered via an exception handler.
+ bool IsEHPad = false;
+
+ /// Indicate that this basic block is potentially the target of an indirect
+ /// branch.
+ bool AddressTaken = false;
+
+ /// Indicate that this basic block is the entry block of an EH funclet.
+ bool IsEHFuncletEntry = false;
+
+ /// Indicate that this basic block is the entry block of a cleanup funclet.
+ bool IsCleanupFuncletEntry = false;
+
+ /// \brief since getSymbol is a relatively heavy-weight operation, the symbol
+ /// is only computed once and is cached.
+ mutable MCSymbol *CachedMCSymbol = nullptr;
+
+ // Intrusive list support
+ MachineBasicBlock() = default;
+
+ explicit MachineBasicBlock(MachineFunction &MF, const BasicBlock *BB);
+
+ ~MachineBasicBlock();
+
+ // MachineBasicBlocks are allocated and owned by MachineFunction.
+ friend class MachineFunction;
+
+public:
+ /// Return the LLVM basic block that this instance corresponded to originally.
+ /// Note that this may be NULL if this instance does not correspond directly
+ /// to an LLVM basic block.
+ const BasicBlock *getBasicBlock() const { return BB; }
+
+ /// Return the name of the corresponding LLVM basic block, or an empty string.
+ StringRef getName() const;
+
+ /// Return a formatted string to identify this block and its parent function.
+ std::string getFullName() const;
+
+ /// Test whether this block is potentially the target of an indirect branch.
+ bool hasAddressTaken() const { return AddressTaken; }
+
+ /// Set this block to reflect that it potentially is the target of an indirect
+ /// branch.
+ void setHasAddressTaken() { AddressTaken = true; }
+
+ /// Return the MachineFunction containing this basic block.
+ const MachineFunction *getParent() const { return xParent; }
+ MachineFunction *getParent() { return xParent; }
+
+ using instr_iterator = Instructions::iterator;
+ using const_instr_iterator = Instructions::const_iterator;
+ using reverse_instr_iterator = Instructions::reverse_iterator;
+ using const_reverse_instr_iterator = Instructions::const_reverse_iterator;
+
+ using iterator = MachineInstrBundleIterator<MachineInstr>;
+ using const_iterator = MachineInstrBundleIterator<const MachineInstr>;
+ using reverse_iterator = MachineInstrBundleIterator<MachineInstr, true>;
+ using const_reverse_iterator =
+ MachineInstrBundleIterator<const MachineInstr, true>;
+
+ unsigned size() const { return (unsigned)Insts.size(); }
+ bool empty() const { return Insts.empty(); }
+
+ MachineInstr &instr_front() { return Insts.front(); }
+ MachineInstr &instr_back() { return Insts.back(); }
+ const MachineInstr &instr_front() const { return Insts.front(); }
+ const MachineInstr &instr_back() const { return Insts.back(); }
+
+ MachineInstr &front() { return Insts.front(); }
+ MachineInstr &back() { return *--end(); }
+ const MachineInstr &front() const { return Insts.front(); }
+ const MachineInstr &back() const { return *--end(); }
+
+ instr_iterator instr_begin() { return Insts.begin(); }
+ const_instr_iterator instr_begin() const { return Insts.begin(); }
+ instr_iterator instr_end() { return Insts.end(); }
+ const_instr_iterator instr_end() const { return Insts.end(); }
+ reverse_instr_iterator instr_rbegin() { return Insts.rbegin(); }
+ const_reverse_instr_iterator instr_rbegin() const { return Insts.rbegin(); }
+ reverse_instr_iterator instr_rend () { return Insts.rend(); }
+ const_reverse_instr_iterator instr_rend () const { return Insts.rend(); }
+
+ using instr_range = iterator_range<instr_iterator>;
+ using const_instr_range = iterator_range<const_instr_iterator>;
+ instr_range instrs() { return instr_range(instr_begin(), instr_end()); }
+ const_instr_range instrs() const {
+ return const_instr_range(instr_begin(), instr_end());
+ }
+
+ iterator begin() { return instr_begin(); }
+ const_iterator begin() const { return instr_begin(); }
+ iterator end () { return instr_end(); }
+ const_iterator end () const { return instr_end(); }
+ reverse_iterator rbegin() {
+ return reverse_iterator::getAtBundleBegin(instr_rbegin());
+ }
+ const_reverse_iterator rbegin() const {
+ return const_reverse_iterator::getAtBundleBegin(instr_rbegin());
+ }
+ reverse_iterator rend() { return reverse_iterator(instr_rend()); }
+ const_reverse_iterator rend() const {
+ return const_reverse_iterator(instr_rend());
+ }
+
+ /// Support for MachineInstr::getNextNode().
+ static Instructions MachineBasicBlock::*getSublistAccess(MachineInstr *) {
+ return &MachineBasicBlock::Insts;
+ }
+
+ inline iterator_range<iterator> terminators() {
+ return make_range(getFirstTerminator(), end());
+ }
+ inline iterator_range<const_iterator> terminators() const {
+ return make_range(getFirstTerminator(), end());
+ }
+
+ /// Returns a range that iterates over the phis in the basic block.
+ inline iterator_range<iterator> phis() {
+ return make_range(begin(), getFirstNonPHI());
+ }
+ inline iterator_range<const_iterator> phis() const {
+ return const_cast<MachineBasicBlock *>(this)->phis();
+ }
+
+ // Machine-CFG iterators
+ using pred_iterator = std::vector<MachineBasicBlock *>::iterator;
+ using const_pred_iterator = std::vector<MachineBasicBlock *>::const_iterator;
+ using succ_iterator = std::vector<MachineBasicBlock *>::iterator;
+ using const_succ_iterator = std::vector<MachineBasicBlock *>::const_iterator;
+ using pred_reverse_iterator =
+ std::vector<MachineBasicBlock *>::reverse_iterator;
+ using const_pred_reverse_iterator =
+ std::vector<MachineBasicBlock *>::const_reverse_iterator;
+ using succ_reverse_iterator =
+ std::vector<MachineBasicBlock *>::reverse_iterator;
+ using const_succ_reverse_iterator =
+ std::vector<MachineBasicBlock *>::const_reverse_iterator;
+ pred_iterator pred_begin() { return Predecessors.begin(); }
+ const_pred_iterator pred_begin() const { return Predecessors.begin(); }
+ pred_iterator pred_end() { return Predecessors.end(); }
+ const_pred_iterator pred_end() const { return Predecessors.end(); }
+ pred_reverse_iterator pred_rbegin()
+ { return Predecessors.rbegin();}
+ const_pred_reverse_iterator pred_rbegin() const
+ { return Predecessors.rbegin();}
+ pred_reverse_iterator pred_rend()
+ { return Predecessors.rend(); }
+ const_pred_reverse_iterator pred_rend() const
+ { return Predecessors.rend(); }
+ unsigned pred_size() const {
+ return (unsigned)Predecessors.size();
+ }
+ bool pred_empty() const { return Predecessors.empty(); }
+ succ_iterator succ_begin() { return Successors.begin(); }
+ const_succ_iterator succ_begin() const { return Successors.begin(); }
+ succ_iterator succ_end() { return Successors.end(); }
+ const_succ_iterator succ_end() const { return Successors.end(); }
+ succ_reverse_iterator succ_rbegin()
+ { return Successors.rbegin(); }
+ const_succ_reverse_iterator succ_rbegin() const
+ { return Successors.rbegin(); }
+ succ_reverse_iterator succ_rend()
+ { return Successors.rend(); }
+ const_succ_reverse_iterator succ_rend() const
+ { return Successors.rend(); }
+ unsigned succ_size() const {
+ return (unsigned)Successors.size();
+ }
+ bool succ_empty() const { return Successors.empty(); }
+
+ inline iterator_range<pred_iterator> predecessors() {
+ return make_range(pred_begin(), pred_end());
+ }
+ inline iterator_range<const_pred_iterator> predecessors() const {
+ return make_range(pred_begin(), pred_end());
+ }
+ inline iterator_range<succ_iterator> successors() {
+ return make_range(succ_begin(), succ_end());
+ }
+ inline iterator_range<const_succ_iterator> successors() const {
+ return make_range(succ_begin(), succ_end());
+ }
+
+ // LiveIn management methods.
+
+ /// Adds the specified register as a live in. Note that it is an error to add
+ /// the same register to the same set more than once unless the intention is
+ /// to call sortUniqueLiveIns after all registers are added.
+ void addLiveIn(MCPhysReg PhysReg,
+ LaneBitmask LaneMask = LaneBitmask::getAll()) {
+ LiveIns.push_back(RegisterMaskPair(PhysReg, LaneMask));
+ }
+ void addLiveIn(const RegisterMaskPair &RegMaskPair) {
+ LiveIns.push_back(RegMaskPair);
+ }
+
+ /// Sorts and uniques the LiveIns vector. It can be significantly faster to do
+ /// this than repeatedly calling isLiveIn before calling addLiveIn for every
+ /// LiveIn insertion.
+ void sortUniqueLiveIns();
+
+ /// Clear live in list.
+ void clearLiveIns();
+
+ /// Add PhysReg as live in to this block, and ensure that there is a copy of
+ /// PhysReg to a virtual register of class RC. Return the virtual register
+ /// that is a copy of the live in PhysReg.
+ unsigned addLiveIn(MCPhysReg PhysReg, const TargetRegisterClass *RC);
+
+ /// Remove the specified register from the live in set.
+ void removeLiveIn(MCPhysReg Reg,
+ LaneBitmask LaneMask = LaneBitmask::getAll());
+
+ /// Return true if the specified register is in the live in set.
+ bool isLiveIn(MCPhysReg Reg,
+ LaneBitmask LaneMask = LaneBitmask::getAll()) const;
+
+ // Iteration support for live in sets. These sets are kept in sorted
+ // order by their register number.
+ using livein_iterator = LiveInVector::const_iterator;
+#ifndef NDEBUG
+ /// Unlike livein_begin, this method does not check that the liveness
+ /// information is accurate. Still for debug purposes it may be useful
+ /// to have iterators that won't assert if the liveness information
+ /// is not current.
+ livein_iterator livein_begin_dbg() const { return LiveIns.begin(); }
+ iterator_range<livein_iterator> liveins_dbg() const {
+ return make_range(livein_begin_dbg(), livein_end());
+ }
+#endif
+ livein_iterator livein_begin() const;
+ livein_iterator livein_end() const { return LiveIns.end(); }
+ bool livein_empty() const { return LiveIns.empty(); }
+ iterator_range<livein_iterator> liveins() const {
+ return make_range(livein_begin(), livein_end());
+ }
+
+ /// Remove entry from the livein set and return iterator to the next.
+ livein_iterator removeLiveIn(livein_iterator I);
+
+ /// Get the clobber mask for the start of this basic block. Funclets use this
+ /// to prevent register allocation across funclet transitions.
+ const uint32_t *getBeginClobberMask(const TargetRegisterInfo *TRI) const;
+
+ /// Get the clobber mask for the end of the basic block.
+ /// \see getBeginClobberMask()
+ const uint32_t *getEndClobberMask(const TargetRegisterInfo *TRI) const;
+
+ /// Return alignment of the basic block. The alignment is specified as
+ /// log2(bytes).
+ unsigned getAlignment() const { return Alignment; }
+
+ /// Set alignment of the basic block. The alignment is specified as
+ /// log2(bytes).
+ void setAlignment(unsigned Align) { Alignment = Align; }
+
+ /// Returns true if the block is a landing pad. That is this basic block is
+ /// entered via an exception handler.
+ bool isEHPad() const { return IsEHPad; }
+
+ /// Indicates the block is a landing pad. That is this basic block is entered
+ /// via an exception handler.
+ void setIsEHPad(bool V = true) { IsEHPad = V; }
+
+ bool hasEHPadSuccessor() const;
+
+ /// Returns true if this is the entry block of an EH funclet.
+ bool isEHFuncletEntry() const { return IsEHFuncletEntry; }
+
+ /// Indicates if this is the entry block of an EH funclet.
+ void setIsEHFuncletEntry(bool V = true) { IsEHFuncletEntry = V; }
+
+ /// Returns true if this is the entry block of a cleanup funclet.
+ bool isCleanupFuncletEntry() const { return IsCleanupFuncletEntry; }
+
+ /// Indicates if this is the entry block of a cleanup funclet.
+ void setIsCleanupFuncletEntry(bool V = true) { IsCleanupFuncletEntry = V; }
+
+ /// Returns true if it is legal to hoist instructions into this block.
+ bool isLegalToHoistInto() const;
+
+ // Code Layout methods.
+
+ /// Move 'this' block before or after the specified block. This only moves
+ /// the block, it does not modify the CFG or adjust potential fall-throughs at
+ /// the end of the block.
+ void moveBefore(MachineBasicBlock *NewAfter);
+ void moveAfter(MachineBasicBlock *NewBefore);
+
+ /// Update the terminator instructions in block to account for changes to the
+ /// layout. If the block previously used a fallthrough, it may now need a
+ /// branch, and if it previously used branching it may now be able to use a
+ /// fallthrough.
+ void updateTerminator();
+
+ // Machine-CFG mutators
+
+ /// Add Succ as a successor of this MachineBasicBlock. The Predecessors list
+ /// of Succ is automatically updated. PROB parameter is stored in
+ /// Probabilities list. The default probability is set as unknown. Mixing
+ /// known and unknown probabilities in successor list is not allowed. When all
+ /// successors have unknown probabilities, 1 / N is returned as the
+ /// probability for each successor, where N is the number of successors.
+ ///
+ /// Note that duplicate Machine CFG edges are not allowed.
+ void addSuccessor(MachineBasicBlock *Succ,
+ BranchProbability Prob = BranchProbability::getUnknown());
+
+ /// Add Succ as a successor of this MachineBasicBlock. The Predecessors list
+ /// of Succ is automatically updated. The probability is not provided because
+ /// BPI is not available (e.g. -O0 is used), in which case edge probabilities
+ /// won't be used. Using this interface can save some space.
+ void addSuccessorWithoutProb(MachineBasicBlock *Succ);
+
+ /// Set successor probability of a given iterator.
+ void setSuccProbability(succ_iterator I, BranchProbability Prob);
+
+ /// Normalize probabilities of all successors so that the sum of them becomes
+ /// one. This is usually done when the current update on this MBB is done, and
+ /// the sum of its successors' probabilities is not guaranteed to be one. The
+ /// user is responsible for the correct use of this function.
+ /// MBB::removeSuccessor() has an option to do this automatically.
+ void normalizeSuccProbs() {
+ BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
+ }
+
+ /// Validate successors' probabilities and check if the sum of them is
+ /// approximate one. This only works in DEBUG mode.
+ void validateSuccProbs() const;
+
+ /// Remove successor from the successors list of this MachineBasicBlock. The
+ /// Predecessors list of Succ is automatically updated.
+ /// If NormalizeSuccProbs is true, then normalize successors' probabilities
+ /// after the successor is removed.
+ void removeSuccessor(MachineBasicBlock *Succ,
+ bool NormalizeSuccProbs = false);
+
+ /// Remove specified successor from the successors list of this
+ /// MachineBasicBlock. The Predecessors list of Succ is automatically updated.
+ /// If NormalizeSuccProbs is true, then normalize successors' probabilities
+ /// after the successor is removed.
+ /// Return the iterator to the element after the one removed.
+ succ_iterator removeSuccessor(succ_iterator I,
+ bool NormalizeSuccProbs = false);
+
+ /// Replace successor OLD with NEW and update probability info.
+ void replaceSuccessor(MachineBasicBlock *Old, MachineBasicBlock *New);
+
+ /// Copy a successor (and any probability info) from original block to this
+ /// block's. Uses an iterator into the original blocks successors.
+ ///
+ /// This is useful when doing a partial clone of successors. Afterward, the
+ /// probabilities may need to be normalized.
+ void copySuccessor(MachineBasicBlock *Orig, succ_iterator I);
+
+ /// Transfers all the successors from MBB to this machine basic block (i.e.,
+ /// copies all the successors FromMBB and remove all the successors from
+ /// FromMBB).
+ void transferSuccessors(MachineBasicBlock *FromMBB);
+
+ /// Transfers all the successors, as in transferSuccessors, and update PHI
+ /// operands in the successor blocks which refer to FromMBB to refer to this.
+ void transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB);
+
+ /// Return true if any of the successors have probabilities attached to them.
+ bool hasSuccessorProbabilities() const { return !Probs.empty(); }
+
+ /// Return true if the specified MBB is a predecessor of this block.
+ bool isPredecessor(const MachineBasicBlock *MBB) const;
+
+ /// Return true if the specified MBB is a successor of this block.
+ bool isSuccessor(const MachineBasicBlock *MBB) const;
+
+ /// Return true if the specified MBB will be emitted immediately after this
+ /// block, such that if this block exits by falling through, control will
+ /// transfer to the specified MBB. Note that MBB need not be a successor at
+ /// all, for example if this block ends with an unconditional branch to some
+ /// other block.
+ bool isLayoutSuccessor(const MachineBasicBlock *MBB) const;
+
+ /// Return the fallthrough block if the block can implicitly
+ /// transfer control to the block after it by falling off the end of
+ /// it. This should return null if it can reach the block after
+ /// it, but it uses an explicit branch to do so (e.g., a table
+ /// jump). Non-null return is a conservative answer.
+ MachineBasicBlock *getFallThrough();
+
+ /// Return true if the block can implicitly transfer control to the
+ /// block after it by falling off the end of it. This should return
+ /// false if it can reach the block after it, but it uses an
+ /// explicit branch to do so (e.g., a table jump). True is a
+ /// conservative answer.
+ bool canFallThrough();
+
+ /// Returns a pointer to the first instruction in this block that is not a
+ /// PHINode instruction. When adding instructions to the beginning of the
+ /// basic block, they should be added before the returned value, not before
+ /// the first instruction, which might be PHI.
+ /// Returns end() is there's no non-PHI instruction.
+ iterator getFirstNonPHI();
+
+ /// Return the first instruction in MBB after I that is not a PHI or a label.
+ /// This is the correct point to insert lowered copies at the beginning of a
+ /// basic block that must be before any debugging information.
+ iterator SkipPHIsAndLabels(iterator I);
+
+ /// Return the first instruction in MBB after I that is not a PHI, label or
+ /// debug. This is the correct point to insert copies at the beginning of a
+ /// basic block.
+ iterator SkipPHIsLabelsAndDebug(iterator I);
+
+ /// Returns an iterator to the first terminator instruction of this basic
+ /// block. If a terminator does not exist, it returns end().
+ iterator getFirstTerminator();
+ const_iterator getFirstTerminator() const {
+ return const_cast<MachineBasicBlock *>(this)->getFirstTerminator();
+ }
+
+ /// Same getFirstTerminator but it ignores bundles and return an
+ /// instr_iterator instead.
+ instr_iterator getFirstInstrTerminator();
+
+ /// Returns an iterator to the first non-debug instruction in the basic block,
+ /// or end().
+ iterator getFirstNonDebugInstr();
+ const_iterator getFirstNonDebugInstr() const {
+ return const_cast<MachineBasicBlock *>(this)->getFirstNonDebugInstr();
+ }
+
+ /// Returns an iterator to the last non-debug instruction in the basic block,
+ /// or end().
+ iterator getLastNonDebugInstr();
+ const_iterator getLastNonDebugInstr() const {
+ return const_cast<MachineBasicBlock *>(this)->getLastNonDebugInstr();
+ }
+
+ /// Convenience function that returns true if the block ends in a return
+ /// instruction.
+ bool isReturnBlock() const {
+ return !empty() && back().isReturn();
+ }
+
+ /// Split the critical edge from this block to the given successor block, and
+ /// return the newly created block, or null if splitting is not possible.
+ ///
+ /// This function updates LiveVariables, MachineDominatorTree, and
+ /// MachineLoopInfo, as applicable.
+ MachineBasicBlock *SplitCriticalEdge(MachineBasicBlock *Succ, Pass &P);
+
+ /// Check if the edge between this block and the given successor \p
+ /// Succ, can be split. If this returns true a subsequent call to
+ /// SplitCriticalEdge is guaranteed to return a valid basic block if
+ /// no changes occurred in the meantime.
+ bool canSplitCriticalEdge(const MachineBasicBlock *Succ) const;
+
+ void pop_front() { Insts.pop_front(); }
+ void pop_back() { Insts.pop_back(); }
+ void push_back(MachineInstr *MI) { Insts.push_back(MI); }
+
+ /// Insert MI into the instruction list before I, possibly inside a bundle.
+ ///
+ /// If the insertion point is inside a bundle, MI will be added to the bundle,
+ /// otherwise MI will not be added to any bundle. That means this function
+ /// alone can't be used to prepend or append instructions to bundles. See
+ /// MIBundleBuilder::insert() for a more reliable way of doing that.
+ instr_iterator insert(instr_iterator I, MachineInstr *M);
+
+ /// Insert a range of instructions into the instruction list before I.
+ template<typename IT>
+ void insert(iterator I, IT S, IT E) {
+ assert((I == end() || I->getParent() == this) &&
+ "iterator points outside of basic block");
+ Insts.insert(I.getInstrIterator(), S, E);
+ }
+
+ /// Insert MI into the instruction list before I.
+ iterator insert(iterator I, MachineInstr *MI) {
+ assert((I == end() || I->getParent() == this) &&
+ "iterator points outside of basic block");
+ assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
+ "Cannot insert instruction with bundle flags");
+ return Insts.insert(I.getInstrIterator(), MI);
+ }
+
+ /// Insert MI into the instruction list after I.
+ iterator insertAfter(iterator I, MachineInstr *MI) {
+ assert((I == end() || I->getParent() == this) &&
+ "iterator points outside of basic block");
+ assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
+ "Cannot insert instruction with bundle flags");
+ return Insts.insertAfter(I.getInstrIterator(), MI);
+ }
+
+ /// Remove an instruction from the instruction list and delete it.
+ ///
+ /// If the instruction is part of a bundle, the other instructions in the
+ /// bundle will still be bundled after removing the single instruction.
+ instr_iterator erase(instr_iterator I);
+
+ /// Remove an instruction from the instruction list and delete it.
+ ///
+ /// If the instruction is part of a bundle, the other instructions in the
+ /// bundle will still be bundled after removing the single instruction.
+ instr_iterator erase_instr(MachineInstr *I) {
+ return erase(instr_iterator(I));
+ }
+
+ /// Remove a range of instructions from the instruction list and delete them.
+ iterator erase(iterator I, iterator E) {
+ return Insts.erase(I.getInstrIterator(), E.getInstrIterator());
+ }
+
+ /// Remove an instruction or bundle from the instruction list and delete it.
+ ///
+ /// If I points to a bundle of instructions, they are all erased.
+ iterator erase(iterator I) {
+ return erase(I, std::next(I));
+ }
+
+ /// Remove an instruction from the instruction list and delete it.
+ ///
+ /// If I is the head of a bundle of instructions, the whole bundle will be
+ /// erased.
+ iterator erase(MachineInstr *I) {
+ return erase(iterator(I));
+ }
+
+ /// Remove the unbundled instruction from the instruction list without
+ /// deleting it.
+ ///
+ /// This function can not be used to remove bundled instructions, use
+ /// remove_instr to remove individual instructions from a bundle.
+ MachineInstr *remove(MachineInstr *I) {
+ assert(!I->isBundled() && "Cannot remove bundled instructions");
+ return Insts.remove(instr_iterator(I));
+ }
+
+ /// Remove the possibly bundled instruction from the instruction list
+ /// without deleting it.
+ ///
+ /// If the instruction is part of a bundle, the other instructions in the
+ /// bundle will still be bundled after removing the single instruction.
+ MachineInstr *remove_instr(MachineInstr *I);
+
+ void clear() {
+ Insts.clear();
+ }
+
+ /// Take an instruction from MBB 'Other' at the position From, and insert it
+ /// into this MBB right before 'Where'.
+ ///
+ /// If From points to a bundle of instructions, the whole bundle is moved.
+ void splice(iterator Where, MachineBasicBlock *Other, iterator From) {
+ // The range splice() doesn't allow noop moves, but this one does.
+ if (Where != From)
+ splice(Where, Other, From, std::next(From));
+ }
+
+ /// Take a block of instructions from MBB 'Other' in the range [From, To),
+ /// and insert them into this MBB right before 'Where'.
+ ///
+ /// The instruction at 'Where' must not be included in the range of
+ /// instructions to move.
+ void splice(iterator Where, MachineBasicBlock *Other,
+ iterator From, iterator To) {
+ Insts.splice(Where.getInstrIterator(), Other->Insts,
+ From.getInstrIterator(), To.getInstrIterator());
+ }
+
+ /// This method unlinks 'this' from the containing function, and returns it,
+ /// but does not delete it.
+ MachineBasicBlock *removeFromParent();
+
+ /// This method unlinks 'this' from the containing function and deletes it.
+ void eraseFromParent();
+
+ /// Given a machine basic block that branched to 'Old', change the code and
+ /// CFG so that it branches to 'New' instead.
+ void ReplaceUsesOfBlockWith(MachineBasicBlock *Old, MachineBasicBlock *New);
+
+ /// Various pieces of code can cause excess edges in the CFG to be inserted.
+ /// If we have proven that MBB can only branch to DestA and DestB, remove any
+ /// other MBB successors from the CFG. DestA and DestB can be null. Besides
+ /// DestA and DestB, retain other edges leading to LandingPads (currently
+ /// there can be only one; we don't check or require that here). Note it is
+ /// possible that DestA and/or DestB are LandingPads.
+ bool CorrectExtraCFGEdges(MachineBasicBlock *DestA,
+ MachineBasicBlock *DestB,
+ bool IsCond);
+
+ /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE
+ /// instructions. Return UnknownLoc if there is none.
+ DebugLoc findDebugLoc(instr_iterator MBBI);
+ DebugLoc findDebugLoc(iterator MBBI) {
+ return findDebugLoc(MBBI.getInstrIterator());
+ }
+
+ /// Find the previous valid DebugLoc preceding MBBI, skipping and DBG_VALUE
+ /// instructions. Return UnknownLoc if there is none.
+ DebugLoc findPrevDebugLoc(instr_iterator MBBI);
+ DebugLoc findPrevDebugLoc(iterator MBBI) {
+ return findPrevDebugLoc(MBBI.getInstrIterator());
+ }
+
+ /// Find and return the merged DebugLoc of the branch instructions of the
+ /// block. Return UnknownLoc if there is none.
+ DebugLoc findBranchDebugLoc();
+
+ /// Possible outcome of a register liveness query to computeRegisterLiveness()
+ enum LivenessQueryResult {
+ LQR_Live, ///< Register is known to be (at least partially) live.
+ LQR_Dead, ///< Register is known to be fully dead.
+ LQR_Unknown ///< Register liveness not decidable from local neighborhood.
+ };
+
+ /// Return whether (physical) register \p Reg has been defined and not
+ /// killed as of just before \p Before.
+ ///
+ /// Search is localised to a neighborhood of \p Neighborhood instructions
+ /// before (searching for defs or kills) and \p Neighborhood instructions
+ /// after (searching just for defs) \p Before.
+ ///
+ /// \p Reg must be a physical register.
+ LivenessQueryResult computeRegisterLiveness(const TargetRegisterInfo *TRI,
+ unsigned Reg,
+ const_iterator Before,
+ unsigned Neighborhood = 10) const;
+
+ // Debugging methods.
+ void dump() const;
+ void print(raw_ostream &OS, const SlotIndexes * = nullptr,
+ bool IsStandalone = true) const;
+ void print(raw_ostream &OS, ModuleSlotTracker &MST,
+ const SlotIndexes * = nullptr, bool IsStandalone = true) const;
+
+ // Printing method used by LoopInfo.
+ void printAsOperand(raw_ostream &OS, bool PrintType = true) const;
+
+ /// MachineBasicBlocks are uniquely numbered at the function level, unless
+ /// they're not in a MachineFunction yet, in which case this will return -1.
+ int getNumber() const { return Number; }
+ void setNumber(int N) { Number = N; }
+
+ /// Return the MCSymbol for this basic block.
+ MCSymbol *getSymbol() const;
+
+ Optional<uint64_t> getIrrLoopHeaderWeight() const {
+ return IrrLoopHeaderWeight;
+ }
+
+ void setIrrLoopHeaderWeight(uint64_t Weight) {
+ IrrLoopHeaderWeight = Weight;
+ }
+
+private:
+ /// Return probability iterator corresponding to the I successor iterator.
+ probability_iterator getProbabilityIterator(succ_iterator I);
+ const_probability_iterator
+ getProbabilityIterator(const_succ_iterator I) const;
+
+ friend class MachineBranchProbabilityInfo;
+ friend class MIPrinter;
+
+ /// Return probability of the edge from this block to MBB. This method should
+ /// NOT be called directly, but by using getEdgeProbability method from
+ /// MachineBranchProbabilityInfo class.
+ BranchProbability getSuccProbability(const_succ_iterator Succ) const;
+
+ // Methods used to maintain doubly linked list of blocks...
+ friend struct ilist_callback_traits<MachineBasicBlock>;
+
+ // Machine-CFG mutators
+
+ /// Add Pred as a predecessor of this MachineBasicBlock. Don't do this
+ /// unless you know what you're doing, because it doesn't update Pred's
+ /// successors list. Use Pred->addSuccessor instead.
+ void addPredecessor(MachineBasicBlock *Pred);
+
+ /// Remove Pred as a predecessor of this MachineBasicBlock. Don't do this
+ /// unless you know what you're doing, because it doesn't update Pred's
+ /// successors list. Use Pred->removeSuccessor instead.
+ void removePredecessor(MachineBasicBlock *Pred);
+};
+
+raw_ostream& operator<<(raw_ostream &OS, const MachineBasicBlock &MBB);
+
+/// Prints a machine basic block reference.
+///
+/// The format is:
+/// %bb.5 - a machine basic block with MBB.getNumber() == 5.
+///
+/// Usage: OS << printMBBReference(MBB) << '\n';
+Printable printMBBReference(const MachineBasicBlock &MBB);
+
+// This is useful when building IndexedMaps keyed on basic block pointers.
+struct MBB2NumberFunctor {
+ using argument_type = const MachineBasicBlock *;
+ unsigned operator()(const MachineBasicBlock *MBB) const {
+ return MBB->getNumber();
+ }
+};
+
+//===--------------------------------------------------------------------===//
+// GraphTraits specializations for machine basic block graphs (machine-CFGs)
+//===--------------------------------------------------------------------===//
+
+// Provide specializations of GraphTraits to be able to treat a
+// MachineFunction as a graph of MachineBasicBlocks.
+//
+
+template <> struct GraphTraits<MachineBasicBlock *> {
+ using NodeRef = MachineBasicBlock *;
+ using ChildIteratorType = MachineBasicBlock::succ_iterator;
+
+ static NodeRef getEntryNode(MachineBasicBlock *BB) { return BB; }
+ static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); }
+ static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); }
+};
+
+template <> struct GraphTraits<const MachineBasicBlock *> {
+ using NodeRef = const MachineBasicBlock *;
+ using ChildIteratorType = MachineBasicBlock::const_succ_iterator;
+
+ static NodeRef getEntryNode(const MachineBasicBlock *BB) { return BB; }
+ static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); }
+ static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); }
+};
+
+// Provide specializations of GraphTraits to be able to treat a
+// MachineFunction as a graph of MachineBasicBlocks and to walk it
+// in inverse order. Inverse order for a function is considered
+// to be when traversing the predecessor edges of a MBB
+// instead of the successor edges.
+//
+template <> struct GraphTraits<Inverse<MachineBasicBlock*>> {
+ using NodeRef = MachineBasicBlock *;
+ using ChildIteratorType = MachineBasicBlock::pred_iterator;
+
+ static NodeRef getEntryNode(Inverse<MachineBasicBlock *> G) {
+ return G.Graph;
+ }
+
+ static ChildIteratorType child_begin(NodeRef N) { return N->pred_begin(); }
+ static ChildIteratorType child_end(NodeRef N) { return N->pred_end(); }
+};
+
+template <> struct GraphTraits<Inverse<const MachineBasicBlock*>> {
+ using NodeRef = const MachineBasicBlock *;
+ using ChildIteratorType = MachineBasicBlock::const_pred_iterator;
+
+ static NodeRef getEntryNode(Inverse<const MachineBasicBlock *> G) {
+ return G.Graph;
+ }
+
+ static ChildIteratorType child_begin(NodeRef N) { return N->pred_begin(); }
+ static ChildIteratorType child_end(NodeRef N) { return N->pred_end(); }
+};
+
+/// MachineInstrSpan provides an interface to get an iteration range
+/// containing the instruction it was initialized with, along with all
+/// those instructions inserted prior to or following that instruction
+/// at some point after the MachineInstrSpan is constructed.
+class MachineInstrSpan {
+ MachineBasicBlock &MBB;
+ MachineBasicBlock::iterator I, B, E;
+
+public:
+ MachineInstrSpan(MachineBasicBlock::iterator I)
+ : MBB(*I->getParent()),
+ I(I),
+ B(I == MBB.begin() ? MBB.end() : std::prev(I)),
+ E(std::next(I)) {}
+
+ MachineBasicBlock::iterator begin() {
+ return B == MBB.end() ? MBB.begin() : std::next(B);
+ }
+ MachineBasicBlock::iterator end() { return E; }
+ bool empty() { return begin() == end(); }
+
+ MachineBasicBlock::iterator getInitial() { return I; }
+};
+
+/// Increment \p It until it points to a non-debug instruction or to \p End
+/// and return the resulting iterator. This function should only be used
+/// MachineBasicBlock::{iterator, const_iterator, instr_iterator,
+/// const_instr_iterator} and the respective reverse iterators.
+template<typename IterT>
+inline IterT skipDebugInstructionsForward(IterT It, IterT End) {
+ while (It != End && It->isDebugValue())
+ It++;
+ return It;
+}
+
+/// Decrement \p It until it points to a non-debug instruction or to \p Begin
+/// and return the resulting iterator. This function should only be used
+/// MachineBasicBlock::{iterator, const_iterator, instr_iterator,
+/// const_instr_iterator} and the respective reverse iterators.
+template<class IterT>
+inline IterT skipDebugInstructionsBackward(IterT It, IterT Begin) {
+ while (It != Begin && It->isDebugValue())
+ It--;
+ return It;
+}
+
+} // end namespace llvm
+
+#endif // LLVM_CODEGEN_MACHINEBASICBLOCK_H